os/persistentdata/persistentstorage/sql/SQLite/sqliteInt.h
author sl
Tue, 10 Jun 2014 14:32:02 +0200
changeset 1 260cb5ec6c19
permissions -rw-r--r--
Update contrib.
     1 /*
     2 ** 2001 September 15
     3 **
     4 ** The author disclaims copyright to this source code.  In place of
     5 ** a legal notice, here is a blessing:
     6 **
     7 **    May you do good and not evil.
     8 **    May you find forgiveness for yourself and forgive others.
     9 **    May you share freely, never taking more than you give.
    10 **
    11 *************************************************************************
    12 ** Internal interface definitions for SQLite.
    13 **
    14 ** @(#) $Id: sqliteInt.h,v 1.752 2008/08/04 20:13:27 drh Exp $
    15 */
    16 #ifndef _SQLITEINT_H_
    17 #define _SQLITEINT_H_
    18 
    19 /*
    20 ** Include the configuration header output by 'configure' if we're using the
    21 ** autoconf-based build
    22 */
    23 #ifdef _HAVE_SQLITE_CONFIG_H
    24 #include "config.h"
    25 #endif
    26 
    27 #include "sqliteLimit.h"
    28 
    29 /* Disable nuisance warnings on Borland compilers */
    30 #if defined(__BORLANDC__)
    31 #pragma warn -rch /* unreachable code */
    32 #pragma warn -ccc /* Condition is always true or false */
    33 #pragma warn -aus /* Assigned value is never used */
    34 #pragma warn -csu /* Comparing signed and unsigned */
    35 #pragma warn -spa /* Suspicous pointer arithmetic */
    36 #endif
    37 
    38 /* Needed for various definitions... */
    39 #ifndef _GNU_SOURCE
    40 # define _GNU_SOURCE
    41 #endif
    42 
    43 /*
    44 ** Include standard header files as necessary
    45 */
    46 #ifdef HAVE_STDINT_H
    47 #include <stdint.h>
    48 #endif
    49 #ifdef HAVE_INTTYPES_H
    50 #include <inttypes.h>
    51 #endif
    52 
    53 /*
    54 ** A macro used to aid in coverage testing.  When doing coverage
    55 ** testing, the condition inside the argument must be evaluated 
    56 ** both true and false in order to get full branch coverage.
    57 ** This macro can be inserted to ensure adequate test coverage
    58 ** in places where simple condition/decision coverage is inadequate.
    59 */
    60 #ifdef SQLITE_COVERAGE_TEST
    61   void sqlite3Coverage(int);
    62 # define testcase(X)  if( X ){ sqlite3Coverage(__LINE__); }
    63 #else
    64 # define testcase(X)
    65 #endif
    66 
    67 /*
    68 ** The ALWAYS and NEVER macros surround boolean expressions which 
    69 ** are intended to always be true or false, respectively.  Such
    70 ** expressions could be omitted from the code completely.  But they
    71 ** are included in a few cases in order to enhance the resilience
    72 ** of SQLite to unexpected behavior - to make the code "self-healing"
    73 ** or "ductile" rather than being "brittle" and crashing at the first
    74 ** hint of unplanned behavior.
    75 **
    76 ** When doing coverage testing ALWAYS and NEVER are hard-coded to
    77 ** be true and false so that the unreachable code then specify will
    78 ** not be counted as untested code.
    79 */
    80 #ifdef SQLITE_COVERAGE_TEST
    81 # define ALWAYS(X)      (1)
    82 # define NEVER(X)       (0)
    83 #else
    84 # define ALWAYS(X)      (X)
    85 # define NEVER(X)       (X)
    86 #endif
    87 
    88 /*
    89 ** The macro unlikely() is a hint that surrounds a boolean
    90 ** expression that is usually false.  Macro likely() surrounds
    91 ** a boolean expression that is usually true.  GCC is able to
    92 ** use these hints to generate better code, sometimes.
    93 */
    94 #if defined(__GNUC__) && 0
    95 # define likely(X)    __builtin_expect((X),1)
    96 # define unlikely(X)  __builtin_expect((X),0)
    97 #else
    98 # define likely(X)    !!(X)
    99 # define unlikely(X)  !!(X)
   100 #endif
   101 
   102 /*
   103  * This macro is used to "hide" some ugliness in casting an int
   104  * value to a ptr value under the MSVC 64-bit compiler.   Casting
   105  * non 64-bit values to ptr types results in a "hard" error with 
   106  * the MSVC 64-bit compiler which this attempts to avoid.  
   107  *
   108  * A simple compiler pragma or casting sequence could not be found
   109  * to correct this in all situations, so this macro was introduced.
   110  *
   111  * It could be argued that the intptr_t type could be used in this
   112  * case, but that type is not available on all compilers, or 
   113  * requires the #include of specific headers which differs between
   114  * platforms.
   115  */
   116 #define SQLITE_INT_TO_PTR(X)   ((void*)&((char*)0)[X])
   117 #define SQLITE_PTR_TO_INT(X)   ((int)(((char*)X)-(char*)0))
   118 
   119 /*
   120 ** These #defines should enable >2GB file support on Posix if the
   121 ** underlying operating system supports it.  If the OS lacks
   122 ** large file support, or if the OS is windows, these should be no-ops.
   123 **
   124 ** Ticket #2739:  The _LARGEFILE_SOURCE macro must appear before any
   125 ** system #includes.  Hence, this block of code must be the very first
   126 ** code in all source files.
   127 **
   128 ** Large file support can be disabled using the -DSQLITE_DISABLE_LFS switch
   129 ** on the compiler command line.  This is necessary if you are compiling
   130 ** on a recent machine (ex: RedHat 7.2) but you want your code to work
   131 ** on an older machine (ex: RedHat 6.0).  If you compile on RedHat 7.2
   132 ** without this option, LFS is enable.  But LFS does not exist in the kernel
   133 ** in RedHat 6.0, so the code won't work.  Hence, for maximum binary
   134 ** portability you should omit LFS.
   135 **
   136 ** Similar is true for MacOS.  LFS is only supported on MacOS 9 and later.
   137 */
   138 #ifndef SQLITE_DISABLE_LFS
   139 # define _LARGE_FILE       1
   140 # ifndef _FILE_OFFSET_BITS
   141 #   define _FILE_OFFSET_BITS 64
   142 # endif
   143 # define _LARGEFILE_SOURCE 1
   144 #endif
   145 
   146 
   147 /*
   148 ** The SQLITE_THREADSAFE macro must be defined as either 0 or 1.
   149 ** Older versions of SQLite used an optional THREADSAFE macro.
   150 ** We support that for legacy
   151 */
   152 #if !defined(SQLITE_THREADSAFE)
   153 #if defined(THREADSAFE)
   154 # define SQLITE_THREADSAFE THREADSAFE
   155 #else
   156 # define SQLITE_THREADSAFE 1
   157 #endif
   158 #endif
   159 
   160 /*
   161 ** Exactly one of the following macros must be defined in order to
   162 ** specify which memory allocation subsystem to use.
   163 **
   164 **     SQLITE_SYSTEM_MALLOC          // Use normal system malloc()
   165 **     SQLITE_MEMDEBUG               // Debugging version of system malloc()
   166 **     SQLITE_MEMORY_SIZE            // internal allocator #1
   167 **     SQLITE_MMAP_HEAP_SIZE         // internal mmap() allocator
   168 **     SQLITE_POW2_MEMORY_SIZE       // internal power-of-two allocator
   169 **
   170 ** If none of the above are defined, then set SQLITE_SYSTEM_MALLOC as
   171 ** the default.
   172 */
   173 #if defined(SQLITE_SYSTEM_MALLOC)+defined(SQLITE_MEMDEBUG)+\
   174     defined(SQLITE_MEMORY_SIZE)+defined(SQLITE_MMAP_HEAP_SIZE)+\
   175     defined(SQLITE_POW2_MEMORY_SIZE)>1
   176 # error "At most one of the following compile-time configuration options\
   177  is allows: SQLITE_SYSTEM_MALLOC, SQLITE_MEMDEBUG, SQLITE_MEMORY_SIZE,\
   178  SQLITE_MMAP_HEAP_SIZE, SQLITE_POW2_MEMORY_SIZE"
   179 #endif
   180 #if defined(SQLITE_SYSTEM_MALLOC)+defined(SQLITE_MEMDEBUG)+\
   181     defined(SQLITE_MEMORY_SIZE)+defined(SQLITE_MMAP_HEAP_SIZE)+\
   182     defined(SQLITE_POW2_MEMORY_SIZE)==0
   183 # define SQLITE_SYSTEM_MALLOC 1
   184 #endif
   185 
   186 /*
   187 ** If SQLITE_MALLOC_SOFT_LIMIT is defined, then try to keep the
   188 ** sizes of memory allocations below this value where possible.
   189 */
   190 #if defined(SQLITE_POW2_MEMORY_SIZE) && !defined(SQLITE_MALLOC_SOFT_LIMIT)
   191 # define SQLITE_MALLOC_SOFT_LIMIT 1024
   192 #endif
   193 
   194 /*
   195 ** We need to define _XOPEN_SOURCE as follows in order to enable
   196 ** recursive mutexes on most unix systems.  But Mac OS X is different.
   197 ** The _XOPEN_SOURCE define causes problems for Mac OS X we are told,
   198 ** so it is omitted there.  See ticket #2673.
   199 **
   200 ** Later we learn that _XOPEN_SOURCE is poorly or incorrectly
   201 ** implemented on some systems.  So we avoid defining it at all
   202 ** if it is already defined or if it is unneeded because we are
   203 ** not doing a threadsafe build.  Ticket #2681.
   204 **
   205 ** See also ticket #2741.
   206 */
   207 #if !defined(_XOPEN_SOURCE) && !defined(__DARWIN__) && !defined(__APPLE__) && SQLITE_THREADSAFE
   208 #  define _XOPEN_SOURCE 500  /* Needed to enable pthread recursive mutexes */
   209 #endif
   210 
   211 #if defined(SQLITE_TCL) || defined(TCLSH)
   212 # include <tcl.h>
   213 #endif
   214 
   215 /*
   216 ** Many people are failing to set -DNDEBUG=1 when compiling SQLite.
   217 ** Setting NDEBUG makes the code smaller and run faster.  So the following
   218 ** lines are added to automatically set NDEBUG unless the -DSQLITE_DEBUG=1
   219 ** option is set.  Thus NDEBUG becomes an opt-in rather than an opt-out
   220 ** feature.
   221 */
   222 #if !defined(NDEBUG) && !defined(SQLITE_DEBUG) 
   223 # define NDEBUG 1
   224 #endif
   225 
   226 #include "sqlite3.h"
   227 #include "hash.h"
   228 #include "parse.h"
   229 #include <stdio.h>
   230 #include <stdlib.h>
   231 #include <string.h>
   232 #include <assert.h>
   233 #include <stddef.h>
   234 
   235 /*
   236 ** If compiling for a processor that lacks floating point support,
   237 ** substitute integer for floating-point
   238 */
   239 #ifdef SQLITE_OMIT_FLOATING_POINT
   240 # define double sqlite_int64
   241 # define LONGDOUBLE_TYPE sqlite_int64
   242 # ifndef SQLITE_BIG_DBL
   243 #   define SQLITE_BIG_DBL (0x7fffffffffffffff)
   244 # endif
   245 # define SQLITE_OMIT_DATETIME_FUNCS 1
   246 # define SQLITE_OMIT_TRACE 1
   247 # undef SQLITE_MIXED_ENDIAN_64BIT_FLOAT
   248 #endif
   249 #ifndef SQLITE_BIG_DBL
   250 # define SQLITE_BIG_DBL (1e99)
   251 #endif
   252 
   253 /*
   254 ** OMIT_TEMPDB is set to 1 if SQLITE_OMIT_TEMPDB is defined, or 0
   255 ** afterward. Having this macro allows us to cause the C compiler 
   256 ** to omit code used by TEMP tables without messy #ifndef statements.
   257 */
   258 #ifdef SQLITE_OMIT_TEMPDB
   259 #define OMIT_TEMPDB 1
   260 #else
   261 #define OMIT_TEMPDB 0
   262 #endif
   263 
   264 /*
   265 ** If the following macro is set to 1, then NULL values are considered
   266 ** distinct when determining whether or not two entries are the same
   267 ** in a UNIQUE index.  This is the way PostgreSQL, Oracle, DB2, MySQL,
   268 ** OCELOT, and Firebird all work.  The SQL92 spec explicitly says this
   269 ** is the way things are suppose to work.
   270 **
   271 ** If the following macro is set to 0, the NULLs are indistinct for
   272 ** a UNIQUE index.  In this mode, you can only have a single NULL entry
   273 ** for a column declared UNIQUE.  This is the way Informix and SQL Server
   274 ** work.
   275 */
   276 #define NULL_DISTINCT_FOR_UNIQUE 1
   277 
   278 /*
   279 ** The "file format" number is an integer that is incremented whenever
   280 ** the VDBE-level file format changes.  The following macros define the
   281 ** the default file format for new databases and the maximum file format
   282 ** that the library can read.
   283 */
   284 #define SQLITE_MAX_FILE_FORMAT 4
   285 #ifndef SQLITE_DEFAULT_FILE_FORMAT
   286 # define SQLITE_DEFAULT_FILE_FORMAT 1
   287 #endif
   288 
   289 /*
   290 ** Provide a default value for SQLITE_TEMP_STORE in case it is not specified
   291 ** on the command-line
   292 */
   293 #ifndef SQLITE_TEMP_STORE
   294 # define SQLITE_TEMP_STORE 1
   295 #endif
   296 
   297 /*
   298 ** GCC does not define the offsetof() macro so we'll have to do it
   299 ** ourselves.
   300 */
   301 #ifndef offsetof
   302 #define offsetof(STRUCTURE,FIELD) ((int)((char*)&((STRUCTURE*)0)->FIELD))
   303 #endif
   304 
   305 /*
   306 ** Check to see if this machine uses EBCDIC.  (Yes, believe it or
   307 ** not, there are still machines out there that use EBCDIC.)
   308 */
   309 #if 'A' == '\301'
   310 # define SQLITE_EBCDIC 1
   311 #else
   312 # define SQLITE_ASCII 1
   313 #endif
   314 
   315 /*
   316 ** Integers of known sizes.  These typedefs might change for architectures
   317 ** where the sizes very.  Preprocessor macros are available so that the
   318 ** types can be conveniently redefined at compile-type.  Like this:
   319 **
   320 **         cc '-DUINTPTR_TYPE=long long int' ...
   321 */
   322 #ifndef UINT32_TYPE
   323 # ifdef HAVE_UINT32_T
   324 #  define UINT32_TYPE uint32_t
   325 # else
   326 #  define UINT32_TYPE unsigned int
   327 # endif
   328 #endif
   329 #ifndef UINT16_TYPE
   330 # ifdef HAVE_UINT16_T
   331 #  define UINT16_TYPE uint16_t
   332 # else
   333 #  define UINT16_TYPE unsigned short int
   334 # endif
   335 #endif
   336 #ifndef INT16_TYPE
   337 # ifdef HAVE_INT16_T
   338 #  define INT16_TYPE int16_t
   339 # else
   340 #  define INT16_TYPE short int
   341 # endif
   342 #endif
   343 #ifndef UINT8_TYPE
   344 # ifdef HAVE_UINT8_T
   345 #  define UINT8_TYPE uint8_t
   346 # else
   347 #  define UINT8_TYPE unsigned char
   348 # endif
   349 #endif
   350 #ifndef INT8_TYPE
   351 # ifdef HAVE_INT8_T
   352 #  define INT8_TYPE int8_t
   353 # else
   354 #  define INT8_TYPE signed char
   355 # endif
   356 #endif
   357 #ifndef LONGDOUBLE_TYPE
   358 # define LONGDOUBLE_TYPE long double
   359 #endif
   360 typedef sqlite_int64 i64;          /* 8-byte signed integer */
   361 typedef sqlite_uint64 u64;         /* 8-byte unsigned integer */
   362 typedef UINT32_TYPE u32;           /* 4-byte unsigned integer */
   363 typedef UINT16_TYPE u16;           /* 2-byte unsigned integer */
   364 typedef INT16_TYPE i16;            /* 2-byte signed integer */
   365 typedef UINT8_TYPE u8;             /* 1-byte unsigned integer */
   366 typedef UINT8_TYPE i8;             /* 1-byte signed integer */
   367 
   368 /*
   369 ** Macros to determine whether the machine is big or little endian,
   370 ** evaluated at runtime.
