os/persistentdata/persistentstorage/sqlite3api/SQLite/fts2_hash.c
author sl
Tue, 10 Jun 2014 14:32:02 +0200
changeset 1 260cb5ec6c19
permissions -rw-r--r--
Update contrib.
     1 /*
     2 ** 2001 September 22
     3 **
     4 ** The author disclaims copyright to this source code.  In place of
     5 ** a legal notice, here is a blessing:
     6 **
     7 **    May you do good and not evil.
     8 **    May you find forgiveness for yourself and forgive others.
     9 **    May you share freely, never taking more than you give.
    10 **
    11 *************************************************************************
    12 ** This is the implementation of generic hash-tables used in SQLite.
    13 ** We've modified it slightly to serve as a standalone hash table
    14 ** implementation for the full-text indexing module.
    15 */
    16 
    17 /*
    18 ** The code in this file is only compiled if:
    19 **
    20 **     * The FTS2 module is being built as an extension
    21 **       (in which case SQLITE_CORE is not defined), or
    22 **
    23 **     * The FTS2 module is being built into the core of
    24 **       SQLite (in which case SQLITE_ENABLE_FTS2 is defined).
    25 */
    26 #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS2)
    27 
    28 #include <assert.h>
    29 #include <stdlib.h>
    30 #include <string.h>
    31 
    32 #include "sqlite3.h"
    33 #include "fts2_hash.h"
    34 
    35 /*
    36 ** Malloc and Free functions
    37 */
    38 static void *fts2HashMalloc(int n){
    39   void *p = sqlite3_malloc(n);
    40   if( p ){
    41     memset(p, 0, n);
    42   }
    43   return p;
    44 }
    45 static void fts2HashFree(void *p){
    46   sqlite3_free(p);
    47 }
    48 
    49 /* Turn bulk memory into a hash table object by initializing the
    50 ** fields of the Hash structure.
    51 **
    52 ** "pNew" is a pointer to the hash table that is to be initialized.
    53 ** keyClass is one of the constants 
    54 ** FTS2_HASH_BINARY or FTS2_HASH_STRING.  The value of keyClass 
    55 ** determines what kind of key the hash table will use.  "copyKey" is
    56 ** true if the hash table should make its own private copy of keys and
    57 ** false if it should just use the supplied pointer.
    58 */
    59 void sqlite3Fts2HashInit(fts2Hash *pNew, int keyClass, int copyKey){
    60   assert( pNew!=0 );
    61   assert( keyClass>=FTS2_HASH_STRING && keyClass<=FTS2_HASH_BINARY );
    62   pNew->keyClass = keyClass;
    63   pNew->copyKey = copyKey;
    64   pNew->first = 0;
    65   pNew->count = 0;
    66   pNew->htsize = 0;
    67   pNew->ht = 0;
    68 }
    69 
    70 /* Remove all entries from a hash table.  Reclaim all memory.
    71 ** Call this routine to delete a hash table or to reset a hash table
    72 ** to the empty state.
    73 */
    74 void sqlite3Fts2HashClear(fts2Hash *pH){
    75   fts2HashElem *elem;         /* For looping over all elements of the table */
    76 
    77   assert( pH!=0 );
    78   elem = pH->first;
    79   pH->first = 0;
    80   fts2HashFree(pH->ht);
    81   pH->ht = 0;
    82   pH->htsize = 0;
    83   while( elem ){
    84     fts2HashElem *next_elem = elem->next;
    85     if( pH->copyKey && elem->pKey ){
    86       fts2HashFree(elem->pKey);
    87     }
    88     fts2HashFree(elem);
    89     elem = next_elem;
    90   }
    91   pH->count = 0;
    92 }
    93 
    94 /*
    95 ** Hash and comparison functions when the mode is FTS2_HASH_STRING
    96 */
    97 static int strHash(const void *pKey, int nKey){
    98   const char *z = (const char *)pKey;
    99   int h = 0;
   100   if( nKey<=0 ) nKey = (int) strlen(z);
   101   while( nKey > 0  ){
   102     h = (h<<3) ^ h ^ *z++;
   103     nKey--;
   104   }
   105   return h & 0x7fffffff;
   106 }
   107 static int strCompare(const void *pKey1, int n1, const void *pKey2, int n2){
   108   if( n1!=n2 ) return 1;
   109   return strncmp((const char*)pKey1,(const char*)pKey2,n1);
   110 }
   111 
   112 /*
   113 ** Hash and comparison functions when the mode is FTS2_HASH_BINARY
   114 */
   115 static int binHash(const void *pKey, int nKey){
   116   int h = 0;
   117   const char *z = (const char *)pKey;
   118   while( nKey-- > 0 ){
   119     h = (h<<3) ^ h ^ *(z++);
   120   }
   121   return h & 0x7fffffff;
   122 }
   123 static int binCompare(const void *pKey1, int n1, const void *pKey2, int n2){
   124   if( n1!=n2 ) return 1;
   125   return memcmp(pKey1,pKey2,n1);
   126 }
   127 
   128 /*
   129 ** Return a pointer to the appropriate hash function given the key class.
