os/persistentdata/persistentstorage/sqlite3api/SQLite/fts2_porter.c
author sl
Tue, 10 Jun 2014 14:32:02 +0200
changeset 1 260cb5ec6c19
permissions -rw-r--r--
Update contrib.
     1 /*
     2 ** 2006 September 30
     3 **
     4 ** The author disclaims copyright to this source code.  In place of
     5 ** a legal notice, here is a blessing:
     6 **
     7 **    May you do good and not evil.
     8 **    May you find forgiveness for yourself and forgive others.
     9 **    May you share freely, never taking more than you give.
    10 **
    11 *************************************************************************
    12 ** Implementation of the full-text-search tokenizer that implements
    13 ** a Porter stemmer.
    14 */
    15 
    16 /*
    17 ** The code in this file is only compiled if:
    18 **
    19 **     * The FTS2 module is being built as an extension
    20 **       (in which case SQLITE_CORE is not defined), or
    21 **
    22 **     * The FTS2 module is being built into the core of
    23 **       SQLite (in which case SQLITE_ENABLE_FTS2 is defined).
    24 */
    25 #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS2)
    26 
    27 
    28 #include <assert.h>
    29 #include <stdlib.h>
    30 #include <stdio.h>
    31 #include <string.h>
    32 #include <ctype.h>
    33 
    34 #include "fts2_tokenizer.h"
    35 
    36 /*
    37 ** Class derived from sqlite3_tokenizer
    38 */
    39 typedef struct porter_tokenizer {
    40   sqlite3_tokenizer base;      /* Base class */
    41 } porter_tokenizer;
    42 
    43 /*
    44 ** Class derived from sqlit3_tokenizer_cursor
    45 */
    46 typedef struct porter_tokenizer_cursor {
    47   sqlite3_tokenizer_cursor base;
    48   const char *zInput;          /* input we are tokenizing */
    49   int nInput;                  /* size of the input */
    50   int iOffset;                 /* current position in zInput */
    51   int iToken;                  /* index of next token to be returned */
    52   char *zToken;                /* storage for current token */
    53   int nAllocated;              /* space allocated to zToken buffer */
    54 } porter_tokenizer_cursor;
    55 
    56 
    57 /* Forward declaration */
    58 static const sqlite3_tokenizer_module porterTokenizerModule;
    59 
    60 
    61 /*
    62 ** Create a new tokenizer instance.
    63 */
    64 static int porterCreate(
    65   int argc, const char * const *argv,
    66   sqlite3_tokenizer **ppTokenizer
    67 ){
    68   porter_tokenizer *t;
    69   t = (porter_tokenizer *) sqlite3_malloc(sizeof(*t));
    70   if( t==NULL ) return SQLITE_NOMEM;
    71   memset(t, 0, sizeof(*t));
    72   *ppTokenizer = &t->base;
    73   return SQLITE_OK;
    74 }
    75 
    76 /*
    77 ** Destroy a tokenizer
    78 */
    79 static int porterDestroy(sqlite3_tokenizer *pTokenizer){
    80   sqlite3_free(pTokenizer);
    81   return SQLITE_OK;
    82 }
    83 
    84 /*
    85 ** Prepare to begin tokenizing a particular string.  The input
    86 ** string to be tokenized is zInput[0..nInput-1].  A cursor
    87 ** used to incrementally tokenize this string is returned in 
    88 ** *ppCursor.
    89 */
    90 static int porterOpen(
    91   sqlite3_tokenizer *pTokenizer,         /* The tokenizer */
    92   const char *zInput, int nInput,        /* String to be tokenized */
    93   sqlite3_tokenizer_cursor **ppCursor    /* OUT: Tokenization cursor */
    94 ){
    95   porter_tokenizer_cursor *c;
    96 
    97   c = (porter_tokenizer_cursor *) sqlite3_malloc(sizeof(*c));
    98   if( c==NULL ) return SQLITE_NOMEM;
    99 
   100   c->zInput = zInput;
   101   if( zInput==0 ){
   102     c->nInput = 0;
   103   }else if( nInput<0 ){
   104     c->nInput = (int)strlen(zInput);
   105   }else{
   106     c->nInput = nInput;
   107   }
   108   c->iOffset = 0;                 /* start tokenizing at the beginning */
   109   c->iToken = 0;
   110   c->zToken = NULL;               /* no space allocated, yet. */
   111   c->nAllocated = 0;
   112 
   113   *ppCursor = &c->base;
   114   return SQLITE_OK;
   115 }
   116 
   117 /*
   118 ** Close a tokenization cursor previously opened by a call to
   119 ** porterOpen() above.
