Update contrib.
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This module contains C code that generates VDBE code used to process
13 ** the WHERE clause of SQL statements. This module is responsible for
14 ** generating the code that loops through a table looking for applicable
15 ** rows. Indices are selected and used to speed the search when doing
16 ** so is applicable. Because this module is responsible for selecting
17 ** indices, you might also think of this module as the "query optimizer".
19 ** $Id: where.c,v 1.319 2008/08/01 17:37:41 danielk1977 Exp $
21 #include "sqliteInt.h"
24 ** The number of bits in a Bitmask. "BMS" means "BitMask Size".
26 #define BMS (sizeof(Bitmask)*8)
29 ** Trace output macros
31 #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG)
32 int sqlite3WhereTrace = 0;
35 # define WHERETRACE(X) if(sqlite3WhereTrace) sqlite3DebugPrintf X
37 # define WHERETRACE(X)
42 typedef struct WhereClause WhereClause;
43 typedef struct ExprMaskSet ExprMaskSet;
46 ** The query generator uses an array of instances of this structure to
47 ** help it analyze the subexpressions of the WHERE clause. Each WHERE
48 ** clause subexpression is separated from the others by an AND operator.
50 ** All WhereTerms are collected into a single WhereClause structure.
51 ** The following identity holds:
53 ** WhereTerm.pWC->a[WhereTerm.idx] == WhereTerm
55 ** When a term is of the form:
59 ** where X is a column name and <op> is one of certain operators,
60 ** then WhereTerm.leftCursor and WhereTerm.leftColumn record the
61 ** cursor number and column number for X. WhereTerm.operator records
62 ** the <op> using a bitmask encoding defined by WO_xxx below. The
63 ** use of a bitmask encoding for the operator allows us to search
64 ** quickly for terms that match any of several different operators.
66 ** prereqRight and prereqAll record sets of cursor numbers,
67 ** but they do so indirectly. A single ExprMaskSet structure translates
68 ** cursor number into bits and the translated bit is stored in the prereq
69 ** fields. The translation is used in order to maximize the number of
70 ** bits that will fit in a Bitmask. The VDBE cursor numbers might be
71 ** spread out over the non-negative integers. For example, the cursor
72 ** numbers might be 3, 8, 9, 10, 20, 23, 41, and 45. The ExprMaskSet
73 ** translates these sparse cursor numbers into consecutive integers
74 ** beginning with 0 in order to make the best possible use of the available
75 ** bits in the Bitmask. So, in the example above, the cursor numbers
76 ** would be mapped into integers 0 through 7.
78 typedef struct WhereTerm WhereTerm;
80 Expr *pExpr; /* Pointer to the subexpression */
81 i16 iParent; /* Disable pWC->a[iParent] when this term disabled */
82 i16 leftCursor; /* Cursor number of X in "X <op> <expr>" */
83 i16 leftColumn; /* Column number of X in "X <op> <expr>" */
84 u16 eOperator; /* A WO_xx value describing <op> */
85 u8 flags; /* Bit flags. See below */
86 u8 nChild; /* Number of children that must disable us */
87 WhereClause *pWC; /* The clause this term is part of */
88 Bitmask prereqRight; /* Bitmask of tables used by pRight */
89 Bitmask prereqAll; /* Bitmask of tables referenced by p */
93 ** Allowed values of WhereTerm.flags
95 #define TERM_DYNAMIC 0x01 /* Need to call sqlite3ExprDelete(db, pExpr) */
96 #define TERM_VIRTUAL 0x02 /* Added by the optimizer. Do not code */
97 #define TERM_CODED 0x04 /* This term is already coded */
98 #define TERM_COPIED 0x08 /* Has a child */
99 #define TERM_OR_OK 0x10 /* Used during OR-clause processing */
102 ** An instance of the following structure holds all information about a
103 ** WHERE clause. Mostly this is a container for one or more WhereTerms.
106 Parse *pParse; /* The parser context */
107 ExprMaskSet *pMaskSet; /* Mapping of table indices to bitmasks */
108 int nTerm; /* Number of terms */
109 int nSlot; /* Number of entries in a[] */
110 WhereTerm *a; /* Each a[] describes a term of the WHERE cluase */
111 WhereTerm aStatic[10]; /* Initial static space for a[] */
115 ** An instance of the following structure keeps track of a mapping
116 ** between VDBE cursor numbers and bits of the bitmasks in WhereTerm.
118 ** The VDBE cursor numbers are small integers contained in
119 ** SrcList_item.iCursor and Expr.iTable fields. For any given WHERE
120 ** clause, the cursor numbers might not begin with 0 and they might
121 ** contain gaps in the numbering sequence. But we want to make maximum
122 ** use of the bits in our bitmasks. This structure provides a mapping
123 ** from the sparse cursor numbers into consecutive integers beginning
126 ** If ExprMaskSet.ix[A]==B it means that The A-th bit of a Bitmask
127 ** corresponds VDBE cursor number B. The A-th bit of a bitmask is 1<<A.
129 ** For example, if the WHERE clause expression used these VDBE
130 ** cursors: 4, 5, 8, 29, 57, 73. Then the ExprMaskSet structure
131 ** would map those cursor numbers into bits 0 through 5.
133 ** Note that the mapping is not necessarily ordered. In the example
134 ** above, the mapping might go like this: 4->3, 5->1, 8->2, 29->0,
135 ** 57->5, 73->4. Or one of 719 other combinations might be used. It
136 ** does not really matter. What is important is that sparse cursor
137 ** numbers all get mapped into bit numbers that begin with 0 and contain
141 int n; /* Number of assigned cursor values */
142 int ix[sizeof(Bitmask)*8]; /* Cursor assigned to each bit */
147 ** Bitmasks for the operators that indices are able to exploit. An
148 ** OR-ed combination of these values can be used when searching for
149 ** terms in the where clause.
153 #define WO_LT (WO_EQ<<(TK_LT-TK_EQ))
154 #define WO_LE (WO_EQ<<(TK_LE-TK_EQ))
155 #define WO_GT (WO_EQ<<(TK_GT-TK_EQ))
156 #define WO_GE (WO_EQ<<(TK_GE-TK_EQ))
158 #define WO_ISNULL 128
161 ** Value for flags returned by bestIndex().
163 ** The least significant byte is reserved as a mask for WO_ values above.
164 ** The WhereLevel.flags field is usually set to WO_IN|WO_EQ|WO_ISNULL.
165 ** But if the table is the right table of a left join, WhereLevel.flags
166 ** is set to WO_IN|WO_EQ. The WhereLevel.flags field can then be used as
167 ** the "op" parameter to findTerm when we are resolving equality constraints.
168 ** ISNULL constraints will then not be used on the right table of a left
169 ** join. Tickets #2177 and #2189.
171 #define WHERE_ROWID_EQ 0x000100 /* rowid=EXPR or rowid IN (...) */
172 #define WHERE_ROWID_RANGE 0x000200 /* rowid<EXPR and/or rowid>EXPR */
173 #define WHERE_COLUMN_EQ 0x001000 /* x=EXPR or x IN (...) */
174 #define WHERE_COLUMN_RANGE 0x002000 /* x<EXPR and/or x>EXPR */
175 #define WHERE_COLUMN_IN 0x004000 /* x IN (...) */
176 #define WHERE_TOP_LIMIT 0x010000 /* x<EXPR or x<=EXPR constraint */
177 #define WHERE_BTM_LIMIT 0x020000 /* x>EXPR or x>=EXPR constraint */
178 #define WHERE_IDX_ONLY 0x080000 /* Use index only - omit table */
179 #define WHERE_ORDERBY 0x100000 /* Output will appear in correct order */
180 #define WHERE_REVERSE 0x200000 /* Scan in reverse order */
181 #define WHERE_UNIQUE 0x400000 /* Selects no more than one row */
182 #define WHERE_VIRTUALTABLE 0x800000 /* Use virtual-table processing */
185 ** Initialize a preallocated WhereClause structure.
187 static void whereClauseInit(
188 WhereClause *pWC, /* The WhereClause to be initialized */
189 Parse *pParse, /* The parsing context */
190 ExprMaskSet *pMaskSet /* Mapping from table indices to bitmasks */
192 pWC->pParse = pParse;
193 pWC->pMaskSet = pMaskSet;
195 pWC->nSlot = ArraySize(pWC->aStatic);
196 pWC->a = pWC->aStatic;
200 ** Deallocate a WhereClause structure. The WhereClause structure
201 ** itself is not freed. This routine is the inverse of whereClauseInit().
203 static void whereClauseClear(WhereClause *pWC){
206 sqlite3 *db = pWC->pParse->db;
207 for(i=pWC->nTerm-1, a=pWC->a; i>=0; i--, a++){
208 if( a->flags & TERM_DYNAMIC ){
209 sqlite3ExprDelete(db, a->pExpr);
212 if( pWC->a!=pWC->aStatic ){
213 sqlite3DbFree(db, pWC->a);
218 ** Add a new entries to the WhereClause structure. Increase the allocated
219 ** space as necessary.
221 ** If the flags argument includes TERM_DYNAMIC, then responsibility
222 ** for freeing the expression p is assumed by the WhereClause object.
224 ** WARNING: This routine might reallocate the space used to store
225 ** WhereTerms. All pointers to WhereTerms should be invalidated after
226 ** calling this routine. Such pointers may be reinitialized by referencing
227 ** the pWC->a[] array.
229 static int whereClauseInsert(WhereClause *pWC, Expr *p, int flags){
232 if( pWC->nTerm>=pWC->nSlot ){
233 WhereTerm *pOld = pWC->a;
234 sqlite3 *db = pWC->pParse->db;
235 pWC->a = sqlite3DbMallocRaw(db, sizeof(pWC->a[0])*pWC->nSlot*2 );
237 if( flags & TERM_DYNAMIC ){
238 sqlite3ExprDelete(db, p);
243 memcpy(pWC->a, pOld, sizeof(pWC->a[0])*pWC->nTerm);
244 if( pOld!=pWC->aStatic ){
245 sqlite3DbFree(db, pOld);
249 pTerm = &pWC->a[idx = pWC->nTerm];
252 pTerm->flags = flags;
259 ** This routine identifies subexpressions in the WHERE clause where
260 ** each subexpression is separated by the AND operator or some other
261 ** operator specified in the op parameter. The WhereClause structure
262 ** is filled with pointers to subexpressions. For example:
264 ** WHERE a=='hello' AND coalesce(b,11)<10 AND (c+12!=d OR c==22)
265 ** \________/ \_______________/ \________________/
266 ** slot[0] slot[1] slot[2]
268 ** The original WHERE clause in pExpr is unaltered. All this routine
269 ** does is make slot[] entries point to substructure within pExpr.
271 ** In the previous sentence and in the diagram, "slot[]" refers to
272 ** the WhereClause.a[] array. This array grows as needed to contain
273 ** all terms of the WHERE clause.
275 static void whereSplit(WhereClause *pWC, Expr *pExpr, int op){
276 if( pExpr==0 ) return;
278 whereClauseInsert(pWC, pExpr, 0);
280 whereSplit(pWC, pExpr->pLeft, op);
281 whereSplit(pWC, pExpr->pRight, op);
286 ** Initialize an expression mask set
288 #define initMaskSet(P) memset(P, 0, sizeof(*P))
291 ** Return the bitmask for the given cursor number. Return 0 if
292 ** iCursor is not in the set.
294 static Bitmask getMask(ExprMaskSet *pMaskSet, int iCursor){
296 for(i=0; i<pMaskSet->n; i++){
297 if( pMaskSet->ix[i]==iCursor ){
298 return ((Bitmask)1)<<i;
305 ** Create a new mask for cursor iCursor.
307 ** There is one cursor per table in the FROM clause. The number of
308 ** tables in the FROM clause is limited by a test early in the
309 ** sqlite3WhereBegin() routine. So we know that the pMaskSet->ix[]
310 ** array will never overflow.
312 static void createMask(ExprMaskSet *pMaskSet, int iCursor){
313 assert( pMaskSet->n < ArraySize(pMaskSet->ix) );
314 pMaskSet->ix[pMaskSet->n++] = iCursor;
318 ** This routine walks (recursively) an expression tree and generates
319 ** a bitmask indicating which tables are used in that expression
322 ** In order for this routine to work, the calling function must have
323 ** previously invoked sqlite3ExprResolveNames() on the expression. See
324 ** the header comment on that routine for additional information.
325 ** The sqlite3ExprResolveNames() routines looks for column names and
326 ** sets their opcodes to TK_COLUMN and their Expr.iTable fields to
327 ** the VDBE cursor number of the table. This routine just has to
328 ** translate the cursor numbers into bitmask values and OR all
329 ** the bitmasks together.
331 static Bitmask exprListTableUsage(ExprMaskSet*, ExprList*);
332 static Bitmask exprSelectTableUsage(ExprMaskSet*, Select*);
333 static Bitmask exprTableUsage(ExprMaskSet *pMaskSet, Expr *p){
336 if( p->op==TK_COLUMN ){
337 mask = getMask(pMaskSet, p->iTable);
340 mask = exprTableUsage(pMaskSet, p->pRight);
341 mask |= exprTableUsage(pMaskSet, p->pLeft);
342 mask |= exprListTableUsage(pMaskSet, p->pList);
343 mask |= exprSelectTableUsage(pMaskSet, p->pSelect);
346 static Bitmask exprListTableUsage(ExprMaskSet *pMaskSet, ExprList *pList){
350 for(i=0; i<pList->nExpr; i++){
351 mask |= exprTableUsage(pMaskSet, pList->a[i].pExpr);
356 static Bitmask exprSelectTableUsage(ExprMaskSet *pMaskSet, Select *pS){
359 mask |= exprListTableUsage(pMaskSet, pS->pEList);
360 mask |= exprListTableUsage(pMaskSet, pS->pGroupBy);
361 mask |= exprListTableUsage(pMaskSet, pS->pOrderBy);
362 mask |= exprTableUsage(pMaskSet, pS->pWhere);
363 mask |= exprTableUsage(pMaskSet, pS->pHaving);
370 ** Return TRUE if the given operator is one of the operators that is
371 ** allowed for an indexable WHERE clause term. The allowed operators are
372 ** "=", "<", ">", "<=", ">=", and "IN".