   371 */
   372 #ifdef SQLITE_AMALGAMATION
   373 const int sqlite3one;
   374 #else
   375 extern const int sqlite3one;
   376 #endif
   377 #if defined(i386) || defined(__i386__) || defined(_M_IX86)
   378 # define SQLITE_BIGENDIAN    0
   379 # define SQLITE_LITTLEENDIAN 1
   380 # define SQLITE_UTF16NATIVE  SQLITE_UTF16LE
   381 #else
   382 # define SQLITE_BIGENDIAN    (*(char *)(&sqlite3one)==0)
   383 # define SQLITE_LITTLEENDIAN (*(char *)(&sqlite3one)==1)
   384 # define SQLITE_UTF16NATIVE (SQLITE_BIGENDIAN?SQLITE_UTF16BE:SQLITE_UTF16LE)
   385 #endif
   386 
   387 /*
   388 ** Constants for the largest and smallest possible 64-bit signed integers.
   389 ** These macros are designed to work correctly on both 32-bit and 64-bit
   390 ** compilers.
   391 */
   392 #define LARGEST_INT64  (0xffffffff|(((i64)0x7fffffff)<<32))
   393 #define SMALLEST_INT64 (((i64)-1) - LARGEST_INT64)
   394 
   395 /*
   396 ** An instance of the following structure is used to store the busy-handler
   397 ** callback for a given sqlite handle. 
   398 **
   399 ** The sqlite.busyHandler member of the sqlite struct contains the busy
   400 ** callback for the database handle. Each pager opened via the sqlite
   401 ** handle is passed a pointer to sqlite.busyHandler. The busy-handler
   402 ** callback is currently invoked only from within pager.c.
   403 */
   404 typedef struct BusyHandler BusyHandler;
   405 struct BusyHandler {
   406   int (*xFunc)(void *,int);  /* The busy callback */
   407   void *pArg;                /* First arg to busy callback */
   408   int nBusy;                 /* Incremented with each busy call */
   409 };
   410 
   411 /*
   412 ** Name of the master database table.  The master database table
   413 ** is a special table that holds the names and attributes of all
   414 ** user tables and indices.
   415 */
   416 #define MASTER_NAME       "sqlite_master"
   417 #define TEMP_MASTER_NAME  "sqlite_temp_master"
   418 
   419 /*
   420 ** The root-page of the master database table.
   421 */
   422 #define MASTER_ROOT       1
   423 
   424 /*
   425 ** The name of the schema table.
   426 */
   427 #define SCHEMA_TABLE(x)  ((!OMIT_TEMPDB)&&(x==1)?TEMP_MASTER_NAME:MASTER_NAME)
   428 
   429 /*
   430 ** A convenience macro that returns the number of elements in
   431 ** an array.
   432 */
   433 #define ArraySize(X)    (sizeof(X)/sizeof(X[0]))
   434 
   435 /*
   436 ** The following value as a destructor means to use sqlite3DbFree().
   437 ** This is an internal extension to SQLITE_STATIC and SQLITE_TRANSIENT.
   438 */
   439 #define SQLITE_DYNAMIC   ((sqlite3_destructor_type)sqlite3DbFree)
   440 
   441 /*
   442 ** Forward references to structures
   443 */
   444 typedef struct AggInfo AggInfo;
   445 typedef struct AuthContext AuthContext;
   446 typedef struct Bitvec Bitvec;
   447 typedef struct CollSeq CollSeq;
   448 typedef struct Column Column;
   449 typedef struct Db Db;
   450 typedef struct Schema Schema;
   451 typedef struct Expr Expr;
   452 typedef struct ExprList ExprList;
   453 typedef struct FKey FKey;
   454 typedef struct FuncDef FuncDef;
   455 typedef struct IdList IdList;
   456 typedef struct Index Index;
   457 typedef struct KeyClass KeyClass;
   458 typedef struct KeyInfo KeyInfo;
   459 typedef struct Lookaside Lookaside;
   460 typedef struct LookasideSlot LookasideSlot;
   461 typedef struct Module Module;
   462 typedef struct NameContext NameContext;
   463 typedef struct Parse Parse;
   464 typedef struct Select Select;
   465 typedef struct SrcList SrcList;
   466 typedef struct StrAccum StrAccum;
   467 typedef struct Table Table;
   468 typedef struct TableLock TableLock;
   469 typedef struct Token Token;
   470 typedef struct TriggerStack TriggerStack;
   471 typedef struct TriggerStep TriggerStep;
   472 typedef struct Trigger Trigger;
   473 typedef struct WhereInfo WhereInfo;
   474 typedef struct WhereLevel WhereLevel;
   475 
   476 /*
   477 ** Defer sourcing vdbe.h and btree.h until after the "u8" and 
   478 ** "BusyHandler" typedefs. vdbe.h also requires a few of the opaque
   479 ** pointer types (i.e. FuncDef) defined above.
   480 */
   481 #include "btree.h"
   482 #include "vdbe.h"
   483 #include "pager.h"
   484 
   485 #include "os.h"
   486 #include "mutex.h"
   487 
   488 
   489 /*
   490 ** Each database file to be accessed by the system is an instance
   491 ** of the following structure.  There are normally two of these structures
   492 ** in the sqlite.aDb[] array.  aDb[0] is the main database file and
   493 ** aDb[1] is the database file used to hold temporary tables.  Additional
   494 ** databases may be attached.
   495 */
   496 struct Db {
   497   char *zName;         /* Name of this database */
   498   Btree *pBt;          /* The B*Tree structure for this database file */
   499   u8 inTrans;          /* 0: not writable.  1: Transaction.  2: Checkpoint */
   500   u8 safety_level;     /* How aggressive at synching data to disk */
   501   void *pAux;               /* Auxiliary data.  Usually NULL */
   502   void (*xFreeAux)(void*);  /* Routine to free pAux */
   503   Schema *pSchema;     /* Pointer to database schema (possibly shared) */
   504 };
   505 
   506 /*
   507 ** An instance of the following structure stores a database schema.
   508 **
   509 ** If there are no virtual tables configured in this schema, the
   510 ** Schema.db variable is set to NULL. After the first virtual table
   511 ** has been added, it is set to point to the database connection 
   512 ** used to create the connection. Once a virtual table has been
   513 ** added to the Schema structure and the Schema.db variable populated, 
   514 ** only that database connection may use the Schema to prepare 
   515 ** statements.
   516 */
   517 struct Schema {
   518   int schema_cookie;   /* Database schema version number for this file */
   519   Hash tblHash;        /* All tables indexed by name */
   520   Hash idxHash;        /* All (named) indices indexed by name */
   521   Hash trigHash;       /* All triggers indexed by name */
   522   Hash aFKey;          /* Foreign keys indexed by to-table */
   523   Table *pSeqTab;      /* The sqlite_sequence table used by AUTOINCREMENT */
   524   u8 file_format;      /* Schema format version for this file */
   525   u8 enc;              /* Text encoding used by this database */
   526   u16 flags;           /* Flags associated with this schema */
   527   int cache_size;      /* Number of pages to use in the cache */
   528 #ifndef SQLITE_OMIT_VIRTUALTABLE
   529   sqlite3 *db;         /* "Owner" connection. See comment above */
   530 #endif
   531 };
   532 
   533 /*
   534 ** These macros can be used to test, set, or clear bits in the 
   535 ** Db.flags field.
   536 */
   537 #define DbHasProperty(D,I,P)     (((D)->aDb[I].pSchema->flags&(P))==(P))
   538 #define DbHasAnyProperty(D,I,P)  (((D)->aDb[I].pSchema->flags&(P))!=0)
   539 #define DbSetProperty(D,I,P)     (D)->aDb[I].pSchema->flags|=(P)
   540 #define DbClearProperty(D,I,P)   (D)->aDb[I].pSchema->flags&=~(P)
   541 
   542 /*
   543 ** Allowed values for the DB.flags field.
   544 **
   545 ** The DB_SchemaLoaded flag is set after the database schema has been
   546 ** read into internal hash tables.
   547 **
   548 ** DB_UnresetViews means that one or more views have column names that
   549 ** have been filled out.  If the schema changes, these column names might
   550 ** changes and so the view will need to be reset.
   551 */
   552 #define DB_SchemaLoaded    0x0001  /* The schema has been loaded */
   553 #define DB_UnresetViews    0x0002  /* Some views have defined column names */
   554 #define DB_Empty           0x0004  /* The file is empty (length 0 bytes) */
   555 
   556 /*
   557 ** The number of different kinds of things that can be limited
   558 ** using the sqlite3_limit() interface.
   559 */
   560 #define SQLITE_N_LIMIT (SQLITE_LIMIT_VARIABLE_NUMBER+1)
   561 
   562 /*
   563 ** Lookaside malloc is a set of fixed-size buffers that can be used
   564 ** to satisify small transient memory allocation requests for objects
   565 ** associated with a particular database connection.  The use of
   566 ** lookaside malloc provides a significant performance enhancement
   567 ** (approx 10%) by avoiding numerous malloc/free requests while parsing
   568 ** SQL statements.
   569 **
   570 ** The Lookaside structure holds configuration information about the
   571 ** lookaside malloc subsystem.  Each available memory allocation in
   572 ** the lookaside subsystem is stored on a linked list of LookasideSlot
   573 ** objects.
   574 */
   575 struct Lookaside {
   576   u16 sz;                 /* Size of each buffer in bytes */
   577   u8 bEnabled;            /* True if use lookaside.  False to ignore it */
   578   u8 bMalloced;           /* True if pStart obtained from sqlite3_malloc() */
   579   int nOut;               /* Number of buffers currently checked out */
   580   int mxOut;              /* Highwater mark for nOut */
   581   LookasideSlot *pFree;   /* List if available buffers */
   582   void *pStart;           /* First byte of available memory space */
   583   void *pEnd;             /* First byte past end of available space */
   584 };
   585 struct LookasideSlot {
   586   LookasideSlot *pNext;    /* Next buffer in the list of free buffers */
   587 };
   588 
   589 /*
   590 ** Each database is an instance of the following structure.
   591 **
   592 ** The sqlite.lastRowid records the last insert rowid generated by an
   593 ** insert statement.  Inserts on views do not affect its value.  Each
   594 ** trigger has its own context, so that lastRowid can be updated inside
   595 ** triggers as usual.  The previous value will be restored once the trigger
   596 ** exits.  Upon entering a before or instead of trigger, lastRowid is no
   597 ** longer (since after version 2.8.12) reset to -1.
   598 **
   599 ** The sqlite.nChange does not count changes within triggers and keeps no
   600 ** context.  It is reset at start of sqlite3_exec.
   601 ** The sqlite.lsChange represents the number of changes made by the last
   602 ** insert, update, or delete statement.  It remains constant throughout the
   603 ** length of a statement and is then updated by OP_SetCounts.  It keeps a
   604 ** context stack just like lastRowid so that the count of changes
   605 ** within a trigger is not seen outside the trigger.  Changes to views do not
   606 ** affect the value of lsChange.
   607 ** The sqlite.csChange keeps track of the number of current changes (since
   608 ** the last statement) and is used to update sqlite_lsChange.
   609 **
   610 ** The member variables sqlite.errCode, sqlite.zErrMsg and sqlite.zErrMsg16
   611 ** store the most recent error code and, if applicable, string. The
   612 ** internal function sqlite3Error() is used to set these variables
   613 ** consistently.
   614 */
   615 struct sqlite3 {
   616   sqlite3_vfs *pVfs;            /* OS Interface */
   617   int nDb;                      /* Number of backends currently in use */
   618   Db *aDb;                      /* All backends */
   619   int flags;                    /* Miscellanous flags. See below */
   620   int openFlags;                /* Flags passed to sqlite3_vfs.xOpen() */
   621   int errCode;                  /* Most recent error code (SQLITE_*) */
   622   int errMask;                  /* & result codes with this before returning */
   623   u8 autoCommit;                /* The auto-commit flag. */
   624   u8 temp_store;                /* 1: file 2: memory 0: default */
   625   u8 mallocFailed;              /* True if we have seen a malloc failure */
   626   u8 dfltLockMode;              /* Default locking-mode for attached dbs */
   627   u8 dfltJournalMode;           /* Default journal mode for attached dbs */
   628   signed char nextAutovac;      /* Autovac setting after VACUUM if >=0 */
   629   int nextPagesize;             /* Pagesize after VACUUM if >0 */
   630   int nTable;                   /* Number of tables in the database */
   631   CollSeq *pDfltColl;           /* The default collating sequence (BINARY) */
   632   i64 lastRowid;                /* ROWID of most recent insert (see above) */
   633   i64 priorNewRowid;            /* Last randomly generated ROWID */
   634   int magic;                    /* Magic number for detect library misuse */
   635   int nChange;                  /* Value returned by sqlite3_changes() */
   636   int nTotalChange;             /* Value returned by sqlite3_total_changes() */
   637   sqlite3_mutex *mutex;         /* Connection mutex */
   638   int aLimit[SQLITE_N_LIMIT];   /* Limits */
   639   struct sqlite3InitInfo {      /* Information used during initialization */
   640     int iDb;                    /* When back is being initialized */
   641     int newTnum;                /* Rootpage of table being initialized */
   642     u8 busy;                    /* TRUE if currently initializing */
   643   } init;
   644   int nExtension;               /* Number of loaded extensions */
   645   void **aExtension;            /* Array of shared libraray handles */
   646   struct Vdbe *pVdbe;           /* List of active virtual machines */
   647   int activeVdbeCnt;            /* Number of vdbes currently executing */
   648   void (*xTrace)(void*,const char*);        /* Trace function */
   649   void *pTraceArg;                          /* Argument to the trace function */
   650   void (*xProfile)(void*,const char*,u64);  /* Profiling function */
   651   void *pProfileArg;                        /* Argument to profile function */
   652   void *pCommitArg;                 /* Argument to xCommitCallback() */   
   653   int (*xCommitCallback)(void*);    /* Invoked at every commit. */
   654   void *pRollbackArg;               /* Argument to xRollbackCallback() */   
   655   void (*xRollbackCallback)(void*); /* Invoked at every commit. */
   656   void *pUpdateArg;
   657   void (*xUpdateCallback)(void*,int, const char*,const char*,sqlite_int64);
   658   void(*xCollNeeded)(void*,sqlite3*,int eTextRep,const char*);
   659   void(*xCollNeeded16)(void*,sqlite3*,int eTextRep,const void*);
   660   void *pCollNeededArg;
   661   sqlite3_value *pErr;          /* Most recent error message */
   662   char *zErrMsg;                /* Most recent error message (UTF-8 encoded) */
   663   char *zErrMsg16;              /* Most recent error message (UTF-16 encoded) */
   664   union {
   665     int isInterrupted;          /* True if sqlite3_interrupt has been called */
   666     double notUsed1;            /* Spacer */
   667   } u1;
   668   Lookaside lookaside;          /* Lookaside malloc configuration */
   669 #ifndef SQLITE_OMIT_AUTHORIZATION
   670   int (*xAuth)(void*,int,const char*,const char*,const char*,const char*);
   671                                 /* Access authorization function */
   672   void *pAuthArg;               /* 1st argument to the access auth function */
   673 #endif
   674 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
   675   int (*xProgress)(void *);     /* The progress callback */
   676   void *pProgressArg;           /* Argument to the progress callback */
   677   int nProgressOps;             /* Number of opcodes for progress callback */
   678 #endif
   679 #ifndef SQLITE_OMIT_VIRTUALTABLE
   680   Hash aModule;                 /* populated by sqlite3_create_module() */
   681   Table *pVTab;                 /* vtab with active Connect/Create method */
   682   sqlite3_vtab **aVTrans;       /* Virtual tables with open transactions */
   683   int nVTrans;                  /* Allocated size of aVTrans */
   684 #endif
   685   Hash aFunc;                   /* All functions that can be in SQL exprs */
   686   Hash aCollSeq;                /* All collating sequences */
   687   BusyHandler busyHandler;      /* Busy callback */
   688   int busyTimeout;              /* Busy handler timeout, in msec */
   689   Db aDbStatic[2];              /* Static space for the 2 default backends */
   690 #ifdef SQLITE_SSE
   691   sqlite3_stmt *pFetch;         /* Used by SSE to fetch stored statements */
   692 #endif
   693 };
   694 
   695 /*
   696 ** A macro to discover the encoding of a database.