   120 */
   121 static int porterClose(sqlite3_tokenizer_cursor *pCursor){
   122   porter_tokenizer_cursor *c = (porter_tokenizer_cursor *) pCursor;
   123   sqlite3_free(c->zToken);
   124   sqlite3_free(c);
   125   return SQLITE_OK;
   126 }
   127 /*
   128 ** Vowel or consonant
   129 */
   130 static const char cType[] = {
   131    0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0,
   132    1, 1, 1, 2, 1
   133 };
   134 
   135 /*
   136 ** isConsonant() and isVowel() determine if their first character in
   137 ** the string they point to is a consonant or a vowel, according
   138 ** to Porter ruls.  
   139 **
   140 ** A consonate is any letter other than 'a', 'e', 'i', 'o', or 'u'.
   141 ** 'Y' is a consonant unless it follows another consonant,
   142 ** in which case it is a vowel.
   143 **
   144 ** In these routine, the letters are in reverse order.  So the 'y' rule
   145 ** is that 'y' is a consonant unless it is followed by another
   146 ** consonent.
   147 */
   148 static int isVowel(const char*);
   149 static int isConsonant(const char *z){
   150   int j;
   151   char x = *z;
   152   if( x==0 ) return 0;
   153   assert( x>='a' && x<='z' );
   154   j = cType[x-'a'];
   155   if( j<2 ) return j;
   156   return z[1]==0 || isVowel(z + 1);
   157 }
   158 static int isVowel(const char *z){
   159   int j;
   160   char x = *z;
   161   if( x==0 ) return 0;
   162   assert( x>='a' && x<='z' );
   163   j = cType[x-'a'];
   164   if( j<2 ) return 1-j;
   165   return isConsonant(z + 1);
   166 }
   167 
   168 /*
   169 ** Let any sequence of one or more vowels be represented by V and let
   170 ** C be sequence of one or more consonants.  Then every word can be
   171 ** represented as:
   172 **
   173 **           [C] (VC){m} [V]
   174 **
   175 ** In prose:  A word is an optional consonant followed by zero or
   176 ** vowel-consonant pairs followed by an optional vowel.  "m" is the
   177 ** number of vowel consonant pairs.  This routine computes the value
   178 ** of m for the first i bytes of a word.
   179 **
   180 ** Return true if the m-value for z is 1 or more.  In other words,
   181 ** return true if z contains at least one vowel that is followed
   182 ** by a consonant.
   183 **
   184 ** In this routine z[] is in reverse order.  So we are really looking
   185 ** for an instance of of a consonant followed by a vowel.
   186 */
   187 static int m_gt_0(const char *z){
   188   while( isVowel(z) ){ z++; }
   189   if( *z==0 ) return 0;
   190   while( isConsonant(z) ){ z++; }
   191   return *z!=0;
   192 }
   193 
   194 /* Like mgt0 above except we are looking for a value of m which is
   195 ** exactly 1
   196 */
   197 static int m_eq_1(const char *z){
   198   while( isVowel(z) ){ z++; }
   199   if( *z==0 ) return 0;
   200   while( isConsonant(z) ){ z++; }
   201   if( *z==0 ) return 0;
   202   while( isVowel(z) ){ z++; }
   203   if( *z==0 ) return 1;
   204   while( isConsonant(z) ){ z++; }
   205   return *z==0;
   206 }
   207 
   208 /* Like mgt0 above except we are looking for a value of m>1 instead
   209 ** or m>0
   210 */
   211 static int m_gt_1(const char *z){
   212   while( isVowel(z) ){ z++; }
   213   if( *z==0 ) return 0;
   214   while( isConsonant(z) ){ z++; }
   215   if( *z==0 ) return 0;
   216   while( isVowel(z) ){ z++; }
   217   if( *z==0 ) return 0;
   218   while( isConsonant(z) ){ z++; }
   219   return *z!=0;
   220 }
   221 
   222 /*
   223 ** Return TRUE if there is a vowel anywhere within z[0..n-1]
   224 */
   225 static int hasVowel(const char *z){
   226   while( isConsonant(z) ){ z++; }
   227   return *z!=0;
   228 }
   229 
   230 /*
   231 ** Return TRUE if the word ends in a double consonant.