374 static int allowedOp(int op){
375 assert( TK_GT>TK_EQ && TK_GT<TK_GE );
376 assert( TK_LT>TK_EQ && TK_LT<TK_GE );
377 assert( TK_LE>TK_EQ && TK_LE<TK_GE );
378 assert( TK_GE==TK_EQ+4 );
379 return op==TK_IN || (op>=TK_EQ && op<=TK_GE) || op==TK_ISNULL;
383 ** Swap two objects of type T.
385 #define SWAP(TYPE,A,B) {TYPE t=A; A=B; B=t;}
388 ** Commute a comparison operator. Expressions of the form "X op Y"
389 ** are converted into "Y op X".
391 ** If a collation sequence is associated with either the left or right
392 ** side of the comparison, it remains associated with the same side after
393 ** the commutation. So "Y collate NOCASE op X" becomes
394 ** "X collate NOCASE op Y". This is because any collation sequence on
395 ** the left hand side of a comparison overrides any collation sequence
396 ** attached to the right. For the same reason the EP_ExpCollate flag
399 static void exprCommute(Expr *pExpr){
400 u16 expRight = (pExpr->pRight->flags & EP_ExpCollate);
401 u16 expLeft = (pExpr->pLeft->flags & EP_ExpCollate);
402 assert( allowedOp(pExpr->op) && pExpr->op!=TK_IN );
403 SWAP(CollSeq*,pExpr->pRight->pColl,pExpr->pLeft->pColl);
404 pExpr->pRight->flags = (pExpr->pRight->flags & ~EP_ExpCollate) | expLeft;
405 pExpr->pLeft->flags = (pExpr->pLeft->flags & ~EP_ExpCollate) | expRight;
406 SWAP(Expr*,pExpr->pRight,pExpr->pLeft);
407 if( pExpr->op>=TK_GT ){
408 assert( TK_LT==TK_GT+2 );
409 assert( TK_GE==TK_LE+2 );
410 assert( TK_GT>TK_EQ );
411 assert( TK_GT<TK_LE );
412 assert( pExpr->op>=TK_GT && pExpr->op<=TK_GE );
413 pExpr->op = ((pExpr->op-TK_GT)^2)+TK_GT;
418 ** Translate from TK_xx operator to WO_xx bitmask.
420 static int operatorMask(int op){
422 assert( allowedOp(op) );
425 }else if( op==TK_ISNULL ){
428 c = WO_EQ<<(op-TK_EQ);
430 assert( op!=TK_ISNULL || c==WO_ISNULL );
431 assert( op!=TK_IN || c==WO_IN );
432 assert( op!=TK_EQ || c==WO_EQ );
433 assert( op!=TK_LT || c==WO_LT );
434 assert( op!=TK_LE || c==WO_LE );
435 assert( op!=TK_GT || c==WO_GT );
436 assert( op!=TK_GE || c==WO_GE );
441 ** Search for a term in the WHERE clause that is of the form "X <op> <expr>"
442 ** where X is a reference to the iColumn of table iCur and <op> is one of
443 ** the WO_xx operator codes specified by the op parameter.
444 ** Return a pointer to the term. Return 0 if not found.
446 static WhereTerm *findTerm(
447 WhereClause *pWC, /* The WHERE clause to be searched */
448 int iCur, /* Cursor number of LHS */
449 int iColumn, /* Column number of LHS */
450 Bitmask notReady, /* RHS must not overlap with this mask */
451 u16 op, /* Mask of WO_xx values describing operator */
452 Index *pIdx /* Must be compatible with this index, if not NULL */
457 for(pTerm=pWC->a, k=pWC->nTerm; k; k--, pTerm++){
458 if( pTerm->leftCursor==iCur
459 && (pTerm->prereqRight & notReady)==0
460 && pTerm->leftColumn==iColumn
461 && (pTerm->eOperator & op)!=0
463 if( pIdx && pTerm->eOperator!=WO_ISNULL ){
464 Expr *pX = pTerm->pExpr;
468 Parse *pParse = pWC->pParse;
470 idxaff = pIdx->pTable->aCol[iColumn].affinity;
471 if( !sqlite3IndexAffinityOk(pX, idxaff) ) continue;
473 /* Figure out the collation sequence required from an index for
474 ** it to be useful for optimising expression pX. Store this
475 ** value in variable pColl.
478 pColl = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pX->pRight);
480 pColl = pParse->db->pDfltColl;
483 for(j=0; pIdx->aiColumn[j]!=iColumn; j++){
484 if( NEVER(j>=pIdx->nColumn) ) return 0;
486 if( sqlite3StrICmp(pColl->zName, pIdx->azColl[j]) ) continue;
494 /* Forward reference */
495 static void exprAnalyze(SrcList*, WhereClause*, int);
498 ** Call exprAnalyze on all terms in a WHERE clause.
502 static void exprAnalyzeAll(
503 SrcList *pTabList, /* the FROM clause */
504 WhereClause *pWC /* the WHERE clause to be analyzed */
507 for(i=pWC->nTerm-1; i>=0; i--){
508 exprAnalyze(pTabList, pWC, i);
512 #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION
514 ** Check to see if the given expression is a LIKE or GLOB operator that
515 ** can be optimized using inequality constraints. Return TRUE if it is
516 ** so and false if not.
518 ** In order for the operator to be optimizible, the RHS must be a string
519 ** literal that does not begin with a wildcard.
521 static int isLikeOrGlob(
522 sqlite3 *db, /* The database */
523 Expr *pExpr, /* Test this expression */
524 int *pnPattern, /* Number of non-wildcard prefix characters */
525 int *pisComplete, /* True if the only wildcard is % in the last character */
526 int *pnoCase /* True if uppercase is equivalent to lowercase */
529 Expr *pRight, *pLeft;
535 if( !sqlite3IsLikeFunction(db, pExpr, pnoCase, wc) ){
539 if( *pnoCase ) return 0;
541 pList = pExpr->pList;
542 pRight = pList->a[0].pExpr;
543 if( pRight->op!=TK_STRING
544 && (pRight->op!=TK_REGISTER || pRight->iColumn!=TK_STRING) ){
547 pLeft = pList->a[1].pExpr;
548 if( pLeft->op!=TK_COLUMN ){
551 pColl = pLeft->pColl;
552 assert( pColl!=0 || pLeft->iColumn==-1 );
554 /* No collation is defined for the ROWID. Use the default. */
555 pColl = db->pDfltColl;
557 if( (pColl->type!=SQLITE_COLL_BINARY || *pnoCase) &&
558 (pColl->type!=SQLITE_COLL_NOCASE || !*pnoCase) ){
561 sqlite3DequoteExpr(db, pRight);
562 z = (char *)pRight->token.z;
565 while( (c=z[cnt])!=0 && c!=wc[0] && c!=wc[1] && c!=wc[2] ){ cnt++; }
567 if( cnt==0 || 255==(u8)z[cnt] ){
570 *pisComplete = z[cnt]==wc[0] && z[cnt+1]==0;
574 #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */
577 #ifndef SQLITE_OMIT_VIRTUALTABLE
579 ** Check to see if the given expression is of the form
583 ** If it is then return TRUE. If not, return FALSE.
585 static int isMatchOfColumn(
586 Expr *pExpr /* Test this expression */
590 if( pExpr->op!=TK_FUNCTION ){
593 if( pExpr->token.n!=5 ||
594 sqlite3StrNICmp((const char*)pExpr->token.z,"match",5)!=0 ){
597 pList = pExpr->pList;
598 if( pList->nExpr!=2 ){
601 if( pList->a[1].pExpr->op != TK_COLUMN ){
606 #endif /* SQLITE_OMIT_VIRTUALTABLE */
609 ** If the pBase expression originated in the ON or USING clause of
610 ** a join, then transfer the appropriate markings over to derived.
612 static void transferJoinMarkings(Expr *pDerived, Expr *pBase){
613 pDerived->flags |= pBase->flags & EP_FromJoin;
614 pDerived->iRightJoinTable = pBase->iRightJoinTable;
617 #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY)
619 ** Return TRUE if the given term of an OR clause can be converted
620 ** into an IN clause. The iCursor and iColumn define the left-hand
621 ** side of the IN clause.
623 ** The context is that we have multiple OR-connected equality terms
626 ** a=<expr1> OR a=<expr2> OR b=<expr3> OR ...
628 ** The pOrTerm input to this routine corresponds to a single term of
629 ** this OR clause. In order for the term to be a candidate for
630 ** conversion to an IN operator, the following must be true:
632 ** * The left-hand side of the term must be the column which
633 ** is identified by iCursor and iColumn.
635 ** * If the right-hand side is also a column, then the affinities
636 ** of both right and left sides must be such that no type
637 ** conversions are required on the right. (Ticket #2249)
639 ** If both of these conditions are true, then return true. Otherwise
642 static int orTermIsOptCandidate(WhereTerm *pOrTerm, int iCursor, int iColumn){
643 int affLeft, affRight;
644 assert( pOrTerm->eOperator==WO_EQ );
645 if( pOrTerm->leftCursor!=iCursor ){
648 if( pOrTerm->leftColumn!=iColumn ){
651 affRight = sqlite3ExprAffinity(pOrTerm->pExpr->pRight);
655 affLeft = sqlite3ExprAffinity(pOrTerm->pExpr->pLeft);
656 if( affRight!=affLeft ){
663 ** Return true if the given term of an OR clause can be ignored during
664 ** a check to make sure all OR terms are candidates for optimization.
665 ** In other words, return true if a call to the orTermIsOptCandidate()
666 ** above returned false but it is not necessary to disqualify the
669 ** Suppose the original OR phrase was this:
671 ** a=4 OR a=11 OR a=b
673 ** During analysis, the third term gets flipped around and duplicate
674 ** so that we are left with this:
676 ** a=4 OR a=11 OR a=b OR b=a
678 ** Since the last two terms are duplicates, only one of them
679 ** has to qualify in order for the whole phrase to qualify. When
680 ** this routine is called, we know that pOrTerm did not qualify.
681 ** This routine merely checks to see if pOrTerm has a duplicate that
682 ** might qualify. If there is a duplicate that has not yet been
683 ** disqualified, then return true. If there are no duplicates, or
684 ** the duplicate has also been disqualified, return false.
686 static int orTermHasOkDuplicate(WhereClause *pOr, WhereTerm *pOrTerm){
687 if( pOrTerm->flags & TERM_COPIED ){
688 /* This is the original term. The duplicate is to the left had
689 ** has not yet been analyzed and thus has not yet been disqualified. */
692 if( (pOrTerm->flags & TERM_VIRTUAL)!=0
693 && (pOr->a[pOrTerm->iParent].flags & TERM_OR_OK)!=0 ){
694 /* This is a duplicate term. The original qualified so this one
695 ** does not have to. */
698 /* This is either a singleton term or else it is a duplicate for
699 ** which the original did not qualify. Either way we are done for. */
702 #endif /* !SQLITE_OMIT_OR_OPTIMIZATION && !SQLITE_OMIT_SUBQUERY */
705 ** The input to this routine is an WhereTerm structure with only the
706 ** "pExpr" field filled in. The job of this routine is to analyze the
707 ** subexpression and populate all the other fields of the WhereTerm
710 ** If the expression is of the form "<expr> <op> X" it gets commuted
711 ** to the standard form of "X <op> <expr>". If the expression is of
712 ** the form "X <op> Y" where both X and Y are columns, then the original
713 ** expression is unchanged and a new virtual expression of the form
714 ** "Y <op> X" is added to the WHERE clause and analyzed separately.
716 static void exprAnalyze(
717 SrcList *pSrc, /* the FROM clause */
718 WhereClause *pWC, /* the WHERE clause */
719 int idxTerm /* Index of the term to be analyzed */
722 ExprMaskSet *pMaskSet;
726 Bitmask extraRight = 0;
731 Parse *pParse = pWC->pParse;
732 sqlite3 *db = pParse->db;
734 if( db->mallocFailed ){
737 pTerm = &pWC->a[idxTerm];
738 pMaskSet = pWC->pMaskSet;
739 pExpr = pTerm->pExpr;
740 prereqLeft = exprTableUsage(pMaskSet, pExpr->pLeft);
743 assert( pExpr->pRight==0 );
744 pTerm->prereqRight = exprListTableUsage(pMaskSet, pExpr->pList)
745 | exprSelectTableUsage(pMaskSet, pExpr->pSelect);
746 }else if( op==TK_ISNULL ){
747 pTerm->prereqRight = 0;
749 pTerm->prereqRight = exprTableUsage(pMaskSet, pExpr->pRight);
751 prereqAll = exprTableUsage(pMaskSet, pExpr);
752 if( ExprHasProperty(pExpr, EP_FromJoin) ){
753 Bitmask x = getMask(pMaskSet, pExpr->iRightJoinTable);
755 extraRight = x-1; /* ON clause terms may not be used with an index
756 ** on left table of a LEFT JOIN. Ticket #3015 */
758 pTerm->prereqAll = prereqAll;
759 pTerm->leftCursor = -1;
761 pTerm->eOperator = 0;
762 if( allowedOp(op) && (pTerm->prereqRight & prereqLeft)==0 ){
763 Expr *pLeft = pExpr->pLeft;
764 Expr *pRight = pExpr->pRight;
765 if( pLeft->op==TK_COLUMN ){
766 pTerm->leftCursor = pLeft->iTable;
767 pTerm->leftColumn = pLeft->iColumn;
768 pTerm->eOperator = operatorMask(op);
770 if( pRight && pRight->op==TK_COLUMN ){
773 if( pTerm->leftCursor>=0 ){
775 pDup = sqlite3ExprDup(db, pExpr);
776 if( db->mallocFailed ){
777 sqlite3ExprDelete(db, pDup);
780 idxNew = whereClauseInsert(pWC, pDup, TERM_VIRTUAL|TERM_DYNAMIC);
781 if( idxNew==0 ) return;
782 pNew = &pWC->a[idxNew];
783 pNew->iParent = idxTerm;
784 pTerm = &pWC->a[idxTerm];
786 pTerm->flags |= TERM_COPIED;
793 pNew->leftCursor = pLeft->iTable;
794 pNew->leftColumn = pLeft->iColumn;
795 pNew->prereqRight = prereqLeft;
796 pNew->prereqAll = prereqAll;
797 pNew->eOperator = operatorMask(pDup->op);
801 #ifndef SQLITE_OMIT_BETWEEN_OPTIMIZATION
802 /* If a term is the BETWEEN operator, create two new virtual terms
803 ** that define the range that the BETWEEN implements.
