os/security/crypto/weakcryptospi/test/tplugins/src/rijndaelimpl.cpp
author sl
Tue, 10 Jun 2014 14:32:02 +0200
changeset 1 260cb5ec6c19
permissions -rw-r--r--
Update contrib.
     1 /*
     2 * Copyright (c) 2006-2010 Nokia Corporation and/or its subsidiary(-ies).
     3 * All rights reserved.
     4 * This component and the accompanying materials are made available
     5 * under the terms of the License "Eclipse Public License v1.0"
     6 * which accompanies this distribution, and is available
     7 * at the URL "http://www.eclipse.org/legal/epl-v10.html".
     8 *
     9 * Initial Contributors:
    10 * Nokia Corporation - initial contribution.
    11 *
    12 * Contributors:
    13 *
    14 * Description: 
    15 *
    16 */
    17 
    18 
    19 #include "rijndaelimpl.h"
    20 #include <cryptospi/keys.h>
    21 
    22 #include "rijndaeltables.h"
    23 #include "../../../source/common/inlines.h"
    24 #include "pluginconfig.h"
    25 #include "symmetriccipherimpl.h"
    26 #include <cryptostrength.h>
    27 
    28 using namespace SoftwareCrypto;
    29 
    30 const TUint KAESKeyBytes128 = 16;
    31 const TUint KAESKeyBytes192 = 24;
    32 const TUint KAESKeyBytes256 = 32;
    33 const TUint KAESBlockBytes = 16;
    34 
    35 /* CRijndaelmpl*/
    36 CRijndaelImpl::CRijndaelImpl(
    37 	TUid aCryptoMode,
    38 	TUid aOperationMode,
    39 	TUid aPadding,
    40 	TUid aImplementationUid) :
    41 	CSymmetricBlockCipherImpl(KAESBlockBytes, aCryptoMode, aOperationMode, aPadding),
    42 	iImplementationUid(aImplementationUid)
    43 	{
    44 	}
    45 
    46 CRijndaelImpl* CRijndaelImpl::NewL(const CKey& aKey, TUid aCryptoMode,	TUid aOperationMode,
    47 									TUid aPadding, TUid aImplementationUid)
    48 	{
    49 	CRijndaelImpl* self = CRijndaelImpl::NewLC(aKey, aCryptoMode, aOperationMode, 
    50 												aPadding, aImplementationUid);
    51 	CleanupStack::Pop(self);
    52 	return self;
    53 	}
    54 	
    55 CRijndaelImpl* CRijndaelImpl::NewLC(const CKey& aKey, TUid aCryptoMode, TUid aOperationMode,
    56 									TUid aPadding, TUid aImplementationUid)
    57 	{
    58 	CRijndaelImpl* self = new(ELeave) CRijndaelImpl(aCryptoMode, aOperationMode, aPadding,
    59 												aImplementationUid);
    60 	CleanupStack::PushL(self);
    61 	self->ConstructL(aKey);
    62 	
    63 	const TDesC8& keyContent = aKey.GetTDesC8L(KSymmetricKeyParameterUid);
    64 	TCrypto::IsSymmetricWeakEnoughL(BytesToBits(keyContent.Size()) - keyContent.Size());
    65 	return self;
    66 	}
    67 		
    68 CRijndaelImpl::~CRijndaelImpl()
    69 	{
    70 	// make sure key information isn't visible to other processes if the
    71 	// page is reused.
    72 	Mem::FillZ(&iK, sizeof(iK));
    73 	}
    74 	
    75 void CRijndaelImpl::ConstructL(const CKey& aKey)
    76 	{
    77 	CSymmetricBlockCipherImpl::ConstructL(aKey);			
    78 	SetKeySchedule();
    79 	}
    80 
    81 CExtendedCharacteristics* CRijndaelImpl::CreateExtendedCharacteristicsL()
    82 	{
    83 	// All Symbian software plug-ins have unlimited concurrency, cannot be reserved
    84 	// for exclusive use and are not CERTIFIED to be standards compliant.
