os/persistentdata/persistentstorage/sqlite3api/SQLite/os_unix.c
author sl
Tue, 10 Jun 2014 14:32:02 +0200
changeset 1 260cb5ec6c19
permissions -rw-r--r--
Update contrib.
     1 /*
     2 ** 2004 May 22
     3 **
     4 ** The author disclaims copyright to this source code.  In place of
     5 ** a legal notice, here is a blessing:
     6 **
     7 **    May you do good and not evil.
     8 **    May you find forgiveness for yourself and forgive others.
     9 **    May you share freely, never taking more than you give.
    10 **
    11 ******************************************************************************
    12 **
    13 ** This file contains code that is specific to Unix systems.
    14 **
    15 ** $Id: os_unix.c,v 1.204 2008/09/24 09:12:47 danielk1977 Exp $
    16 */
    17 #include "sqliteInt.h"
    18 #if SQLITE_OS_UNIX              /* This file is used on unix only */
    19 
    20 /*
    21 ** If SQLITE_ENABLE_LOCKING_STYLE is defined and is non-zero, then several
    22 ** alternative locking implementations are provided:
    23 **
    24 **   * POSIX locking (the default),
    25 **   * No locking,
    26 **   * Dot-file locking,
    27 **   * flock() locking,
    28 **   * AFP locking (OSX only).
    29 **
    30 ** SQLITE_ENABLE_LOCKING_STYLE only works on a Mac. It is turned on by
    31 ** default on a Mac and disabled on all other posix platforms.
    32 */
    33 #if !defined(SQLITE_ENABLE_LOCKING_STYLE)
    34 #  if defined(__DARWIN__)
    35 #    define SQLITE_ENABLE_LOCKING_STYLE 1
    36 #  else
    37 #    define SQLITE_ENABLE_LOCKING_STYLE 0
    38 #  endif
    39 #endif
    40 
    41 /*
    42 ** These #defines should enable >2GB file support on Posix if the
    43 ** underlying operating system supports it.  If the OS lacks
    44 ** large file support, these should be no-ops.
    45 **
    46 ** Large file support can be disabled using the -DSQLITE_DISABLE_LFS switch
    47 ** on the compiler command line.  This is necessary if you are compiling
    48 ** on a recent machine (ex: RedHat 7.2) but you want your code to work
    49 ** on an older machine (ex: RedHat 6.0).  If you compile on RedHat 7.2
    50 ** without this option, LFS is enable.  But LFS does not exist in the kernel
    51 ** in RedHat 6.0, so the code won't work.  Hence, for maximum binary
    52 ** portability you should omit LFS.
    53 */
    54 #ifndef SQLITE_DISABLE_LFS
    55 # define _LARGE_FILE       1
    56 # ifndef _FILE_OFFSET_BITS
    57 #   define _FILE_OFFSET_BITS 64
    58 # endif
    59 # define _LARGEFILE_SOURCE 1
    60 #endif
    61 
    62 /*
    63 ** standard include files.
    64 */
    65 #include <sys/types.h>
    66 #include <sys/stat.h>
    67 #include <fcntl.h>
    68 #include <unistd.h>
    69 #include <time.h>
    70 #include <sys/time.h>
    71 #include <errno.h>
    72 
    73 #if SQLITE_ENABLE_LOCKING_STYLE
    74 #include <sys/ioctl.h>
    75 #include <sys/param.h>
    76 #include <sys/mount.h>
    77 #endif /* SQLITE_ENABLE_LOCKING_STYLE */
    78 
    79 /*
    80 ** If we are to be thread-safe, include the pthreads header and define
    81 ** the SQLITE_UNIX_THREADS macro.
    82 */
    83 #if SQLITE_THREADSAFE
    84 # include <pthread.h>
    85 # define SQLITE_UNIX_THREADS 1
    86 #endif
    87 
    88 /*
    89 ** Default permissions when creating a new file
    90 */
    91 #ifndef SQLITE_DEFAULT_FILE_PERMISSIONS
    92 # define SQLITE_DEFAULT_FILE_PERMISSIONS 0644
    93 #endif
    94 
    95 /*
    96 ** Maximum supported path-length.
    97 */
    98 #define MAX_PATHNAME 512
    99 
   100 
   101 /*
   102 ** The unixFile structure is subclass of sqlite3_file specific for the unix
   103 ** protability layer.
   104 */
   105 typedef struct unixFile unixFile;
   106 struct unixFile {
   107   sqlite3_io_methods const *pMethod;  /* Always the first entry */
   108 #ifdef SQLITE_TEST
   109   /* In test mode, increase the size of this structure a bit so that 
   110   ** it is larger than the struct CrashFile defined in test6.c.
   111   */
   112   char aPadding[32];
   113 #endif
   114   struct openCnt *pOpen;    /* Info about all open fd's on this inode */
   115   struct lockInfo *pLock;   /* Info about locks on this inode */
   116 #if SQLITE_ENABLE_LOCKING_STYLE
   117   void *lockingContext;     /* Locking style specific state */
   118 #endif
   119   int h;                    /* The file descriptor */
   120   unsigned char locktype;   /* The type of lock held on this fd */
   121   int dirfd;                /* File descriptor for the directory */
   122 #if SQLITE_THREADSAFE
   123   pthread_t tid;            /* The thread that "owns" this unixFile */
   124 #endif
   125   int lastErrno;            /* The unix errno from the last I/O error */
   126 };
   127 
   128 /*
   129 ** Include code that is common to all os_*.c files
   130 */
   131 #include "os_common.h"
   132 
   133 /*
   134 ** Define various macros that are missing from some systems.
   135 */
   136 #ifndef O_LARGEFILE
   137 # define O_LARGEFILE 0
   138 #endif
   139 #ifdef SQLITE_DISABLE_LFS
   140 # undef O_LARGEFILE
   141 # define O_LARGEFILE 0
   142 #endif
   143 #ifndef O_NOFOLLOW
   144 # define O_NOFOLLOW 0
   145 #endif
   146 #ifndef O_BINARY
   147 # define O_BINARY 0
   148 #endif
   149 
   150 /*
   151 ** The DJGPP compiler environment looks mostly like Unix, but it
   152 ** lacks the fcntl() system call.  So redefine fcntl() to be something
   153 ** that always succeeds.  This means that locking does not occur under
   154 ** DJGPP.  But it is DOS - what did you expect?
   155 */
   156 #ifdef __DJGPP__
   157 # define fcntl(A,B,C) 0
   158 #endif
   159 
   160 /*
   161 ** The threadid macro resolves to the thread-id or to 0.  Used for
   162 ** testing and debugging only.
   163 */
   164 #if SQLITE_THREADSAFE
   165 #define threadid pthread_self()
   166 #else
   167 #define threadid 0
   168 #endif
   169 
   170 /*
   171 ** Set or check the unixFile.tid field.  This field is set when an unixFile
   172 ** is first opened.  All subsequent uses of the unixFile verify that the
   173 ** same thread is operating on the unixFile.  Some operating systems do
   174 ** not allow locks to be overridden by other threads and that restriction
   175 ** means that sqlite3* database handles cannot be moved from one thread
   176 ** to another.  This logic makes sure a user does not try to do that
   177 ** by mistake.
   178 **
   179 ** Version 3.3.1 (2006-01-15):  unixFile can be moved from one thread to
   180 ** another as long as we are running on a system that supports threads
   181 ** overriding each others locks (which now the most common behavior)
   182 ** or if no locks are held.  But the unixFile.pLock field needs to be
   183 ** recomputed because its key includes the thread-id.  See the 
   184 ** transferOwnership() function below for additional information
   185 */
   186 #if SQLITE_THREADSAFE
   187 # define SET_THREADID(X)   (X)->tid = pthread_self()
   188 # define CHECK_THREADID(X) (threadsOverrideEachOthersLocks==0 && \
   189                             !pthread_equal((X)->tid, pthread_self()))
   190 #else
   191 # define SET_THREADID(X)
   192 # define CHECK_THREADID(X) 0
   193 #endif
   194 
   195 /*
   196 ** Here is the dirt on POSIX advisory locks:  ANSI STD 1003.1 (1996)
   197 ** section 6.5.2.2 lines 483 through 490 specify that when a process
   198 ** sets or clears a lock, that operation overrides any prior locks set
   199 ** by the same process.  It does not explicitly say so, but this implies
   200 ** that it overrides locks set by the same process using a different
   201 ** file descriptor.  Consider this test case:
   202 **       int fd2 = open("./file2", O_RDWR|O_CREAT, 0644);
   203 **
   204 ** Suppose ./file1 and ./file2 are really the same file (because
   205 ** one is a hard or symbolic link to the other) then if you set
   206 ** an exclusive lock on fd1, then try to get an exclusive lock
   207 ** on fd2, it works.  I would have expected the second lock to
   208 ** fail since there was already a lock on the file due to fd1.
   209 ** But not so.  Since both locks came from the same process, the
   210 ** second overrides the first, even though they were on different
   211 ** file descriptors opened on different file names.
   212 **
   213 ** Bummer.  If you ask me, this is broken.  Badly broken.  It means
   214 ** that we cannot use POSIX locks to synchronize file access among
   215 ** competing threads of the same process.  POSIX locks will work fine
   216 ** to synchronize access for threads in separate processes, but not
   217 ** threads within the same process.
   218 **
   219 ** To work around the problem, SQLite has to manage file locks internally
   220 ** on its own.  Whenever a new database is opened, we have to find the
   221 ** specific inode of the database file (the inode is determined by the
   222 ** st_dev and st_ino fields of the stat structure that fstat() fills in)
   223 ** and check for locks already existing on that inode.  When locks are
   224 ** created or removed, we have to look at our own internal record of the
   225 ** locks to see if another thread has previously set a lock on that same
   226 ** inode.
   227 **
   228 ** The sqlite3_file structure for POSIX is no longer just an integer file
   229 ** descriptor.  It is now a structure that holds the integer file
   230 ** descriptor and a pointer to a structure that describes the internal
   231 ** locks on the corresponding inode.  There is one locking structure
   232 ** per inode, so if the same inode is opened twice, both unixFile structures
   233 ** point to the same locking structure.  The locking structure keeps
   234 ** a reference count (so we will know when to delete it) and a "cnt"
   235 ** field that tells us its internal lock status.  cnt==0 means the
   236 ** file is unlocked.  cnt==-1 means the file has an exclusive lock.
   237 ** cnt>0 means there are cnt shared locks on the file.
   238 **
   239 ** Any attempt to lock or unlock a file first checks the locking
   240 ** structure.  The fcntl() system call is only invoked to set a 
   241 ** POSIX lock if the internal lock structure transitions between
   242 ** a locked and an unlocked state.
   243 **
   244 ** 2004-Jan-11:
   245 ** More recent discoveries about POSIX advisory locks.  (The more
   246 ** I discover, the more I realize the a POSIX advisory locks are
   247 ** an abomination.)
   248 **
   249 ** If you close a file descriptor that points to a file that has locks,
   250 ** all locks on that file that are owned by the current process are
   251 ** released.  To work around this problem, each unixFile structure contains
   252 ** a pointer to an openCnt structure.  There is one openCnt structure
   253 ** per open inode, which means that multiple unixFile can point to a single
   254 ** openCnt.  When an attempt is made to close an unixFile, if there are
   255 ** other unixFile open on the same inode that are holding locks, the call
   256 ** to close() the file descriptor is deferred until all of the locks clear.
   257 ** The openCnt structure keeps a list of file descriptors that need to
   258 ** be closed and that list is walked (and cleared) when the last lock
   259 ** clears.
   260 **
   261 ** First, under Linux threads, because each thread has a separate
   262 ** process ID, lock operations in one thread do not override locks
   263 ** to the same file in other threads.  Linux threads behave like
   264 ** separate processes in this respect.  But, if you close a file
   265 ** descriptor in linux threads, all locks are cleared, even locks
   266 ** on other threads and even though the other threads have different
   267 ** process IDs.  Linux threads is inconsistent in this respect.
   268 ** (I'm beginning to think that linux threads is an abomination too.)
   269 ** The consequence of this all is that the hash table for the lockInfo
   270 ** structure has to include the process id as part of its key because
   271 ** locks in different threads are treated as distinct.  But the 
   272 ** openCnt structure should not include the process id in its
   273 ** key because close() clears lock on all threads, not just the current
   274 ** thread.  Were it not for this goofiness in linux threads, we could
   275 ** combine the lockInfo and openCnt structures into a single structure.
   276 **
   277 ** 2004-Jun-28:
   278 ** On some versions of linux, threads can override each others locks.
   279 ** On others not.  Sometimes you can change the behavior on the same
   280 ** system by setting the LD_ASSUME_KERNEL environment variable.  The
   281 ** POSIX standard is silent as to which behavior is correct, as far
   282 ** as I can tell, so other versions of unix might show the same
   283 ** inconsistency.  There is no little doubt in my mind that posix
   284 ** advisory locks and linux threads are profoundly broken.
   285 **
   286 ** To work around the inconsistencies, we have to test at runtime 
   287 ** whether or not threads can override each others locks.  This test
   288 ** is run once, the first time any lock is attempted.  A static 
   289 ** variable is set to record the results of this test for future
   290 ** use.
   291 */
   292 
   293 /*
   294 ** An instance of the following structure serves as the key used
   295 ** to locate a particular lockInfo structure given its inode.
   296 **
   297 ** If threads cannot override each others locks, then we set the
   298 ** lockKey.tid field to the thread ID.  If threads can override
   299 ** each others locks then tid is always set to zero.  tid is omitted
   300 ** if we compile without threading support.
   301 */
   302 struct lockKey {
   303   dev_t dev;       /* Device number */
   304   ino_t ino;       /* Inode number */
   305 #if SQLITE_THREADSAFE
   306   pthread_t tid;   /* Thread ID or zero if threads can override each other */
   307 #endif
   308 };
   309 
   310 /*
   311 ** An instance of the following structure is allocated for each open
   312 ** inode on each thread with a different process ID.  (Threads have
   313 ** different process IDs on linux, but not on most other unixes.)
   314 **
   315 ** A single inode can have multiple file descriptors, so each unixFile
   316 ** structure contains a pointer to an instance of this object and this
   317 ** object keeps a count of the number of unixFile pointing to it.
   318 */
   319 struct lockInfo {
   320   struct lockKey key;  /* The lookup key */
   321   int cnt;             /* Number of SHARED locks held */
   322   int locktype;        /* One of SHARED_LOCK, RESERVED_LOCK etc. */
   323   int nRef;            /* Number of pointers to this structure */
   324   struct lockInfo *pNext, *pPrev;   /* List of all lockInfo objects */
   325 };
   326 
   327 /*
   328 ** An instance of the following structure serves as the key used
   329 ** to locate a particular openCnt structure given its inode.  This
   330 ** is the same as the lockKey except that the thread ID is omitted.
   331 */
   332 struct openKey {
   333   dev_t dev;   /* Device number */
   334   ino_t ino;   /* Inode number */
   335 };
   336 
   337 /*
   338 ** An instance of the following structure is allocated for each open
   339 ** inode.  This structure keeps track of the number of locks on that
   340 ** inode.  If a close is attempted against an inode that is holding
   341 ** locks, the close is deferred until all locks clear by adding the
   342 ** file descriptor to be closed to the pending list.
   343 */
   344 struct openCnt {
   345   struct openKey key;   /* The lookup key */
   346   int nRef;             /* Number of pointers to this structure */
   347   int nLock;            /* Number of outstanding locks */
   348   int nPending;         /* Number of pending close() operations */
   349   int *aPending;        /* Malloced space holding fd's awaiting a close() */
   350   struct openCnt *pNext, *pPrev;   /* List of all openCnt objects */
   351 };
   352 
   353 /*
   354 ** List of all lockInfo and openCnt objects.  This used to be a hash
   355 ** table.  But the number of objects is rarely more than a dozen and
   356 ** never exceeds a few thousand.  And lookup is not on a critical
   357 ** path oo a simple linked list will suffice.