805 else if( pExpr->op==TK_BETWEEN ){
806 ExprList *pList = pExpr->pList;
808 static const u8 ops[] = {TK_GE, TK_LE};
810 assert( pList->nExpr==2 );
814 pNewExpr = sqlite3Expr(db, ops[i], sqlite3ExprDup(db, pExpr->pLeft),
815 sqlite3ExprDup(db, pList->a[i].pExpr), 0);
816 idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC);
817 exprAnalyze(pSrc, pWC, idxNew);
818 pTerm = &pWC->a[idxTerm];
819 pWC->a[idxNew].iParent = idxTerm;
823 #endif /* SQLITE_OMIT_BETWEEN_OPTIMIZATION */
825 #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY)
826 /* Attempt to convert OR-connected terms into an IN operator so that
827 ** they can make use of indices. Example:
829 ** x = expr1 OR expr2 = x OR x = expr3
833 ** x IN (expr1,expr2,expr3)
835 ** This optimization must be omitted if OMIT_SUBQUERY is defined because
836 ** the compiler for the the IN operator is part of sub-queries.
838 else if( pExpr->op==TK_OR ){
841 int iColumn, iCursor;
845 assert( (pTerm->flags & TERM_DYNAMIC)==0 );
846 whereClauseInit(&sOr, pWC->pParse, pMaskSet);
847 whereSplit(&sOr, pExpr, TK_OR);
848 exprAnalyzeAll(pSrc, &sOr);
849 assert( sOr.nTerm>=2 );
851 if( db->mallocFailed ) goto or_not_possible;
853 assert( j<sOr.nTerm );
854 iColumn = sOr.a[j].leftColumn;
855 iCursor = sOr.a[j].leftCursor;
857 for(i=sOr.nTerm-1, pOrTerm=sOr.a; i>=0 && ok; i--, pOrTerm++){
858 if( pOrTerm->eOperator!=WO_EQ ){
859 goto or_not_possible;
861 if( orTermIsOptCandidate(pOrTerm, iCursor, iColumn) ){
862 pOrTerm->flags |= TERM_OR_OK;
863 }else if( orTermHasOkDuplicate(&sOr, pOrTerm) ){
864 pOrTerm->flags &= ~TERM_OR_OK;
869 }while( !ok && (sOr.a[j++].flags & TERM_COPIED)!=0 && j<2 );
874 for(i=sOr.nTerm-1, pOrTerm=sOr.a; i>=0; i--, pOrTerm++){
875 if( (pOrTerm->flags & TERM_OR_OK)==0 ) continue;
876 pDup = sqlite3ExprDup(db, pOrTerm->pExpr->pRight);
877 pList = sqlite3ExprListAppend(pWC->pParse, pList, pDup, 0);
878 pLeft = pOrTerm->pExpr->pLeft;
881 pDup = sqlite3ExprDup(db, pLeft);
882 pNew = sqlite3Expr(db, TK_IN, pDup, 0, 0);
885 transferJoinMarkings(pNew, pExpr);
887 idxNew = whereClauseInsert(pWC, pNew, TERM_VIRTUAL|TERM_DYNAMIC);
888 exprAnalyze(pSrc, pWC, idxNew);
889 pTerm = &pWC->a[idxTerm];
890 pWC->a[idxNew].iParent = idxTerm;
893 sqlite3ExprListDelete(db, pList);
897 whereClauseClear(&sOr);
899 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */
901 #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION
902 /* Add constraints to reduce the search space on a LIKE or GLOB
905 ** A like pattern of the form "x LIKE 'abc%'" is changed into constraints
907 ** x>='abc' AND x<'abd' AND x LIKE 'abc%'
909 ** The last character of the prefix "abc" is incremented to form the
910 ** termination condition "abd".
912 if( isLikeOrGlob(db, pExpr, &nPattern, &isComplete, &noCase) ){
913 Expr *pLeft, *pRight;
915 Expr *pNewExpr1, *pNewExpr2;
916 int idxNew1, idxNew2;
918 pLeft = pExpr->pList->a[1].pExpr;
919 pRight = pExpr->pList->a[0].pExpr;
920 pStr1 = sqlite3PExpr(pParse, TK_STRING, 0, 0, 0);
922 sqlite3TokenCopy(db, &pStr1->token, &pRight->token);
923 pStr1->token.n = nPattern;
924 pStr1->flags = EP_Dequoted;
926 pStr2 = sqlite3ExprDup(db, pStr1);
927 if( !db->mallocFailed ){
929 assert( pStr2->token.dyn );
930 pC = (u8*)&pStr2->token.z[nPattern-1];
933 if( c=='@' ) isComplete = 0;
934 c = sqlite3UpperToLower[c];
938 pNewExpr1 = sqlite3PExpr(pParse, TK_GE, sqlite3ExprDup(db,pLeft), pStr1, 0);
939 idxNew1 = whereClauseInsert(pWC, pNewExpr1, TERM_VIRTUAL|TERM_DYNAMIC);
940 exprAnalyze(pSrc, pWC, idxNew1);
941 pNewExpr2 = sqlite3PExpr(pParse, TK_LT, sqlite3ExprDup(db,pLeft), pStr2, 0);
942 idxNew2 = whereClauseInsert(pWC, pNewExpr2, TERM_VIRTUAL|TERM_DYNAMIC);
943 exprAnalyze(pSrc, pWC, idxNew2);
944 pTerm = &pWC->a[idxTerm];
946 pWC->a[idxNew1].iParent = idxTerm;
947 pWC->a[idxNew2].iParent = idxTerm;
951 #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */
953 #ifndef SQLITE_OMIT_VIRTUALTABLE
954 /* Add a WO_MATCH auxiliary term to the constraint set if the
955 ** current expression is of the form: column MATCH expr.
956 ** This information is used by the xBestIndex methods of
957 ** virtual tables. The native query optimizer does not attempt
958 ** to do anything with MATCH functions.
960 if( isMatchOfColumn(pExpr) ){
962 Expr *pRight, *pLeft;
964 Bitmask prereqColumn, prereqExpr;
966 pRight = pExpr->pList->a[0].pExpr;
967 pLeft = pExpr->pList->a[1].pExpr;
968 prereqExpr = exprTableUsage(pMaskSet, pRight);
969 prereqColumn = exprTableUsage(pMaskSet, pLeft);
970 if( (prereqExpr & prereqColumn)==0 ){
972 pNewExpr = sqlite3Expr(db, TK_MATCH, 0, sqlite3ExprDup(db, pRight), 0);
973 idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC);
974 pNewTerm = &pWC->a[idxNew];
975 pNewTerm->prereqRight = prereqExpr;
976 pNewTerm->leftCursor = pLeft->iTable;
977 pNewTerm->leftColumn = pLeft->iColumn;
978 pNewTerm->eOperator = WO_MATCH;
979 pNewTerm->iParent = idxTerm;
980 pTerm = &pWC->a[idxTerm];
982 pTerm->flags |= TERM_COPIED;
983 pNewTerm->prereqAll = pTerm->prereqAll;
986 #endif /* SQLITE_OMIT_VIRTUALTABLE */
988 /* Prevent ON clause terms of a LEFT JOIN from being used to drive
989 ** an index for tables to the left of the join.
991 pTerm->prereqRight |= extraRight;
995 ** Return TRUE if any of the expressions in pList->a[iFirst...] contain
996 ** a reference to any table other than the iBase table.
998 static int referencesOtherTables(
999 ExprList *pList, /* Search expressions in ths list */
1000 ExprMaskSet *pMaskSet, /* Mapping from tables to bitmaps */
1001 int iFirst, /* Be searching with the iFirst-th expression */
1002 int iBase /* Ignore references to this table */
1004 Bitmask allowed = ~getMask(pMaskSet, iBase);
1005 while( iFirst<pList->nExpr ){
1006 if( (exprTableUsage(pMaskSet, pList->a[iFirst++].pExpr)&allowed)!=0 ){
1015 ** This routine decides if pIdx can be used to satisfy the ORDER BY
1016 ** clause. If it can, it returns 1. If pIdx cannot satisfy the
1017 ** ORDER BY clause, this routine returns 0.
1019 ** pOrderBy is an ORDER BY clause from a SELECT statement. pTab is the
1020 ** left-most table in the FROM clause of that same SELECT statement and
1021 ** the table has a cursor number of "base". pIdx is an index on pTab.
1023 ** nEqCol is the number of columns of pIdx that are used as equality
1024 ** constraints. Any of these columns may be missing from the ORDER BY
1025 ** clause and the match can still be a success.
1027 ** All terms of the ORDER BY that match against the index must be either
1028 ** ASC or DESC. (Terms of the ORDER BY clause past the end of a UNIQUE
1029 ** index do not need to satisfy this constraint.) The *pbRev value is
1030 ** set to 1 if the ORDER BY clause is all DESC and it is set to 0 if
1031 ** the ORDER BY clause is all ASC.
1033 static int isSortingIndex(
1034 Parse *pParse, /* Parsing context */
1035 ExprMaskSet *pMaskSet, /* Mapping from table indices to bitmaps */
1036 Index *pIdx, /* The index we are testing */
1037 int base, /* Cursor number for the table to be sorted */
1038 ExprList *pOrderBy, /* The ORDER BY clause */
1039 int nEqCol, /* Number of index columns with == constraints */
1040 int *pbRev /* Set to 1 if ORDER BY is DESC */
1042 int i, j; /* Loop counters */
1043 int sortOrder = 0; /* XOR of index and ORDER BY sort direction */
1044 int nTerm; /* Number of ORDER BY terms */
1045 struct ExprList_item *pTerm; /* A term of the ORDER BY clause */
1046 sqlite3 *db = pParse->db;
1048 assert( pOrderBy!=0 );
1049 nTerm = pOrderBy->nExpr;
1052 /* Match terms of the ORDER BY clause against columns of
1055 ** Note that indices have pIdx->nColumn regular columns plus
1056 ** one additional column containing the rowid. The rowid column
1057 ** of the index is also allowed to match against the ORDER BY
1060 for(i=j=0, pTerm=pOrderBy->a; j<nTerm && i<=pIdx->nColumn; i++){
1061 Expr *pExpr; /* The expression of the ORDER BY pTerm */
1062 CollSeq *pColl; /* The collating sequence of pExpr */
1063 int termSortOrder; /* Sort order for this term */
1064 int iColumn; /* The i-th column of the index. -1 for rowid */
1065 int iSortOrder; /* 1 for DESC, 0 for ASC on the i-th index term */
1066 const char *zColl; /* Name of the collating sequence for i-th index term */
1068 pExpr = pTerm->pExpr;
1069 if( pExpr->op!=TK_COLUMN || pExpr->iTable!=base ){
1070 /* Can not use an index sort on anything that is not a column in the
1071 ** left-most table of the FROM clause */
1074 pColl = sqlite3ExprCollSeq(pParse, pExpr);
1076 pColl = db->pDfltColl;
1078 if( i<pIdx->nColumn ){
1079 iColumn = pIdx->aiColumn[i];
1080 if( iColumn==pIdx->pTable->iPKey ){
1083 iSortOrder = pIdx->aSortOrder[i];
1084 zColl = pIdx->azColl[i];
1088 zColl = pColl->zName;
1090 if( pExpr->iColumn!=iColumn || sqlite3StrICmp(pColl->zName, zColl) ){
1091 /* Term j of the ORDER BY clause does not match column i of the index */
1093 /* If an index column that is constrained by == fails to match an
1094 ** ORDER BY term, that is OK. Just ignore that column of the index
1097 }else if( i==pIdx->nColumn ){
1098 /* Index column i is the rowid. All other terms match. */
1101 /* If an index column fails to match and is not constrained by ==
1102 ** then the index cannot satisfy the ORDER BY constraint.
1107 assert( pIdx->aSortOrder!=0 );
1108 assert( pTerm->sortOrder==0 || pTerm->sortOrder==1 );
1109 assert( iSortOrder==0 || iSortOrder==1 );
1110 termSortOrder = iSortOrder ^ pTerm->sortOrder;
1112 if( termSortOrder!=sortOrder ){
1113 /* Indices can only be used if all ORDER BY terms past the
1114 ** equality constraints are all either DESC or ASC. */
1118 sortOrder = termSortOrder;
1122 if( iColumn<0 && !referencesOtherTables(pOrderBy, pMaskSet, j, base) ){
1123 /* If the indexed column is the primary key and everything matches
1124 ** so far and none of the ORDER BY terms to the right reference other
1125 ** tables in the join, then we are assured that the index can be used
1126 ** to sort because the primary key is unique and so none of the other
1127 ** columns will make any difference
1133 *pbRev = sortOrder!=0;
1135 /* All terms of the ORDER BY clause are covered by this index so
1136 ** this index can be used for sorting. */
1139 if( pIdx->onError!=OE_None && i==pIdx->nColumn
1140 && !referencesOtherTables(pOrderBy, pMaskSet, j, base) ){
1141 /* All terms of this index match some prefix of the ORDER BY clause
1142 ** and the index is UNIQUE and no terms on the tail of the ORDER BY
1143 ** clause reference other tables in a join. If this is all true then
1144 ** the order by clause is superfluous. */
1151 ** Check table to see if the ORDER BY clause in pOrderBy can be satisfied
1152 ** by sorting in order of ROWID. Return true if so and set *pbRev to be
1153 ** true for reverse ROWID and false for forward ROWID order.
