os/persistentdata/persistentstorage/sql/SQLite/vdbeaux.c
author sl
Tue, 10 Jun 2014 14:32:02 +0200
changeset 1 260cb5ec6c19
permissions -rw-r--r--
Update contrib.
     1 /*
     2 ** 2003 September 6
     3 **
     4 ** The author disclaims copyright to this source code.  In place of
     5 ** a legal notice, here is a blessing:
     6 **
     7 **    May you do good and not evil.
     8 **    May you find forgiveness for yourself and forgive others.
     9 **    May you share freely, never taking more than you give.
    10 **
    11 *************************************************************************
    12 ** This file contains code used for creating, destroying, and populating
    13 ** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.)  Prior
    14 ** to version 2.8.7, all this code was combined into the vdbe.c source file.
    15 ** But that file was getting too big so this subroutines were split out.
    16 **
    17 ** $Id: vdbeaux.c,v 1.405 2008/08/02 03:50:39 drh Exp $
    18 */
    19 #include "sqliteInt.h"
    20 #include <ctype.h>
    21 #include "vdbeInt.h"
    22 
    23 
    24 
    25 /*
    26 ** When debugging the code generator in a symbolic debugger, one can
    27 ** set the sqlite3VdbeAddopTrace to 1 and all opcodes will be printed
    28 ** as they are added to the instruction stream.
    29 */
    30 #ifdef SQLITE_DEBUG
    31 int sqlite3VdbeAddopTrace = 0;
    32 #endif
    33 
    34 
    35 /*
    36 ** Create a new virtual database engine.
    37 */
    38 Vdbe *sqlite3VdbeCreate(sqlite3 *db){
    39   Vdbe *p;
    40   p = sqlite3DbMallocZero(db, sizeof(Vdbe) );
    41   if( p==0 ) return 0;
    42   p->db = db;
    43   if( db->pVdbe ){
    44     db->pVdbe->pPrev = p;
    45   }
    46   p->pNext = db->pVdbe;
    47   p->pPrev = 0;
    48   db->pVdbe = p;
    49   p->magic = VDBE_MAGIC_INIT;
    50   return p;
    51 }
    52 
    53 /*
    54 ** Remember the SQL string for a prepared statement.
    55 */
    56 void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n){
    57   if( p==0 ) return;
    58   assert( p->zSql==0 );
    59   p->zSql = sqlite3DbStrNDup(p->db, z, n);
    60 }
    61 
    62 /*
    63 ** Return the SQL associated with a prepared statement
    64 */
    65 const char *sqlite3_sql(sqlite3_stmt *pStmt){
    66   return ((Vdbe *)pStmt)->zSql;
    67 }
    68 
    69 /*
    70 ** Swap all content between two VDBE structures.
    71 */
    72 void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){
    73   Vdbe tmp, *pTmp;
    74   char *zTmp;
    75   int nTmp;
    76   tmp = *pA;
    77   *pA = *pB;
    78   *pB = tmp;
    79   pTmp = pA->pNext;
    80   pA->pNext = pB->pNext;
    81   pB->pNext = pTmp;
    82   pTmp = pA->pPrev;
    83   pA->pPrev = pB->pPrev;
    84   pB->pPrev = pTmp;
    85   zTmp = pA->zSql;
    86   pA->zSql = pB->zSql;
    87   pB->zSql = zTmp;
    88   nTmp = pA->nSql;
    89   pA->nSql = pB->nSql;
    90   pB->nSql = nTmp;
    91 }
    92 
    93 #ifdef SQLITE_DEBUG
    94 /*
    95 ** Turn tracing on or off
    96 */
    97 void sqlite3VdbeTrace(Vdbe *p, FILE *trace){
    98   p->trace = trace;
    99 }
   100 #endif
   101 
   102 /*
   103 ** Resize the Vdbe.aOp array so that it contains at least N
   104 ** elements.
   105 **
   106 ** If an out-of-memory error occurs while resizing the array,
   107 ** Vdbe.aOp and Vdbe.nOpAlloc remain unchanged (this is so that
   108 ** any opcodes already allocated can be correctly deallocated
   109 ** along with the rest of the Vdbe).
   110 */
   111 static void resizeOpArray(Vdbe *p, int N){
   112   VdbeOp *pNew;
   113   pNew = sqlite3DbRealloc(p->db, p->aOp, N*sizeof(Op));
   114   if( pNew ){
   115     p->nOpAlloc = N;
   116     p->aOp = pNew;
   117   }
   118 }
   119 
   120 /*
   121 ** Add a new instruction to the list of instructions current in the
   122 ** VDBE.  Return the address of the new instruction.
   123 **
   124 ** Parameters:
   125 **
   126 **    p               Pointer to the VDBE
   127 **
   128 **    op              The opcode for this instruction
   129 **
   130 **    p1, p2, p3      Operands
   131 **
   132 ** Use the sqlite3VdbeResolveLabel() function to fix an address and
   133 ** the sqlite3VdbeChangeP4() function to change the value of the P4
   134 ** operand.
   135 */
   136 int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){
   137   int i;
   138   VdbeOp *pOp;
   139 
   140   i = p->nOp;
   141   assert( p->magic==VDBE_MAGIC_INIT );
   142   if( p->nOpAlloc<=i ){
   143     resizeOpArray(p, p->nOpAlloc ? p->nOpAlloc*2 : 1024/sizeof(Op));
   144     if( p->db->mallocFailed ){
   145       return 0;
   146     }
   147   }
   148   p->nOp++;
   149   pOp = &p->aOp[i];
   150   pOp->opcode = op;
   151   pOp->p5 = 0;
   152   pOp->p1 = p1;
   153   pOp->p2 = p2;
   154   pOp->p3 = p3;
   155   pOp->p4.p = 0;
   156   pOp->p4type = P4_NOTUSED;
   157   p->expired = 0;
   158 #ifdef SQLITE_DEBUG
   159   pOp->zComment = 0;
   160   if( sqlite3VdbeAddopTrace ) sqlite3VdbePrintOp(0, i, &p->aOp[i]);
   161 #endif
   162 #ifdef VDBE_PROFILE
   163   pOp->cycles = 0;
   164   pOp->cnt = 0;
   165 #endif
   166   return i;
   167 }
   168 int sqlite3VdbeAddOp0(Vdbe *p, int op){
   169   return sqlite3VdbeAddOp3(p, op, 0, 0, 0);
   170 }
   171 int sqlite3VdbeAddOp1(Vdbe *p, int op, int p1){
   172   return sqlite3VdbeAddOp3(p, op, p1, 0, 0);
   173 }
   174 int sqlite3VdbeAddOp2(Vdbe *p, int op, int p1, int p2){
   175   return sqlite3VdbeAddOp3(p, op, p1, p2, 0);
   176 }
   177 
   178 
   179 /*
   180 ** Add an opcode that includes the p4 value as a pointer.
   181 */
   182 int sqlite3VdbeAddOp4(
   183   Vdbe *p,            /* Add the opcode to this VM */
   184   int op,             /* The new opcode */
   185   int p1,             /* The P1 operand */
   186   int p2,             /* The P2 operand */
   187   int p3,             /* The P3 operand */
   188   const char *zP4,    /* The P4 operand */
   189   int p4type          /* P4 operand type */
   190 ){
   191   int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
   192   sqlite3VdbeChangeP4(p, addr, zP4, p4type);
   193   return addr;
   194 }
   195 
   196 /*
   197 ** Create a new symbolic label for an instruction that has yet to be
   198 ** coded.  The symbolic label is really just a negative number.  The
   199 ** label can be used as the P2 value of an operation.  Later, when
   200 ** the label is resolved to a specific address, the VDBE will scan
   201 ** through its operation list and change all values of P2 which match
   202 ** the label into the resolved address.
   203 **
   204 ** The VDBE knows that a P2 value is a label because labels are
   205 ** always negative and P2 values are suppose to be non-negative.
   206 ** Hence, a negative P2 value is a label that has yet to be resolved.
   207 **
   208 ** Zero is returned if a malloc() fails.
   209 */
   210 int sqlite3VdbeMakeLabel(Vdbe *p){
   211   int i;
   212   i = p->nLabel++;
   213   assert( p->magic==VDBE_MAGIC_INIT );
   214   if( i>=p->nLabelAlloc ){
   215     p->nLabelAlloc = p->nLabelAlloc*2 + 10;
   216     p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel,
   217                                     p->nLabelAlloc*sizeof(p->aLabel[0]));
   218   }
   219   if( p->aLabel ){
   220     p->aLabel[i] = -1;
   221   }
   222   return -1-i;
   223 }
   224 
   225 /*
   226 ** Resolve label "x" to be the address of the next instruction to
   227 ** be inserted.  The parameter "x" must have been obtained from
   228 ** a prior call to sqlite3VdbeMakeLabel().
   229 */
   230 void sqlite3VdbeResolveLabel(Vdbe *p, int x){
   231   int j = -1-x;
   232   assert( p->magic==VDBE_MAGIC_INIT );
   233   assert( j>=0 && j<p->nLabel );
   234   if( p->aLabel ){
   235     p->aLabel[j] = p->nOp;
   236   }
   237 }
   238 
   239 /*
   240 ** Loop through the program looking for P2 values that are negative
   241 ** on jump instructions.  Each such value is a label.  Resolve the
   242 ** label by setting the P2 value to its correct non-zero value.
   243 **
   244 ** This routine is called once after all opcodes have been inserted.
   245 **
   246 ** Variable *pMaxFuncArgs is set to the maximum value of any P2 argument 
   247 ** to an OP_Function, OP_AggStep or OP_VFilter opcode. This is used by 
   248 ** sqlite3VdbeMakeReady() to size the Vdbe.apArg[] array.
   249 **
   250 ** This routine also does the following optimization:  It scans for
   251 ** instructions that might cause a statement rollback.  Such instructions
   252 ** are:
   253 **
   254 **   *  OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
   255 **   *  OP_Destroy
   256 **   *  OP_VUpdate
   257 **   *  OP_VRename
   258 **
   259 ** If no such instruction is found, then every Statement instruction 
   260 ** is changed to a Noop.  In this way, we avoid creating the statement 
   261 ** journal file unnecessarily.
   262 */
   263 static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){
   264   int i;
   265   int nMaxArgs = 0;
   266   Op *pOp;
   267   int *aLabel = p->aLabel;
   268   int doesStatementRollback = 0;
   269   int hasStatementBegin = 0;
   270   for(pOp=p->aOp, i=p->nOp-1; i>=0; i--, pOp++){
   271     u8 opcode = pOp->opcode;
   272 
   273     if( opcode==OP_Function || opcode==OP_AggStep ){
   274       if( pOp->p5>nMaxArgs ) nMaxArgs = pOp->p5;
   275 #ifndef SQLITE_OMIT_VIRTUALTABLE
   276     }else if( opcode==OP_VUpdate ){
   277       if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2;
   278 #endif
   279     }
   280     if( opcode==OP_Halt ){
   281       if( pOp->p1==SQLITE_CONSTRAINT && pOp->p2==OE_Abort ){
   282         doesStatementRollback = 1;
   283       }
   284     }else if( opcode==OP_Statement ){
   285       hasStatementBegin = 1;
   286     }else if( opcode==OP_Destroy ){
   287       doesStatementRollback = 1;
   288 #ifndef SQLITE_OMIT_VIRTUALTABLE
   289     }else if( opcode==OP_VUpdate || opcode==OP_VRename ){
   290       doesStatementRollback = 1;
   291     }else if( opcode==OP_VFilter ){
   292       int n;
   293       assert( p->nOp - i >= 3 );
   294       assert( pOp[-1].opcode==OP_Integer );
   295       n = pOp[-1].p1;
   296       if( n>nMaxArgs ) nMaxArgs = n;
   297 #endif
   298     }
   299 
   300     if( sqlite3VdbeOpcodeHasProperty(opcode, OPFLG_JUMP) && pOp->p2<0 ){
   301       assert( -1-pOp->p2<p->nLabel );
   302       pOp->p2 = aLabel[-1-pOp->p2];
   303     }
   304   }
   305   sqlite3DbFree(p->db, p->aLabel);
   306   p->aLabel = 0;
   307 
   308   *pMaxFuncArgs = nMaxArgs;
   309 
   310   /* If we never rollback a statement transaction, then statement
   311   ** transactions are not needed.  So change every OP_Statement
   312   ** opcode into an OP_Noop.  This avoid a call to sqlite3OsOpenExclusive()
   313   ** which can be expensive on some platforms.
   314   */
   315   if( hasStatementBegin && !doesStatementRollback ){
   316     for(pOp=p->aOp, i=p->nOp-1; i>=0; i--, pOp++){
   317       if( pOp->opcode==OP_Statement ){
   318         pOp->opcode = OP_Noop;
   319       }
   320     }
   321   }
   322 }
   323 
   324 /*
   325 ** Return the address of the next instruction to be inserted.
   326 */
   327 int sqlite3VdbeCurrentAddr(Vdbe *p){
   328   assert( p->magic==VDBE_MAGIC_INIT );
   329   return p->nOp;
   330 }
   331 
   332 /*
   333 ** Add a whole list of operations to the operation stack.  Return the
   334 ** address of the first operation added.