   358 */
   359 static struct lockInfo *lockList = 0;
   360 static struct openCnt *openList = 0;
   361 
   362 /*
   363 ** The locking styles are associated with the different file locking
   364 ** capabilities supported by different file systems.  
   365 **
   366 ** POSIX locking style fully supports shared and exclusive byte-range locks 
   367 ** AFP locking only supports exclusive byte-range locks
   368 ** FLOCK only supports a single file-global exclusive lock
   369 ** DOTLOCK isn't a true locking style, it refers to the use of a special
   370 **   file named the same as the database file with a '.lock' extension, this
   371 **   can be used on file systems that do not offer any reliable file locking
   372 ** NO locking means that no locking will be attempted, this is only used for
   373 **   read-only file systems currently
   374 ** UNSUPPORTED means that no locking will be attempted, this is only used for
   375 **   file systems that are known to be unsupported
   376 */
   377 #define LOCKING_STYLE_POSIX        1
   378 #define LOCKING_STYLE_NONE         2
   379 #define LOCKING_STYLE_DOTFILE      3
   380 #define LOCKING_STYLE_FLOCK        4
   381 #define LOCKING_STYLE_AFP          5
   382 
   383 /*
   384 ** Only set the lastErrno if the error code is a real error and not 
   385 ** a normal expected return code of SQLITE_BUSY or SQLITE_OK
   386 */
   387 #define IS_LOCK_ERROR(x)  ((x != SQLITE_OK) && (x != SQLITE_BUSY))
   388 
   389 /*
   390 ** Helper functions to obtain and relinquish the global mutex.
   391 */
   392 static void enterMutex(void){
   393   sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER));
   394 }
   395 static void leaveMutex(void){
   396   sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER));
   397 }
   398 
   399 #if SQLITE_THREADSAFE
   400 /*
   401 ** This variable records whether or not threads can override each others
   402 ** locks.
   403 **
   404 **    0:  No.  Threads cannot override each others locks.
   405 **    1:  Yes.  Threads can override each others locks.
   406 **   -1:  We don't know yet.
   407 **
   408 ** On some systems, we know at compile-time if threads can override each
   409 ** others locks.  On those systems, the SQLITE_THREAD_OVERRIDE_LOCK macro
   410 ** will be set appropriately.  On other systems, we have to check at
   411 ** runtime.  On these latter systems, SQLTIE_THREAD_OVERRIDE_LOCK is
   412 ** undefined.
   413 **
   414 ** This variable normally has file scope only.  But during testing, we make
   415 ** it a global so that the test code can change its value in order to verify
   416 ** that the right stuff happens in either case.
   417 */
   418 #ifndef SQLITE_THREAD_OVERRIDE_LOCK
   419 # define SQLITE_THREAD_OVERRIDE_LOCK -1
   420 #endif
   421 #ifdef SQLITE_TEST
   422 int threadsOverrideEachOthersLocks = SQLITE_THREAD_OVERRIDE_LOCK;
   423 #else
   424 static int threadsOverrideEachOthersLocks = SQLITE_THREAD_OVERRIDE_LOCK;
   425 #endif
   426 
   427 /*
   428 ** This structure holds information passed into individual test
   429 ** threads by the testThreadLockingBehavior() routine.
   430 */
   431 struct threadTestData {
   432   int fd;                /* File to be locked */
   433   struct flock lock;     /* The locking operation */
   434   int result;            /* Result of the locking operation */
   435 };
   436 
   437 #ifdef SQLITE_LOCK_TRACE
   438 /*
   439 ** Print out information about all locking operations.
   440 **
   441 ** This routine is used for troubleshooting locks on multithreaded
   442 ** platforms.  Enable by compiling with the -DSQLITE_LOCK_TRACE
   443 ** command-line option on the compiler.  This code is normally
   444 ** turned off.
   445 */
   446 static int lockTrace(int fd, int op, struct flock *p){
   447   char *zOpName, *zType;
   448   int s;
   449   int savedErrno;
   450   if( op==F_GETLK ){
   451     zOpName = "GETLK";
   452   }else if( op==F_SETLK ){
   453     zOpName = "SETLK";
   454   }else{
   455     s = fcntl(fd, op, p);
   456     sqlite3DebugPrintf("fcntl unknown %d %d %d\n", fd, op, s);
   457     return s;
   458   }
   459   if( p->l_type==F_RDLCK ){
   460     zType = "RDLCK";
   461   }else if( p->l_type==F_WRLCK ){
   462     zType = "WRLCK";
   463   }else if( p->l_type==F_UNLCK ){
   464     zType = "UNLCK";
   465   }else{
   466     assert( 0 );
   467   }
   468   assert( p->l_whence==SEEK_SET );
   469   s = fcntl(fd, op, p);
   470   savedErrno = errno;
   471   sqlite3DebugPrintf("fcntl %d %d %s %s %d %d %d %d\n",
   472      threadid, fd, zOpName, zType, (int)p->l_start, (int)p->l_len,
   473      (int)p->l_pid, s);
   474   if( s==(-1) && op==F_SETLK && (p->l_type==F_RDLCK || p->l_type==F_WRLCK) ){
   475     struct flock l2;
   476     l2 = *p;
   477     fcntl(fd, F_GETLK, &l2);
   478     if( l2.l_type==F_RDLCK ){
   479       zType = "RDLCK";
   480     }else if( l2.l_type==F_WRLCK ){
   481       zType = "WRLCK";
   482     }else if( l2.l_type==F_UNLCK ){
   483       zType = "UNLCK";
   484     }else{
   485       assert( 0 );
   486     }
   487     sqlite3DebugPrintf("fcntl-failure-reason: %s %d %d %d\n",
   488        zType, (int)l2.l_start, (int)l2.l_len, (int)l2.l_pid);
   489   }
   490   errno = savedErrno;
   491   return s;
   492 }
   493 #define fcntl lockTrace
   494 #endif /* SQLITE_LOCK_TRACE */
   495 
   496 /*
   497 ** The testThreadLockingBehavior() routine launches two separate
   498 ** threads on this routine.  This routine attempts to lock a file
   499 ** descriptor then returns.  The success or failure of that attempt
   500 ** allows the testThreadLockingBehavior() procedure to determine
   501 ** whether or not threads can override each others locks.
   502 */
   503 static void *threadLockingTest(void *pArg){
   504   struct threadTestData *pData = (struct threadTestData*)pArg;
   505   pData->result = fcntl(pData->fd, F_SETLK, &pData->lock);
   506   return pArg;
   507 }
   508 
   509 /*
   510 ** This procedure attempts to determine whether or not threads
   511 ** can override each others locks then sets the 
   512 ** threadsOverrideEachOthersLocks variable appropriately.
   513 */
   514 static void testThreadLockingBehavior(int fd_orig){
   515   int fd;
   516   struct threadTestData d[2];
   517   pthread_t t[2];
   518 
   519   fd = dup(fd_orig);
   520   if( fd<0 ) return;
   521   memset(d, 0, sizeof(d));
   522   d[0].fd = fd;
   523   d[0].lock.l_type = F_RDLCK;
   524   d[0].lock.l_len = 1;
   525   d[0].lock.l_start = 0;
   526   d[0].lock.l_whence = SEEK_SET;
   527   d[1] = d[0];
   528   d[1].lock.l_type = F_WRLCK;
   529   pthread_create(&t[0], 0, threadLockingTest, &d[0]);
   530   pthread_create(&t[1], 0, threadLockingTest, &d[1]);
   531   pthread_join(t[0], 0);
   532   pthread_join(t[1], 0);
   533   close(fd);
   534   threadsOverrideEachOthersLocks =  d[0].result==0 && d[1].result==0;
   535 }
   536 #endif /* SQLITE_THREADSAFE */
   537 
   538 /*
   539 ** Release a lockInfo structure previously allocated by findLockInfo().
   540 */
   541 static void releaseLockInfo(struct lockInfo *pLock){
   542   if( pLock ){
   543     pLock->nRef--;
   544     if( pLock->nRef==0 ){
   545       if( pLock->pPrev ){
   546         assert( pLock->pPrev->pNext==pLock );
   547         pLock->pPrev->pNext = pLock->pNext;
   548       }else{
   549         assert( lockList==pLock );
   550         lockList = pLock->pNext;
   551       }
   552       if( pLock->pNext ){
   553         assert( pLock->pNext->pPrev==pLock );
   554         pLock->pNext->pPrev = pLock->pPrev;
   555       }
   556       sqlite3_free(pLock);
   557     }
   558   }
   559 }
   560 
   561 /*
   562 ** Release a openCnt structure previously allocated by findLockInfo().
   563 */
   564 static void releaseOpenCnt(struct openCnt *pOpen){
   565   if( pOpen ){
   566     pOpen->nRef--;
   567     if( pOpen->nRef==0 ){
   568       if( pOpen->pPrev ){
   569         assert( pOpen->pPrev->pNext==pOpen );
   570         pOpen->pPrev->pNext = pOpen->pNext;
   571       }else{
   572         assert( openList==pOpen );
   573         openList = pOpen->pNext;
   574       }
   575       if( pOpen->pNext ){
   576         assert( pOpen->pNext->pPrev==pOpen );
   577         pOpen->pNext->pPrev = pOpen->pPrev;
   578       }
   579       sqlite3_free(pOpen->aPending);
   580       sqlite3_free(pOpen);
   581     }
   582   }
   583 }
   584 
   585 #if SQLITE_ENABLE_LOCKING_STYLE
   586 /*
   587 ** Tests a byte-range locking query to see if byte range locks are 
   588 ** supported, if not we fall back to dotlockLockingStyle.
   589 */
   590 static int testLockingStyle(int fd){
   591   struct flock lockInfo;
   592 
   593   /* Test byte-range lock using fcntl(). If the call succeeds, 
   594   ** assume that the file-system supports POSIX style locks. 
   595   */
   596   lockInfo.l_len = 1;
   597   lockInfo.l_start = 0;
   598   lockInfo.l_whence = SEEK_SET;
   599   lockInfo.l_type = F_RDLCK;
   600   if( fcntl(fd, F_GETLK, &lockInfo)!=-1 ) {
   601     return LOCKING_STYLE_POSIX;
   602   }
   603   
   604   /* Testing for flock() can give false positives.  So if if the above 
   605   ** test fails, then we fall back to using dot-file style locking.
   606   */  
   607   return LOCKING_STYLE_DOTFILE;
   608 }
   609 #endif
   610 
   611 /* 
   612 ** If SQLITE_ENABLE_LOCKING_STYLE is defined, this function Examines the 
   613 ** f_fstypename entry in the statfs structure as returned by stat() for 
   614 ** the file system hosting the database file and selects  the appropriate
   615 ** locking style based on its value.  These values and assignments are 
   616 ** based on Darwin/OSX behavior and have not been thoroughly tested on 
   617 ** other systems.
   618 **
   619 ** If SQLITE_ENABLE_LOCKING_STYLE is not defined, this function always
   620 ** returns LOCKING_STYLE_POSIX.
   621 */
   622 static int detectLockingStyle(
   623   sqlite3_vfs *pVfs,
   624   const char *filePath, 
   625   int fd
   626 ){
   627 #if SQLITE_ENABLE_LOCKING_STYLE
   628   struct Mapping {
   629     const char *zFilesystem;
   630     int eLockingStyle;
   631   } aMap[] = {
   632     { "hfs",    LOCKING_STYLE_POSIX },
   633     { "ufs",    LOCKING_STYLE_POSIX },
   634     { "afpfs",  LOCKING_STYLE_AFP },
   635 #ifdef SQLITE_ENABLE_AFP_LOCKING_SMB
   636     { "smbfs",  LOCKING_STYLE_AFP },
   637 #else
   638     { "smbfs",  LOCKING_STYLE_FLOCK },
   639 #endif
   640     { "msdos",  LOCKING_STYLE_DOTFILE },
   641     { "webdav", LOCKING_STYLE_NONE },
   642     { 0, 0 }
   643   };
   644   int i;
   645   struct statfs fsInfo;
   646 
   647   if( !filePath ){
   648     return LOCKING_STYLE_NONE;
   649   }
   650   if( pVfs->pAppData ){
   651     return SQLITE_PTR_TO_INT(pVfs->pAppData);
   652   }
   653 
   654   if( statfs(filePath, &fsInfo) != -1 ){
   655     if( fsInfo.f_flags & MNT_RDONLY ){
   656       return LOCKING_STYLE_NONE;
   657     }
   658     for(i=0; aMap[i].zFilesystem; i++){
   659       if( strcmp(fsInfo.f_fstypename, aMap[i].zFilesystem)==0 ){
   660         return aMap[i].eLockingStyle;
   661       }
   662     }
   663   }
   664 
   665   /* Default case. Handles, amongst others, "nfs". */
   666   return testLockingStyle(fd);  
   667 #endif
   668   return LOCKING_STYLE_POSIX;
   669 }
   670 
   671 /*
   672 ** Given a file descriptor, locate lockInfo and openCnt structures that
   673 ** describes that file descriptor.  Create new ones if necessary.  The
   674 ** return values might be uninitialized if an error occurs.
   675 **
   676 ** Return an appropriate error code.
   677 */
   678 static int findLockInfo(
   679   int fd,                      /* The file descriptor used in the key */
   680   struct lockInfo **ppLock,    /* Return the lockInfo structure here */
   681   struct openCnt **ppOpen      /* Return the openCnt structure here */
   682 ){
   683   int rc;
   684   struct lockKey key1;
   685   struct openKey key2;
   686   struct stat statbuf;
   687   struct lockInfo *pLock;
   688   struct openCnt *pOpen;
   689   rc = fstat(fd, &statbuf);
   690   if( rc!=0 ){
   691 #ifdef EOVERFLOW
   692     if( errno==EOVERFLOW ) return SQLITE_NOLFS;
   693 #endif
   694     return SQLITE_IOERR;
   695   }
   696 
   697   /* On OS X on an msdos filesystem, the inode number is reported
   698   ** incorrectly for zero-size files.  See ticket #3260.  To work
   699   ** around this problem (we consider it a bug in OS X, not SQLite)
   700   ** we always increase the file size to 1 by writing a single byte
   701   ** prior to accessing the inode number.  The one byte written is
   702   ** an ASCII 'S' character which also happens to be the first byte
   703   ** in the header of every SQLite database.  In this way, if there
   704   ** is a race condition such that another thread has already populated
   705   ** the first page of the database, no damage is done.