   232 **
   233 ** The text is reversed here. So we are really looking at
   234 ** the first two characters of z[].
   235 */
   236 static int doubleConsonant(const char *z){
   237   return isConsonant(z) && z[0]==z[1] && isConsonant(z+1);
   238 }
   239 
   240 /*
   241 ** Return TRUE if the word ends with three letters which
   242 ** are consonant-vowel-consonent and where the final consonant
   243 ** is not 'w', 'x', or 'y'.
   244 **
   245 ** The word is reversed here.  So we are really checking the
   246 ** first three letters and the first one cannot be in [wxy].
   247 */
   248 static int star_oh(const char *z){
   249   return
   250     z[0]!=0 && isConsonant(z) &&
   251     z[0]!='w' && z[0]!='x' && z[0]!='y' &&
   252     z[1]!=0 && isVowel(z+1) &&
   253     z[2]!=0 && isConsonant(z+2);
   254 }
   255 
   256 /*
   257 ** If the word ends with zFrom and xCond() is true for the stem
   258 ** of the word that preceeds the zFrom ending, then change the 
   259 ** ending to zTo.
   260 **
   261 ** The input word *pz and zFrom are both in reverse order.  zTo
   262 ** is in normal order. 
   263 **
   264 ** Return TRUE if zFrom matches.  Return FALSE if zFrom does not
   265 ** match.  Not that TRUE is returned even if xCond() fails and
   266 ** no substitution occurs.
   267 */
   268 static int stem(
   269   char **pz,             /* The word being stemmed (Reversed) */
   270   const char *zFrom,     /* If the ending matches this... (Reversed) */
   271   const char *zTo,       /* ... change the ending to this (not reversed) */
   272   int (*xCond)(const char*)   /* Condition that must be true */
   273 ){
   274   char *z = *pz;
   275   while( *zFrom && *zFrom==*z ){ z++; zFrom++; }
   276   if( *zFrom!=0 ) return 0;
   277   if( xCond && !xCond(z) ) return 1;
   278   while( *zTo ){
   279     *(--z) = *(zTo++);
   280   }
   281   *pz = z;
   282   return 1;
   283 }
   284 
   285 /*
   286 ** This is the fallback stemmer used when the porter stemmer is
   287 ** inappropriate.  The input word is copied into the output with
   288 ** US-ASCII case folding.  If the input word is too long (more
   289 ** than 20 bytes if it contains no digits or more than 6 bytes if
   290 ** it contains digits) then word is truncated to 20 or 6 bytes
   291 ** by taking 10 or 3 bytes from the beginning and end.
   292 */
   293 static void copy_stemmer(const char *zIn, int nIn, char *zOut, int *pnOut){
   294   int i, mx, j;
   295   int hasDigit = 0;
   296   for(i=0; i<nIn; i++){
   297     int c = zIn[i];
   298     if( c>='A' && c<='Z' ){
   299       zOut[i] = c - 'A' + 'a';
   300     }else{
   301       if( c>='0' && c<='9' ) hasDigit = 1;
   302       zOut[i] = c;
   303     }
   304   }
   305   mx = hasDigit ? 3 : 10;
   306   if( nIn>mx*2 ){
   307     for(j=mx, i=nIn-mx; i<nIn; i++, j++){
   308       zOut[j] = zOut[i];
   309     }
   310     i = j;
   311   }
   312   zOut[i] = 0;
   313   *pnOut = i;
   314 }
   315 
   316 
   317 /*
   318 ** Stem the input word zIn[0..nIn-1].  Store the output in zOut.
   319 ** zOut is at least big enough to hold nIn bytes.  Write the actual
   320 ** size of the output word (exclusive of the '\0' terminator) into *pnOut.