   335 */
   336 int sqlite3VdbeAddOpList(Vdbe *p, int nOp, VdbeOpList const *aOp){
   337   int addr;
   338   assert( p->magic==VDBE_MAGIC_INIT );
   339   if( p->nOp + nOp > p->nOpAlloc ){
   340     resizeOpArray(p, p->nOpAlloc ? p->nOpAlloc*2 : 1024/sizeof(Op));
   341     assert( p->nOp+nOp<=p->nOpAlloc || p->db->mallocFailed );
   342   }
   343   if( p->db->mallocFailed ){
   344     return 0;
   345   }
   346   addr = p->nOp;
   347   if( nOp>0 ){
   348     int i;
   349     VdbeOpList const *pIn = aOp;
   350     for(i=0; i<nOp; i++, pIn++){
   351       int p2 = pIn->p2;
   352       VdbeOp *pOut = &p->aOp[i+addr];
   353       pOut->opcode = pIn->opcode;
   354       pOut->p1 = pIn->p1;
   355       if( p2<0 && sqlite3VdbeOpcodeHasProperty(pOut->opcode, OPFLG_JUMP) ){
   356         pOut->p2 = addr + ADDR(p2);
   357       }else{
   358         pOut->p2 = p2;
   359       }
   360       pOut->p3 = pIn->p3;
   361       pOut->p4type = P4_NOTUSED;
   362       pOut->p4.p = 0;
   363       pOut->p5 = 0;
   364 #ifdef SQLITE_DEBUG
   365       pOut->zComment = 0;
   366       if( sqlite3VdbeAddopTrace ){
   367         sqlite3VdbePrintOp(0, i+addr, &p->aOp[i+addr]);
   368       }
   369 #endif
   370     }
   371     p->nOp += nOp;
   372   }
   373   return addr;
   374 }
   375 
   376 /*
   377 ** Change the value of the P1 operand for a specific instruction.
   378 ** This routine is useful when a large program is loaded from a
   379 ** static array using sqlite3VdbeAddOpList but we want to make a
   380 ** few minor changes to the program.
   381 */
   382 void sqlite3VdbeChangeP1(Vdbe *p, int addr, int val){
   383   assert( p==0 || p->magic==VDBE_MAGIC_INIT );
   384   if( p && addr>=0 && p->nOp>addr && p->aOp ){
   385     p->aOp[addr].p1 = val;
   386   }
   387 }
   388 
   389 /*
   390 ** Change the value of the P2 operand for a specific instruction.
   391 ** This routine is useful for setting a jump destination.
   392 */
   393 void sqlite3VdbeChangeP2(Vdbe *p, int addr, int val){
   394   assert( p==0 || p->magic==VDBE_MAGIC_INIT );
   395   if( p && addr>=0 && p->nOp>addr && p->aOp ){
   396     p->aOp[addr].p2 = val;
   397   }
   398 }
   399 
   400 /*
   401 ** Change the value of the P3 operand for a specific instruction.
   402 */
   403 void sqlite3VdbeChangeP3(Vdbe *p, int addr, int val){
   404   assert( p==0 || p->magic==VDBE_MAGIC_INIT );
   405   if( p && addr>=0 && p->nOp>addr && p->aOp ){
   406     p->aOp[addr].p3 = val;
   407   }
   408 }
   409 
   410 /*
   411 ** Change the value of the P5 operand for the most recently
   412 ** added operation.
   413 */
   414 void sqlite3VdbeChangeP5(Vdbe *p, u8 val){
   415   assert( p==0 || p->magic==VDBE_MAGIC_INIT );
   416   if( p && p->aOp ){
   417     assert( p->nOp>0 );
   418     p->aOp[p->nOp-1].p5 = val;
   419   }
   420 }
   421 
   422 /*
   423 ** Change the P2 operand of instruction addr so that it points to
   424 ** the address of the next instruction to be coded.
   425 */
   426 void sqlite3VdbeJumpHere(Vdbe *p, int addr){
   427   sqlite3VdbeChangeP2(p, addr, p->nOp);
   428 }
   429 
   430 
   431 /*
   432 ** If the input FuncDef structure is ephemeral, then free it.  If
   433 ** the FuncDef is not ephermal, then do nothing.
   434 */
   435 static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef){
   436   if( pDef && (pDef->flags & SQLITE_FUNC_EPHEM)!=0 ){
   437     sqlite3DbFree(db, pDef);
   438   }
   439 }
   440 
   441 /*
   442 ** Delete a P4 value if necessary.
   443 */
   444 static void freeP4(sqlite3 *db, int p4type, void *p4){
   445   if( p4 ){
   446     switch( p4type ){
   447       case P4_REAL:
   448       case P4_INT64:
   449       case P4_MPRINTF:
   450       case P4_DYNAMIC:
   451       case P4_KEYINFO:
   452       case P4_INTARRAY:
   453       case P4_KEYINFO_HANDOFF: {
   454         sqlite3DbFree(db, p4);
   455         break;
   456       }
   457       case P4_VDBEFUNC: {
   458         VdbeFunc *pVdbeFunc = (VdbeFunc *)p4;
   459         freeEphemeralFunction(db, pVdbeFunc->pFunc);
   460         sqlite3VdbeDeleteAuxData(pVdbeFunc, 0);
   461         sqlite3DbFree(db, pVdbeFunc);
   462         break;
   463       }
   464       case P4_FUNCDEF: {
   465         freeEphemeralFunction(db, (FuncDef*)p4);
   466         break;
   467       }
   468       case P4_MEM: {
   469         sqlite3ValueFree((sqlite3_value*)p4);
   470         break;
   471       }
   472     }
   473   }
   474 }
   475 
   476 
   477 /*
   478 ** Change N opcodes starting at addr to No-ops.
   479 */
   480 void sqlite3VdbeChangeToNoop(Vdbe *p, int addr, int N){
   481   if( p && p->aOp ){
   482     VdbeOp *pOp = &p->aOp[addr];
   483     sqlite3 *db = p->db;
   484     while( N-- ){
   485       freeP4(db, pOp->p4type, pOp->p4.p);
   486       memset(pOp, 0, sizeof(pOp[0]));
   487       pOp->opcode = OP_Noop;
   488       pOp++;
   489     }
   490   }
   491 }
   492 
   493 /*
   494 ** Change the value of the P4 operand for a specific instruction.
   495 ** This routine is useful when a large program is loaded from a
   496 ** static array using sqlite3VdbeAddOpList but we want to make a
   497 ** few minor changes to the program.
   498 **
   499 ** If n>=0 then the P4 operand is dynamic, meaning that a copy of
   500 ** the string is made into memory obtained from sqlite3_malloc().
   501 ** A value of n==0 means copy bytes of zP4 up to and including the
   502 ** first null byte.  If n>0 then copy n+1 bytes of zP4.
   503 **
   504 ** If n==P4_KEYINFO it means that zP4 is a pointer to a KeyInfo structure.
   505 ** A copy is made of the KeyInfo structure into memory obtained from
   506 ** sqlite3_malloc, to be freed when the Vdbe is finalized.
   507 ** n==P4_KEYINFO_HANDOFF indicates that zP4 points to a KeyInfo structure
   508 ** stored in memory that the caller has obtained from sqlite3_malloc. The 
   509 ** caller should not free the allocation, it will be freed when the Vdbe is
   510 ** finalized.
   511 ** 
   512 ** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points
   513 ** to a string or structure that is guaranteed to exist for the lifetime of
   514 ** the Vdbe. In these cases we can just copy the pointer.
   515 **
   516 ** If addr<0 then change P4 on the most recently inserted instruction.
   517 */
   518 void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){
   519   Op *pOp;
   520   sqlite3 *db;
   521   assert( p!=0 );
   522   db = p->db;
   523   assert( p->magic==VDBE_MAGIC_INIT );
   524   if( p->aOp==0 || db->mallocFailed ){
   525     if (n != P4_KEYINFO) {
   526       freeP4(db, n, (void*)*(char**)&zP4);
   527     }
   528     return;
   529   }
   530   assert( addr<p->nOp );
   531   if( addr<0 ){
   532     addr = p->nOp - 1;
   533     if( addr<0 ) return;
   534   }
   535   pOp = &p->aOp[addr];
   536   freeP4(db, pOp->p4type, pOp->p4.p);
   537   pOp->p4.p = 0;
   538   if( n==P4_INT32 ){
   539     /* Note: this cast is safe, because the origin data point was an int
   540     ** that was cast to a (const char *). */
   541     pOp->p4.i = SQLITE_PTR_TO_INT(zP4);
   542     pOp->p4type = n;
   543   }else if( zP4==0 ){
   544     pOp->p4.p = 0;
   545     pOp->p4type = P4_NOTUSED;
   546   }else if( n==P4_KEYINFO ){
   547     KeyInfo *pKeyInfo;
   548     int nField, nByte;
   549 
   550     nField = ((KeyInfo*)zP4)->nField;
   551     nByte = sizeof(*pKeyInfo) + (nField-1)*sizeof(pKeyInfo->aColl[0]) + nField;
   552     pKeyInfo = sqlite3Malloc( nByte );
   553     pOp->p4.pKeyInfo = pKeyInfo;
   554     if( pKeyInfo ){
   555       u8 *aSortOrder;
   556       memcpy(pKeyInfo, zP4, nByte);
   557       aSortOrder = pKeyInfo->aSortOrder;
   558       if( aSortOrder ){
   559         pKeyInfo->aSortOrder = (unsigned char*)&pKeyInfo->aColl[nField];
   560         memcpy(pKeyInfo->aSortOrder, aSortOrder, nField);
   561       }
   562       pOp->p4type = P4_KEYINFO;
   563     }else{
   564       p->db->mallocFailed = 1;
   565       pOp->p4type = P4_NOTUSED;
   566     }
   567   }else if( n==P4_KEYINFO_HANDOFF ){
   568     pOp->p4.p = (void*)zP4;
   569     pOp->p4type = P4_KEYINFO;
   570   }else if( n<0 ){
   571     pOp->p4.p = (void*)zP4;
   572     pOp->p4type = n;
   573   }else{
   574     if( n==0 ) n = strlen(zP4);
   575     pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n);
   576     pOp->p4type = P4_DYNAMIC;
   577   }
   578 }
   579 
   580 #ifndef NDEBUG
   581 /*
   582 ** Change the comment on the the most recently coded instruction.  Or
   583 ** insert a No-op and add the comment to that new instruction.  This
   584 ** makes the code easier to read during debugging.  None of this happens
   585 ** in a production build.
   586 */
   587 void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){
   588   va_list ap;
   589   assert( p->nOp>0 || p->aOp==0 );
   590   assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed );
   591   if( p->nOp ){
   592     char **pz = &p->aOp[p->nOp-1].zComment;
   593     va_start(ap, zFormat);
   594     sqlite3DbFree(p->db, *pz);
   595     *pz = sqlite3VMPrintf(p->db, zFormat, ap);
   596     va_end(ap);
   597   }
   598 }
   599 void sqlite3VdbeNoopComment(Vdbe *p, const char *zFormat, ...){
   600   va_list ap;
   601   sqlite3VdbeAddOp0(p, OP_Noop);
   602   assert( p->nOp>0 || p->aOp==0 );
   603   assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed );
   604   if( p->nOp ){
   605     char **pz = &p->aOp[p->nOp-1].zComment;
   606     va_start(ap, zFormat);
   607     sqlite3DbFree(p->db, *pz);
   608     *pz = sqlite3VMPrintf(p->db, zFormat, ap);
   609     va_end(ap);
   610   }
   611 }
   612 #endif  /* NDEBUG */
   613 
   614 /*
   615 ** Return the opcode for a given address.
   616 */
   617 VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){
   618   assert( p->magic==VDBE_MAGIC_INIT );
   619   assert( (addr>=0 && addr<p->nOp) || p->db->mallocFailed );
   620   return ((addr>=0 && addr<p->nOp)?(&p->aOp[addr]):0);
   621 }
   622 
   623 #if !defined(SQLITE_OMIT_EXPLAIN) || !defined(NDEBUG) \
   624      || defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
   625 /*
   626 ** Compute a string that describes the P4 parameter for an opcode.
   627 ** Use zTemp for any required temporary buffer space.