   697 */
   698 #define ENC(db) ((db)->aDb[0].pSchema->enc)
   699 
   700 /*
   701 ** Possible values for the sqlite.flags and or Db.flags fields.
   702 **
   703 ** On sqlite.flags, the SQLITE_InTrans value means that we have
   704 ** executed a BEGIN.  On Db.flags, SQLITE_InTrans means a statement
   705 ** transaction is active on that particular database file.
   706 */
   707 #define SQLITE_VdbeTrace      0x00000001  /* True to trace VDBE execution */
   708 #define SQLITE_InTrans        0x00000008  /* True if in a transaction */
   709 #define SQLITE_InternChanges  0x00000010  /* Uncommitted Hash table changes */
   710 #define SQLITE_FullColNames   0x00000020  /* Show full column names on SELECT */
   711 #define SQLITE_ShortColNames  0x00000040  /* Show short columns names */
   712 #define SQLITE_CountRows      0x00000080  /* Count rows changed by INSERT, */
   713                                           /*   DELETE, or UPDATE and return */
   714                                           /*   the count using a callback. */
   715 #define SQLITE_NullCallback   0x00000100  /* Invoke the callback once if the */
   716                                           /*   result set is empty */
   717 #define SQLITE_SqlTrace       0x00000200  /* Debug print SQL as it executes */
   718 #define SQLITE_VdbeListing    0x00000400  /* Debug listings of VDBE programs */
   719 #define SQLITE_WriteSchema    0x00000800  /* OK to update SQLITE_MASTER */
   720 #define SQLITE_NoReadlock     0x00001000  /* Readlocks are omitted when 
   721                                           ** accessing read-only databases */
   722 #define SQLITE_IgnoreChecks   0x00002000  /* Do not enforce check constraints */
   723 #define SQLITE_ReadUncommitted 0x00004000 /* For shared-cache mode */
   724 #define SQLITE_LegacyFileFmt  0x00008000  /* Create new databases in format 1 */
   725 #define SQLITE_FullFSync      0x00010000  /* Use full fsync on the backend */
   726 #define SQLITE_LoadExtension  0x00020000  /* Enable load_extension */
   727 
   728 #define SQLITE_RecoveryMode   0x00040000  /* Ignore schema errors */
   729 #define SQLITE_SharedCache    0x00080000  /* Cache sharing is enabled */
   730 #define SQLITE_Vtab           0x00100000  /* There exists a virtual table */
   731 
   732 /*
   733 ** Possible values for the sqlite.magic field.
   734 ** The numbers are obtained at random and have no special meaning, other
   735 ** than being distinct from one another.
   736 */
   737 #define SQLITE_MAGIC_OPEN     0xa029a697  /* Database is open */
   738 #define SQLITE_MAGIC_CLOSED   0x9f3c2d33  /* Database is closed */
   739 #define SQLITE_MAGIC_SICK     0x4b771290  /* Error and awaiting close */
   740 #define SQLITE_MAGIC_BUSY     0xf03b7906  /* Database currently in use */
   741 #define SQLITE_MAGIC_ERROR    0xb5357930  /* An SQLITE_MISUSE error occurred */
   742 
   743 /*
   744 ** Each SQL function is defined by an instance of the following
   745 ** structure.  A pointer to this structure is stored in the sqlite.aFunc
   746 ** hash table.  When multiple functions have the same name, the hash table
   747 ** points to a linked list of these structures.
   748 */
   749 struct FuncDef {
   750   i16 nArg;            /* Number of arguments.  -1 means unlimited */
   751   u8 iPrefEnc;         /* Preferred text encoding (SQLITE_UTF8, 16LE, 16BE) */
   752   u8 needCollSeq;      /* True if sqlite3GetFuncCollSeq() might be called */
   753   u8 flags;            /* Some combination of SQLITE_FUNC_* */
   754   void *pUserData;     /* User data parameter */
   755   FuncDef *pNext;      /* Next function with same name */
   756   void (*xFunc)(sqlite3_context*,int,sqlite3_value**); /* Regular function */
   757   void (*xStep)(sqlite3_context*,int,sqlite3_value**); /* Aggregate step */
   758   void (*xFinalize)(sqlite3_context*);                /* Aggregate finializer */
   759   char zName[1];       /* SQL name of the function.  MUST BE LAST */
   760 };
   761 
   762 /*
   763 ** Each SQLite module (virtual table definition) is defined by an
   764 ** instance of the following structure, stored in the sqlite3.aModule
   765 ** hash table.
   766 */
   767 struct Module {
   768   const sqlite3_module *pModule;       /* Callback pointers */
   769   const char *zName;                   /* Name passed to create_module() */
   770   void *pAux;                          /* pAux passed to create_module() */
   771   void (*xDestroy)(void *);            /* Module destructor function */
   772 };
   773 
   774 /*
   775 ** Possible values for FuncDef.flags
   776 */
   777 #define SQLITE_FUNC_LIKE   0x01  /* Candidate for the LIKE optimization */
   778 #define SQLITE_FUNC_CASE   0x02  /* Case-sensitive LIKE-type function */
   779 #define SQLITE_FUNC_EPHEM  0x04  /* Ephermeral.  Delete with VDBE */
   780 
   781 /*
   782 ** information about each column of an SQL table is held in an instance
   783 ** of this structure.
   784 */
   785 struct Column {
   786   char *zName;     /* Name of this column */
   787   Expr *pDflt;     /* Default value of this column */
   788   char *zType;     /* Data type for this column */
   789   char *zColl;     /* Collating sequence.  If NULL, use the default */
   790   u8 notNull;      /* True if there is a NOT NULL constraint */
   791   u8 isPrimKey;    /* True if this column is part of the PRIMARY KEY */
   792   char affinity;   /* One of the SQLITE_AFF_... values */
   793 #ifndef SQLITE_OMIT_VIRTUALTABLE
   794   u8 isHidden;     /* True if this column is 'hidden' */
   795 #endif
   796 };
   797 
   798 /*
   799 ** A "Collating Sequence" is defined by an instance of the following
   800 ** structure. Conceptually, a collating sequence consists of a name and
   801 ** a comparison routine that defines the order of that sequence.
   802 **
   803 ** There may two seperate implementations of the collation function, one
   804 ** that processes text in UTF-8 encoding (CollSeq.xCmp) and another that
   805 ** processes text encoded in UTF-16 (CollSeq.xCmp16), using the machine
   806 ** native byte order. When a collation sequence is invoked, SQLite selects
   807 ** the version that will require the least expensive encoding
   808 ** translations, if any.
   809 **
   810 ** The CollSeq.pUser member variable is an extra parameter that passed in
   811 ** as the first argument to the UTF-8 comparison function, xCmp.
   812 ** CollSeq.pUser16 is the equivalent for the UTF-16 comparison function,
   813 ** xCmp16.
   814 **
   815 ** If both CollSeq.xCmp and CollSeq.xCmp16 are NULL, it means that the
   816 ** collating sequence is undefined.  Indices built on an undefined
   817 ** collating sequence may not be read or written.
   818 */
   819 struct CollSeq {
   820   char *zName;          /* Name of the collating sequence, UTF-8 encoded */
   821   u8 enc;               /* Text encoding handled by xCmp() */
   822   u8 type;              /* One of the SQLITE_COLL_... values below */
   823   void *pUser;          /* First argument to xCmp() */
   824   int (*xCmp)(void*,int, const void*, int, const void*);
   825   void (*xDel)(void*);  /* Destructor for pUser */
   826 };
   827 
   828 /*
   829 ** Allowed values of CollSeq flags:
   830 */
   831 #define SQLITE_COLL_BINARY  1  /* The default memcmp() collating sequence */
   832 #define SQLITE_COLL_NOCASE  2  /* The built-in NOCASE collating sequence */
   833 #define SQLITE_COLL_REVERSE 3  /* The built-in REVERSE collating sequence */
   834 #define SQLITE_COLL_USER    0  /* Any other user-defined collating sequence */
   835 
   836 /*
   837 ** A sort order can be either ASC or DESC.
   838 */
   839 #define SQLITE_SO_ASC       0  /* Sort in ascending order */
   840 #define SQLITE_SO_DESC      1  /* Sort in ascending order */
   841 
   842 /*
   843 ** Column affinity types.
   844 **
   845 ** These used to have mnemonic name like 'i' for SQLITE_AFF_INTEGER and
   846 ** 't' for SQLITE_AFF_TEXT.  But we can save a little space and improve
   847 ** the speed a little by number the values consecutively.  
   848 **
   849 ** But rather than start with 0 or 1, we begin with 'a'.  That way,
   850 ** when multiple affinity types are concatenated into a string and
   851 ** used as the P4 operand, they will be more readable.
   852 **
   853 ** Note also that the numeric types are grouped together so that testing
   854 ** for a numeric type is a single comparison.
   855 */
   856 #define SQLITE_AFF_TEXT     'a'
   857 #define SQLITE_AFF_NONE     'b'
   858 #define SQLITE_AFF_NUMERIC  'c'
   859 #define SQLITE_AFF_INTEGER  'd'
   860 #define SQLITE_AFF_REAL     'e'
   861 
   862 #define sqlite3IsNumericAffinity(X)  ((X)>=SQLITE_AFF_NUMERIC)
   863 
   864 /*
   865 ** The SQLITE_AFF_MASK values masks off the significant bits of an
   866 ** affinity value. 
   867 */
   868 #define SQLITE_AFF_MASK     0x67
   869 
   870 /*
   871 ** Additional bit values that can be ORed with an affinity without
   872 ** changing the affinity.
   873 */
   874 #define SQLITE_JUMPIFNULL   0x08  /* jumps if either operand is NULL */
   875 #define SQLITE_STOREP2      0x10  /* Store result in reg[P2] rather than jump */
   876 
   877 /*
   878 ** Each SQL table is represented in memory by an instance of the
   879 ** following structure.
   880 **
   881 ** Table.zName is the name of the table.  The case of the original
   882 ** CREATE TABLE statement is stored, but case is not significant for
   883 ** comparisons.
   884 **
   885 ** Table.nCol is the number of columns in this table.  Table.aCol is a
   886 ** pointer to an array of Column structures, one for each column.
   887 **
   888 ** If the table has an INTEGER PRIMARY KEY, then Table.iPKey is the index of
   889 ** the column that is that key.   Otherwise Table.iPKey is negative.  Note
   890 ** that the datatype of the PRIMARY KEY must be INTEGER for this field to
   891 ** be set.  An INTEGER PRIMARY KEY is used as the rowid for each row of
   892 ** the table.  If a table has no INTEGER PRIMARY KEY, then a random rowid
   893 ** is generated for each row of the table.  Table.hasPrimKey is true if
   894 ** the table has any PRIMARY KEY, INTEGER or otherwise.
   895 **
   896 ** Table.tnum is the page number for the root BTree page of the table in the
   897 ** database file.  If Table.iDb is the index of the database table backend
   898 ** in sqlite.aDb[].  0 is for the main database and 1 is for the file that
   899 ** holds temporary tables and indices.  If Table.isEphem
   900 ** is true, then the table is stored in a file that is automatically deleted
   901 ** when the VDBE cursor to the table is closed.  In this case Table.tnum 
   902 ** refers VDBE cursor number that holds the table open, not to the root
   903 ** page number.  Transient tables are used to hold the results of a
   904 ** sub-query that appears instead of a real table name in the FROM clause 
   905 ** of a SELECT statement.
   906 */
   907 struct Table {
   908   sqlite3 *db;     /* Associated database connection.  Might be NULL. */
   909   char *zName;     /* Name of the table */
   910   int nCol;        /* Number of columns in this table */
   911   Column *aCol;    /* Information about each column */
   912   int iPKey;       /* If not less then 0, use aCol[iPKey] as the primary key */
   913   Index *pIndex;   /* List of SQL indexes on this table. */
   914   int tnum;        /* Root BTree node for this table (see note above) */
   915   Select *pSelect; /* NULL for tables.  Points to definition if a view. */
   916   int nRef;          /* Number of pointers to this Table */
   917   Trigger *pTrigger; /* List of SQL triggers on this table */
   918   FKey *pFKey;       /* Linked list of all foreign keys in this table */
   919   char *zColAff;     /* String defining the affinity of each column */
   920 #ifndef SQLITE_OMIT_CHECK
   921   Expr *pCheck;      /* The AND of all CHECK constraints */
   922 #endif
   923 #ifndef SQLITE_OMIT_ALTERTABLE
   924   int addColOffset;  /* Offset in CREATE TABLE statement to add a new column */
   925 #endif
   926   u8 readOnly;     /* True if this table should not be written by the user */
   927   u8 isEphem;      /* True if created using OP_OpenEphermeral */
   928   u8 hasPrimKey;   /* True if there exists a primary key */
   929   u8 keyConf;      /* What to do in case of uniqueness conflict on iPKey */
   930   u8 autoInc;      /* True if the integer primary key is autoincrement */
   931 #ifndef SQLITE_OMIT_VIRTUALTABLE
   932   u8 isVirtual;             /* True if this is a virtual table */
   933   u8 isCommit;              /* True once the CREATE TABLE has been committed */
   934   Module *pMod;             /* Pointer to the implementation of the module */
   935   sqlite3_vtab *pVtab;      /* Pointer to the module instance */
   936   int nModuleArg;           /* Number of arguments to the module */
   937   char **azModuleArg;       /* Text of all module args. [0] is module name */
   938 #endif
   939   Schema *pSchema;          /* Schema that contains this table */
   940 };
   941 
   942 /*
   943 ** Test to see whether or not a table is a virtual table.  This is
   944 ** done as a macro so that it will be optimized out when virtual
   945 ** table support is omitted from the build.
   946 */
   947 #ifndef SQLITE_OMIT_VIRTUALTABLE
   948 #  define IsVirtual(X)      ((X)->isVirtual)
   949 #  define IsHiddenColumn(X) ((X)->isHidden)
   950 #else
   951 #  define IsVirtual(X)      0
   952 #  define IsHiddenColumn(X) 0
   953 #endif
   954 
   955 /*
   956 ** Each foreign key constraint is an instance of the following structure.
   957 **
   958 ** A foreign key is associated with two tables.  The "from" table is
   959 ** the table that contains the REFERENCES clause that creates the foreign
   960 ** key.  The "to" table is the table that is named in the REFERENCES clause.
   961 ** Consider this example:
   962 **
   963 **     CREATE TABLE ex1(
   964 **       a INTEGER PRIMARY KEY,
   965 **       b INTEGER CONSTRAINT fk1 REFERENCES ex2(x)
   966 **     );
   967 **
   968 ** For foreign key "fk1", the from-table is "ex1" and the to-table is "ex2".
   969 **
   970 ** Each REFERENCES clause generates an instance of the following structure
   971 ** which is attached to the from-table.  The to-table need not exist when
   972 ** the from-table is created.  The existance of the to-table is not checked
   973 ** until an attempt is made to insert data into the from-table.
   974 **
   975 ** The sqlite.aFKey hash table stores pointers to this structure
   976 ** given the name of a to-table.  For each to-table, all foreign keys
   977 ** associated with that table are on a linked list using the FKey.pNextTo
   978 ** field.