1155 static int sortableByRowid(
1156 int base, /* Cursor number for table to be sorted */
1157 ExprList *pOrderBy, /* The ORDER BY clause */
1158 ExprMaskSet *pMaskSet, /* Mapping from tables to bitmaps */
1159 int *pbRev /* Set to 1 if ORDER BY is DESC */
1163 assert( pOrderBy!=0 );
1164 assert( pOrderBy->nExpr>0 );
1165 p = pOrderBy->a[0].pExpr;
1166 if( p->op==TK_COLUMN && p->iTable==base && p->iColumn==-1
1167 && !referencesOtherTables(pOrderBy, pMaskSet, 1, base) ){
1168 *pbRev = pOrderBy->a[0].sortOrder;
1175 ** Prepare a crude estimate of the logarithm of the input value.
1176 ** The results need not be exact. This is only used for estimating
1177 ** the total cost of performing operations with O(logN) or O(NlogN)
1178 ** complexity. Because N is just a guess, it is no great tragedy if
1179 ** logN is a little off.
1181 static double estLog(double N){
1192 ** Two routines for printing the content of an sqlite3_index_info
1193 ** structure. Used for testing and debugging only. If neither
1194 ** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines
1197 #if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(SQLITE_DEBUG)
1198 static void TRACE_IDX_INPUTS(sqlite3_index_info *p){
1200 if( !sqlite3WhereTrace ) return;
1201 for(i=0; i<p->nConstraint; i++){
1202 sqlite3DebugPrintf(" constraint[%d]: col=%d termid=%d op=%d usabled=%d\n",
1204 p->aConstraint[i].iColumn,
1205 p->aConstraint[i].iTermOffset,
1206 p->aConstraint[i].op,
1207 p->aConstraint[i].usable);
1209 for(i=0; i<p->nOrderBy; i++){
1210 sqlite3DebugPrintf(" orderby[%d]: col=%d desc=%d\n",
1212 p->aOrderBy[i].iColumn,
1213 p->aOrderBy[i].desc);
1216 static void TRACE_IDX_OUTPUTS(sqlite3_index_info *p){
1218 if( !sqlite3WhereTrace ) return;
1219 for(i=0; i<p->nConstraint; i++){
1220 sqlite3DebugPrintf(" usage[%d]: argvIdx=%d omit=%d\n",
1222 p->aConstraintUsage[i].argvIndex,
1223 p->aConstraintUsage[i].omit);
1225 sqlite3DebugPrintf(" idxNum=%d\n", p->idxNum);
1226 sqlite3DebugPrintf(" idxStr=%s\n", p->idxStr);
1227 sqlite3DebugPrintf(" orderByConsumed=%d\n", p->orderByConsumed);
1228 sqlite3DebugPrintf(" estimatedCost=%g\n", p->estimatedCost);
1231 #define TRACE_IDX_INPUTS(A)
1232 #define TRACE_IDX_OUTPUTS(A)
1235 #ifndef SQLITE_OMIT_VIRTUALTABLE
1237 ** Compute the best index for a virtual table.
1239 ** The best index is computed by the xBestIndex method of the virtual
1240 ** table module. This routine is really just a wrapper that sets up
1241 ** the sqlite3_index_info structure that is used to communicate with
1244 ** In a join, this routine might be called multiple times for the
1245 ** same virtual table. The sqlite3_index_info structure is created
1246 ** and initialized on the first invocation and reused on all subsequent
1247 ** invocations. The sqlite3_index_info structure is also used when
1248 ** code is generated to access the virtual table. The whereInfoDelete()
1249 ** routine takes care of freeing the sqlite3_index_info structure after
1250 ** everybody has finished with it.
1252 static double bestVirtualIndex(
1253 Parse *pParse, /* The parsing context */
1254 WhereClause *pWC, /* The WHERE clause */
1255 struct SrcList_item *pSrc, /* The FROM clause term to search */
1256 Bitmask notReady, /* Mask of cursors that are not available */
1257 ExprList *pOrderBy, /* The order by clause */
1258 int orderByUsable, /* True if we can potential sort */
1259 sqlite3_index_info **ppIdxInfo /* Index information passed to xBestIndex */
1261 Table *pTab = pSrc->pTab;
1262 sqlite3_vtab *pVtab = pTab->pVtab;
1263 sqlite3_index_info *pIdxInfo;
1264 struct sqlite3_index_constraint *pIdxCons;
1265 struct sqlite3_index_orderby *pIdxOrderBy;
1266 struct sqlite3_index_constraint_usage *pUsage;
1272 /* If the sqlite3_index_info structure has not been previously
1273 ** allocated and initialized for this virtual table, then allocate
1274 ** and initialize it now
1276 pIdxInfo = *ppIdxInfo;
1280 WHERETRACE(("Recomputing index info for %s...\n", pTab->zName));
1282 /* Count the number of possible WHERE clause constraints referring
1283 ** to this virtual table */
1284 for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
1285 if( pTerm->leftCursor != pSrc->iCursor ) continue;
1286 if( (pTerm->eOperator&(pTerm->eOperator-1))==0 );
1287 testcase( pTerm->eOperator==WO_IN );
1288 testcase( pTerm->eOperator==WO_ISNULL );
1289 if( pTerm->eOperator & (WO_IN|WO_ISNULL) ) continue;
1293 /* If the ORDER BY clause contains only columns in the current
1294 ** virtual table then allocate space for the aOrderBy part of
1295 ** the sqlite3_index_info structure.
1299 for(i=0; i<pOrderBy->nExpr; i++){
1300 Expr *pExpr = pOrderBy->a[i].pExpr;
1301 if( pExpr->op!=TK_COLUMN || pExpr->iTable!=pSrc->iCursor ) break;
1303 if( i==pOrderBy->nExpr ){
1304 nOrderBy = pOrderBy->nExpr;
1308 /* Allocate the sqlite3_index_info structure
1310 pIdxInfo = sqlite3DbMallocZero(pParse->db, sizeof(*pIdxInfo)
1311 + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm
1312 + sizeof(*pIdxOrderBy)*nOrderBy );
1314 sqlite3ErrorMsg(pParse, "out of memory");
1317 *ppIdxInfo = pIdxInfo;
1319 /* Initialize the structure. The sqlite3_index_info structure contains
1320 ** many fields that are declared "const" to prevent xBestIndex from
1321 ** changing them. We have to do some funky casting in order to
1322 ** initialize those fields.
1324 pIdxCons = (struct sqlite3_index_constraint*)&pIdxInfo[1];
1325 pIdxOrderBy = (struct sqlite3_index_orderby*)&pIdxCons[nTerm];
1326 pUsage = (struct sqlite3_index_constraint_usage*)&pIdxOrderBy[nOrderBy];
1327 *(int*)&pIdxInfo->nConstraint = nTerm;
1328 *(int*)&pIdxInfo->nOrderBy = nOrderBy;
1329 *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint = pIdxCons;
1330 *(struct sqlite3_index_orderby**)&pIdxInfo->aOrderBy = pIdxOrderBy;
1331 *(struct sqlite3_index_constraint_usage**)&pIdxInfo->aConstraintUsage =
1334 for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
1335 if( pTerm->leftCursor != pSrc->iCursor ) continue;
1336 if( (pTerm->eOperator&(pTerm->eOperator-1))==0 );
1337 testcase( pTerm->eOperator==WO_IN );
1338 testcase( pTerm->eOperator==WO_ISNULL );
1339 if( pTerm->eOperator & (WO_IN|WO_ISNULL) ) continue;
1340 pIdxCons[j].iColumn = pTerm->leftColumn;
1341 pIdxCons[j].iTermOffset = i;
1342 pIdxCons[j].op = pTerm->eOperator;
1343 /* The direct assignment in the previous line is possible only because
1344 ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical. The
1345 ** following asserts verify this fact. */
1346 assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ );
1347 assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT );
1348 assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE );
1349 assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT );
1350 assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE );
1351 assert( WO_MATCH==SQLITE_INDEX_CONSTRAINT_MATCH );
1352 assert( pTerm->eOperator & (WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_MATCH) );
1355 for(i=0; i<nOrderBy; i++){
1356 Expr *pExpr = pOrderBy->a[i].pExpr;
1357 pIdxOrderBy[i].iColumn = pExpr->iColumn;
1358 pIdxOrderBy[i].desc = pOrderBy->a[i].sortOrder;
1362 /* At this point, the sqlite3_index_info structure that pIdxInfo points
1363 ** to will have been initialized, either during the current invocation or
1364 ** during some prior invocation. Now we just have to customize the
1365 ** details of pIdxInfo for the current invocation and pass it to
1369 /* The module name must be defined. Also, by this point there must
1370 ** be a pointer to an sqlite3_vtab structure. Otherwise
1371 ** sqlite3ViewGetColumnNames() would have picked up the error.
1373 assert( pTab->azModuleArg && pTab->azModuleArg[0] );
1376 if( pTab->pVtab==0 ){
1377 sqlite3ErrorMsg(pParse, "undefined module %s for table %s",
1378 pTab->azModuleArg[0], pTab->zName);
1383 /* Set the aConstraint[].usable fields and initialize all
1384 ** output variables to zero.
1386 ** aConstraint[].usable is true for constraints where the right-hand
1387 ** side contains only references to tables to the left of the current
1388 ** table. In other words, if the constraint is of the form:
1392 ** and we are evaluating a join, then the constraint on column is
1393 ** only valid if all tables referenced in expr occur to the left
1394 ** of the table containing column.
1396 ** The aConstraints[] array contains entries for all constraints
1397 ** on the current table. That way we only have to compute it once
1398 ** even though we might try to pick the best index multiple times.
1399 ** For each attempt at picking an index, the order of tables in the
1400 ** join might be different so we have to recompute the usable flag
1403 pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
1404 pUsage = pIdxInfo->aConstraintUsage;
1405 for(i=0; i<pIdxInfo->nConstraint; i++, pIdxCons++){
1406 j = pIdxCons->iTermOffset;
1408 pIdxCons->usable = (pTerm->prereqRight & notReady)==0;
1410 memset(pUsage, 0, sizeof(pUsage[0])*pIdxInfo->nConstraint);
1411 if( pIdxInfo->needToFreeIdxStr ){
1412 sqlite3_free(pIdxInfo->idxStr);
1414 pIdxInfo->idxStr = 0;
1415 pIdxInfo->idxNum = 0;
1416 pIdxInfo->needToFreeIdxStr = 0;
1417 pIdxInfo->orderByConsumed = 0;
1418 pIdxInfo->estimatedCost = SQLITE_BIG_DBL / 2.0;
1419 nOrderBy = pIdxInfo->nOrderBy;
1420 if( pIdxInfo->nOrderBy && !orderByUsable ){
1421 *(int*)&pIdxInfo->nOrderBy = 0;
1424 (void)sqlite3SafetyOff(pParse->db);
1425 WHERETRACE(("xBestIndex for %s\n", pTab->zName));
1426 TRACE_IDX_INPUTS(pIdxInfo);
1427 rc = pVtab->pModule->xBestIndex(pVtab, pIdxInfo);
1428 TRACE_IDX_OUTPUTS(pIdxInfo);
1429 (void)sqlite3SafetyOn(pParse->db);
1431 if( rc!=SQLITE_OK ){
1432 if( rc==SQLITE_NOMEM ){
1433 pParse->db->mallocFailed = 1;
1434 }else if( !pVtab->zErrMsg ){
1435 sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc));
1437 sqlite3ErrorMsg(pParse, "%s", pVtab->zErrMsg);
1440 sqlite3DbFree(pParse->db, pVtab->zErrMsg);
1443 for(i=0; i<pIdxInfo->nConstraint; i++){
1444 if( !pIdxInfo->aConstraint[i].usable && pUsage[i].argvIndex>0 ){
1445 sqlite3ErrorMsg(pParse,
1446 "table %s: xBestIndex returned an invalid plan", pTab->zName);
1451 *(int*)&pIdxInfo->nOrderBy = nOrderBy;
1452 return pIdxInfo->estimatedCost;
1454 #endif /* SQLITE_OMIT_VIRTUALTABLE */
1457 ** Find the best index for accessing a particular table. Return a pointer
1458 ** to the index, flags that describe how the index should be used, the
1459 ** number of equality constraints, and the "cost" for this index.
1461 ** The lowest cost index wins. The cost is an estimate of the amount of
1462 ** CPU and disk I/O need to process the request using the selected index.
1463 ** Factors that influence cost include:
1465 ** * The estimated number of rows that will be retrieved. (The
1466 ** fewer the better.)
1468 ** * Whether or not sorting must occur.
1470 ** * Whether or not there must be separate lookups in the
1471 ** index and in the main table.
1474 static double bestIndex(
1475 Parse *pParse, /* The parsing context */
1476 WhereClause *pWC, /* The WHERE clause */
1477 struct SrcList_item *pSrc, /* The FROM clause term to search */
1478 Bitmask notReady, /* Mask of cursors that are not available */
1479 ExprList *pOrderBy, /* The order by clause */
1480 Index **ppIndex, /* Make *ppIndex point to the best index */
1481 int *pFlags, /* Put flags describing this choice in *pFlags */
1482 int *pnEq /* Put the number of == or IN constraints here */
1485 Index *bestIdx = 0; /* Index that gives the lowest cost */
1486 double lowestCost; /* The cost of using bestIdx */
1487 int bestFlags = 0; /* Flags associated with bestIdx */
1488 int bestNEq = 0; /* Best value for nEq */
1489 int iCur = pSrc->iCursor; /* The cursor of the table to be accessed */
1490 Index *pProbe; /* An index we are evaluating */
1491 int rev; /* True to scan in reverse order */
1492 int flags; /* Flags associated with pProbe */
1493 int nEq; /* Number of == or IN constraints */
1494 int eqTermMask; /* Mask of valid equality operators */
1495 double cost; /* Cost of using pProbe */
1497 WHERETRACE(("bestIndex: tbl=%s notReady=%llx\n", pSrc->pTab->zName, notReady));
1498 lowestCost = SQLITE_BIG_DBL;
1499 pProbe = pSrc->pTab->pIndex;
1501 /* If the table has no indices and there are no terms in the where
1502 ** clause that refer to the ROWID, then we will never be able to do
1503 ** anything other than a full table scan on this table. We might as
1504 ** well put it first in the join order. That way, perhaps it can be
1505 ** referenced by other tables in the join.