   706   */
   707   if( statbuf.st_size==0 ){
   708     write(fd, "S", 1);
   709     rc = fstat(fd, &statbuf);
   710     if( rc!=0 ){
   711       return SQLITE_IOERR;
   712     }
   713   }
   714 
   715   memset(&key1, 0, sizeof(key1));
   716   key1.dev = statbuf.st_dev;
   717   key1.ino = statbuf.st_ino;
   718 #if SQLITE_THREADSAFE
   719   if( threadsOverrideEachOthersLocks<0 ){
   720     testThreadLockingBehavior(fd);
   721   }
   722   key1.tid = threadsOverrideEachOthersLocks ? 0 : pthread_self();
   723 #endif
   724   memset(&key2, 0, sizeof(key2));
   725   key2.dev = statbuf.st_dev;
   726   key2.ino = statbuf.st_ino;
   727   pLock = lockList;
   728   while( pLock && memcmp(&key1, &pLock->key, sizeof(key1)) ){
   729     pLock = pLock->pNext;
   730   }
   731   if( pLock==0 ){
   732     pLock = sqlite3_malloc( sizeof(*pLock) );
   733     if( pLock==0 ){
   734       rc = SQLITE_NOMEM;
   735       goto exit_findlockinfo;
   736     }
   737     pLock->key = key1;
   738     pLock->nRef = 1;
   739     pLock->cnt = 0;
   740     pLock->locktype = 0;
   741     pLock->pNext = lockList;
   742     pLock->pPrev = 0;
   743     if( lockList ) lockList->pPrev = pLock;
   744     lockList = pLock;
   745   }else{
   746     pLock->nRef++;
   747   }
   748   *ppLock = pLock;
   749   if( ppOpen!=0 ){
   750     pOpen = openList;
   751     while( pOpen && memcmp(&key2, &pOpen->key, sizeof(key2)) ){
   752       pOpen = pOpen->pNext;
   753     }
   754     if( pOpen==0 ){
   755       pOpen = sqlite3_malloc( sizeof(*pOpen) );
   756       if( pOpen==0 ){
   757         releaseLockInfo(pLock);
   758         rc = SQLITE_NOMEM;
   759         goto exit_findlockinfo;
   760       }
   761       pOpen->key = key2;
   762       pOpen->nRef = 1;
   763       pOpen->nLock = 0;
   764       pOpen->nPending = 0;
   765       pOpen->aPending = 0;
   766       pOpen->pNext = openList;
   767       pOpen->pPrev = 0;
   768       if( openList ) openList->pPrev = pOpen;
   769       openList = pOpen;
   770     }else{
   771       pOpen->nRef++;
   772     }
   773     *ppOpen = pOpen;
   774   }
   775 
   776 exit_findlockinfo:
   777   return rc;
   778 }
   779 
   780 #ifdef SQLITE_DEBUG
   781 /*
   782 ** Helper function for printing out trace information from debugging
   783 ** binaries. This returns the string represetation of the supplied
   784 ** integer lock-type.
   785 */
   786 static const char *locktypeName(int locktype){
   787   switch( locktype ){
   788   case NO_LOCK: return "NONE";
   789   case SHARED_LOCK: return "SHARED";
   790   case RESERVED_LOCK: return "RESERVED";
   791   case PENDING_LOCK: return "PENDING";
   792   case EXCLUSIVE_LOCK: return "EXCLUSIVE";
   793   }
   794   return "ERROR";
   795 }
   796 #endif
   797 
   798 /*
   799 ** If we are currently in a different thread than the thread that the
   800 ** unixFile argument belongs to, then transfer ownership of the unixFile
   801 ** over to the current thread.
   802 **
   803 ** A unixFile is only owned by a thread on systems where one thread is
   804 ** unable to override locks created by a different thread.  RedHat9 is
   805 ** an example of such a system.
   806 **
   807 ** Ownership transfer is only allowed if the unixFile is currently unlocked.
   808 ** If the unixFile is locked and an ownership is wrong, then return
   809 ** SQLITE_MISUSE.  SQLITE_OK is returned if everything works.
   810 */
   811 #if SQLITE_THREADSAFE
   812 static int transferOwnership(unixFile *pFile){
   813   int rc;
   814   pthread_t hSelf;
   815   if( threadsOverrideEachOthersLocks ){
   816     /* Ownership transfers not needed on this system */
   817     return SQLITE_OK;
   818   }
   819   hSelf = pthread_self();
   820   if( pthread_equal(pFile->tid, hSelf) ){
   821     /* We are still in the same thread */
   822     OSTRACE1("No-transfer, same thread\n");
   823     return SQLITE_OK;
   824   }
   825   if( pFile->locktype!=NO_LOCK ){
   826     /* We cannot change ownership while we are holding a lock! */
   827     return SQLITE_MISUSE;
   828   }
   829   OSTRACE4("Transfer ownership of %d from %d to %d\n",
   830             pFile->h, pFile->tid, hSelf);
   831   pFile->tid = hSelf;
   832   if (pFile->pLock != NULL) {
   833     releaseLockInfo(pFile->pLock);
   834     rc = findLockInfo(pFile->h, &pFile->pLock, 0);
   835     OSTRACE5("LOCK    %d is now %s(%s,%d)\n", pFile->h,
   836            locktypeName(pFile->locktype),
   837            locktypeName(pFile->pLock->locktype), pFile->pLock->cnt);
   838     return rc;
   839   } else {
   840     return SQLITE_OK;
   841   }
   842 }
   843 #else
   844   /* On single-threaded builds, ownership transfer is a no-op */
   845 # define transferOwnership(X) SQLITE_OK
   846 #endif
   847 
   848 /*
   849 ** Seek to the offset passed as the second argument, then read cnt 
   850 ** bytes into pBuf. Return the number of bytes actually read.
   851 **
   852 ** NB:  If you define USE_PREAD or USE_PREAD64, then it might also
   853 ** be necessary to define _XOPEN_SOURCE to be 500.  This varies from
   854 ** one system to another.  Since SQLite does not define USE_PREAD
   855 ** any any form by default, we will not attempt to define _XOPEN_SOURCE.
   856 ** See tickets #2741 and #2681.
   857 */
   858 static int seekAndRead(unixFile *id, sqlite3_int64 offset, void *pBuf, int cnt){
   859   int got;
   860   i64 newOffset;
   861   TIMER_START;
   862 #if defined(USE_PREAD)
   863   got = pread(id->h, pBuf, cnt, offset);
   864   SimulateIOError( got = -1 );
   865 #elif defined(USE_PREAD64)
   866   got = pread64(id->h, pBuf, cnt, offset);
   867   SimulateIOError( got = -1 );
   868 #else
   869   newOffset = lseek(id->h, offset, SEEK_SET);
   870   SimulateIOError( newOffset-- );
   871   if( newOffset!=offset ){
   872     return -1;
   873   }
   874   got = read(id->h, pBuf, cnt);
   875 #endif
   876   TIMER_END;
   877   OSTRACE5("READ    %-3d %5d %7lld %llu\n", id->h, got, offset, TIMER_ELAPSED);
   878   return got;
   879 }
   880 
   881 /*
   882 ** Read data from a file into a buffer.  Return SQLITE_OK if all
   883 ** bytes were read successfully and SQLITE_IOERR if anything goes
   884 ** wrong.
   885 */
   886 static int unixRead(
   887   sqlite3_file *id, 
   888   void *pBuf, 
   889   int amt,
   890   sqlite3_int64 offset
   891 ){
   892   int got;
   893   assert( id );
   894   got = seekAndRead((unixFile*)id, offset, pBuf, amt);
   895   if( got==amt ){
   896     return SQLITE_OK;
   897   }else if( got<0 ){
   898     return SQLITE_IOERR_READ;
   899   }else{
   900     memset(&((char*)pBuf)[got], 0, amt-got);
   901     return SQLITE_IOERR_SHORT_READ;
   902   }
   903 }
   904 
   905 /*
   906 ** Seek to the offset in id->offset then read cnt bytes into pBuf.
   907 ** Return the number of bytes actually read.  Update the offset.
   908 */
   909 static int seekAndWrite(unixFile *id, i64 offset, const void *pBuf, int cnt){
   910   int got;
   911   i64 newOffset;
   912   TIMER_START;
   913 #if defined(USE_PREAD)
   914   got = pwrite(id->h, pBuf, cnt, offset);
   915 #elif defined(USE_PREAD64)
   916   got = pwrite64(id->h, pBuf, cnt, offset);
   917 #else
   918   newOffset = lseek(id->h, offset, SEEK_SET);
   919   if( newOffset!=offset ){
   920     return -1;
   921   }
   922   got = write(id->h, pBuf, cnt);
   923 #endif
   924   TIMER_END;
   925   OSTRACE5("WRITE   %-3d %5d %7lld %llu\n", id->h, got, offset, TIMER_ELAPSED);
   926   return got;
   927 }
   928 
   929 
   930 /*
   931 ** Write data from a buffer into a file.  Return SQLITE_OK on success
   932 ** or some other error code on failure.
   933 */
   934 static int unixWrite(
   935   sqlite3_file *id, 
   936   const void *pBuf, 
   937   int amt,
   938   sqlite3_int64 offset 
   939 ){
   940   int wrote = 0;
   941   assert( id );
   942   assert( amt>0 );
   943   while( amt>0 && (wrote = seekAndWrite((unixFile*)id, offset, pBuf, amt))>0 ){
   944     amt -= wrote;
   945     offset += wrote;
   946     pBuf = &((char*)pBuf)[wrote];
   947   }
   948   SimulateIOError(( wrote=(-1), amt=1 ));
   949   SimulateDiskfullError(( wrote=0, amt=1 ));
   950   if( amt>0 ){
   951     if( wrote<0 ){
   952       return SQLITE_IOERR_WRITE;
   953     }else{
   954       return SQLITE_FULL;
   955     }
   956   }
   957   return SQLITE_OK;
   958 }
   959 
   960 #ifdef SQLITE_TEST
   961 /*
   962 ** Count the number of fullsyncs and normal syncs.  This is used to test
   963 ** that syncs and fullsyncs are occuring at the right times.
   964 */
   965 int sqlite3_sync_count = 0;
   966 int sqlite3_fullsync_count = 0;
   967 #endif
   968 
   969 /*
   970 ** Use the fdatasync() API only if the HAVE_FDATASYNC macro is defined.
   971 ** Otherwise use fsync() in its place.
   972 */
   973 #ifndef HAVE_FDATASYNC
   974 # define fdatasync fsync
   975 #endif
   976 
   977 /*
   978 ** Define HAVE_FULLFSYNC to 0 or 1 depending on whether or not
   979 ** the F_FULLFSYNC macro is defined.  F_FULLFSYNC is currently
   980 ** only available on Mac OS X.  But that could change.
   981 */
   982 #ifdef F_FULLFSYNC
   983 # define HAVE_FULLFSYNC 1
   984 #else
   985 # define HAVE_FULLFSYNC 0
   986 #endif
   987 
   988 
   989 /*
   990 ** The fsync() system call does not work as advertised on many
   991 ** unix systems.  The following procedure is an attempt to make
   992 ** it work better.
   993 **
   994 ** The SQLITE_NO_SYNC macro disables all fsync()s.  This is useful
   995 ** for testing when we want to run through the test suite quickly.
   996 ** You are strongly advised *not* to deploy with SQLITE_NO_SYNC
   997 ** enabled, however, since with SQLITE_NO_SYNC enabled, an OS crash
   998 ** or power failure will likely corrupt the database file.
   999 */
  1000 static int full_fsync(int fd, int fullSync, int dataOnly){
  1001   int rc;
  1002 
  1003   /* Record the number of times that we do a normal fsync() and 
  1004   ** FULLSYNC.  This is used during testing to verify that this procedure
  1005   ** gets called with the correct arguments.
  1006   */
  1007 #ifdef SQLITE_TEST
  1008   if( fullSync ) sqlite3_fullsync_count++;
  1009   sqlite3_sync_count++;
  1010 #endif
  1011 
  1012   /* If we compiled with the SQLITE_NO_SYNC flag, then syncing is a
  1013   ** no-op
  1014   */
  1015 #ifdef SQLITE_NO_SYNC
  1016   rc = SQLITE_OK;
  1017 #else
  1018 
  1019 #if HAVE_FULLFSYNC
  1020   if( fullSync ){
  1021     rc = fcntl(fd, F_FULLFSYNC, 0);
  1022   }else{
  1023     rc = 1;
  1024   }
  1025   /* If the FULLFSYNC failed, fall back to attempting an fsync().
  1026    * It shouldn't be possible for fullfsync to fail on the local 
  1027    * file system (on OSX), so failure indicates that FULLFSYNC
  1028    * isn't supported for this file system. So, attempt an fsync 
  1029    * and (for now) ignore the overhead of a superfluous fcntl call.  
  1030    * It'd be better to detect fullfsync support once and avoid 
  1031    * the fcntl call every time sync is called.
  1032    */
  1033   if( rc ) rc = fsync(fd);
  1034 
  1035 #else 
  1036   if( dataOnly ){
  1037     rc = fdatasync(fd);
  1038   }else{
  1039     rc = fsync(fd);
  1040   }
  1041 #endif /* HAVE_FULLFSYNC */
  1042 #endif /* defined(SQLITE_NO_SYNC) */
  1043 
  1044   return rc;
  1045 }
  1046 
  1047 /*
  1048 ** Make sure all writes to a particular file are committed to disk.
  1049 **
  1050 ** If dataOnly==0 then both the file itself and its metadata (file
  1051 ** size, access time, etc) are synced.  If dataOnly!=0 then only the
  1052 ** file data is synced.
  1053 **
  1054 ** Under Unix, also make sure that the directory entry for the file
  1055 ** has been created by fsync-ing the directory that contains the file.
  1056 ** If we do not do this and we encounter a power failure, the directory
  1057 ** entry for the journal might not exist after we reboot.  The next
  1058 ** SQLite to access the file will not know that the journal exists (because
  1059 ** the directory entry for the journal was never created) and the transaction
  1060 ** will not roll back - possibly leading to database corruption.
  1061 */
  1062 static int unixSync(sqlite3_file *id, int flags){
  1063   int rc;
  1064   unixFile *pFile = (unixFile*)id;
  1065 
  1066   int isDataOnly = (flags&SQLITE_SYNC_DATAONLY);
  1067   int isFullsync = (flags&0x0F)==SQLITE_SYNC_FULL;
  1068 
  1069   /* Check that one of SQLITE_SYNC_NORMAL or FULL was passed */
  1070   assert((flags&0x0F)==SQLITE_SYNC_NORMAL
  1071       || (flags&0x0F)==SQLITE_SYNC_FULL
  1072   );
  1073 
  1074   /* Unix cannot, but some systems may return SQLITE_FULL from here. This
  1075   ** line is to test that doing so does not cause any problems.
  1076   */
  1077   SimulateDiskfullError( return SQLITE_FULL );
  1078 
  1079   assert( pFile );
  1080   OSTRACE2("SYNC    %-3d\n", pFile->h);
  1081   rc = full_fsync(pFile->h, isFullsync, isDataOnly);
  1082   SimulateIOError( rc=1 );
  1083   if( rc ){
  1084     return SQLITE_IOERR_FSYNC;
  1085   }
  1086   if( pFile->dirfd>=0 ){
  1087     OSTRACE4("DIRSYNC %-3d (have_fullfsync=%d fullsync=%d)\n", pFile->dirfd,
  1088             HAVE_FULLFSYNC, isFullsync);
  1089 #ifndef SQLITE_DISABLE_DIRSYNC
  1090     /* The directory sync is only attempted if full_fsync is
  1091     ** turned off or unavailable.  If a full_fsync occurred above,
  1092     ** then the directory sync is superfluous.
  1093     */
  1094     if( (!HAVE_FULLFSYNC || !isFullsync) && full_fsync(pFile->dirfd,0,0) ){
  1095        /*
  1096        ** We have received multiple reports of fsync() returning
  1097        ** errors when applied to directories on certain file systems.
  1098        ** A failed directory sync is not a big deal.  So it seems
  1099        ** better to ignore the error.  Ticket #1657
  1100        */
  1101        /* return SQLITE_IOERR; */
  1102     }
  1103 #endif
  1104     close(pFile->dirfd);  /* Only need to sync once, so close the directory */
  1105     pFile->dirfd = -1;    /* when we are done. */
  1106   }
  1107   return SQLITE_OK;
  1108 }
  1109 
  1110 /*
  1111 ** Truncate an open file to a specified size
  1112 */
  1113 static int unixTruncate(sqlite3_file *id, i64 nByte){
  1114   int rc;
  1115   assert( id );
  1116   SimulateIOError( return SQLITE_IOERR_TRUNCATE );
  1117   rc = ftruncate(((unixFile*)id)->h, (off_t)nByte);
  1118   if( rc ){
  1119     return SQLITE_IOERR_TRUNCATE;
  1120   }else{
  1121     return SQLITE_OK;
  1122   }
  1123 }
  1124 
  1125 /*
  1126 ** Determine the current size of a file in bytes
  1127 */
  1128 static int unixFileSize(sqlite3_file *id, i64 *pSize){
  1129   int rc;
  1130   struct stat buf;
  1131   assert( id );
  1132   rc = fstat(((unixFile*)id)->h, &buf);
  1133   SimulateIOError( rc=1 );
  1134   if( rc!=0 ){
  1135     return SQLITE_IOERR_FSTAT;
  1136   }
  1137   *pSize = buf.st_size;
  1138 
  1139   /* When opening a zero-size database, the findLockInfo() procedure
  1140   ** writes a single byte into that file in order to work around a bug
  1141   ** in the OS-X msdos filesystem.  In order to avoid problems with upper
  1142   ** layers, we need to report this file size as zero even though it is
  1143   ** really 1.   Ticket #3260.