   628 */
   629 static char *displayP4(Op *pOp, char *zTemp, int nTemp){
   630   char *zP4 = zTemp;
   631   assert( nTemp>=20 );
   632   switch( pOp->p4type ){
   633     case P4_KEYINFO_STATIC:
   634     case P4_KEYINFO: {
   635       int i, j;
   636       KeyInfo *pKeyInfo = pOp->p4.pKeyInfo;
   637       sqlite3_snprintf(nTemp, zTemp, "keyinfo(%d", pKeyInfo->nField);
   638       i = strlen(zTemp);
   639       for(j=0; j<pKeyInfo->nField; j++){
   640         CollSeq *pColl = pKeyInfo->aColl[j];
   641         if( pColl ){
   642           int n = strlen(pColl->zName);
   643           if( i+n>nTemp-6 ){
   644             memcpy(&zTemp[i],",...",4);
   645             break;
   646           }
   647           zTemp[i++] = ',';
   648           if( pKeyInfo->aSortOrder && pKeyInfo->aSortOrder[j] ){
   649             zTemp[i++] = '-';
   650           }
   651           memcpy(&zTemp[i], pColl->zName,n+1);
   652           i += n;
   653         }else if( i+4<nTemp-6 ){
   654           memcpy(&zTemp[i],",nil",4);
   655           i += 4;
   656         }
   657       }
   658       zTemp[i++] = ')';
   659       zTemp[i] = 0;
   660       assert( i<nTemp );
   661       break;
   662     }
   663     case P4_COLLSEQ: {
   664       CollSeq *pColl = pOp->p4.pColl;
   665       sqlite3_snprintf(nTemp, zTemp, "collseq(%.20s)", pColl->zName);
   666       break;
   667     }
   668     case P4_FUNCDEF: {
   669       FuncDef *pDef = pOp->p4.pFunc;
   670       sqlite3_snprintf(nTemp, zTemp, "%s(%d)", pDef->zName, pDef->nArg);
   671       break;
   672     }
   673     case P4_INT64: {
   674       sqlite3_snprintf(nTemp, zTemp, "%lld", *pOp->p4.pI64);
   675       break;
   676     }
   677     case P4_INT32: {
   678       sqlite3_snprintf(nTemp, zTemp, "%d", pOp->p4.i);
   679       break;
   680     }
   681     case P4_REAL: {
   682       sqlite3_snprintf(nTemp, zTemp, "%.16g", *pOp->p4.pReal);
   683       break;
   684     }
   685     case P4_MEM: {
   686       Mem *pMem = pOp->p4.pMem;
   687       assert( (pMem->flags & MEM_Null)==0 );
   688       if( pMem->flags & MEM_Str ){
   689         zP4 = pMem->z;
   690       }else if( pMem->flags & MEM_Int ){
   691         sqlite3_snprintf(nTemp, zTemp, "%lld", pMem->u.i);
   692       }else if( pMem->flags & MEM_Real ){
   693         sqlite3_snprintf(nTemp, zTemp, "%.16g", pMem->r);
   694       }
   695       break;
   696     }
   697 #ifndef SQLITE_OMIT_VIRTUALTABLE
   698     case P4_VTAB: {
   699       sqlite3_vtab *pVtab = pOp->p4.pVtab;
   700       sqlite3_snprintf(nTemp, zTemp, "vtab:%p:%p", pVtab, pVtab->pModule);
   701       break;
   702     }
   703 #endif
   704     case P4_INTARRAY: {
   705       sqlite3_snprintf(nTemp, zTemp, "intarray");
   706       break;
   707     }
   708     default: {
   709       zP4 = pOp->p4.z;
   710       if( zP4==0 ){
   711         zP4 = zTemp;
   712         zTemp[0] = 0;
   713       }
   714     }
   715   }
   716   assert( zP4!=0 );
   717   return zP4;
   718 }
   719 #endif
   720 
   721 /*
   722 ** Declare to the Vdbe that the BTree object at db->aDb[i] is used.
   723 **
   724 */
   725 void sqlite3VdbeUsesBtree(Vdbe *p, int i){
   726   int mask;
   727   assert( i>=0 && i<p->db->nDb );
   728   assert( i<sizeof(p->btreeMask)*8 );
   729   mask = 1<<i;
   730   if( (p->btreeMask & mask)==0 ){
   731     p->btreeMask |= mask;
   732     sqlite3BtreeMutexArrayInsert(&p->aMutex, p->db->aDb[i].pBt);
   733   }
   734 }
   735 
   736 
   737 #if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
   738 /*
   739 ** Print a single opcode.  This routine is used for debugging only.
   740 */
   741 void sqlite3VdbePrintOp(FILE *pOut, int pc, Op *pOp){
   742   char *zP4;
   743   char zPtr[50];
   744   static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-4s %.2X %s\n";
   745   if( pOut==0 ) pOut = stdout;
   746   zP4 = displayP4(pOp, zPtr, sizeof(zPtr));
   747   fprintf(pOut, zFormat1, pc, 
   748       sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3, zP4, pOp->p5,
   749 #ifdef SQLITE_DEBUG
   750       pOp->zComment ? pOp->zComment : ""
   751 #else
   752       ""
   753 #endif
   754   );
   755   fflush(pOut);
   756 }
   757 #endif
   758 
   759 /*
   760 ** Release an array of N Mem elements
   761 */
   762 static void releaseMemArray(Mem *p, int N){
   763   if( p && N ){
   764     sqlite3 *db = p->db;
   765     int malloc_failed = db->mallocFailed;
   766     while( N-->0 ){
   767       assert( N<2 || p[0].db==p[1].db );
   768       sqlite3VdbeMemRelease(p);
   769       p->flags = MEM_Null;
   770       p++;
   771     }
   772     db->mallocFailed = malloc_failed;
   773   }
   774 }
   775 
   776 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
   777 int sqlite3VdbeReleaseBuffers(Vdbe *p){
   778   int ii;
   779   int nFree = 0;
   780   assert( sqlite3_mutex_held(p->db->mutex) );
   781   for(ii=1; ii<=p->nMem; ii++){
   782     Mem *pMem = &p->aMem[ii];
   783     if( pMem->z && pMem->flags&MEM_Dyn ){
   784       assert( !pMem->xDel );
   785       nFree += sqlite3DbMallocSize(pMem->db, pMem->z);
   786       sqlite3VdbeMemRelease(pMem);
   787     }
   788   }
   789   return nFree;
   790 }
   791 #endif
   792 
   793 #ifndef SQLITE_OMIT_EXPLAIN
   794 /*
   795 ** Give a listing of the program in the virtual machine.
   796 **
   797 ** The interface is the same as sqlite3VdbeExec().  But instead of
   798 ** running the code, it invokes the callback once for each instruction.
   799 ** This feature is used to implement "EXPLAIN".
   800 **
   801 ** When p->explain==1, each instruction is listed.  When
   802 ** p->explain==2, only OP_Explain instructions are listed and these
   803 ** are shown in a different format.  p->explain==2 is used to implement
   804 ** EXPLAIN QUERY PLAN.
   805 */
   806 int sqlite3VdbeList(
   807   Vdbe *p                   /* The VDBE */
   808 ){
   809   sqlite3 *db = p->db;
   810   int i;
   811   int rc = SQLITE_OK;
   812   Mem *pMem = p->pResultSet = &p->aMem[1];
   813 
   814   assert( p->explain );
   815   if( p->magic!=VDBE_MAGIC_RUN ) return SQLITE_MISUSE;
   816   assert( db->magic==SQLITE_MAGIC_BUSY );
   817   assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY );
   818 
   819   /* Even though this opcode does not use dynamic strings for
   820   ** the result, result columns may become dynamic if the user calls
   821   ** sqlite3_column_text16(), causing a translation to UTF-16 encoding.
   822   */
   823   releaseMemArray(pMem, p->nMem);
   824 
   825   do{
   826     i = p->pc++;
   827   }while( i<p->nOp && p->explain==2 && p->aOp[i].opcode!=OP_Explain );
   828   if( i>=p->nOp ){
   829     p->rc = SQLITE_OK;
   830     rc = SQLITE_DONE;
   831   }else if( db->u1.isInterrupted ){
   832     p->rc = SQLITE_INTERRUPT;
   833     rc = SQLITE_ERROR;
   834     sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(p->rc));
   835   }else{
   836     char *z;
   837     Op *pOp = &p->aOp[i];
   838     if( p->explain==1 ){
   839       pMem->flags = MEM_Int;
   840       pMem->type = SQLITE_INTEGER;
   841       pMem->u.i = i;                                /* Program counter */
   842       pMem++;
   843   
   844       pMem->flags = MEM_Static|MEM_Str|MEM_Term;
   845       pMem->z = (char*)sqlite3OpcodeName(pOp->opcode);  /* Opcode */
   846       assert( pMem->z!=0 );
   847       pMem->n = strlen(pMem->z);
   848       pMem->type = SQLITE_TEXT;
   849       pMem->enc = SQLITE_UTF8;
   850       pMem++;
   851     }
   852 
   853     pMem->flags = MEM_Int;
   854     pMem->u.i = pOp->p1;                          /* P1 */
   855     pMem->type = SQLITE_INTEGER;
   856     pMem++;
   857 
   858     pMem->flags = MEM_Int;
   859     pMem->u.i = pOp->p2;                          /* P2 */
   860     pMem->type = SQLITE_INTEGER;
   861     pMem++;
   862 
   863     if( p->explain==1 ){
   864       pMem->flags = MEM_Int;
   865       pMem->u.i = pOp->p3;                          /* P3 */
   866       pMem->type = SQLITE_INTEGER;
   867       pMem++;
   868     }
   869 
   870     if( sqlite3VdbeMemGrow(pMem, 32, 0) ){            /* P4 */
   871       p->db->mallocFailed = 1;
   872       return SQLITE_NOMEM;
   873     }
   874     pMem->flags = MEM_Dyn|MEM_Str|MEM_Term;
   875     z = displayP4(pOp, pMem->z, 32);
   876     if( z!=pMem->z ){
   877       sqlite3VdbeMemSetStr(pMem, z, -1, SQLITE_UTF8, 0);
   878     }else{
   879       assert( pMem->z!=0 );
   880       pMem->n = strlen(pMem->z);
   881       pMem->enc = SQLITE_UTF8;
   882     }
   883     pMem->type = SQLITE_TEXT;
   884     pMem++;
   885 
   886     if( p->explain==1 ){
   887       if( sqlite3VdbeMemGrow(pMem, 4, 0) ){
   888         p->db->mallocFailed = 1;
   889         return SQLITE_NOMEM;
   890       }
   891       pMem->flags = MEM_Dyn|MEM_Str|MEM_Term;
   892       pMem->n = 2;
   893       sqlite3_snprintf(3, pMem->z, "%.2x", pOp->p5);   /* P5 */
   894       pMem->type = SQLITE_TEXT;
   895       pMem->enc = SQLITE_UTF8;
   896       pMem++;
   897   
   898 #ifdef SQLITE_DEBUG
   899       if( pOp->zComment ){
   900         pMem->flags = MEM_Str|MEM_Term;
   901         pMem->z = pOp->zComment;
   902         pMem->n = strlen(pMem->z);
   903         pMem->enc = SQLITE_UTF8;
   904       }else
   905 #endif
   906       {
   907         pMem->flags = MEM_Null;                       /* Comment */
   908         pMem->type = SQLITE_NULL;
   909       }
   910     }
   911 
   912     p->nResColumn = 8 - 5*(p->explain-1);
   913     p->rc = SQLITE_OK;
   914     rc = SQLITE_ROW;
   915   }
   916   return rc;
   917 }
   918 #endif /* SQLITE_OMIT_EXPLAIN */
   919 
   920 #ifdef SQLITE_DEBUG
   921 /*
   922 ** Print the SQL that was used to generate a VDBE program.
   923 */
   924 void sqlite3VdbePrintSql(Vdbe *p){
   925   int nOp = p->nOp;
   926   VdbeOp *pOp;
   927   if( nOp<1 ) return;
   928   pOp = &p->aOp[0];
   929   if( pOp->opcode==OP_Trace && pOp->p4.z!=0 ){
   930     const char *z = pOp->p4.z;
   931     while( isspace(*(u8*)z) ) z++;
   932     printf("SQL: [%s]\n", z);
   933   }
   934 }
   935 #endif
   936 
   937 #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE)
   938 /*
   939 ** Print an IOTRACE message showing SQL content.
   940 */
   941 void sqlite3VdbeIOTraceSql(Vdbe *p){
   942   int nOp = p->nOp;
   943   VdbeOp *pOp;
   944   if( sqlite3IoTrace==0 ) return;
   945   if( nOp<1 ) return;
   946   pOp = &p->aOp[0];
   947   if( pOp->opcode==OP_Trace && pOp->p4.z!=0 ){
   948     int i, j;
   949     char z[1000];
   950     sqlite3_snprintf(sizeof(z), z, "%s", pOp->p4.z);
   951     for(i=0; isspace((unsigned char)z[i]); i++){}
   952     for(j=0; z[i]; i++){
   953       if( isspace((unsigned char)z[i]) ){
   954         if( z[i-1]!=' ' ){
   955           z[j++] = ' ';
   956         }
   957       }else{
   958         z[j++] = z[i];
   959       }
   960     }
   961     z[j] = 0;
   962     sqlite3IoTrace("SQL %s\n", z);
   963   }
   964 }
   965 #endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */
   966 
   967 
   968 /*
   969 ** Prepare a virtual machine for execution.  This involves things such
   970 ** as allocating stack space and initializing the program counter.
   971 ** After the VDBE has be prepped, it can be executed by one or more
   972 ** calls to sqlite3VdbeExec().  
   973 **
   974 ** This is the only way to move a VDBE from VDBE_MAGIC_INIT to
   975 ** VDBE_MAGIC_RUN.