   979 */
   980 struct FKey {
   981   Table *pFrom;     /* The table that constains the REFERENCES clause */
   982   FKey *pNextFrom;  /* Next foreign key in pFrom */
   983   char *zTo;        /* Name of table that the key points to */
   984   FKey *pNextTo;    /* Next foreign key that points to zTo */
   985   int nCol;         /* Number of columns in this key */
   986   struct sColMap {  /* Mapping of columns in pFrom to columns in zTo */
   987     int iFrom;         /* Index of column in pFrom */
   988     char *zCol;        /* Name of column in zTo.  If 0 use PRIMARY KEY */
   989   } *aCol;          /* One entry for each of nCol column s */
   990   u8 isDeferred;    /* True if constraint checking is deferred till COMMIT */
   991   u8 updateConf;    /* How to resolve conflicts that occur on UPDATE */
   992   u8 deleteConf;    /* How to resolve conflicts that occur on DELETE */
   993   u8 insertConf;    /* How to resolve conflicts that occur on INSERT */
   994 };
   995 
   996 /*
   997 ** SQLite supports many different ways to resolve a constraint
   998 ** error.  ROLLBACK processing means that a constraint violation
   999 ** causes the operation in process to fail and for the current transaction
  1000 ** to be rolled back.  ABORT processing means the operation in process
  1001 ** fails and any prior changes from that one operation are backed out,
  1002 ** but the transaction is not rolled back.  FAIL processing means that
  1003 ** the operation in progress stops and returns an error code.  But prior
  1004 ** changes due to the same operation are not backed out and no rollback
  1005 ** occurs.  IGNORE means that the particular row that caused the constraint
  1006 ** error is not inserted or updated.  Processing continues and no error
  1007 ** is returned.  REPLACE means that preexisting database rows that caused
  1008 ** a UNIQUE constraint violation are removed so that the new insert or
  1009 ** update can proceed.  Processing continues and no error is reported.
  1010 **
  1011 ** RESTRICT, SETNULL, and CASCADE actions apply only to foreign keys.
  1012 ** RESTRICT is the same as ABORT for IMMEDIATE foreign keys and the
  1013 ** same as ROLLBACK for DEFERRED keys.  SETNULL means that the foreign
  1014 ** key is set to NULL.  CASCADE means that a DELETE or UPDATE of the
  1015 ** referenced table row is propagated into the row that holds the
  1016 ** foreign key.
  1017 ** 
  1018 ** The following symbolic values are used to record which type
  1019 ** of action to take.
  1020 */
  1021 #define OE_None     0   /* There is no constraint to check */
  1022 #define OE_Rollback 1   /* Fail the operation and rollback the transaction */
  1023 #define OE_Abort    2   /* Back out changes but do no rollback transaction */
  1024 #define OE_Fail     3   /* Stop the operation but leave all prior changes */
  1025 #define OE_Ignore   4   /* Ignore the error. Do not do the INSERT or UPDATE */
  1026 #define OE_Replace  5   /* Delete existing record, then do INSERT or UPDATE */
  1027 
  1028 #define OE_Restrict 6   /* OE_Abort for IMMEDIATE, OE_Rollback for DEFERRED */
  1029 #define OE_SetNull  7   /* Set the foreign key value to NULL */
  1030 #define OE_SetDflt  8   /* Set the foreign key value to its default */
  1031 #define OE_Cascade  9   /* Cascade the changes */
  1032 
  1033 #define OE_Default  99  /* Do whatever the default action is */
  1034 
  1035 
  1036 /*
  1037 ** An instance of the following structure is passed as the first
  1038 ** argument to sqlite3VdbeKeyCompare and is used to control the 
  1039 ** comparison of the two index keys.
  1040 **
  1041 ** If the KeyInfo.incrKey value is true and the comparison would
  1042 ** otherwise be equal, then return a result as if the second key
  1043 ** were larger.
  1044 */
  1045 struct KeyInfo {
  1046   sqlite3 *db;        /* The database connection */
  1047   u8 enc;             /* Text encoding - one of the TEXT_Utf* values */
  1048   u8 incrKey;         /* Increase 2nd key by epsilon before comparison */
  1049   u8 prefixIsEqual;   /* Treat a prefix as equal */
  1050   int nField;         /* Number of entries in aColl[] */
  1051   u8 *aSortOrder;     /* If defined an aSortOrder[i] is true, sort DESC */
  1052   CollSeq *aColl[1];  /* Collating sequence for each term of the key */
  1053 };
  1054 
  1055 /*
  1056 ** Each SQL index is represented in memory by an
  1057 ** instance of the following structure.
  1058 **
  1059 ** The columns of the table that are to be indexed are described
  1060 ** by the aiColumn[] field of this structure.  For example, suppose
  1061 ** we have the following table and index:
  1062 **
  1063 **     CREATE TABLE Ex1(c1 int, c2 int, c3 text);
  1064 **     CREATE INDEX Ex2 ON Ex1(c3,c1);
  1065 **
  1066 ** In the Table structure describing Ex1, nCol==3 because there are
  1067 ** three columns in the table.  In the Index structure describing
  1068 ** Ex2, nColumn==2 since 2 of the 3 columns of Ex1 are indexed.
  1069 ** The value of aiColumn is {2, 0}.  aiColumn[0]==2 because the 
  1070 ** first column to be indexed (c3) has an index of 2 in Ex1.aCol[].
  1071 ** The second column to be indexed (c1) has an index of 0 in
  1072 ** Ex1.aCol[], hence Ex2.aiColumn[1]==0.
  1073 **
  1074 ** The Index.onError field determines whether or not the indexed columns
  1075 ** must be unique and what to do if they are not.  When Index.onError=OE_None,
  1076 ** it means this is not a unique index.  Otherwise it is a unique index
  1077 ** and the value of Index.onError indicate the which conflict resolution 
  1078 ** algorithm to employ whenever an attempt is made to insert a non-unique
  1079 ** element.
  1080 */
  1081 struct Index {
  1082   char *zName;     /* Name of this index */
  1083   int nColumn;     /* Number of columns in the table used by this index */
  1084   int *aiColumn;   /* Which columns are used by this index.  1st is 0 */
  1085   unsigned *aiRowEst; /* Result of ANALYZE: Est. rows selected by each column */
  1086   Table *pTable;   /* The SQL table being indexed */
  1087   int tnum;        /* Page containing root of this index in database file */
  1088   u8 onError;      /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
  1089   u8 autoIndex;    /* True if is automatically created (ex: by UNIQUE) */
  1090   char *zColAff;   /* String defining the affinity of each column */
  1091   Index *pNext;    /* The next index associated with the same table */
  1092   Schema *pSchema; /* Schema containing this index */
  1093   u8 *aSortOrder;  /* Array of size Index.nColumn. True==DESC, False==ASC */
  1094   char **azColl;   /* Array of collation sequence names for index */
  1095 };
  1096 
  1097 /*
  1098 ** Each token coming out of the lexer is an instance of
  1099 ** this structure.  Tokens are also used as part of an expression.
  1100 **
  1101 ** Note if Token.z==0 then Token.dyn and Token.n are undefined and
  1102 ** may contain random values.  Do not make any assuptions about Token.dyn
  1103 ** and Token.n when Token.z==0.
  1104 */
  1105 struct Token {
  1106   const unsigned char *z; /* Text of the token.  Not NULL-terminated! */
  1107   unsigned dyn  : 1;      /* True for malloced memory, false for static */
  1108   unsigned n    : 31;     /* Number of characters in this token */
  1109 };
  1110 
  1111 /*
  1112 ** An instance of this structure contains information needed to generate
  1113 ** code for a SELECT that contains aggregate functions.
  1114 **
  1115 ** If Expr.op==TK_AGG_COLUMN or TK_AGG_FUNCTION then Expr.pAggInfo is a
  1116 ** pointer to this structure.  The Expr.iColumn field is the index in
  1117 ** AggInfo.aCol[] or AggInfo.aFunc[] of information needed to generate
  1118 ** code for that node.
  1119 **
  1120 ** AggInfo.pGroupBy and AggInfo.aFunc.pExpr point to fields within the
  1121 ** original Select structure that describes the SELECT statement.  These
  1122 ** fields do not need to be freed when deallocating the AggInfo structure.
  1123 */
  1124 struct AggInfo {
  1125   u8 directMode;          /* Direct rendering mode means take data directly
  1126                           ** from source tables rather than from accumulators */
  1127   u8 useSortingIdx;       /* In direct mode, reference the sorting index rather
  1128                           ** than the source table */
  1129   int sortingIdx;         /* Cursor number of the sorting index */
  1130   ExprList *pGroupBy;     /* The group by clause */
  1131   int nSortingColumn;     /* Number of columns in the sorting index */
  1132   struct AggInfo_col {    /* For each column used in source tables */
  1133     Table *pTab;             /* Source table */
  1134     int iTable;              /* Cursor number of the source table */
  1135     int iColumn;             /* Column number within the source table */
  1136     int iSorterColumn;       /* Column number in the sorting index */
  1137     int iMem;                /* Memory location that acts as accumulator */
  1138     Expr *pExpr;             /* The original expression */
  1139   } *aCol;
  1140   int nColumn;            /* Number of used entries in aCol[] */
  1141   int nColumnAlloc;       /* Number of slots allocated for aCol[] */
  1142   int nAccumulator;       /* Number of columns that show through to the output.
  1143                           ** Additional columns are used only as parameters to
  1144                           ** aggregate functions */
  1145   struct AggInfo_func {   /* For each aggregate function */
  1146     Expr *pExpr;             /* Expression encoding the function */
  1147     FuncDef *pFunc;          /* The aggregate function implementation */
  1148     int iMem;                /* Memory location that acts as accumulator */
  1149     int iDistinct;           /* Ephermeral table used to enforce DISTINCT */
  1150   } *aFunc;
  1151   int nFunc;              /* Number of entries in aFunc[] */
  1152   int nFuncAlloc;         /* Number of slots allocated for aFunc[] */
  1153 };
  1154 
  1155 /*
  1156 ** Each node of an expression in the parse tree is an instance
  1157 ** of this structure.
  1158 **
  1159 ** Expr.op is the opcode.  The integer parser token codes are reused
  1160 ** as opcodes here.  For example, the parser defines TK_GE to be an integer
  1161 ** code representing the ">=" operator.  This same integer code is reused
  1162 ** to represent the greater-than-or-equal-to operator in the expression
  1163 ** tree.
  1164 **
  1165 ** Expr.pRight and Expr.pLeft are subexpressions.  Expr.pList is a list
  1166 ** of argument if the expression is a function.
  1167 **
  1168 ** Expr.token is the operator token for this node.  For some expressions
  1169 ** that have subexpressions, Expr.token can be the complete text that gave
  1170 ** rise to the Expr.  In the latter case, the token is marked as being
  1171 ** a compound token.
  1172 **
  1173 ** An expression of the form ID or ID.ID refers to a column in a table.
  1174 ** For such expressions, Expr.op is set to TK_COLUMN and Expr.iTable is
  1175 ** the integer cursor number of a VDBE cursor pointing to that table and
  1176 ** Expr.iColumn is the column number for the specific column.  If the
  1177 ** expression is used as a result in an aggregate SELECT, then the
  1178 ** value is also stored in the Expr.iAgg column in the aggregate so that
  1179 ** it can be accessed after all aggregates are computed.
  1180 **
  1181 ** If the expression is a function, the Expr.iTable is an integer code
  1182 ** representing which function.  If the expression is an unbound variable
  1183 ** marker (a question mark character '?' in the original SQL) then the
  1184 ** Expr.iTable holds the index number for that variable.
  1185 **
  1186 ** If the expression is a subquery then Expr.iColumn holds an integer
  1187 ** register number containing the result of the subquery.  If the
  1188 ** subquery gives a constant result, then iTable is -1.  If the subquery
  1189 ** gives a different answer at different times during statement processing
  1190 ** then iTable is the address of a subroutine that computes the subquery.
  1191 **
  1192 ** The Expr.pSelect field points to a SELECT statement.  The SELECT might
  1193 ** be the right operand of an IN operator.  Or, if a scalar SELECT appears
  1194 ** in an expression the opcode is TK_SELECT and Expr.pSelect is the only
  1195 ** operand.
  1196 **
  1197 ** If the Expr is of type OP_Column, and the table it is selecting from
  1198 ** is a disk table or the "old.*" pseudo-table, then pTab points to the
  1199 ** corresponding table definition.
  1200 */
  1201 struct Expr {
  1202   u8 op;                 /* Operation performed by this node */
  1203   char affinity;         /* The affinity of the column or 0 if not a column */
  1204   u16 flags;             /* Various flags.  See below */
  1205   CollSeq *pColl;        /* The collation type of the column or 0 */
  1206   Expr *pLeft, *pRight;  /* Left and right subnodes */
  1207   ExprList *pList;       /* A list of expressions used as function arguments
  1208                          ** or in "<expr> IN (<expr-list)" */
  1209   Token token;           /* An operand token */
  1210   Token span;            /* Complete text of the expression */
  1211   int iTable, iColumn;   /* When op==TK_COLUMN, then this expr node means the
  1212                          ** iColumn-th field of the iTable-th table. */
  1213   AggInfo *pAggInfo;     /* Used by TK_AGG_COLUMN and TK_AGG_FUNCTION */
  1214   int iAgg;              /* Which entry in pAggInfo->aCol[] or ->aFunc[] */
  1215   int iRightJoinTable;   /* If EP_FromJoin, the right table of the join */
  1216   Select *pSelect;       /* When the expression is a sub-select.  Also the
  1217                          ** right side of "<expr> IN (<select>)" */
  1218   Table *pTab;           /* Table for OP_Column expressions. */
  1219 #if SQLITE_MAX_EXPR_DEPTH>0
  1220   int nHeight;           /* Height of the tree headed by this node */
  1221 #endif
  1222 };
  1223 
  1224 /*
  1225 ** The following are the meanings of bits in the Expr.flags field.
  1226 */
  1227 #define EP_FromJoin   0x0001  /* Originated in ON or USING clause of a join */
  1228 #define EP_Agg        0x0002  /* Contains one or more aggregate functions */
  1229 #define EP_Resolved   0x0004  /* IDs have been resolved to COLUMNs */
  1230 #define EP_Error      0x0008  /* Expression contains one or more errors */
  1231 #define EP_Distinct   0x0010  /* Aggregate function with DISTINCT keyword */
  1232 #define EP_VarSelect  0x0020  /* pSelect is correlated, not constant */
  1233 #define EP_Dequoted   0x0040  /* True if the string has been dequoted */
  1234 #define EP_InfixFunc  0x0080  /* True for an infix function: LIKE, GLOB, etc */
  1235 #define EP_ExpCollate 0x0100  /* Collating sequence specified explicitly */
  1236 #define EP_AnyAff     0x0200  /* Can take a cached column of any affinity */
  1237 #define EP_FixedDest  0x0400  /* Result needed in a specific register */
  1238 #define EP_IntValue   0x0800  /* Integer value contained in iTable */
  1239 /*
  1240 ** These macros can be used to test, set, or clear bits in the 
  1241 ** Expr.flags field.
  1242 */
  1243 #define ExprHasProperty(E,P)     (((E)->flags&(P))==(P))
  1244 #define ExprHasAnyProperty(E,P)  (((E)->flags&(P))!=0)
  1245 #define ExprSetProperty(E,P)     (E)->flags|=(P)
  1246 #define ExprClearProperty(E,P)   (E)->flags&=~(P)
  1247 
  1248 /*
  1249 ** A list of expressions.  Each expression may optionally have a
  1250 ** name.  An expr/name combination can be used in several ways, such
  1251 ** as the list of "expr AS ID" fields following a "SELECT" or in the
  1252 ** list of "ID = expr" items in an UPDATE.  A list of expressions can
  1253 ** also be used as the argument to a function, in which case the a.zName
  1254 ** field is not used.