  1144   */
  1145   if( *pSize==1 ) *pSize = 0;
  1146 
  1147 
  1148   return SQLITE_OK;
  1149 }
  1150 
  1151 /*
  1152 ** This routine translates a standard POSIX errno code into something
  1153 ** useful to the clients of the sqlite3 functions.  Specifically, it is
  1154 ** intended to translate a variety of "try again" errors into SQLITE_BUSY
  1155 ** and a variety of "please close the file descriptor NOW" errors into 
  1156 ** SQLITE_IOERR
  1157 ** 
  1158 ** Errors during initialization of locks, or file system support for locks,
  1159 ** should handle ENOLCK, ENOTSUP, EOPNOTSUPP separately.
  1160 */
  1161 static int sqliteErrorFromPosixError(int posixError, int sqliteIOErr) {
  1162   switch (posixError) {
  1163   case 0: 
  1164     return SQLITE_OK;
  1165     
  1166   case EAGAIN:
  1167   case ETIMEDOUT:
  1168   case EBUSY:
  1169   case EINTR:
  1170   case ENOLCK:  
  1171     /* random NFS retry error, unless during file system support 
  1172      * introspection, in which it actually means what it says */
  1173     return SQLITE_BUSY;
  1174     
  1175   case EACCES: 
  1176     /* EACCES is like EAGAIN during locking operations, but not any other time*/
  1177     if( (sqliteIOErr == SQLITE_IOERR_LOCK) || 
  1178 	(sqliteIOErr == SQLITE_IOERR_UNLOCK) || 
  1179 	(sqliteIOErr == SQLITE_IOERR_RDLOCK) ||
  1180 	(sqliteIOErr == SQLITE_IOERR_CHECKRESERVEDLOCK) ){
  1181       return SQLITE_BUSY;
  1182     }
  1183     /* else fall through */
  1184   case EPERM: 
  1185     return SQLITE_PERM;
  1186     
  1187   case EDEADLK:
  1188     return SQLITE_IOERR_BLOCKED;
  1189     
  1190 #if EOPNOTSUPP!=ENOTSUP
  1191   case EOPNOTSUPP: 
  1192     /* something went terribly awry, unless during file system support 
  1193      * introspection, in which it actually means what it says */
  1194 #endif
  1195 #ifdef ENOTSUP
  1196   case ENOTSUP: 
  1197     /* invalid fd, unless during file system support introspection, in which 
  1198      * it actually means what it says */
  1199 #endif
  1200   case EIO:
  1201   case EBADF:
  1202   case EINVAL:
  1203   case ENOTCONN:
  1204   case ENODEV:
  1205   case ENXIO:
  1206   case ENOENT:
  1207   case ESTALE:
  1208   case ENOSYS:
  1209     /* these should force the client to close the file and reconnect */
  1210     
  1211   default: 
  1212     return sqliteIOErr;
  1213   }
  1214 }
  1215 
  1216 /*
  1217 ** This routine checks if there is a RESERVED lock held on the specified
  1218 ** file by this or any other process. If such a lock is held, set *pResOut
  1219 ** to a non-zero value otherwise *pResOut is set to zero.  The return value
  1220 ** is set to SQLITE_OK unless an I/O error occurs during lock checking.
  1221 */
  1222 static int unixCheckReservedLock(sqlite3_file *id, int *pResOut){
  1223   int rc = SQLITE_OK;
  1224   int reserved = 0;
  1225   unixFile *pFile = (unixFile*)id;
  1226 
  1227   SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; );
  1228 
  1229   assert( pFile );
  1230   enterMutex(); /* Because pFile->pLock is shared across threads */
  1231 
  1232   /* Check if a thread in this process holds such a lock */
  1233   if( pFile->pLock->locktype>SHARED_LOCK ){
  1234     reserved = 1;
  1235   }
  1236 
  1237   /* Otherwise see if some other process holds it.
  1238   */
  1239   if( !reserved ){
  1240     struct flock lock;
  1241     lock.l_whence = SEEK_SET;
  1242     lock.l_start = RESERVED_BYTE;
  1243     lock.l_len = 1;
  1244     lock.l_type = F_WRLCK;
  1245     if (-1 == fcntl(pFile->h, F_GETLK, &lock)) {
  1246       int tErrno = errno;
  1247       rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_CHECKRESERVEDLOCK);
  1248       pFile->lastErrno = tErrno;
  1249     } else if( lock.l_type!=F_UNLCK ){
  1250       reserved = 1;
  1251     }
  1252   }
  1253   
  1254   leaveMutex();
  1255   OSTRACE4("TEST WR-LOCK %d %d %d\n", pFile->h, rc, reserved);
  1256 
  1257   *pResOut = reserved;
  1258   return rc;
  1259 }
  1260 
  1261 /*
  1262 ** Lock the file with the lock specified by parameter locktype - one
  1263 ** of the following:
  1264 **
  1265 **     (1) SHARED_LOCK
  1266 **     (2) RESERVED_LOCK
  1267 **     (3) PENDING_LOCK
  1268 **     (4) EXCLUSIVE_LOCK
  1269 **
  1270 ** Sometimes when requesting one lock state, additional lock states
  1271 ** are inserted in between.  The locking might fail on one of the later
  1272 ** transitions leaving the lock state different from what it started but
  1273 ** still short of its goal.  The following chart shows the allowed
  1274 ** transitions and the inserted intermediate states:
  1275 **
  1276 **    UNLOCKED -> SHARED
  1277 **    SHARED -> RESERVED
  1278 **    SHARED -> (PENDING) -> EXCLUSIVE
  1279 **    RESERVED -> (PENDING) -> EXCLUSIVE
  1280 **    PENDING -> EXCLUSIVE
  1281 **
  1282 ** This routine will only increase a lock.  Use the sqlite3OsUnlock()
  1283 ** routine to lower a locking level.
  1284 */
  1285 static int unixLock(sqlite3_file *id, int locktype){
  1286   /* The following describes the implementation of the various locks and
  1287   ** lock transitions in terms of the POSIX advisory shared and exclusive
  1288   ** lock primitives (called read-locks and write-locks below, to avoid
  1289   ** confusion with SQLite lock names). The algorithms are complicated
  1290   ** slightly in order to be compatible with windows systems simultaneously
  1291   ** accessing the same database file, in case that is ever required.
  1292   **
  1293   ** Symbols defined in os.h indentify the 'pending byte' and the 'reserved
  1294   ** byte', each single bytes at well known offsets, and the 'shared byte
  1295   ** range', a range of 510 bytes at a well known offset.
  1296   **
  1297   ** To obtain a SHARED lock, a read-lock is obtained on the 'pending
  1298   ** byte'.  If this is successful, a random byte from the 'shared byte
  1299   ** range' is read-locked and the lock on the 'pending byte' released.
  1300   **
  1301   ** A process may only obtain a RESERVED lock after it has a SHARED lock.
  1302   ** A RESERVED lock is implemented by grabbing a write-lock on the
  1303   ** 'reserved byte'. 
  1304   **
  1305   ** A process may only obtain a PENDING lock after it has obtained a
  1306   ** SHARED lock. A PENDING lock is implemented by obtaining a write-lock
  1307   ** on the 'pending byte'. This ensures that no new SHARED locks can be
  1308   ** obtained, but existing SHARED locks are allowed to persist. A process
  1309   ** does not have to obtain a RESERVED lock on the way to a PENDING lock.
  1310   ** This property is used by the algorithm for rolling back a journal file
  1311   ** after a crash.
  1312   **
  1313   ** An EXCLUSIVE lock, obtained after a PENDING lock is held, is
  1314   ** implemented by obtaining a write-lock on the entire 'shared byte
  1315   ** range'. Since all other locks require a read-lock on one of the bytes
  1316   ** within this range, this ensures that no other locks are held on the
  1317   ** database. 
  1318   **
  1319   ** The reason a single byte cannot be used instead of the 'shared byte
  1320   ** range' is that some versions of windows do not support read-locks. By
  1321   ** locking a random byte from a range, concurrent SHARED locks may exist
  1322   ** even if the locking primitive used is always a write-lock.
  1323   */
  1324   int rc = SQLITE_OK;
  1325   unixFile *pFile = (unixFile*)id;
  1326   struct lockInfo *pLock = pFile->pLock;
  1327   struct flock lock;
  1328   int s;
  1329 
  1330   assert( pFile );
  1331   OSTRACE7("LOCK    %d %s was %s(%s,%d) pid=%d\n", pFile->h,
  1332       locktypeName(locktype), locktypeName(pFile->locktype),
  1333       locktypeName(pLock->locktype), pLock->cnt , getpid());
  1334 
  1335   /* If there is already a lock of this type or more restrictive on the
  1336   ** unixFile, do nothing. Don't use the end_lock: exit path, as
  1337   ** enterMutex() hasn't been called yet.
  1338   */
  1339   if( pFile->locktype>=locktype ){
  1340     OSTRACE3("LOCK    %d %s ok (already held)\n", pFile->h,
  1341             locktypeName(locktype));
  1342     return SQLITE_OK;
  1343   }
  1344 
  1345   /* Make sure the locking sequence is correct
  1346   */
  1347   assert( pFile->locktype!=NO_LOCK || locktype==SHARED_LOCK );
  1348   assert( locktype!=PENDING_LOCK );
  1349   assert( locktype!=RESERVED_LOCK || pFile->locktype==SHARED_LOCK );
  1350 
  1351   /* This mutex is needed because pFile->pLock is shared across threads
  1352   */
  1353   enterMutex();
  1354 
  1355   /* Make sure the current thread owns the pFile.
  1356   */
  1357   rc = transferOwnership(pFile);
  1358   if( rc!=SQLITE_OK ){
  1359     leaveMutex();
  1360     return rc;
  1361   }
  1362   pLock = pFile->pLock;
  1363 
  1364   /* If some thread using this PID has a lock via a different unixFile*
  1365   ** handle that precludes the requested lock, return BUSY.
  1366   */
  1367   if( (pFile->locktype!=pLock->locktype && 
  1368           (pLock->locktype>=PENDING_LOCK || locktype>SHARED_LOCK))
  1369   ){
  1370     rc = SQLITE_BUSY;
  1371     goto end_lock;
  1372   }
  1373 
  1374   /* If a SHARED lock is requested, and some thread using this PID already
  1375   ** has a SHARED or RESERVED lock, then increment reference counts and
  1376   ** return SQLITE_OK.
  1377   */
  1378   if( locktype==SHARED_LOCK && 
  1379       (pLock->locktype==SHARED_LOCK || pLock->locktype==RESERVED_LOCK) ){
  1380     assert( locktype==SHARED_LOCK );
  1381     assert( pFile->locktype==0 );
  1382     assert( pLock->cnt>0 );
  1383     pFile->locktype = SHARED_LOCK;
  1384     pLock->cnt++;
  1385     pFile->pOpen->nLock++;
  1386     goto end_lock;
  1387   }
  1388 
  1389   lock.l_len = 1L;
  1390 
  1391   lock.l_whence = SEEK_SET;
  1392 
  1393   /* A PENDING lock is needed before acquiring a SHARED lock and before
  1394   ** acquiring an EXCLUSIVE lock.  For the SHARED lock, the PENDING will
  1395   ** be released.
  1396   */
  1397   if( locktype==SHARED_LOCK 
  1398       || (locktype==EXCLUSIVE_LOCK && pFile->locktype<PENDING_LOCK)
  1399   ){
  1400     lock.l_type = (locktype==SHARED_LOCK?F_RDLCK:F_WRLCK);
  1401     lock.l_start = PENDING_BYTE;
  1402     s = fcntl(pFile->h, F_SETLK, &lock);
  1403     if( s==(-1) ){
  1404       int tErrno = errno;
  1405       rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
  1406       if( IS_LOCK_ERROR(rc) ){
  1407         pFile->lastErrno = tErrno;
  1408       }
  1409       goto end_lock;
  1410     }
  1411   }
  1412 
  1413 
  1414   /* If control gets to this point, then actually go ahead and make
  1415   ** operating system calls for the specified lock.
  1416   */
  1417   if( locktype==SHARED_LOCK ){
  1418     int tErrno = 0;
  1419     assert( pLock->cnt==0 );
  1420     assert( pLock->locktype==0 );
  1421 
  1422     /* Now get the read-lock */
  1423     lock.l_start = SHARED_FIRST;
  1424     lock.l_len = SHARED_SIZE;
  1425     if( (s = fcntl(pFile->h, F_SETLK, &lock))==(-1) ){
  1426       tErrno = errno;
  1427     }
  1428     /* Drop the temporary PENDING lock */
  1429     lock.l_start = PENDING_BYTE;
  1430     lock.l_len = 1L;
  1431     lock.l_type = F_UNLCK;
  1432     if( fcntl(pFile->h, F_SETLK, &lock)!=0 ){
  1433       if( s != -1 ){
  1434         /* This could happen with a network mount */
  1435         tErrno = errno; 
  1436         rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_UNLOCK); 
  1437         if( IS_LOCK_ERROR(rc) ){
  1438           pFile->lastErrno = tErrno;
  1439         }
  1440         goto end_lock;
  1441       }
  1442     }
  1443     if( s==(-1) ){
  1444       rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
  1445       if( IS_LOCK_ERROR(rc) ){
  1446         pFile->lastErrno = tErrno;
  1447       }
  1448     }else{
  1449       pFile->locktype = SHARED_LOCK;
  1450       pFile->pOpen->nLock++;
  1451       pLock->cnt = 1;
  1452     }
  1453   }else if( locktype==EXCLUSIVE_LOCK && pLock->cnt>1 ){
  1454     /* We are trying for an exclusive lock but another thread in this
  1455     ** same process is still holding a shared lock. */
  1456     rc = SQLITE_BUSY;
  1457   }else{
  1458     /* The request was for a RESERVED or EXCLUSIVE lock.  It is
  1459     ** assumed that there is a SHARED or greater lock on the file
  1460     ** already.
  1461     */
  1462     assert( 0!=pFile->locktype );
  1463     lock.l_type = F_WRLCK;
  1464     switch( locktype ){
  1465       case RESERVED_LOCK:
  1466         lock.l_start = RESERVED_BYTE;
  1467         break;
  1468       case EXCLUSIVE_LOCK:
  1469         lock.l_start = SHARED_FIRST;
  1470         lock.l_len = SHARED_SIZE;
  1471         break;
  1472       default:
  1473         assert(0);
  1474     }
  1475     s = fcntl(pFile->h, F_SETLK, &lock);
  1476     if( s==(-1) ){
  1477       int tErrno = errno;
  1478       rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
  1479       if( IS_LOCK_ERROR(rc) ){
  1480         pFile->lastErrno = tErrno;
  1481       }
  1482     }
  1483   }
  1484   
  1485   if( rc==SQLITE_OK ){
  1486     pFile->locktype = locktype;
  1487     pLock->locktype = locktype;
  1488   }else if( locktype==EXCLUSIVE_LOCK ){
  1489     pFile->locktype = PENDING_LOCK;
  1490     pLock->locktype = PENDING_LOCK;
  1491   }
  1492 
  1493 end_lock:
  1494   leaveMutex();
  1495   OSTRACE4("LOCK    %d %s %s\n", pFile->h, locktypeName(locktype), 
  1496       rc==SQLITE_OK ? "ok" : "failed");
  1497   return rc;
  1498 }
  1499 
  1500 /*
  1501 ** Lower the locking level on file descriptor pFile to locktype.  locktype
  1502 ** must be either NO_LOCK or SHARED_LOCK.