    85 	return CExtendedCharacteristics::NewL(KMaxTInt, EFalse);
    86 	}
    87 
    88 const CExtendedCharacteristics* CRijndaelImpl::GetExtendedCharacteristicsL()
    89 	{
    90 	return CRijndaelImpl::CreateExtendedCharacteristicsL();
    91 	}
    92 
    93 TUid CRijndaelImpl::ImplementationUid() const
    94 	{
    95 	return iImplementationUid;
    96 	}
    97 	
    98 TBool CRijndaelImpl::IsValidKeyLength(TInt aKeyBytes) const
    99 	{
   100 	switch(aKeyBytes)
   101 		{
   102 		case KAESKeyBytes128:
   103 		case KAESKeyBytes192:
   104 		case KAESKeyBytes256:
   105 			return ETrue;
   106 		default:
   107 			return EFalse;
   108 		}			
   109 	}
   110 	
   111 void CRijndaelImpl::SetKeySchedule()
   112 	{
   113 	iRounds = iKeyBytes/4 + 6;
   114 	if (iCryptoMode.iUid == KCryptoModeEncrypt)
   115 		{
   116 		SetEncryptKeySchedule(*iKey, &iK[0]);
   117 		}
   118 	else 
   119 		{
   120 		ASSERT(iCryptoMode.iUid == KCryptoModeDecrypt);
   121 		SetDecryptKeySchedule(*iKey, &iK[0]);
   122 		}	
   123 	}	
   124 
   125 void CRijndaelImpl::TransformEncrypt(
   126 	TUint8* aBuffer, 
   127 	TUint aNumBlocks)
   128 	{
   129 	for (TInt i = 0; i < aNumBlocks; ++i)
   130 		{		
   131 		ModeEncryptStart(aBuffer);
   132 			
   133 		TUint32 s0, s1, s2, s3, t0, t1, t2, t3;
   134 		const TUint32* rk = &iK[0];
   135 
   136 	/*
   137 	 *	map byte array block to cipher state
   138 	 *	and add initial round key:
   139 	*/
   140 		GetBlockBigEndian(aBuffer, s0, s1, s2, s3);
   141 		s0 ^= rk[0];
   142 		s1 ^= rk[1];
   143 		s2 ^= rk[2];
   144 		s3 ^= rk[3];
   145 	/*
   146 	 *	Nr - 1 full rounds:
   147 	*/
   148 	    TUint r = iRounds >> 1;
   149 		FOREVER
   150 			{
   151 	        t0 =
   152 	            RIJNDAEL_TABLE::Te0[GETBYTE(s0, 3)] ^
   153 	            RIJNDAEL_TABLE::Te1[GETBYTE(s1, 2)] ^
   154 	            RIJNDAEL_TABLE::Te2[GETBYTE(s2, 1)] ^
   155 	            RIJNDAEL_TABLE::Te3[GETBYTE(s3, 0)] ^
   156 	            rk[4];
   157 	        t1 =
   158 	            RIJNDAEL_TABLE::Te0[GETBYTE(s1, 3)] ^
   159 	            RIJNDAEL_TABLE::Te1[GETBYTE(s2, 2)] ^
   160 	            RIJNDAEL_TABLE::Te2[GETBYTE(s3, 1)] ^
   161 	            RIJNDAEL_TABLE::Te3[GETBYTE(s0, 0)] ^
   162 	            rk[5];
   163 	        t2 =
   164 	            RIJNDAEL_TABLE::Te0[GETBYTE(s2, 3)] ^
   165 	            RIJNDAEL_TABLE::Te1[GETBYTE(s3, 2)] ^
   166 	            RIJNDAEL_TABLE::Te2[GETBYTE(s0, 1)] ^
   167 	            RIJNDAEL_TABLE::Te3[GETBYTE(s1, 0)] ^