1508 findTerm(pWC, iCur, -1, 0, WO_EQ|WO_IN|WO_LT|WO_LE|WO_GT|WO_GE,0)==0 &&
1509 (pOrderBy==0 || !sortableByRowid(iCur, pOrderBy, pWC->pMaskSet, &rev)) ){
1516 /* Check for a rowid=EXPR or rowid IN (...) constraints
1518 pTerm = findTerm(pWC, iCur, -1, notReady, WO_EQ|WO_IN, 0);
1522 bestFlags = WHERE_ROWID_EQ;
1523 if( pTerm->eOperator & WO_EQ ){
1524 /* Rowid== is always the best pick. Look no further. Because only
1525 ** a single row is generated, output is always in sorted order */
1526 *pFlags = WHERE_ROWID_EQ | WHERE_UNIQUE;
1528 WHERETRACE(("... best is rowid\n"));
1530 }else if( (pExpr = pTerm->pExpr)->pList!=0 ){
1531 /* Rowid IN (LIST): cost is NlogN where N is the number of list
1533 lowestCost = pExpr->pList->nExpr;
1534 lowestCost *= estLog(lowestCost);
1536 /* Rowid IN (SELECT): cost is NlogN where N is the number of rows
1537 ** in the result of the inner select. We have no way to estimate
1538 ** that value so make a wild guess. */
1541 WHERETRACE(("... rowid IN cost: %.9g\n", lowestCost));
1544 /* Estimate the cost of a table scan. If we do not know how many
1545 ** entries are in the table, use 1 million as a guess.
1547 cost = pProbe ? pProbe->aiRowEst[0] : 1000000;
1548 WHERETRACE(("... table scan base cost: %.9g\n", cost));
1549 flags = WHERE_ROWID_RANGE;
1551 /* Check for constraints on a range of rowids in a table scan.
1553 pTerm = findTerm(pWC, iCur, -1, notReady, WO_LT|WO_LE|WO_GT|WO_GE, 0);
1555 if( findTerm(pWC, iCur, -1, notReady, WO_LT|WO_LE, 0) ){
1556 flags |= WHERE_TOP_LIMIT;
1557 cost /= 3; /* Guess that rowid<EXPR eliminates two-thirds or rows */
1559 if( findTerm(pWC, iCur, -1, notReady, WO_GT|WO_GE, 0) ){
1560 flags |= WHERE_BTM_LIMIT;
1561 cost /= 3; /* Guess that rowid>EXPR eliminates two-thirds of rows */
1563 WHERETRACE(("... rowid range reduces cost to %.9g\n", cost));
1568 /* If the table scan does not satisfy the ORDER BY clause, increase
1569 ** the cost by NlogN to cover the expense of sorting. */
1571 if( sortableByRowid(iCur, pOrderBy, pWC->pMaskSet, &rev) ){
1572 flags |= WHERE_ORDERBY|WHERE_ROWID_RANGE;
1574 flags |= WHERE_REVERSE;
1577 cost += cost*estLog(cost);
1578 WHERETRACE(("... sorting increases cost to %.9g\n", cost));
1581 if( cost<lowestCost ){
1586 /* If the pSrc table is the right table of a LEFT JOIN then we may not
1587 ** use an index to satisfy IS NULL constraints on that table. This is
1588 ** because columns might end up being NULL if the table does not match -
1589 ** a circumstance which the index cannot help us discover. Ticket #2177.
1591 if( (pSrc->jointype & JT_LEFT)!=0 ){
1592 eqTermMask = WO_EQ|WO_IN;
1594 eqTermMask = WO_EQ|WO_IN|WO_ISNULL;
1597 /* Look at each index.
1599 for(; pProbe; pProbe=pProbe->pNext){
1600 int i; /* Loop counter */
1601 double inMultiplier = 1;
1603 WHERETRACE(("... index %s:\n", pProbe->zName));
1605 /* Count the number of columns in the index that are satisfied
1606 ** by x=EXPR constraints or x IN (...) constraints.
1609 for(i=0; i<pProbe->nColumn; i++){
1610 int j = pProbe->aiColumn[i];
1611 pTerm = findTerm(pWC, iCur, j, notReady, eqTermMask, pProbe);
1612 if( pTerm==0 ) break;
1613 flags |= WHERE_COLUMN_EQ;
1614 if( pTerm->eOperator & WO_IN ){
1615 Expr *pExpr = pTerm->pExpr;
1616 flags |= WHERE_COLUMN_IN;
1617 if( pExpr->pSelect!=0 ){
1619 }else if( ALWAYS(pExpr->pList) ){
1620 inMultiplier *= pExpr->pList->nExpr + 1;
1624 cost = pProbe->aiRowEst[i] * inMultiplier * estLog(inMultiplier);
1626 if( pProbe->onError!=OE_None && (flags & WHERE_COLUMN_IN)==0
1627 && nEq==pProbe->nColumn ){
1628 flags |= WHERE_UNIQUE;
1630 WHERETRACE(("...... nEq=%d inMult=%.9g cost=%.9g\n",nEq,inMultiplier,cost));
1632 /* Look for range constraints
1634 if( nEq<pProbe->nColumn ){
1635 int j = pProbe->aiColumn[nEq];
1636 pTerm = findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE|WO_GT|WO_GE, pProbe);
1638 flags |= WHERE_COLUMN_RANGE;
1639 if( findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE, pProbe) ){
1640 flags |= WHERE_TOP_LIMIT;
1643 if( findTerm(pWC, iCur, j, notReady, WO_GT|WO_GE, pProbe) ){
1644 flags |= WHERE_BTM_LIMIT;
1647 WHERETRACE(("...... range reduces cost to %.9g\n", cost));
1651 /* Add the additional cost of sorting if that is a factor.
1654 if( (flags & WHERE_COLUMN_IN)==0 &&
1655 isSortingIndex(pParse,pWC->pMaskSet,pProbe,iCur,pOrderBy,nEq,&rev) ){
1657 flags = WHERE_COLUMN_RANGE;
1659 flags |= WHERE_ORDERBY;
1661 flags |= WHERE_REVERSE;
1664 cost += cost*estLog(cost);
1665 WHERETRACE(("...... orderby increases cost to %.9g\n", cost));
1669 /* Check to see if we can get away with using just the index without
1670 ** ever reading the table. If that is the case, then halve the
1671 ** cost of this index.
1673 if( flags && pSrc->colUsed < (((Bitmask)1)<<(BMS-1)) ){
1674 Bitmask m = pSrc->colUsed;
1676 for(j=0; j<pProbe->nColumn; j++){
1677 int x = pProbe->aiColumn[j];
1679 m &= ~(((Bitmask)1)<<x);
1683 flags |= WHERE_IDX_ONLY;
1685 WHERETRACE(("...... idx-only reduces cost to %.9g\n", cost));
1689 /* If this index has achieved the lowest cost so far, then use it.
1691 if( flags && cost < lowestCost ){
1699 /* Report the best result
1702 WHERETRACE(("best index is %s, cost=%.9g, flags=%x, nEq=%d\n",
1703 bestIdx ? bestIdx->zName : "(none)", lowestCost, bestFlags, bestNEq));
1704 *pFlags = bestFlags | eqTermMask;
1711 ** Disable a term in the WHERE clause. Except, do not disable the term
1712 ** if it controls a LEFT OUTER JOIN and it did not originate in the ON
1713 ** or USING clause of that join.
1715 ** Consider the term t2.z='ok' in the following queries:
1717 ** (1) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok'
1718 ** (2) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok'
1719 ** (3) SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok'
1721 ** The t2.z='ok' is disabled in the in (2) because it originates
1722 ** in the ON clause. The term is disabled in (3) because it is not part
1723 ** of a LEFT OUTER JOIN. In (1), the term is not disabled.
1725 ** Disabling a term causes that term to not be tested in the inner loop
1726 ** of the join. Disabling is an optimization. When terms are satisfied
1727 ** by indices, we disable them to prevent redundant tests in the inner
1728 ** loop. We would get the correct results if nothing were ever disabled,
1729 ** but joins might run a little slower. The trick is to disable as much
1730 ** as we can without disabling too much. If we disabled in (1), we'd get
1731 ** the wrong answer. See ticket #813.
1733 static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){
1735 && ALWAYS((pTerm->flags & TERM_CODED)==0)
1736 && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin))
1738 pTerm->flags |= TERM_CODED;
1739 if( pTerm->iParent>=0 ){
1740 WhereTerm *pOther = &pTerm->pWC->a[pTerm->iParent];
1741 if( (--pOther->nChild)==0 ){
1742 disableTerm(pLevel, pOther);
1749 ** Apply the affinities associated with the first n columns of index
1750 ** pIdx to the values in the n registers starting at base.
1752 static void codeApplyAffinity(Parse *pParse, int base, int n, Index *pIdx){
1754 Vdbe *v = pParse->pVdbe;
1756 sqlite3VdbeAddOp2(v, OP_Affinity, base, n);
1757 sqlite3IndexAffinityStr(v, pIdx);
1758 sqlite3ExprCacheAffinityChange(pParse, base, n);
1764 ** Generate code for a single equality term of the WHERE clause. An equality
1765 ** term can be either X=expr or X IN (...). pTerm is the term to be
1768 ** The current value for the constraint is left in register iReg.
1770 ** For a constraint of the form X=expr, the expression is evaluated and its
1771 ** result is left on the stack. For constraints of the form X IN (...)
1772 ** this routine sets up a loop that will iterate over all values of X.
1774 static int codeEqualityTerm(
1775 Parse *pParse, /* The parsing context */
1776 WhereTerm *pTerm, /* The term of the WHERE clause to be coded */
1777 WhereLevel *pLevel, /* When level of the FROM clause we are working on */
1778 int iTarget /* Attempt to leave results in this register */
1780 Expr *pX = pTerm->pExpr;
1781 Vdbe *v = pParse->pVdbe;
1782 int iReg; /* Register holding results */
1785 iReg = iTarget = sqlite3GetTempReg(pParse);
1787 if( pX->op==TK_EQ ){
1788 iReg = sqlite3ExprCodeTarget(pParse, pX->pRight, iTarget);
1789 }else if( pX->op==TK_ISNULL ){
1791 sqlite3VdbeAddOp2(v, OP_Null, 0, iReg);
1792 #ifndef SQLITE_OMIT_SUBQUERY
1798 assert( pX->op==TK_IN );
1800 eType = sqlite3FindInIndex(pParse, pX, 0);
1802 sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0);
1803 VdbeComment((v, "%.*s", pX->span.n, pX->span.z));
1804 if( pLevel->nIn==0 ){
1805 pLevel->nxt = sqlite3VdbeMakeLabel(v);
1808 pLevel->aInLoop = sqlite3DbReallocOrFree(pParse->db, pLevel->aInLoop,
1809 sizeof(pLevel->aInLoop[0])*pLevel->nIn);
1810 pIn = pLevel->aInLoop;
1812 pIn += pLevel->nIn - 1;
1814 if( eType==IN_INDEX_ROWID ){
1815 pIn->topAddr = sqlite3VdbeAddOp2(v, OP_Rowid, iTab, iReg);
1817 pIn->topAddr = sqlite3VdbeAddOp3(v, OP_Column, iTab, 0, iReg);
1819 sqlite3VdbeAddOp1(v, OP_IsNull, iReg);
1825 disableTerm(pLevel, pTerm);
1830 ** Generate code that will evaluate all == and IN constraints for an
1831 ** index. The values for all constraints are left on the stack.
1833 ** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c).
1834 ** Suppose the WHERE clause is this: a==5 AND b IN (1,2,3) AND c>5 AND c<10
1835 ** The index has as many as three equality constraints, but in this
1836 ** example, the third "c" value is an inequality. So only two
1837 ** constraints are coded. This routine will generate code to evaluate
1838 ** a==5 and b IN (1,2,3). The current values for a and b will be left
1839 ** on the stack - a is the deepest and b the shallowest.
1841 ** In the example above nEq==2. But this subroutine works for any value
1842 ** of nEq including 0. If nEq==0, this routine is nearly a no-op.
1843 ** The only thing it does is allocate the pLevel->iMem memory cell.
1845 ** This routine always allocates at least one memory cell and puts
1846 ** the address of that memory cell in pLevel->iMem. The code that
1847 ** calls this routine will use pLevel->iMem to store the termination
1848 ** key value of the loop. If one or more IN operators appear, then
1849 ** this routine allocates an additional nEq memory cells for internal
1852 static int codeAllEqualityTerms(
1853 Parse *pParse, /* Parsing context */
1854 WhereLevel *pLevel, /* Which nested loop of the FROM we are coding */
1855 WhereClause *pWC, /* The WHERE clause */
1856 Bitmask notReady, /* Which parts of FROM have not yet been coded */
1857 int nExtraReg /* Number of extra registers to allocate */
1859 int nEq = pLevel->nEq; /* The number of == or IN constraints to code */
1860 Vdbe *v = pParse->pVdbe; /* The virtual machine under construction */
1861 Index *pIdx = pLevel->pIdx; /* The index being used for this loop */
1862 int iCur = pLevel->iTabCur; /* The cursor of the table */
1863 WhereTerm *pTerm; /* A single constraint term */
1864 int j; /* Loop counter */
1865 int regBase; /* Base register */
1867 /* Figure out how many memory cells we will need then allocate them.