  1255 */
  1256 struct ExprList {
  1257   int nExpr;             /* Number of expressions on the list */
  1258   int nAlloc;            /* Number of entries allocated below */
  1259   int iECursor;          /* VDBE Cursor associated with this ExprList */
  1260   struct ExprList_item {
  1261     Expr *pExpr;           /* The list of expressions */
  1262     char *zName;           /* Token associated with this expression */
  1263     u8 sortOrder;          /* 1 for DESC or 0 for ASC */
  1264     u8 isAgg;              /* True if this is an aggregate like count(*) */
  1265     u8 done;               /* A flag to indicate when processing is finished */
  1266   } *a;                  /* One entry for each expression */
  1267 };
  1268 
  1269 /*
  1270 ** An instance of this structure can hold a simple list of identifiers,
  1271 ** such as the list "a,b,c" in the following statements:
  1272 **
  1273 **      INSERT INTO t(a,b,c) VALUES ...;
  1274 **      CREATE INDEX idx ON t(a,b,c);
  1275 **      CREATE TRIGGER trig BEFORE UPDATE ON t(a,b,c) ...;
  1276 **
  1277 ** The IdList.a.idx field is used when the IdList represents the list of
  1278 ** column names after a table name in an INSERT statement.  In the statement
  1279 **
  1280 **     INSERT INTO t(a,b,c) ...
  1281 **
  1282 ** If "a" is the k-th column of table "t", then IdList.a[0].idx==k.
  1283 */
  1284 struct IdList {
  1285   struct IdList_item {
  1286     char *zName;      /* Name of the identifier */
  1287     int idx;          /* Index in some Table.aCol[] of a column named zName */
  1288   } *a;
  1289   int nId;         /* Number of identifiers on the list */
  1290   int nAlloc;      /* Number of entries allocated for a[] below */
  1291 };
  1292 
  1293 /*
  1294 ** The bitmask datatype defined below is used for various optimizations.
  1295 **
  1296 ** Changing this from a 64-bit to a 32-bit type limits the number of
  1297 ** tables in a join to 32 instead of 64.  But it also reduces the size
  1298 ** of the library by 738 bytes on ix86.
  1299 */
  1300 typedef u64 Bitmask;
  1301 
  1302 /*
  1303 ** The following structure describes the FROM clause of a SELECT statement.
  1304 ** Each table or subquery in the FROM clause is a separate element of
  1305 ** the SrcList.a[] array.
  1306 **
  1307 ** With the addition of multiple database support, the following structure
  1308 ** can also be used to describe a particular table such as the table that
  1309 ** is modified by an INSERT, DELETE, or UPDATE statement.  In standard SQL,
  1310 ** such a table must be a simple name: ID.  But in SQLite, the table can
  1311 ** now be identified by a database name, a dot, then the table name: ID.ID.
  1312 **
  1313 ** The jointype starts out showing the join type between the current table
  1314 ** and the next table on the list.  The parser builds the list this way.
  1315 ** But sqlite3SrcListShiftJoinType() later shifts the jointypes so that each
  1316 ** jointype expresses the join between the table and the previous table.
  1317 */
  1318 struct SrcList {
  1319   i16 nSrc;        /* Number of tables or subqueries in the FROM clause */
  1320   i16 nAlloc;      /* Number of entries allocated in a[] below */
  1321   struct SrcList_item {
  1322     char *zDatabase;  /* Name of database holding this table */
  1323     char *zName;      /* Name of the table */
  1324     char *zAlias;     /* The "B" part of a "A AS B" phrase.  zName is the "A" */
  1325     Table *pTab;      /* An SQL table corresponding to zName */
  1326     Select *pSelect;  /* A SELECT statement used in place of a table name */
  1327     u8 isPopulated;   /* Temporary table associated with SELECT is populated */
  1328     u8 jointype;      /* Type of join between this able and the previous */
  1329     int iCursor;      /* The VDBE cursor number used to access this table */
  1330     Expr *pOn;        /* The ON clause of a join */
  1331     IdList *pUsing;   /* The USING clause of a join */
  1332     Bitmask colUsed;  /* Bit N (1<<N) set if column N or pTab is used */
  1333   } a[1];             /* One entry for each identifier on the list */
  1334 };
  1335 
  1336 /*
  1337 ** Permitted values of the SrcList.a.jointype field
  1338 */
  1339 #define JT_INNER     0x0001    /* Any kind of inner or cross join */
  1340 #define JT_CROSS     0x0002    /* Explicit use of the CROSS keyword */
  1341 #define JT_NATURAL   0x0004    /* True for a "natural" join */
  1342 #define JT_LEFT      0x0008    /* Left outer join */
  1343 #define JT_RIGHT     0x0010    /* Right outer join */
  1344 #define JT_OUTER     0x0020    /* The "OUTER" keyword is present */
  1345 #define JT_ERROR     0x0040    /* unknown or unsupported join type */
  1346 
  1347 /*
  1348 ** For each nested loop in a WHERE clause implementation, the WhereInfo
  1349 ** structure contains a single instance of this structure.  This structure
  1350 ** is intended to be private the the where.c module and should not be
  1351 ** access or modified by other modules.
  1352 **
  1353 ** The pIdxInfo and pBestIdx fields are used to help pick the best
  1354 ** index on a virtual table.  The pIdxInfo pointer contains indexing
  1355 ** information for the i-th table in the FROM clause before reordering.
  1356 ** All the pIdxInfo pointers are freed by whereInfoFree() in where.c.
  1357 ** The pBestIdx pointer is a copy of pIdxInfo for the i-th table after
  1358 ** FROM clause ordering.  This is a little confusing so I will repeat
  1359 ** it in different words.  WhereInfo.a[i].pIdxInfo is index information 
  1360 ** for WhereInfo.pTabList.a[i].  WhereInfo.a[i].pBestInfo is the
  1361 ** index information for the i-th loop of the join.  pBestInfo is always
  1362 ** either NULL or a copy of some pIdxInfo.  So for cleanup it is 
  1363 ** sufficient to free all of the pIdxInfo pointers.
  1364 ** 
  1365 */
  1366 struct WhereLevel {
  1367   int iFrom;            /* Which entry in the FROM clause */
  1368   int flags;            /* Flags associated with this level */
  1369   int iMem;             /* First memory cell used by this level */
  1370   int iLeftJoin;        /* Memory cell used to implement LEFT OUTER JOIN */
  1371   Index *pIdx;          /* Index used.  NULL if no index */
  1372   int iTabCur;          /* The VDBE cursor used to access the table */
  1373   int iIdxCur;          /* The VDBE cursor used to acesss pIdx */
  1374   int brk;              /* Jump here to break out of the loop */
  1375   int nxt;              /* Jump here to start the next IN combination */
  1376   int cont;             /* Jump here to continue with the next loop cycle */
  1377   int top;              /* First instruction of interior of the loop */
  1378   int op, p1, p2;       /* Opcode used to terminate the loop */
  1379   int nEq;              /* Number of == or IN constraints on this loop */
  1380   int nIn;              /* Number of IN operators constraining this loop */
  1381   struct InLoop {
  1382     int iCur;              /* The VDBE cursor used by this IN operator */
  1383     int topAddr;           /* Top of the IN loop */
  1384   } *aInLoop;           /* Information about each nested IN operator */
  1385   sqlite3_index_info *pBestIdx;  /* Index information for this level */
  1386 
  1387   /* The following field is really not part of the current level.  But
  1388   ** we need a place to cache index information for each table in the
  1389   ** FROM clause and the WhereLevel structure is a convenient place.
  1390   */
  1391   sqlite3_index_info *pIdxInfo;  /* Index info for n-th source table */
  1392 };
  1393 
  1394 /*
  1395 ** Flags appropriate for the wflags parameter of sqlite3WhereBegin().
  1396 */
  1397 #define WHERE_ORDERBY_NORMAL     0   /* No-op */
  1398 #define WHERE_ORDERBY_MIN        1   /* ORDER BY processing for min() func */
  1399 #define WHERE_ORDERBY_MAX        2   /* ORDER BY processing for max() func */
  1400 #define WHERE_ONEPASS_DESIRED    4   /* Want to do one-pass UPDATE/DELETE */
  1401 
  1402 /*
  1403 ** The WHERE clause processing routine has two halves.  The
  1404 ** first part does the start of the WHERE loop and the second
  1405 ** half does the tail of the WHERE loop.  An instance of
  1406 ** this structure is returned by the first half and passed
  1407 ** into the second half to give some continuity.
  1408 */
  1409 struct WhereInfo {
  1410   Parse *pParse;       /* Parsing and code generating context */
  1411   u8 okOnePass;        /* Ok to use one-pass algorithm for UPDATE or DELETE */
  1412   SrcList *pTabList;   /* List of tables in the join */
  1413   int iTop;            /* The very beginning of the WHERE loop */
  1414   int iContinue;       /* Jump here to continue with next record */
  1415   int iBreak;          /* Jump here to break out of the loop */
  1416   int nLevel;          /* Number of nested loop */
  1417   sqlite3_index_info **apInfo;  /* Array of pointers to index info structures */
  1418   WhereLevel a[1];     /* Information about each nest loop in the WHERE */
  1419 };
  1420 
  1421 /*
  1422 ** A NameContext defines a context in which to resolve table and column
  1423 ** names.  The context consists of a list of tables (the pSrcList) field and
  1424 ** a list of named expression (pEList).  The named expression list may
  1425 ** be NULL.  The pSrc corresponds to the FROM clause of a SELECT or
  1426 ** to the table being operated on by INSERT, UPDATE, or DELETE.  The
  1427 ** pEList corresponds to the result set of a SELECT and is NULL for
  1428 ** other statements.
  1429 **
  1430 ** NameContexts can be nested.  When resolving names, the inner-most 
  1431 ** context is searched first.  If no match is found, the next outer
  1432 ** context is checked.  If there is still no match, the next context
  1433 ** is checked.  This process continues until either a match is found
  1434 ** or all contexts are check.  When a match is found, the nRef member of
  1435 ** the context containing the match is incremented. 
  1436 **
  1437 ** Each subquery gets a new NameContext.  The pNext field points to the
  1438 ** NameContext in the parent query.  Thus the process of scanning the
  1439 ** NameContext list corresponds to searching through successively outer
  1440 ** subqueries looking for a match.
  1441 */
  1442 struct NameContext {
  1443   Parse *pParse;       /* The parser */
  1444   SrcList *pSrcList;   /* One or more tables used to resolve names */
  1445   ExprList *pEList;    /* Optional list of named expressions */
  1446   int nRef;            /* Number of names resolved by this context */
  1447   int nErr;            /* Number of errors encountered while resolving names */
  1448   u8 allowAgg;         /* Aggregate functions allowed here */
  1449   u8 hasAgg;           /* True if aggregates are seen */
  1450   u8 isCheck;          /* True if resolving names in a CHECK constraint */
  1451   int nDepth;          /* Depth of subquery recursion. 1 for no recursion */
  1452   AggInfo *pAggInfo;   /* Information about aggregates at this level */
  1453   NameContext *pNext;  /* Next outer name context.  NULL for outermost */
  1454 };
  1455 
  1456 /*
  1457 ** An instance of the following structure contains all information
  1458 ** needed to generate code for a single SELECT statement.
  1459 **
  1460 ** nLimit is set to -1 if there is no LIMIT clause.  nOffset is set to 0.
  1461 ** If there is a LIMIT clause, the parser sets nLimit to the value of the
  1462 ** limit and nOffset to the value of the offset (or 0 if there is not
  1463 ** offset).  But later on, nLimit and nOffset become the memory locations
  1464 ** in the VDBE that record the limit and offset counters.
  1465 **
  1466 ** addrOpenEphm[] entries contain the address of OP_OpenEphemeral opcodes.
  1467 ** These addresses must be stored so that we can go back and fill in
  1468 ** the P4_KEYINFO and P2 parameters later.  Neither the KeyInfo nor
  1469 ** the number of columns in P2 can be computed at the same time
  1470 ** as the OP_OpenEphm instruction is coded because not
  1471 ** enough information about the compound query is known at that point.
  1472 ** The KeyInfo for addrOpenTran[0] and [1] contains collating sequences
  1473 ** for the result set.  The KeyInfo for addrOpenTran[2] contains collating
  1474 ** sequences for the ORDER BY clause.
  1475 */
  1476 struct Select {
  1477   ExprList *pEList;      /* The fields of the result */
  1478   u8 op;                 /* One of: TK_UNION TK_ALL TK_INTERSECT TK_EXCEPT */
  1479   u8 isDistinct;         /* True if the DISTINCT keyword is present */
  1480   u8 isResolved;         /* True once sqlite3SelectResolve() has run. */
  1481   u8 isAgg;              /* True if this is an aggregate query */
  1482   u8 usesEphm;           /* True if uses an OpenEphemeral opcode */
  1483   u8 disallowOrderBy;    /* Do not allow an ORDER BY to be attached if TRUE */
  1484   char affinity;         /* MakeRecord with this affinity for SRT_Set */
  1485   SrcList *pSrc;         /* The FROM clause */
  1486   Expr *pWhere;          /* The WHERE clause */
  1487   ExprList *pGroupBy;    /* The GROUP BY clause */
  1488   Expr *pHaving;         /* The HAVING clause */
  1489   ExprList *pOrderBy;    /* The ORDER BY clause */
  1490   Select *pPrior;        /* Prior select in a compound select statement */
  1491   Select *pNext;         /* Next select to the left in a compound */
  1492   Select *pRightmost;    /* Right-most select in a compound select statement */
  1493   Expr *pLimit;          /* LIMIT expression. NULL means not used. */
  1494   Expr *pOffset;         /* OFFSET expression. NULL means not used. */
  1495   int iLimit, iOffset;   /* Memory registers holding LIMIT & OFFSET counters */
  1496   int addrOpenEphm[3];   /* OP_OpenEphem opcodes related to this select */
  1497 };
  1498 
  1499 /*
  1500 ** The results of a select can be distributed in several ways.
  1501 */
  1502 #define SRT_Union        1  /* Store result as keys in an index */
  1503 #define SRT_Except       2  /* Remove result from a UNION index */
  1504 #define SRT_Exists       3  /* Store 1 if the result is not empty */
  1505 #define SRT_Discard      4  /* Do not save the results anywhere */
  1506 
  1507 /* The ORDER BY clause is ignored for all of the above */
  1508 #define IgnorableOrderby(X) ((X->eDest)<=SRT_Discard)
  1509 
  1510 #define SRT_Callback     5  /* Invoke a callback with each row of result */
  1511 #define SRT_Mem          6  /* Store result in a memory cell */
  1512 #define SRT_Set          7  /* Store results as keys in an index */
  1513 #define SRT_Table        8  /* Store result as data with an automatic rowid */
  1514 #define SRT_EphemTab     9  /* Create transient tab and store like SRT_Table */
  1515 #define SRT_Coroutine   10  /* Generate a single row of result */
  1516 
  1517 /*
  1518 ** A structure used to customize the behaviour of sqlite3Select(). See
  1519 ** comments above sqlite3Select() for details.
  1520 */
  1521 typedef struct SelectDest SelectDest;
  1522 struct SelectDest {
  1523   u8 eDest;         /* How to dispose of the results */
  1524   u8 affinity;      /* Affinity used when eDest==SRT_Set */
  1525   int iParm;        /* A parameter used by the eDest disposal method */
  1526   int iMem;         /* Base register where results are written */
  1527   int nMem;         /* Number of registers allocated */
  1528 };
  1529 
  1530 /*
  1531 ** An SQL parser context.  A copy of this structure is passed through
  1532 ** the parser and down into all the parser action routine in order to
  1533 ** carry around information that is global to the entire parse.
  1534 **
  1535 ** The structure is divided into two parts.  When the parser and code
  1536 ** generate call themselves recursively, the first part of the structure
  1537 ** is constant but the second part is reset at the beginning and end of
  1538 ** each recursion.
  1539 **
  1540 ** The nTableLock and aTableLock variables are only used if the shared-cache 
  1541 ** feature is enabled (if sqlite3Tsd()->useSharedData is true). They are
  1542 ** used to store the set of table-locks required by the statement being
  1543 ** compiled. Function sqlite3TableLock() is used to add entries to the
  1544 ** list.
