Update contrib.
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** Implementation of the full-text-search tokenizer that implements
17 ** The code in this file is only compiled if:
19 ** * The FTS2 module is being built as an extension
20 ** (in which case SQLITE_CORE is not defined), or
22 ** * The FTS2 module is being built into the core of
23 ** SQLite (in which case SQLITE_ENABLE_FTS2 is defined).
25 #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS2)
34 #include "fts2_tokenizer.h"
37 ** Class derived from sqlite3_tokenizer
39 typedef struct porter_tokenizer {
40 sqlite3_tokenizer base; /* Base class */
44 ** Class derived from sqlit3_tokenizer_cursor
46 typedef struct porter_tokenizer_cursor {
47 sqlite3_tokenizer_cursor base;
48 const char *zInput; /* input we are tokenizing */
49 int nInput; /* size of the input */
50 int iOffset; /* current position in zInput */
51 int iToken; /* index of next token to be returned */
52 char *zToken; /* storage for current token */
53 int nAllocated; /* space allocated to zToken buffer */
54 } porter_tokenizer_cursor;
57 /* Forward declaration */
58 static const sqlite3_tokenizer_module porterTokenizerModule;
62 ** Create a new tokenizer instance.
64 static int porterCreate(
65 int argc, const char * const *argv,
66 sqlite3_tokenizer **ppTokenizer
69 t = (porter_tokenizer *) sqlite3_malloc(sizeof(*t));
70 if( t==NULL ) return SQLITE_NOMEM;
71 memset(t, 0, sizeof(*t));
72 *ppTokenizer = &t->base;
77 ** Destroy a tokenizer
79 static int porterDestroy(sqlite3_tokenizer *pTokenizer){
80 sqlite3_free(pTokenizer);
85 ** Prepare to begin tokenizing a particular string. The input
86 ** string to be tokenized is zInput[0..nInput-1]. A cursor
87 ** used to incrementally tokenize this string is returned in
90 static int porterOpen(
91 sqlite3_tokenizer *pTokenizer, /* The tokenizer */
92 const char *zInput, int nInput, /* String to be tokenized */
93 sqlite3_tokenizer_cursor **ppCursor /* OUT: Tokenization cursor */
95 porter_tokenizer_cursor *c;
97 c = (porter_tokenizer_cursor *) sqlite3_malloc(sizeof(*c));
98 if( c==NULL ) return SQLITE_NOMEM;
103 }else if( nInput<0 ){
104 c->nInput = (int)strlen(zInput);
108 c->iOffset = 0; /* start tokenizing at the beginning */
110 c->zToken = NULL; /* no space allocated, yet. */
113 *ppCursor = &c->base;
118 ** Close a tokenization cursor previously opened by a call to
119 ** porterOpen() above.
121 static int porterClose(sqlite3_tokenizer_cursor *pCursor){
122 porter_tokenizer_cursor *c = (porter_tokenizer_cursor *) pCursor;
123 sqlite3_free(c->zToken);
128 ** Vowel or consonant
130 static const char cType[] = {
131 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0,
136 ** isConsonant() and isVowel() determine if their first character in
137 ** the string they point to is a consonant or a vowel, according
140 ** A consonate is any letter other than 'a', 'e', 'i', 'o', or 'u'.
141 ** 'Y' is a consonant unless it follows another consonant,
142 ** in which case it is a vowel.
144 ** In these routine, the letters are in reverse order. So the 'y' rule
145 ** is that 'y' is a consonant unless it is followed by another
148 static int isVowel(const char*);
149 static int isConsonant(const char *z){
153 assert( x>='a' && x<='z' );
156 return z[1]==0 || isVowel(z + 1);
158 static int isVowel(const char *z){
162 assert( x>='a' && x<='z' );
164 if( j<2 ) return 1-j;
165 return isConsonant(z + 1);
169 ** Let any sequence of one or more vowels be represented by V and let
170 ** C be sequence of one or more consonants. Then every word can be
175 ** In prose: A word is an optional consonant followed by zero or
176 ** vowel-consonant pairs followed by an optional vowel. "m" is the
177 ** number of vowel consonant pairs. This routine computes the value
178 ** of m for the first i bytes of a word.
