williamr@2
|
1 |
// Copyright (c) 2001-2009 Nokia Corporation and/or its subsidiary(-ies).
|
williamr@2
|
2 |
// All rights reserved.
|
williamr@2
|
3 |
// This component and the accompanying materials are made available
|
williamr@2
|
4 |
// under the terms of the License "Symbian Foundation License v1.0" to Symbian Foundation members and "Symbian Foundation End User License Agreement v1.0" to non-members
|
williamr@2
|
5 |
// which accompanies this distribution, and is available
|
williamr@2
|
6 |
// at the URL "http://www.symbianfoundation.org/legal/licencesv10.html".
|
williamr@2
|
7 |
//
|
williamr@2
|
8 |
// Initial Contributors:
|
williamr@2
|
9 |
// Nokia Corporation - initial contribution.
|
williamr@2
|
10 |
//
|
williamr@2
|
11 |
// Contributors:
|
williamr@2
|
12 |
//
|
williamr@2
|
13 |
// Description:
|
williamr@2
|
14 |
// lifted from the ARMELF spec
|
williamr@2
|
15 |
//
|
williamr@2
|
16 |
//
|
williamr@2
|
17 |
|
williamr@2
|
18 |
#ifndef __ELFDEFS_H__
|
williamr@2
|
19 |
#define __ELFDEFS_H__
|
williamr@2
|
20 |
|
williamr@2
|
21 |
|
williamr@2
|
22 |
// ARMELF 3.1.2
|
williamr@2
|
23 |
// Data Representation
|
williamr@2
|
24 |
typedef unsigned int Elf32_Addr; //Unsigned program address
|
williamr@2
|
25 |
typedef unsigned short Elf32_Half; //Unsigned medium integer
|
williamr@2
|
26 |
typedef unsigned int Elf32_Off; //Unsigned file offset
|
williamr@2
|
27 |
typedef signed int Elf32_Sword; //Signed large integer
|
williamr@2
|
28 |
typedef unsigned int Elf32_Word; //Unsigned large integer
|
williamr@2
|
29 |
typedef unsigned char UChar; //Unsigned small integer
|
williamr@2
|
30 |
|
williamr@2
|
31 |
typedef char* MemAddr;
|
williamr@2
|
32 |
/*
|
williamr@2
|
33 |
3.2 ELF Header
|
williamr@2
|
34 |
Some object file control structures can grow, because the ELF header
|
williamr@2
|
35 |
contains their actual sizes. If the object file format changes, a
|
williamr@2
|
36 |
program may encounter control structures that are larger or smaller
|
williamr@2
|
37 |
than expected. Programs might therefore ignore extra information. The
|
williamr@2
|
38 |
treatment of missing information depends on context and will be
|
williamr@2
|
39 |
specified when and if extensions are defined.
|
williamr@2
|
40 |
*/
|
williamr@2
|
41 |
#define EI_NIDENT 16
|
williamr@2
|
42 |
typedef struct {
|
williamr@2
|
43 |
|
williamr@2
|
44 |
// marks the file as an object file and provide machine-independent
|
williamr@2
|
45 |
// data with which to decode and interpret the file's contents.
|
williamr@2
|
46 |
unsigned char e_ident[EI_NIDENT];
|
williamr@2
|
47 |
|
williamr@2
|
48 |
// identifies the object file type.
|
williamr@2
|
49 |
Elf32_Half e_type;
|
williamr@2
|
50 |
|
williamr@2
|
51 |
// specifies the required architecture for an individual file.
|
williamr@2
|
52 |
Elf32_Half e_machine;
|
williamr@2
|
53 |
|
williamr@2
|
54 |
// identifies the object file version.
|
williamr@2
|
55 |
Elf32_Word e_version;
|
williamr@2
|
56 |
|
williamr@2
|
57 |
// gives the virtual address to which the system first transfers
|
williamr@2
|
58 |
// control, thus starting the process. If the file has no associated
|
williamr@2
|
59 |
// entry point, this member holds zero.
|
williamr@2
|
60 |
Elf32_Addr e_entry;
|
williamr@2
|
61 |
|
williamr@2
|
62 |
// holds the program header table's file offset in bytes. If the
|
williamr@2
|
63 |
// file has no program header table, this member holds zero.
|
williamr@2
|
64 |
Elf32_Off e_phoff;
|
williamr@2
|
65 |
|
williamr@2
|
66 |
// holds the section header table's file offset in bytes. If the
|
williamr@2
|
67 |
// file has no section header table, this member holds zero.
|
williamr@2
|
68 |
Elf32_Off e_shoff;
|
williamr@2
|
69 |
|
williamr@2
|
70 |
// holds processor-specific flags associated with the file. Flag
|
williamr@2
|
71 |
// names take the form EF_machine_flag.
|
williamr@2
|
72 |
Elf32_Word e_flags;
|
williamr@2
|
73 |
|
williamr@2
|
74 |
// holds the ELF header's size in bytes.
|
williamr@2
|
75 |
Elf32_Half e_ehsize;
|
williamr@2
|
76 |
|
williamr@2
|
77 |
// holds the size in bytes of one entry in the file's program
|
williamr@2
|
78 |
// header table; all entries are the same size.
|
williamr@2
|
79 |
Elf32_Half e_phentsize;
|
williamr@2
|
80 |
|
williamr@2
|
81 |
// holds the number of entries in the program header table.
|
williamr@2
|
82 |
// Thus the product of e_phentsize and e_phnum gives the table's
|
williamr@2
|
83 |
// size in bytes. If a file has no program header table, e_phnum
|
williamr@2
|
84 |
// holds the value zero.
|
williamr@2
|
85 |
Elf32_Half e_phnum;
|
williamr@2
|
86 |
|
williamr@2
|
87 |
// holds a section header's size in bytes. A section header is
|
williamr@2
|
88 |
// one entry in the section header table; all entries are the same size.
|
williamr@2
|
89 |
Elf32_Half e_shentsize;
|
williamr@2
|
90 |
|
williamr@2
|
91 |
// holds the number of entries in the section header table. Thus
|
williamr@2
|
92 |
// the product of e_shentsize and e_shnum gives the section header
|
williamr@2
|
93 |
// table's size in bytes. If a file has no section header table,
|
williamr@2
|
94 |
// e_shnum holds the value zero.
|
williamr@2
|
95 |
Elf32_Half e_shnum;
|
williamr@2
|
96 |
|
williamr@2
|
97 |
// holds the section header table index of the entry associated
|
williamr@2
|
98 |
// with the section name string table. If the file has no section
|
williamr@2
|
99 |
// name string table, this member holds the value SHN_UNDEF.