   976 */
   977 void sqlite3VdbeMakeReady(
   978   Vdbe *p,                       /* The VDBE */
   979   int nVar,                      /* Number of '?' see in the SQL statement */
   980   int nMem,                      /* Number of memory cells to allocate */
   981   int nCursor,                   /* Number of cursors to allocate */
   982   int isExplain                  /* True if the EXPLAIN keywords is present */
   983 ){
   984   int n;
   985   sqlite3 *db = p->db;
   986 
   987   assert( p!=0 );
   988   assert( p->magic==VDBE_MAGIC_INIT );
   989 
   990   /* There should be at least one opcode.
   991   */
   992   assert( p->nOp>0 );
   993 
   994   /* Set the magic to VDBE_MAGIC_RUN sooner rather than later. This
   995    * is because the call to resizeOpArray() below may shrink the
   996    * p->aOp[] array to save memory if called when in VDBE_MAGIC_RUN 
   997    * state.
   998    */
   999   p->magic = VDBE_MAGIC_RUN;
  1000 
  1001   /* For each cursor required, also allocate a memory cell. Memory
  1002   ** cells (nMem+1-nCursor)..nMem, inclusive, will never be used by
  1003   ** the vdbe program. Instead they are used to allocate space for
  1004   ** Cursor/BtCursor structures. The blob of memory associated with 
  1005   ** cursor 0 is stored in memory cell nMem. Memory cell (nMem-1)
  1006   ** stores the blob of memory associated with cursor 1, etc.
  1007   **
  1008   ** See also: allocateCursor().
  1009   */
  1010   nMem += nCursor;
  1011 
  1012   /*
  1013   ** Allocation space for registers.
  1014   */
  1015   if( p->aMem==0 ){
  1016     int nArg;       /* Maximum number of args passed to a user function. */
  1017     resolveP2Values(p, &nArg);
  1018     /*resizeOpArray(p, p->nOp);*/
  1019     assert( nVar>=0 );
  1020     if( isExplain && nMem<10 ){
  1021       p->nMem = nMem = 10;
  1022     }
  1023     p->aMem = sqlite3DbMallocZero(db,
  1024         nMem*sizeof(Mem)               /* aMem */
  1025       + nVar*sizeof(Mem)               /* aVar */
  1026       + nArg*sizeof(Mem*)              /* apArg */
  1027       + nVar*sizeof(char*)             /* azVar */
  1028       + nCursor*sizeof(Cursor*) + 1    /* apCsr */
  1029     );
  1030     if( !db->mallocFailed ){
  1031       p->aMem--;             /* aMem[] goes from 1..nMem */
  1032       p->nMem = nMem;        /*       not from 0..nMem-1 */
  1033       p->aVar = &p->aMem[nMem+1];
  1034       p->nVar = nVar;
  1035       p->okVar = 0;
  1036       p->apArg = (Mem**)&p->aVar[nVar];
  1037       p->azVar = (char**)&p->apArg[nArg];
  1038       p->apCsr = (Cursor**)&p->azVar[nVar];
  1039       p->nCursor = nCursor;
  1040       for(n=0; n<nVar; n++){
  1041         p->aVar[n].flags = MEM_Null;
  1042         p->aVar[n].db = db;
  1043       }
  1044       for(n=1; n<=nMem; n++){
  1045         p->aMem[n].flags = MEM_Null;
  1046         p->aMem[n].db = db;
  1047       }
  1048     }
  1049   }
  1050 #ifdef SQLITE_DEBUG
  1051   for(n=1; n<p->nMem; n++){
  1052     assert( p->aMem[n].db==db );
  1053   }
  1054 #endif
  1055 
  1056   p->pc = -1;
  1057   p->rc = SQLITE_OK;
  1058   p->uniqueCnt = 0;
  1059   p->errorAction = OE_Abort;
  1060   p->explain |= isExplain;
  1061   p->magic = VDBE_MAGIC_RUN;
  1062   p->nChange = 0;
  1063   p->cacheCtr = 1;
  1064   p->minWriteFileFormat = 255;
  1065   p->openedStatement = 0;
  1066 #ifdef VDBE_PROFILE
  1067   {
  1068     int i;
  1069     for(i=0; i<p->nOp; i++){
  1070       p->aOp[i].cnt = 0;
  1071       p->aOp[i].cycles = 0;
  1072     }
  1073   }
  1074 #endif
  1075 }
  1076 
  1077 /*
  1078 ** Close a VDBE cursor and release all the resources that cursor 
  1079 ** happens to hold.
  1080 */
  1081 void sqlite3VdbeFreeCursor(Vdbe *p, Cursor *pCx){
  1082   if( pCx==0 ){
  1083     return;
  1084   }
  1085   if( pCx->pBt ){
  1086     sqlite3BtreeClose(pCx->pBt);
  1087     /* The pCx->pCursor will be close automatically, if it exists, by
  1088     ** the call above. */
  1089   }else if( pCx->pCursor ){
  1090     sqlite3BtreeCloseCursor(pCx->pCursor);
  1091   }
  1092 #ifndef SQLITE_OMIT_VIRTUALTABLE
  1093   if( pCx->pVtabCursor ){
  1094     sqlite3_vtab_cursor *pVtabCursor = pCx->pVtabCursor;
  1095     const sqlite3_module *pModule = pCx->pModule;
  1096     p->inVtabMethod = 1;
  1097     (void)sqlite3SafetyOff(p->db);
  1098     pModule->xClose(pVtabCursor);
  1099     (void)sqlite3SafetyOn(p->db);
  1100     p->inVtabMethod = 0;
  1101   }
  1102 #endif
  1103   if( !pCx->ephemPseudoTable ){
  1104     sqlite3DbFree(p->db, pCx->pData);
  1105   }
  1106 }
  1107 
  1108 /*
  1109 ** Close all cursors except for VTab cursors that are currently
  1110 ** in use.
  1111 */
  1112 static void closeAllCursorsExceptActiveVtabs(Vdbe *p){
  1113   int i;
  1114   if( p->apCsr==0 ) return;
  1115   for(i=0; i<p->nCursor; i++){
  1116     Cursor *pC = p->apCsr[i];
  1117     if( pC && (!p->inVtabMethod || !pC->pVtabCursor) ){
  1118       sqlite3VdbeFreeCursor(p, pC);
  1119       p->apCsr[i] = 0;
  1120     }
  1121   }
  1122 }
  1123 
  1124 /*
  1125 ** Clean up the VM after execution.
  1126 **
  1127 ** This routine will automatically close any cursors, lists, and/or
  1128 ** sorters that were left open.  It also deletes the values of
  1129 ** variables in the aVar[] array.
  1130 */
  1131 static void Cleanup(Vdbe *p){
  1132   int i;
  1133   sqlite3 *db = p->db;
  1134   closeAllCursorsExceptActiveVtabs(p);
  1135   for(i=1; i<=p->nMem; i++){
  1136     MemSetTypeFlag(&p->aMem[i], MEM_Null);
  1137   }
  1138   releaseMemArray(&p->aMem[1], p->nMem);
  1139   sqlite3VdbeFifoClear(&p->sFifo);
  1140   if( p->contextStack ){
  1141     for(i=0; i<p->contextStackTop; i++){
  1142       sqlite3VdbeFifoClear(&p->contextStack[i].sFifo);
  1143     }
  1144     sqlite3DbFree(db, p->contextStack);
  1145   }
  1146   p->contextStack = 0;
  1147   p->contextStackDepth = 0;
  1148   p->contextStackTop = 0;
  1149   sqlite3DbFree(db, p->zErrMsg);
  1150   p->zErrMsg = 0;
  1151   p->pResultSet = 0;
  1152 }
  1153 
  1154 /*
  1155 ** Set the number of result columns that will be returned by this SQL
  1156 ** statement. This is now set at compile time, rather than during
  1157 ** execution of the vdbe program so that sqlite3_column_count() can
  1158 ** be called on an SQL statement before sqlite3_step().
  1159 */
  1160 void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){
  1161   Mem *pColName;
  1162   int n;
  1163   sqlite3 *db = p->db;
  1164 
  1165   releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
  1166   sqlite3DbFree(db, p->aColName);
  1167   n = nResColumn*COLNAME_N;
  1168   p->nResColumn = nResColumn;
  1169   p->aColName = pColName = (Mem*)sqlite3DbMallocZero(db, sizeof(Mem)*n );
  1170   if( p->aColName==0 ) return;
  1171   while( n-- > 0 ){
  1172     pColName->flags = MEM_Null;
  1173     pColName->db = p->db;
  1174     pColName++;
  1175   }
  1176 }
  1177 
  1178 /*
  1179 ** Set the name of the idx'th column to be returned by the SQL statement.
  1180 ** zName must be a pointer to a nul terminated string.
  1181 **
  1182 ** This call must be made after a call to sqlite3VdbeSetNumCols().
  1183 **
  1184 ** If N==P4_STATIC  it means that zName is a pointer to a constant static
  1185 ** string and we can just copy the pointer. If it is P4_DYNAMIC, then 
  1186 ** the string is freed using sqlite3DbFree(db, ) when the vdbe is finished with
  1187 ** it. Otherwise, N bytes of zName are copied.
  1188 */
  1189 int sqlite3VdbeSetColName(Vdbe *p, int idx, int var, const char *zName, int N){
  1190   int rc;
  1191   Mem *pColName;
  1192   assert( idx<p->nResColumn );
  1193   assert( var<COLNAME_N );
  1194   if( p->db->mallocFailed ) return SQLITE_NOMEM;
  1195   assert( p->aColName!=0 );
  1196   pColName = &(p->aColName[idx+var*p->nResColumn]);
  1197   if( N==P4_DYNAMIC || N==P4_STATIC ){
  1198     rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, SQLITE_STATIC);
  1199   }else{
  1200     rc = sqlite3VdbeMemSetStr(pColName, zName, N, SQLITE_UTF8,SQLITE_TRANSIENT);
  1201   }
  1202   if( rc==SQLITE_OK && N==P4_DYNAMIC ){
  1203     pColName->flags &= (~MEM_Static);
  1204     pColName->zMalloc = pColName->z;
  1205   }
  1206   return rc;
  1207 }
  1208 
  1209 /*
  1210 ** A read or write transaction may or may not be active on database handle
  1211 ** db. If a transaction is active, commit it. If there is a
  1212 ** write-transaction spanning more than one database file, this routine
  1213 ** takes care of the master journal trickery.
  1214 */
  1215 static int vdbeCommit(sqlite3 *db, Vdbe *p){
  1216   int i;
  1217   int nTrans = 0;  /* Number of databases with an active write-transaction */
  1218   int rc = SQLITE_OK;
  1219   int needXcommit = 0;
  1220 
  1221   /* Before doing anything else, call the xSync() callback for any
  1222   ** virtual module tables written in this transaction. This has to
  1223   ** be done before determining whether a master journal file is 
  1224   ** required, as an xSync() callback may add an attached database
  1225   ** to the transaction.
  1226   */
  1227   rc = sqlite3VtabSync(db, &p->zErrMsg);
  1228   if( rc!=SQLITE_OK ){
  1229     return rc;
  1230   }
  1231 
  1232   /* This loop determines (a) if the commit hook should be invoked and
  1233   ** (b) how many database files have open write transactions, not 
  1234   ** including the temp database. (b) is important because if more than 
  1235   ** one database file has an open write transaction, a master journal
  1236   ** file is required for an atomic commit.
  1237   */ 
  1238   for(i=0; i<db->nDb; i++){ 
  1239     Btree *pBt = db->aDb[i].pBt;
  1240     if( sqlite3BtreeIsInTrans(pBt) ){
  1241       needXcommit = 1;
  1242       if( i!=1 ) nTrans++;
  1243     }
  1244   }
  1245 
  1246   /* If there are any write-transactions at all, invoke the commit hook */
  1247   if( needXcommit && db->xCommitCallback ){
  1248     (void)sqlite3SafetyOff(db);
  1249     rc = db->xCommitCallback(db->pCommitArg);
  1250     (void)sqlite3SafetyOn(db);
  1251     if( rc ){
  1252       return SQLITE_CONSTRAINT;
  1253     }
  1254   }
  1255 
  1256   /* The simple case - no more than one database file (not counting the
  1257   ** TEMP database) has a transaction active.   There is no need for the
  1258   ** master-journal.
  1259   **
  1260   ** If the return value of sqlite3BtreeGetFilename() is a zero length
  1261   ** string, it means the main database is :memory: or a temp file.  In 
  1262   ** that case we do not support atomic multi-file commits, so use the 
  1263   ** simple case then too.
  1264   */
  1265   if( 0==strlen(sqlite3BtreeGetFilename(db->aDb[0].pBt)) || nTrans<=1 ){
  1266     for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 
  1267       Btree *pBt = db->aDb[i].pBt;
  1268       if( pBt ){
  1269         rc = sqlite3BtreeCommitPhaseOne(pBt, 0);
  1270       }
  1271     }
  1272 
  1273     /* Do the commit only if all databases successfully complete phase 1. 