180 ** Return true if the m-value for z is 1 or more. In other words,
181 ** return true if z contains at least one vowel that is followed
184 ** In this routine z[] is in reverse order. So we are really looking
185 ** for an instance of of a consonant followed by a vowel.
187 static int m_gt_0(const char *z){
188 while( isVowel(z) ){ z++; }
189 if( *z==0 ) return 0;
190 while( isConsonant(z) ){ z++; }
194 /* Like mgt0 above except we are looking for a value of m which is
197 static int m_eq_1(const char *z){
198 while( isVowel(z) ){ z++; }
199 if( *z==0 ) return 0;
200 while( isConsonant(z) ){ z++; }
201 if( *z==0 ) return 0;
202 while( isVowel(z) ){ z++; }
203 if( *z==0 ) return 1;
204 while( isConsonant(z) ){ z++; }
208 /* Like mgt0 above except we are looking for a value of m>1 instead
211 static int m_gt_1(const char *z){
212 while( isVowel(z) ){ z++; }
213 if( *z==0 ) return 0;
214 while( isConsonant(z) ){ z++; }
215 if( *z==0 ) return 0;
216 while( isVowel(z) ){ z++; }
217 if( *z==0 ) return 0;
218 while( isConsonant(z) ){ z++; }
223 ** Return TRUE if there is a vowel anywhere within z[0..n-1]
225 static int hasVowel(const char *z){
226 while( isConsonant(z) ){ z++; }
231 ** Return TRUE if the word ends in a double consonant.
233 ** The text is reversed here. So we are really looking at
234 ** the first two characters of z[].
236 static int doubleConsonant(const char *z){
237 return isConsonant(z) && z[0]==z[1] && isConsonant(z+1);
241 ** Return TRUE if the word ends with three letters which
242 ** are consonant-vowel-consonent and where the final consonant
243 ** is not 'w', 'x', or 'y'.
245 ** The word is reversed here. So we are really checking the
246 ** first three letters and the first one cannot be in [wxy].
248 static int star_oh(const char *z){
250 z[0]!=0 && isConsonant(z) &&
251 z[0]!='w' && z[0]!='x' && z[0]!='y' &&
252 z[1]!=0 && isVowel(z+1) &&
253 z[2]!=0 && isConsonant(z+2);
257 ** If the word ends with zFrom and xCond() is true for the stem
258 ** of the word that preceeds the zFrom ending, then change the
261 ** The input word *pz and zFrom are both in reverse order. zTo
262 ** is in normal order.
264 ** Return TRUE if zFrom matches. Return FALSE if zFrom does not
265 ** match. Not that TRUE is returned even if xCond() fails and
266 ** no substitution occurs.
269 char **pz, /* The word being stemmed (Reversed) */
270 const char *zFrom, /* If the ending matches this... (Reversed) */
271 const char *zTo, /* ... change the ending to this (not reversed) */
272 int (*xCond)(const char*) /* Condition that must be true */
275 while( *zFrom && *zFrom==*z ){ z++; zFrom++; }
276 if( *zFrom!=0 ) return 0;
277 if( xCond && !xCond(z) ) return 1;
286 ** This is the fallback stemmer used when the porter stemmer is
287 ** inappropriate. The input word is copied into the output with
288 ** US-ASCII case folding. If the input word is too long (more
289 ** than 20 bytes if it contains no digits or more than 6 bytes if
290 ** it contains digits) then word is truncated to 20 or 6 bytes
291 ** by taking 10 or 3 bytes from the beginning and end.
293 static void copy_stemmer(const char *zIn, int nIn, char *zOut, int *pnOut){
296 for(i=0; i<nIn; i++){
298 if( c>='A' && c<='Z' ){
299 zOut[i] = c - 'A' + 'a';
301 if( c>='0' && c<='9' ) hasDigit = 1;
305 mx = hasDigit ? 3 : 10;
307 for(j=mx, i=nIn-mx; i<nIn; i++, j++){
318 ** Stem the input word zIn[0..nIn-1]. Store the output in zOut.
319 ** zOut is at least big enough to hold nIn bytes. Write the actual
320 ** size of the output word (exclusive of the '\0' terminator) into *pnOut.