|
williamr@2
|
100 |
Elf32_Half e_shstrndx;
|
williamr@2
|
101 |
|
williamr@2
|
102 |
} Elf32_Ehdr;
|
williamr@2
|
103 |
|
williamr@2
|
104 |
// values for e_type
|
williamr@2
|
105 |
#define ET_NONE 0 // No file type
|
williamr@2
|
106 |
#define ET_REL 1 // Re-locatable
|
williamr@2
|
107 |
#define ET_EXEC 2 // Executable file
|
williamr@2
|
108 |
#define ET_DYN 3 // Shared object
|
williamr@2
|
109 |
#define ET_CORE 4 // Core file
|
williamr@2
|
110 |
#define ET_LOPROC 0xff00 // Processor-specific
|
williamr@2
|
111 |
#define ET_HIPROC 0xffff // Processor-specific
|
williamr@2
|
112 |
|
williamr@2
|
113 |
//values for e_machine
|
williamr@2
|
114 |
#define EM_NONE 0 // No machine
|
williamr@2
|
115 |
#define EM_M32 1 // AT&T WE 32100
|
williamr@2
|
116 |
#define EM_SPARC 2 // SPARC
|
williamr@2
|
117 |
#define EM_386 3 // Intel Architecture
|
williamr@2
|
118 |
#define EM_68K 4 // Moto 68000
|
williamr@2
|
119 |
#define EM_88K 5 // Moto 88000
|
williamr@2
|
120 |
#define EM_860 7 // Intel 80860
|
williamr@2
|
121 |
#define EM_MIPS 8 // MIPS RS3000 Big-Endian
|
williamr@2
|
122 |
#define EM_MIPS_RS4_BE 10 // MIPS RS4000 Big-Endian
|
williamr@2
|
123 |
//#define RESERVED 11-16 Reserved for future use
|
williamr@2
|
124 |
#define EM_ARM 40 //ARM/Thumb Architecture
|
williamr@2
|
125 |
|
williamr@2
|
126 |
// values for e_version
|
williamr@2
|
127 |
#define EV_NONE 0 // Invalid version
|
williamr@2
|
128 |
#define EV_CURRENT 1 // Current version
|
williamr@2
|
129 |
|
williamr@2
|
130 |
// ELF Identification
|
williamr@2
|
131 |
#define EI_MAG0 0 // File identification
|
williamr@2
|
132 |
#define EI_MAG1 1 // File identification
|
williamr@2
|
133 |
#define EI_MAG2 2 // File identification
|
williamr@2
|
134 |
#define EI_MAG3 3 // File identification
|
williamr@2
|
135 |
#define EI_CLASS 4 // File class
|
williamr@2
|
136 |
#define EI_DATA 5 // Data encoding
|
williamr@2
|
137 |
#define EI_VERSION 6 // File version
|
williamr@2
|
138 |
#define EI_PAD 7 // Start of padding bytes
|
williamr@2
|
139 |
|
williamr@2
|
140 |
// values for e_ident[0-3]
|
williamr@2
|
141 |
#define ELFMAG0 0x7f // e_ident[EI_MAG0]
|
williamr@2
|
142 |
#define ELFMAG1 'E' // e_ident[EI_MAG1]
|
williamr@2
|
143 |
#define ELFMAG2 'L' // e_ident[EI_MAG2]
|
williamr@2
|
144 |
#define ELFMAG3 'F' // e_ident[EI_MAG3]
|
williamr@2
|
145 |
|
williamr@2
|
146 |
// values for e_ident[EI_CLASS]- identifies the file's class, or capacity.
|
williamr@2
|
147 |
#define ELFCLASSNONE 0 // Invalid class
|
williamr@2
|
148 |
#define ELFCLASS32 1 // 32-bit objects
|
williamr@2
|
149 |
#define ELFCLASS64 2 // 64-bit objects
|
williamr@2
|
150 |
|
williamr@2
|
151 |
// values for e_ident[EI_DATA] - specifies the data encoding of the
|
williamr@2
|
152 |
// processor-specific data in the object file.
|
williamr@2
|
153 |
#define ELFDATANONE 0 // Invalid data encoding
|
williamr@2
|
154 |
#define ELFDATA2LSB 1 // 2's complement , with LSB at lowest address.
|
williamr@2
|
155 |
#define ELFDATA2MSB 2 // 2's complement , with MSB at lowest address.
|
williamr@2
|
156 |
|
williamr@2
|
157 |
// ARM/THUMB specific values for e_flags
|
williamr@2
|
158 |
|
williamr@2
|
159 |
// e_entry contains a program-loader entry point
|
williamr@2
|
160 |
#define EF_ARM_HASENTRY 0x02
|
williamr@2
|
161 |
// Each subsection of the symbol table is sorted by symbol value
|
williamr@2
|
162 |
#define EF_ARM_SYMSARESORTED 0x04
|
williamr@2
|
163 |
// Symbols in dynamic symbol tables that are defined in sections
|
williamr@2
|
164 |
// included in program segment n have st_shndx = n+ 1.
|
williamr@2
|
165 |
#define EF_ARM_DYNSYMSUSESEGIDX 0x8
|
williamr@2
|
166 |
// Mapping symbols precede other local symbols in the symbol table
|
williamr@2
|
167 |
#define EF_ARM_MAPSYMSFIRST 0x10
|
williamr@2
|
168 |
// This masks an 8-bit version number, the version of the ARM EABI to
|
williamr@2
|
169 |
// which this ELF file conforms. This EABI is version 2. A value of 0
|
williamr@2
|
170 |
// denotes unknown conformance. (current version is 0x02000000)
|
williamr@2
|
171 |
#define EF_ARM_EABIMASK 0xFF000000
|
williamr@2
|
172 |
|
williamr@2
|
173 |
#define EF_ARM_EABI_VERSION 0x02000000
|
williamr@2
|
174 |
#define EF_ARM_BPABI_VERSION 0x04000000
|
williamr@2
|
175 |
|
williamr@2
|
176 |
/*
|
williamr@2
|
177 |
3.3 Sections
|
williamr@2
|
178 |
|
williamr@2
|
179 |
An object file's section header table lets one locate all the file's
|
williamr@2
|
180 |
sections. The section header table is an array of Elf32_Shdr
|
williamr@2
|
181 |
structures as described below. A section header table index is a
|
williamr@2
|
182 |
subscript into this array. The ELF header's e_shoff member gives the
|
williamr@2
|
183 |
byte offset from the beginning of the file to the section header
|
williamr@2
|
184 |
table; e_shnum tells how many entries the section header table
|
williamr@2
|
185 |
contains; e_shentsize gives the size in bytes of each entry.
|
williamr@2
|
186 |
*/
|
williamr@2
|
187 |
|
williamr@2
|
188 |
// Some section header table indexes are reserved; an object file will
|
williamr@2
|
189 |
// not have sections for these special indexes.
|
williamr@2
|
190 |
|
williamr@2
|
191 |
// marks an undefined, missing, irrelevant, or otherwise meaningless
|
williamr@2
|
192 |
// section reference.
|
williamr@2
|
193 |
#define SHN_UNDEF 0
|
williamr@2
|
194 |
// specifies the lower bound of the range of reserved indexes.
|
williamr@2
|
195 |
#define SHN_LORESERVE 0xff00
|
williamr@2
|
196 |
// SHN_LOPROC-SHN_HIPRO - this inclusive range reserved for
|
williamr@2
|
197 |
// processor-specific semantics.
|
williamr@2
|
198 |
#define SHN_LOPROC 0xff00
|
williamr@2
|
199 |
#define SHN_HIPROC 0xff1f
|
williamr@2
|
200 |
// Specifies absolute values for the corresponding reference.
|
williamr@2
|
201 |
// For example, symbols defined relative to section number SHN_ABS have
|
williamr@2
|
202 |
// absolute values and are not affected by relocation.
|
williamr@2
|
203 |
#define SHN_ABS 0xfff1
|
williamr@2
|
204 |
// Symbols defined relative to this section are common symbols,
|
williamr@2
|
205 |
// such as FORTRAN COMMON or unallocated C external variables.
|
williamr@2
|
206 |
#define SHN_COMMON 0xfff2
|
williamr@2
|
207 |
// specifies the upper bound of the range of reserved indexes.
