Update contrib.
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** Internal interface definitions for SQLite.
14 ** @(#) $Id: sqliteInt.h,v 1.752 2008/08/04 20:13:27 drh Exp $
20 ** Include the configuration header output by 'configure' if we're using the
21 ** autoconf-based build
23 #ifdef _HAVE_SQLITE_CONFIG_H
27 #include "sqliteLimit.h"
29 /* Disable nuisance warnings on Borland compilers */
30 #if defined(__BORLANDC__)
31 #pragma warn -rch /* unreachable code */
32 #pragma warn -ccc /* Condition is always true or false */
33 #pragma warn -aus /* Assigned value is never used */
34 #pragma warn -csu /* Comparing signed and unsigned */
35 #pragma warn -spa /* Suspicous pointer arithmetic */
38 /* Needed for various definitions... */
44 ** Include standard header files as necessary
49 #ifdef HAVE_INTTYPES_H
54 ** A macro used to aid in coverage testing. When doing coverage
55 ** testing, the condition inside the argument must be evaluated
56 ** both true and false in order to get full branch coverage.
57 ** This macro can be inserted to ensure adequate test coverage
58 ** in places where simple condition/decision coverage is inadequate.
60 #ifdef SQLITE_COVERAGE_TEST
61 void sqlite3Coverage(int);
62 # define testcase(X) if( X ){ sqlite3Coverage(__LINE__); }
68 ** The ALWAYS and NEVER macros surround boolean expressions which
69 ** are intended to always be true or false, respectively. Such
70 ** expressions could be omitted from the code completely. But they
71 ** are included in a few cases in order to enhance the resilience
72 ** of SQLite to unexpected behavior - to make the code "self-healing"
73 ** or "ductile" rather than being "brittle" and crashing at the first
74 ** hint of unplanned behavior.
76 ** When doing coverage testing ALWAYS and NEVER are hard-coded to
77 ** be true and false so that the unreachable code then specify will
78 ** not be counted as untested code.
80 #ifdef SQLITE_COVERAGE_TEST
81 # define ALWAYS(X) (1)
84 # define ALWAYS(X) (X)
89 ** The macro unlikely() is a hint that surrounds a boolean
90 ** expression that is usually false. Macro likely() surrounds
91 ** a boolean expression that is usually true. GCC is able to
92 ** use these hints to generate better code, sometimes.
94 #if defined(__GNUC__) && 0
95 # define likely(X) __builtin_expect((X),1)
96 # define unlikely(X) __builtin_expect((X),0)
98 # define likely(X) !!(X)
99 # define unlikely(X) !!(X)
103 * This macro is used to "hide" some ugliness in casting an int
104 * value to a ptr value under the MSVC 64-bit compiler. Casting
105 * non 64-bit values to ptr types results in a "hard" error with
106 * the MSVC 64-bit compiler which this attempts to avoid.
108 * A simple compiler pragma or casting sequence could not be found
109 * to correct this in all situations, so this macro was introduced.
111 * It could be argued that the intptr_t type could be used in this
112 * case, but that type is not available on all compilers, or
113 * requires the #include of specific headers which differs between
116 #define SQLITE_INT_TO_PTR(X) ((void*)&((char*)0)[X])
117 #define SQLITE_PTR_TO_INT(X) ((int)(((char*)X)-(char*)0))
120 ** These #defines should enable >2GB file support on Posix if the
121 ** underlying operating system supports it. If the OS lacks
122 ** large file support, or if the OS is windows, these should be no-ops.
124 ** Ticket #2739: The _LARGEFILE_SOURCE macro must appear before any
125 ** system #includes. Hence, this block of code must be the very first
126 ** code in all source files.
128 ** Large file support can be disabled using the -DSQLITE_DISABLE_LFS switch
129 ** on the compiler command line. This is necessary if you are compiling
130 ** on a recent machine (ex: RedHat 7.2) but you want your code to work
131 ** on an older machine (ex: RedHat 6.0). If you compile on RedHat 7.2
132 ** without this option, LFS is enable. But LFS does not exist in the kernel
133 ** in RedHat 6.0, so the code won't work. Hence, for maximum binary
134 ** portability you should omit LFS.
136 ** Similar is true for MacOS. LFS is only supported on MacOS 9 and later.
138 #ifndef SQLITE_DISABLE_LFS
139 # define _LARGE_FILE 1
140 # ifndef _FILE_OFFSET_BITS
141 # define _FILE_OFFSET_BITS 64
143 # define _LARGEFILE_SOURCE 1
148 ** The SQLITE_THREADSAFE macro must be defined as either 0 or 1.
149 ** Older versions of SQLite used an optional THREADSAFE macro.
150 ** We support that for legacy
152 #if !defined(SQLITE_THREADSAFE)
153 #if defined(THREADSAFE)
154 # define SQLITE_THREADSAFE THREADSAFE
156 # define SQLITE_THREADSAFE 1
161 ** Exactly one of the following macros must be defined in order to
162 ** specify which memory allocation subsystem to use.
164 ** SQLITE_SYSTEM_MALLOC // Use normal system malloc()
165 ** SQLITE_MEMDEBUG // Debugging version of system malloc()
166 ** SQLITE_MEMORY_SIZE // internal allocator #1
167 ** SQLITE_MMAP_HEAP_SIZE // internal mmap() allocator
168 ** SQLITE_POW2_MEMORY_SIZE // internal power-of-two allocator
170 ** If none of the above are defined, then set SQLITE_SYSTEM_MALLOC as
173 #if defined(SQLITE_SYSTEM_MALLOC)+defined(SQLITE_MEMDEBUG)+\
174 defined(SQLITE_MEMORY_SIZE)+defined(SQLITE_MMAP_HEAP_SIZE)+\
175 defined(SQLITE_POW2_MEMORY_SIZE)>1
176 # error "At most one of the following compile-time configuration options\
177 is allows: SQLITE_SYSTEM_MALLOC, SQLITE_MEMDEBUG, SQLITE_MEMORY_SIZE,\
178 SQLITE_MMAP_HEAP_SIZE, SQLITE_POW2_MEMORY_SIZE"
180 #if defined(SQLITE_SYSTEM_MALLOC)+defined(SQLITE_MEMDEBUG)+\
181 defined(SQLITE_MEMORY_SIZE)+defined(SQLITE_MMAP_HEAP_SIZE)+\
182 defined(SQLITE_POW2_MEMORY_SIZE)==0
183 # define SQLITE_SYSTEM_MALLOC 1
187 ** If SQLITE_MALLOC_SOFT_LIMIT is defined, then try to keep the
188 ** sizes of memory allocations below this value where possible.
190 #if defined(SQLITE_POW2_MEMORY_SIZE) && !defined(SQLITE_MALLOC_SOFT_LIMIT)
191 # define SQLITE_MALLOC_SOFT_LIMIT 1024
195 ** We need to define _XOPEN_SOURCE as follows in order to enable
196 ** recursive mutexes on most unix systems. But Mac OS X is different.
197 ** The _XOPEN_SOURCE define causes problems for Mac OS X we are told,
198 ** so it is omitted there. See ticket #2673.
200 ** Later we learn that _XOPEN_SOURCE is poorly or incorrectly
201 ** implemented on some systems. So we avoid defining it at all
202 ** if it is already defined or if it is unneeded because we are
203 ** not doing a threadsafe build. Ticket #2681.
205 ** See also ticket #2741.
207 #if !defined(_XOPEN_SOURCE) && !defined(__DARWIN__) && !defined(__APPLE__) && SQLITE_THREADSAFE
208 # define _XOPEN_SOURCE 500 /* Needed to enable pthread recursive mutexes */
211 #if defined(SQLITE_TCL) || defined(TCLSH)
216 ** Many people are failing to set -DNDEBUG=1 when compiling SQLite.
217 ** Setting NDEBUG makes the code smaller and run faster. So the following
218 ** lines are added to automatically set NDEBUG unless the -DSQLITE_DEBUG=1
219 ** option is set. Thus NDEBUG becomes an opt-in rather than an opt-out
222 #if !defined(NDEBUG) && !defined(SQLITE_DEBUG)
236 ** If compiling for a processor that lacks floating point support,
237 ** substitute integer for floating-point
239 #ifdef SQLITE_OMIT_FLOATING_POINT
240 # define double sqlite_int64
241 # define LONGDOUBLE_TYPE sqlite_int64
242 # ifndef SQLITE_BIG_DBL
243 # define SQLITE_BIG_DBL (0x7fffffffffffffff)
245 # define SQLITE_OMIT_DATETIME_FUNCS 1
246 # define SQLITE_OMIT_TRACE 1
247 # undef SQLITE_MIXED_ENDIAN_64BIT_FLOAT
249 #ifndef SQLITE_BIG_DBL
250 # define SQLITE_BIG_DBL (1e99)
254 ** OMIT_TEMPDB is set to 1 if SQLITE_OMIT_TEMPDB is defined, or 0
255 ** afterward. Having this macro allows us to cause the C compiler
256 ** to omit code used by TEMP tables without messy #ifndef statements.