322 ** Any upper-case characters in the US-ASCII character set ([A-Z])
323 ** are converted to lower case. Upper-case UTF characters are
326 ** Words that are longer than about 20 bytes are stemmed by retaining
327 ** a few bytes from the beginning and the end of the word. If the
328 ** word contains digits, 3 bytes are taken from the beginning and
329 ** 3 bytes from the end. For long words without digits, 10 bytes
330 ** are taken from each end. US-ASCII case folding still applies.
332 ** If the input word contains not digits but does characters not
333 ** in [a-zA-Z] then no stemming is attempted and this routine just
334 ** copies the input into the input into the output with US-ASCII
337 ** Stemming never increases the length of the word. So there is
338 ** no chance of overflowing the zOut buffer.
340 static void porter_stemmer(const char *zIn, int nIn, char *zOut, int *pnOut){
344 if( nIn<3 || nIn>=sizeof(zReverse)-7 ){
345 /* The word is too big or too small for the porter stemmer.
346 ** Fallback to the copy stemmer */
347 copy_stemmer(zIn, nIn, zOut, pnOut);
350 for(i=0, j=sizeof(zReverse)-6; i<nIn; i++, j--){
352 if( c>='A' && c<='Z' ){
353 zReverse[j] = c + 'a' - 'A';
354 }else if( c>='a' && c<='z' ){
357 /* The use of a character not in [a-zA-Z] means that we fallback
358 ** to the copy stemmer */
359 copy_stemmer(zIn, nIn, zOut, pnOut);
363 memset(&zReverse[sizeof(zReverse)-5], 0, 5);
370 !stem(&z, "sess", "ss", 0) &&
371 !stem(&z, "sei", "i", 0) &&
372 !stem(&z, "ss", "ss", 0)
380 if( stem(&z, "dee", "ee", m_gt_0) ){
381 /* Do nothing. The work was all in the test */
383 (stem(&z, "gni", "", hasVowel) || stem(&z, "de", "", hasVowel))
386 if( stem(&z, "ta", "ate", 0) ||
387 stem(&z, "lb", "ble", 0) ||
388 stem(&z, "zi", "ize", 0) ){
389 /* Do nothing. The work was all in the test */
390 }else if( doubleConsonant(z) && (*z!='l' && *z!='s' && *z!='z') ){
392 }else if( m_eq_1(z) && star_oh(z) ){
398 if( z[0]=='y' && hasVowel(z+1) ){
405 stem(&z, "lanoita", "ate", m_gt_0) ||
406 stem(&z, "lanoit", "tion", m_gt_0);
409 stem(&z, "icne", "ence", m_gt_0) ||
410 stem(&z, "icna", "ance", m_gt_0);
413 stem(&z, "rezi", "ize", m_gt_0);
416 stem(&z, "igol", "log", m_gt_0);
419 stem(&z, "ilb", "ble", m_gt_0) ||
420 stem(&z, "illa", "al", m_gt_0) ||
421 stem(&z, "iltne", "ent", m_gt_0) ||
422 stem(&z, "ile", "e", m_gt_0) ||
423 stem(&z, "ilsuo", "ous", m_gt_0);
426 stem(&z, "noitazi", "ize", m_gt_0) ||
427 stem(&z, "noita", "ate", m_gt_0) ||
428 stem(&z, "rota", "ate", m_gt_0);
431 stem(&z, "msila", "al", m_gt_0) ||
432 stem(&z, "ssenevi", "ive", m_gt_0) ||
433 stem(&z, "ssenluf", "ful", m_gt_0) ||
434 stem(&z, "ssensuo", "ous", m_gt_0);
437 stem(&z, "itila", "al", m_gt_0) ||
438 stem(&z, "itivi", "ive", m_gt_0) ||
439 stem(&z, "itilib", "ble", m_gt_0);
446 stem(&z, "etaci", "ic", m_gt_0) ||
447 stem(&z, "evita", "", m_gt_0) ||
448 stem(&z, "ezila", "al", m_gt_0);
451 stem(&z, "itici", "ic", m_gt_0);
454 stem(&z, "laci", "ic", m_gt_0) ||
455 stem(&z, "luf", "", m_gt_0);
458 stem(&z, "ssen", "", m_gt_0);
465 if( z[0]=='l' && m_gt_1(z+2) ){
470 if( z[0]=='e' && z[2]=='n' && (z[3]=='a' || z[3]=='e') && m_gt_1(z+4) ){
475 if( z[0]=='r' && m_gt_1(z+2) ){
480 if( z[0]=='c' && m_gt_1(z+2) ){