|
williamr@2
|
208 |
#define SHN_HIRESERVE 0xffff
|
williamr@2
|
209 |
|
williamr@2
|
210 |
typedef struct {
|
williamr@2
|
211 |
|
williamr@2
|
212 |
// specifies the name of the section. Its value is an index into the
|
williamr@2
|
213 |
// section header string table section [see String Tablebelow],
|
williamr@2
|
214 |
// giving the location of a null-terminated string.
|
williamr@2
|
215 |
Elf32_Word sh_name;
|
williamr@2
|
216 |
|
williamr@2
|
217 |
// categorizes the section's contents and semantics. Section types
|
williamr@2
|
218 |
// and their descriptions appear below.
|
williamr@2
|
219 |
Elf32_Word sh_type;
|
williamr@2
|
220 |
|
williamr@2
|
221 |
// Sections support 1-bit flags that describe miscellaneous
|
williamr@2
|
222 |
// attributes. Flag definitions appear below.
|
williamr@2
|
223 |
Elf32_Word sh_flags;
|
williamr@2
|
224 |
|
williamr@2
|
225 |
// If the section will appear in the memory image of a process, this
|
williamr@2
|
226 |
// member gives the address at which the section's first byte should
|
williamr@2
|
227 |
// reside. Otherwise, the member contains 0.
|
williamr@2
|
228 |
Elf32_Addr sh_addr;
|
williamr@2
|
229 |
|
williamr@2
|
230 |
// gives the byte offset from the beginning of the file to the first
|
williamr@2
|
231 |
// byte in the section.One section type, SHT_NOBITS described below,
|
williamr@2
|
232 |
// occupies no space in the file, and its sh_offset member locates
|
williamr@2
|
233 |
// the conceptual placement in the file.
|
williamr@2
|
234 |
Elf32_Off sh_offset;
|
williamr@2
|
235 |
|
williamr@2
|
236 |
// gives the section's size in bytes. Unless the section type is
|
williamr@2
|
237 |
// SHT_NOBITS, the section occupies sh_size bytes in the file. A
|
williamr@2
|
238 |
// section of type SHT_NOBITS may have a non-zero size, but it
|
williamr@2
|
239 |
// occupies no space in the file.
|
williamr@2
|
240 |
Elf32_Word sh_size;
|
williamr@2
|
241 |
|
williamr@2
|
242 |
// holds a section header table index link, whose interpretation
|
williamr@2
|
243 |
// depends on the section type. A table below describes the values.
|
williamr@2
|
244 |
Elf32_Word sh_link;
|
williamr@2
|
245 |
|
williamr@2
|
246 |
// holds extra information, whose interpretation depends on the
|
williamr@2
|
247 |
// section type. A table below describes the values.
|
williamr@2
|
248 |
Elf32_Word sh_info;
|
williamr@2
|
249 |
|
williamr@2
|
250 |
// Some sections have address alignment constraints. For example, if
|
williamr@2
|
251 |
// a section holds a doubleword, the system must ensure double-word
|
williamr@2
|
252 |
// alignment for the entire section. That is, the value of sh_addr
|
williamr@2
|
253 |
// must be congruent to 0, modulo the value of
|
williamr@2
|
254 |
// sh_addralign. Currently, only 0 and positive integral powers of
|
williamr@2
|
255 |
// two are allowed. Values 0 and 1 mean the section has no alignment
|
williamr@2
|
256 |
// constraints.
|
williamr@2
|
257 |
Elf32_Word sh_addralign;
|
williamr@2
|
258 |
|
williamr@2
|
259 |
// Some sections hold a table of fixed-size entries, such as a
|
williamr@2
|
260 |
// symbol table. For such a section, this member gives the size in
|
williamr@2
|
261 |
// bytes of each entry. The member contains 0 if the section does
|
williamr@2
|
262 |
// not hold a table of fixedsize entries. A section header's sh_type
|
williamr@2
|
263 |
// member specifies the section's semantics.
|
williamr@2
|
264 |
Elf32_Word sh_entsize;
|
williamr@2
|
265 |
|
williamr@2
|
266 |
} Elf32_Shdr;
|
williamr@2
|
267 |
|
williamr@2
|
268 |
// values for sh_type
|
williamr@2
|
269 |
|
williamr@2
|
270 |
#define SHT_NULL 0 // marks the section header as inactive; it does
|
williamr@2
|
271 |
// not have an associated section. Other members of the section
|
williamr@2
|
272 |
// header have undefined values.
|
williamr@2
|
273 |
#define SHT_PROGBITS 1 // The section holds information defined by the
|
williamr@2
|
274 |
// program, whose format and meaning are determined solely by the
|
williamr@2
|
275 |
// program.
|
williamr@2
|
276 |
#define SHT_SYMTAB 2 //These sections hold a symbol table.
|
williamr@2
|
277 |
#define SHT_STRTAB 3 // The section holds a string table.
|
williamr@2
|
278 |
#define SHT_RELA 4 // The section holds relocation entries with
|
williamr@2
|
279 |
// explicit addends, such as type Elf32_Rela for the 32-bit class of
|
williamr@2
|
280 |
// object files. An object file may have multiple relocation
|
williamr@2
|
281 |
// sections. See Relocationbelow for details.
|
williamr@2
|
282 |
#define SHT_HASH 5 // The section holds a symbol hash table.
|
williamr@2
|
283 |
#define SHT_DYNAMIC 6 // The section holds information for dynamic
|
williamr@2
|
284 |
// linking.
|
williamr@2
|
285 |
#define SHT_NOTE 7 // This section holds information that marks the
|
williamr@2
|
286 |
// file in some way.
|
williamr@2
|
287 |
#define SHT_NOBITS 8 // A section of this type occupies no space in
|
williamr@2
|
288 |
// the file but otherwise resembles SHT_PROGBITS. Although this
|
williamr@2
|
289 |
// section contains no bytes, the sh_offset member contains the
|
williamr@2
|
290 |
// conceptual file offset.
|
williamr@2
|
291 |
#define SHT_REL 9 // The section holds relocation entries without
|
williamr@2
|
292 |
// explicit addends, such as type Elf32_Rel for the 32-bit class of
|
williamr@2
|
293 |
// object files. An object file may have multiple relocation
|
williamr@2
|
294 |
// sections. See Relocationbelow for details.
|
williamr@2
|
295 |
#define SHT_SHLIB 10 // This section type is reserved but has
|
williamr@2
|
296 |
// unspecified semantics.
|
williamr@2
|
297 |
#define SHT_DYNSYM 11 // This section hold dynamic symbol information
|
williamr@2
|
298 |
// SHT_LOPROC through SHT_HIPROC - Values in this inclusive range are
|
williamr@2
|
299 |
// reserved for processor-specific semantics.
|
williamr@2
|
300 |
#define SHT_LOPROC 0x70000000
|
williamr@2
|
301 |
#define SHT_ARM_EXIDX 0x70000001
|
williamr@2
|
302 |
#define SHT_HIPROC 0x7fffffff
|
williamr@2
|
303 |
// Section types between SHT_LOUSER and SHT_HIUSER may be used by the
|
williamr@2
|
304 |
// application, without conflicting with current or future
|
williamr@2
|
305 |
// system-defined section types.
|
williamr@2
|
306 |
#define SHT_LOUSER 0x80000000 // This value specifies the lower bound
|
williamr@2
|
307 |
// of the range of indexes reserved for application programs.