  1545 */
  1546 struct Parse {
  1547   sqlite3 *db;         /* The main database structure */
  1548   int rc;              /* Return code from execution */
  1549   char *zErrMsg;       /* An error message */
  1550   Vdbe *pVdbe;         /* An engine for executing database bytecode */
  1551   u8 colNamesSet;      /* TRUE after OP_ColumnName has been issued to pVdbe */
  1552   u8 nameClash;        /* A permanent table name clashes with temp table name */
  1553   u8 checkSchema;      /* Causes schema cookie check after an error */
  1554   u8 nested;           /* Number of nested calls to the parser/code generator */
  1555   u8 parseError;       /* True after a parsing error.  Ticket #1794 */
  1556   u8 nTempReg;         /* Number of temporary registers in aTempReg[] */
  1557   u8 nTempInUse;       /* Number of aTempReg[] currently checked out */
  1558   int aTempReg[8];     /* Holding area for temporary registers */
  1559   int nRangeReg;       /* Size of the temporary register block */
  1560   int iRangeReg;       /* First register in temporary register block */
  1561   int nErr;            /* Number of errors seen */
  1562   int nTab;            /* Number of previously allocated VDBE cursors */
  1563   int nMem;            /* Number of memory cells used so far */
  1564   int nSet;            /* Number of sets used so far */
  1565   int ckBase;          /* Base register of data during check constraints */
  1566   int disableColCache; /* True to disable adding to column cache */
  1567   int nColCache;       /* Number of entries in the column cache */
  1568   int iColCache;       /* Next entry of the cache to replace */
  1569   struct yColCache {
  1570     int iTable;           /* Table cursor number */
  1571     int iColumn;          /* Table column number */
  1572     char affChange;       /* True if this register has had an affinity change */
  1573     int iReg;             /* Register holding value of this column */
  1574   } aColCache[10];     /* One for each valid column cache entry */
  1575   u32 writeMask;       /* Start a write transaction on these databases */
  1576   u32 cookieMask;      /* Bitmask of schema verified databases */
  1577   int cookieGoto;      /* Address of OP_Goto to cookie verifier subroutine */
  1578   int cookieValue[SQLITE_MAX_ATTACHED+2];  /* Values of cookies to verify */
  1579 #ifndef SQLITE_OMIT_SHARED_CACHE
  1580   int nTableLock;        /* Number of locks in aTableLock */
  1581   TableLock *aTableLock; /* Required table locks for shared-cache mode */
  1582 #endif
  1583   int regRowid;        /* Register holding rowid of CREATE TABLE entry */
  1584   int regRoot;         /* Register holding root page number for new objects */
  1585 
  1586   /* Above is constant between recursions.  Below is reset before and after
  1587   ** each recursion */
  1588 
  1589   int nVar;            /* Number of '?' variables seen in the SQL so far */
  1590   int nVarExpr;        /* Number of used slots in apVarExpr[] */
  1591   int nVarExprAlloc;   /* Number of allocated slots in apVarExpr[] */
  1592   Expr **apVarExpr;    /* Pointers to :aaa and $aaaa wildcard expressions */
  1593   u8 explain;          /* True if the EXPLAIN flag is found on the query */
  1594   Token sErrToken;     /* The token at which the error occurred */
  1595   Token sNameToken;    /* Token with unqualified schema object name */
  1596   Token sLastToken;    /* The last token parsed */
  1597   const char *zSql;    /* All SQL text */
  1598   const char *zTail;   /* All SQL text past the last semicolon parsed */
  1599   Table *pNewTable;    /* A table being constructed by CREATE TABLE */
  1600   Trigger *pNewTrigger;     /* Trigger under construct by a CREATE TRIGGER */
  1601   TriggerStack *trigStack;  /* Trigger actions being coded */
  1602   const char *zAuthContext; /* The 6th parameter to db->xAuth callbacks */
  1603 #ifndef SQLITE_OMIT_VIRTUALTABLE
  1604   Token sArg;                /* Complete text of a module argument */
  1605   u8 declareVtab;            /* True if inside sqlite3_declare_vtab() */
  1606   int nVtabLock;             /* Number of virtual tables to lock */
  1607   Table **apVtabLock;        /* Pointer to virtual tables needing locking */
  1608 #endif
  1609   int nHeight;            /* Expression tree height of current sub-select */
  1610 };
  1611 
  1612 #ifdef SQLITE_OMIT_VIRTUALTABLE
  1613   #define IN_DECLARE_VTAB 0
  1614 #else
  1615   #define IN_DECLARE_VTAB (pParse->declareVtab)
  1616 #endif
  1617 
  1618 /*
  1619 ** An instance of the following structure can be declared on a stack and used
  1620 ** to save the Parse.zAuthContext value so that it can be restored later.
  1621 */
  1622 struct AuthContext {
  1623   const char *zAuthContext;   /* Put saved Parse.zAuthContext here */
  1624   Parse *pParse;              /* The Parse structure */
  1625 };
  1626 
  1627 /*
  1628 ** Bitfield flags for P2 value in OP_Insert and OP_Delete
  1629 */
  1630 #define OPFLAG_NCHANGE   1    /* Set to update db->nChange */
  1631 #define OPFLAG_LASTROWID 2    /* Set to update db->lastRowid */
  1632 #define OPFLAG_ISUPDATE  4    /* This OP_Insert is an sql UPDATE */
  1633 #define OPFLAG_APPEND    8    /* This is likely to be an append */
  1634 
  1635 /*
  1636  * Each trigger present in the database schema is stored as an instance of
  1637  * struct Trigger. 
  1638  *
  1639  * Pointers to instances of struct Trigger are stored in two ways.
  1640  * 1. In the "trigHash" hash table (part of the sqlite3* that represents the 
  1641  *    database). This allows Trigger structures to be retrieved by name.
  1642  * 2. All triggers associated with a single table form a linked list, using the
  1643  *    pNext member of struct Trigger. A pointer to the first element of the
  1644  *    linked list is stored as the "pTrigger" member of the associated
  1645  *    struct Table.
  1646  *
  1647  * The "step_list" member points to the first element of a linked list
  1648  * containing the SQL statements specified as the trigger program.
  1649  */
  1650 struct Trigger {
  1651   char *name;             /* The name of the trigger                        */
  1652   char *table;            /* The table or view to which the trigger applies */
  1653   u8 op;                  /* One of TK_DELETE, TK_UPDATE, TK_INSERT         */
  1654   u8 tr_tm;               /* One of TRIGGER_BEFORE, TRIGGER_AFTER */
  1655   Expr *pWhen;            /* The WHEN clause of the expresion (may be NULL) */
  1656   IdList *pColumns;       /* If this is an UPDATE OF <column-list> trigger,
  1657                              the <column-list> is stored here */
  1658   Token nameToken;        /* Token containing zName. Use during parsing only */
  1659   Schema *pSchema;        /* Schema containing the trigger */
  1660   Schema *pTabSchema;     /* Schema containing the table */
  1661   TriggerStep *step_list; /* Link list of trigger program steps             */
  1662   Trigger *pNext;         /* Next trigger associated with the table */
  1663 };
  1664 
  1665 /*
  1666 ** A trigger is either a BEFORE or an AFTER trigger.  The following constants
  1667 ** determine which. 
  1668 **
  1669 ** If there are multiple triggers, you might of some BEFORE and some AFTER.
  1670 ** In that cases, the constants below can be ORed together.
  1671 */
  1672 #define TRIGGER_BEFORE  1
  1673 #define TRIGGER_AFTER   2
  1674 
  1675 /*
  1676  * An instance of struct TriggerStep is used to store a single SQL statement
  1677  * that is a part of a trigger-program. 
  1678  *
  1679  * Instances of struct TriggerStep are stored in a singly linked list (linked
  1680  * using the "pNext" member) referenced by the "step_list" member of the 
  1681  * associated struct Trigger instance. The first element of the linked list is
  1682  * the first step of the trigger-program.
  1683  * 
  1684  * The "op" member indicates whether this is a "DELETE", "INSERT", "UPDATE" or
  1685  * "SELECT" statement. The meanings of the other members is determined by the 
  1686  * value of "op" as follows:
  1687  *
  1688  * (op == TK_INSERT)
  1689  * orconf    -> stores the ON CONFLICT algorithm
  1690  * pSelect   -> If this is an INSERT INTO ... SELECT ... statement, then
  1691  *              this stores a pointer to the SELECT statement. Otherwise NULL.
  1692  * target    -> A token holding the name of the table to insert into.
  1693  * pExprList -> If this is an INSERT INTO ... VALUES ... statement, then
  1694  *              this stores values to be inserted. Otherwise NULL.
  1695  * pIdList   -> If this is an INSERT INTO ... (<column-names>) VALUES ... 
  1696  *              statement, then this stores the column-names to be
  1697  *              inserted into.
  1698  *
  1699  * (op == TK_DELETE)
  1700  * target    -> A token holding the name of the table to delete from.
  1701  * pWhere    -> The WHERE clause of the DELETE statement if one is specified.
  1702  *              Otherwise NULL.
  1703  * 
  1704  * (op == TK_UPDATE)
  1705  * target    -> A token holding the name of the table to update rows of.
  1706  * pWhere    -> The WHERE clause of the UPDATE statement if one is specified.
  1707  *              Otherwise NULL.
  1708  * pExprList -> A list of the columns to update and the expressions to update
  1709  *              them to. See sqlite3Update() documentation of "pChanges"
  1710  *              argument.
  1711  * 
  1712  */
  1713 struct TriggerStep {
  1714   int op;              /* One of TK_DELETE, TK_UPDATE, TK_INSERT, TK_SELECT */
  1715   int orconf;          /* OE_Rollback etc. */
  1716   Trigger *pTrig;      /* The trigger that this step is a part of */
  1717 
  1718   Select *pSelect;     /* Valid for SELECT and sometimes 
  1719                           INSERT steps (when pExprList == 0) */
  1720   Token target;        /* Valid for DELETE, UPDATE, INSERT steps */
  1721   Expr *pWhere;        /* Valid for DELETE, UPDATE steps */
  1722   ExprList *pExprList; /* Valid for UPDATE statements and sometimes 
  1723                            INSERT steps (when pSelect == 0)         */
  1724   IdList *pIdList;     /* Valid for INSERT statements only */
  1725   TriggerStep *pNext;  /* Next in the link-list */
  1726   TriggerStep *pLast;  /* Last element in link-list. Valid for 1st elem only */
  1727 };
  1728 
  1729 /*
  1730  * An instance of struct TriggerStack stores information required during code
  1731  * generation of a single trigger program. While the trigger program is being
  1732  * coded, its associated TriggerStack instance is pointed to by the
  1733  * "pTriggerStack" member of the Parse structure.
  1734  *
  1735  * The pTab member points to the table that triggers are being coded on. The 
  1736  * newIdx member contains the index of the vdbe cursor that points at the temp
  1737  * table that stores the new.* references. If new.* references are not valid
  1738  * for the trigger being coded (for example an ON DELETE trigger), then newIdx
  1739  * is set to -1. The oldIdx member is analogous to newIdx, for old.* references.
  1740  *
  1741  * The ON CONFLICT policy to be used for the trigger program steps is stored 
  1742  * as the orconf member. If this is OE_Default, then the ON CONFLICT clause 
  1743  * specified for individual triggers steps is used.
  1744  *
  1745  * struct TriggerStack has a "pNext" member, to allow linked lists to be
  1746  * constructed. When coding nested triggers (triggers fired by other triggers)
  1747  * each nested trigger stores its parent trigger's TriggerStack as the "pNext" 
  1748  * pointer. Once the nested trigger has been coded, the pNext value is restored
  1749  * to the pTriggerStack member of the Parse stucture and coding of the parent
  1750  * trigger continues.
  1751  *
  1752  * Before a nested trigger is coded, the linked list pointed to by the 
  1753  * pTriggerStack is scanned to ensure that the trigger is not about to be coded
  1754  * recursively. If this condition is detected, the nested trigger is not coded.
  1755  */
  1756 struct TriggerStack {
  1757   Table *pTab;         /* Table that triggers are currently being coded on */
  1758   int newIdx;          /* Index of vdbe cursor to "new" temp table */
  1759   int oldIdx;          /* Index of vdbe cursor to "old" temp table */
  1760   u32 newColMask;
  1761   u32 oldColMask;
  1762   int orconf;          /* Current orconf policy */
  1763   int ignoreJump;      /* where to jump to for a RAISE(IGNORE) */
  1764   Trigger *pTrigger;   /* The trigger currently being coded */
  1765   TriggerStack *pNext; /* Next trigger down on the trigger stack */
  1766 };
  1767 
  1768 /*
  1769 ** The following structure contains information used by the sqliteFix...
  1770 ** routines as they walk the parse tree to make database references
  1771 ** explicit.  
  1772 */
  1773 typedef struct DbFixer DbFixer;
  1774 struct DbFixer {
  1775   Parse *pParse;      /* The parsing context.  Error messages written here */
  1776   const char *zDb;    /* Make sure all objects are contained in this database */
  1777   const char *zType;  /* Type of the container - used for error messages */
  1778   const Token *pName; /* Name of the container - used for error messages */
  1779 };
  1780 
  1781 /*
  1782 ** An objected used to accumulate the text of a string where we
  1783 ** do not necessarily know how big the string will be in the end.
  1784 */
  1785 struct StrAccum {
  1786   sqlite3 *db;         /* Optional database for lookaside.  Can be NULL */
  1787   char *zBase;         /* A base allocation.  Not from malloc. */
  1788   char *zText;         /* The string collected so far */
  1789   int  nChar;          /* Length of the string so far */
  1790   int  nAlloc;         /* Amount of space allocated in zText */
  1791   int  mxAlloc;        /* Maximum allowed string length */
  1792   u8   mallocFailed;   /* Becomes true if any memory allocation fails */
  1793   u8   useMalloc;      /* True if zText is enlargable using realloc */
  1794   u8   tooBig;         /* Becomes true if string size exceeds limits */
  1795 };
  1796 
  1797 /*
  1798 ** A pointer to this structure is used to communicate information
  1799 ** from sqlite3Init and OP_ParseSchema into the sqlite3InitCallback.
  1800 */
  1801 typedef struct {
  1802   sqlite3 *db;        /* The database being initialized */
  1803   int iDb;            /* 0 for main database.  1 for TEMP, 2.. for ATTACHed */
  1804   char **pzErrMsg;    /* Error message stored here */
  1805   int rc;             /* Result code stored here */
  1806 } InitData;
  1807 
  1808 /*
  1809 ** Structure containing global configuration data for the SQLite library.
  1810 **
  1811 ** This structure also contains some state information.
  1812 */
  1813 struct Sqlite3Config {
  1814   int bMemstat;                     /* True to enable memory status */
  1815   int bCoreMutex;                   /* True to enable core mutexing */
  1816   int bFullMutex;                   /* True to enable full mutexing */
  1817   int mxStrlen;                     /* Maximum string length */
  1818   int szLookaside;                  /* Default lookaside buffer size */
  1819   int nLookaside;                   /* Default lookaside buffer count */
  1820   sqlite3_mem_methods m;            /* Low-level memory allocation interface */
  1821   sqlite3_mutex_methods mutex;      /* Low-level mutex interface */
  1822   void *pHeap;                      /* Heap storage space */
  1823   int nHeap;                        /* Size of pHeap[] */
  1824   int mnReq, mxReq;                 /* Min and max heap requests sizes */
  1825   void *pScratch;                   /* Scratch memory */
  1826   int szScratch;                    /* Size of each scratch buffer */
  1827   int nScratch;                     /* Number of scratch buffers */
  1828   void *pPage;                      /* Page cache memory */
  1829   int szPage;                       /* Size of each page in pPage[] */
  1830   int nPage;                        /* Number of pages in pPage[] */
  1831   int isInit;                       /* True after initialization has finished */
  1832   int isMallocInit;                 /* True after malloc is initialized */
  1833   sqlite3_mutex *pInitMutex;        /* Mutex used by sqlite3_initialize() */
  1834   int nSmall;                       /* alloc size threshold used by mem6.c */
  1835   int mxParserStack;                /* maximum depth of the parser stack */
  1836 };
  1837 
  1838 /*
  1839 ** Assuming zIn points to the first byte of a UTF-8 character,
  1840 ** advance zIn to point to the first byte of the next UTF-8 character.