  1274     ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an
  1275     ** IO error while deleting or truncating a journal file. It is unlikely,
  1276     ** but could happen. In this case abandon processing and return the error.
  1277     */
  1278     for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
  1279       Btree *pBt = db->aDb[i].pBt;
  1280       if( pBt ){
  1281         rc = sqlite3BtreeCommitPhaseTwo(pBt);
  1282       }
  1283     }
  1284     if( rc==SQLITE_OK ){
  1285       sqlite3VtabCommit(db);
  1286     }
  1287   }
  1288 
  1289   /* The complex case - There is a multi-file write-transaction active.
  1290   ** This requires a master journal file to ensure the transaction is
  1291   ** committed atomicly.
  1292   */
  1293 #ifndef SQLITE_OMIT_DISKIO
  1294   else{
  1295     sqlite3_vfs *pVfs = db->pVfs;
  1296     int needSync = 0;
  1297     char *zMaster = 0;   /* File-name for the master journal */
  1298     char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt);
  1299     sqlite3_file *pMaster = 0;
  1300     i64 offset = 0;
  1301     int res;
  1302 
  1303     /* Select a master journal file name */
  1304     do {
  1305       u32 random;
  1306       sqlite3DbFree(db, zMaster);
  1307       sqlite3_randomness(sizeof(random), &random);
  1308       zMaster = sqlite3MPrintf(db, "%s-mj%08X", zMainFile, random&0x7fffffff);
  1309       if( !zMaster ){
  1310         return SQLITE_NOMEM;
  1311       }
  1312       rc = sqlite3OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS, &res);
  1313     }while( rc==SQLITE_OK && res );
  1314     if( rc==SQLITE_OK ){
  1315       /* Open the master journal. */
  1316       rc = sqlite3OsOpenMalloc(pVfs, zMaster, &pMaster, 
  1317           SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|
  1318           SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_MASTER_JOURNAL, 0
  1319       );
  1320     }
  1321     if( rc!=SQLITE_OK ){
  1322       sqlite3DbFree(db, zMaster);
  1323       return rc;
  1324     }
  1325  
  1326     /* Write the name of each database file in the transaction into the new
  1327     ** master journal file. If an error occurs at this point close
  1328     ** and delete the master journal file. All the individual journal files
  1329     ** still have 'null' as the master journal pointer, so they will roll
  1330     ** back independently if a failure occurs.
  1331     */
  1332     for(i=0; i<db->nDb; i++){
  1333       Btree *pBt = db->aDb[i].pBt;
  1334       if( i==1 ) continue;   /* Ignore the TEMP database */
  1335       if( sqlite3BtreeIsInTrans(pBt) ){
  1336         char const *zFile = sqlite3BtreeGetJournalname(pBt);
  1337         if( zFile[0]==0 ) continue;  /* Ignore :memory: databases */
  1338         if( !needSync && !sqlite3BtreeSyncDisabled(pBt) ){
  1339           needSync = 1;
  1340         }
  1341         rc = sqlite3OsWrite(pMaster, zFile, strlen(zFile)+1, offset);
  1342         offset += strlen(zFile)+1;
  1343         if( rc!=SQLITE_OK ){
  1344           sqlite3OsCloseFree(pMaster);
  1345           sqlite3OsDelete(pVfs, zMaster, 0);
  1346           sqlite3DbFree(db, zMaster);
  1347           return rc;
  1348         }
  1349       }
  1350     }
  1351 
  1352     /* Sync the master journal file. If the IOCAP_SEQUENTIAL device
  1353     ** flag is set this is not required.
  1354     */
  1355     zMainFile = sqlite3BtreeGetDirname(db->aDb[0].pBt);
  1356     if( (needSync 
  1357      && (0==(sqlite3OsDeviceCharacteristics(pMaster)&SQLITE_IOCAP_SEQUENTIAL))
  1358      && (rc=sqlite3OsSync(pMaster, SQLITE_SYNC_NORMAL))!=SQLITE_OK) ){
  1359       sqlite3OsCloseFree(pMaster);
  1360       sqlite3OsDelete(pVfs, zMaster, 0);
  1361       sqlite3DbFree(db, zMaster);
  1362       return rc;
  1363     }
  1364 
  1365     /* Sync all the db files involved in the transaction. The same call
  1366     ** sets the master journal pointer in each individual journal. If
  1367     ** an error occurs here, do not delete the master journal file.
  1368     **
  1369     ** If the error occurs during the first call to
  1370     ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the
  1371     ** master journal file will be orphaned. But we cannot delete it,
  1372     ** in case the master journal file name was written into the journal
  1373     ** file before the failure occured.
  1374     */
  1375     for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 
  1376       Btree *pBt = db->aDb[i].pBt;
  1377       if( pBt ){
  1378         rc = sqlite3BtreeCommitPhaseOne(pBt, zMaster);
  1379       }
  1380     }
  1381     sqlite3OsCloseFree(pMaster);
  1382     if( rc!=SQLITE_OK ){
  1383       sqlite3DbFree(db, zMaster);
  1384       return rc;
  1385     }
  1386 
  1387     /* Delete the master journal file. This commits the transaction. After
  1388     ** doing this the directory is synced again before any individual
  1389     ** transaction files are deleted.
  1390     */
  1391     rc = sqlite3OsDelete(pVfs, zMaster, 1);
  1392     sqlite3DbFree(db, zMaster);
  1393     zMaster = 0;
  1394     if( rc ){
  1395       return rc;
  1396     }
  1397 
  1398     /* All files and directories have already been synced, so the following
  1399     ** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and
  1400     ** deleting or truncating journals. If something goes wrong while
  1401     ** this is happening we don't really care. The integrity of the
  1402     ** transaction is already guaranteed, but some stray 'cold' journals
  1403     ** may be lying around. Returning an error code won't help matters.
  1404     */
  1405     disable_simulated_io_errors();
  1406     sqlite3BeginBenignMalloc();
  1407     for(i=0; i<db->nDb; i++){ 
  1408       Btree *pBt = db->aDb[i].pBt;
  1409       if( pBt ){
  1410         sqlite3BtreeCommitPhaseTwo(pBt);
  1411       }
  1412     }
  1413     sqlite3EndBenignMalloc();
  1414     enable_simulated_io_errors();
  1415 
  1416     sqlite3VtabCommit(db);
  1417   }
  1418 #endif
  1419 
  1420   return rc;
  1421 }
  1422 
  1423 /* 
  1424 ** This routine checks that the sqlite3.activeVdbeCnt count variable
  1425 ** matches the number of vdbe's in the list sqlite3.pVdbe that are
  1426 ** currently active. An assertion fails if the two counts do not match.
  1427 ** This is an internal self-check only - it is not an essential processing
  1428 ** step.
  1429 **
  1430 ** This is a no-op if NDEBUG is defined.
  1431 */
  1432 #ifndef NDEBUG
  1433 static void checkActiveVdbeCnt(sqlite3 *db){
  1434   Vdbe *p;
  1435   int cnt = 0;
  1436   p = db->pVdbe;
  1437   while( p ){
  1438     if( p->magic==VDBE_MAGIC_RUN && p->pc>=0 ){
  1439       cnt++;
  1440     }
  1441     p = p->pNext;
  1442   }
  1443   assert( cnt==db->activeVdbeCnt );
  1444 }
  1445 #else
  1446 #define checkActiveVdbeCnt(x)
  1447 #endif
  1448 
  1449 /*
  1450 ** For every Btree that in database connection db which 
  1451 ** has been modified, "trip" or invalidate each cursor in
  1452 ** that Btree might have been modified so that the cursor
  1453 ** can never be used again.  This happens when a rollback
  1454 *** occurs.  We have to trip all the other cursors, even
  1455 ** cursor from other VMs in different database connections,
  1456 ** so that none of them try to use the data at which they
  1457 ** were pointing and which now may have been changed due
  1458 ** to the rollback.
  1459 **
  1460 ** Remember that a rollback can delete tables complete and
  1461 ** reorder rootpages.  So it is not sufficient just to save
  1462 ** the state of the cursor.  We have to invalidate the cursor
  1463 ** so that it is never used again.
  1464 */
  1465 static void invalidateCursorsOnModifiedBtrees(sqlite3 *db){
  1466   int i;
  1467   for(i=0; i<db->nDb; i++){
  1468     Btree *p = db->aDb[i].pBt;
  1469     if( p && sqlite3BtreeIsInTrans(p) ){
  1470       sqlite3BtreeTripAllCursors(p, SQLITE_ABORT);
  1471     }
  1472   }
  1473 }
  1474 
  1475 /*
  1476 ** This routine is called the when a VDBE tries to halt.  If the VDBE
  1477 ** has made changes and is in autocommit mode, then commit those
  1478 ** changes.  If a rollback is needed, then do the rollback.
  1479 **
  1480 ** This routine is the only way to move the state of a VM from
  1481 ** SQLITE_MAGIC_RUN to SQLITE_MAGIC_HALT.  It is harmless to
  1482 ** call this on a VM that is in the SQLITE_MAGIC_HALT state.
  1483 **
  1484 ** Return an error code.  If the commit could not complete because of
  1485 ** lock contention, return SQLITE_BUSY.  If SQLITE_BUSY is returned, it
  1486 ** means the close did not happen and needs to be repeated.
  1487 */
  1488 int sqlite3VdbeHalt(Vdbe *p){
  1489   sqlite3 *db = p->db;
  1490   int i;
  1491   int (*xFunc)(Btree *pBt) = 0;  /* Function to call on each btree backend */
  1492   int isSpecialError;            /* Set to true if SQLITE_NOMEM or IOERR */
  1493 
  1494   /* This function contains the logic that determines if a statement or
  1495   ** transaction will be committed or rolled back as a result of the
  1496   ** execution of this virtual machine. 
  1497   **
  1498   ** If any of the following errors occur:
  1499   **
  1500   **     SQLITE_NOMEM
  1501   **     SQLITE_IOERR
  1502   **     SQLITE_FULL
  1503   **     SQLITE_INTERRUPT
  1504   **
  1505   ** Then the internal cache might have been left in an inconsistent
  1506   ** state.  We need to rollback the statement transaction, if there is
  1507   ** one, or the complete transaction if there is no statement transaction.
  1508   */
  1509 
  1510   if( p->db->mallocFailed ){
  1511     p->rc = SQLITE_NOMEM;
  1512   }
  1513   closeAllCursorsExceptActiveVtabs(p);
  1514   if( p->magic!=VDBE_MAGIC_RUN ){
  1515     return SQLITE_OK;
  1516   }
  1517   checkActiveVdbeCnt(db);
  1518 
  1519   /* No commit or rollback needed if the program never started */
  1520   if( p->pc>=0 ){
  1521     int mrc;   /* Primary error code from p->rc */
  1522 
  1523     /* Lock all btrees used by the statement */
  1524     sqlite3BtreeMutexArrayEnter(&p->aMutex);
  1525 
  1526     /* Check for one of the special errors */
  1527     mrc = p->rc & 0xff;
  1528     isSpecialError = mrc==SQLITE_NOMEM || mrc==SQLITE_IOERR
  1529                      || mrc==SQLITE_INTERRUPT || mrc==SQLITE_FULL;
  1530     if( isSpecialError ){
  1531       /* This loop does static analysis of the query to see which of the
  1532       ** following three categories it falls into:
  1533       **
  1534       **     Read-only
  1535       **     Query with statement journal
  1536       **     Query without statement journal
  1537       **
  1538       ** We could do something more elegant than this static analysis (i.e.
  1539       ** store the type of query as part of the compliation phase), but 
  1540       ** handling malloc() or IO failure is a fairly obscure edge case so 
  1541       ** this is probably easier. Todo: Might be an opportunity to reduce 
  1542       ** code size a very small amount though...
  1543       */
  1544       int notReadOnly = 0;
  1545       int isStatement = 0;
  1546       assert(p->aOp || p->nOp==0);
  1547       for(i=0; i<p->nOp; i++){ 
  1548         switch( p->aOp[i].opcode ){
  1549           case OP_Transaction:
  1550             notReadOnly |= p->aOp[i].p2;
  1551             break;
  1552           case OP_Statement:
  1553             isStatement = 1;
  1554             break;
  1555         }
  1556       }
  1557 
  1558    
  1559       /* If the query was read-only, we need do no rollback at all. Otherwise,
  1560       ** proceed with the special handling.
  1561       */
  1562       if( notReadOnly || mrc!=SQLITE_INTERRUPT ){
  1563         if( p->rc==SQLITE_IOERR_BLOCKED && isStatement ){
  1564           xFunc = sqlite3BtreeRollbackStmt;
  1565           p->rc = SQLITE_BUSY;
  1566         } else if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) && isStatement ){
  1567           xFunc = sqlite3BtreeRollbackStmt;
  1568         }else{
  1569           /* We are forced to roll back the active transaction. Before doing
  1570           ** so, abort any other statements this handle currently has active.
  1571           */
  1572           invalidateCursorsOnModifiedBtrees(db);
  1573           sqlite3RollbackAll(db);
  1574           db->autoCommit = 1;
  1575         }
  1576       }
  1577     }
  1578   
  1579     /* If the auto-commit flag is set and this is the only active vdbe, then
  1580     ** we do either a commit or rollback of the current transaction. 