   130 **
   131 ** The C syntax in this function definition may be unfamilar to some 
   132 ** programmers, so we provide the following additional explanation:
   133 **
   134 ** The name of the function is "hashFunction".  The function takes a
   135 ** single parameter "keyClass".  The return value of hashFunction()
   136 ** is a pointer to another function.  Specifically, the return value
   137 ** of hashFunction() is a pointer to a function that takes two parameters
   138 ** with types "const void*" and "int" and returns an "int".
   139 */
   140 static int (*hashFunction(int keyClass))(const void*,int){
   141   if( keyClass==FTS2_HASH_STRING ){
   142     return &strHash;
   143   }else{
   144     assert( keyClass==FTS2_HASH_BINARY );
   145     return &binHash;
   146   }
   147 }
   148 
   149 /*
   150 ** Return a pointer to the appropriate hash function given the key class.
   151 **
   152 ** For help in interpreted the obscure C code in the function definition,
   153 ** see the header comment on the previous function.
   154 */
   155 static int (*compareFunction(int keyClass))(const void*,int,const void*,int){
   156   if( keyClass==FTS2_HASH_STRING ){
   157     return &strCompare;
   158   }else{
   159     assert( keyClass==FTS2_HASH_BINARY );
   160     return &binCompare;
   161   }
   162 }
   163 
   164 /* Link an element into the hash table
   165 */
   166 static void insertElement(
   167   fts2Hash *pH,            /* The complete hash table */
   168   struct _fts2ht *pEntry,  /* The entry into which pNew is inserted */
   169   fts2HashElem *pNew       /* The element to be inserted */
   170 ){
   171   fts2HashElem *pHead;     /* First element already in pEntry */
   172   pHead = pEntry->chain;
   173   if( pHead ){
   174     pNew->next = pHead;
   175     pNew->prev = pHead->prev;
   176     if( pHead->prev ){ pHead->prev->next = pNew; }
   177     else             { pH->first = pNew; }
   178     pHead->prev = pNew;
   179   }else{
   180     pNew->next = pH->first;
   181     if( pH->first ){ pH->first->prev = pNew; }
   182     pNew->prev = 0;
   183     pH->first = pNew;
   184   }
   185   pEntry->count++;
   186   pEntry->chain = pNew;
   187 }
   188 
   189 
   190 /* Resize the hash table so that it cantains "new_size" buckets.
   191 ** "new_size" must be a power of 2.  The hash table might fail 
   192 ** to resize if sqliteMalloc() fails.
   193 */
   194 static void rehash(fts2Hash *pH, int new_size){
   195   struct _fts2ht *new_ht;          /* The new hash table */
   196   fts2HashElem *elem, *next_elem;  /* For looping over existing elements */
   197   int (*xHash)(const void*,int);   /* The hash function */
   198 
   199   assert( (new_size & (new_size-1))==0 );
   200   new_ht = (struct _fts2ht *)fts2HashMalloc( new_size*sizeof(struct _fts2ht) );
   201   if( new_ht==0 ) return;
   202   fts2HashFree(pH->ht);
   203   pH->ht = new_ht;
   204   pH->htsize = new_size;
   205   xHash = hashFunction(pH->keyClass);
   206   for(elem=pH->first, pH->first=0; elem; elem = next_elem){
   207     int h = (*xHash)(elem->pKey, elem->nKey) & (new_size-1);
   208     next_elem = elem->next;
   209     insertElement(pH, &new_ht[h], elem);
   210   }
   211 }
   212 
   213 /* This function (for internal use only) locates an element in an
   214 ** hash table that matches the given key.  The hash for this key has
   215 ** already been computed and is passed as the 4th parameter.
   216 */
   217 static fts2HashElem *findElementGivenHash(
   218   const fts2Hash *pH, /* The pH to be searched */
   219   const void *pKey,   /* The key we are searching for */
   220   int nKey,
   221   int h               /* The hash for this key. */
   222 ){
   223   fts2HashElem *elem;            /* Used to loop thru the element list */
   224   int count;                     /* Number of elements left to test */
   225   int (*xCompare)(const void*,int,const void*,int);  /* comparison function */
   226 
   227   if( pH->ht ){
   228     struct _fts2ht *pEntry = &pH->ht[h];
   229     elem = pEntry->chain;
   230     count = pEntry->count;
   231     xCompare = compareFunction(pH->keyClass);
   232     while( count-- && elem ){
   233       if( (*xCompare)(elem->pKey,elem->nKey,pKey,nKey)==0 ){ 
   234         return elem;
   235       }
   236       elem = elem->next;
   237     }
   238   }
   239   return 0;
   240 }
   241 
   242 /* Remove a single entry from the hash table given a pointer to that
   243 ** element and a hash on the element's key.