  1503 **
  1504 ** If the locking level of the file descriptor is already at or below
  1505 ** the requested locking level, this routine is a no-op.
  1506 */
  1507 static int unixUnlock(sqlite3_file *id, int locktype){
  1508   struct lockInfo *pLock;
  1509   struct flock lock;
  1510   int rc = SQLITE_OK;
  1511   unixFile *pFile = (unixFile*)id;
  1512   int h;
  1513 
  1514   assert( pFile );
  1515   OSTRACE7("UNLOCK  %d %d was %d(%d,%d) pid=%d\n", pFile->h, locktype,
  1516       pFile->locktype, pFile->pLock->locktype, pFile->pLock->cnt, getpid());
  1517 
  1518   assert( locktype<=SHARED_LOCK );
  1519   if( pFile->locktype<=locktype ){
  1520     return SQLITE_OK;
  1521   }
  1522   if( CHECK_THREADID(pFile) ){
  1523     return SQLITE_MISUSE;
  1524   }
  1525   enterMutex();
  1526   h = pFile->h;
  1527   pLock = pFile->pLock;
  1528   assert( pLock->cnt!=0 );
  1529   if( pFile->locktype>SHARED_LOCK ){
  1530     assert( pLock->locktype==pFile->locktype );
  1531     SimulateIOErrorBenign(1);
  1532     SimulateIOError( h=(-1) )
  1533     SimulateIOErrorBenign(0);
  1534     if( locktype==SHARED_LOCK ){
  1535       lock.l_type = F_RDLCK;
  1536       lock.l_whence = SEEK_SET;
  1537       lock.l_start = SHARED_FIRST;
  1538       lock.l_len = SHARED_SIZE;
  1539       if( fcntl(h, F_SETLK, &lock)==(-1) ){
  1540         int tErrno = errno;
  1541         rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_RDLOCK);
  1542         if( IS_LOCK_ERROR(rc) ){
  1543           pFile->lastErrno = tErrno;
  1544         }
  1545 				goto end_unlock;
  1546       }
  1547     }
  1548     lock.l_type = F_UNLCK;
  1549     lock.l_whence = SEEK_SET;
  1550     lock.l_start = PENDING_BYTE;
  1551     lock.l_len = 2L;  assert( PENDING_BYTE+1==RESERVED_BYTE );
  1552     if( fcntl(h, F_SETLK, &lock)!=(-1) ){
  1553       pLock->locktype = SHARED_LOCK;
  1554     }else{
  1555       int tErrno = errno;
  1556       rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_UNLOCK);
  1557       if( IS_LOCK_ERROR(rc) ){
  1558         pFile->lastErrno = tErrno;
  1559       }
  1560 			goto end_unlock;
  1561     }
  1562   }
  1563   if( locktype==NO_LOCK ){
  1564     struct openCnt *pOpen;
  1565 
  1566     /* Decrement the shared lock counter.  Release the lock using an
  1567     ** OS call only when all threads in this same process have released
  1568     ** the lock.
  1569     */
  1570     pLock->cnt--;
  1571     if( pLock->cnt==0 ){
  1572       lock.l_type = F_UNLCK;
  1573       lock.l_whence = SEEK_SET;
  1574       lock.l_start = lock.l_len = 0L;
  1575       SimulateIOErrorBenign(1);
  1576       SimulateIOError( h=(-1) )
  1577       SimulateIOErrorBenign(0);
  1578       if( fcntl(h, F_SETLK, &lock)!=(-1) ){
  1579         pLock->locktype = NO_LOCK;
  1580       }else{
  1581         int tErrno = errno;
  1582         rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_UNLOCK);
  1583         if( IS_LOCK_ERROR(rc) ){
  1584           pFile->lastErrno = tErrno;
  1585         }
  1586         pLock->cnt = 1;
  1587 				goto end_unlock;
  1588       }
  1589     }
  1590 
  1591     /* Decrement the count of locks against this same file.  When the
  1592     ** count reaches zero, close any other file descriptors whose close
  1593     ** was deferred because of outstanding locks.
  1594     */
  1595     if( rc==SQLITE_OK ){
  1596       pOpen = pFile->pOpen;
  1597       pOpen->nLock--;
  1598       assert( pOpen->nLock>=0 );
  1599       if( pOpen->nLock==0 && pOpen->nPending>0 ){
  1600         int i;
  1601         for(i=0; i<pOpen->nPending; i++){
  1602           close(pOpen->aPending[i]);
  1603         }
  1604         sqlite3_free(pOpen->aPending);
  1605         pOpen->nPending = 0;
  1606         pOpen->aPending = 0;
  1607       }
  1608     }
  1609   }
  1610 	
  1611 end_unlock:
  1612   leaveMutex();
  1613   if( rc==SQLITE_OK ) pFile->locktype = locktype;
  1614   return rc;
  1615 }
  1616 
  1617 /*
  1618 ** This function performs the parts of the "close file" operation 
  1619 ** common to all locking schemes. It closes the directory and file
  1620 ** handles, if they are valid, and sets all fields of the unixFile
  1621 ** structure to 0.
  1622 */
  1623 static int closeUnixFile(sqlite3_file *id){
  1624   unixFile *pFile = (unixFile*)id;
  1625   if( pFile ){
  1626     if( pFile->dirfd>=0 ){
  1627       close(pFile->dirfd);
  1628     }
  1629     if( pFile->h>=0 ){
  1630       close(pFile->h);
  1631     }
  1632     OSTRACE2("CLOSE   %-3d\n", pFile->h);
  1633     OpenCounter(-1);
  1634     memset(pFile, 0, sizeof(unixFile));
  1635   }
  1636   return SQLITE_OK;
  1637 }
  1638 
  1639 /*
  1640 ** Close a file.
  1641 */
  1642 static int unixClose(sqlite3_file *id){
  1643   if( id ){
  1644     unixFile *pFile = (unixFile *)id;
  1645     unixUnlock(id, NO_LOCK);
  1646     enterMutex();
  1647     if( pFile->pOpen && pFile->pOpen->nLock ){
  1648       /* If there are outstanding locks, do not actually close the file just
  1649       ** yet because that would clear those locks.  Instead, add the file
  1650       ** descriptor to pOpen->aPending.  It will be automatically closed when
  1651       ** the last lock is cleared.
  1652       */
  1653       int *aNew;
  1654       struct openCnt *pOpen = pFile->pOpen;
  1655       aNew = sqlite3_realloc(pOpen->aPending, (pOpen->nPending+1)*sizeof(int) );
  1656       if( aNew==0 ){
  1657         /* If a malloc fails, just leak the file descriptor */
  1658       }else{
  1659         pOpen->aPending = aNew;
  1660         pOpen->aPending[pOpen->nPending] = pFile->h;
  1661         pOpen->nPending++;
  1662         pFile->h = -1;
  1663       }
  1664     }
  1665     releaseLockInfo(pFile->pLock);
  1666     releaseOpenCnt(pFile->pOpen);
  1667     closeUnixFile(id);
  1668     leaveMutex();
  1669   }
  1670   return SQLITE_OK;
  1671 }
  1672 
  1673 
  1674 #if SQLITE_ENABLE_LOCKING_STYLE
  1675 #pragma mark AFP Support
  1676 
  1677 /*
  1678  ** The afpLockingContext structure contains all afp lock specific state
  1679  */
  1680 typedef struct afpLockingContext afpLockingContext;
  1681 struct afpLockingContext {
  1682   unsigned long long sharedLockByte;
  1683   const char *filePath;
  1684 };
  1685 
  1686 struct ByteRangeLockPB2
  1687 {
  1688   unsigned long long offset;        /* offset to first byte to lock */
  1689   unsigned long long length;        /* nbr of bytes to lock */
  1690   unsigned long long retRangeStart; /* nbr of 1st byte locked if successful */
  1691   unsigned char unLockFlag;         /* 1 = unlock, 0 = lock */
  1692   unsigned char startEndFlag;       /* 1=rel to end of fork, 0=rel to start */
  1693   int fd;                           /* file desc to assoc this lock with */
  1694 };
  1695 
  1696 #define afpfsByteRangeLock2FSCTL        _IOWR('z', 23, struct ByteRangeLockPB2)
  1697 
  1698 /* 
  1699  ** Return SQLITE_OK on success, SQLITE_BUSY on failure.
  1700  */
  1701 static int _AFPFSSetLock(
  1702   const char *path, 
  1703   unixFile *pFile, 
  1704   unsigned long long offset, 
  1705   unsigned long long length, 
  1706   int setLockFlag
  1707 ){
  1708   struct ByteRangeLockPB2       pb;
  1709   int                     err;
  1710   
  1711   pb.unLockFlag = setLockFlag ? 0 : 1;
  1712   pb.startEndFlag = 0;
  1713   pb.offset = offset;
  1714   pb.length = length; 
  1715   pb.fd = pFile->h;
  1716   OSTRACE5("AFPLOCK setting lock %s for %d in range %llx:%llx\n", 
  1717     (setLockFlag?"ON":"OFF"), pFile->h, offset, length);
  1718   err = fsctl(path, afpfsByteRangeLock2FSCTL, &pb, 0);
  1719   if ( err==-1 ) {
  1720     int rc;
  1721     int tErrno = errno;
  1722     OSTRACE4("AFPLOCK failed to fsctl() '%s' %d %s\n", path, tErrno, strerror(tErrno));
  1723     rc = sqliteErrorFromPosixError(tErrno, setLockFlag ? SQLITE_IOERR_LOCK : SQLITE_IOERR_UNLOCK); /* error */
  1724     if( IS_LOCK_ERROR(rc) ){
  1725       pFile->lastErrno = tErrno;
  1726     }
  1727     return rc;
  1728   } else {
  1729     return SQLITE_OK;
  1730   }
  1731 }
  1732 
  1733 /* AFP-style reserved lock checking following the behavior of 
  1734 ** unixCheckReservedLock, see the unixCheckReservedLock function comments */
  1735 static int afpCheckReservedLock(sqlite3_file *id, int *pResOut){
  1736   int rc = SQLITE_OK;
  1737   int reserved = 0;
  1738   unixFile *pFile = (unixFile*)id;
  1739   
  1740   SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; );
  1741   
  1742   assert( pFile );
  1743   afpLockingContext *context = (afpLockingContext *) pFile->lockingContext;
  1744   
  1745   /* Check if a thread in this process holds such a lock */
  1746   if( pFile->locktype>SHARED_LOCK ){
  1747     reserved = 1;
  1748   }
  1749   
  1750   /* Otherwise see if some other process holds it.
  1751    */
  1752   if( !reserved ){
  1753     /* lock the RESERVED byte */
  1754     int lrc = _AFPFSSetLock(context->filePath, pFile, RESERVED_BYTE, 1,1);  
  1755     if( SQLITE_OK==lrc ){
  1756       /* if we succeeded in taking the reserved lock, unlock it to restore
  1757       ** the original state */
  1758       lrc = _AFPFSSetLock(context->filePath, pFile, RESERVED_BYTE, 1, 0);
  1759     } else {
  1760       /* if we failed to get the lock then someone else must have it */
  1761       reserved = 1;
  1762     }
  1763     if( IS_LOCK_ERROR(lrc) ){
  1764       rc=lrc;
  1765     }
  1766   }
  1767   
  1768   OSTRACE4("TEST WR-LOCK %d %d %d\n", pFile->h, rc, reserved);
  1769   
  1770   *pResOut = reserved;
  1771   return rc;
  1772 }
  1773 
  1774 /* AFP-style locking following the behavior of unixLock, see the unixLock 
  1775 ** function comments for details of lock management. */
  1776 static int afpLock(sqlite3_file *id, int locktype){
  1777   int rc = SQLITE_OK;
  1778   unixFile *pFile = (unixFile*)id;
  1779   afpLockingContext *context = (afpLockingContext *) pFile->lockingContext;
  1780   
  1781   assert( pFile );
  1782   OSTRACE5("LOCK    %d %s was %s pid=%d\n", pFile->h,
  1783          locktypeName(locktype), locktypeName(pFile->locktype), getpid());
  1784 
  1785   /* If there is already a lock of this type or more restrictive on the
  1786   ** unixFile, do nothing. Don't use the afp_end_lock: exit path, as
  1787   ** enterMutex() hasn't been called yet.
  1788   */
  1789   if( pFile->locktype>=locktype ){
  1790     OSTRACE3("LOCK    %d %s ok (already held)\n", pFile->h,
  1791            locktypeName(locktype));
  1792     return SQLITE_OK;
  1793   }
  1794 
  1795   /* Make sure the locking sequence is correct
  1796   */
  1797   assert( pFile->locktype!=NO_LOCK || locktype==SHARED_LOCK );
  1798   assert( locktype!=PENDING_LOCK );
  1799   assert( locktype!=RESERVED_LOCK || pFile->locktype==SHARED_LOCK );
  1800   
  1801   /* This mutex is needed because pFile->pLock is shared across threads
  1802   */
  1803   enterMutex();
  1804 
  1805   /* Make sure the current thread owns the pFile.
  1806   */
  1807   rc = transferOwnership(pFile);
  1808   if( rc!=SQLITE_OK ){
  1809     leaveMutex();
  1810     return rc;
  1811   }
  1812     
  1813   /* A PENDING lock is needed before acquiring a SHARED lock and before
  1814   ** acquiring an EXCLUSIVE lock.  For the SHARED lock, the PENDING will
  1815   ** be released.
  1816   */
  1817   if( locktype==SHARED_LOCK 
  1818       || (locktype==EXCLUSIVE_LOCK && pFile->locktype<PENDING_LOCK)
  1819   ){
  1820     int failed;
  1821     failed = _AFPFSSetLock(context->filePath, pFile, PENDING_BYTE, 1, 1);
  1822     if (failed) {
  1823       rc = failed;
  1824       goto afp_end_lock;
  1825     }
  1826   }
  1827   
  1828   /* If control gets to this point, then actually go ahead and make
  1829   ** operating system calls for the specified lock.
  1830   */
  1831   if( locktype==SHARED_LOCK ){
  1832     int lk, lrc1, lrc2, lrc1Errno;
  1833     
  1834     /* Now get the read-lock SHARED_LOCK */
  1835     /* note that the quality of the randomness doesn't matter that much */
  1836     lk = random(); 
  1837     context->sharedLockByte = (lk & 0x7fffffff)%(SHARED_SIZE - 1);
  1838     lrc1 = _AFPFSSetLock(context->filePath, pFile, 
  1839           SHARED_FIRST+context->sharedLockByte, 1, 1);
  1840     if( IS_LOCK_ERROR(lrc1) ){
  1841       lrc1Errno = pFile->lastErrno;
  1842     }
  1843     /* Drop the temporary PENDING lock */
  1844     lrc2 = _AFPFSSetLock(context->filePath, pFile, PENDING_BYTE, 1, 0);
  1845     
  1846     if( IS_LOCK_ERROR(lrc1) ) {
  1847       pFile->lastErrno = lrc1Errno;
  1848       rc = lrc1;
  1849       goto afp_end_lock;
  1850     } else if( IS_LOCK_ERROR(lrc2) ){
  1851       rc = lrc2;
  1852       goto afp_end_lock;
  1853     } else if( lrc1 != SQLITE_OK ) {
  1854       rc = lrc1;
  1855     } else {
  1856       pFile->locktype = SHARED_LOCK;
  1857     }
  1858   }else{
  1859     /* The request was for a RESERVED or EXCLUSIVE lock.  It is
  1860     ** assumed that there is a SHARED or greater lock on the file
  1861     ** already.