  1581     **
  1582     ** Note: This block also runs if one of the special errors handled 
  1583     ** above has occured. 
  1584     */
  1585     if( db->autoCommit && db->activeVdbeCnt==1 ){
  1586       if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){
  1587         /* The auto-commit flag is true, and the vdbe program was 
  1588         ** successful or hit an 'OR FAIL' constraint. This means a commit 
  1589         ** is required.
  1590         */
  1591         int rc = vdbeCommit(db, p);
  1592         if( rc==SQLITE_BUSY ){
  1593           sqlite3BtreeMutexArrayLeave(&p->aMutex);
  1594           return SQLITE_BUSY;
  1595         }else if( rc!=SQLITE_OK ){
  1596           p->rc = rc;
  1597           sqlite3RollbackAll(db);
  1598         }else{
  1599           sqlite3CommitInternalChanges(db);
  1600         }
  1601       }else{
  1602         sqlite3RollbackAll(db);
  1603       }
  1604     }else if( !xFunc ){
  1605       if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){
  1606         if( p->openedStatement ){
  1607           xFunc = sqlite3BtreeCommitStmt;
  1608         } 
  1609       }else if( p->errorAction==OE_Abort ){
  1610         xFunc = sqlite3BtreeRollbackStmt;
  1611       }else{
  1612         invalidateCursorsOnModifiedBtrees(db);
  1613         sqlite3RollbackAll(db);
  1614         db->autoCommit = 1;
  1615       }
  1616     }
  1617   
  1618     /* If xFunc is not NULL, then it is one of sqlite3BtreeRollbackStmt or
  1619     ** sqlite3BtreeCommitStmt. Call it once on each backend. If an error occurs
  1620     ** and the return code is still SQLITE_OK, set the return code to the new
  1621     ** error value.
  1622     */
  1623     assert(!xFunc ||
  1624       xFunc==sqlite3BtreeCommitStmt ||
  1625       xFunc==sqlite3BtreeRollbackStmt
  1626     );
  1627     for(i=0; xFunc && i<db->nDb; i++){ 
  1628       int rc;
  1629       Btree *pBt = db->aDb[i].pBt;
  1630       if( pBt ){
  1631         rc = xFunc(pBt);
  1632         if( rc && (p->rc==SQLITE_OK || p->rc==SQLITE_CONSTRAINT) ){
  1633           p->rc = rc;
  1634           sqlite3DbFree(db, p->zErrMsg);
  1635           p->zErrMsg = 0;
  1636         }
  1637       }
  1638     }
  1639   
  1640     /* If this was an INSERT, UPDATE or DELETE and the statement was committed, 
  1641     ** set the change counter. 
  1642     */
  1643     if( p->changeCntOn && p->pc>=0 ){
  1644       if( !xFunc || xFunc==sqlite3BtreeCommitStmt ){
  1645         sqlite3VdbeSetChanges(db, p->nChange);
  1646       }else{
  1647         sqlite3VdbeSetChanges(db, 0);
  1648       }
  1649       p->nChange = 0;
  1650     }
  1651   
  1652     /* Rollback or commit any schema changes that occurred. */
  1653     if( p->rc!=SQLITE_OK && db->flags&SQLITE_InternChanges ){
  1654       sqlite3ResetInternalSchema(db, 0);
  1655       db->flags = (db->flags | SQLITE_InternChanges);
  1656     }
  1657 
  1658     /* Release the locks */
  1659     sqlite3BtreeMutexArrayLeave(&p->aMutex);
  1660   }
  1661 
  1662   /* We have successfully halted and closed the VM.  Record this fact. */
  1663   if( p->pc>=0 ){
  1664     db->activeVdbeCnt--;
  1665   }
  1666   p->magic = VDBE_MAGIC_HALT;
  1667   checkActiveVdbeCnt(db);
  1668   if( p->db->mallocFailed ){
  1669     p->rc = SQLITE_NOMEM;
  1670   }
  1671 
  1672   return SQLITE_OK;
  1673 }
  1674 
  1675 
  1676 /*
  1677 ** Each VDBE holds the result of the most recent sqlite3_step() call
  1678 ** in p->rc.  This routine sets that result back to SQLITE_OK.
  1679 */
  1680 void sqlite3VdbeResetStepResult(Vdbe *p){
  1681   p->rc = SQLITE_OK;
  1682 }
  1683 
  1684 /*
  1685 ** Clean up a VDBE after execution but do not delete the VDBE just yet.
  1686 ** Write any error messages into *pzErrMsg.  Return the result code.
  1687 **
  1688 ** After this routine is run, the VDBE should be ready to be executed
  1689 ** again.
  1690 **
  1691 ** To look at it another way, this routine resets the state of the
  1692 ** virtual machine from VDBE_MAGIC_RUN or VDBE_MAGIC_HALT back to
  1693 ** VDBE_MAGIC_INIT.
  1694 */
  1695 int sqlite3VdbeReset(Vdbe *p){
  1696   sqlite3 *db;
  1697   db = p->db;
  1698 
  1699   /* If the VM did not run to completion or if it encountered an
  1700   ** error, then it might not have been halted properly.  So halt
  1701   ** it now.
  1702   */
  1703   (void)sqlite3SafetyOn(db);
  1704   sqlite3VdbeHalt(p);
  1705   (void)sqlite3SafetyOff(db);
  1706 
  1707   /* If the VDBE has be run even partially, then transfer the error code
  1708   ** and error message from the VDBE into the main database structure.  But
  1709   ** if the VDBE has just been set to run but has not actually executed any
  1710   ** instructions yet, leave the main database error information unchanged.
  1711   */
  1712   if( p->pc>=0 ){
  1713     if( p->zErrMsg ){
  1714       sqlite3ValueSetStr(db->pErr,-1,p->zErrMsg,SQLITE_UTF8,SQLITE_TRANSIENT);
  1715       db->errCode = p->rc;
  1716       sqlite3DbFree(db, p->zErrMsg);
  1717       p->zErrMsg = 0;
  1718     }else if( p->rc ){
  1719       sqlite3Error(db, p->rc, 0);
  1720     }else{
  1721       sqlite3Error(db, SQLITE_OK, 0);
  1722     }
  1723   }else if( p->rc && p->expired ){
  1724     /* The expired flag was set on the VDBE before the first call
  1725     ** to sqlite3_step(). For consistency (since sqlite3_step() was
  1726     ** called), set the database error in this case as well.
  1727     */
  1728     sqlite3Error(db, p->rc, 0);
  1729     sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT);
  1730     sqlite3DbFree(db, p->zErrMsg);
  1731     p->zErrMsg = 0;
  1732   }
  1733 
  1734   /* Reclaim all memory used by the VDBE
  1735   */
  1736   Cleanup(p);
  1737 
  1738   /* Save profiling information from this VDBE run.
  1739   */
  1740 #ifdef VDBE_PROFILE
  1741   {
  1742     FILE *out = fopen("vdbe_profile.out", "a");
  1743     if( out ){
  1744       int i;
  1745       fprintf(out, "---- ");
  1746       for(i=0; i<p->nOp; i++){
  1747         fprintf(out, "%02x", p->aOp[i].opcode);
  1748       }
  1749       fprintf(out, "\n");
  1750       for(i=0; i<p->nOp; i++){
  1751         fprintf(out, "%6d %10lld %8lld ",
  1752            p->aOp[i].cnt,
  1753            p->aOp[i].cycles,
  1754            p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0
  1755         );
  1756         sqlite3VdbePrintOp(out, i, &p->aOp[i]);
  1757       }
  1758       fclose(out);
  1759     }
  1760   }
  1761 #endif
  1762   p->magic = VDBE_MAGIC_INIT;
  1763   return p->rc & db->errMask;
  1764 }
  1765  
  1766 /*
  1767 ** Clean up and delete a VDBE after execution.  Return an integer which is
  1768 ** the result code.  Write any error message text into *pzErrMsg.
  1769 */
  1770 int sqlite3VdbeFinalize(Vdbe *p){
  1771   int rc = SQLITE_OK;
  1772   if( p->magic==VDBE_MAGIC_RUN || p->magic==VDBE_MAGIC_HALT ){
  1773     rc = sqlite3VdbeReset(p);
  1774     assert( (rc & p->db->errMask)==rc );
  1775   }else if( p->magic!=VDBE_MAGIC_INIT ){
  1776     return SQLITE_MISUSE;
  1777   }
  1778   sqlite3VdbeDelete(p);
  1779   return rc;
  1780 }
  1781 
  1782 /*
  1783 ** Call the destructor for each auxdata entry in pVdbeFunc for which
  1784 ** the corresponding bit in mask is clear.  Auxdata entries beyond 31
  1785 ** are always destroyed.  To destroy all auxdata entries, call this
  1786 ** routine with mask==0.
  1787 */
  1788 void sqlite3VdbeDeleteAuxData(VdbeFunc *pVdbeFunc, int mask){
  1789   int i;
  1790   for(i=0; i<pVdbeFunc->nAux; i++){
  1791     struct AuxData *pAux = &pVdbeFunc->apAux[i];
  1792     if( (i>31 || !(mask&(1<<i))) && pAux->pAux ){
  1793       if( pAux->xDelete ){
  1794         pAux->xDelete(pAux->pAux);
  1795       }
  1796       pAux->pAux = 0;
  1797     }
  1798   }
  1799 }
  1800 
  1801 /*
  1802 ** Delete an entire VDBE.
  1803 */
  1804 void sqlite3VdbeDelete(Vdbe *p){
  1805   int i;
  1806   sqlite3 *db;
  1807 
  1808   if( p==0 ) return;
  1809   db = p->db;
  1810   if( p->pPrev ){
  1811     p->pPrev->pNext = p->pNext;
  1812   }else{
  1813     assert( db->pVdbe==p );
  1814     db->pVdbe = p->pNext;
  1815   }
  1816   if( p->pNext ){
  1817     p->pNext->pPrev = p->pPrev;
  1818   }
  1819   if( p->aOp ){
  1820     Op *pOp = p->aOp;
  1821     for(i=0; i<p->nOp; i++, pOp++){
  1822       freeP4(db, pOp->p4type, pOp->p4.p);
  1823 #ifdef SQLITE_DEBUG
  1824       sqlite3DbFree(db, pOp->zComment);
  1825 #endif     
  1826     }
  1827     sqlite3DbFree(db, p->aOp);
  1828   }
  1829   releaseMemArray(p->aVar, p->nVar);
  1830   sqlite3DbFree(db, p->aLabel);
  1831   if( p->aMem ){
  1832     sqlite3DbFree(db, &p->aMem[1]);
  1833   }
  1834   releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
  1835   sqlite3DbFree(db, p->aColName);
  1836   sqlite3DbFree(db, p->zSql);
  1837   p->magic = VDBE_MAGIC_DEAD;
  1838   sqlite3DbFree(db, p);
  1839 }
  1840 
  1841 /*
  1842 ** If a MoveTo operation is pending on the given cursor, then do that
  1843 ** MoveTo now.  Return an error code.  If no MoveTo is pending, this
  1844 ** routine does nothing and returns SQLITE_OK.
  1845 */
  1846 int sqlite3VdbeCursorMoveto(Cursor *p){
  1847   if( p->deferredMoveto ){
  1848     int res, rc;
  1849 #ifdef SQLITE_TEST
  1850     extern int sqlite3_search_count;
  1851 #endif
  1852     assert( p->isTable );
  1853     rc = sqlite3BtreeMoveto(p->pCursor, 0, 0, p->movetoTarget, 0, &res);
  1854     if( rc ) return rc;
  1855     *p->pIncrKey = 0;
  1856     p->lastRowid = keyToInt(p->movetoTarget);
  1857     p->rowidIsValid = res==0;
  1858     if( res<0 ){
  1859       rc = sqlite3BtreeNext(p->pCursor, &res);
  1860       if( rc ) return rc;
  1861     }
  1862 #ifdef SQLITE_TEST
  1863     sqlite3_search_count++;
  1864 #endif
  1865     p->deferredMoveto = 0;
  1866     p->cacheStatus = CACHE_STALE;
  1867   }else if( p->pCursor ){
  1868     int hasMoved;
  1869     int rc = sqlite3BtreeCursorHasMoved(p->pCursor, &hasMoved);
  1870     if( rc ) return rc;
  1871     if( hasMoved ){
  1872       p->cacheStatus = CACHE_STALE;
  1873       p->nullRow = 1;
  1874     }
  1875   }
  1876   return SQLITE_OK;
  1877 }
  1878 
  1879 /*
  1880 ** The following functions:
  1881 **
  1882 ** sqlite3VdbeSerialType()
  1883 ** sqlite3VdbeSerialTypeLen()
  1884 ** sqlite3VdbeSerialLen()
  1885 ** sqlite3VdbeSerialPut()
  1886 ** sqlite3VdbeSerialGet()
  1887 **
  1888 ** encapsulate the code that serializes values for storage in SQLite
  1889 ** data and index records. Each serialized value consists of a
  1890 ** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned
  1891 ** integer, stored as a varint.