   321 **
   322 ** Any upper-case characters in the US-ASCII character set ([A-Z])
   323 ** are converted to lower case.  Upper-case UTF characters are
   324 ** unchanged.
   325 **
   326 ** Words that are longer than about 20 bytes are stemmed by retaining
   327 ** a few bytes from the beginning and the end of the word.  If the
   328 ** word contains digits, 3 bytes are taken from the beginning and
   329 ** 3 bytes from the end.  For long words without digits, 10 bytes
   330 ** are taken from each end.  US-ASCII case folding still applies.
   331 ** 
   332 ** If the input word contains not digits but does characters not 
   333 ** in [a-zA-Z] then no stemming is attempted and this routine just 
   334 ** copies the input into the input into the output with US-ASCII
   335 ** case folding.
   336 **
   337 ** Stemming never increases the length of the word.  So there is
   338 ** no chance of overflowing the zOut buffer.
   339 */
   340 static void porter_stemmer(const char *zIn, int nIn, char *zOut, int *pnOut){
   341   int i, j, c;
   342   char zReverse[28];
   343   char *z, *z2;
   344   if( nIn<3 || nIn>=sizeof(zReverse)-7 ){
   345     /* The word is too big or too small for the porter stemmer.
   346     ** Fallback to the copy stemmer */
   347     copy_stemmer(zIn, nIn, zOut, pnOut);
   348     return;
   349   }
   350   for(i=0, j=sizeof(zReverse)-6; i<nIn; i++, j--){
   351     c = zIn[i];
   352     if( c>='A' && c<='Z' ){
   353       zReverse[j] = c + 'a' - 'A';
   354     }else if( c>='a' && c<='z' ){
   355       zReverse[j] = c;
   356     }else{
   357       /* The use of a character not in [a-zA-Z] means that we fallback
   358       ** to the copy stemmer */
   359       copy_stemmer(zIn, nIn, zOut, pnOut);
   360       return;
   361     }
   362   }
   363   memset(&zReverse[sizeof(zReverse)-5], 0, 5);
   364   z = &zReverse[j+1];
   365 
   366 
   367   /* Step 1a */
   368   if( z[0]=='s' ){
   369     if(
   370      !stem(&z, "sess", "ss", 0) &&
   371      !stem(&z, "sei", "i", 0)  &&
   372      !stem(&z, "ss", "ss", 0)
   373     ){
   374       z++;
   375     }
   376   }
   377 
   378   /* Step 1b */  
   379   z2 = z;
   380   if( stem(&z, "dee", "ee", m_gt_0) ){
   381     /* Do nothing.  The work was all in the test */
   382   }else if( 
   383      (stem(&z, "gni", "", hasVowel) || stem(&z, "de", "", hasVowel))
   384       && z!=z2
   385   ){
   386      if( stem(&z, "ta", "ate", 0) ||
   387          stem(&z, "lb", "ble", 0) ||
   388          stem(&z, "zi", "ize", 0) ){
   389        /* Do nothing.  The work was all in the test */
   390      }else if( doubleConsonant(z) && (*z!='l' && *z!='s' && *z!='z') ){
   391        z++;
   392      }else if( m_eq_1(z) && star_oh(z) ){
   393        *(--z) = 'e';
   394      }
   395   }
   396 
   397   /* Step 1c */
   398   if( z[0]=='y' && hasVowel(z+1) ){
   399     z[0] = 'i';
   400   }
   401 
   402   /* Step 2 */
   403   switch( z[1] ){
   404    case 'a':
   405      stem(&z, "lanoita", "ate", m_gt_0) ||
   406      stem(&z, "lanoit", "tion", m_gt_0);
   407      break;
   408    case 'c':
   409      stem(&z, "icne", "ence", m_gt_0) ||
   410      stem(&z, "icna", "ance", m_gt_0);
   411      break;
   412    case 'e':
   413      stem(&z, "rezi", "ize", m_gt_0);
   414      break;
   415    case 'g':
   416      stem(&z, "igol", "log", m_gt_0);
   417      break;
   418    case 'l':
   419      stem(&z, "ilb", "ble", m_gt_0) ||
   420      stem(&z, "illa", "al", m_gt_0) ||
   421      stem(&z, "iltne", "ent", m_gt_0) ||