  1841 */
  1842 #define SQLITE_SKIP_UTF8(zIn) {                        \
  1843   if( (*(zIn++))>=0xc0 ){                              \
  1844     while( (*zIn & 0xc0)==0x80 ){ zIn++; }             \
  1845   }                                                    \
  1846 }
  1847 
  1848 /*
  1849 ** The SQLITE_CORRUPT_BKPT macro can be either a constant (for production
  1850 ** builds) or a function call (for debugging).  If it is a function call,
  1851 ** it allows the operator to set a breakpoint at the spot where database
  1852 ** corruption is first detected.
  1853 */
  1854 #ifdef SQLITE_DEBUG
  1855   int sqlite3Corrupt(void);
  1856 # define SQLITE_CORRUPT_BKPT sqlite3Corrupt()
  1857 #else
  1858 # define SQLITE_CORRUPT_BKPT SQLITE_CORRUPT
  1859 #endif
  1860 
  1861 /*
  1862 ** Internal function prototypes
  1863 */
  1864 int sqlite3StrICmp(const char *, const char *);
  1865 int sqlite3StrNICmp(const char *, const char *, int);
  1866 int sqlite3IsNumber(const char*, int*, u8);
  1867 int sqlite3Strlen(sqlite3*, const char*);
  1868 
  1869 int sqlite3MallocInit(void);
  1870 void sqlite3MallocEnd(void);
  1871 void *sqlite3Malloc(int);
  1872 void *sqlite3MallocZero(int);
  1873 void *sqlite3DbMallocZero(sqlite3*, int);
  1874 void *sqlite3DbMallocRaw(sqlite3*, int);
  1875 char *sqlite3DbStrDup(sqlite3*,const char*);
  1876 char *sqlite3DbStrNDup(sqlite3*,const char*, int);
  1877 void *sqlite3Realloc(void*, int);
  1878 void *sqlite3DbReallocOrFree(sqlite3 *, void *, int);
  1879 void *sqlite3DbRealloc(sqlite3 *, void *, int);
  1880 void sqlite3DbFree(sqlite3*, void*);
  1881 int sqlite3MallocSize(void*);
  1882 int sqlite3DbMallocSize(sqlite3*, void*);
  1883 void *sqlite3ScratchMalloc(int);
  1884 void sqlite3ScratchFree(void*);
  1885 void *sqlite3PageMalloc(int);
  1886 void sqlite3PageFree(void*);
  1887 void sqlite3MemSetDefault(void);
  1888 const sqlite3_mem_methods *sqlite3MemGetDefault(void);
  1889 const sqlite3_mem_methods *sqlite3MemGetMemsys5(void);
  1890 const sqlite3_mem_methods *sqlite3MemGetMemsys3(void);
  1891 const sqlite3_mem_methods *sqlite3MemGetMemsys6(void);
  1892 void sqlite3BenignMallocHooks(void (*)(void), void (*)(void));
  1893 
  1894 #ifndef SQLITE_MUTEX_NOOP
  1895   sqlite3_mutex_methods *sqlite3DefaultMutex(void);
  1896   sqlite3_mutex *sqlite3MutexAlloc(int);
  1897   int sqlite3MutexInit(void);
  1898   int sqlite3MutexEnd(void);
  1899 #endif
  1900 
  1901 void sqlite3StatusReset(void);
  1902 int sqlite3StatusValue(int);
  1903 void sqlite3StatusAdd(int, int);
  1904 void sqlite3StatusSet(int, int);
  1905 
  1906 int sqlite3IsNaN(double);
  1907 
  1908 void sqlite3VXPrintf(StrAccum*, int, const char*, va_list);
  1909 char *sqlite3MPrintf(sqlite3*,const char*, ...);
  1910 char *sqlite3VMPrintf(sqlite3*,const char*, va_list);
  1911 char *sqlite3MAppendf(sqlite3*,char*,const char*,...);
  1912 #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG)
  1913   void sqlite3DebugPrintf(const char*, ...);
  1914 #endif
  1915 #if defined(SQLITE_TEST)
  1916   void *sqlite3TestTextToPtr(const char*);
  1917 #endif
  1918 void sqlite3SetString(char **, sqlite3*, const char*, ...);
  1919 void sqlite3ErrorMsg(Parse*, const char*, ...);
  1920 void sqlite3ErrorClear(Parse*);
  1921 void sqlite3Dequote(char*);
  1922 void sqlite3DequoteExpr(sqlite3*, Expr*);
  1923 int sqlite3KeywordCode(const unsigned char*, int);
  1924 int sqlite3RunParser(Parse*, const char*, char **);
  1925 void sqlite3FinishCoding(Parse*);
  1926 int sqlite3GetTempReg(Parse*);
  1927 void sqlite3ReleaseTempReg(Parse*,int);
  1928 int sqlite3GetTempRange(Parse*,int);
  1929 void sqlite3ReleaseTempRange(Parse*,int,int);
  1930 Expr *sqlite3Expr(sqlite3*, int, Expr*, Expr*, const Token*);
  1931 Expr *sqlite3PExpr(Parse*, int, Expr*, Expr*, const Token*);
  1932 Expr *sqlite3RegisterExpr(Parse*,Token*);
  1933 Expr *sqlite3ExprAnd(sqlite3*,Expr*, Expr*);
  1934 void sqlite3ExprSpan(Expr*,Token*,Token*);
  1935 Expr *sqlite3ExprFunction(Parse*,ExprList*, Token*);
  1936 void sqlite3ExprAssignVarNumber(Parse*, Expr*);
  1937 void sqlite3ExprDelete(sqlite3*, Expr*);
  1938 ExprList *sqlite3ExprListAppend(Parse*,ExprList*,Expr*,Token*);
  1939 void sqlite3ExprListDelete(sqlite3*, ExprList*);
  1940 int sqlite3Init(sqlite3*, char**);
  1941 int sqlite3InitCallback(void*, int, char**, char**);
  1942 void sqlite3Pragma(Parse*,Token*,Token*,Token*,int);
  1943 void sqlite3ResetInternalSchema(sqlite3*, int);
  1944 void sqlite3BeginParse(Parse*,int);
  1945 void sqlite3CommitInternalChanges(sqlite3*);
  1946 Table *sqlite3ResultSetOfSelect(Parse*,char*,Select*);
  1947 void sqlite3OpenMasterTable(Parse *, int);
  1948 void sqlite3StartTable(Parse*,Token*,Token*,int,int,int,int);
  1949 void sqlite3AddColumn(Parse*,Token*);
  1950 void sqlite3AddNotNull(Parse*, int);
  1951 void sqlite3AddPrimaryKey(Parse*, ExprList*, int, int, int);
  1952 void sqlite3AddCheckConstraint(Parse*, Expr*);
  1953 void sqlite3AddColumnType(Parse*,Token*);
  1954 void sqlite3AddDefaultValue(Parse*,Expr*);
  1955 void sqlite3AddCollateType(Parse*, Token*);
  1956 void sqlite3EndTable(Parse*,Token*,Token*,Select*);
  1957 
  1958 Bitvec *sqlite3BitvecCreate(u32);
  1959 int sqlite3BitvecTest(Bitvec*, u32);
  1960 int sqlite3BitvecSet(Bitvec*, u32);
  1961 void sqlite3BitvecClear(Bitvec*, u32);
  1962 void sqlite3BitvecDestroy(Bitvec*);
  1963 int sqlite3BitvecBuiltinTest(int,int*);
  1964 
  1965 void sqlite3CreateView(Parse*,Token*,Token*,Token*,Select*,int,int);
  1966 
  1967 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
  1968   int sqlite3ViewGetColumnNames(Parse*,Table*);
  1969 #else
  1970 # define sqlite3ViewGetColumnNames(A,B) 0
  1971 #endif
  1972 
  1973 void sqlite3DropTable(Parse*, SrcList*, int, int);
  1974 void sqlite3DeleteTable(Table*);
  1975 void sqlite3Insert(Parse*, SrcList*, ExprList*, Select*, IdList*, int);
  1976 void *sqlite3ArrayAllocate(sqlite3*,void*,int,int,int*,int*,int*);
  1977 IdList *sqlite3IdListAppend(sqlite3*, IdList*, Token*);
  1978 int sqlite3IdListIndex(IdList*,const char*);
  1979 SrcList *sqlite3SrcListAppend(sqlite3*, SrcList*, Token*, Token*);
  1980 SrcList *sqlite3SrcListAppendFromTerm(Parse*, SrcList*, Token*, Token*, Token*,
  1981                                       Select*, Expr*, IdList*);
  1982 void sqlite3SrcListShiftJoinType(SrcList*);
  1983 void sqlite3SrcListAssignCursors(Parse*, SrcList*);
  1984 void sqlite3IdListDelete(sqlite3*, IdList*);
  1985 void sqlite3SrcListDelete(sqlite3*, SrcList*);
  1986 void sqlite3CreateIndex(Parse*,Token*,Token*,SrcList*,ExprList*,int,Token*,
  1987                         Token*, int, int);
  1988 void sqlite3DropIndex(Parse*, SrcList*, int);
  1989 int sqlite3Select(Parse*, Select*, SelectDest*, Select*, int, int*);
  1990 Select *sqlite3SelectNew(Parse*,ExprList*,SrcList*,Expr*,ExprList*,
  1991                          Expr*,ExprList*,int,Expr*,Expr*);
  1992 void sqlite3SelectDelete(sqlite3*, Select*);
  1993 Table *sqlite3SrcListLookup(Parse*, SrcList*);
  1994 int sqlite3IsReadOnly(Parse*, Table*, int);
  1995 void sqlite3OpenTable(Parse*, int iCur, int iDb, Table*, int);
  1996 void sqlite3DeleteFrom(Parse*, SrcList*, Expr*);
  1997 void sqlite3Update(Parse*, SrcList*, ExprList*, Expr*, int);
  1998 WhereInfo *sqlite3WhereBegin(Parse*, SrcList*, Expr*, ExprList**, u8);
  1999 void sqlite3WhereEnd(WhereInfo*);
  2000 int sqlite3ExprCodeGetColumn(Parse*, Table*, int, int, int, int);
  2001 void sqlite3ExprCodeMove(Parse*, int, int, int);
  2002 void sqlite3ExprCodeCopy(Parse*, int, int, int);
  2003 void sqlite3ExprClearColumnCache(Parse*, int);
  2004 void sqlite3ExprCacheAffinityChange(Parse*, int, int);
  2005 int sqlite3ExprWritableRegister(Parse*,int,int);
  2006 void sqlite3ExprHardCopy(Parse*,int,int);
  2007 int sqlite3ExprCode(Parse*, Expr*, int);
  2008 int sqlite3ExprCodeTemp(Parse*, Expr*, int*);
  2009 int sqlite3ExprCodeTarget(Parse*, Expr*, int);
  2010 int sqlite3ExprCodeAndCache(Parse*, Expr*, int);
  2011 void sqlite3ExprCodeConstants(Parse*, Expr*);
  2012 int sqlite3ExprCodeExprList(Parse*, ExprList*, int, int);
  2013 void sqlite3ExprIfTrue(Parse*, Expr*, int, int);
  2014 void sqlite3ExprIfFalse(Parse*, Expr*, int, int);
  2015 Table *sqlite3FindTable(sqlite3*,const char*, const char*);
  2016 Table *sqlite3LocateTable(Parse*,int isView,const char*, const char*);
  2017 Index *sqlite3FindIndex(sqlite3*,const char*, const char*);
  2018 void sqlite3UnlinkAndDeleteTable(sqlite3*,int,const char*);
  2019 void sqlite3UnlinkAndDeleteIndex(sqlite3*,int,const char*);
  2020 void sqlite3Vacuum(Parse*);
  2021 int sqlite3RunVacuum(char**, sqlite3*);
  2022 char *sqlite3NameFromToken(sqlite3*, Token*);
  2023 int sqlite3ExprCompare(Expr*, Expr*);
  2024 int sqlite3ExprResolveNames(NameContext *, Expr *);
  2025 void sqlite3ExprAnalyzeAggregates(NameContext*, Expr*);
  2026 void sqlite3ExprAnalyzeAggList(NameContext*,ExprList*);
  2027 Vdbe *sqlite3GetVdbe(Parse*);
  2028 Expr *sqlite3CreateIdExpr(Parse *, const char*);
  2029 void sqlite3PrngSaveState(void);
  2030 void sqlite3PrngRestoreState(void);
  2031 void sqlite3PrngResetState(void);
  2032 void sqlite3RollbackAll(sqlite3*);
  2033 void sqlite3CodeVerifySchema(Parse*, int);
  2034 void sqlite3BeginTransaction(Parse*, int);
  2035 void sqlite3CommitTransaction(Parse*);
  2036 void sqlite3RollbackTransaction(Parse*);
  2037 int sqlite3ExprIsConstant(Expr*);
  2038 int sqlite3ExprIsConstantNotJoin(Expr*);
  2039 int sqlite3ExprIsConstantOrFunction(Expr*);
  2040 int sqlite3ExprIsInteger(Expr*, int*);
  2041 int sqlite3IsRowid(const char*);
  2042 void sqlite3GenerateRowDelete(Parse*, Table*, int, int, int);
  2043 void sqlite3GenerateRowIndexDelete(Parse*, Table*, int, int*);
  2044 int sqlite3GenerateIndexKey(Parse*, Index*, int, int, int);
  2045 void sqlite3GenerateConstraintChecks(Parse*,Table*,int,int,
  2046                                      int*,int,int,int,int);
  2047 void sqlite3CompleteInsertion(Parse*, Table*, int, int, int*,int,int,int,int);
  2048 int sqlite3OpenTableAndIndices(Parse*, Table*, int, int);
  2049 void sqlite3BeginWriteOperation(Parse*, int, int);
  2050 Expr *sqlite3ExprDup(sqlite3*,Expr*);
  2051 void sqlite3TokenCopy(sqlite3*,Token*, Token*);
  2052 ExprList *sqlite3ExprListDup(sqlite3*,ExprList*);
  2053 SrcList *sqlite3SrcListDup(sqlite3*,SrcList*);
  2054 IdList *sqlite3IdListDup(sqlite3*,IdList*);
  2055 Select *sqlite3SelectDup(sqlite3*,Select*);
  2056 FuncDef *sqlite3FindFunction(sqlite3*,const char*,int,int,u8,int);
  2057 void sqlite3RegisterBuiltinFunctions(sqlite3*);
  2058 void sqlite3RegisterDateTimeFunctions(sqlite3*);
  2059 #ifdef SQLITE_DEBUG
  2060   int sqlite3SafetyOn(sqlite3*);
  2061   int sqlite3SafetyOff(sqlite3*);
  2062 #else
  2063 # define sqlite3SafetyOn(A) 0
  2064 # define sqlite3SafetyOff(A) 0
  2065 #endif
  2066 int sqlite3SafetyCheckOk(sqlite3*);
  2067 int sqlite3SafetyCheckSickOrOk(sqlite3*);
  2068 void sqlite3ChangeCookie(Parse*, int);
  2069 void sqlite3MaterializeView(Parse*, Select*, Expr*, int);
  2070 
  2071 #ifndef SQLITE_OMIT_TRIGGER
  2072   void sqlite3BeginTrigger(Parse*, Token*,Token*,int,int,IdList*,SrcList*,
  2073                            Expr*,int, int);
  2074   void sqlite3FinishTrigger(Parse*, TriggerStep*, Token*);
  2075   void sqlite3DropTrigger(Parse*, SrcList*, int);
  2076   void sqlite3DropTriggerPtr(Parse*, Trigger*);
  2077   int sqlite3TriggersExist(Parse*, Table*, int, ExprList*);
  2078   int sqlite3CodeRowTrigger(Parse*, int, ExprList*, int, Table *, int, int, 
  2079                            int, int, u32*, u32*);
  2080   void sqliteViewTriggers(Parse*, Table*, Expr*, int, ExprList*);
  2081   void sqlite3DeleteTriggerStep(sqlite3*, TriggerStep*);
  2082   TriggerStep *sqlite3TriggerSelectStep(sqlite3*,Select*);
  2083   TriggerStep *sqlite3TriggerInsertStep(sqlite3*,Token*, IdList*,
  2084                                         ExprList*,Select*,int);
  2085   TriggerStep *sqlite3TriggerUpdateStep(sqlite3*,Token*,ExprList*, Expr*, int);
  2086   TriggerStep *sqlite3TriggerDeleteStep(sqlite3*,Token*, Expr*);
  2087   void sqlite3DeleteTrigger(sqlite3*, Trigger*);
  2088   void sqlite3UnlinkAndDeleteTrigger(sqlite3*,int,const char*);
  2089 #else
  2090 # define sqlite3TriggersExist(A,B,C,D,E,F) 0
  2091 # define sqlite3DeleteTrigger(A,B)
  2092 # define sqlite3DropTriggerPtr(A,B)
  2093 # define sqlite3UnlinkAndDeleteTrigger(A,B,C)
  2094 # define sqlite3CodeRowTrigger(A,B,C,D,E,F,G,H,I,J,K) 0
  2095 #endif
  2096 
  2097 int sqlite3JoinType(Parse*, Token*, Token*, Token*);
  2098 void sqlite3CreateForeignKey(Parse*, ExprList*, Token*, ExprList*, int);
  2099 void sqlite3DeferForeignKey(Parse*, int);
  2100 #ifndef SQLITE_OMIT_AUTHORIZATION
  2101   void sqlite3AuthRead(Parse*,Expr*,Schema*,SrcList*);
  2102   int sqlite3AuthCheck(Parse*,int, const char*, const char*, const char*);
  2103   void sqlite3AuthContextPush(Parse*, AuthContext*, const char*);
  2104   void sqlite3AuthContextPop(AuthContext*);
  2105 #else
  2106 # define sqlite3AuthRead(a,b,c,d)
  2107 # define sqlite3AuthCheck(a,b,c,d,e)    SQLITE_OK
  2108 # define sqlite3AuthContextPush(a,b,c)
  2109 # define sqlite3AuthContextPop(a)  ((void)(a))
  2110 #endif
  2111 void sqlite3Attach(Parse*, Expr*, Expr*, Expr*);
  2112 void sqlite3Detach(Parse*, Expr*);
  2113 int sqlite3BtreeFactory(const sqlite3 *db, const char *zFilename,
  2114                        int omitJournal, int nCache, int flags, Btree **ppBtree);
  2115 int sqlite3FixInit(DbFixer*, Parse*, int, const char*, const Token*);
  2116 int sqlite3FixSrcList(DbFixer*, SrcList*);
  2117 int sqlite3FixSelect(DbFixer*, Select*);
  2118 int sqlite3FixExpr(DbFixer*, Expr*);
  2119 int sqlite3FixExprList(DbFixer*, ExprList*);
  2120 int sqlite3FixTriggerStep(DbFixer*, TriggerStep*);
  2121 int sqlite3AtoF(const char *z, double*);
  2122 char *sqlite3_snprintf(int,char*,const char*,...);
  2123 int sqlite3GetInt32(const char *, int*);
  2124 int sqlite3FitsIn64Bits(const char *, int);
  2125 int sqlite3Utf16ByteLen(const void *pData, int nChar);
  2126 int sqlite3Utf8CharLen(const char *pData, int nByte);
  2127 int sqlite3Utf8Read(const u8*, const u8*, const u8**);
  2128 
  2129 /*
  2130 ** Routines to read and write variable-length integers.  These used to
  2131 ** be defined locally, but now we use the varint routines in the util.c
  2132 ** file.  Code should use the MACRO forms below, as the Varint32 versions
  2133 ** are coded to assume the single byte case is already handled (which 
  2134 ** the MACRO form does).