  1892 **
  1893 ** In an SQLite index record, the serial type is stored directly before
  1894 ** the blob of data that it corresponds to. In a table record, all serial
  1895 ** types are stored at the start of the record, and the blobs of data at
  1896 ** the end. Hence these functions allow the caller to handle the
  1897 ** serial-type and data blob seperately.
  1898 **
  1899 ** The following table describes the various storage classes for data:
  1900 **
  1901 **   serial type        bytes of data      type
  1902 **   --------------     ---------------    ---------------
  1903 **      0                     0            NULL
  1904 **      1                     1            signed integer
  1905 **      2                     2            signed integer
  1906 **      3                     3            signed integer
  1907 **      4                     4            signed integer
  1908 **      5                     6            signed integer
  1909 **      6                     8            signed integer
  1910 **      7                     8            IEEE float
  1911 **      8                     0            Integer constant 0
  1912 **      9                     0            Integer constant 1
  1913 **     10,11                               reserved for expansion
  1914 **    N>=12 and even       (N-12)/2        BLOB
  1915 **    N>=13 and odd        (N-13)/2        text
  1916 **
  1917 ** The 8 and 9 types were added in 3.3.0, file format 4.  Prior versions
  1918 ** of SQLite will not understand those serial types.
  1919 */
  1920 
  1921 /*
  1922 ** Return the serial-type for the value stored in pMem.
  1923 */
  1924 u32 sqlite3VdbeSerialType(Mem *pMem, int file_format){
  1925   int flags = pMem->flags;
  1926   int n;
  1927 
  1928   if( flags&MEM_Null ){
  1929     return 0;
  1930   }
  1931   if( flags&MEM_Int ){
  1932     /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */
  1933 #   define MAX_6BYTE ((((i64)0x00008000)<<32)-1)
  1934     i64 i = pMem->u.i;
  1935     u64 u;
  1936     if( file_format>=4 && (i&1)==i ){
  1937       return 8+i;
  1938     }
  1939     u = i<0 ? -i : i;
  1940     if( u<=127 ) return 1;
  1941     if( u<=32767 ) return 2;
  1942     if( u<=8388607 ) return 3;
  1943     if( u<=2147483647 ) return 4;
  1944     if( u<=MAX_6BYTE ) return 5;
  1945     return 6;
  1946   }
  1947   if( flags&MEM_Real ){
  1948     return 7;
  1949   }
  1950   assert( flags&(MEM_Str|MEM_Blob) );
  1951   n = pMem->n;
  1952   if( flags & MEM_Zero ){
  1953     n += pMem->u.i;
  1954   }
  1955   assert( n>=0 );
  1956   return ((n*2) + 12 + ((flags&MEM_Str)!=0));
  1957 }
  1958 
  1959 /*
  1960 ** Return the length of the data corresponding to the supplied serial-type.
  1961 */
  1962 int sqlite3VdbeSerialTypeLen(u32 serial_type){
  1963   if( serial_type>=12 ){
  1964     return (serial_type-12)/2;
  1965   }else{
  1966     static const u8 aSize[] = { 0, 1, 2, 3, 4, 6, 8, 8, 0, 0, 0, 0 };
  1967     return aSize[serial_type];
  1968   }
  1969 }
  1970 
  1971 /*
  1972 ** If we are on an architecture with mixed-endian floating 
  1973 ** points (ex: ARM7) then swap the lower 4 bytes with the 
  1974 ** upper 4 bytes.  Return the result.
  1975 **
  1976 ** For most architectures, this is a no-op.
  1977 **
  1978 ** (later):  It is reported to me that the mixed-endian problem
  1979 ** on ARM7 is an issue with GCC, not with the ARM7 chip.  It seems
  1980 ** that early versions of GCC stored the two words of a 64-bit
  1981 ** float in the wrong order.  And that error has been propagated
  1982 ** ever since.  The blame is not necessarily with GCC, though.
  1983 ** GCC might have just copying the problem from a prior compiler.
  1984 ** I am also told that newer versions of GCC that follow a different
  1985 ** ABI get the byte order right.
  1986 **
  1987 ** Developers using SQLite on an ARM7 should compile and run their
  1988 ** application using -DSQLITE_DEBUG=1 at least once.  With DEBUG
  1989 ** enabled, some asserts below will ensure that the byte order of
  1990 ** floating point values is correct.
  1991 **
  1992 ** (2007-08-30)  Frank van Vugt has studied this problem closely
  1993 ** and has send his findings to the SQLite developers.  Frank
  1994 ** writes that some Linux kernels offer floating point hardware
  1995 ** emulation that uses only 32-bit mantissas instead of a full 
  1996 ** 48-bits as required by the IEEE standard.  (This is the
  1997 ** CONFIG_FPE_FASTFPE option.)  On such systems, floating point
  1998 ** byte swapping becomes very complicated.  To avoid problems,
  1999 ** the necessary byte swapping is carried out using a 64-bit integer
  2000 ** rather than a 64-bit float.  Frank assures us that the code here
  2001 ** works for him.  We, the developers, have no way to independently
  2002 ** verify this, but Frank seems to know what he is talking about
  2003 ** so we trust him.
  2004 */
  2005 #ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT
  2006 static u64 floatSwap(u64 in){
  2007   union {
  2008     u64 r;
  2009     u32 i[2];
  2010   } u;
  2011   u32 t;
  2012 
  2013   u.r = in;
  2014   t = u.i[0];
  2015   u.i[0] = u.i[1];
  2016   u.i[1] = t;
  2017   return u.r;
  2018 }
  2019 # define swapMixedEndianFloat(X)  X = floatSwap(X)
  2020 #else
  2021 # define swapMixedEndianFloat(X)
  2022 #endif
  2023 
  2024 /*
  2025 ** Write the serialized data blob for the value stored in pMem into 
  2026 ** buf. It is assumed that the caller has allocated sufficient space.
  2027 ** Return the number of bytes written.
  2028 **
  2029 ** nBuf is the amount of space left in buf[].  nBuf must always be
  2030 ** large enough to hold the entire field.  Except, if the field is
  2031 ** a blob with a zero-filled tail, then buf[] might be just the right
  2032 ** size to hold everything except for the zero-filled tail.  If buf[]
  2033 ** is only big enough to hold the non-zero prefix, then only write that
  2034 ** prefix into buf[].  But if buf[] is large enough to hold both the
  2035 ** prefix and the tail then write the prefix and set the tail to all
  2036 ** zeros.
  2037 **
  2038 ** Return the number of bytes actually written into buf[].  The number
  2039 ** of bytes in the zero-filled tail is included in the return value only
  2040 ** if those bytes were zeroed in buf[].
  2041 */ 
  2042 int sqlite3VdbeSerialPut(u8 *buf, int nBuf, Mem *pMem, int file_format){
  2043   u32 serial_type = sqlite3VdbeSerialType(pMem, file_format);
  2044   int len;
  2045 
  2046   /* Integer and Real */
  2047   if( serial_type<=7 && serial_type>0 ){
  2048     u64 v;
  2049     int i;
  2050     if( serial_type==7 ){
  2051       assert( sizeof(v)==sizeof(pMem->r) );
  2052       memcpy(&v, &pMem->r, sizeof(v));
  2053       swapMixedEndianFloat(v);
  2054     }else{
  2055       v = pMem->u.i;
  2056     }
  2057     len = i = sqlite3VdbeSerialTypeLen(serial_type);
  2058     assert( len<=nBuf );
  2059     while( i-- ){
  2060       buf[i] = (v&0xFF);
  2061       v >>= 8;
  2062     }
  2063     return len;
  2064   }
  2065 
  2066   /* String or blob */
  2067   if( serial_type>=12 ){
  2068     assert( pMem->n + ((pMem->flags & MEM_Zero)?pMem->u.i:0)
  2069              == sqlite3VdbeSerialTypeLen(serial_type) );
  2070     assert( pMem->n<=nBuf );
  2071     len = pMem->n;
  2072     memcpy(buf, pMem->z, len);
  2073     if( pMem->flags & MEM_Zero ){
  2074       len += pMem->u.i;
  2075       if( len>nBuf ){
  2076         len = nBuf;
  2077       }
  2078       memset(&buf[pMem->n], 0, len-pMem->n);
  2079     }
  2080     return len;
  2081   }
  2082 
  2083   /* NULL or constants 0 or 1 */
  2084   return 0;
  2085 }
  2086 
  2087 /*
  2088 ** Deserialize the data blob pointed to by buf as serial type serial_type
  2089 ** and store the result in pMem.  Return the number of bytes read.
  2090 */ 
  2091 int sqlite3VdbeSerialGet(
  2092   const unsigned char *buf,     /* Buffer to deserialize from */
  2093   u32 serial_type,              /* Serial type to deserialize */
  2094   Mem *pMem                     /* Memory cell to write value into */
  2095 ){
  2096   switch( serial_type ){
  2097     case 10:   /* Reserved for future use */
  2098     case 11:   /* Reserved for future use */
  2099     case 0: {  /* NULL */
  2100       pMem->flags = MEM_Null;
  2101       break;
  2102     }
  2103     case 1: { /* 1-byte signed integer */
  2104       pMem->u.i = (signed char)buf[0];
  2105       pMem->flags = MEM_Int;
  2106       return 1;
  2107     }
  2108     case 2: { /* 2-byte signed integer */
  2109       pMem->u.i = (((signed char)buf[0])<<8) | buf[1];
  2110       pMem->flags = MEM_Int;
  2111       return 2;
  2112     }
  2113     case 3: { /* 3-byte signed integer */
  2114       pMem->u.i = (((signed char)buf[0])<<16) | (buf[1]<<8) | buf[2];
  2115       pMem->flags = MEM_Int;
  2116       return 3;
  2117     }
  2118     case 4: { /* 4-byte signed integer */
  2119       pMem->u.i = (buf[0]<<24) | (buf[1]<<16) | (buf[2]<<8) | buf[3];
  2120       pMem->flags = MEM_Int;
  2121       return 4;
  2122     }
  2123     case 5: { /* 6-byte signed integer */
  2124       u64 x = (((signed char)buf[0])<<8) | buf[1];
  2125       u32 y = (buf[2]<<24) | (buf[3]<<16) | (buf[4]<<8) | buf[5];
  2126       x = (x<<32) | y;
  2127       pMem->u.i = *(i64*)&x;
  2128       pMem->flags = MEM_Int;
  2129       return 6;
  2130     }
  2131     case 6:   /* 8-byte signed integer */
  2132     case 7: { /* IEEE floating point */
  2133       u64 x;
  2134       u32 y;
  2135 #if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT)
  2136       /* Verify that integers and floating point values use the same
  2137       ** byte order.  Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is
  2138       ** defined that 64-bit floating point values really are mixed
  2139       ** endian.
  2140       */
  2141       static const u64 t1 = ((u64)0x3ff00000)<<32;
  2142       static const double r1 = 1.0;
  2143       u64 t2 = t1;
  2144       swapMixedEndianFloat(t2);
  2145       assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 );
  2146 #endif
  2147 
  2148       x = (buf[0]<<24) | (buf[1]<<16) | (buf[2]<<8) | buf[3];
  2149       y = (buf[4]<<24) | (buf[5]<<16) | (buf[6]<<8) | buf[7];
  2150       x = (x<<32) | y;
  2151       if( serial_type==6 ){
  2152         pMem->u.i = *(i64*)&x;
  2153         pMem->flags = MEM_Int;
  2154       }else{
  2155         assert( sizeof(x)==8 && sizeof(pMem->r)==8 );
  2156         swapMixedEndianFloat(x);
  2157         memcpy(&pMem->r, &x, sizeof(x));
  2158         pMem->flags = sqlite3IsNaN(pMem->r) ? MEM_Null : MEM_Real;
  2159       }
  2160       return 8;
  2161     }
  2162     case 8:    /* Integer 0 */
  2163     case 9: {  /* Integer 1 */
  2164       pMem->u.i = serial_type-8;
  2165       pMem->flags = MEM_Int;
  2166       return 0;
  2167     }
  2168     default: {
  2169       int len = (serial_type-12)/2;
  2170       pMem->z = (char *)buf;
  2171       pMem->n = len;
  2172       pMem->xDel = 0;
  2173       if( serial_type&0x01 ){
  2174         pMem->flags = MEM_Str | MEM_Ephem;
  2175       }else{
  2176         pMem->flags = MEM_Blob | MEM_Ephem;
  2177       }
  2178       return len;
  2179     }
  2180   }
  2181   return 0;
  2182 }
  2183 
  2184 
  2185 /*
  2186 ** Given the nKey-byte encoding of a record in pKey[], parse the
  2187 ** record into a UnpackedRecord structure.  Return a pointer to
  2188 ** that structure.
  2189 **
  2190 ** The calling function might provide szSpace bytes of memory
  2191 ** space at pSpace.  This space can be used to hold the returned
  2192 ** VDbeParsedRecord structure if it is large enough.  If it is
  2193 ** not big enough, space is obtained from sqlite3_malloc().