1868 ** We always need at least one used to store the loop terminator
1869 ** value. If there are IN operators we'll need one for each == or
1872 pLevel->iMem = pParse->nMem + 1;
1873 regBase = pParse->nMem + 2;
1874 pParse->nMem += pLevel->nEq + 2 + nExtraReg;
1876 /* Evaluate the equality constraints
1878 assert( pIdx->nColumn>=nEq );
1879 for(j=0; j<nEq; j++){
1881 int k = pIdx->aiColumn[j];
1882 pTerm = findTerm(pWC, iCur, k, notReady, pLevel->flags, pIdx);
1883 if( NEVER(pTerm==0) ) break;
1884 assert( (pTerm->flags & TERM_CODED)==0 );
1885 r1 = codeEqualityTerm(pParse, pTerm, pLevel, regBase+j);
1886 if( r1!=regBase+j ){
1887 sqlite3VdbeAddOp2(v, OP_SCopy, r1, regBase+j);
1889 testcase( pTerm->eOperator & WO_ISNULL );
1890 testcase( pTerm->eOperator & WO_IN );
1891 if( (pTerm->eOperator & (WO_ISNULL|WO_IN))==0 ){
1892 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+j, pLevel->brk);
1898 #if defined(SQLITE_TEST)
1900 ** The following variable holds a text description of query plan generated
1901 ** by the most recent call to sqlite3WhereBegin(). Each call to WhereBegin
1902 ** overwrites the previous. This information is used for testing and
1905 char sqlite3_query_plan[BMS*2*40]; /* Text of the join */
1906 static int nQPlan = 0; /* Next free slow in _query_plan[] */
1908 #endif /* SQLITE_TEST */
1912 ** Free a WhereInfo structure
1914 static void whereInfoFree(WhereInfo *pWInfo){
1917 sqlite3 *db = pWInfo->pParse->db;
1918 for(i=0; i<pWInfo->nLevel; i++){
1919 sqlite3_index_info *pInfo = pWInfo->a[i].pIdxInfo;
1921 assert( pInfo->needToFreeIdxStr==0 );
1922 sqlite3DbFree(db, pInfo);
1925 sqlite3DbFree(db, pWInfo);
1931 ** Generate the beginning of the loop used for WHERE clause processing.
1932 ** The return value is a pointer to an opaque structure that contains
1933 ** information needed to terminate the loop. Later, the calling routine
1934 ** should invoke sqlite3WhereEnd() with the return value of this function
1935 ** in order to complete the WHERE clause processing.
1937 ** If an error occurs, this routine returns NULL.
1939 ** The basic idea is to do a nested loop, one loop for each table in
1940 ** the FROM clause of a select. (INSERT and UPDATE statements are the
1941 ** same as a SELECT with only a single table in the FROM clause.) For
1942 ** example, if the SQL is this:
1944 ** SELECT * FROM t1, t2, t3 WHERE ...;
1946 ** Then the code generated is conceptually like the following:
1948 ** foreach row1 in t1 do \ Code generated
1949 ** foreach row2 in t2 do |-- by sqlite3WhereBegin()
1950 ** foreach row3 in t3 do /
1952 ** end \ Code generated
1953 ** end |-- by sqlite3WhereEnd()
1956 ** Note that the loops might not be nested in the order in which they
1957 ** appear in the FROM clause if a different order is better able to make
1958 ** use of indices. Note also that when the IN operator appears in
1959 ** the WHERE clause, it might result in additional nested loops for
1960 ** scanning through all values on the right-hand side of the IN.
1962 ** There are Btree cursors associated with each table. t1 uses cursor
1963 ** number pTabList->a[0].iCursor. t2 uses the cursor pTabList->a[1].iCursor.
1964 ** And so forth. This routine generates code to open those VDBE cursors
1965 ** and sqlite3WhereEnd() generates the code to close them.
1967 ** The code that sqlite3WhereBegin() generates leaves the cursors named
1968 ** in pTabList pointing at their appropriate entries. The [...] code
1969 ** can use OP_Column and OP_Rowid opcodes on these cursors to extract
1970 ** data from the various tables of the loop.
1972 ** If the WHERE clause is empty, the foreach loops must each scan their
1973 ** entire tables. Thus a three-way join is an O(N^3) operation. But if
1974 ** the tables have indices and there are terms in the WHERE clause that
1975 ** refer to those indices, a complete table scan can be avoided and the
1976 ** code will run much faster. Most of the work of this routine is checking
1977 ** to see if there are indices that can be used to speed up the loop.
1979 ** Terms of the WHERE clause are also used to limit which rows actually
1980 ** make it to the "..." in the middle of the loop. After each "foreach",
1981 ** terms of the WHERE clause that use only terms in that loop and outer
1982 ** loops are evaluated and if false a jump is made around all subsequent
1983 ** inner loops (or around the "..." if the test occurs within the inner-
1988 ** An outer join of tables t1 and t2 is conceptally coded as follows:
1990 ** foreach row1 in t1 do
1992 ** foreach row2 in t2 do
1998 ** move the row2 cursor to a null row
2003 ** ORDER BY CLAUSE PROCESSING
2005 ** *ppOrderBy is a pointer to the ORDER BY clause of a SELECT statement,
2006 ** if there is one. If there is no ORDER BY clause or if this routine
2007 ** is called from an UPDATE or DELETE statement, then ppOrderBy is NULL.
2009 ** If an index can be used so that the natural output order of the table
2010 ** scan is correct for the ORDER BY clause, then that index is used and
2011 ** *ppOrderBy is set to NULL. This is an optimization that prevents an
2012 ** unnecessary sort of the result set if an index appropriate for the
2013 ** ORDER BY clause already exists.
2015 ** If the where clause loops cannot be arranged to provide the correct
2016 ** output order, then the *ppOrderBy is unchanged.
2018 WhereInfo *sqlite3WhereBegin(
2019 Parse *pParse, /* The parser context */
2020 SrcList *pTabList, /* A list of all tables to be scanned */
2021 Expr *pWhere, /* The WHERE clause */
2022 ExprList **ppOrderBy, /* An ORDER BY clause, or NULL */
2023 u8 wflags /* One of the WHERE_* flags defined in sqliteInt.h */
2025 int i; /* Loop counter */
2026 WhereInfo *pWInfo; /* Will become the return value of this function */
2027 Vdbe *v = pParse->pVdbe; /* The virtual database engine */
2028 int brk, cont = 0; /* Addresses used during code generation */
2029 Bitmask notReady; /* Cursors that are not yet positioned */
2030 WhereTerm *pTerm; /* A single term in the WHERE clause */
2031 ExprMaskSet maskSet; /* The expression mask set */
2032 WhereClause wc; /* The WHERE clause is divided into these terms */
2033 struct SrcList_item *pTabItem; /* A single entry from pTabList */
2034 WhereLevel *pLevel; /* A single level in the pWInfo list */
2035 int iFrom; /* First unused FROM clause element */
2036 int andFlags; /* AND-ed combination of all wc.a[].flags */
2037 sqlite3 *db; /* Database connection */
2038 ExprList *pOrderBy = 0;
2040 /* The number of tables in the FROM clause is limited by the number of
2041 ** bits in a Bitmask
2043 if( pTabList->nSrc>BMS ){
2044 sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS);
2049 pOrderBy = *ppOrderBy;
2052 /* Split the WHERE clause into separate subexpressions where each
2053 ** subexpression is separated by an AND operator.
2055 initMaskSet(&maskSet);
2056 whereClauseInit(&wc, pParse, &maskSet);
2057 sqlite3ExprCodeConstants(pParse, pWhere);
2058 whereSplit(&wc, pWhere, TK_AND);
2060 /* Allocate and initialize the WhereInfo structure that will become the
2064 pWInfo = sqlite3DbMallocZero(db,
2065 sizeof(WhereInfo) + pTabList->nSrc*sizeof(WhereLevel));
2066 if( db->mallocFailed ){
2067 goto whereBeginNoMem;
2069 pWInfo->nLevel = pTabList->nSrc;
2070 pWInfo->pParse = pParse;
2071 pWInfo->pTabList = pTabList;
2072 pWInfo->iBreak = sqlite3VdbeMakeLabel(v);
2074 /* Special case: a WHERE clause that is constant. Evaluate the
2075 ** expression and either jump over all of the code or fall thru.
2077 if( pWhere && (pTabList->nSrc==0 || sqlite3ExprIsConstantNotJoin(pWhere)) ){
2078 sqlite3ExprIfFalse(pParse, pWhere, pWInfo->iBreak, SQLITE_JUMPIFNULL);
2082 /* Assign a bit from the bitmask to every term in the FROM clause.
2084 ** When assigning bitmask values to FROM clause cursors, it must be
2085 ** the case that if X is the bitmask for the N-th FROM clause term then
2086 ** the bitmask for all FROM clause terms to the left of the N-th term
2087 ** is (X-1). An expression from the ON clause of a LEFT JOIN can use
2088 ** its Expr.iRightJoinTable value to find the bitmask of the right table
2089 ** of the join. Subtracting one from the right table bitmask gives a
2090 ** bitmask for all tables to the left of the join. Knowing the bitmask
2091 ** for all tables to the left of a left join is important. Ticket #3015.
2093 for(i=0; i<pTabList->nSrc; i++){
2094 createMask(&maskSet, pTabList->a[i].iCursor);
2098 Bitmask toTheLeft = 0;
2099 for(i=0; i<pTabList->nSrc; i++){
2100 Bitmask m = getMask(&maskSet, pTabList->a[i].iCursor);
2101 assert( (m-1)==toTheLeft );
2107 /* Analyze all of the subexpressions. Note that exprAnalyze() might
2108 ** add new virtual terms onto the end of the WHERE clause. We do not
2109 ** want to analyze these virtual terms, so start analyzing at the end
2110 ** and work forward so that the added virtual terms are never processed.
2112 exprAnalyzeAll(pTabList, &wc);
2113 if( db->mallocFailed ){
2114 goto whereBeginNoMem;
2117 /* Chose the best index to use for each table in the FROM clause.
2119 ** This loop fills in the following fields:
2121 ** pWInfo->a[].pIdx The index to use for this level of the loop.
2122 ** pWInfo->a[].flags WHERE_xxx flags associated with pIdx
2123 ** pWInfo->a[].nEq The number of == and IN constraints
2124 ** pWInfo->a[].iFrom When term of the FROM clause is being coded
2125 ** pWInfo->a[].iTabCur The VDBE cursor for the database table
2126 ** pWInfo->a[].iIdxCur The VDBE cursor for the index
2128 ** This loop also figures out the nesting order of tables in the FROM
2131 notReady = ~(Bitmask)0;
2132 pTabItem = pTabList->a;
2135 WHERETRACE(("*** Optimizer Start ***\n"));
2136 for(i=iFrom=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){
2137 Index *pIdx; /* Index for FROM table at pTabItem */
2138 int flags; /* Flags asssociated with pIdx */
2139 int nEq; /* Number of == or IN constraints */
2140 double cost; /* The cost for pIdx */
2141 int j; /* For looping over FROM tables */
2142 Index *pBest = 0; /* The best index seen so far */
2143 int bestFlags = 0; /* Flags associated with pBest */
2144 int bestNEq = 0; /* nEq associated with pBest */
2145 double lowestCost; /* Cost of the pBest */
2146 int bestJ = 0; /* The value of j */
2147 Bitmask m; /* Bitmask value for j or bestJ */
2148 int once = 0; /* True when first table is seen */
2149 sqlite3_index_info *pIndex; /* Current virtual index */
2151 lowestCost = SQLITE_BIG_DBL;
2152 for(j=iFrom, pTabItem=&pTabList->a[j]; j<pTabList->nSrc; j++, pTabItem++){
2153 int doNotReorder; /* True if this table should not be reordered */
2155 doNotReorder = (pTabItem->jointype & (JT_LEFT|JT_CROSS))!=0;
2156 if( once && doNotReorder ) break;
2157 m = getMask(&maskSet, pTabItem->iCursor);
2158 if( (m & notReady)==0 ){
2159 if( j==iFrom ) iFrom++;
2162 assert( pTabItem->pTab );
2163 #ifndef SQLITE_OMIT_VIRTUALTABLE
2164 if( IsVirtual(pTabItem->pTab) ){
2165 sqlite3_index_info **ppIdxInfo = &pWInfo->a[j].pIdxInfo;
2166 cost = bestVirtualIndex(pParse, &wc, pTabItem, notReady,
2167 ppOrderBy ? *ppOrderBy : 0, i==0,
2169 flags = WHERE_VIRTUALTABLE;
2170 pIndex = *ppIdxInfo;
2171 if( pIndex && pIndex->orderByConsumed ){
2172 flags = WHERE_VIRTUALTABLE | WHERE_ORDERBY;
2176 if( (SQLITE_BIG_DBL/2.0)<cost ){
2177 /* The cost is not allowed to be larger than SQLITE_BIG_DBL (the
2178 ** inital value of lowestCost in this loop. If it is, then
2179 ** the (cost<lowestCost) test below will never be true and
2180 ** pLevel->pBestIdx never set.
2182 cost = (SQLITE_BIG_DBL/2.0);
2187 cost = bestIndex(pParse, &wc, pTabItem, notReady,
2188 (i==0 && ppOrderBy) ? *ppOrderBy : 0,
2189 &pIdx, &flags, &nEq);
2192 if( cost<lowestCost ){
2199 pLevel->pBestIdx = pIndex;
2201 if( doNotReorder ) break;
2203 WHERETRACE(("*** Optimizer selects table %d for loop %d\n", bestJ,
2205 if( (bestFlags & WHERE_ORDERBY)!=0 ){
2208 andFlags &= bestFlags;
2209 pLevel->flags = bestFlags;
2210 pLevel->pIdx = pBest;
2211 pLevel->nEq = bestNEq;
2212 pLevel->aInLoop = 0;
2215 pLevel->iIdxCur = pParse->nTab++;
2217 pLevel->iIdxCur = -1;
2219 notReady &= ~getMask(&maskSet, pTabList->a[bestJ].iCursor);
2220 pLevel->iFrom = bestJ;
2222 WHERETRACE(("*** Optimizer Finished ***\n"));
2224 /* If the total query only selects a single row, then the ORDER BY
2225 ** clause is irrelevant.
2227 if( (andFlags & WHERE_UNIQUE)!=0 && ppOrderBy ){
2231 /* If the caller is an UPDATE or DELETE statement that is requesting
2232 ** to use a one-pass algorithm, determine if this is appropriate.
2233 ** The one-pass algorithm only works if the WHERE clause constraints
2234 ** the statement to update a single row.
2236 assert( (wflags & WHERE_ONEPASS_DESIRED)==0 || pWInfo->nLevel==1 );
2237 if( (wflags & WHERE_ONEPASS_DESIRED)!=0 && (andFlags & WHERE_UNIQUE)!=0 ){
2238 pWInfo->okOnePass = 1;
2239 pWInfo->a[0].flags &= ~WHERE_IDX_ONLY;
2242 /* Open all tables in the pTabList and any indices selected for
2243 ** searching those tables.