   168 	            rk[6];
   169 	        t3 =
   170 	            RIJNDAEL_TABLE::Te0[GETBYTE(s3, 3)] ^
   171 	            RIJNDAEL_TABLE::Te1[GETBYTE(s0, 2)] ^
   172 	            RIJNDAEL_TABLE::Te2[GETBYTE(s1, 1)] ^
   173 	            RIJNDAEL_TABLE::Te3[GETBYTE(s2, 0)] ^
   174 	            rk[7];
   175 
   176 	        rk += 8;
   177 	        if (--r == 0) 
   178 				break;
   179 	        
   180 	        s0 =
   181 	            RIJNDAEL_TABLE::Te0[GETBYTE(t0, 3)] ^
   182 	            RIJNDAEL_TABLE::Te1[GETBYTE(t1, 2)] ^
   183 	            RIJNDAEL_TABLE::Te2[GETBYTE(t2, 1)] ^
   184 	            RIJNDAEL_TABLE::Te3[GETBYTE(t3, 0)] ^
   185 	            rk[0];
   186 	        s1 =
   187 	            RIJNDAEL_TABLE::Te0[GETBYTE(t1, 3)] ^
   188 	            RIJNDAEL_TABLE::Te1[GETBYTE(t2, 2)] ^
   189 	            RIJNDAEL_TABLE::Te2[GETBYTE(t3, 1)] ^
   190 	            RIJNDAEL_TABLE::Te3[GETBYTE(t0, 0)] ^
   191 	            rk[1];
   192 	        s2 =
   193 	            RIJNDAEL_TABLE::Te0[GETBYTE(t2, 3)] ^
   194 	            RIJNDAEL_TABLE::Te1[GETBYTE(t3, 2)] ^
   195 	            RIJNDAEL_TABLE::Te2[GETBYTE(t0, 1)] ^
   196 	            RIJNDAEL_TABLE::Te3[GETBYTE(t1, 0)] ^
   197 	            rk[2];
   198 	        s3 =
   199 	            RIJNDAEL_TABLE::Te0[GETBYTE(t3, 3)] ^
   200 	            RIJNDAEL_TABLE::Te1[GETBYTE(t0, 2)] ^
   201 	            RIJNDAEL_TABLE::Te2[GETBYTE(t1, 1)] ^
   202 	            RIJNDAEL_TABLE::Te3[GETBYTE(t2, 0)] ^
   203 	            rk[3];
   204 			}
   205 	/*
   206 	 *	apply last round and
   207 	 *	map cipher state to byte array block:
   208 	*/
   209 
   210 		s0 =
   211 			(RIJNDAEL_TABLE::Te4[GETBYTE(t0, 3)] & 0xff000000) ^
   212 			(RIJNDAEL_TABLE::Te4[GETBYTE(t1, 2)] & 0x00ff0000) ^
   213 			(RIJNDAEL_TABLE::Te4[GETBYTE(t2, 1)] & 0x0000ff00) ^
   214 			(RIJNDAEL_TABLE::Te4[GETBYTE(t3, 0)] & 0x000000ff) ^
   215 			rk[0];
   216 		s1 =
   217 			(RIJNDAEL_TABLE::Te4[GETBYTE(t1, 3)] & 0xff000000) ^
   218 			(RIJNDAEL_TABLE::Te4[GETBYTE(t2, 2)] & 0x00ff0000) ^
   219 			(RIJNDAEL_TABLE::Te4[GETBYTE(t3, 1)] & 0x0000ff00) ^
   220 			(RIJNDAEL_TABLE::Te4[GETBYTE(t0, 0)] & 0x000000ff) ^
   221 			rk[1];
   222 		s2 =
   223 			(RIJNDAEL_TABLE::Te4[GETBYTE(t2, 3)] & 0xff000000) ^
   224 			(RIJNDAEL_TABLE::Te4[GETBYTE(t3, 2)] & 0x00ff0000) ^
   225 			(RIJNDAEL_TABLE::Te4[GETBYTE(t0, 1)] & 0x0000ff00) ^
   226 			(RIJNDAEL_TABLE::Te4[GETBYTE(t1, 0)] & 0x000000ff) ^
   227 			rk[2];
   228 		s3 =