  2194 **
  2195 ** The returned structure should be closed by a call to
  2196 ** sqlite3VdbeDeleteUnpackedRecord().
  2197 */ 
  2198 UnpackedRecord *sqlite3VdbeRecordUnpack(
  2199   KeyInfo *pKeyInfo,     /* Information about the record format */
  2200   int nKey,              /* Size of the binary record */
  2201   const void *pKey,      /* The binary record */
  2202   void *pSpace,          /* Space available to hold resulting object */
  2203   int szSpace            /* Size of pSpace[] in bytes */
  2204 ){
  2205   const unsigned char *aKey = (const unsigned char *)pKey;
  2206   UnpackedRecord *p;
  2207   int nByte;
  2208   int idx, d;
  2209   u16 u;                 /* Unsigned loop counter */
  2210   u32 szHdr;
  2211   Mem *pMem;
  2212   
  2213   assert( sizeof(Mem)>sizeof(*p) );
  2214   nByte = sizeof(Mem)*(pKeyInfo->nField+2);
  2215   if( nByte>szSpace ){
  2216     p = sqlite3DbMallocRaw(pKeyInfo->db, nByte);
  2217     if( p==0 ) return 0;
  2218     p->needFree = 1;
  2219   }else{
  2220     p = pSpace;
  2221     p->needFree = 0;
  2222   }
  2223   p->pKeyInfo = pKeyInfo;
  2224   p->nField = pKeyInfo->nField + 1;
  2225   p->needDestroy = 1;
  2226   p->aMem = pMem = &((Mem*)p)[1];
  2227   idx = getVarint32(aKey, szHdr);
  2228   d = szHdr;
  2229   u = 0;
  2230   while( idx<szHdr && u<p->nField ){
  2231     u32 serial_type;
  2232 
  2233     idx += getVarint32( aKey+idx, serial_type);
  2234     if( d>=nKey && sqlite3VdbeSerialTypeLen(serial_type)>0 ) break;
  2235     pMem->enc = pKeyInfo->enc;
  2236     pMem->db = pKeyInfo->db;
  2237     pMem->flags = 0;
  2238     pMem->zMalloc = 0;
  2239     d += sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem);
  2240     pMem++;
  2241     u++;
  2242   }
  2243   p->nField = u;
  2244   return (void*)p;
  2245 }
  2246 
  2247 /*
  2248 ** This routine destroys a UnpackedRecord object
  2249 */
  2250 void sqlite3VdbeDeleteUnpackedRecord(UnpackedRecord *p){
  2251   if( p ){
  2252     if( p->needDestroy ){
  2253       int i;
  2254       Mem *pMem;
  2255       for(i=0, pMem=p->aMem; i<p->nField; i++, pMem++){
  2256         if( pMem->zMalloc ){
  2257           sqlite3VdbeMemRelease(pMem);
  2258         }
  2259       }
  2260     }
  2261     if( p->needFree ){
  2262       sqlite3DbFree(p->pKeyInfo->db, p);
  2263     }
  2264   }
  2265 }
  2266 
  2267 /*
  2268 ** This function compares the two table rows or index records
  2269 ** specified by {nKey1, pKey1} and pPKey2.  It returns a negative, zero
  2270 ** or positive integer if {nKey1, pKey1} is less than, equal to or 
  2271 ** greater than pPKey2.  The {nKey1, pKey1} key must be a blob
  2272 ** created by th OP_MakeRecord opcode of the VDBE.  The pPKey2
  2273 ** key must be a parsed key such as obtained from
  2274 ** sqlite3VdbeParseRecord.
  2275 **
  2276 ** Key1 and Key2 do not have to contain the same number of fields.
  2277 ** But if the lengths differ, Key2 must be the shorter of the two.
  2278 **
  2279 ** Historical note: In earlier versions of this routine both Key1
  2280 ** and Key2 were blobs obtained from OP_MakeRecord.  But we found
  2281 ** that in typical use the same Key2 would be submitted multiple times
  2282 ** in a row.  So an optimization was added to parse the Key2 key
  2283 ** separately and submit the parsed version.  In this way, we avoid
  2284 ** parsing the same Key2 multiple times in a row.
  2285 */
  2286 int sqlite3VdbeRecordCompare(
  2287   int nKey1, const void *pKey1, 
  2288   UnpackedRecord *pPKey2
  2289 ){
  2290   u32 d1;            /* Offset into aKey[] of next data element */
  2291   u32 idx1;          /* Offset into aKey[] of next header element */
  2292   u32 szHdr1;        /* Number of bytes in header */
  2293   int i = 0;
  2294   int nField;
  2295   int rc = 0;
  2296   const unsigned char *aKey1 = (const unsigned char *)pKey1;
  2297   KeyInfo *pKeyInfo;
  2298   Mem mem1;
  2299 
  2300   pKeyInfo = pPKey2->pKeyInfo;
  2301   mem1.enc = pKeyInfo->enc;
  2302   mem1.db = pKeyInfo->db;
  2303   mem1.flags = 0;
  2304   mem1.zMalloc = 0;
  2305   
  2306   idx1 = getVarint32(aKey1, szHdr1);
  2307   d1 = szHdr1;
  2308   nField = pKeyInfo->nField;
  2309   while( idx1<szHdr1 && i<pPKey2->nField ){
  2310     u32 serial_type1;
  2311 
  2312     /* Read the serial types for the next element in each key. */
  2313     idx1 += getVarint32( aKey1+idx1, serial_type1 );
  2314     if( d1>=nKey1 && sqlite3VdbeSerialTypeLen(serial_type1)>0 ) break;
  2315 
  2316     /* Extract the values to be compared.
  2317     */
  2318     d1 += sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1);
  2319 
  2320     /* Do the comparison
  2321     */
  2322     rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i],
  2323                            i<nField ? pKeyInfo->aColl[i] : 0);
  2324     if( rc!=0 ){
  2325       break;
  2326     }
  2327     i++;
  2328   }
  2329   if( mem1.zMalloc ) sqlite3VdbeMemRelease(&mem1);
  2330 
  2331   /* One of the keys ran out of fields, but all the fields up to that point
  2332   ** were equal. If the incrKey flag is true, then the second key is
  2333   ** treated as larger.
  2334   */
  2335   if( rc==0 ){
  2336     if( pKeyInfo->incrKey ){
  2337       rc = -1;
  2338     }else if( !pKeyInfo->prefixIsEqual ){
  2339       if( d1<nKey1 ){
  2340         rc = 1;
  2341       }
  2342     }
  2343   }else if( pKeyInfo->aSortOrder && i<pKeyInfo->nField
  2344                && pKeyInfo->aSortOrder[i] ){
  2345     rc = -rc;
  2346   }
  2347 
  2348   return rc;
  2349 }
  2350 
  2351 /*
  2352 ** The argument is an index entry composed using the OP_MakeRecord opcode.
  2353 ** The last entry in this record should be an integer (specifically
  2354 ** an integer rowid).  This routine returns the number of bytes in
  2355 ** that integer.
  2356 */
  2357 int sqlite3VdbeIdxRowidLen(const u8 *aKey, int nKey, int *pRowidLen){
  2358   u32 szHdr;        /* Size of the header */
  2359   u32 typeRowid;    /* Serial type of the rowid */
  2360 
  2361   (void)getVarint32(aKey, szHdr);
  2362   if( szHdr>nKey ){
  2363     return SQLITE_CORRUPT_BKPT;
  2364   }
  2365   (void)getVarint32(&aKey[szHdr-1], typeRowid);
  2366   *pRowidLen = sqlite3VdbeSerialTypeLen(typeRowid);
  2367   return SQLITE_OK;
  2368 }
  2369   
  2370 
  2371 /*
  2372 ** pCur points at an index entry created using the OP_MakeRecord opcode.
  2373 ** Read the rowid (the last field in the record) and store it in *rowid.
  2374 ** Return SQLITE_OK if everything works, or an error code otherwise.
  2375 */
  2376 int sqlite3VdbeIdxRowid(BtCursor *pCur, i64 *rowid){
  2377   i64 nCellKey = 0;
  2378   int rc;
  2379   u32 szHdr;        /* Size of the header */
  2380   u32 typeRowid;    /* Serial type of the rowid */
  2381   u32 lenRowid;     /* Size of the rowid */
  2382   Mem m, v;
  2383 
  2384   sqlite3BtreeKeySize(pCur, &nCellKey);
  2385   if( nCellKey<=0 ){
  2386     return SQLITE_CORRUPT_BKPT;
  2387   }
  2388   m.flags = 0;
  2389   m.db = 0;
  2390   m.zMalloc = 0;
  2391   rc = sqlite3VdbeMemFromBtree(pCur, 0, nCellKey, 1, &m);
  2392   if( rc ){
  2393     return rc;
  2394   }
  2395   (void)getVarint32((u8*)m.z, szHdr);
  2396   (void)getVarint32((u8*)&m.z[szHdr-1], typeRowid);
  2397   lenRowid = sqlite3VdbeSerialTypeLen(typeRowid);
  2398   sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v);
  2399   *rowid = v.u.i;
  2400   sqlite3VdbeMemRelease(&m);
  2401   return SQLITE_OK;
  2402 }
  2403 
  2404 /*
  2405 ** Compare the key of the index entry that cursor pC is point to against
  2406 ** the key string in pKey (of length nKey).  Write into *pRes a number
  2407 ** that is negative, zero, or positive if pC is less than, equal to,
  2408 ** or greater than pKey.  Return SQLITE_OK on success.
  2409 **
  2410 ** pKey is either created without a rowid or is truncated so that it
  2411 ** omits the rowid at the end.  The rowid at the end of the index entry
  2412 ** is ignored as well.
  2413 */
  2414 int sqlite3VdbeIdxKeyCompare(
  2415   Cursor *pC,                 /* The cursor to compare against */
  2416   UnpackedRecord *pUnpacked,
  2417   int nKey, const u8 *pKey,   /* The key to compare */
  2418   int *res                    /* Write the comparison result here */
  2419 ){
  2420   i64 nCellKey = 0;
  2421   int rc;
  2422   BtCursor *pCur = pC->pCursor;
  2423   int lenRowid;
  2424   Mem m;
  2425   UnpackedRecord *pRec;
  2426   char zSpace[200];
  2427 
  2428   sqlite3BtreeKeySize(pCur, &nCellKey);
  2429   if( nCellKey<=0 ){
  2430     *res = 0;
  2431     return SQLITE_OK;
  2432   }
  2433   m.db = 0;
  2434   m.flags = 0;
  2435   m.zMalloc = 0;
  2436   if( (rc = sqlite3VdbeMemFromBtree(pC->pCursor, 0, nCellKey, 1, &m))
  2437    || (rc = sqlite3VdbeIdxRowidLen((u8*)m.z, m.n, &lenRowid))
  2438   ){
  2439     return rc;
  2440   }
  2441   if( !pUnpacked ){
  2442     pRec = sqlite3VdbeRecordUnpack(pC->pKeyInfo, nKey, pKey,
  2443                                 zSpace, sizeof(zSpace));
  2444   }else{
  2445     pRec = pUnpacked;
  2446   }
  2447   if( pRec==0 ){
  2448     return SQLITE_NOMEM;
  2449   }
  2450   *res = sqlite3VdbeRecordCompare(m.n-lenRowid, m.z, pRec);
  2451   if( !pUnpacked ){
  2452     sqlite3VdbeDeleteUnpackedRecord(pRec);
  2453   }
  2454   sqlite3VdbeMemRelease(&m);
  2455   return SQLITE_OK;
  2456 }
  2457 
  2458 /*
  2459 ** This routine sets the value to be returned by subsequent calls to
  2460 ** sqlite3_changes() on the database handle 'db'. 
  2461 */
  2462 void sqlite3VdbeSetChanges(sqlite3 *db, int nChange){
  2463   assert( sqlite3_mutex_held(db->mutex) );
  2464   db->nChange = nChange;
  2465   db->nTotalChange += nChange;
  2466 }
  2467 
  2468 /*
  2469 ** Set a flag in the vdbe to update the change counter when it is finalised
  2470 ** or reset.
  2471 */
  2472 void sqlite3VdbeCountChanges(Vdbe *v){
  2473   v->changeCntOn = 1;
  2474 }
  2475 
  2476 /*
  2477 ** Mark every prepared statement associated with a database connection
  2478 ** as expired.
  2479 **
  2480 ** An expired statement means that recompilation of the statement is
  2481 ** recommend.  Statements expire when things happen that make their
  2482 ** programs obsolete.  Removing user-defined functions or collating
  2483 ** sequences, or changing an authorization function are the types of
  2484 ** things that make prepared statements obsolete.
  2485 */
  2486 void sqlite3ExpirePreparedStatements(sqlite3 *db){
  2487   Vdbe *p;
  2488   for(p = db->pVdbe; p; p=p->pNext){
  2489     p->expired = 1;
  2490   }
  2491 }
  2492 
  2493 /*
  2494 ** Return the database associated with the Vdbe.
  2495 */
  2496 sqlite3 *sqlite3VdbeDb(Vdbe *v){
  2497   return v->db;
  2498 }