|
williamr@2
|
308 |
#define SHT_HIUSER 0xffffffff // This value specifies the upper bound
|
williamr@2
|
309 |
// of the range of indexes reserved for application programs.
|
williamr@2
|
310 |
|
williamr@2
|
311 |
// values for sh_flags
|
williamr@2
|
312 |
|
williamr@2
|
313 |
// The section contains data that should be writable during process execution
|
williamr@2
|
314 |
#define SHF_WRITE 0x1
|
williamr@2
|
315 |
// The section occupies memory during process execution. Some control
|
williamr@2
|
316 |
// sections do not reside in the memory image of an object file; this
|
williamr@2
|
317 |
// attribute is off for those sections
|
williamr@2
|
318 |
#define SHF_ALLOC 0x2
|
williamr@2
|
319 |
// The section contains executable machine instructions.
|
williamr@2
|
320 |
#define SHF_EXECINSTR 0x4
|
williamr@2
|
321 |
// Bits in this mask are reserved for processor-specific semantics.
|
williamr@2
|
322 |
#define SHF_MASKPROC 0xf0000000
|
williamr@2
|
323 |
|
williamr@2
|
324 |
|
williamr@2
|
325 |
typedef struct {
|
williamr@2
|
326 |
|
williamr@2
|
327 |
// holds an index into the object file's symbol string table, which
|
williamr@2
|
328 |
// holds the character representations of the symbol names.
|
williamr@2
|
329 |
Elf32_Word st_name;
|
williamr@2
|
330 |
|
williamr@2
|
331 |
// gives the value of the associated symbol. Depending on the
|
williamr@2
|
332 |
// context this may be an absolute value, an address, and so on
|
williamr@2
|
333 |
Elf32_Addr st_value;
|
williamr@2
|
334 |
|
williamr@2
|
335 |
// Many symbols have associated sizes. For example, a data object's
|
williamr@2
|
336 |
// size is the number of bytes contained in the object. This member
|
williamr@2
|
337 |
// holds 0 if the symbol has no size or an unknown size.
|
williamr@2
|
338 |
Elf32_Word st_size;
|
williamr@2
|
339 |
|
williamr@2
|
340 |
// This member specifies the symbol's type and binding
|
williamr@2
|
341 |
// attributes. The following code shows how to manipulate the
|
williamr@2
|
342 |
// values.
|
williamr@2
|
343 |
#define ELF32_ST_BIND(i) ((i)>>4)
|
williamr@2
|
344 |
#define ELF32_ST_TYPE(i) ((i)&0xf)
|
williamr@2
|
345 |
#define ELF32_ST_INFO(b,t) (((b)<<4)+((t)&0xf))
|
williamr@2
|
346 |
unsigned char st_info;
|
williamr@2
|
347 |
|
williamr@2
|
348 |
// This member currently holds 0 and has no defined meaning.
|
williamr@2
|
349 |
unsigned char st_other;
|
williamr@2
|
350 |
|
williamr@2
|
351 |
|
williamr@2
|
352 |
#define ELF32_ST_VISIBILITY(o) ((o)&0x3)
|
williamr@2
|
353 |
#define ELF64_ST_VISIBILITY(o) ((o)&0x3)
|
williamr@2
|
354 |
|
williamr@2
|
355 |
// Every symbol table entry is defined in relation to some section;
|
williamr@2
|
356 |
// this member holds the relevant section header table index.
|
williamr@2
|
357 |
Elf32_Half st_shndx;
|
williamr@2
|
358 |
|
williamr@2
|
359 |
} Elf32_Sym;
|
williamr@2
|
360 |
|
williamr@2
|
361 |
// Local symbols are not visible outside the object file containing
|
williamr@2
|
362 |
// their definition. Local symbols of the same name may exist in
|
williamr@2
|
363 |
// multiple files without interfering with each other.
|
williamr@2
|
364 |
#define STB_LOCAL 0
|
williamr@2
|
365 |
// Global symbols are visible to all object files being combined. One
|
williamr@2
|
366 |
// file's definition of a global symbol will satisfy another file's
|
williamr@2
|
367 |
// undefined reference to the same global symbol.
|
williamr@2
|
368 |
#define STB_GLOBAL 1
|
williamr@2
|
369 |
// Weak symbols resemble global symbols, but their definitions have
|
williamr@2
|
370 |
// lower precedence. Undefined weak symbols (weak references) may have
|
williamr@2
|
371 |
// processor- or OS-specific semantics
|
williamr@2
|
372 |
#define STB_WEAK 2
|
williamr@2
|
373 |
// STB_LOPROC through STB_HIPROC - values in this inclusive range are
|
williamr@2
|
374 |
// reserved for processor-specific semantics.
|
williamr@2
|
375 |
#define STB_LOPROC 13
|
williamr@2
|
376 |
#define STB_HIPROC 15
|
williamr@2
|
377 |
|
williamr@2
|
378 |
// The symbol's type is not specified.
|
williamr@2
|
379 |
#define STT_NOTYPE 0
|
williamr@2
|
380 |
// The symbol is associated with a data object, such as a variable, an
|
williamr@2
|
381 |
// array, and so on.
|
williamr@2
|
382 |
#define STT_OBJECT 1
|
williamr@2
|
383 |
// The symbol is associated with a function or other executable code.
|
williamr@2
|
384 |
#define STT_FUNC 2
|
williamr@2
|
385 |
// The symbol is associated with a section. Symbol table entries of
|
williamr@2
|
386 |
// this type exist primarily for relocation and normally have
|
williamr@2
|
387 |
// STB_LOCAL binding.
|
williamr@2
|
388 |
#define STT_SECTION 3
|
williamr@2
|
389 |
// A file symbol has STB_LOCAL binding, its section index is SHN_A BS,
|
williamr@2
|
390 |
// and it precedes the other STB_LOCAL symbols for the file, if it is
|
williamr@2
|
391 |
// present.
|
williamr@2
|
392 |
#define STT_FILE 4
|
williamr@2
|
393 |
// Values in this inclusive range are reserved for processor-specific
|
williamr@2
|
394 |
// semantics. If a symbol's value refers to a specific location within
|
williamr@2
|
395 |
// a section, its section index member, st_shndx, holds an index into
|
williamr@2
|
396 |
// the section header table. As the section moves during relocation,
|
williamr@2
|
397 |
// the symbol's value changes as well, and references to the symbol
|
williamr@2
|
398 |
// continue to point to the same location in the program. Some special
|
williamr@2
|
399 |
// section index values give other semantics.
|
williamr@2
|
400 |
#define STT_LOPROC 13
|
williamr@2
|
401 |
#define STT_HIPROC 15
|
williamr@2
|
402 |
|
williamr@2
|
403 |
/*
|
williamr@2
|
404 |
STV_DEFAULT
|
williamr@2
|
405 |
The visibility of symbols with the STV_DEFAULT attribute is as specified by the symbol's
|
williamr@2
|
406 |
binding type. That is, global and weak symbols are visible outside of their defining
|
williamr@2
|
407 |
component, the executable file or shared object. Local symbols are hidden. Global and weak
|
williamr@2
|
408 |
symbols can also be preempted, that is, they may by interposed by definitions of the same
|
williamr@2
|
409 |
name in another component.
|
williamr@2
|
410 |
|
williamr@2
|
411 |
STV_PROTECTED
|
williamr@2
|
412 |
A symbol defined in the current component is protected if it is visible in other components
|
williamr@2
|
413 |
but cannot be preempted. Any reference to such a symbol from within the defining component
|
williamr@2
|
414 |
must be resolved to the definition in that component, even if there is a definition in
|
williamr@2
|
415 |
another component that would interpose by the default rules. A symbol with STB_LOCAL binding
|
williamr@2
|
416 |
will not have STV_PROTECTED visibility.