  1862     */
  1863     int failed = 0;
  1864     assert( 0!=pFile->locktype );
  1865     if (locktype >= RESERVED_LOCK && pFile->locktype < RESERVED_LOCK) {
  1866         /* Acquire a RESERVED lock */
  1867         failed = _AFPFSSetLock(context->filePath, pFile, RESERVED_BYTE, 1,1);
  1868     }
  1869     if (!failed && locktype == EXCLUSIVE_LOCK) {
  1870       /* Acquire an EXCLUSIVE lock */
  1871         
  1872       /* Remove the shared lock before trying the range.  we'll need to 
  1873       ** reestablish the shared lock if we can't get the  afpUnlock
  1874       */
  1875       if (!(failed = _AFPFSSetLock(context->filePath, pFile, SHARED_FIRST +
  1876                          context->sharedLockByte, 1, 0))) {
  1877         /* now attemmpt to get the exclusive lock range */
  1878         failed = _AFPFSSetLock(context->filePath, pFile, SHARED_FIRST, 
  1879                                SHARED_SIZE, 1);
  1880         if (failed && (failed = _AFPFSSetLock(context->filePath, pFile, 
  1881                        SHARED_FIRST + context->sharedLockByte, 1, 1))) {
  1882           rc = failed;
  1883         }
  1884       } else {
  1885         rc = failed; 
  1886       }
  1887     }
  1888     if( failed ){
  1889       rc = failed;
  1890     }
  1891   }
  1892   
  1893   if( rc==SQLITE_OK ){
  1894     pFile->locktype = locktype;
  1895   }else if( locktype==EXCLUSIVE_LOCK ){
  1896     pFile->locktype = PENDING_LOCK;
  1897   }
  1898   
  1899 afp_end_lock:
  1900   leaveMutex();
  1901   OSTRACE4("LOCK    %d %s %s\n", pFile->h, locktypeName(locktype), 
  1902          rc==SQLITE_OK ? "ok" : "failed");
  1903   return rc;
  1904 }
  1905 
  1906 /*
  1907 ** Lower the locking level on file descriptor pFile to locktype.  locktype
  1908 ** must be either NO_LOCK or SHARED_LOCK.
  1909 **
  1910 ** If the locking level of the file descriptor is already at or below
  1911 ** the requested locking level, this routine is a no-op.
  1912 */
  1913 static int afpUnlock(sqlite3_file *id, int locktype) {
  1914   int rc = SQLITE_OK;
  1915   unixFile *pFile = (unixFile*)id;
  1916   afpLockingContext *context = (afpLockingContext *) pFile->lockingContext;
  1917 
  1918   assert( pFile );
  1919   OSTRACE5("UNLOCK  %d %d was %d pid=%d\n", pFile->h, locktype,
  1920          pFile->locktype, getpid());
  1921 
  1922   assert( locktype<=SHARED_LOCK );
  1923   if( pFile->locktype<=locktype ){
  1924     return SQLITE_OK;
  1925   }
  1926   if( CHECK_THREADID(pFile) ){
  1927     return SQLITE_MISUSE;
  1928   }
  1929   enterMutex();
  1930   int failed = SQLITE_OK;
  1931   if( pFile->locktype>SHARED_LOCK ){
  1932     if( locktype==SHARED_LOCK ){
  1933 
  1934       /* unlock the exclusive range - then re-establish the shared lock */
  1935       if (pFile->locktype==EXCLUSIVE_LOCK) {
  1936         failed = _AFPFSSetLock(context->filePath, pFile, SHARED_FIRST, 
  1937                                  SHARED_SIZE, 0);
  1938         if (!failed) {
  1939           /* successfully removed the exclusive lock */
  1940           if ((failed = _AFPFSSetLock(context->filePath, pFile, SHARED_FIRST+
  1941                             context->sharedLockByte, 1, 1))) {
  1942             /* failed to re-establish our shared lock */
  1943             rc = failed;
  1944           }
  1945         } else {
  1946           rc = failed;
  1947         } 
  1948       }
  1949     }
  1950     if (rc == SQLITE_OK && pFile->locktype>=PENDING_LOCK) {
  1951       if ((failed = _AFPFSSetLock(context->filePath, pFile, 
  1952                                   PENDING_BYTE, 1, 0))){
  1953         /* failed to release the pending lock */
  1954         rc = failed; 
  1955       }
  1956     } 
  1957     if (rc == SQLITE_OK && pFile->locktype>=RESERVED_LOCK) {
  1958       if ((failed = _AFPFSSetLock(context->filePath, pFile, 
  1959                                   RESERVED_BYTE, 1, 0))) {
  1960         /* failed to release the reserved lock */
  1961         rc = failed;  
  1962       }
  1963     } 
  1964   }
  1965   if( locktype==NO_LOCK ){
  1966     int failed = _AFPFSSetLock(context->filePath, pFile, 
  1967                                SHARED_FIRST + context->sharedLockByte, 1, 0);
  1968     if (failed) {
  1969       rc = failed;  
  1970     }
  1971   }
  1972   if (rc == SQLITE_OK)
  1973     pFile->locktype = locktype;
  1974   leaveMutex();
  1975   return rc;
  1976 }
  1977 
  1978 /*
  1979 ** Close a file & cleanup AFP specific locking context 
  1980 */
  1981 static int afpClose(sqlite3_file *id) {
  1982   if( id ){
  1983     unixFile *pFile = (unixFile*)id;
  1984     afpUnlock(id, NO_LOCK);
  1985     sqlite3_free(pFile->lockingContext);
  1986   }
  1987   return closeUnixFile(id);
  1988 }
  1989 
  1990 
  1991 #pragma mark flock() style locking
  1992 
  1993 /*
  1994 ** The flockLockingContext is not used
  1995 */
  1996 typedef void flockLockingContext;
  1997 
  1998 /* flock-style reserved lock checking following the behavior of 
  1999  ** unixCheckReservedLock, see the unixCheckReservedLock function comments */
  2000 static int flockCheckReservedLock(sqlite3_file *id, int *pResOut){
  2001   int rc = SQLITE_OK;
  2002   int reserved = 0;
  2003   unixFile *pFile = (unixFile*)id;
  2004   
  2005   SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; );
  2006   
  2007   assert( pFile );
  2008   
  2009   /* Check if a thread in this process holds such a lock */
  2010   if( pFile->locktype>SHARED_LOCK ){
  2011     reserved = 1;
  2012   }
  2013   
  2014   /* Otherwise see if some other process holds it. */
  2015   if( !reserved ){
  2016     /* attempt to get the lock */
  2017     int lrc = flock(pFile->h, LOCK_EX | LOCK_NB);
  2018     if( !lrc ){
  2019       /* got the lock, unlock it */
  2020       lrc = flock(pFile->h, LOCK_UN);
  2021       if ( lrc ) {
  2022         int tErrno = errno;
  2023         /* unlock failed with an error */
  2024         lrc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_UNLOCK); 
  2025         if( IS_LOCK_ERROR(lrc) ){
  2026           pFile->lastErrno = tErrno;
  2027           rc = lrc;
  2028         }
  2029       }
  2030     } else {
  2031       int tErrno = errno;
  2032       reserved = 1;
  2033       /* someone else might have it reserved */
  2034       lrc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK); 
  2035       if( IS_LOCK_ERROR(lrc) ){
  2036         pFile->lastErrno = tErrno;
  2037         rc = lrc;
  2038       }
  2039     }
  2040   }
  2041   OSTRACE4("TEST WR-LOCK %d %d %d\n", pFile->h, rc, reserved);
  2042 
  2043   *pResOut = reserved;
  2044   return rc;
  2045 }
  2046 
  2047 static int flockLock(sqlite3_file *id, int locktype) {
  2048   int rc = SQLITE_OK;
  2049   unixFile *pFile = (unixFile*)id;
  2050 
  2051   assert( pFile );
  2052 
  2053   /* if we already have a lock, it is exclusive.  
  2054   ** Just adjust level and punt on outta here. */
  2055   if (pFile->locktype > NO_LOCK) {
  2056     pFile->locktype = locktype;
  2057     return SQLITE_OK;
  2058   }
  2059   
  2060   /* grab an exclusive lock */
  2061   
  2062   if (flock(pFile->h, LOCK_EX | LOCK_NB)) {
  2063     int tErrno = errno;
  2064     /* didn't get, must be busy */
  2065     rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
  2066     if( IS_LOCK_ERROR(rc) ){
  2067       pFile->lastErrno = tErrno;
  2068     }
  2069   } else {
  2070     /* got it, set the type and return ok */
  2071     pFile->locktype = locktype;
  2072   }
  2073   OSTRACE4("LOCK    %d %s %s\n", pFile->h, locktypeName(locktype), 
  2074            rc==SQLITE_OK ? "ok" : "failed");
  2075   return rc;
  2076 }
  2077 
  2078 static int flockUnlock(sqlite3_file *id, int locktype) {
  2079   unixFile *pFile = (unixFile*)id;
  2080   
  2081   assert( pFile );
  2082   OSTRACE5("UNLOCK  %d %d was %d pid=%d\n", pFile->h, locktype,
  2083            pFile->locktype, getpid());
  2084   assert( locktype<=SHARED_LOCK );
  2085   
  2086   /* no-op if possible */
  2087   if( pFile->locktype==locktype ){
  2088     return SQLITE_OK;
  2089   }
  2090   
  2091   /* shared can just be set because we always have an exclusive */
  2092   if (locktype==SHARED_LOCK) {
  2093     pFile->locktype = locktype;
  2094     return SQLITE_OK;
  2095   }
  2096   
  2097   /* no, really, unlock. */
  2098   int rc = flock(pFile->h, LOCK_UN);
  2099   if (rc) {
  2100     int r, tErrno = errno;
  2101     r = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_UNLOCK);
  2102     if( IS_LOCK_ERROR(r) ){
  2103       pFile->lastErrno = tErrno;
  2104     }
  2105     return r;
  2106   } else {
  2107     pFile->locktype = NO_LOCK;
  2108     return SQLITE_OK;
  2109   }
  2110 }
  2111 
  2112 /*
  2113 ** Close a file.
  2114 */
  2115 static int flockClose(sqlite3_file *id) {
  2116   if( id ){
  2117     flockUnlock(id, NO_LOCK);
  2118   }
  2119   return closeUnixFile(id);
  2120 }
  2121 
  2122 #pragma mark Old-School .lock file based locking
  2123 
  2124 /* Dotlock-style reserved lock checking following the behavior of 
  2125 ** unixCheckReservedLock, see the unixCheckReservedLock function comments */
  2126 static int dotlockCheckReservedLock(sqlite3_file *id, int *pResOut) {
  2127   int rc = SQLITE_OK;
  2128   int reserved = 0;
  2129   unixFile *pFile = (unixFile*)id;
  2130 
  2131   SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; );
  2132   
  2133   assert( pFile );
  2134 
  2135   /* Check if a thread in this process holds such a lock */
  2136   if( pFile->locktype>SHARED_LOCK ){
  2137     reserved = 1;
  2138   }
  2139   
  2140   /* Otherwise see if some other process holds it. */
  2141   if( !reserved ){
  2142     char *zLockFile = (char *)pFile->lockingContext;
  2143     struct stat statBuf;
  2144     
  2145     if( lstat(zLockFile, &statBuf)==0 ){
  2146       /* file exists, someone else has the lock */
  2147       reserved = 1;
  2148     }else{
  2149       /* file does not exist, we could have it if we want it */
  2150 			int tErrno = errno;
  2151       if( ENOENT != tErrno ){
  2152         rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_CHECKRESERVEDLOCK);
  2153         pFile->lastErrno = tErrno;
  2154       }
  2155     }
  2156   }
  2157   OSTRACE4("TEST WR-LOCK %d %d %d\n", pFile->h, rc, reserved);
  2158 
  2159   *pResOut = reserved;
  2160   return rc;
  2161 }
  2162 
  2163 static int dotlockLock(sqlite3_file *id, int locktype) {
  2164   unixFile *pFile = (unixFile*)id;
  2165   int fd;
  2166   char *zLockFile = (char *)pFile->lockingContext;
  2167   int rc=SQLITE_OK;
  2168 
  2169   /* if we already have a lock, it is exclusive.  
  2170   ** Just adjust level and punt on outta here. */
  2171   if (pFile->locktype > NO_LOCK) {
  2172     pFile->locktype = locktype;
  2173     
  2174     /* Always update the timestamp on the old file */
  2175     utimes(zLockFile, NULL);
  2176     rc = SQLITE_OK;
  2177     goto dotlock_end_lock;
  2178   }
  2179   
  2180   /* check to see if lock file already exists */
  2181   struct stat statBuf;
  2182   if (lstat(zLockFile,&statBuf) == 0){
  2183     rc = SQLITE_BUSY; /* it does, busy */
  2184     goto dotlock_end_lock;
  2185   }
  2186   
  2187   /* grab an exclusive lock */
  2188   fd = open(zLockFile,O_RDONLY|O_CREAT|O_EXCL,0600);
  2189   if( fd<0 ){
  2190     /* failed to open/create the file, someone else may have stolen the lock */
  2191     int tErrno = errno;
  2192     if( EEXIST == tErrno ){
  2193       rc = SQLITE_BUSY;
  2194     } else {
  2195       rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
  2196       if( IS_LOCK_ERROR(rc) ){
  2197 	pFile->lastErrno = tErrno;
  2198       }
  2199     }
  2200     goto dotlock_end_lock;
  2201   } 
  2202   close(fd);
  2203   
  2204   /* got it, set the type and return ok */
  2205   pFile->locktype = locktype;
  2206 
  2207  dotlock_end_lock:
  2208   return rc;
  2209 }
  2210 
  2211 static int dotlockUnlock(sqlite3_file *id, int locktype) {
  2212   unixFile *pFile = (unixFile*)id;
  2213   char *zLockFile = (char *)pFile->lockingContext;
  2214 
  2215   assert( pFile );
  2216   OSTRACE5("UNLOCK  %d %d was %d pid=%d\n", pFile->h, locktype,
  2217 	   pFile->locktype, getpid());
  2218   assert( locktype<=SHARED_LOCK );
  2219   
  2220   /* no-op if possible */
  2221   if( pFile->locktype==locktype ){
  2222     return SQLITE_OK;
  2223   }
  2224   
  2225   /* shared can just be set because we always have an exclusive */
  2226   if (locktype==SHARED_LOCK) {
  2227     pFile->locktype = locktype;
  2228     return SQLITE_OK;
  2229   }
  2230   
  2231   /* no, really, unlock. */
  2232   if (unlink(zLockFile) ) {
  2233     int rc, tErrno = errno;
  2234     if( ENOENT != tErrno ){
  2235       rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_UNLOCK);
  2236     }
  2237     if( IS_LOCK_ERROR(rc) ){
  2238       pFile->lastErrno = tErrno;
  2239     }
  2240     return rc; 
  2241   }
  2242   pFile->locktype = NO_LOCK;
  2243   return SQLITE_OK;
  2244 }
  2245 
  2246 /*
  2247  ** Close a file.
  2248  */
  2249 static int dotlockClose(sqlite3_file *id) {
  2250   if( id ){
  2251     unixFile *pFile = (unixFile*)id;
  2252     dotlockUnlock(id, NO_LOCK);
  2253     sqlite3_free(pFile->lockingContext);
  2254   }
  2255   return closeUnixFile(id);
  2256 }
  2257 
  2258 
  2259 #endif /* SQLITE_ENABLE_LOCKING_STYLE */
  2260 
  2261 /*
  2262 ** The nolockLockingContext is void
  2263 */
  2264 typedef void nolockLockingContext;
  2265 
  2266 static int nolockCheckReservedLock(sqlite3_file *id, int *pResOut) {
  2267   *pResOut = 0;
  2268   return SQLITE_OK;
  2269 }
  2270 
  2271 static int nolockLock(sqlite3_file *id, int locktype) {
  2272   return SQLITE_OK;
  2273 }
  2274 
  2275 static int nolockUnlock(sqlite3_file *id, int locktype) {
  2276   return SQLITE_OK;
  2277 }
  2278 
  2279 /*
  2280 ** Close a file.