   422      stem(&z, "ile", "e", m_gt_0) ||
   423      stem(&z, "ilsuo", "ous", m_gt_0);
   424      break;
   425    case 'o':
   426      stem(&z, "noitazi", "ize", m_gt_0) ||
   427      stem(&z, "noita", "ate", m_gt_0) ||
   428      stem(&z, "rota", "ate", m_gt_0);
   429      break;
   430    case 's':
   431      stem(&z, "msila", "al", m_gt_0) ||
   432      stem(&z, "ssenevi", "ive", m_gt_0) ||
   433      stem(&z, "ssenluf", "ful", m_gt_0) ||
   434      stem(&z, "ssensuo", "ous", m_gt_0);
   435      break;
   436    case 't':
   437      stem(&z, "itila", "al", m_gt_0) ||
   438      stem(&z, "itivi", "ive", m_gt_0) ||
   439      stem(&z, "itilib", "ble", m_gt_0);
   440      break;
   441   }
   442 
   443   /* Step 3 */
   444   switch( z[0] ){
   445    case 'e':
   446      stem(&z, "etaci", "ic", m_gt_0) ||
   447      stem(&z, "evita", "", m_gt_0)   ||
   448      stem(&z, "ezila", "al", m_gt_0);
   449      break;
   450    case 'i':
   451      stem(&z, "itici", "ic", m_gt_0);
   452      break;
   453    case 'l':
   454      stem(&z, "laci", "ic", m_gt_0) ||
   455      stem(&z, "luf", "", m_gt_0);
   456      break;
   457    case 's':
   458      stem(&z, "ssen", "", m_gt_0);
   459      break;
   460   }
   461 
   462   /* Step 4 */
   463   switch( z[1] ){
   464    case 'a':
   465      if( z[0]=='l' && m_gt_1(z+2) ){
   466        z += 2;
   467      }
   468      break;
   469    case 'c':
   470      if( z[0]=='e' && z[2]=='n' && (z[3]=='a' || z[3]=='e')  && m_gt_1(z+4)  ){
   471        z += 4;
   472      }
   473      break;
   474    case 'e':
   475      if( z[0]=='r' && m_gt_1(z+2) ){
   476        z += 2;
   477      }
   478      break;
   479    case 'i':
   480      if( z[0]=='c' && m_gt_1(z+2) ){
   481        z += 2;
   482      }
   483      break;
   484    case 'l':
   485      if( z[0]=='e' && z[2]=='b' && (z[3]=='a' || z[3]=='i') && m_gt_1(z+4) ){
   486        z += 4;
   487      }
   488      break;
   489    case 'n':
   490      if( z[0]=='t' ){
   491        if( z[2]=='a' ){
   492          if( m_gt_1(z+3) ){
   493            z += 3;
   494          }
   495        }else if( z[2]=='e' ){
   496          stem(&z, "tneme", "", m_gt_1) ||
   497          stem(&z, "tnem", "", m_gt_1) ||
   498          stem(&z, "tne", "", m_gt_1);
   499        }
   500      }
   501      break;
   502    case 'o':
   503      if( z[0]=='u' ){
   504        if( m_gt_1(z+2) ){
   505          z += 2;
   506        }
   507      }else if( z[3]=='s' || z[3]=='t' ){
   508        stem(&z, "noi", "", m_gt_1);
   509      }
   510      break;
   511    case 's':
   512      if( z[0]=='m' && z[2]=='i' && m_gt_1(z+3) ){
   513        z += 3;
   514      }
   515      break;
   516    case 't':
   517      stem(&z, "eta", "", m_gt_1) ||
   518      stem(&z, "iti", "", m_gt_1);
   519      break;
   520    case 'u':
   521      if( z[0]=='s' && z[2]=='o' && m_gt_1(z+3) ){
   522        z += 3;
   523      }
   524      break;
   525    case 'v':
   526    case 'z':
   527      if( z[0]=='e' && z[2]=='i' && m_gt_1(z+3) ){
   528        z += 3;
   529      }
   530      break;
   531   }
   532 
   533   /* Step 5a */
   534   if( z[0]=='e' ){
   535     if( m_gt_1(z+1) ){
   536       z++;
   537     }else if( m_eq_1(z+1) && !star_oh(z+1) ){
   538       z++;
   539     }
   540   }
   541 
   542   /* Step 5b */
   543   if( m_gt_1(z) && z[0]=='l' && z[1]=='l' ){
   544     z++;
   545   }
   546 
   547   /* z[] is now the stemmed word in reverse order.  Flip it back
   548   ** around into forward order and return.