258 #ifdef SQLITE_OMIT_TEMPDB
259 #define OMIT_TEMPDB 1
261 #define OMIT_TEMPDB 0
265 ** If the following macro is set to 1, then NULL values are considered
266 ** distinct when determining whether or not two entries are the same
267 ** in a UNIQUE index. This is the way PostgreSQL, Oracle, DB2, MySQL,
268 ** OCELOT, and Firebird all work. The SQL92 spec explicitly says this
269 ** is the way things are suppose to work.
271 ** If the following macro is set to 0, the NULLs are indistinct for
272 ** a UNIQUE index. In this mode, you can only have a single NULL entry
273 ** for a column declared UNIQUE. This is the way Informix and SQL Server
276 #define NULL_DISTINCT_FOR_UNIQUE 1
279 ** The "file format" number is an integer that is incremented whenever
280 ** the VDBE-level file format changes. The following macros define the
281 ** the default file format for new databases and the maximum file format
282 ** that the library can read.
284 #define SQLITE_MAX_FILE_FORMAT 4
285 #ifndef SQLITE_DEFAULT_FILE_FORMAT
286 # define SQLITE_DEFAULT_FILE_FORMAT 1
290 ** Provide a default value for SQLITE_TEMP_STORE in case it is not specified
291 ** on the command-line
293 #ifndef SQLITE_TEMP_STORE
294 # define SQLITE_TEMP_STORE 1
298 ** GCC does not define the offsetof() macro so we'll have to do it
302 #define offsetof(STRUCTURE,FIELD) ((int)((char*)&((STRUCTURE*)0)->FIELD))
306 ** Check to see if this machine uses EBCDIC. (Yes, believe it or
307 ** not, there are still machines out there that use EBCDIC.)
310 # define SQLITE_EBCDIC 1
312 # define SQLITE_ASCII 1
316 ** Integers of known sizes. These typedefs might change for architectures
317 ** where the sizes very. Preprocessor macros are available so that the
318 ** types can be conveniently redefined at compile-type. Like this:
320 ** cc '-DUINTPTR_TYPE=long long int' ...
323 # ifdef HAVE_UINT32_T
324 # define UINT32_TYPE uint32_t
326 # define UINT32_TYPE unsigned int
330 # ifdef HAVE_UINT16_T
331 # define UINT16_TYPE uint16_t
333 # define UINT16_TYPE unsigned short int
338 # define INT16_TYPE int16_t
340 # define INT16_TYPE short int
345 # define UINT8_TYPE uint8_t
347 # define UINT8_TYPE unsigned char
352 # define INT8_TYPE int8_t
354 # define INT8_TYPE signed char
357 #ifndef LONGDOUBLE_TYPE
358 # define LONGDOUBLE_TYPE long double
360 typedef sqlite_int64 i64; /* 8-byte signed integer */
361 typedef sqlite_uint64 u64; /* 8-byte unsigned integer */
362 typedef UINT32_TYPE u32; /* 4-byte unsigned integer */
363 typedef UINT16_TYPE u16; /* 2-byte unsigned integer */
364 typedef INT16_TYPE i16; /* 2-byte signed integer */
365 typedef UINT8_TYPE u8; /* 1-byte unsigned integer */
366 typedef UINT8_TYPE i8; /* 1-byte signed integer */
369 ** Macros to determine whether the machine is big or little endian,
370 ** evaluated at runtime.
372 #ifdef SQLITE_AMALGAMATION
373 const int sqlite3one;
375 extern const int sqlite3one;
377 #if defined(i386) || defined(__i386__) || defined(_M_IX86)
378 # define SQLITE_BIGENDIAN 0
379 # define SQLITE_LITTLEENDIAN 1
380 # define SQLITE_UTF16NATIVE SQLITE_UTF16LE
382 # define SQLITE_BIGENDIAN (*(char *)(&sqlite3one)==0)
383 # define SQLITE_LITTLEENDIAN (*(char *)(&sqlite3one)==1)
384 # define SQLITE_UTF16NATIVE (SQLITE_BIGENDIAN?SQLITE_UTF16BE:SQLITE_UTF16LE)
388 ** Constants for the largest and smallest possible 64-bit signed integers.
389 ** These macros are designed to work correctly on both 32-bit and 64-bit
392 #define LARGEST_INT64 (0xffffffff|(((i64)0x7fffffff)<<32))
393 #define SMALLEST_INT64 (((i64)-1) - LARGEST_INT64)
396 ** An instance of the following structure is used to store the busy-handler
397 ** callback for a given sqlite handle.
399 ** The sqlite.busyHandler member of the sqlite struct contains the busy
400 ** callback for the database handle. Each pager opened via the sqlite
401 ** handle is passed a pointer to sqlite.busyHandler. The busy-handler
402 ** callback is currently invoked only from within pager.c.
404 typedef struct BusyHandler BusyHandler;
406 int (*xFunc)(void *,int); /* The busy callback */
407 void *pArg; /* First arg to busy callback */
408 int nBusy; /* Incremented with each busy call */
412 ** Name of the master database table. The master database table
413 ** is a special table that holds the names and attributes of all
414 ** user tables and indices.
416 #define MASTER_NAME "sqlite_master"
417 #define TEMP_MASTER_NAME "sqlite_temp_master"
420 ** The root-page of the master database table.
422 #define MASTER_ROOT 1
425 ** The name of the schema table.
427 #define SCHEMA_TABLE(x) ((!OMIT_TEMPDB)&&(x==1)?TEMP_MASTER_NAME:MASTER_NAME)
430 ** A convenience macro that returns the number of elements in
433 #define ArraySize(X) (sizeof(X)/sizeof(X[0]))
436 ** The following value as a destructor means to use sqlite3DbFree().
437 ** This is an internal extension to SQLITE_STATIC and SQLITE_TRANSIENT.
439 #define SQLITE_DYNAMIC ((sqlite3_destructor_type)sqlite3DbFree)
442 ** Forward references to structures
444 typedef struct AggInfo AggInfo;
445 typedef struct AuthContext AuthContext;
446 typedef struct Bitvec Bitvec;
447 typedef struct CollSeq CollSeq;
448 typedef struct Column Column;
449 typedef struct Db Db;
450 typedef struct Schema Schema;
451 typedef struct Expr Expr;
452 typedef struct ExprList ExprList;
453 typedef struct FKey FKey;
454 typedef struct FuncDef FuncDef;
455 typedef struct IdList IdList;
456 typedef struct Index Index;
457 typedef struct KeyClass KeyClass;
458 typedef struct KeyInfo KeyInfo;
459 typedef struct Lookaside Lookaside;
460 typedef struct LookasideSlot LookasideSlot;
461 typedef struct Module Module;
462 typedef struct NameContext NameContext;
463 typedef struct Parse Parse;
464 typedef struct Select Select;
465 typedef struct SrcList SrcList;
466 typedef struct StrAccum StrAccum;
467 typedef struct Table Table;
468 typedef struct TableLock TableLock;
469 typedef struct Token Token;
470 typedef struct TriggerStack TriggerStack;
471 typedef struct TriggerStep TriggerStep;
472 typedef struct Trigger Trigger;
473 typedef struct WhereInfo WhereInfo;
474 typedef struct WhereLevel WhereLevel;
477 ** Defer sourcing vdbe.h and btree.h until after the "u8" and
478 ** "BusyHandler" typedefs. vdbe.h also requires a few of the opaque
479 ** pointer types (i.e. FuncDef) defined above.
490 ** Each database file to be accessed by the system is an instance
491 ** of the following structure. There are normally two of these structures
492 ** in the sqlite.aDb[] array. aDb[0] is the main database file and
493 ** aDb[1] is the database file used to hold temporary tables. Additional
494 ** databases may be attached.
497 char *zName; /* Name of this database */
498 Btree *pBt; /* The B*Tree structure for this database file */
499 u8 inTrans; /* 0: not writable. 1: Transaction. 2: Checkpoint */
500 u8 safety_level; /* How aggressive at synching data to disk */
501 void *pAux; /* Auxiliary data. Usually NULL */
502 void (*xFreeAux)(void*); /* Routine to free pAux */
503 Schema *pSchema; /* Pointer to database schema (possibly shared) */
507 ** An instance of the following structure stores a database schema.