  2281 */
  2282 static int nolockClose(sqlite3_file *id) {
  2283   return closeUnixFile(id);
  2284 }
  2285 
  2286 
  2287 /*
  2288 ** Information and control of an open file handle.
  2289 */
  2290 static int unixFileControl(sqlite3_file *id, int op, void *pArg){
  2291   switch( op ){
  2292     case SQLITE_FCNTL_LOCKSTATE: {
  2293       *(int*)pArg = ((unixFile*)id)->locktype;
  2294       return SQLITE_OK;
  2295     }
  2296   }
  2297   return SQLITE_ERROR;
  2298 }
  2299 
  2300 /*
  2301 ** Return the sector size in bytes of the underlying block device for
  2302 ** the specified file. This is almost always 512 bytes, but may be
  2303 ** larger for some devices.
  2304 **
  2305 ** SQLite code assumes this function cannot fail. It also assumes that
  2306 ** if two files are created in the same file-system directory (i.e.
  2307 ** a database and its journal file) that the sector size will be the
  2308 ** same for both.
  2309 */
  2310 static int unixSectorSize(sqlite3_file *id){
  2311   return SQLITE_DEFAULT_SECTOR_SIZE;
  2312 }
  2313 
  2314 /*
  2315 ** Return the device characteristics for the file. This is always 0.
  2316 */
  2317 static int unixDeviceCharacteristics(sqlite3_file *id){
  2318   return 0;
  2319 }
  2320 
  2321 /*
  2322 ** Initialize the contents of the unixFile structure pointed to by pId.
  2323 **
  2324 ** When locking extensions are enabled, the filepath and locking style 
  2325 ** are needed to determine the unixFile pMethod to use for locking operations.
  2326 ** The locking-style specific lockingContext data structure is created 
  2327 ** and assigned here also.
  2328 */
  2329 static int fillInUnixFile(
  2330   sqlite3_vfs *pVfs,      /* Pointer to vfs object */
  2331   int h,                  /* Open file descriptor of file being opened */
  2332   int dirfd,              /* Directory file descriptor */
  2333   sqlite3_file *pId,      /* Write to the unixFile structure here */
  2334   const char *zFilename,  /* Name of the file being opened */
  2335   int noLock              /* Omit locking if true */
  2336 ){
  2337   int eLockingStyle;
  2338   unixFile *pNew = (unixFile *)pId;
  2339   int rc = SQLITE_OK;
  2340 
  2341   /* Macro to define the static contents of an sqlite3_io_methods 
  2342   ** structure for a unix backend file. Different locking methods
  2343   ** require different functions for the xClose, xLock, xUnlock and
  2344   ** xCheckReservedLock methods.
  2345   */
  2346   #define IOMETHODS(xClose, xLock, xUnlock, xCheckReservedLock) {    \
  2347     1,                          /* iVersion */                           \
  2348     xClose,                     /* xClose */                             \
  2349     unixRead,                   /* xRead */                              \
  2350     unixWrite,                  /* xWrite */                             \
  2351     unixTruncate,               /* xTruncate */                          \
  2352     unixSync,                   /* xSync */                              \
  2353     unixFileSize,               /* xFileSize */                          \
  2354     xLock,                      /* xLock */                              \
  2355     xUnlock,                    /* xUnlock */                            \
  2356     xCheckReservedLock,         /* xCheckReservedLock */                 \
  2357     unixFileControl,            /* xFileControl */                       \
  2358     unixSectorSize,             /* xSectorSize */                        \
  2359     unixDeviceCharacteristics   /* xDeviceCapabilities */                \
  2360   }
  2361   static sqlite3_io_methods aIoMethod[] = {
  2362     IOMETHODS(unixClose, unixLock, unixUnlock, unixCheckReservedLock) 
  2363    ,IOMETHODS(nolockClose, nolockLock, nolockUnlock, nolockCheckReservedLock)
  2364 #if SQLITE_ENABLE_LOCKING_STYLE
  2365    ,IOMETHODS(dotlockClose, dotlockLock, dotlockUnlock,dotlockCheckReservedLock)
  2366    ,IOMETHODS(flockClose, flockLock, flockUnlock, flockCheckReservedLock)
  2367    ,IOMETHODS(afpClose, afpLock, afpUnlock, afpCheckReservedLock)
  2368 #endif
  2369   };
  2370   /* The order of the IOMETHODS macros above is important.  It must be the
  2371   ** same order as the LOCKING_STYLE numbers
  2372   */
  2373   assert(LOCKING_STYLE_POSIX==1);
  2374   assert(LOCKING_STYLE_NONE==2);
  2375   assert(LOCKING_STYLE_DOTFILE==3);
  2376   assert(LOCKING_STYLE_FLOCK==4);
  2377   assert(LOCKING_STYLE_AFP==5);
  2378 
  2379   assert( pNew->pLock==NULL );
  2380   assert( pNew->pOpen==NULL );
  2381 
  2382   OSTRACE3("OPEN    %-3d %s\n", h, zFilename);    
  2383   pNew->h = h;
  2384   pNew->dirfd = dirfd;
  2385   SET_THREADID(pNew);
  2386 
  2387   if( noLock ){
  2388     eLockingStyle = LOCKING_STYLE_NONE;
  2389   }else{
  2390     eLockingStyle = detectLockingStyle(pVfs, zFilename, h);
  2391   }
  2392 
  2393   switch( eLockingStyle ){
  2394 
  2395     case LOCKING_STYLE_POSIX: {
  2396       enterMutex();
  2397       rc = findLockInfo(h, &pNew->pLock, &pNew->pOpen);
  2398       leaveMutex();
  2399       break;
  2400     }
  2401 
  2402 #if SQLITE_ENABLE_LOCKING_STYLE
  2403     case LOCKING_STYLE_AFP: {
  2404       /* AFP locking uses the file path so it needs to be included in
  2405       ** the afpLockingContext.
  2406       */
  2407       afpLockingContext *pCtx;
  2408       pNew->lockingContext = pCtx = sqlite3_malloc( sizeof(*pCtx) );
  2409       if( pCtx==0 ){
  2410         rc = SQLITE_NOMEM;
  2411       }else{
  2412         /* NB: zFilename exists and remains valid until the file is closed
  2413         ** according to requirement F11141.  So we do not need to make a
  2414         ** copy of the filename. */
  2415         pCtx->filePath = zFilename;
  2416         srandomdev();
  2417       }
  2418       break;
  2419     }
  2420 
  2421     case LOCKING_STYLE_DOTFILE: {
  2422       /* Dotfile locking uses the file path so it needs to be included in
  2423       ** the dotlockLockingContext 
  2424       */
  2425       char *zLockFile;
  2426       int nFilename;
  2427       nFilename = strlen(zFilename) + 6;
  2428       zLockFile = (char *)sqlite3_malloc(nFilename);
  2429       if( zLockFile==0 ){
  2430         rc = SQLITE_NOMEM;
  2431       }else{
  2432         sqlite3_snprintf(nFilename, zLockFile, "%s.lock", zFilename);
  2433       }
  2434       pNew->lockingContext = zLockFile;
  2435       break;
  2436     }
  2437 
  2438     case LOCKING_STYLE_FLOCK: 
  2439     case LOCKING_STYLE_NONE: 
  2440       break;
  2441 #endif
  2442   }
  2443   
  2444   pNew->lastErrno = 0;
  2445   if( rc!=SQLITE_OK ){
  2446     if( dirfd>=0 ) close(dirfd);
  2447     close(h);
  2448   }else{
  2449     pNew->pMethod = &aIoMethod[eLockingStyle-1];
  2450     OpenCounter(+1);
  2451   }
  2452   return rc;
  2453 }
  2454 
  2455 /*
  2456 ** Open a file descriptor to the directory containing file zFilename.
  2457 ** If successful, *pFd is set to the opened file descriptor and
  2458 ** SQLITE_OK is returned. If an error occurs, either SQLITE_NOMEM
  2459 ** or SQLITE_CANTOPEN is returned and *pFd is set to an undefined
  2460 ** value.
  2461 **
  2462 ** If SQLITE_OK is returned, the caller is responsible for closing
  2463 ** the file descriptor *pFd using close().
  2464 */
  2465 static int openDirectory(const char *zFilename, int *pFd){
  2466   int ii;
  2467   int fd = -1;
  2468   char zDirname[MAX_PATHNAME+1];
  2469 
  2470   sqlite3_snprintf(MAX_PATHNAME, zDirname, "%s", zFilename);
  2471   for(ii=strlen(zDirname); ii>=0 && zDirname[ii]!='/'; ii--);
  2472   if( ii>0 ){
  2473     zDirname[ii] = '\0';
  2474     fd = open(zDirname, O_RDONLY|O_BINARY, 0);
  2475     if( fd>=0 ){
  2476 #ifdef FD_CLOEXEC
  2477       fcntl(fd, F_SETFD, fcntl(fd, F_GETFD, 0) | FD_CLOEXEC);
  2478 #endif
  2479       OSTRACE3("OPENDIR %-3d %s\n", fd, zDirname);
  2480     }
  2481   }
  2482   *pFd = fd;
  2483   return (fd>=0?SQLITE_OK:SQLITE_CANTOPEN);
  2484 }
  2485 
  2486 /*
  2487 ** Create a temporary file name in zBuf.  zBuf must be allocated
  2488 ** by the calling process and must be big enough to hold at least
  2489 ** pVfs->mxPathname bytes.
  2490 */
  2491 static int getTempname(int nBuf, char *zBuf){
  2492   static const char *azDirs[] = {
  2493      0,
  2494      "/var/tmp",
  2495      "/usr/tmp",
  2496      "/tmp",
  2497      ".",
  2498   };
  2499   static const unsigned char zChars[] =
  2500     "abcdefghijklmnopqrstuvwxyz"
  2501     "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
  2502     "0123456789";
  2503   int i, j;
  2504   struct stat buf;
  2505   const char *zDir = ".";
  2506 
  2507   /* It's odd to simulate an io-error here, but really this is just
  2508   ** using the io-error infrastructure to test that SQLite handles this
  2509   ** function failing. 
  2510   */
  2511   SimulateIOError( return SQLITE_IOERR );
  2512 
  2513   azDirs[0] = sqlite3_temp_directory;
  2514   for(i=0; i<sizeof(azDirs)/sizeof(azDirs[0]); i++){
  2515     if( azDirs[i]==0 ) continue;
  2516     if( stat(azDirs[i], &buf) ) continue;
  2517     if( !S_ISDIR(buf.st_mode) ) continue;
  2518     if( access(azDirs[i], 07) ) continue;
  2519     zDir = azDirs[i];
  2520     break;
  2521   }
  2522 
  2523   /* Check that the output buffer is large enough for the temporary file 
  2524   ** name. If it is not, return SQLITE_ERROR.
  2525   */
  2526   if( (strlen(zDir) + strlen(SQLITE_TEMP_FILE_PREFIX) + 17) >= nBuf ){
  2527     return SQLITE_ERROR;
  2528   }
  2529 
  2530   do{
  2531     sqlite3_snprintf(nBuf-17, zBuf, "%s/"SQLITE_TEMP_FILE_PREFIX, zDir);
  2532     j = strlen(zBuf);
  2533     sqlite3_randomness(15, &zBuf[j]);
  2534     for(i=0; i<15; i++, j++){
  2535       zBuf[j] = (char)zChars[ ((unsigned char)zBuf[j])%(sizeof(zChars)-1) ];
  2536     }
  2537     zBuf[j] = 0;
  2538   }while( access(zBuf,0)==0 );
  2539   return SQLITE_OK;
  2540 }
  2541 
  2542 
  2543 /*
  2544 ** Open the file zPath.
  2545 ** 
  2546 ** Previously, the SQLite OS layer used three functions in place of this
  2547 ** one:
  2548 **
  2549 **     sqlite3OsOpenReadWrite();
  2550 **     sqlite3OsOpenReadOnly();
  2551 **     sqlite3OsOpenExclusive();
  2552 **
  2553 ** These calls correspond to the following combinations of flags:
  2554 **
  2555 **     ReadWrite() ->     (READWRITE | CREATE)
  2556 **     ReadOnly()  ->     (READONLY) 
  2557 **     OpenExclusive() -> (READWRITE | CREATE | EXCLUSIVE)
  2558 **
  2559 ** The old OpenExclusive() accepted a boolean argument - "delFlag". If
  2560 ** true, the file was configured to be automatically deleted when the
  2561 ** file handle closed. To achieve the same effect using this new 
  2562 ** interface, add the DELETEONCLOSE flag to those specified above for 
  2563 ** OpenExclusive().
  2564 */
  2565 static int unixOpen(
  2566   sqlite3_vfs *pVfs, 
  2567   const char *zPath, 
  2568   sqlite3_file *pFile,
  2569   int flags,
  2570   int *pOutFlags
  2571 ){
  2572   int fd = 0;                    /* File descriptor returned by open() */
  2573   int dirfd = -1;                /* Directory file descriptor */
  2574   int oflags = 0;                /* Flags to pass to open() */
  2575   int eType = flags&0xFFFFFF00;  /* Type of file to open */
  2576   int noLock;                    /* True to omit locking primitives */
  2577 
  2578   int isExclusive  = (flags & SQLITE_OPEN_EXCLUSIVE);
  2579   int isDelete     = (flags & SQLITE_OPEN_DELETEONCLOSE);
  2580   int isCreate     = (flags & SQLITE_OPEN_CREATE);
  2581   int isReadonly   = (flags & SQLITE_OPEN_READONLY);
  2582   int isReadWrite  = (flags & SQLITE_OPEN_READWRITE);
  2583 
  2584   /* If creating a master or main-file journal, this function will open
  2585   ** a file-descriptor on the directory too. The first time unixSync()
  2586   ** is called the directory file descriptor will be fsync()ed and close()d.
  2587   */
  2588   int isOpenDirectory = (isCreate && 
  2589       (eType==SQLITE_OPEN_MASTER_JOURNAL || eType==SQLITE_OPEN_MAIN_JOURNAL)
  2590   );
  2591 
  2592   /* If argument zPath is a NULL pointer, this function is required to open
  2593   ** a temporary file. Use this buffer to store the file name in.
  2594   */
  2595   char zTmpname[MAX_PATHNAME+1];
  2596   const char *zName = zPath;
  2597 
  2598   /* Check the following statements are true: 
  2599   **
  2600   **   (a) Exactly one of the READWRITE and READONLY flags must be set, and 
  2601   **   (b) if CREATE is set, then READWRITE must also be set, and
  2602   **   (c) if EXCLUSIVE is set, then CREATE must also be set.
  2603   **   (d) if DELETEONCLOSE is set, then CREATE must also be set.