   549   */
   550   *pnOut = i = strlen(z);
   551   zOut[i] = 0;
   552   while( *z ){
   553     zOut[--i] = *(z++);
   554   }
   555 }
   556 
   557 /*
   558 ** Characters that can be part of a token.  We assume any character
   559 ** whose value is greater than 0x80 (any UTF character) can be
   560 ** part of a token.  In other words, delimiters all must have
   561 ** values of 0x7f or lower.
   562 */
   563 static const char porterIdChar[] = {
   564 /* x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF */
   565     1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0,  /* 3x */
   566     0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,  /* 4x */
   567     1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1,  /* 5x */
   568     0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,  /* 6x */
   569     1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0,  /* 7x */
   570 };
   571 #define isDelim(C) (((ch=C)&0x80)==0 && (ch<0x30 || !porterIdChar[ch-0x30]))
   572 
   573 /*
   574 ** Extract the next token from a tokenization cursor.  The cursor must
   575 ** have been opened by a prior call to porterOpen().
   576 */
   577 static int porterNext(
   578   sqlite3_tokenizer_cursor *pCursor,  /* Cursor returned by porterOpen */
   579   const char **pzToken,               /* OUT: *pzToken is the token text */
   580   int *pnBytes,                       /* OUT: Number of bytes in token */
   581   int *piStartOffset,                 /* OUT: Starting offset of token */
   582   int *piEndOffset,                   /* OUT: Ending offset of token */
   583   int *piPosition                     /* OUT: Position integer of token */
   584 ){
   585   porter_tokenizer_cursor *c = (porter_tokenizer_cursor *) pCursor;
   586   const char *z = c->zInput;
   587 
   588   while( c->iOffset<c->nInput ){
   589     int iStartOffset, ch;
   590 
   591     /* Scan past delimiter characters */
   592     while( c->iOffset<c->nInput && isDelim(z[c->iOffset]) ){
   593       c->iOffset++;
   594     }
   595 
   596     /* Count non-delimiter characters. */
   597     iStartOffset = c->iOffset;
   598     while( c->iOffset<c->nInput && !isDelim(z[c->iOffset]) ){
   599       c->iOffset++;
   600     }
   601 
   602     if( c->iOffset>iStartOffset ){
   603       int n = c->iOffset-iStartOffset;
   604       if( n>c->nAllocated ){
   605         c->nAllocated = n+20;
   606         c->zToken = sqlite3_realloc(c->zToken, c->nAllocated);
   607         if( c->zToken==NULL ) return SQLITE_NOMEM;
   608       }
   609       porter_stemmer(&z[iStartOffset], n, c->zToken, pnBytes);
   610       *pzToken = c->zToken;
   611       *piStartOffset = iStartOffset;
   612       *piEndOffset = c->iOffset;
   613       *piPosition = c->iToken++;
   614       return SQLITE_OK;
   615     }
   616   }
   617   return SQLITE_DONE;
   618 }
   619 
   620 /*
   621 ** The set of routines that implement the porter-stemmer tokenizer
   622 */
   623 static const sqlite3_tokenizer_module porterTokenizerModule = {
   624   0,
   625   porterCreate,
   626   porterDestroy,
   627   porterOpen,
   628   porterClose,
   629   porterNext,
   630 };
   631 
   632 /*
   633 ** Allocate a new porter tokenizer.  Return a pointer to the new
   634 ** tokenizer in *ppModule
   635 */
   636 void sqlite3Fts2PorterTokenizerModule(
   637   sqlite3_tokenizer_module const**ppModule
   638 ){
   639   *ppModule = &porterTokenizerModule;
   640 }
   641 
   642 #endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS2) */