509 ** If there are no virtual tables configured in this schema, the
510 ** Schema.db variable is set to NULL. After the first virtual table
511 ** has been added, it is set to point to the database connection
512 ** used to create the connection. Once a virtual table has been
513 ** added to the Schema structure and the Schema.db variable populated,
514 ** only that database connection may use the Schema to prepare
518 int schema_cookie; /* Database schema version number for this file */
519 Hash tblHash; /* All tables indexed by name */
520 Hash idxHash; /* All (named) indices indexed by name */
521 Hash trigHash; /* All triggers indexed by name */
522 Hash aFKey; /* Foreign keys indexed by to-table */
523 Table *pSeqTab; /* The sqlite_sequence table used by AUTOINCREMENT */
524 u8 file_format; /* Schema format version for this file */
525 u8 enc; /* Text encoding used by this database */
526 u16 flags; /* Flags associated with this schema */
527 int cache_size; /* Number of pages to use in the cache */
528 #ifndef SQLITE_OMIT_VIRTUALTABLE
529 sqlite3 *db; /* "Owner" connection. See comment above */
534 ** These macros can be used to test, set, or clear bits in the
537 #define DbHasProperty(D,I,P) (((D)->aDb[I].pSchema->flags&(P))==(P))
538 #define DbHasAnyProperty(D,I,P) (((D)->aDb[I].pSchema->flags&(P))!=0)
539 #define DbSetProperty(D,I,P) (D)->aDb[I].pSchema->flags|=(P)
540 #define DbClearProperty(D,I,P) (D)->aDb[I].pSchema->flags&=~(P)
543 ** Allowed values for the DB.flags field.
545 ** The DB_SchemaLoaded flag is set after the database schema has been
546 ** read into internal hash tables.
548 ** DB_UnresetViews means that one or more views have column names that
549 ** have been filled out. If the schema changes, these column names might
550 ** changes and so the view will need to be reset.
552 #define DB_SchemaLoaded 0x0001 /* The schema has been loaded */
553 #define DB_UnresetViews 0x0002 /* Some views have defined column names */
554 #define DB_Empty 0x0004 /* The file is empty (length 0 bytes) */
557 ** The number of different kinds of things that can be limited
558 ** using the sqlite3_limit() interface.
560 #define SQLITE_N_LIMIT (SQLITE_LIMIT_VARIABLE_NUMBER+1)
563 ** Lookaside malloc is a set of fixed-size buffers that can be used
564 ** to satisify small transient memory allocation requests for objects
565 ** associated with a particular database connection. The use of
566 ** lookaside malloc provides a significant performance enhancement
567 ** (approx 10%) by avoiding numerous malloc/free requests while parsing
570 ** The Lookaside structure holds configuration information about the
571 ** lookaside malloc subsystem. Each available memory allocation in
572 ** the lookaside subsystem is stored on a linked list of LookasideSlot
576 u16 sz; /* Size of each buffer in bytes */
577 u8 bEnabled; /* True if use lookaside. False to ignore it */
578 u8 bMalloced; /* True if pStart obtained from sqlite3_malloc() */
579 int nOut; /* Number of buffers currently checked out */
580 int mxOut; /* Highwater mark for nOut */
581 LookasideSlot *pFree; /* List if available buffers */
582 void *pStart; /* First byte of available memory space */
583 void *pEnd; /* First byte past end of available space */
585 struct LookasideSlot {
586 LookasideSlot *pNext; /* Next buffer in the list of free buffers */
590 ** Each database is an instance of the following structure.
592 ** The sqlite.lastRowid records the last insert rowid generated by an
593 ** insert statement. Inserts on views do not affect its value. Each
594 ** trigger has its own context, so that lastRowid can be updated inside
595 ** triggers as usual. The previous value will be restored once the trigger
596 ** exits. Upon entering a before or instead of trigger, lastRowid is no
597 ** longer (since after version 2.8.12) reset to -1.
599 ** The sqlite.nChange does not count changes within triggers and keeps no
600 ** context. It is reset at start of sqlite3_exec.
601 ** The sqlite.lsChange represents the number of changes made by the last
602 ** insert, update, or delete statement. It remains constant throughout the
603 ** length of a statement and is then updated by OP_SetCounts. It keeps a
604 ** context stack just like lastRowid so that the count of changes
605 ** within a trigger is not seen outside the trigger. Changes to views do not
606 ** affect the value of lsChange.
607 ** The sqlite.csChange keeps track of the number of current changes (since
608 ** the last statement) and is used to update sqlite_lsChange.
610 ** The member variables sqlite.errCode, sqlite.zErrMsg and sqlite.zErrMsg16
611 ** store the most recent error code and, if applicable, string. The
612 ** internal function sqlite3Error() is used to set these variables
616 sqlite3_vfs *pVfs; /* OS Interface */
617 int nDb; /* Number of backends currently in use */
618 Db *aDb; /* All backends */
619 int flags; /* Miscellanous flags. See below */
620 int openFlags; /* Flags passed to sqlite3_vfs.xOpen() */
621 int errCode; /* Most recent error code (SQLITE_*) */
622 int errMask; /* & result codes with this before returning */
623 u8 autoCommit; /* The auto-commit flag. */
624 u8 temp_store; /* 1: file 2: memory 0: default */
625 u8 mallocFailed; /* True if we have seen a malloc failure */
626 u8 dfltLockMode; /* Default locking-mode for attached dbs */
627 u8 dfltJournalMode; /* Default journal mode for attached dbs */
628 signed char nextAutovac; /* Autovac setting after VACUUM if >=0 */
629 int nextPagesize; /* Pagesize after VACUUM if >0 */
630 int nTable; /* Number of tables in the database */
631 CollSeq *pDfltColl; /* The default collating sequence (BINARY) */
632 i64 lastRowid; /* ROWID of most recent insert (see above) */
633 i64 priorNewRowid; /* Last randomly generated ROWID */
634 int magic; /* Magic number for detect library misuse */
635 int nChange; /* Value returned by sqlite3_changes() */
636 int nTotalChange; /* Value returned by sqlite3_total_changes() */
637 sqlite3_mutex *mutex; /* Connection mutex */
638 int aLimit[SQLITE_N_LIMIT]; /* Limits */
639 struct sqlite3InitInfo { /* Information used during initialization */
640 int iDb; /* When back is being initialized */
641 int newTnum; /* Rootpage of table being initialized */
642 u8 busy; /* TRUE if currently initializing */
644 int nExtension; /* Number of loaded extensions */
645 void **aExtension; /* Array of shared libraray handles */
646 struct Vdbe *pVdbe; /* List of active virtual machines */
647 int activeVdbeCnt; /* Number of vdbes currently executing */
648 void (*xTrace)(void*,const char*); /* Trace function */
649 void *pTraceArg; /* Argument to the trace function */
650 void (*xProfile)(void*,const char*,u64); /* Profiling function */
651 void *pProfileArg; /* Argument to profile function */
652 void *pCommitArg; /* Argument to xCommitCallback() */
653 int (*xCommitCallback)(void*); /* Invoked at every commit. */
654 void *pRollbackArg; /* Argument to xRollbackCallback() */
655 void (*xRollbackCallback)(void*); /* Invoked at every commit. */
657 void (*xUpdateCallback)(void*,int, const char*,const char*,sqlite_int64);
658 void(*xCollNeeded)(void*,sqlite3*,int eTextRep,const char*);
659 void(*xCollNeeded16)(void*,sqlite3*,int eTextRep,const void*);
660 void *pCollNeededArg;
661 sqlite3_value *pErr; /* Most recent error message */
662 char *zErrMsg; /* Most recent error message (UTF-8 encoded) */
663 char *zErrMsg16; /* Most recent error message (UTF-16 encoded) */
665 int isInterrupted; /* True if sqlite3_interrupt has been called */
666 double notUsed1; /* Spacer */
668 Lookaside lookaside; /* Lookaside malloc configuration */
669 #ifndef SQLITE_OMIT_AUTHORIZATION
670 int (*xAuth)(void*,int,const char*,const char*,const char*,const char*);
671 /* Access authorization function */
672 void *pAuthArg; /* 1st argument to the access auth function */
674 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
675 int (*xProgress)(void *); /* The progress callback */
676 void *pProgressArg; /* Argument to the progress callback */
677 int nProgressOps; /* Number of opcodes for progress callback */
679 #ifndef SQLITE_OMIT_VIRTUALTABLE
680 Hash aModule; /* populated by sqlite3_create_module() */
681 Table *pVTab; /* vtab with active Connect/Create method */
682 sqlite3_vtab **aVTrans; /* Virtual tables with open transactions */
683 int nVTrans; /* Allocated size of aVTrans */
685 Hash aFunc; /* All functions that can be in SQL exprs */
686 Hash aCollSeq; /* All collating sequences */
687 BusyHandler busyHandler; /* Busy callback */
688 int busyTimeout; /* Busy handler timeout, in msec */
689 Db aDbStatic[2]; /* Static space for the 2 default backends */
691 sqlite3_stmt *pFetch; /* Used by SSE to fetch stored statements */
696 ** A macro to discover the encoding of a database.