2245 sqlite3CodeVerifySchema(pParse, -1); /* Insert the cookie verifier Goto */
2246 for(i=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){
2247 Table *pTab; /* Table to open */
2248 Index *pIx; /* Index used to access pTab (if any) */
2249 int iDb; /* Index of database containing table/index */
2250 int iIdxCur = pLevel->iIdxCur;
2252 #ifndef SQLITE_OMIT_EXPLAIN
2253 if( pParse->explain==2 ){
2255 struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom];
2256 zMsg = sqlite3MPrintf(db, "TABLE %s", pItem->zName);
2257 if( pItem->zAlias ){
2258 zMsg = sqlite3MAppendf(db, zMsg, "%s AS %s", zMsg, pItem->zAlias);
2260 if( (pIx = pLevel->pIdx)!=0 ){
2261 zMsg = sqlite3MAppendf(db, zMsg, "%s WITH INDEX %s", zMsg, pIx->zName);
2262 }else if( pLevel->flags & (WHERE_ROWID_EQ|WHERE_ROWID_RANGE) ){
2263 zMsg = sqlite3MAppendf(db, zMsg, "%s USING PRIMARY KEY", zMsg);
2265 #ifndef SQLITE_OMIT_VIRTUALTABLE
2266 else if( pLevel->pBestIdx ){
2267 sqlite3_index_info *pBestIdx = pLevel->pBestIdx;
2268 zMsg = sqlite3MAppendf(db, zMsg, "%s VIRTUAL TABLE INDEX %d:%s", zMsg,
2269 pBestIdx->idxNum, pBestIdx->idxStr);
2272 if( pLevel->flags & WHERE_ORDERBY ){
2273 zMsg = sqlite3MAppendf(db, zMsg, "%s ORDER BY", zMsg);
2275 sqlite3VdbeAddOp4(v, OP_Explain, i, pLevel->iFrom, 0, zMsg, P4_DYNAMIC);
2277 #endif /* SQLITE_OMIT_EXPLAIN */
2278 pTabItem = &pTabList->a[pLevel->iFrom];
2279 pTab = pTabItem->pTab;
2280 iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
2281 if( pTab->isEphem || pTab->pSelect ) continue;
2282 #ifndef SQLITE_OMIT_VIRTUALTABLE
2283 if( pLevel->pBestIdx ){
2284 int iCur = pTabItem->iCursor;
2285 sqlite3VdbeAddOp4(v, OP_VOpen, iCur, 0, 0,
2286 (const char*)pTab->pVtab, P4_VTAB);
2289 if( (pLevel->flags & WHERE_IDX_ONLY)==0 ){
2290 int op = pWInfo->okOnePass ? OP_OpenWrite : OP_OpenRead;
2291 sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, op);
2292 if( !pWInfo->okOnePass && pTab->nCol<(sizeof(Bitmask)*8) ){
2293 Bitmask b = pTabItem->colUsed;
2295 for(; b; b=b>>1, n++){}
2296 sqlite3VdbeChangeP2(v, sqlite3VdbeCurrentAddr(v)-2, n);
2297 assert( n<=pTab->nCol );
2300 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
2302 pLevel->iTabCur = pTabItem->iCursor;
2303 if( (pIx = pLevel->pIdx)!=0 ){
2304 KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIx);
2305 assert( pIx->pSchema==pTab->pSchema );
2306 sqlite3VdbeAddOp2(v, OP_SetNumColumns, 0, pIx->nColumn+1);
2307 sqlite3VdbeAddOp4(v, OP_OpenRead, iIdxCur, pIx->tnum, iDb,
2308 (char*)pKey, P4_KEYINFO_HANDOFF);
2309 VdbeComment((v, "%s", pIx->zName));
2311 sqlite3CodeVerifySchema(pParse, iDb);
2313 pWInfo->iTop = sqlite3VdbeCurrentAddr(v);
2315 /* Generate the code to do the search. Each iteration of the for
2316 ** loop below generates code for a single nested loop of the VM
2319 notReady = ~(Bitmask)0;
2320 for(i=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){
2322 int iCur = pTabItem->iCursor; /* The VDBE cursor for the table */
2323 Index *pIdx; /* The index we will be using */
2324 int nxt; /* Where to jump to continue with the next IN case */
2325 int iIdxCur; /* The VDBE cursor for the index */
2326 int omitTable; /* True if we use the index only */
2327 int bRev; /* True if we need to scan in reverse order */
2329 pTabItem = &pTabList->a[pLevel->iFrom];
2330 iCur = pTabItem->iCursor;
2331 pIdx = pLevel->pIdx;
2332 iIdxCur = pLevel->iIdxCur;
2333 bRev = (pLevel->flags & WHERE_REVERSE)!=0;
2334 omitTable = (pLevel->flags & WHERE_IDX_ONLY)!=0;
2336 /* Create labels for the "break" and "continue" instructions
2337 ** for the current loop. Jump to brk to break out of a loop.
2338 ** Jump to cont to go immediately to the next iteration of the
2341 ** When there is an IN operator, we also have a "nxt" label that
2342 ** means to continue with the next IN value combination. When
2343 ** there are no IN operators in the constraints, the "nxt" label
2344 ** is the same as "brk".
2346 brk = pLevel->brk = pLevel->nxt = sqlite3VdbeMakeLabel(v);
2347 cont = pLevel->cont = sqlite3VdbeMakeLabel(v);
2349 /* If this is the right table of a LEFT OUTER JOIN, allocate and
2350 ** initialize a memory cell that records if this table matches any
2351 ** row of the left table of the join.
2353 if( pLevel->iFrom>0 && (pTabItem[0].jointype & JT_LEFT)!=0 ){
2354 pLevel->iLeftJoin = ++pParse->nMem;
2355 sqlite3VdbeAddOp2(v, OP_Integer, 0, pLevel->iLeftJoin);
2356 VdbeComment((v, "init LEFT JOIN no-match flag"));
2359 #ifndef SQLITE_OMIT_VIRTUALTABLE
2360 if( pLevel->pBestIdx ){
2361 /* Case 0: The table is a virtual-table. Use the VFilter and VNext
2362 ** to access the data.
2365 int iReg; /* P3 Value for OP_VFilter */
2366 sqlite3_index_info *pBestIdx = pLevel->pBestIdx;
2367 int nConstraint = pBestIdx->nConstraint;
2368 struct sqlite3_index_constraint_usage *aUsage =
2369 pBestIdx->aConstraintUsage;
2370 const struct sqlite3_index_constraint *aConstraint =
2371 pBestIdx->aConstraint;
2373 iReg = sqlite3GetTempRange(pParse, nConstraint+2);
2374 pParse->disableColCache++;
2375 for(j=1; j<=nConstraint; j++){
2377 for(k=0; k<nConstraint; k++){
2378 if( aUsage[k].argvIndex==j ){
2379 int iTerm = aConstraint[k].iTermOffset;
2380 assert( pParse->disableColCache );
2381 sqlite3ExprCode(pParse, wc.a[iTerm].pExpr->pRight, iReg+j+1);
2385 if( k==nConstraint ) break;
2387 assert( pParse->disableColCache );
2388 pParse->disableColCache--;
2389 sqlite3VdbeAddOp2(v, OP_Integer, pBestIdx->idxNum, iReg);
2390 sqlite3VdbeAddOp2(v, OP_Integer, j-1, iReg+1);
2391 sqlite3VdbeAddOp4(v, OP_VFilter, iCur, brk, iReg, pBestIdx->idxStr,
2392 pBestIdx->needToFreeIdxStr ? P4_MPRINTF : P4_STATIC);
2393 sqlite3ReleaseTempRange(pParse, iReg, nConstraint+2);
2394 pBestIdx->needToFreeIdxStr = 0;
2395 for(j=0; j<nConstraint; j++){
2396 if( aUsage[j].omit ){
2397 int iTerm = aConstraint[j].iTermOffset;
2398 disableTerm(pLevel, &wc.a[iTerm]);
2401 pLevel->op = OP_VNext;
2403 pLevel->p2 = sqlite3VdbeCurrentAddr(v);
2405 #endif /* SQLITE_OMIT_VIRTUALTABLE */
2407 if( pLevel->flags & WHERE_ROWID_EQ ){
2408 /* Case 1: We can directly reference a single row using an
2409 ** equality comparison against the ROWID field. Or
2410 ** we reference multiple rows using a "rowid IN (...)"
2414 pTerm = findTerm(&wc, iCur, -1, notReady, WO_EQ|WO_IN, 0);
2416 assert( pTerm->pExpr!=0 );
2417 assert( pTerm->leftCursor==iCur );
2418 assert( omitTable==0 );
2419 r1 = codeEqualityTerm(pParse, pTerm, pLevel, 0);
2421 sqlite3VdbeAddOp2(v, OP_MustBeInt, r1, nxt);
2422 sqlite3VdbeAddOp3(v, OP_NotExists, iCur, nxt, r1);
2423 VdbeComment((v, "pk"));
2424 pLevel->op = OP_Noop;
2425 }else if( pLevel->flags & WHERE_ROWID_RANGE ){
2426 /* Case 2: We have an inequality comparison against the ROWID field.
2428 int testOp = OP_Noop;
2430 WhereTerm *pStart, *pEnd;
2432 assert( omitTable==0 );
2433 pStart = findTerm(&wc, iCur, -1, notReady, WO_GT|WO_GE, 0);
2434 pEnd = findTerm(&wc, iCur, -1, notReady, WO_LT|WO_LE, 0);
2445 assert( pStart->leftCursor==iCur );
2446 r1 = sqlite3ExprCodeTemp(pParse, pX->pRight, ®Free1);
2447 sqlite3VdbeAddOp3(v, OP_ForceInt, r1, brk,
2448 pX->op==TK_LE || pX->op==TK_GT);
2449 sqlite3VdbeAddOp3(v, bRev ? OP_MoveLt : OP_MoveGe, iCur, brk, r1);
2450 VdbeComment((v, "pk"));
2451 sqlite3ReleaseTempReg(pParse, regFree1);
2452 disableTerm(pLevel, pStart);
2454 sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iCur, brk);
2460 assert( pEnd->leftCursor==iCur );
2461 pLevel->iMem = ++pParse->nMem;
2462 sqlite3ExprCode(pParse, pX->pRight, pLevel->iMem);
2463 if( pX->op==TK_LT || pX->op==TK_GT ){
2464 testOp = bRev ? OP_Le : OP_Ge;
2466 testOp = bRev ? OP_Lt : OP_Gt;
2468 disableTerm(pLevel, pEnd);
2470 start = sqlite3VdbeCurrentAddr(v);
2471 pLevel->op = bRev ? OP_Prev : OP_Next;
2474 if( testOp!=OP_Noop ){
2475 int r1 = sqlite3GetTempReg(pParse);
2476 sqlite3VdbeAddOp2(v, OP_Rowid, iCur, r1);
2477 /* sqlite3VdbeAddOp2(v, OP_SCopy, pLevel->iMem, 0); */
2478 sqlite3VdbeAddOp3(v, testOp, pLevel->iMem, brk, r1);
2479 sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC | SQLITE_JUMPIFNULL);
2480 sqlite3ReleaseTempReg(pParse, r1);
2482 }else if( pLevel->flags & (WHERE_COLUMN_RANGE|WHERE_COLUMN_EQ) ){
2483 /* Case 3: A scan using an index.
2485 ** The WHERE clause may contain zero or more equality
2486 ** terms ("==" or "IN" operators) that refer to the N
2487 ** left-most columns of the index. It may also contain
2488 ** inequality constraints (>, <, >= or <=) on the indexed
2489 ** column that immediately follows the N equalities. Only
2490 ** the right-most column can be an inequality - the rest must
2491 ** use the "==" and "IN" operators. For example, if the
2492 ** index is on (x,y,z), then the following clauses are all
2498 ** x=5 AND y>5 AND y<10
2499 ** x=5 AND y=5 AND z<=10
2501 ** The z<10 term of the following cannot be used, only
2506 ** N may be zero if there are inequality constraints.
2507 ** If there are no inequality constraints, then N is at
2510 ** This case is also used when there are no WHERE clause
2511 ** constraints but an index is selected anyway, in order
2512 ** to force the output order to conform to an ORDER BY.
2517 OP_Rewind, /* 2: (!start_constraints && startEq && !bRev) */
2518 OP_Last, /* 3: (!start_constraints && startEq && bRev) */
2519 OP_MoveGt, /* 4: (start_constraints && !startEq && !bRev) */
2520 OP_MoveLt, /* 5: (start_constraints && !startEq && bRev) */
2521 OP_MoveGe, /* 6: (start_constraints && startEq && !bRev) */
2522 OP_MoveLe /* 7: (start_constraints && startEq && bRev) */
2525 OP_Noop, /* 0: (!end_constraints) */
2526 OP_IdxGE, /* 1: (end_constraints && !bRev) */
2527 OP_IdxLT /* 2: (end_constraints && bRev) */
2529 int nEq = pLevel->nEq;
2530 int isMinQuery = 0; /* If this is an optimized SELECT min(x).. */
2531 int regBase; /* Base register holding constraint values */
2532 int r1; /* Temp register */
2533 WhereTerm *pRangeStart = 0; /* Inequality constraint at range start */
2534 WhereTerm *pRangeEnd = 0; /* Inequality constraint at range end */
2535 int startEq; /* True if range start uses ==, >= or <= */
2536 int endEq; /* True if range end uses ==, >= or <= */
2537 int start_constraints; /* Start of range is constrained */
2538 int k = pIdx->aiColumn[nEq]; /* Column for inequality constraints */
2539 int nConstraint; /* Number of constraint terms */
2542 /* Generate code to evaluate all constraint terms using == or IN
2543 ** and store the values of those terms in an array of registers
2544 ** starting at regBase.
2546 regBase = codeAllEqualityTerms(pParse, pLevel, &wc, notReady, 2);
2549 /* If this loop satisfies a sort order (pOrderBy) request that
2550 ** was passed to this function to implement a "SELECT min(x) ..."