485 if( z[0]=='e' && z[2]=='b' && (z[3]=='a' || z[3]=='i') && m_gt_1(z+4) ){
495 }else if( z[2]=='e' ){
496 stem(&z, "tneme", "", m_gt_1) ||
497 stem(&z, "tnem", "", m_gt_1) ||
498 stem(&z, "tne", "", m_gt_1);
507 }else if( z[3]=='s' || z[3]=='t' ){
508 stem(&z, "noi", "", m_gt_1);
512 if( z[0]=='m' && z[2]=='i' && m_gt_1(z+3) ){
517 stem(&z, "eta", "", m_gt_1) ||
518 stem(&z, "iti", "", m_gt_1);
521 if( z[0]=='s' && z[2]=='o' && m_gt_1(z+3) ){
527 if( z[0]=='e' && z[2]=='i' && m_gt_1(z+3) ){
537 }else if( m_eq_1(z+1) && !star_oh(z+1) ){
543 if( m_gt_1(z) && z[0]=='l' && z[1]=='l' ){
547 /* z[] is now the stemmed word in reverse order. Flip it back
548 ** around into forward order and return.
550 *pnOut = i = strlen(z);
558 ** Characters that can be part of a token. We assume any character
559 ** whose value is greater than 0x80 (any UTF character) can be
560 ** part of a token. In other words, delimiters all must have
561 ** values of 0x7f or lower.
563 static const char porterIdChar[] = {
564 /* x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF */
565 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, /* 3x */
566 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 4x */
567 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, /* 5x */
568 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 6x */
569 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, /* 7x */
571 #define isDelim(C) (((ch=C)&0x80)==0 && (ch<0x30 || !porterIdChar[ch-0x30]))
574 ** Extract the next token from a tokenization cursor. The cursor must
575 ** have been opened by a prior call to porterOpen().
577 static int porterNext(
578 sqlite3_tokenizer_cursor *pCursor, /* Cursor returned by porterOpen */
579 const char **pzToken, /* OUT: *pzToken is the token text */
580 int *pnBytes, /* OUT: Number of bytes in token */
581 int *piStartOffset, /* OUT: Starting offset of token */
582 int *piEndOffset, /* OUT: Ending offset of token */
583 int *piPosition /* OUT: Position integer of token */
585 porter_tokenizer_cursor *c = (porter_tokenizer_cursor *) pCursor;
586 const char *z = c->zInput;
588 while( c->iOffset<c->nInput ){
589 int iStartOffset, ch;
591 /* Scan past delimiter characters */
592 while( c->iOffset<c->nInput && isDelim(z[c->iOffset]) ){
596 /* Count non-delimiter characters. */
597 iStartOffset = c->iOffset;
598 while( c->iOffset<c->nInput && !isDelim(z[c->iOffset]) ){
602 if( c->iOffset>iStartOffset ){
603 int n = c->iOffset-iStartOffset;
604 if( n>c->nAllocated ){
605 c->nAllocated = n+20;
606 c->zToken = sqlite3_realloc(c->zToken, c->nAllocated);
607 if( c->zToken==NULL ) return SQLITE_NOMEM;
609 porter_stemmer(&z[iStartOffset], n, c->zToken, pnBytes);
610 *pzToken = c->zToken;
611 *piStartOffset = iStartOffset;
612 *piEndOffset = c->iOffset;
613 *piPosition = c->iToken++;
621 ** The set of routines that implement the porter-stemmer tokenizer
623 static const sqlite3_tokenizer_module porterTokenizerModule = {
633 ** Allocate a new porter tokenizer. Return a pointer to the new
634 ** tokenizer in *ppModule
636 void sqlite3Fts2PorterTokenizerModule(
637 sqlite3_tokenizer_module const**ppModule
639 *ppModule = &porterTokenizerModule;
642 #endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS2) */