  2604   */
  2605   assert((isReadonly==0 || isReadWrite==0) && (isReadWrite || isReadonly));
  2606   assert(isCreate==0 || isReadWrite);
  2607   assert(isExclusive==0 || isCreate);
  2608   assert(isDelete==0 || isCreate);
  2609 
  2610   /* The main DB, main journal, and master journal are never automatically
  2611   ** deleted
  2612   */
  2613   assert( eType!=SQLITE_OPEN_MAIN_DB || !isDelete );
  2614   assert( eType!=SQLITE_OPEN_MAIN_JOURNAL || !isDelete );
  2615   assert( eType!=SQLITE_OPEN_MASTER_JOURNAL || !isDelete );
  2616 
  2617   /* Assert that the upper layer has set one of the "file-type" flags. */
  2618   assert( eType==SQLITE_OPEN_MAIN_DB      || eType==SQLITE_OPEN_TEMP_DB 
  2619        || eType==SQLITE_OPEN_MAIN_JOURNAL || eType==SQLITE_OPEN_TEMP_JOURNAL 
  2620        || eType==SQLITE_OPEN_SUBJOURNAL   || eType==SQLITE_OPEN_MASTER_JOURNAL 
  2621        || eType==SQLITE_OPEN_TRANSIENT_DB
  2622   );
  2623 
  2624   memset(pFile, 0, sizeof(unixFile));
  2625 
  2626   if( !zName ){
  2627     int rc;
  2628     assert(isDelete && !isOpenDirectory);
  2629     rc = getTempname(MAX_PATHNAME+1, zTmpname);
  2630     if( rc!=SQLITE_OK ){
  2631       return rc;
  2632     }
  2633     zName = zTmpname;
  2634   }
  2635 
  2636   if( isReadonly )  oflags |= O_RDONLY;
  2637   if( isReadWrite ) oflags |= O_RDWR;
  2638   if( isCreate )    oflags |= O_CREAT;
  2639   if( isExclusive ) oflags |= (O_EXCL|O_NOFOLLOW);
  2640   oflags |= (O_LARGEFILE|O_BINARY);
  2641 
  2642   fd = open(zName, oflags, isDelete?0600:SQLITE_DEFAULT_FILE_PERMISSIONS);
  2643   if( fd<0 && errno!=EISDIR && isReadWrite && !isExclusive ){
  2644     /* Failed to open the file for read/write access. Try read-only. */
  2645     flags &= ~(SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE);
  2646     flags |= SQLITE_OPEN_READONLY;
  2647     return unixOpen(pVfs, zPath, pFile, flags, pOutFlags);
  2648   }
  2649   if( fd<0 ){
  2650     return SQLITE_CANTOPEN;
  2651   }
  2652   if( isDelete ){
  2653     unlink(zName);
  2654   }
  2655   if( pOutFlags ){
  2656     *pOutFlags = flags;
  2657   }
  2658 
  2659   assert(fd!=0);
  2660   if( isOpenDirectory ){
  2661     int rc = openDirectory(zPath, &dirfd);
  2662     if( rc!=SQLITE_OK ){
  2663       close(fd);
  2664       return rc;
  2665     }
  2666   }
  2667 
  2668 #ifdef FD_CLOEXEC
  2669   fcntl(fd, F_SETFD, fcntl(fd, F_GETFD, 0) | FD_CLOEXEC);
  2670 #endif
  2671 
  2672   noLock = eType!=SQLITE_OPEN_MAIN_DB;
  2673   return fillInUnixFile(pVfs, fd, dirfd, pFile, zPath, noLock);
  2674 }
  2675 
  2676 /*
  2677 ** Delete the file at zPath. If the dirSync argument is true, fsync()
  2678 ** the directory after deleting the file.
  2679 */
  2680 static int unixDelete(sqlite3_vfs *pVfs, const char *zPath, int dirSync){
  2681   int rc = SQLITE_OK;
  2682   SimulateIOError(return SQLITE_IOERR_DELETE);
  2683   unlink(zPath);
  2684   if( dirSync ){
  2685     int fd;
  2686     rc = openDirectory(zPath, &fd);
  2687     if( rc==SQLITE_OK ){
  2688       if( fsync(fd) ){
  2689         rc = SQLITE_IOERR_DIR_FSYNC;
  2690       }
  2691       close(fd);
  2692     }
  2693   }
  2694   return rc;
  2695 }
  2696 
  2697 /*
  2698 ** Test the existance of or access permissions of file zPath. The
  2699 ** test performed depends on the value of flags:
  2700 **
  2701 **     SQLITE_ACCESS_EXISTS: Return 1 if the file exists
  2702 **     SQLITE_ACCESS_READWRITE: Return 1 if the file is read and writable.
  2703 **     SQLITE_ACCESS_READONLY: Return 1 if the file is readable.
  2704 **
  2705 ** Otherwise return 0.
  2706 */
  2707 static int unixAccess(
  2708   sqlite3_vfs *pVfs, 
  2709   const char *zPath, 
  2710   int flags, 
  2711   int *pResOut
  2712 ){
  2713   int amode = 0;
  2714   SimulateIOError( return SQLITE_IOERR_ACCESS; );
  2715   switch( flags ){
  2716     case SQLITE_ACCESS_EXISTS:
  2717       amode = F_OK;
  2718       break;
  2719     case SQLITE_ACCESS_READWRITE:
  2720       amode = W_OK|R_OK;
  2721       break;
  2722     case SQLITE_ACCESS_READ:
  2723       amode = R_OK;
  2724       break;
  2725 
  2726     default:
  2727       assert(!"Invalid flags argument");
  2728   }
  2729   *pResOut = (access(zPath, amode)==0);
  2730   return SQLITE_OK;
  2731 }
  2732 
  2733 
  2734 /*
  2735 ** Turn a relative pathname into a full pathname. The relative path
  2736 ** is stored as a nul-terminated string in the buffer pointed to by
  2737 ** zPath. 
  2738 **
  2739 ** zOut points to a buffer of at least sqlite3_vfs.mxPathname bytes 
  2740 ** (in this case, MAX_PATHNAME bytes). The full-path is written to
  2741 ** this buffer before returning.
  2742 */
  2743 static int unixFullPathname(
  2744   sqlite3_vfs *pVfs,            /* Pointer to vfs object */
  2745   const char *zPath,            /* Possibly relative input path */
  2746   int nOut,                     /* Size of output buffer in bytes */
  2747   char *zOut                    /* Output buffer */
  2748 ){
  2749 
  2750   /* It's odd to simulate an io-error here, but really this is just
  2751   ** using the io-error infrastructure to test that SQLite handles this
  2752   ** function failing. This function could fail if, for example, the
  2753   ** current working directly has been unlinked.
  2754   */
  2755   SimulateIOError( return SQLITE_ERROR );
  2756 
  2757   assert( pVfs->mxPathname==MAX_PATHNAME );
  2758   zOut[nOut-1] = '\0';
  2759   if( zPath[0]=='/' ){
  2760     sqlite3_snprintf(nOut, zOut, "%s", zPath);
  2761   }else{
  2762     int nCwd;
  2763     if( getcwd(zOut, nOut-1)==0 ){
  2764       return SQLITE_CANTOPEN;
  2765     }
  2766     nCwd = strlen(zOut);
  2767     sqlite3_snprintf(nOut-nCwd, &zOut[nCwd], "/%s", zPath);
  2768   }
  2769   return SQLITE_OK;
  2770 
  2771 #if 0
  2772   /*
  2773   ** Remove "/./" path elements and convert "/A/./" path elements
  2774   ** to just "/".
  2775   */
  2776   if( zFull ){
  2777     int i, j;
  2778     for(i=j=0; zFull[i]; i++){
  2779       if( zFull[i]=='/' ){
  2780         if( zFull[i+1]=='/' ) continue;
  2781         if( zFull[i+1]=='.' && zFull[i+2]=='/' ){
  2782           i += 1;
  2783           continue;
  2784         }
  2785         if( zFull[i+1]=='.' && zFull[i+2]=='.' && zFull[i+3]=='/' ){
  2786           while( j>0 && zFull[j-1]!='/' ){ j--; }
  2787           i += 3;
  2788           continue;
  2789         }
  2790       }
  2791       zFull[j++] = zFull[i];
  2792     }
  2793     zFull[j] = 0;
  2794   }
  2795 #endif
  2796 }
  2797 
  2798 
  2799 #ifndef SQLITE_OMIT_LOAD_EXTENSION
  2800 /*
  2801 ** Interfaces for opening a shared library, finding entry points
  2802 ** within the shared library, and closing the shared library.
  2803 */
  2804 #include <dlfcn.h>
  2805 static void *unixDlOpen(sqlite3_vfs *pVfs, const char *zFilename){
  2806   return dlopen(zFilename, RTLD_NOW | RTLD_GLOBAL);
  2807 }
  2808 
  2809 /*
  2810 ** SQLite calls this function immediately after a call to unixDlSym() or
  2811 ** unixDlOpen() fails (returns a null pointer). If a more detailed error
  2812 ** message is available, it is written to zBufOut. If no error message
  2813 ** is available, zBufOut is left unmodified and SQLite uses a default
  2814 ** error message.
  2815 */
  2816 static void unixDlError(sqlite3_vfs *pVfs, int nBuf, char *zBufOut){
  2817   char *zErr;
  2818   enterMutex();
  2819   zErr = dlerror();
  2820   if( zErr ){
  2821     sqlite3_snprintf(nBuf, zBufOut, "%s", zErr);
  2822   }
  2823   leaveMutex();
  2824 }
  2825 static void *unixDlSym(sqlite3_vfs *pVfs, void *pHandle, const char *zSymbol){
  2826   return dlsym(pHandle, zSymbol);
  2827 }
  2828 static void unixDlClose(sqlite3_vfs *pVfs, void *pHandle){
  2829   dlclose(pHandle);
  2830 }
  2831 #else /* if SQLITE_OMIT_LOAD_EXTENSION is defined: */
  2832   #define unixDlOpen  0
  2833   #define unixDlError 0
  2834   #define unixDlSym   0
  2835   #define unixDlClose 0
  2836 #endif
  2837 
  2838 /*
  2839 ** Write nBuf bytes of random data to the supplied buffer zBuf.
  2840 */
  2841 static int unixRandomness(sqlite3_vfs *pVfs, int nBuf, char *zBuf){
  2842 
  2843   assert(nBuf>=(sizeof(time_t)+sizeof(int)));
  2844 
  2845   /* We have to initialize zBuf to prevent valgrind from reporting
  2846   ** errors.  The reports issued by valgrind are incorrect - we would
  2847   ** prefer that the randomness be increased by making use of the
  2848   ** uninitialized space in zBuf - but valgrind errors tend to worry
  2849   ** some users.  Rather than argue, it seems easier just to initialize
  2850   ** the whole array and silence valgrind, even if that means less randomness
  2851   ** in the random seed.
  2852   **
  2853   ** When testing, initializing zBuf[] to zero is all we do.  That means
  2854   ** that we always use the same random number sequence.  This makes the
  2855   ** tests repeatable.
  2856   */
  2857   memset(zBuf, 0, nBuf);
  2858 #if !defined(SQLITE_TEST)
  2859   {
  2860     int pid, fd;
  2861     fd = open("/dev/urandom", O_RDONLY);
  2862     if( fd<0 ){
  2863       time_t t;
  2864       time(&t);
  2865       memcpy(zBuf, &t, sizeof(t));
  2866       pid = getpid();
  2867       memcpy(&zBuf[sizeof(t)], &pid, sizeof(pid));
  2868     }else{
  2869       read(fd, zBuf, nBuf);
  2870       close(fd);
  2871     }
  2872   }
  2873 #endif
  2874   return SQLITE_OK;
  2875 }
  2876 
  2877 
  2878 /*
  2879 ** Sleep for a little while.  Return the amount of time slept.
  2880 ** The argument is the number of microseconds we want to sleep.
  2881 ** The return value is the number of microseconds of sleep actually
  2882 ** requested from the underlying operating system, a number which
  2883 ** might be greater than or equal to the argument, but not less
  2884 ** than the argument.
  2885 */
  2886 static int unixSleep(sqlite3_vfs *pVfs, int microseconds){
  2887 #if defined(HAVE_USLEEP) && HAVE_USLEEP
  2888   usleep(microseconds);
  2889   return microseconds;
  2890 #else
  2891   int seconds = (microseconds+999999)/1000000;
  2892   sleep(seconds);
  2893   return seconds*1000000;
  2894 #endif
  2895 }
  2896 
  2897 /*
  2898 ** The following variable, if set to a non-zero value, becomes the result
  2899 ** returned from sqlite3OsCurrentTime().  This is used for testing.
  2900 */
  2901 #ifdef SQLITE_TEST
  2902 int sqlite3_current_time = 0;
  2903 #endif
  2904 
  2905 /*
  2906 ** Find the current time (in Universal Coordinated Time).  Write the
  2907 ** current time and date as a Julian Day number into *prNow and
  2908 ** return 0.  Return 1 if the time and date cannot be found.
  2909 */
  2910 static int unixCurrentTime(sqlite3_vfs *pVfs, double *prNow){
  2911 #ifdef NO_GETTOD
  2912   time_t t;
  2913   time(&t);
  2914   *prNow = t/86400.0 + 2440587.5;
  2915 #else
  2916   struct timeval sNow;
  2917   gettimeofday(&sNow, 0);
  2918   *prNow = 2440587.5 + sNow.tv_sec/86400.0 + sNow.tv_usec/86400000000.0;
  2919 #endif
  2920 #ifdef SQLITE_TEST
  2921   if( sqlite3_current_time ){
  2922     *prNow = sqlite3_current_time/86400.0 + 2440587.5;
  2923   }
  2924 #endif
  2925   return 0;
  2926 }
  2927 
  2928 static int unixGetLastError(sqlite3_vfs *pVfs, int nBuf, char *zBuf){
  2929   return 0;
  2930 }
  2931 
  2932 /*
  2933 ** Initialize the operating system interface.
  2934 */
  2935 int sqlite3_os_init(void){ 
  2936   /* Macro to define the static contents of an sqlite3_vfs structure for
  2937   ** the unix backend. The two parameters are the values to use for
  2938   ** the sqlite3_vfs.zName and sqlite3_vfs.pAppData fields, respectively.
  2939   ** 
  2940   */
  2941   #define UNIXVFS(zVfsName, pVfsAppData) {                  \
  2942     1,                    /* iVersion */                    \
  2943     sizeof(unixFile),     /* szOsFile */                    \
  2944     MAX_PATHNAME,         /* mxPathname */                  \
  2945     0,                    /* pNext */                       \
  2946     zVfsName,             /* zName */                       \
  2947     (void *)pVfsAppData,  /* pAppData */                    \
  2948     unixOpen,             /* xOpen */                       \
  2949     unixDelete,           /* xDelete */                     \
  2950     unixAccess,           /* xAccess */                     \
  2951     unixFullPathname,     /* xFullPathname */               \
  2952     unixDlOpen,           /* xDlOpen */                     \
  2953     unixDlError,          /* xDlError */                    \
  2954     unixDlSym,            /* xDlSym */                      \
  2955     unixDlClose,          /* xDlClose */                    \
  2956     unixRandomness,       /* xRandomness */                 \
  2957     unixSleep,            /* xSleep */                      \
  2958     unixCurrentTime,      /* xCurrentTime */                \
  2959     unixGetLastError      /* xGetLastError */               \
  2960   }
  2961 
  2962   static sqlite3_vfs unixVfs = UNIXVFS("unix", 0);
  2963 #if SQLITE_ENABLE_LOCKING_STYLE
  2964   int i;
  2965   static sqlite3_vfs aVfs[] = {
  2966     UNIXVFS("unix-posix",   LOCKING_STYLE_POSIX), 
  2967     UNIXVFS("unix-afp",     LOCKING_STYLE_AFP), 
  2968     UNIXVFS("unix-flock",   LOCKING_STYLE_FLOCK), 
  2969     UNIXVFS("unix-dotfile", LOCKING_STYLE_DOTFILE), 
  2970     UNIXVFS("unix-none",    LOCKING_STYLE_NONE)
  2971   };
  2972   for(i=0; i<(sizeof(aVfs)/sizeof(sqlite3_vfs)); i++){
  2973     sqlite3_vfs_register(&aVfs[i], 0);
  2974   }
  2975 #endif
  2976   sqlite3_vfs_register(&unixVfs, 1);
  2977   return SQLITE_OK; 
  2978 }
  2979 
  2980 /*
  2981 ** Shutdown the operating system interface. This is a no-op for unix.
  2982 */
  2983 int sqlite3_os_end(void){ 
  2984   return SQLITE_OK; 
  2985 }
  2986  
  2987 #endif /* SQLITE_OS_UNIX */