   244 */
   245 static void removeElementGivenHash(
   246   fts2Hash *pH,         /* The pH containing "elem" */
   247   fts2HashElem* elem,   /* The element to be removed from the pH */
   248   int h                 /* Hash value for the element */
   249 ){
   250   struct _fts2ht *pEntry;
   251   if( elem->prev ){
   252     elem->prev->next = elem->next; 
   253   }else{
   254     pH->first = elem->next;
   255   }
   256   if( elem->next ){
   257     elem->next->prev = elem->prev;
   258   }
   259   pEntry = &pH->ht[h];
   260   if( pEntry->chain==elem ){
   261     pEntry->chain = elem->next;
   262   }
   263   pEntry->count--;
   264   if( pEntry->count<=0 ){
   265     pEntry->chain = 0;
   266   }
   267   if( pH->copyKey && elem->pKey ){
   268     fts2HashFree(elem->pKey);
   269   }
   270   fts2HashFree( elem );
   271   pH->count--;
   272   if( pH->count<=0 ){
   273     assert( pH->first==0 );
   274     assert( pH->count==0 );
   275     fts2HashClear(pH);
   276   }
   277 }
   278 
   279 /* Attempt to locate an element of the hash table pH with a key
   280 ** that matches pKey,nKey.  Return the data for this element if it is
   281 ** found, or NULL if there is no match.
   282 */
   283 void *sqlite3Fts2HashFind(const fts2Hash *pH, const void *pKey, int nKey){
   284   int h;                 /* A hash on key */
   285   fts2HashElem *elem;    /* The element that matches key */
   286   int (*xHash)(const void*,int);  /* The hash function */
   287 
   288   if( pH==0 || pH->ht==0 ) return 0;
   289   xHash = hashFunction(pH->keyClass);
   290   assert( xHash!=0 );
   291   h = (*xHash)(pKey,nKey);
   292   assert( (pH->htsize & (pH->htsize-1))==0 );
   293   elem = findElementGivenHash(pH,pKey,nKey, h & (pH->htsize-1));
   294   return elem ? elem->data : 0;
   295 }
   296 
   297 /* Insert an element into the hash table pH.  The key is pKey,nKey
   298 ** and the data is "data".
   299 **
   300 ** If no element exists with a matching key, then a new
   301 ** element is created.  A copy of the key is made if the copyKey
   302 ** flag is set.  NULL is returned.
   303 **
   304 ** If another element already exists with the same key, then the
   305 ** new data replaces the old data and the old data is returned.
   306 ** The key is not copied in this instance.  If a malloc fails, then
   307 ** the new data is returned and the hash table is unchanged.
   308 **
   309 ** If the "data" parameter to this function is NULL, then the
   310 ** element corresponding to "key" is removed from the hash table.
   311 */
   312 void *sqlite3Fts2HashInsert(
   313   fts2Hash *pH,        /* The hash table to insert into */
   314   const void *pKey,    /* The key */
   315   int nKey,            /* Number of bytes in the key */
   316   void *data           /* The data */
   317 ){
   318   int hraw;                 /* Raw hash value of the key */
   319   int h;                    /* the hash of the key modulo hash table size */
   320   fts2HashElem *elem;       /* Used to loop thru the element list */
   321   fts2HashElem *new_elem;   /* New element added to the pH */
   322   int (*xHash)(const void*,int);  /* The hash function */
   323 
   324   assert( pH!=0 );
   325   xHash = hashFunction(pH->keyClass);
   326   assert( xHash!=0 );
   327   hraw = (*xHash)(pKey, nKey);
   328   assert( (pH->htsize & (pH->htsize-1))==0 );
   329   h = hraw & (pH->htsize-1);
   330   elem = findElementGivenHash(pH,pKey,nKey,h);
   331   if( elem ){
   332     void *old_data = elem->data;
   333     if( data==0 ){
   334       removeElementGivenHash(pH,elem,h);
   335     }else{
   336       elem->data = data;
   337     }
   338     return old_data;
   339   }
   340   if( data==0 ) return 0;
   341   new_elem = (fts2HashElem*)fts2HashMalloc( sizeof(fts2HashElem) );
   342   if( new_elem==0 ) return data;
   343   if( pH->copyKey && pKey!=0 ){
   344     new_elem->pKey = fts2HashMalloc( nKey );
   345     if( new_elem->pKey==0 ){
   346       fts2HashFree(new_elem);
   347       return data;
   348     }
   349     memcpy((void*)new_elem->pKey, pKey, nKey);
   350   }else{
   351     new_elem->pKey = (void*)pKey;
   352   }
   353   new_elem->nKey = nKey;
   354   pH->count++;
   355   if( pH->htsize==0 ){
   356     rehash(pH,8);
   357     if( pH->htsize==0 ){
   358       pH->count = 0;
   359       fts2HashFree(new_elem);
   360       return data;
   361     }
   362   }
   363   if( pH->count > pH->htsize ){
   364     rehash(pH,pH->htsize*2);
   365   }
   366   assert( pH->htsize>0 );
   367   assert( (pH->htsize & (pH->htsize-1))==0 );
   368   h = hraw & (pH->htsize-1);
   369   insertElement(pH, &pH->ht[h], new_elem);
   370   new_elem->data = data;
   371   return 0;
   372 }
   373 
   374 #endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS2) */