698 #define ENC(db) ((db)->aDb[0].pSchema->enc)
701 ** Possible values for the sqlite.flags and or Db.flags fields.
703 ** On sqlite.flags, the SQLITE_InTrans value means that we have
704 ** executed a BEGIN. On Db.flags, SQLITE_InTrans means a statement
705 ** transaction is active on that particular database file.
707 #define SQLITE_VdbeTrace 0x00000001 /* True to trace VDBE execution */
708 #define SQLITE_InTrans 0x00000008 /* True if in a transaction */
709 #define SQLITE_InternChanges 0x00000010 /* Uncommitted Hash table changes */
710 #define SQLITE_FullColNames 0x00000020 /* Show full column names on SELECT */
711 #define SQLITE_ShortColNames 0x00000040 /* Show short columns names */
712 #define SQLITE_CountRows 0x00000080 /* Count rows changed by INSERT, */
713 /* DELETE, or UPDATE and return */
714 /* the count using a callback. */
715 #define SQLITE_NullCallback 0x00000100 /* Invoke the callback once if the */
716 /* result set is empty */
717 #define SQLITE_SqlTrace 0x00000200 /* Debug print SQL as it executes */
718 #define SQLITE_VdbeListing 0x00000400 /* Debug listings of VDBE programs */
719 #define SQLITE_WriteSchema 0x00000800 /* OK to update SQLITE_MASTER */
720 #define SQLITE_NoReadlock 0x00001000 /* Readlocks are omitted when
721 ** accessing read-only databases */
722 #define SQLITE_IgnoreChecks 0x00002000 /* Do not enforce check constraints */
723 #define SQLITE_ReadUncommitted 0x00004000 /* For shared-cache mode */
724 #define SQLITE_LegacyFileFmt 0x00008000 /* Create new databases in format 1 */
725 #define SQLITE_FullFSync 0x00010000 /* Use full fsync on the backend */
726 #define SQLITE_LoadExtension 0x00020000 /* Enable load_extension */
728 #define SQLITE_RecoveryMode 0x00040000 /* Ignore schema errors */
729 #define SQLITE_SharedCache 0x00080000 /* Cache sharing is enabled */
730 #define SQLITE_Vtab 0x00100000 /* There exists a virtual table */
733 ** Possible values for the sqlite.magic field.
734 ** The numbers are obtained at random and have no special meaning, other
735 ** than being distinct from one another.
737 #define SQLITE_MAGIC_OPEN 0xa029a697 /* Database is open */
738 #define SQLITE_MAGIC_CLOSED 0x9f3c2d33 /* Database is closed */
739 #define SQLITE_MAGIC_SICK 0x4b771290 /* Error and awaiting close */
740 #define SQLITE_MAGIC_BUSY 0xf03b7906 /* Database currently in use */
741 #define SQLITE_MAGIC_ERROR 0xb5357930 /* An SQLITE_MISUSE error occurred */
744 ** Each SQL function is defined by an instance of the following
745 ** structure. A pointer to this structure is stored in the sqlite.aFunc
746 ** hash table. When multiple functions have the same name, the hash table
747 ** points to a linked list of these structures.
750 i16 nArg; /* Number of arguments. -1 means unlimited */
751 u8 iPrefEnc; /* Preferred text encoding (SQLITE_UTF8, 16LE, 16BE) */
752 u8 needCollSeq; /* True if sqlite3GetFuncCollSeq() might be called */
753 u8 flags; /* Some combination of SQLITE_FUNC_* */
754 void *pUserData; /* User data parameter */
755 FuncDef *pNext; /* Next function with same name */
756 void (*xFunc)(sqlite3_context*,int,sqlite3_value**); /* Regular function */
757 void (*xStep)(sqlite3_context*,int,sqlite3_value**); /* Aggregate step */
758 void (*xFinalize)(sqlite3_context*); /* Aggregate finializer */
759 char zName[1]; /* SQL name of the function. MUST BE LAST */
763 ** Each SQLite module (virtual table definition) is defined by an
764 ** instance of the following structure, stored in the sqlite3.aModule
768 const sqlite3_module *pModule; /* Callback pointers */
769 const char *zName; /* Name passed to create_module() */
770 void *pAux; /* pAux passed to create_module() */
771 void (*xDestroy)(void *); /* Module destructor function */
775 ** Possible values for FuncDef.flags
777 #define SQLITE_FUNC_LIKE 0x01 /* Candidate for the LIKE optimization */
778 #define SQLITE_FUNC_CASE 0x02 /* Case-sensitive LIKE-type function */
779 #define SQLITE_FUNC_EPHEM 0x04 /* Ephermeral. Delete with VDBE */
782 ** information about each column of an SQL table is held in an instance
783 ** of this structure.
786 char *zName; /* Name of this column */
787 Expr *pDflt; /* Default value of this column */
788 char *zType; /* Data type for this column */
789 char *zColl; /* Collating sequence. If NULL, use the default */
790 u8 notNull; /* True if there is a NOT NULL constraint */
791 u8 isPrimKey; /* True if this column is part of the PRIMARY KEY */
792 char affinity; /* One of the SQLITE_AFF_... values */
793 #ifndef SQLITE_OMIT_VIRTUALTABLE
794 u8 isHidden; /* True if this column is 'hidden' */
799 ** A "Collating Sequence" is defined by an instance of the following
800 ** structure. Conceptually, a collating sequence consists of a name and
801 ** a comparison routine that defines the order of that sequence.
803 ** There may two seperate implementations of the collation function, one
804 ** that processes text in UTF-8 encoding (CollSeq.xCmp) and another that
805 ** processes text encoded in UTF-16 (CollSeq.xCmp16), using the machine
806 ** native byte order. When a collation sequence is invoked, SQLite selects
807 ** the version that will require the least expensive encoding
808 ** translations, if any.
810 ** The CollSeq.pUser member variable is an extra parameter that passed in
811 ** as the first argument to the UTF-8 comparison function, xCmp.
812 ** CollSeq.pUser16 is the equivalent for the UTF-16 comparison function,
815 ** If both CollSeq.xCmp and CollSeq.xCmp16 are NULL, it means that the
816 ** collating sequence is undefined. Indices built on an undefined
817 ** collating sequence may not be read or written.
820 char *zName; /* Name of the collating sequence, UTF-8 encoded */
821 u8 enc; /* Text encoding handled by xCmp() */
822 u8 type; /* One of the SQLITE_COLL_... values below */
823 void *pUser; /* First argument to xCmp() */
824 int (*xCmp)(void*,int, const void*, int, const void*);
825 void (*xDel)(void*); /* Destructor for pUser */
829 ** Allowed values of CollSeq flags:
831 #define SQLITE_COLL_BINARY 1 /* The default memcmp() collating sequence */
832 #define SQLITE_COLL_NOCASE 2 /* The built-in NOCASE collating sequence */
833 #define SQLITE_COLL_REVERSE 3 /* The built-in REVERSE collating sequence */
834 #define SQLITE_COLL_USER 0 /* Any other user-defined collating sequence */
837 ** A sort order can be either ASC or DESC.
839 #define SQLITE_SO_ASC 0 /* Sort in ascending order */
840 #define SQLITE_SO_DESC 1 /* Sort in ascending order */
843 ** Column affinity types.
845 ** These used to have mnemonic name like 'i' for SQLITE_AFF_INTEGER and
846 ** 't' for SQLITE_AFF_TEXT. But we can save a little space and improve
847 ** the speed a little by number the values consecutively.
849 ** But rather than start with 0 or 1, we begin with 'a'. That way,
850 ** when multiple affinity types are concatenated into a string and
851 ** used as the P4 operand, they will be more readable.
853 ** Note also that the numeric types are grouped together so that testing
854 ** for a numeric type is a single comparison.
856 #define SQLITE_AFF_TEXT 'a'
857 #define SQLITE_AFF_NONE 'b'
858 #define SQLITE_AFF_NUMERIC 'c'
859 #define SQLITE_AFF_INTEGER 'd'
860 #define SQLITE_AFF_REAL 'e'
862 #define sqlite3IsNumericAffinity(X) ((X)>=SQLITE_AFF_NUMERIC)
865 ** The SQLITE_AFF_MASK values masks off the significant bits of an
868 #define SQLITE_AFF_MASK 0x67
871 ** Additional bit values that can be ORed with an affinity without
872 ** changing the affinity.