|
williamr@2
|
417 |
|
williamr@2
|
418 |
STV_HIDDEN
|
williamr@2
|
419 |
A symbol defined in the current component is hidden if its name is not visible to other
|
williamr@2
|
420 |
components. Such a symbol is necessarily protected. This attribute is used to control
|
williamr@2
|
421 |
the external interface of a component. An object named by such a symbol may still be
|
williamr@2
|
422 |
referenced from another component if its address is passed outside.
|
williamr@2
|
423 |
|
williamr@2
|
424 |
A hidden symbol contained in a relocatable object is either removed or converted to
|
williamr@2
|
425 |
STB_LOCAL binding by the link-editor when the relocatable object is included in an
|
williamr@2
|
426 |
executable file or shared object.
|
williamr@2
|
427 |
|
williamr@2
|
428 |
STV_INTERNAL
|
williamr@2
|
429 |
This visibility attribute is currently reserved.
|
williamr@2
|
430 |
*/
|
williamr@2
|
431 |
#define STV_DEFAULT 0
|
williamr@2
|
432 |
#define STV_INTERNAL 1
|
williamr@2
|
433 |
#define STV_HIDDEN 2
|
williamr@2
|
434 |
#define STV_PROTECTED 3
|
williamr@2
|
435 |
|
williamr@2
|
436 |
// Relocation Entries
|
williamr@2
|
437 |
|
williamr@2
|
438 |
typedef struct {
|
williamr@2
|
439 |
|
williamr@2
|
440 |
// r_offset gives the location at which to apply the relocation
|
williamr@2
|
441 |
// action. For a relocatable file, the value is the byte offset from
|
williamr@2
|
442 |
// the beginning of the section to the storage unit affected by the
|
williamr@2
|
443 |
// relocation. For an executable file or a shared object, the value
|
williamr@2
|
444 |
// is the virtual address of the storage unit affected by the
|
williamr@2
|
445 |
// relocation.
|
williamr@2
|
446 |
Elf32_Addr r_offset;
|
williamr@2
|
447 |
|
williamr@2
|
448 |
// r_info gives both the symbol table index with respect to which
|
williamr@2
|
449 |
// the relocation must be made, and the type of relocation to
|
williamr@2
|
450 |
// apply. For example, a call instruction's relocation entry would
|
williamr@2
|
451 |
// hold the symbol table index of the function being called. If the
|
williamr@2
|
452 |
// index is STN_UNDEF, the undefined symbol index, the relocation
|
williamr@2
|
453 |
// uses 0 as the symbol value. Relocation types are
|
williamr@2
|
454 |
// processor-specific; descriptions of their behavior appear in
|
williamr@2
|
455 |
// section 4.5, Relocation types. When the text in section 4.5
|
williamr@2
|
456 |
// refers to a relocation entry's relocation type or symbol table
|
williamr@2
|
457 |
// index, it means the result of applying ELF32_R_TYPE or
|
williamr@2
|
458 |
// ELF32_R_SYM, respectively, to the entry's r_info member.
|
williamr@2
|
459 |
|
williamr@2
|
460 |
#define ELF32_R_SYM(i) ((i)>>8)
|
williamr@2
|
461 |
#define ELF32_R_TYPE(i) ((unsigned char)(i))
|
williamr@2
|
462 |
#define ELF32_R_INFO(s,t) (((s)<<8)+(unsigned char)(t))
|
williamr@2
|
463 |
|
williamr@2
|
464 |
Elf32_Word r_info;
|
williamr@2
|
465 |
} Elf32_Rel;
|
williamr@2
|
466 |
|
williamr@2
|
467 |
typedef struct {
|
williamr@2
|
468 |
Elf32_Addr r_offset;
|
williamr@2
|
469 |
Elf32_Word r_info;
|
williamr@2
|
470 |
Elf32_Sword r_addend;
|
williamr@2
|
471 |
} Elf32_Rela;
|
williamr@2
|
472 |
|
williamr@2
|
473 |
// Program Header
|
williamr@2
|
474 |
|
williamr@2
|
475 |
typedef struct {
|
williamr@2
|
476 |
|
williamr@2
|
477 |
// p_type tells what kind of segment this array element describes or
|
williamr@2
|
478 |
// how to interpret the array element's information. Type values and
|
williamr@2
|
479 |
// their meanings are given below.
|
williamr@2
|
480 |
Elf32_Word p_type;
|
williamr@2
|
481 |
|
williamr@2
|
482 |
// p_offset gives the offset from the start of the file at which the
|
williamr@2
|
483 |
// first byte of the segment resides.
|
williamr@2
|
484 |
Elf32_Off p_offset;
|
williamr@2
|
485 |
|
williamr@2
|
486 |
// p_vaddr gives the virtual address at which the first byte of the
|
williamr@2
|
487 |
// segment resides in memory.
|
williamr@2
|
488 |
Elf32_Addr p_vaddr;
|
williamr@2
|
489 |
|
williamr@2
|
490 |
// p_paddr - On systems for which physical addressing is relevant,
|
williamr@2
|
491 |
// this member is reserved for the segment's physical address. This
|
williamr@2
|
492 |
// member requires operating system specific information.
|
williamr@2
|
493 |
Elf32_Addr p_paddr;
|
williamr@2
|
494 |
|
williamr@2
|
495 |
// p_filesz gives the number of bytes in the file image of the
|
williamr@2
|
496 |
// segment; it may be zero.
|
williamr@2
|
497 |
Elf32_Word p_filesz;
|
williamr@2
|
498 |
|
williamr@2
|
499 |
// p_memsz gives the number of bytes in the memory image of the
|
williamr@2
|
500 |
// segment; it may be zero.
|
williamr@2
|
501 |
Elf32_Word p_memsz;
|
williamr@2
|
502 |
|
williamr@2
|
503 |
// p_flags gives flags relevant to the segment. Defined flag values
|
williamr@2
|
504 |
// are given below.
|
williamr@2
|
505 |
Elf32_Word p_flags;
|
williamr@2
|
506 |
|
williamr@2
|
507 |
// p_align - Loadable process segments must have congruent values
|
williamr@2
|
508 |
// for p_vaddr and p_offset, modulo the page size. This member gives
|
williamr@2
|
509 |
// the value to which the segments are aligned in memory and in the
|
williamr@2
|
510 |
// file. Values 0 and 1 mean that no alignment is
|
williamr@2
|
511 |
// required. Otherwise, p_align should be a positive, integral power
|
williamr@2
|
512 |
// of 2, and p_vaddr should equal p_offset, modulo p_align.
|
williamr@2
|
513 |
Elf32_Word p_align;
|
williamr@2
|
514 |
|
williamr@2
|
515 |
} Elf32_Phdr;
|
williamr@2
|
516 |
|
williamr@2
|
517 |
// Segment types - values for p_type
|
williamr@2
|
518 |
|
williamr@2
|
519 |
// The array element is unused; other members' values are
|
williamr@2
|
520 |
// undefined. This type lets the program header table have ignored
|
williamr@2
|
521 |
// entries.
|
williamr@2
|
522 |
#define PT_NULL 0
|
williamr@2
|
523 |
// The array element specifies a loadable segment, described by
|
williamr@2
|
524 |
// p_filesz and p_memsz (for additional explanation, see
|
williamr@2
|
525 |
// PT_LOAD below).