   229 			(RIJNDAEL_TABLE::Te4[GETBYTE(t3, 3)] & 0xff000000) ^
   230 			(RIJNDAEL_TABLE::Te4[GETBYTE(t0, 2)] & 0x00ff0000) ^
   231 			(RIJNDAEL_TABLE::Te4[GETBYTE(t1, 1)] & 0x0000ff00) ^
   232 			(RIJNDAEL_TABLE::Te4[GETBYTE(t2, 0)] & 0x000000ff) ^
   233 			rk[3];
   234 
   235 		PutBlockBigEndian(aBuffer, s0, s1, s2, s3);
   236 		ModeEncryptEnd(aBuffer);
   237 		aBuffer += KAESBlockBytes;
   238 		}
   239 	}
   240 
   241 void CRijndaelImpl::TransformDecrypt(
   242 	TUint8* aBuffer,
   243 	TUint aNumBlocks)
   244 	{
   245 	for (TInt i = 0; i < aNumBlocks; ++i)
   246 		{		
   247 		ModeDecryptStart(aBuffer);
   248 		
   249 		TUint32 s0, s1, s2, s3, t0, t1, t2, t3;
   250 	    const TUint32* rk = &iK[0];
   251 
   252 	/*
   253 	 *	map byte array block to cipher state
   254 	 *	and add initial round key:
   255 	*/
   256 		GetBlockBigEndian(aBuffer, s0, s1, s2, s3);
   257 
   258 		s0 ^= rk[0];
   259 		s1 ^= rk[1];
   260 		s2 ^= rk[2];
   261 		s3 ^= rk[3];
   262 	/*
   263 	 *	Nr - 1 full rounds:
   264 	*/
   265 	    TUint r = iRounds >> 1;
   266 	    FOREVER
   267 			{
   268 	        t0 =
   269 	            RIJNDAEL_TABLE::Td0[GETBYTE(s0, 3)] ^
   270 	            RIJNDAEL_TABLE::Td1[GETBYTE(s3, 2)] ^
   271 	            RIJNDAEL_TABLE::Td2[GETBYTE(s2, 1)] ^
   272 	            RIJNDAEL_TABLE::Td3[GETBYTE(s1, 0)] ^
   273 	            rk[4];
   274 	        t1 =
   275 	            RIJNDAEL_TABLE::Td0[GETBYTE(s1, 3)] ^
   276 	            RIJNDAEL_TABLE::Td1[GETBYTE(s0, 2)] ^
   277 	            RIJNDAEL_TABLE::Td2[GETBYTE(s3, 1)] ^
   278 	            RIJNDAEL_TABLE::Td3[GETBYTE(s2, 0)] ^
   279 	            rk[5];
   280 	        t2 =
   281 	            RIJNDAEL_TABLE::Td0[GETBYTE(s2, 3)] ^
   282 	            RIJNDAEL_TABLE::Td1[GETBYTE(s1, 2)] ^
   283 	            RIJNDAEL_TABLE::Td2[GETBYTE(s0, 1)] ^
   284 	            RIJNDAEL_TABLE::Td3[GETBYTE(s3, 0)] ^
   285 	            rk[6];
   286 	        t3 =
   287 	            RIJNDAEL_TABLE::Td0[GETBYTE(s3, 3)] ^
   288 	            RIJNDAEL_TABLE::Td1[GETBYTE(s2, 2)] ^
   289 	            RIJNDAEL_TABLE::Td2[GETBYTE(s1, 1)] ^
   290 	            RIJNDAEL_TABLE::Td3[GETBYTE(s0, 0)] ^
   291 	            rk[7];
   292 
   293 	        rk += 8;
   294 	        if (--r == 0)
   295 	            break;
   296 	        
   297 	        s0 =
   298 	            RIJNDAEL_TABLE::Td0[GETBYTE(t0, 3)] ^
   299 	            RIJNDAEL_TABLE::Td1[GETBYTE(t3, 2)] ^
   300 	            RIJNDAEL_TABLE::Td2[GETBYTE(t2, 1)] ^