874 #define SQLITE_JUMPIFNULL 0x08 /* jumps if either operand is NULL */
875 #define SQLITE_STOREP2 0x10 /* Store result in reg[P2] rather than jump */
878 ** Each SQL table is represented in memory by an instance of the
879 ** following structure.
881 ** Table.zName is the name of the table. The case of the original
882 ** CREATE TABLE statement is stored, but case is not significant for
885 ** Table.nCol is the number of columns in this table. Table.aCol is a
886 ** pointer to an array of Column structures, one for each column.
888 ** If the table has an INTEGER PRIMARY KEY, then Table.iPKey is the index of
889 ** the column that is that key. Otherwise Table.iPKey is negative. Note
890 ** that the datatype of the PRIMARY KEY must be INTEGER for this field to
891 ** be set. An INTEGER PRIMARY KEY is used as the rowid for each row of
892 ** the table. If a table has no INTEGER PRIMARY KEY, then a random rowid
893 ** is generated for each row of the table. Table.hasPrimKey is true if
894 ** the table has any PRIMARY KEY, INTEGER or otherwise.
896 ** Table.tnum is the page number for the root BTree page of the table in the
897 ** database file. If Table.iDb is the index of the database table backend
898 ** in sqlite.aDb[]. 0 is for the main database and 1 is for the file that
899 ** holds temporary tables and indices. If Table.isEphem
900 ** is true, then the table is stored in a file that is automatically deleted
901 ** when the VDBE cursor to the table is closed. In this case Table.tnum
902 ** refers VDBE cursor number that holds the table open, not to the root
903 ** page number. Transient tables are used to hold the results of a
904 ** sub-query that appears instead of a real table name in the FROM clause
905 ** of a SELECT statement.
908 sqlite3 *db; /* Associated database connection. Might be NULL. */
909 char *zName; /* Name of the table */
910 int nCol; /* Number of columns in this table */
911 Column *aCol; /* Information about each column */
912 int iPKey; /* If not less then 0, use aCol[iPKey] as the primary key */
913 Index *pIndex; /* List of SQL indexes on this table. */
914 int tnum; /* Root BTree node for this table (see note above) */
915 Select *pSelect; /* NULL for tables. Points to definition if a view. */
916 int nRef; /* Number of pointers to this Table */
917 Trigger *pTrigger; /* List of SQL triggers on this table */
918 FKey *pFKey; /* Linked list of all foreign keys in this table */
919 char *zColAff; /* String defining the affinity of each column */
920 #ifndef SQLITE_OMIT_CHECK
921 Expr *pCheck; /* The AND of all CHECK constraints */
923 #ifndef SQLITE_OMIT_ALTERTABLE
924 int addColOffset; /* Offset in CREATE TABLE statement to add a new column */
926 u8 readOnly; /* True if this table should not be written by the user */
927 u8 isEphem; /* True if created using OP_OpenEphermeral */
928 u8 hasPrimKey; /* True if there exists a primary key */
929 u8 keyConf; /* What to do in case of uniqueness conflict on iPKey */
930 u8 autoInc; /* True if the integer primary key is autoincrement */
931 #ifndef SQLITE_OMIT_VIRTUALTABLE
932 u8 isVirtual; /* True if this is a virtual table */
933 u8 isCommit; /* True once the CREATE TABLE has been committed */
934 Module *pMod; /* Pointer to the implementation of the module */
935 sqlite3_vtab *pVtab; /* Pointer to the module instance */
936 int nModuleArg; /* Number of arguments to the module */
937 char **azModuleArg; /* Text of all module args. [0] is module name */
939 Schema *pSchema; /* Schema that contains this table */
943 ** Test to see whether or not a table is a virtual table. This is
944 ** done as a macro so that it will be optimized out when virtual
945 ** table support is omitted from the build.
947 #ifndef SQLITE_OMIT_VIRTUALTABLE
948 # define IsVirtual(X) ((X)->isVirtual)
949 # define IsHiddenColumn(X) ((X)->isHidden)
951 # define IsVirtual(X) 0
952 # define IsHiddenColumn(X) 0
956 ** Each foreign key constraint is an instance of the following structure.
958 ** A foreign key is associated with two tables. The "from" table is
959 ** the table that contains the REFERENCES clause that creates the foreign
960 ** key. The "to" table is the table that is named in the REFERENCES clause.
961 ** Consider this example:
964 ** a INTEGER PRIMARY KEY,
965 ** b INTEGER CONSTRAINT fk1 REFERENCES ex2(x)
968 ** For foreign key "fk1", the from-table is "ex1" and the to-table is "ex2".
970 ** Each REFERENCES clause generates an instance of the following structure
971 ** which is attached to the from-table. The to-table need not exist when
972 ** the from-table is created. The existance of the to-table is not checked
973 ** until an attempt is made to insert data into the from-table.
975 ** The sqlite.aFKey hash table stores pointers to this structure
976 ** given the name of a to-table. For each to-table, all foreign keys
977 ** associated with that table are on a linked list using the FKey.pNextTo
981 Table *pFrom; /* The table that constains the REFERENCES clause */
982 FKey *pNextFrom; /* Next foreign key in pFrom */
983 char *zTo; /* Name of table that the key points to */
984 FKey *pNextTo; /* Next foreign key that points to zTo */
985 int nCol; /* Number of columns in this key */
986 struct sColMap { /* Mapping of columns in pFrom to columns in zTo */
987 int iFrom; /* Index of column in pFrom */
988 char *zCol; /* Name of column in zTo. If 0 use PRIMARY KEY */
989 } *aCol; /* One entry for each of nCol column s */
990 u8 isDeferred; /* True if constraint checking is deferred till COMMIT */
991 u8 updateConf; /* How to resolve conflicts that occur on UPDATE */
992 u8 deleteConf; /* How to resolve conflicts that occur on DELETE */
993 u8 insertConf; /* How to resolve conflicts that occur on INSERT */
997 ** SQLite supports many different ways to resolve a constraint
998 ** error. ROLLBACK processing means that a constraint violation
999 ** causes the operation in process to fail and for the current transaction
1000 ** to be rolled back. ABORT processing means the operation in process
1001 ** fails and any prior changes from that one operation are backed out,
1002 ** but the transaction is not rolled back. FAIL processing means that
1003 ** the operation in progress stops and returns an error code. But prior
1004 ** changes due to the same operation are not backed out and no rollback
1005 ** occurs. IGNORE means that the particular row that caused the constraint
1006 ** error is not inserted or updated. Processing continues and no error
1007 ** is returned. REPLACE means that preexisting database rows that caused
1008 ** a UNIQUE constraint violation are removed so that the new insert or
1009 ** update can proceed. Processing continues and no error is reported.
1011 ** RESTRICT, SETNULL, and CASCADE actions apply only to foreign keys.
1012 ** RESTRICT is the same as ABORT for IMMEDIATE foreign keys and the
1013 ** same as ROLLBACK for DEFERRED keys. SETNULL means that the foreign
1014 ** key is set to NULL. CASCADE means that a DELETE or UPDATE of the
1015 ** referenced table row is propagated into the row that holds the
1018 ** The following symbolic values are used to record which type
1019 ** of action to take.
1021 #define OE_None 0 /* There is no constraint to check */
1022 #define OE_Rollback 1 /* Fail the operation and rollback the transaction */
1023 #define OE_Abort 2 /* Back out changes but do no rollback transaction */
1024 #define OE_Fail 3 /* Stop the operation but leave all prior changes */
1025 #define OE_Ignore 4 /* Ignore the error. Do not do the INSERT or UPDATE */
1026 #define OE_Replace 5 /* Delete existing record, then do INSERT or UPDATE */
1028 #define OE_Restrict 6 /* OE_Abort for IMMEDIATE, OE_Rollback for DEFERRED */
1029 #define OE_SetNull 7 /* Set the foreign key value to NULL */
1030 #define OE_SetDflt 8 /* Set the foreign key value to its default */
1031 #define OE_Cascade 9 /* Cascade the changes */
1033 #define OE_Default 99 /* Do whatever the default action is */
1037 ** An instance of the following structure is passed as the first
1038 ** argument to sqlite3VdbeKeyCompare and is used to control the
1039 ** comparison of the two index keys.
1041 ** If the KeyInfo.incrKey value is true and the comparison would
1042 ** otherwise be equal, then return a result as if the second key
1046 sqlite3 *db; /* The database connection */
1047 u8 enc; /* Text encoding - one of the TEXT_Utf* values */
1048 u8 incrKey; /* Increase 2nd key by epsilon before comparison */
1049 u8 prefixIsEqual; /* Treat a prefix as equal */
1050 int nField; /* Number of entries in aColl[] */
1051 u8 *aSortOrder; /* If defined an aSortOrder[i] is true, sort DESC */
1052 CollSeq *aColl[1]; /* Collating sequence for each term of the key */
1056 ** Each SQL index is represented in memory by an
1057 ** instance of the following structure.