|
williamr@2
|
526 |
#define PT_LOAD 1
|
williamr@2
|
527 |
// The array element specifies dynamic linking information. See
|
williamr@2
|
528 |
// subsection 4.7.
|
williamr@2
|
529 |
#define PT_DYNAMIC 2
|
williamr@2
|
530 |
// The array element specifies the location and size of a
|
williamr@2
|
531 |
// null-terminated pathname to invoke as an interpreter.
|
williamr@2
|
532 |
#define PT_INTERP 3
|
williamr@2
|
533 |
// The array element specifies the location and size of auxiliary
|
williamr@2
|
534 |
// information.
|
williamr@2
|
535 |
#define PT_NOTE 4
|
williamr@2
|
536 |
// This segment type is reserved but has unspecified semantics.
|
williamr@2
|
537 |
#define PT_SHLIB 5
|
williamr@2
|
538 |
// The array element, if present, specifies the location and size of
|
williamr@2
|
539 |
// the program header table itself (for additional explanation, see
|
williamr@2
|
540 |
// PT_ PHDR below).
|
williamr@2
|
541 |
#define PT_PHDR 6
|
williamr@2
|
542 |
// Values in the inclusive [PT_LOPROC, PT_HIPROC] range are reserved
|
williamr@2
|
543 |
// for processor-specific semantics.
|
williamr@2
|
544 |
#define PT_LOPROC 0x70000000
|
williamr@2
|
545 |
#define PT_HIPROC 0x7fffffff
|
williamr@2
|
546 |
|
williamr@2
|
547 |
// values for p_flags
|
williamr@2
|
548 |
// The segment may be executed.
|
williamr@2
|
549 |
#define PF_X 1
|
williamr@2
|
550 |
// The segment may be written to.
|
williamr@2
|
551 |
#define PF_W 2
|
williamr@2
|
552 |
// The segment may be read.
|
williamr@2
|
553 |
#define PF_R 4
|
williamr@2
|
554 |
// Reserved for processor-specific purposes (see 4.6, Program
|
williamr@2
|
555 |
// headers).
|
williamr@2
|
556 |
#define PF_MASKPROC 0xf0000000
|
williamr@2
|
557 |
#define PF_ARM_ENTRY 0x80000000
|
williamr@2
|
558 |
|
williamr@2
|
559 |
|
williamr@2
|
560 |
// Relocation types
|
williamr@2
|
561 |
|
williamr@2
|
562 |
// ELF defines two sorts of relocation directive, SHT_REL, and
|
williamr@2
|
563 |
// SHT_RELA. Both identify:
|
williamr@2
|
564 |
//
|
williamr@2
|
565 |
// o A section containing the storage unit - byte, half-word, word, or
|
williamr@2
|
566 |
// instruction - being relocated.
|
williamr@2
|
567 |
// o An offset within the section - or the address within an
|
williamr@2
|
568 |
// executable program - of the storage unit itself.
|
williamr@2
|
569 |
// o A symbol,the value of which helps to define a new value for the
|
williamr@2
|
570 |
// storage unit.
|
williamr@2
|
571 |
// o A relocation typethat defines the computation to be
|
williamr@2
|
572 |
// performed. Computations are performed using 2's complement, 32-bit,
|
williamr@2
|
573 |
// unsigned arithmetic with silent overflow.
|
williamr@2
|
574 |
// o An addend, that also helps to define a new value for the storage
|
williamr@2
|
575 |
// unit.
|
williamr@2
|
576 |
//
|
williamr@2
|
577 |
// The addend may be encoded wholly in a field of the storage unit
|
williamr@2
|
578 |
// being relocated - relocation sort SHT_REL - or partly there and
|
williamr@2
|
579 |
// partly in the addendfield of the relocation directive - relocation
|
williamr@2
|
580 |
// sort SHT_RELA. Tables below describe the computation associated
|
williamr@2
|
581 |
// with each relocation type, using the following notation:
|
williamr@2
|
582 |
//
|
williamr@2
|
583 |
// A - denotes the addend used to compute the new value of the storage
|
williamr@2
|
584 |
// unit being relocated.
|
williamr@2
|
585 |
// - It is the value extracted from the storage unit being relocated
|
williamr@2
|
586 |
// (relocation directives of sort SHT_REL) or the sum of that
|
williamr@2
|
587 |
// value and the r_addend field of the relocation directive (sort
|
williamr@2
|
588 |
// SHT_RELA).
|
williamr@2
|
589 |
// - If it has a unit, the unit is bytes. An encoded address or
|
williamr@2
|
590 |
// offset value is converted to bytes on extraction from a storage
|
williamr@2
|
591 |
// unit and re-encoded on insertion into a storage unit.
|
williamr@2
|
592 |
//
|
williamr@2
|
593 |
// P - denotes the place (section offset or address of the storage
|
williamr@2
|
594 |
// unit) being re-located. It is the sum of the r_offset field of
|
williamr@2
|
595 |
// the relocation directive and the base address of the section
|
williamr@2
|
596 |
// being re-located.
|
williamr@2
|
597 |
//
|
williamr@2
|
598 |
// S - denotes the value of the symbol whose symbol table index is
|
williamr@2
|
599 |
// given in the r_info field of the relocation directive.
|
williamr@2
|
600 |
//
|
williamr@2
|
601 |
// B - denotes the base address of the consolidated section in which
|
williamr@2
|
602 |
// the symbol is defined. For relocations of type R_ARM_SBREL32,
|
williamr@2
|
603 |
// this is the least static data address (the static base).
|
williamr@2
|
604 |
//
|
williamr@2
|
605 |
// relocation types 0-16 are generic
|
williamr@2
|
606 |
// Name Type Field Computation
|
williamr@2
|
607 |
//====================================================================
|
williamr@2
|
608 |
#define R_ARM_NONE 0 // Any No relocation.