   301 	            RIJNDAEL_TABLE::Td3[GETBYTE(t1, 0)] ^
   302 	            rk[0];
   303 	        s1 =
   304 	            RIJNDAEL_TABLE::Td0[GETBYTE(t1, 3)] ^
   305 	            RIJNDAEL_TABLE::Td1[GETBYTE(t0, 2)] ^
   306 	            RIJNDAEL_TABLE::Td2[GETBYTE(t3, 1)] ^
   307 	            RIJNDAEL_TABLE::Td3[GETBYTE(t2, 0)] ^
   308 	            rk[1];
   309 	        s2 =
   310 	            RIJNDAEL_TABLE::Td0[GETBYTE(t2, 3)] ^
   311 	            RIJNDAEL_TABLE::Td1[GETBYTE(t1, 2)] ^
   312 	            RIJNDAEL_TABLE::Td2[GETBYTE(t0, 1)] ^
   313 	            RIJNDAEL_TABLE::Td3[GETBYTE(t3, 0)] ^
   314 	            rk[2];
   315 	        s3 =
   316 	            RIJNDAEL_TABLE::Td0[GETBYTE(t3, 3)] ^
   317 	            RIJNDAEL_TABLE::Td1[GETBYTE(t2, 2)] ^
   318 	            RIJNDAEL_TABLE::Td2[GETBYTE(t1, 1)] ^
   319 	            RIJNDAEL_TABLE::Td3[GETBYTE(t0, 0)] ^
   320 	            rk[3];
   321 			}
   322 	/*
   323 	 *	apply last round and
   324 	 *	map cipher state to byte array block:
   325 	*/
   326 	   	s0 =
   327 	   		(RIJNDAEL_TABLE::Td4[GETBYTE(t0, 3)] & 0xff000000) ^
   328 	   		(RIJNDAEL_TABLE::Td4[GETBYTE(t3, 2)] & 0x00ff0000) ^
   329 	   		(RIJNDAEL_TABLE::Td4[GETBYTE(t2, 1)] & 0x0000ff00) ^
   330 	   		(RIJNDAEL_TABLE::Td4[GETBYTE(t1, 0)] & 0x000000ff) ^
   331 	   		rk[0];
   332 	   	s1 =
   333 	   		(RIJNDAEL_TABLE::Td4[GETBYTE(t1, 3)] & 0xff000000) ^
   334 	   		(RIJNDAEL_TABLE::Td4[GETBYTE(t0, 2)] & 0x00ff0000) ^
   335 	   		(RIJNDAEL_TABLE::Td4[GETBYTE(t3, 1)] & 0x0000ff00) ^
   336 	   		(RIJNDAEL_TABLE::Td4[GETBYTE(t2, 0)] & 0x000000ff) ^
   337 	   		rk[1];
   338 	   	s2 =
   339 	   		(RIJNDAEL_TABLE::Td4[GETBYTE(t2, 3)] & 0xff000000) ^
   340 	   		(RIJNDAEL_TABLE::Td4[GETBYTE(t1, 2)] & 0x00ff0000) ^
   341 	   		(RIJNDAEL_TABLE::Td4[GETBYTE(t0, 1)] & 0x0000ff00) ^
   342 	   		(RIJNDAEL_TABLE::Td4[GETBYTE(t3, 0)] & 0x000000ff) ^
   343 	   		rk[2];
   344 	   	s3 =
   345 	   		(RIJNDAEL_TABLE::Td4[GETBYTE(t3, 3)] & 0xff000000) ^
   346 	   		(RIJNDAEL_TABLE::Td4[GETBYTE(t2, 2)] & 0x00ff0000) ^
   347 	   		(RIJNDAEL_TABLE::Td4[GETBYTE(t1, 1)] & 0x0000ff00) ^
   348 	   		(RIJNDAEL_TABLE::Td4[GETBYTE(t0, 0)] & 0x000000ff) ^
   349 	   		rk[3];		
   350 		PutBlockBigEndian(aBuffer, s0, s1, s2, s3);
   351 		ModeDecryptEnd(aBuffer);
   352 		aBuffer += KAESBlockBytes;
   353 		}
   354 	}
   355 
   356 void CRijndaelImpl::SetEncryptKeySchedule(const TDesC8& aKey, TUint32* aKeySchedule)
   357 	{		
   358 	TUint keySize = aKey.Length();