1059 ** The columns of the table that are to be indexed are described
1060 ** by the aiColumn[] field of this structure. For example, suppose
1061 ** we have the following table and index:
1063 ** CREATE TABLE Ex1(c1 int, c2 int, c3 text);
1064 ** CREATE INDEX Ex2 ON Ex1(c3,c1);
1066 ** In the Table structure describing Ex1, nCol==3 because there are
1067 ** three columns in the table. In the Index structure describing
1068 ** Ex2, nColumn==2 since 2 of the 3 columns of Ex1 are indexed.
1069 ** The value of aiColumn is {2, 0}. aiColumn[0]==2 because the
1070 ** first column to be indexed (c3) has an index of 2 in Ex1.aCol[].
1071 ** The second column to be indexed (c1) has an index of 0 in
1072 ** Ex1.aCol[], hence Ex2.aiColumn[1]==0.
1074 ** The Index.onError field determines whether or not the indexed columns
1075 ** must be unique and what to do if they are not. When Index.onError=OE_None,
1076 ** it means this is not a unique index. Otherwise it is a unique index
1077 ** and the value of Index.onError indicate the which conflict resolution
1078 ** algorithm to employ whenever an attempt is made to insert a non-unique
1082 char *zName; /* Name of this index */
1083 int nColumn; /* Number of columns in the table used by this index */
1084 int *aiColumn; /* Which columns are used by this index. 1st is 0 */
1085 unsigned *aiRowEst; /* Result of ANALYZE: Est. rows selected by each column */
1086 Table *pTable; /* The SQL table being indexed */
1087 int tnum; /* Page containing root of this index in database file */
1088 u8 onError; /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
1089 u8 autoIndex; /* True if is automatically created (ex: by UNIQUE) */
1090 char *zColAff; /* String defining the affinity of each column */
1091 Index *pNext; /* The next index associated with the same table */
1092 Schema *pSchema; /* Schema containing this index */
1093 u8 *aSortOrder; /* Array of size Index.nColumn. True==DESC, False==ASC */
1094 char **azColl; /* Array of collation sequence names for index */
1098 ** Each token coming out of the lexer is an instance of
1099 ** this structure. Tokens are also used as part of an expression.
1101 ** Note if Token.z==0 then Token.dyn and Token.n are undefined and
1102 ** may contain random values. Do not make any assuptions about Token.dyn
1103 ** and Token.n when Token.z==0.
1106 const unsigned char *z; /* Text of the token. Not NULL-terminated! */
1107 unsigned dyn : 1; /* True for malloced memory, false for static */
1108 unsigned n : 31; /* Number of characters in this token */
1112 ** An instance of this structure contains information needed to generate
1113 ** code for a SELECT that contains aggregate functions.
1115 ** If Expr.op==TK_AGG_COLUMN or TK_AGG_FUNCTION then Expr.pAggInfo is a
1116 ** pointer to this structure. The Expr.iColumn field is the index in
1117 ** AggInfo.aCol[] or AggInfo.aFunc[] of information needed to generate
1118 ** code for that node.
1120 ** AggInfo.pGroupBy and AggInfo.aFunc.pExpr point to fields within the
1121 ** original Select structure that describes the SELECT statement. These
1122 ** fields do not need to be freed when deallocating the AggInfo structure.
1125 u8 directMode; /* Direct rendering mode means take data directly
1126 ** from source tables rather than from accumulators */
1127 u8 useSortingIdx; /* In direct mode, reference the sorting index rather
1128 ** than the source table */
1129 int sortingIdx; /* Cursor number of the sorting index */
1130 ExprList *pGroupBy; /* The group by clause */
1131 int nSortingColumn; /* Number of columns in the sorting index */
1132 struct AggInfo_col { /* For each column used in source tables */
1133 Table *pTab; /* Source table */
1134 int iTable; /* Cursor number of the source table */
1135 int iColumn; /* Column number within the source table */
1136 int iSorterColumn; /* Column number in the sorting index */
1137 int iMem; /* Memory location that acts as accumulator */
1138 Expr *pExpr; /* The original expression */
1140 int nColumn; /* Number of used entries in aCol[] */
1141 int nColumnAlloc; /* Number of slots allocated for aCol[] */
1142 int nAccumulator; /* Number of columns that show through to the output.
1143 ** Additional columns are used only as parameters to
1144 ** aggregate functions */
1145 struct AggInfo_func { /* For each aggregate function */
1146 Expr *pExpr; /* Expression encoding the function */
1147 FuncDef *pFunc; /* The aggregate function implementation */
1148 int iMem; /* Memory location that acts as accumulator */
1149 int iDistinct; /* Ephermeral table used to enforce DISTINCT */
1151 int nFunc; /* Number of entries in aFunc[] */
1152 int nFuncAlloc; /* Number of slots allocated for aFunc[] */
1156 ** Each node of an expression in the parse tree is an instance
1157 ** of this structure.
1159 ** Expr.op is the opcode. The integer parser token codes are reused
1160 ** as opcodes here. For example, the parser defines TK_GE to be an integer
1161 ** code representing the ">=" operator. This same integer code is reused
1162 ** to represent the greater-than-or-equal-to operator in the expression
1165 ** Expr.pRight and Expr.pLeft are subexpressions. Expr.pList is a list
1166 ** of argument if the expression is a function.
1168 ** Expr.token is the operator token for this node. For some expressions
1169 ** that have subexpressions, Expr.token can be the complete text that gave
1170 ** rise to the Expr. In the latter case, the token is marked as being
1171 ** a compound token.
1173 ** An expression of the form ID or ID.ID refers to a column in a table.
1174 ** For such expressions, Expr.op is set to TK_COLUMN and Expr.iTable is
1175 ** the integer cursor number of a VDBE cursor pointing to that table and
1176 ** Expr.iColumn is the column number for the specific column. If the
1177 ** expression is used as a result in an aggregate SELECT, then the
1178 ** value is also stored in the Expr.iAgg column in the aggregate so that
1179 ** it can be accessed after all aggregates are computed.
1181 ** If the expression is a function, the Expr.iTable is an integer code
1182 ** representing which function. If the expression is an unbound variable
1183 ** marker (a question mark character '?' in the original SQL) then the
1184 ** Expr.iTable holds the index number for that variable.
1186 ** If the expression is a subquery then Expr.iColumn holds an integer
1187 ** register number containing the result of the subquery. If the
1188 ** subquery gives a constant result, then iTable is -1. If the subquery
1189 ** gives a different answer at different times during statement processing
1190 ** then iTable is the address of a subroutine that computes the subquery.
1192 ** The Expr.pSelect field points to a SELECT statement. The SELECT might
1193 ** be the right operand of an IN operator. Or, if a scalar SELECT appears
1194 ** in an expression the opcode is TK_SELECT and Expr.pSelect is the only
1197 ** If the Expr is of type OP_Column, and the table it is selecting from
1198 ** is a disk table or the "old.*" pseudo-table, then pTab points to the
1199 ** corresponding table definition.
1202 u8 op; /* Operation performed by this node */
1203 char affinity; /* The affinity of the column or 0 if not a column */
1204 u16 flags; /* Various flags. See below */
1205 CollSeq *pColl; /* The collation type of the column or 0 */
1206 Expr *pLeft, *pRight; /* Left and right subnodes */
1207 ExprList *pList; /* A list of expressions used as function arguments
1208 ** or in "<expr> IN (<expr-list)" */
1209 Token token; /* An operand token */
1210 Token span; /* Complete text of the expression */
1211 int iTable, iColumn; /* When op==TK_COLUMN, then this expr node means the
1212 ** iColumn-th field of the iTable-th table. */
1213 AggInfo *pAggInfo; /* Used by TK_AGG_COLUMN and TK_AGG_FUNCTION */
1214 int iAgg; /* Which entry in pAggInfo->aCol[] or ->aFunc[] */
1215 int iRightJoinTable; /* If EP_FromJoin, the right table of the join */
1216 Select *pSelect; /* When the expression is a sub-select. Also the
1217 ** right side of "<expr> IN (<select>)" */
1218 Table *pTab; /* Table for OP_Column expressions. */
1219 #if SQLITE_MAX_EXPR_DEPTH>0
1220 int nHeight; /* Height of the tree headed by this node */
1225 ** The following are the meanings of bits in the Expr.flags field.