2551 ** query, then the caller will only allow the loop to run for
2552 ** a single iteration. This means that the first row returned
2553 ** should not have a NULL value stored in 'x'. If column 'x' is
2554 ** the first one after the nEq equality constraints in the index,
2555 ** this requires some special handling.
2557 if( (wflags&WHERE_ORDERBY_MIN)!=0
2558 && (pLevel->flags&WHERE_ORDERBY)
2559 && (pIdx->nColumn>nEq)
2561 assert( pOrderBy->nExpr==1 );
2562 assert( pOrderBy->a[0].pExpr->iColumn==pIdx->aiColumn[nEq] );
2566 /* Find any inequality constraint terms for the start and end
2569 if( pLevel->flags & WHERE_TOP_LIMIT ){
2570 pRangeEnd = findTerm(&wc, iCur, k, notReady, (WO_LT|WO_LE), pIdx);
2572 if( pLevel->flags & WHERE_BTM_LIMIT ){
2573 pRangeStart = findTerm(&wc, iCur, k, notReady, (WO_GT|WO_GE), pIdx);
2576 /* If we are doing a reverse order scan on an ascending index, or
2577 ** a forward order scan on a descending index, interchange the
2578 ** start and end terms (pRangeStart and pRangeEnd).
2580 if( bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC) ){
2581 SWAP(WhereTerm *, pRangeEnd, pRangeStart);
2584 testcase( pRangeStart && pRangeStart->eOperator & WO_LE );
2585 testcase( pRangeStart && pRangeStart->eOperator & WO_GE );
2586 testcase( pRangeEnd && pRangeEnd->eOperator & WO_LE );
2587 testcase( pRangeEnd && pRangeEnd->eOperator & WO_GE );
2588 startEq = !pRangeStart || pRangeStart->eOperator & (WO_LE|WO_GE);
2589 endEq = !pRangeEnd || pRangeEnd->eOperator & (WO_LE|WO_GE);
2590 start_constraints = pRangeStart || nEq>0;
2592 /* Seek the index cursor to the start of the range. */
2595 int dcc = pParse->disableColCache;
2597 pParse->disableColCache++;
2599 sqlite3ExprCode(pParse, pRangeStart->pExpr->pRight, regBase+nEq);
2600 pParse->disableColCache = dcc;
2601 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, nxt);
2603 }else if( isMinQuery ){
2604 sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
2607 start_constraints = 1;
2609 codeApplyAffinity(pParse, regBase, nConstraint, pIdx);
2610 op = aStartOp[(start_constraints<<2) + (startEq<<1) + bRev];
2612 testcase( op==OP_Rewind );
2613 testcase( op==OP_Last );
2614 testcase( op==OP_MoveGt );
2615 testcase( op==OP_MoveGe );
2616 testcase( op==OP_MoveLe );
2617 testcase( op==OP_MoveLt );
2618 sqlite3VdbeAddOp4(v, op, iIdxCur, nxt, regBase,
2619 SQLITE_INT_TO_PTR(nConstraint), P4_INT32);
2621 /* Load the value for the inequality constraint at the end of the
2626 sqlite3ExprCode(pParse, pRangeEnd->pExpr->pRight, regBase+nEq);
2627 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, nxt);
2628 codeApplyAffinity(pParse, regBase, nEq+1, pIdx);
2632 /* Top of the loop body */
2633 pLevel->p2 = sqlite3VdbeCurrentAddr(v);
2635 /* Check if the index cursor is past the end of the range. */
2636 op = aEndOp[(pRangeEnd || nEq) * (1 + bRev)];
2637 testcase( op==OP_Noop );
2638 testcase( op==OP_IdxGE );
2639 testcase( op==OP_IdxLT );
2640 sqlite3VdbeAddOp4(v, op, iIdxCur, nxt, regBase,
2641 SQLITE_INT_TO_PTR(nConstraint), P4_INT32);
2642 sqlite3VdbeChangeP5(v, endEq!=bRev);
2644 /* If there are inequality constraints, check that the value
2645 ** of the table column that the inequality contrains is not NULL.
2646 ** If it is, jump to the next iteration of the loop.
2648 r1 = sqlite3GetTempReg(pParse);
2649 testcase( pLevel->flags & WHERE_BTM_LIMIT );
2650 testcase( pLevel->flags & WHERE_TOP_LIMIT );
2651 if( pLevel->flags & (WHERE_BTM_LIMIT|WHERE_TOP_LIMIT) ){
2652 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, nEq, r1);
2653 sqlite3VdbeAddOp2(v, OP_IsNull, r1, cont);
2656 /* Seek the table cursor, if required */
2658 sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, r1);
2659 sqlite3VdbeAddOp3(v, OP_MoveGe, iCur, 0, r1); /* Deferred seek */
2661 sqlite3ReleaseTempReg(pParse, r1);
2663 /* Record the instruction used to terminate the loop. Disable
2664 ** WHERE clause terms made redundant by the index range scan.
2666 pLevel->op = bRev ? OP_Prev : OP_Next;
2667 pLevel->p1 = iIdxCur;
2668 disableTerm(pLevel, pRangeStart);
2669 disableTerm(pLevel, pRangeEnd);
2671 /* Case 4: There is no usable index. We must do a complete
2672 ** scan of the entire table.
2674 assert( omitTable==0 );
2676 pLevel->op = OP_Next;
2678 pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, OP_Rewind, iCur, brk);
2680 notReady &= ~getMask(&maskSet, iCur);
2682 /* Insert code to test every subexpression that can be completely
2683 ** computed using the current set of tables.
2685 for(pTerm=wc.a, j=wc.nTerm; j>0; j--, pTerm++){
2687 testcase( pTerm->flags & TERM_VIRTUAL );
2688 testcase( pTerm->flags & TERM_CODED );
2689 if( pTerm->flags & (TERM_VIRTUAL|TERM_CODED) ) continue;
2690 if( (pTerm->prereqAll & notReady)!=0 ) continue;
2693 if( pLevel->iLeftJoin && !ExprHasProperty(pE, EP_FromJoin) ){
2696 sqlite3ExprIfFalse(pParse, pE, cont, SQLITE_JUMPIFNULL);
2697 pTerm->flags |= TERM_CODED;
2700 /* For a LEFT OUTER JOIN, generate code that will record the fact that
2701 ** at least one row of the right table has matched the left table.
2703 if( pLevel->iLeftJoin ){
2704 pLevel->top = sqlite3VdbeCurrentAddr(v);
2705 sqlite3VdbeAddOp2(v, OP_Integer, 1, pLevel->iLeftJoin);
2706 VdbeComment((v, "record LEFT JOIN hit"));
2707 sqlite3ExprClearColumnCache(pParse, pLevel->iTabCur);
2708 sqlite3ExprClearColumnCache(pParse, pLevel->iIdxCur);
2709 for(pTerm=wc.a, j=0; j<wc.nTerm; j++, pTerm++){
2710 testcase( pTerm->flags & TERM_VIRTUAL );
2711 testcase( pTerm->flags & TERM_CODED );
2712 if( pTerm->flags & (TERM_VIRTUAL|TERM_CODED) ) continue;
2713 if( (pTerm->prereqAll & notReady)!=0 ) continue;
2714 assert( pTerm->pExpr );
2715 sqlite3ExprIfFalse(pParse, pTerm->pExpr, cont, SQLITE_JUMPIFNULL);
2716 pTerm->flags |= TERM_CODED;
2721 #ifdef SQLITE_TEST /* For testing and debugging use only */
2722 /* Record in the query plan information about the current table
2723 ** and the index used to access it (if any). If the table itself
2724 ** is not used, its name is just '{}'. If no index is used
2725 ** the index is listed as "{}". If the primary key is used the
2726 ** index name is '*'.
2728 for(i=0; i<pTabList->nSrc; i++){
2731 pLevel = &pWInfo->a[i];
2732 pTabItem = &pTabList->a[pLevel->iFrom];
2733 z = pTabItem->zAlias;
2734 if( z==0 ) z = pTabItem->pTab->zName;
2736 if( n+nQPlan < sizeof(sqlite3_query_plan)-10 ){
2737 if( pLevel->flags & WHERE_IDX_ONLY ){
2738 memcpy(&sqlite3_query_plan[nQPlan], "{}", 2);
2741 memcpy(&sqlite3_query_plan[nQPlan], z, n);
2744 sqlite3_query_plan[nQPlan++] = ' ';
2746 testcase( pLevel->flags & WHERE_ROWID_EQ );
2747 testcase( pLevel->flags & WHERE_ROWID_RANGE );
2748 if( pLevel->flags & (WHERE_ROWID_EQ|WHERE_ROWID_RANGE) ){
2749 memcpy(&sqlite3_query_plan[nQPlan], "* ", 2);
2751 }else if( pLevel->pIdx==0 ){
2752 memcpy(&sqlite3_query_plan[nQPlan], "{} ", 3);
2755 n = strlen(pLevel->pIdx->zName);
2756 if( n+nQPlan < sizeof(sqlite3_query_plan)-2 ){
2757 memcpy(&sqlite3_query_plan[nQPlan], pLevel->pIdx->zName, n);
2759 sqlite3_query_plan[nQPlan++] = ' ';
2763 while( nQPlan>0 && sqlite3_query_plan[nQPlan-1]==' ' ){
2764 sqlite3_query_plan[--nQPlan] = 0;
2766 sqlite3_query_plan[nQPlan] = 0;
2768 #endif /* SQLITE_TEST // Testing and debugging use only */
2770 /* Record the continuation address in the WhereInfo structure. Then
2771 ** clean up and return.
2773 pWInfo->iContinue = cont;
2774 whereClauseClear(&wc);
2777 /* Jump here if malloc fails */
2779 whereClauseClear(&wc);
2780 whereInfoFree(pWInfo);
2785 ** Generate the end of the WHERE loop. See comments on
2786 ** sqlite3WhereBegin() for additional information.
2788 void sqlite3WhereEnd(WhereInfo *pWInfo){
2789 Parse *pParse = pWInfo->pParse;
2790 Vdbe *v = pParse->pVdbe;
2793 SrcList *pTabList = pWInfo->pTabList;
2794 sqlite3 *db = pParse->db;
2796 /* Generate loop termination code.
2798 sqlite3ExprClearColumnCache(pParse, -1);
2799 for(i=pTabList->nSrc-1; i>=0; i--){
2800 pLevel = &pWInfo->a[i];
2801 sqlite3VdbeResolveLabel(v, pLevel->cont);
2802 if( pLevel->op!=OP_Noop ){
2803 sqlite3VdbeAddOp2(v, pLevel->op, pLevel->p1, pLevel->p2);
2808 sqlite3VdbeResolveLabel(v, pLevel->nxt);
2809 for(j=pLevel->nIn, pIn=&pLevel->aInLoop[j-1]; j>0; j--, pIn--){
2810 sqlite3VdbeJumpHere(v, pIn->topAddr+1);
2811 sqlite3VdbeAddOp2(v, OP_Next, pIn->iCur, pIn->topAddr);
2812 sqlite3VdbeJumpHere(v, pIn->topAddr-1);
2814 sqlite3DbFree(db, pLevel->aInLoop);
2816 sqlite3VdbeResolveLabel(v, pLevel->brk);
2817 if( pLevel->iLeftJoin ){
2819 addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin);
2820 sqlite3VdbeAddOp1(v, OP_NullRow, pTabList->a[i].iCursor);
2821 if( pLevel->iIdxCur>=0 ){
2822 sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iIdxCur);
2824 sqlite3VdbeAddOp2(v, OP_Goto, 0, pLevel->top);
2825 sqlite3VdbeJumpHere(v, addr);
2829 /* The "break" point is here, just past the end of the outer loop.
2832 sqlite3VdbeResolveLabel(v, pWInfo->iBreak);
2834 /* Close all of the cursors that were opened by sqlite3WhereBegin.
2836 for(i=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){
2837 struct SrcList_item *pTabItem = &pTabList->a[pLevel->iFrom];
2838 Table *pTab = pTabItem->pTab;
2840 if( pTab->isEphem || pTab->pSelect ) continue;
2841 if( !pWInfo->okOnePass && (pLevel->flags & WHERE_IDX_ONLY)==0 ){
2842 sqlite3VdbeAddOp1(v, OP_Close, pTabItem->iCursor);
2844 if( pLevel->pIdx!=0 ){
2845 sqlite3VdbeAddOp1(v, OP_Close, pLevel->iIdxCur);
2848 /* If this scan uses an index, make code substitutions to read data
2849 ** from the index in preference to the table. Sometimes, this means
2850 ** the table need never be read from. This is a performance boost,
2851 ** as the vdbe level waits until the table is read before actually
2852 ** seeking the table cursor to the record corresponding to the current
2853 ** position in the index.
2855 ** Calls to the code generator in between sqlite3WhereBegin and
2856 ** sqlite3WhereEnd will have created code that references the table
2857 ** directly. This loop scans all that code looking for opcodes
2858 ** that reference the table and converts them into opcodes that
2859 ** reference the index.
2864 Index *pIdx = pLevel->pIdx;
2865 int useIndexOnly = pLevel->flags & WHERE_IDX_ONLY;
2868 pOp = sqlite3VdbeGetOp(v, pWInfo->iTop);
2869 last = sqlite3VdbeCurrentAddr(v);
2870 for(k=pWInfo->iTop; k<last; k++, pOp++){
2871 if( pOp->p1!=pLevel->iTabCur ) continue;
2872 if( pOp->opcode==OP_Column ){
2873 for(j=0; j<pIdx->nColumn; j++){
2874 if( pOp->p2==pIdx->aiColumn[j] ){
2876 pOp->p1 = pLevel->iIdxCur;
2880 assert(!useIndexOnly || j<pIdx->nColumn);
2881 }else if( pOp->opcode==OP_Rowid ){
2882 pOp->p1 = pLevel->iIdxCur;
2883 pOp->opcode = OP_IdxRowid;
2884 }else if( pOp->opcode==OP_NullRow && useIndexOnly ){
2885 pOp->opcode = OP_Noop;
2893 whereInfoFree(pWInfo);