   359 	TUint32 temp; 
   360 	TUint32* rk = aKeySchedule;
   361 
   362 	TUint i = 0;
   363 
   364 	GetUserKeyBigEndian(rk, keySize/4, &aKey[0], keySize);
   365 
   366 	switch(keySize)
   367 		{
   368 		case (KAESKeyBytes128):
   369 			{
   370 			FOREVER
   371 				{
   372 				temp  = rk[3];
   373 				rk[4] = rk[0] ^
   374 					(RIJNDAEL_TABLE::Te4[GETBYTE(temp, 2)] & 0xff000000) ^
   375 					(RIJNDAEL_TABLE::Te4[GETBYTE(temp, 1)] & 0x00ff0000) ^
   376 					(RIJNDAEL_TABLE::Te4[GETBYTE(temp, 0)] & 0x0000ff00) ^
   377 					(RIJNDAEL_TABLE::Te4[GETBYTE(temp, 3)] & 0x000000ff) ^
   378 					RIJNDAEL_TABLE::rcon[i];
   379 				rk[5] = rk[1] ^ rk[4];
   380 				rk[6] = rk[2] ^ rk[5];
   381 				rk[7] = rk[3] ^ rk[6];
   382 				if (++i == 10)
   383 					break;
   384 				rk += 4;
   385 				}
   386 			}
   387 		break;
   388 
   389 		case (KAESKeyBytes192):
   390 			{
   391 			FOREVER
   392 				{
   393 				temp = rk[ 5];
   394 				rk[ 6] = rk[ 0] ^
   395 					(RIJNDAEL_TABLE::Te4[GETBYTE(temp, 2)] & 0xff000000) ^
   396 					(RIJNDAEL_TABLE::Te4[GETBYTE(temp, 1)] & 0x00ff0000) ^
   397 					(RIJNDAEL_TABLE::Te4[GETBYTE(temp, 0)] & 0x0000ff00) ^
   398 					(RIJNDAEL_TABLE::Te4[GETBYTE(temp, 3)] & 0x000000ff) ^
   399 					RIJNDAEL_TABLE::rcon[i];
   400 				rk[ 7] = rk[ 1] ^ rk[ 6];
   401 				rk[ 8] = rk[ 2] ^ rk[ 7];
   402 				rk[ 9] = rk[ 3] ^ rk[ 8];
   403 				if (++i == 8)
   404 					break;
   405 				rk[10] = rk[ 4] ^ rk[ 9];
   406 				rk[11] = rk[ 5] ^ rk[10];
   407 				rk += 6;
   408 				}
   409 			}
   410 		break;
   411 
   412 		case (KAESKeyBytes256):
   413 			{
   414 			FOREVER
   415 				{
   416         		temp = rk[ 7];
   417         		rk[ 8] = rk[ 0] ^
   418         			(RIJNDAEL_TABLE::Te4[GETBYTE(temp, 2)] & 0xff000000) ^
   419         			(RIJNDAEL_TABLE::Te4[GETBYTE(temp, 1)] & 0x00ff0000) ^
   420         			(RIJNDAEL_TABLE::Te4[GETBYTE(temp, 0)] & 0x0000ff00) ^
   421         			(RIJNDAEL_TABLE::Te4[GETBYTE(temp, 3)] & 0x000000ff) ^
   422         			RIJNDAEL_TABLE::rcon[i];
   423         		rk[ 9] = rk[ 1] ^ rk[ 8];
   424         		rk[10] = rk[ 2] ^ rk[ 9];
   425         		rk[11] = rk[ 3] ^ rk[10];
   426 				if (++i == 7)
   427 					break;
   428         		temp = rk[11];
   429         		rk[12] = rk[ 4] ^
   430         			(RIJNDAEL_TABLE::Te4[GETBYTE(temp, 3)] & 0xff000000) ^
   431         			(RIJNDAEL_TABLE::Te4[GETBYTE(temp, 2)] & 0x00ff0000) ^
   432         			(RIJNDAEL_TABLE::Te4[GETBYTE(temp, 1)] & 0x0000ff00) ^