|
williamr@2
|
609 |
#define R_ARM_PC24 1 // ARM B/BL S - P + A
|
williamr@2
|
610 |
#define R_ARM_ABS32 2 // 32-bit word S + A
|
williamr@2
|
611 |
#define R_ARM_REL32 3 // 32-bit word S - P + A
|
williamr@2
|
612 |
#define R_ARM_PC13 4 // ARM LDR r, [pc,...] S - P + A
|
williamr@2
|
613 |
#define R_ARM_ABS16 5 // 16-bit half-word S + A
|
williamr@2
|
614 |
#define R_ARM_ABS12 6 // ARM LDR/STR S + A
|
williamr@2
|
615 |
#define R_ARM_THM_ABS5 7 // Thumb LDR/STR S + A
|
williamr@2
|
616 |
#define R_ARM_ABS8 8 // 8-bit byte S + A
|
williamr@2
|
617 |
#define R_ARM_SBREL32 9 // 32-bit word S - B + A
|
williamr@2
|
618 |
#define R_ARM_THM_PC22 10 // Thumb BL pair S - P + A
|
williamr@2
|
619 |
#define R_ARM_THM_PC8 11 // Thumb LDR r, [pc,...] S - P + A
|
williamr@2
|
620 |
#define R_ARM_AMP_VCALL9 12 // AMP VCALL Obsolete - SA-1500
|
williamr@2
|
621 |
#define R_ARM_SWI24 13 // ARM SWI S + A
|
williamr@2
|
622 |
#define R_ARM_THM_SWI8 14 // Thumb SWI S + A
|
williamr@2
|
623 |
#define R_ARM_XPC25 15 // ARM BLX S - P + A
|
williamr@2
|
624 |
#define R_ARM_THM_XPC22 16 // Thumb BLX pair S - P + A
|
williamr@2
|
625 |
|
williamr@2
|
626 |
// relocation types 17-31 are reserved for ARM Linux
|
williamr@2
|
627 |
#define R_ARM_GLOB_DAT 21 // PLT related S + A
|
williamr@2
|
628 |
#define R_ARM_JUMP_SLOT 22 // PLT related S + A
|
williamr@2
|
629 |
#define R_ARM_RELATIVE 23 // 32-bit word B(S) + A
|
williamr@2
|
630 |
|
williamr@2
|
631 |
#define R_ARM_GOT_BREL 26 //
|
williamr@2
|
632 |
|
williamr@2
|
633 |
#define R_ARM_ALU_PCREL_7_0 32 // ARM ADD/SUB (S - P + A) & 0x000000FF
|
williamr@2
|
634 |
#define R_ARM_ALU_PCREL_15_8 33 // ARM ADD/SUB (S - P + A) & 0x0000FF00
|
williamr@2
|
635 |
#define R_ARM_ALU_PCREL_23_15 34 // ARM ADD/SUB (S - P + A) & 0x00FF0000
|
williamr@2
|
636 |
#define R_ARM_LDR_SBREL_11_0 35 // ARM ADD/SUB (S - B + A) & 0x00000FFF
|
williamr@2
|
637 |
#define R_ARM_ALU_SBREL_19_12 36 // ARM ADD/SUB (S - B + A) & 0x000FF000
|
williamr@2
|
638 |
#define R_ARM_ALU_SBREL_27_20 37 // ARM ADD/SUB (S - B + A) & 0x0FF00000
|
williamr@2
|
639 |
|
williamr@2
|
640 |
// Dynamic relocation types
|
williamr@2
|
641 |
|
williamr@2
|
642 |
// A small set of relocation types supports relocating executable ELF
|
williamr@2
|
643 |
// files. They are used only in a relocation section embedded in a
|
williamr@2
|
644 |
// dynamic segment (see section 4.7, Dynamic linking and
|
williamr@2
|
645 |
// relocation). They cannot be used in a relocation section in a
|
williamr@2
|
646 |
// re-locatable ELF file. In Figure 4-13 below:
|
williamr@2
|
647 |
//
|
williamr@2
|
648 |
// .S is the displacement from its statically linked virtual address
|
williamr@2
|
649 |
// of the segment containing the symbol definition.
|
williamr@2
|
650 |
//
|
williamr@2
|
651 |
// .P is the displacement from its statically linked virtual address
|
williamr@2
|
652 |
// of the segment containing the place to be relocated.
|
williamr@2
|
653 |
//
|
williamr@2
|
654 |
// .SB is the displacement of the segment pointed to by the static
|
williamr@2
|
655 |
// base (PF_ARM_SB is set in the p_flags field of this segment's
|
williamr@2
|
656 |
// program header - see 4.6, Program headers).
|
williamr@2
|
657 |
|
williamr@2
|
658 |
|
williamr@2
|
659 |
// types 249 - 255 are dynamic relocation types and are only used in dynamic sections
|
williamr@2
|
660 |
#define R_ARM_RXPC25 249 // ARM BLX (.S - .P) + A
|
williamr@2
|
661 |
// For calls between program segments.
|
williamr@2
|
662 |
#define R_ARM_RSBREL32 250 // Word (.S - .SB) + A
|
williamr@2
|
663 |
// For an offset from SB, the static base.
|
williamr@2
|
664 |
#define R_ARM_THM_RPC22 251 // Thumb BL/BLX pair (.S - .P) + A
|
williamr@2
|
665 |
// For calls between program segments.
|
williamr@2
|
666 |
#define R_ARM_RREL32 252 // Word (.S - .P) + A
|
williamr@2
|
667 |
// For on offset between two segments.
|
williamr@2
|
668 |
#define R_ARM_RABS32 253 // Word .S + A
|
williamr@2
|
669 |
// For the address of a location in the target segment.
|
williamr@2
|
670 |
#define R_ARM_RPC24 254 // ARM B/BL (.S - .P) + A
|
williamr@2
|
671 |
// For calls between program segments.
|
williamr@2
|
672 |
#define R_ARM_RBASE 255 // None Identifies the segment being relocated by
|
williamr@2
|
673 |
// the following relocation directives.
|
williamr@2
|
674 |
// DYNAMIC SEGMENT
|
williamr@2
|
675 |
// The dynamic segment begins with a dynamic section containing an array of structures of type:
|
williamr@2
|
676 |
typedef struct Elf32_Dyn {
|
williamr@2
|
677 |
Elf32_Sword d_tag;
|
williamr@2
|
678 |
Elf32_Word d_val;
|
williamr@2
|
679 |
} Elf32_Dyn;
|
williamr@2
|
680 |
|
williamr@2
|
681 |
// This entry marks the end of the dynamic array. mandatory
|
williamr@2
|
682 |
#define DT_NULL 0
|
williamr@2
|
683 |
// Index in the string table of the name of a needed library. multiple
|
williamr@2
|
684 |
#define DT_NEEDED 1
|
williamr@2
|
685 |
// These entries are unused by versions 1-2 of the ARM EABI. unused
|
williamr@2
|
686 |
#define DT_PLTRELSZ 2
|
williamr@2
|
687 |
#define DT_PLTGOT 3
|
williamr@2
|
688 |
// The offset of the hash table section in the dynamic segment. mandatory
|
williamr@2
|
689 |
#define DT_HASH 4
|
williamr@2
|
690 |
// The offset of the string table section in the dynamic segment. mandatory
|
williamr@2
|
691 |
#define DT_STRTAB 5
|
williamr@2
|
692 |
// The offset of the symbol table section in the dynamic segment. mandatory
|
williamr@2
|
693 |
#define DT_SYMTAB 6
|
williamr@2
|
694 |
// The offset in the dynamic segment of an SHT_RELA relocation
|
williamr@2
|
695 |
// section, Its bytesize,and the byte size of an ARMRELA-type
|
williamr@2
|
696 |
// relocation entry. optional
|
williamr@2
|
697 |
#define DT_RELA 7
|
williamr@2
|
698 |
#define DT_RELASZ 8
|
williamr@2
|
699 |
#define DT_RELAENT 9
|
williamr@2
|
700 |
// The byte size of the string table section. mandatory
|
williamr@2
|
701 |
#define DT_STRSZ 10