  2135 */
  2136 int sqlite3PutVarint(unsigned char*, u64);
  2137 int sqlite3PutVarint32(unsigned char*, u32);
  2138 int sqlite3GetVarint(const unsigned char *, u64 *);
  2139 int sqlite3GetVarint32(const unsigned char *, u32 *);
  2140 int sqlite3VarintLen(u64 v);
  2141 
  2142 /*
  2143 ** The header of a record consists of a sequence variable-length integers.
  2144 ** These integers are almost always small and are encoded as a single byte.
  2145 ** The following macros take advantage this fact to provide a fast encode
  2146 ** and decode of the integers in a record header.  It is faster for the common
  2147 ** case where the integer is a single byte.  It is a little slower when the
  2148 ** integer is two or more bytes.  But overall it is faster.
  2149 **
  2150 ** The following expressions are equivalent:
  2151 **
  2152 **     x = sqlite3GetVarint32( A, &B );
  2153 **     x = sqlite3PutVarint32( A, B );
  2154 **
  2155 **     x = getVarint32( A, B );
  2156 **     x = putVarint32( A, B );
  2157 **
  2158 */
  2159 #define getVarint32(A,B)  ((*(A)<(unsigned char)0x80) ? ((B) = (u32)*(A)),1 : sqlite3GetVarint32((A), &(B)))
  2160 #define putVarint32(A,B)  (((B)<(u32)0x80) ? (*(A) = (unsigned char)(B)),1 : sqlite3PutVarint32((A), (B)))
  2161 #define getVarint    sqlite3GetVarint
  2162 #define putVarint    sqlite3PutVarint
  2163 
  2164 
  2165 void sqlite3IndexAffinityStr(Vdbe *, Index *);
  2166 void sqlite3TableAffinityStr(Vdbe *, Table *);
  2167 char sqlite3CompareAffinity(Expr *pExpr, char aff2);
  2168 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity);
  2169 char sqlite3ExprAffinity(Expr *pExpr);
  2170 int sqlite3Atoi64(const char*, i64*);
  2171 void sqlite3Error(sqlite3*, int, const char*,...);
  2172 void *sqlite3HexToBlob(sqlite3*, const char *z, int n);
  2173 int sqlite3TwoPartName(Parse *, Token *, Token *, Token **);
  2174 const char *sqlite3ErrStr(int);
  2175 int sqlite3ReadSchema(Parse *pParse);
  2176 CollSeq *sqlite3FindCollSeq(sqlite3*,u8 enc, const char *,int,int);
  2177 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName, int nName);
  2178 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr);
  2179 Expr *sqlite3ExprSetColl(Parse *pParse, Expr *, Token *);
  2180 int sqlite3CheckCollSeq(Parse *, CollSeq *);
  2181 int sqlite3CheckObjectName(Parse *, const char *);
  2182 void sqlite3VdbeSetChanges(sqlite3 *, int);
  2183 
  2184 const void *sqlite3ValueText(sqlite3_value*, u8);
  2185 int sqlite3ValueBytes(sqlite3_value*, u8);
  2186 void sqlite3ValueSetStr(sqlite3_value*, int, const void *,u8, 
  2187                         void(*)(void*));
  2188 void sqlite3ValueFree(sqlite3_value*);
  2189 sqlite3_value *sqlite3ValueNew(sqlite3 *);
  2190 char *sqlite3Utf16to8(sqlite3 *, const void*, int);
  2191 int sqlite3ValueFromExpr(sqlite3 *, Expr *, u8, u8, sqlite3_value **);
  2192 void sqlite3ValueApplyAffinity(sqlite3_value *, u8, u8);
  2193 #ifndef SQLITE_AMALGAMATION
  2194 extern const unsigned char sqlite3UpperToLower[];
  2195 extern struct Sqlite3Config sqlite3Config;
  2196 #endif
  2197 void sqlite3RootPageMoved(Db*, int, int);
  2198 void sqlite3Reindex(Parse*, Token*, Token*);
  2199 void sqlite3AlterFunctions(sqlite3*);
  2200 void sqlite3AlterRenameTable(Parse*, SrcList*, Token*);
  2201 int sqlite3GetToken(const unsigned char *, int *);
  2202 void sqlite3NestedParse(Parse*, const char*, ...);
  2203 void sqlite3ExpirePreparedStatements(sqlite3*);
  2204 void sqlite3CodeSubselect(Parse *, Expr *, int);
  2205 int sqlite3SelectResolve(Parse *, Select *, NameContext *);
  2206 void sqlite3ColumnDefault(Vdbe *, Table *, int);
  2207 void sqlite3AlterFinishAddColumn(Parse *, Token *);
  2208 void sqlite3AlterBeginAddColumn(Parse *, SrcList *);
  2209 CollSeq *sqlite3GetCollSeq(sqlite3*, CollSeq *, const char *, int);
  2210 char sqlite3AffinityType(const Token*);
  2211 void sqlite3Analyze(Parse*, Token*, Token*);
  2212 int sqlite3InvokeBusyHandler(BusyHandler*);
  2213 int sqlite3FindDb(sqlite3*, Token*);
  2214 int sqlite3AnalysisLoad(sqlite3*,int iDB);
  2215 void sqlite3DefaultRowEst(Index*);
  2216 void sqlite3RegisterLikeFunctions(sqlite3*, int);
  2217 int sqlite3IsLikeFunction(sqlite3*,Expr*,int*,char*);
  2218 void sqlite3AttachFunctions(sqlite3 *);
  2219 void sqlite3MinimumFileFormat(Parse*, int, int);
  2220 void sqlite3SchemaFree(void *);
  2221 Schema *sqlite3SchemaGet(sqlite3 *, Btree *);
  2222 int sqlite3SchemaToIndex(sqlite3 *db, Schema *);
  2223 KeyInfo *sqlite3IndexKeyinfo(Parse *, Index *);
  2224 int sqlite3CreateFunc(sqlite3 *, const char *, int, int, void *, 
  2225   void (*)(sqlite3_context*,int,sqlite3_value **),
  2226   void (*)(sqlite3_context*,int,sqlite3_value **), void (*)(sqlite3_context*));
  2227 int sqlite3ApiExit(sqlite3 *db, int);
  2228 int sqlite3OpenTempDatabase(Parse *);
  2229 
  2230 void sqlite3StrAccumInit(StrAccum*, char*, int, int);
  2231 void sqlite3StrAccumAppend(StrAccum*,const char*,int);
  2232 char *sqlite3StrAccumFinish(StrAccum*);
  2233 void sqlite3StrAccumReset(StrAccum*);
  2234 void sqlite3SelectDestInit(SelectDest*,int,int);
  2235 
  2236 /*
  2237 ** The interface to the LEMON-generated parser
  2238 */
  2239 void *sqlite3ParserAlloc(void*(*)(size_t));
  2240 void sqlite3ParserFree(void*, void(*)(void*));
  2241 void sqlite3Parser(void*, int, Token, Parse*);
  2242 #ifdef YYTRACKMAXSTACKDEPTH
  2243   int sqlite3ParserStackPeak(void*);
  2244 #endif
  2245 
  2246 int sqlite3AutoLoadExtensions(sqlite3*);
  2247 #ifndef SQLITE_OMIT_LOAD_EXTENSION
  2248   void sqlite3CloseExtensions(sqlite3*);
  2249 #else
  2250 # define sqlite3CloseExtensions(X)
  2251 #endif
  2252 
  2253 #ifndef SQLITE_OMIT_SHARED_CACHE
  2254   void sqlite3TableLock(Parse *, int, int, u8, const char *);
  2255 #else
  2256   #define sqlite3TableLock(v,w,x,y,z)
  2257 #endif
  2258 
  2259 #ifdef SQLITE_TEST
  2260   int sqlite3Utf8To8(unsigned char*);
  2261 #endif
  2262 
  2263 #ifdef SQLITE_OMIT_VIRTUALTABLE
  2264 #  define sqlite3VtabClear(X)
  2265 #  define sqlite3VtabSync(X,Y) SQLITE_OK
  2266 #  define sqlite3VtabRollback(X)
  2267 #  define sqlite3VtabCommit(X)
  2268 #else
  2269    void sqlite3VtabClear(Table*);
  2270    int sqlite3VtabSync(sqlite3 *db, char **);
  2271    int sqlite3VtabRollback(sqlite3 *db);
  2272    int sqlite3VtabCommit(sqlite3 *db);
  2273 #endif
  2274 void sqlite3VtabMakeWritable(Parse*,Table*);
  2275 void sqlite3VtabLock(sqlite3_vtab*);
  2276 void sqlite3VtabUnlock(sqlite3*, sqlite3_vtab*);
  2277 void sqlite3VtabBeginParse(Parse*, Token*, Token*, Token*);
  2278 void sqlite3VtabFinishParse(Parse*, Token*);
  2279 void sqlite3VtabArgInit(Parse*);
  2280 void sqlite3VtabArgExtend(Parse*, Token*);
  2281 int sqlite3VtabCallCreate(sqlite3*, int, const char *, char **);
  2282 int sqlite3VtabCallConnect(Parse*, Table*);
  2283 int sqlite3VtabCallDestroy(sqlite3*, int, const char *);
  2284 int sqlite3VtabBegin(sqlite3 *, sqlite3_vtab *);
  2285 FuncDef *sqlite3VtabOverloadFunction(sqlite3 *,FuncDef*, int nArg, Expr*);
  2286 void sqlite3InvalidFunction(sqlite3_context*,int,sqlite3_value**);
  2287 int sqlite3Reprepare(Vdbe*);
  2288 void sqlite3ExprListCheckLength(Parse*, ExprList*, const char*);
  2289 CollSeq *sqlite3BinaryCompareCollSeq(Parse *, Expr *, Expr *);
  2290 
  2291 
  2292 /*
  2293 ** Available fault injectors.  Should be numbered beginning with 0.
  2294 */
  2295 #define SQLITE_FAULTINJECTOR_MALLOC     0
  2296 #define SQLITE_FAULTINJECTOR_COUNT      1
  2297 
  2298 /*
  2299 ** The interface to the code in fault.c used for identifying "benign"
  2300 ** malloc failures. This is only present if SQLITE_OMIT_BUILTIN_TEST
  2301 ** is not defined.
  2302 */
  2303 #ifndef SQLITE_OMIT_BUILTIN_TEST
  2304   void sqlite3BeginBenignMalloc(void);
  2305   void sqlite3EndBenignMalloc(void);
  2306 #else
  2307   #define sqlite3BeginBenignMalloc()
  2308   #define sqlite3EndBenignMalloc()
  2309 #endif
  2310 
  2311 #define IN_INDEX_ROWID           1
  2312 #define IN_INDEX_EPH             2
  2313 #define IN_INDEX_INDEX           3
  2314 int sqlite3FindInIndex(Parse *, Expr *, int*);
  2315 
  2316 #ifdef SQLITE_ENABLE_ATOMIC_WRITE
  2317   int sqlite3JournalOpen(sqlite3_vfs *, const char *, sqlite3_file *, int, int);
  2318   int sqlite3JournalSize(sqlite3_vfs *);
  2319   int sqlite3JournalCreate(sqlite3_file *);
  2320 #else
  2321   #define sqlite3JournalSize(pVfs) ((pVfs)->szOsFile)
  2322 #endif
  2323 
  2324 #if SQLITE_MAX_EXPR_DEPTH>0
  2325   void sqlite3ExprSetHeight(Parse *pParse, Expr *p);
  2326   int sqlite3SelectExprHeight(Select *);
  2327 #else
  2328   #define sqlite3ExprSetHeight(x,y)
  2329   #define sqlite3SelectExprHeight(x) 0
  2330 #endif
  2331 
  2332 u32 sqlite3Get4byte(const u8*);
  2333 void sqlite3Put4byte(u8*, u32);
  2334 
  2335 #ifdef SQLITE_SSE
  2336 #include "sseInt.h"
  2337 #endif
  2338 
  2339 #ifdef SQLITE_DEBUG
  2340   void sqlite3ParserTrace(FILE*, char *);
  2341 #endif
  2342 
  2343 /*
  2344 ** If the SQLITE_ENABLE IOTRACE exists then the global variable
  2345 ** sqlite3IoTrace is a pointer to a printf-like routine used to
  2346 ** print I/O tracing messages. 
  2347 */
  2348 #ifdef SQLITE_ENABLE_IOTRACE
  2349 # define IOTRACE(A)  if( sqlite3IoTrace ){ sqlite3IoTrace A; }
  2350   void sqlite3VdbeIOTraceSql(Vdbe*);
  2351 SQLITE_EXTERN void (*sqlite3IoTrace)(const char*,...);
  2352 #else
  2353 # define IOTRACE(A)
  2354 # define sqlite3VdbeIOTraceSql(X)
  2355 #endif
  2356 
  2357 #endif