   433         			(RIJNDAEL_TABLE::Te4[GETBYTE(temp, 0)] & 0x000000ff);
   434         		rk[13] = rk[ 5] ^ rk[12];
   435         		rk[14] = rk[ 6] ^ rk[13];
   436         		rk[15] = rk[ 7] ^ rk[14];
   437 
   438 				rk += 8;
   439 				}
   440 			}
   441 		break;
   442 
   443 		default:
   444 			assert(0);	//	Shouldn't get here, keeps compiler happy
   445 		}
   446 	}
   447 
   448 void CRijndaelImpl::SetDecryptKeySchedule(const TDesC8& aKey, TUint32* aKeySchedule)
   449 	{
   450 	SetEncryptKeySchedule(aKey, aKeySchedule);
   451 
   452 	TUint i, j;
   453 	TUint32* rk = aKeySchedule;
   454 	TUint32 temp;
   455 
   456 	// invert the order of the round keys 
   457 	for (i = 0, j = 4*iRounds; i < j; i += 4, j -= 4)
   458 		{
   459 		temp = rk[i    ]; rk[i    ] = rk[j    ]; rk[j    ] = temp;
   460 		temp = rk[i + 1]; rk[i + 1] = rk[j + 1]; rk[j + 1] = temp;
   461 		temp = rk[i + 2]; rk[i + 2] = rk[j + 2]; rk[j + 2] = temp;
   462 		temp = rk[i + 3]; rk[i + 3] = rk[j + 3]; rk[j + 3] = temp;
   463 		}
   464 
   465 	// apply the inverse MixColumn transform to all round keys but the first and the last
   466 	for (i = 1; i < iRounds; i++)
   467 		{
   468 		rk += 4;
   469 		rk[0] =
   470 			RIJNDAEL_TABLE::Td0[RIJNDAEL_TABLE::Te4[GETBYTE(rk[0], 3)] & 0xff] ^
   471 			RIJNDAEL_TABLE::Td1[RIJNDAEL_TABLE::Te4[GETBYTE(rk[0], 2)] & 0xff] ^
   472 			RIJNDAEL_TABLE::Td2[RIJNDAEL_TABLE::Te4[GETBYTE(rk[0], 1)] & 0xff] ^
   473 			RIJNDAEL_TABLE::Td3[RIJNDAEL_TABLE::Te4[GETBYTE(rk[0], 0)] & 0xff];
   474 		rk[1] =
   475 			RIJNDAEL_TABLE::Td0[RIJNDAEL_TABLE::Te4[GETBYTE(rk[1], 3)] & 0xff] ^
   476 			RIJNDAEL_TABLE::Td1[RIJNDAEL_TABLE::Te4[GETBYTE(rk[1], 2)] & 0xff] ^
   477 			RIJNDAEL_TABLE::Td2[RIJNDAEL_TABLE::Te4[GETBYTE(rk[1], 1)] & 0xff] ^
   478 			RIJNDAEL_TABLE::Td3[RIJNDAEL_TABLE::Te4[GETBYTE(rk[1], 0)] & 0xff];
   479 		rk[2] =
   480 			RIJNDAEL_TABLE::Td0[RIJNDAEL_TABLE::Te4[GETBYTE(rk[2], 3)] & 0xff] ^
   481 			RIJNDAEL_TABLE::Td1[RIJNDAEL_TABLE::Te4[GETBYTE(rk[2], 2)] & 0xff] ^
   482 			RIJNDAEL_TABLE::Td2[RIJNDAEL_TABLE::Te4[GETBYTE(rk[2], 1)] & 0xff] ^
   483 			RIJNDAEL_TABLE::Td3[RIJNDAEL_TABLE::Te4[GETBYTE(rk[2], 0)] & 0xff];
   484 		rk[3] =
   485 			RIJNDAEL_TABLE::Td0[RIJNDAEL_TABLE::Te4[GETBYTE(rk[3], 3)] & 0xff] ^
   486 			RIJNDAEL_TABLE::Td1[RIJNDAEL_TABLE::Te4[GETBYTE(rk[3], 2)] & 0xff] ^
   487 			RIJNDAEL_TABLE::Td2[RIJNDAEL_TABLE::Te4[GETBYTE(rk[3], 1)] & 0xff] ^
   488 			RIJNDAEL_TABLE::Td3[RIJNDAEL_TABLE::Te4[GETBYTE(rk[3], 0)] & 0xff];
   489 		}
   490 	}