|
williamr@2
|
702 |
// The byte size of an ARM symbol table entry. mandatory
|
williamr@2
|
703 |
#define DT_SYMENT 11
|
williamr@2
|
704 |
// These entries are unused by versions 1-2 of the ARM EABI. unused
|
williamr@2
|
705 |
#define DT_INIT 12
|
williamr@2
|
706 |
#define DT_FINI 13
|
williamr@2
|
707 |
// The Index in the string table of the name of this shared object. mandatory
|
williamr@2
|
708 |
#define DT_SONAME 14
|
williamr@2
|
709 |
// Unused by the ARM EABI. unused
|
williamr@2
|
710 |
#define DT_RPATH 15
|
williamr@2
|
711 |
#define DT_SYMBOLIC 16
|
williamr@2
|
712 |
//The offset in the dynamic segment of an SHT_REL relocation section,
|
williamr@2
|
713 |
//Its bytesize, and the byte size of an ARMREL-type relocation
|
williamr@2
|
714 |
//entry. optional
|
williamr@2
|
715 |
#define DT_REL 17
|
williamr@2
|
716 |
#define DT_RELSZ 18
|
williamr@2
|
717 |
#define DT_RELENT 19
|
williamr@2
|
718 |
// These entries are unused by versions 1-2 of the ARM EABI. unused
|
williamr@2
|
719 |
#define DT_PLTREL 20
|
williamr@2
|
720 |
#define DT_DEBUG 21
|
williamr@2
|
721 |
#define DT_TEXTREL 22
|
williamr@2
|
722 |
#define DT_JMPREL 23
|
williamr@2
|
723 |
#define DT_BIND_NOW 24
|
williamr@2
|
724 |
#define DT_INIT_ARRAY 25
|
williamr@2
|
725 |
#define DT_FINI_ARRAY 26
|
williamr@2
|
726 |
#define DT_INIT_ARRAYSZ 27
|
williamr@2
|
727 |
#define DT_FINI_ARRAYSZ 28
|
williamr@2
|
728 |
|
williamr@2
|
729 |
#define DT_VERSYM 0x6ffffff0 /* see section 3.3.3.1 in bpabi*/
|
williamr@2
|
730 |
#define DT_RELCOUNT 0x6ffffffa
|
williamr@2
|
731 |
#define DT_VERDEF 0x6ffffffc /* Address of version definition
|
williamr@2
|
732 |
table */
|
williamr@2
|
733 |
#define DT_VERDEFNUM 0x6ffffffd /* Number of version definitions */
|
williamr@2
|
734 |
#define DT_VERNEED 0x6ffffffe /* Address of table with needed
|
williamr@2
|
735 |
versions */
|
williamr@2
|
736 |
#define DT_VERNEEDNUM 0x6fffffff /* Number of needed versions */
|
williamr@2
|
737 |
|
williamr@2
|
738 |
// Values in this range are reserved to the ARM EABI. unused
|
williamr@2
|
739 |
#define DT_LOPROC 0x70000000
|
williamr@2
|
740 |
#define DT_HIPROC 0x7fffffff
|
williamr@2
|
741 |
#define DT_ARM_RESERVED1 0x70000000
|
williamr@2
|
742 |
/* Number of entries in the dynamic symbol table, including the initial dummy symbol. */
|
williamr@2
|
743 |
#define DT_ARM_SYMTABSZ_21 0x70000000 // For RVCT 2.1
|
williamr@2
|
744 |
#define DT_ARM_SYMTABSZ 0x70000001 // The DT_ARM_SYMTABSZ tag value has been changed from RVCT2.2
|
williamr@2
|
745 |
/* Holds the address of the pre-emption map for platforms that use the DLL static binding model. */
|
williamr@2
|
746 |
#define DT_ARM_PREEMPTMAP 0x70000002
|
williamr@2
|
747 |
#define DT_ARM_RESERVED2 0x70000003
|
williamr@2
|
748 |
#define DT_ARM_PLTGOTBASE 0x70000004
|
williamr@2
|
749 |
#define DT_ARM_PLTGOTLIMIT 0x70000005
|
williamr@2
|
750 |
|
williamr@2
|
751 |
// What the hash table looks like in the dynamic segment
|
williamr@2
|
752 |
typedef struct Elf32_HashTable {
|
williamr@2
|
753 |
Elf32_Word nBuckets;
|
williamr@2
|
754 |
Elf32_Word nChains;
|
williamr@2
|
755 |
// Elf32_Word bucket[nBuckets];
|
williamr@2
|
756 |
// Elf32_Word chain[nChains];
|
williamr@2
|
757 |
} Elf32_HashTable;
|
williamr@2
|
758 |
|
williamr@2
|
759 |
|
williamr@2
|
760 |
typedef struct
|
williamr@2
|
761 |
{
|
williamr@2
|
762 |
Elf32_Half vd_version; /* Version revision */
|
williamr@2
|
763 |
Elf32_Half vd_flags; /* Version information */
|
williamr@2
|
764 |
Elf32_Half vd_ndx; /* Version Index */
|
williamr@2
|
765 |
Elf32_Half vd_cnt; /* Number of associated aux entries */
|
williamr@2
|
766 |
Elf32_Word vd_hash; /* Version name hash value */
|
williamr@2
|
767 |
Elf32_Word vd_aux; /* Offset in bytes to verdaux array */
|
williamr@2
|
768 |
Elf32_Word vd_next; /* Offset in bytes to next verdef
|
williamr@2
|
769 |
entry */
|
williamr@2
|
770 |
} Elf32_Verdef;
|
williamr@2
|
771 |
|
williamr@2
|
772 |
typedef struct
|
williamr@2
|
773 |
{
|
williamr@2
|
774 |
Elf32_Word vda_name; /* Version or dependency names */
|
williamr@2
|
775 |
Elf32_Word vda_next; /* Offset in bytes to next verdaux
|
williamr@2
|
776 |
entry */
|
williamr@2
|
777 |
} Elf32_Verdaux;
|
williamr@2
|
778 |
|
williamr@2
|
779 |
|
williamr@2
|
780 |
typedef struct
|
williamr@2
|
781 |
{
|
williamr@2
|
782 |
Elf32_Half vn_version; /* Version of structure */
|
williamr@2
|
783 |
Elf32_Half vn_cnt; /* Number of associated aux entries */
|
williamr@2
|
784 |
Elf32_Word vn_file; /* Offset of filename for this
|
williamr@2
|
785 |
dependency */
|
williamr@2
|
786 |
Elf32_Word vn_aux; /* Offset in bytes to vernaux array */
|
williamr@2
|
787 |
Elf32_Word vn_next; /* Offset in bytes to next verneed
|
williamr@2
|
788 |
entry */
|
williamr@2
|
789 |
} Elf32_Verneed;
|
williamr@2
|
790 |
|
williamr@2
|
791 |
typedef struct {
|
williamr@2
|
792 |
Elf32_Word vna_hash;
|
williamr@2
|
793 |
Elf32_Half vna_flags;
|
williamr@2
|
794 |
Elf32_Half vna_other;
|
williamr@2
|
795 |
Elf32_Word vna_name;
|
williamr@2
|
796 |
Elf32_Word vna_next;
|
williamr@2
|
797 |
} Elf32_Vernaux;
|
williamr@2
|
798 |
|
williamr@2
|
799 |
|
williamr@2
|
800 |
enum ESegmentType
|
williamr@2
|
801 |
{
|
williamr@2
|
802 |
ESegmentUndefined = SHN_UNDEF, // undefined or meaningless section/segment reference
|
williamr@2
|
803 |
ESegmentRO, // Read Only (text) segment
|
williamr@2
|
804 |
ESegmentRW, // Read Write (data) segment
|
williamr@2
|
805 |
ESegmentDynamic, // Dynamic segment
|
williamr@2
|
806 |
ESegmentABS = SHN_ABS, // Symbols defined relative to section number SHN_ABS have
|
williamr@2
|
807 |
// absolute values and are not affected by relocation.
|
williamr@2
|
808 |
ESegmentCommon = SHN_COMMON, // Symbols defined relative to section number SHN_ABS have
|
williamr@2
|
809 |
// absolute values and are not affected by relocation.
|
williamr@2
|
810 |
};
|
williamr@2
|
811 |
|
williamr@2
|
812 |
#endif
|