1227 #define EP_FromJoin 0x0001 /* Originated in ON or USING clause of a join */
1228 #define EP_Agg 0x0002 /* Contains one or more aggregate functions */
1229 #define EP_Resolved 0x0004 /* IDs have been resolved to COLUMNs */
1230 #define EP_Error 0x0008 /* Expression contains one or more errors */
1231 #define EP_Distinct 0x0010 /* Aggregate function with DISTINCT keyword */
1232 #define EP_VarSelect 0x0020 /* pSelect is correlated, not constant */
1233 #define EP_Dequoted 0x0040 /* True if the string has been dequoted */
1234 #define EP_InfixFunc 0x0080 /* True for an infix function: LIKE, GLOB, etc */
1235 #define EP_ExpCollate 0x0100 /* Collating sequence specified explicitly */
1236 #define EP_AnyAff 0x0200 /* Can take a cached column of any affinity */
1237 #define EP_FixedDest 0x0400 /* Result needed in a specific register */
1238 #define EP_IntValue 0x0800 /* Integer value contained in iTable */
1240 ** These macros can be used to test, set, or clear bits in the
1241 ** Expr.flags field.
1243 #define ExprHasProperty(E,P) (((E)->flags&(P))==(P))
1244 #define ExprHasAnyProperty(E,P) (((E)->flags&(P))!=0)
1245 #define ExprSetProperty(E,P) (E)->flags|=(P)
1246 #define ExprClearProperty(E,P) (E)->flags&=~(P)
1249 ** A list of expressions. Each expression may optionally have a
1250 ** name. An expr/name combination can be used in several ways, such
1251 ** as the list of "expr AS ID" fields following a "SELECT" or in the
1252 ** list of "ID = expr" items in an UPDATE. A list of expressions can
1253 ** also be used as the argument to a function, in which case the a.zName
1254 ** field is not used.
1257 int nExpr; /* Number of expressions on the list */
1258 int nAlloc; /* Number of entries allocated below */
1259 int iECursor; /* VDBE Cursor associated with this ExprList */
1260 struct ExprList_item {
1261 Expr *pExpr; /* The list of expressions */
1262 char *zName; /* Token associated with this expression */
1263 u8 sortOrder; /* 1 for DESC or 0 for ASC */
1264 u8 isAgg; /* True if this is an aggregate like count(*) */
1265 u8 done; /* A flag to indicate when processing is finished */
1266 } *a; /* One entry for each expression */
1270 ** An instance of this structure can hold a simple list of identifiers,
1271 ** such as the list "a,b,c" in the following statements:
1273 ** INSERT INTO t(a,b,c) VALUES ...;
1274 ** CREATE INDEX idx ON t(a,b,c);
1275 ** CREATE TRIGGER trig BEFORE UPDATE ON t(a,b,c) ...;
1277 ** The IdList.a.idx field is used when the IdList represents the list of
1278 ** column names after a table name in an INSERT statement. In the statement
1280 ** INSERT INTO t(a,b,c) ...
1282 ** If "a" is the k-th column of table "t", then IdList.a[0].idx==k.
1285 struct IdList_item {
1286 char *zName; /* Name of the identifier */
1287 int idx; /* Index in some Table.aCol[] of a column named zName */
1289 int nId; /* Number of identifiers on the list */
1290 int nAlloc; /* Number of entries allocated for a[] below */
1294 ** The bitmask datatype defined below is used for various optimizations.
1296 ** Changing this from a 64-bit to a 32-bit type limits the number of
1297 ** tables in a join to 32 instead of 64. But it also reduces the size
1298 ** of the library by 738 bytes on ix86.
1300 typedef u64 Bitmask;
1303 ** The following structure describes the FROM clause of a SELECT statement.
1304 ** Each table or subquery in the FROM clause is a separate element of
1305 ** the SrcList.a[] array.
1307 ** With the addition of multiple database support, the following structure
1308 ** can also be used to describe a particular table such as the table that
1309 ** is modified by an INSERT, DELETE, or UPDATE statement. In standard SQL,
1310 ** such a table must be a simple name: ID. But in SQLite, the table can
1311 ** now be identified by a database name, a dot, then the table name: ID.ID.
1313 ** The jointype starts out showing the join type between the current table
1314 ** and the next table on the list. The parser builds the list this way.
1315 ** But sqlite3SrcListShiftJoinType() later shifts the jointypes so that each
1316 ** jointype expresses the join between the table and the previous table.
1319 i16 nSrc; /* Number of tables or subqueries in the FROM clause */
1320 i16 nAlloc; /* Number of entries allocated in a[] below */
1321 struct SrcList_item {
1322 char *zDatabase; /* Name of database holding this table */
1323 char *zName; /* Name of the table */
1324 char *zAlias; /* The "B" part of a "A AS B" phrase. zName is the "A" */
1325 Table *pTab; /* An SQL table corresponding to zName */
1326 Select *pSelect; /* A SELECT statement used in place of a table name */
1327 u8 isPopulated; /* Temporary table associated with SELECT is populated */
1328 u8 jointype; /* Type of join between this able and the previous */
1329 int iCursor; /* The VDBE cursor number used to access this table */
1330 Expr *pOn; /* The ON clause of a join */
1331 IdList *pUsing; /* The USING clause of a join */
1332 Bitmask colUsed; /* Bit N (1<<N) set if column N or pTab is used */
1333 } a[1]; /* One entry for each identifier on the list */
1337 ** Permitted values of the SrcList.a.jointype field
1339 #define JT_INNER 0x0001 /* Any kind of inner or cross join */
1340 #define JT_CROSS 0x0002 /* Explicit use of the CROSS keyword */
1341 #define JT_NATURAL 0x0004 /* True for a "natural" join */
1342 #define JT_LEFT 0x0008 /* Left outer join */
1343 #define JT_RIGHT 0x0010 /* Right outer join */
1344 #define JT_OUTER 0x0020 /* The "OUTER" keyword is present */
1345 #define JT_ERROR 0x0040 /* unknown or unsupported join type */
1348 ** For each nested loop in a WHERE clause implementation, the WhereInfo
1349 ** structure contains a single instance of this structure. This structure
1350 ** is intended to be private the the where.c module and should not be
1351 ** access or modified by other modules.
1353 ** The pIdxInfo and pBestIdx fields are used to help pick the best
1354 ** index on a virtual table. The pIdxInfo pointer contains indexing
1355 ** information for the i-th table in the FROM clause before reordering.
1356 ** All the pIdxInfo pointers are freed by whereInfoFree() in where.c.
1357 ** The pBestIdx pointer is a copy of pIdxInfo for the i-th table after
1358 ** FROM clause ordering. This is a little confusing so I will repeat
1359 ** it in different words. WhereInfo.a[i].pIdxInfo is index information
1360 ** for WhereInfo.pTabList.a[i]. WhereInfo.a[i].pBestInfo is the
1361 ** index information for the i-th loop of the join. pBestInfo is always
1362 ** either NULL or a copy of some pIdxInfo. So for cleanup it is
1363 ** sufficient to free all of the pIdxInfo pointers.
1367 int iFrom; /* Which entry in the FROM clause */
1368 int flags; /* Flags associated with this level */
1369 int iMem; /* First memory cell used by this level */
1370 int iLeftJoin; /* Memory cell used to implement LEFT OUTER JOIN */
1371 Index *pIdx; /* Index used. NULL if no index */
1372 int iTabCur; /* The VDBE cursor used to access the table */
1373 int iIdxCur; /* The VDBE cursor used to acesss pIdx */
1374 int brk; /* Jump here to break out of the loop */
1375 int nxt; /* Jump here to start the next IN combination */
1376 int cont; /* Jump here to continue with the next loop cycle */
1377 int top; /* First instruction of interior of the loop */
1378 int op, p1, p2; /* Opcode used to terminate the loop */
1379 int nEq; /* Number of == or IN constraints on this loop */
1380 int nIn; /* Number of IN operators constraining this loop */
1382 int iCur; /* The VDBE cursor used by this IN operator */
1383 int topAddr; /* Top of the IN loop */
1384 } *aInLoop; /* Information about each nested IN operator */
1385 sqlite3_index_info *pBestIdx; /* Index information for this level */
1387 /* The following field is really not part of the current level. But
1388 ** we need a place to cache index information for each table in the
1389 ** FROM clause and the WhereLevel structure is a convenient place.
1391 sqlite3_index_info *pIdxInfo; /* Index info for n-th source table */
1395 ** Flags appropriate for the wflags parameter of sqlite3WhereBegin().
1397 #define WHERE_ORDERBY_NORMAL 0 /* No-op */
1398 #define WHERE_ORDERBY_MIN 1 /* ORDER BY processing for min() func */
1399 #define WHERE_ORDERBY_MAX 2 /* ORDER BY processing for max() func */
1400 #define WHERE_ONEPASS_DESIRED 4 /* Want to do one-pass UPDATE/DELETE */
1403 ** The WHERE clause processing routine has two halves. The
1404 ** first part does the start of the WHERE loop and the second
1405 ** half does the tail of the WHERE loop. An instance of
1406 ** this structure is returned by the first half and passed
1407 ** into the second half to give some continuity.
1410 Parse *pParse; /* Parsing and code generating context */
1411 u8 okOnePass; /* Ok to use one-pass algorithm for UPDATE or DELETE */
1412 SrcList *pTabList; /* List of tables in the join */
1413 int iTop; /* The very beginning of the WHERE loop */
1414 int iContinue; /* Jump here to continue with next record */
1415 int iBreak; /* Jump here to break out of the loop */
1416 int nLevel; /* Number of nested loop */
1417 sqlite3_index_info **apInfo; /* Array of pointers to index info structures */
1418 WhereLevel a[1]; /* Information about each nest loop in the WHERE */
1422 ** A NameContext defines a context in which to resolve table and column
1423 ** names. The context consists of a list of tables (the pSrcList) field and
1424 ** a list of named expression (pEList). The named expression list may
1425 ** be NULL. The pSrc corresponds to the FROM clause of a SELECT or
1426 ** to the table being operated on by INSERT, UPDATE, or DELETE. The
1427 ** pEList corresponds to the result set of a SELECT and is NULL for
1428 ** other statements.
1430 ** NameContexts can be nested. When resolving names, the inner-most
1431 ** context is searched first. If no match is found, the next outer
1432 ** context is checked. If there is still no match, the next context
1433 ** is checked. This process continues until either a match is found
1434 ** or all contexts are check. When a match is found, the nRef member of
1435 ** the context containing the match is incremented.
1437 ** Each subquery gets a new NameContext. The pNext field points to the
1438 ** NameContext in the parent query. Thus the process of scanning the
1439 ** NameContext list corresponds to searching through successively outer
1440 ** subqueries looking for a match.
1442 struct NameContext {
1443 Parse *pParse; /* The parser */
1444 SrcList *pSrcList; /* One or more tables used to resolve names */
1445 ExprList *pEList; /* Optional list of named expressions */
1446 int nRef; /* Number of names resolved by this context */
1447 int nErr; /* Number of errors encountered while resolving names */
1448 u8 allowAgg; /* Aggregate functions allowed here */
1449 u8 hasAgg; /* True if aggregates are seen */
1450 u8 isCheck; /* True if resolving names in a CHECK constraint */
1451 int nDepth; /* Depth of subquery recursion. 1 for no recursion */
1452 AggInfo *pAggInfo; /* Information about aggregates at this level */
1453 NameContext *pNext; /* Next outer name context. NULL for outermost */
1457 ** An instance of the following structure contains all information
1458 ** needed to generate code for a single SELECT statement.
1460 ** nLimit is set to -1 if there is no LIMIT clause. nOffset is set to 0.
1461 ** If there is a LIMIT clause, the parser sets nLimit to the value of the
1462 ** limit and nOffset to the value of the offset (or 0 if there is not
1463 ** offset). But later on, nLimit and nOffset become the memory locations
1464 ** in the VDBE that record the limit and offset counters.
1466 ** addrOpenEphm[] entries contain the address of OP_OpenEphemeral opcodes.
1467 ** These addresses must be stored so that we can go back and fill in
1468 ** the P4_KEYINFO and P2 parameters later. Neither the KeyInfo nor
1469 ** the number of columns in P2 can be computed at the same time
1470 ** as the OP_OpenEphm instruction is coded because not
1471 ** enough information about the compound query is known at that point.
1472 ** The KeyInfo for addrOpenTran[0] and [1] contains collating sequences
1473 ** for the result set. The KeyInfo for addrOpenTran[2] contains collating
1474 ** sequences for the ORDER BY clause.
1477 ExprList *pEList; /* The fields of the result */
1478 u8 op; /* One of: TK_UNION TK_ALL TK_INTERSECT TK_EXCEPT */
1479 u8 isDistinct; /* True if the DISTINCT keyword is present */
1480 u8 isResolved; /* True once sqlite3SelectResolve() has run. */
1481 u8 isAgg; /* True if this is an aggregate query */
1482 u8 usesEphm; /* True if uses an OpenEphemeral opcode */
1483 u8 disallowOrderBy; /* Do not allow an ORDER BY to be attached if TRUE */
1484 char affinity; /* MakeRecord with this affinity for SRT_Set */
1485 SrcList *pSrc; /* The FROM clause */
1486 Expr *pWhere; /* The WHERE clause */
1487 ExprList *pGroupBy; /* The GROUP BY clause */
1488 Expr *pHaving; /* The HAVING clause */
1489 ExprList *pOrderBy; /* The ORDER BY clause */
1490 Select *pPrior; /* Prior select in a compound select statement */
1491 Select *pNext; /* Next select to the left in a compound */
1492 Select *pRightmost; /* Right-most select in a compound select statement */
1493 Expr *pLimit; /* LIMIT expression. NULL means not used. */
1494 Expr *pOffset; /* OFFSET expression. NULL means not used. */
1495 int iLimit, iOffset; /* Memory registers holding LIMIT & OFFSET counters */
1496 int addrOpenEphm[3]; /* OP_OpenEphem opcodes related to this select */
1500 ** The results of a select can be distributed in several ways.
1502 #define SRT_Union 1 /* Store result as keys in an index */
1503 #define SRT_Except 2 /* Remove result from a UNION index */
1504 #define SRT_Exists 3 /* Store 1 if the result is not empty */
1505 #define SRT_Discard 4 /* Do not save the results anywhere */
1507 /* The ORDER BY clause is ignored for all of the above */
1508 #define IgnorableOrderby(X) ((X->eDest)<=SRT_Discard)
1510 #define SRT_Callback 5 /* Invoke a callback with each row of result */
1511 #define SRT_Mem 6 /* Store result in a memory cell */
1512 #define SRT_Set 7 /* Store results as keys in an index */
1513 #define SRT_Table 8 /* Store result as data with an automatic rowid */
1514 #define SRT_EphemTab 9 /* Create transient tab and store like SRT_Table */
1515 #define SRT_Coroutine 10 /* Generate a single row of result */
1518 ** A structure used to customize the behaviour of sqlite3Select(). See
1519 ** comments above sqlite3Select() for details.
1521 typedef struct SelectDest SelectDest;
1523 u8 eDest; /* How to dispose of the results */
1524 u8 affinity; /* Affinity used when eDest==SRT_Set */
1525 int iParm; /* A parameter used by the eDest disposal method */
1526 int iMem; /* Base register where results are written */
1527 int nMem; /* Number of registers allocated */
1531 ** An SQL parser context. A copy of this structure is passed through
1532 ** the parser and down into all the parser action routine in order to
1533 ** carry around information that is global to the entire parse.
1535 ** The structure is divided into two parts. When the parser and code
1536 ** generate call themselves recursively, the first part of the structure
1537 ** is constant but the second part is reset at the beginning and end of
1540 ** The nTableLock and aTableLock variables are only used if the shared-cache
1541 ** feature is enabled (if sqlite3Tsd()->useSharedData is true). They are
1542 ** used to store the set of table-locks required by the statement being
1543 ** compiled. Function sqlite3TableLock() is used to add entries to the
1547 sqlite3 *db; /* The main database structure */
1548 int rc; /* Return code from execution */
1549 char *zErrMsg; /* An error message */
1550 Vdbe *pVdbe; /* An engine for executing database bytecode */
1551 u8 colNamesSet; /* TRUE after OP_ColumnName has been issued to pVdbe */
1552 u8 nameClash; /* A permanent table name clashes with temp table name */
1553 u8 checkSchema; /* Causes schema cookie check after an error */
1554 u8 nested; /* Number of nested calls to the parser/code generator */
1555 u8 parseError; /* True after a parsing error. Ticket #1794 */
1556 u8 nTempReg; /* Number of temporary registers in aTempReg[] */
1557 u8 nTempInUse; /* Number of aTempReg[] currently checked out */
1558 int aTempReg[8]; /* Holding area for temporary registers */
1559 int nRangeReg; /* Size of the temporary register block */
1560 int iRangeReg; /* First register in temporary register block */
1561 int nErr; /* Number of errors seen */
1562 int nTab; /* Number of previously allocated VDBE cursors */
1563 int nMem; /* Number of memory cells used so far */
1564 int nSet; /* Number of sets used so far */
1565 int ckBase; /* Base register of data during check constraints */
1566 int disableColCache; /* True to disable adding to column cache */
1567 int nColCache; /* Number of entries in the column cache */
1568 int iColCache; /* Next entry of the cache to replace */
1570 int iTable; /* Table cursor number */
1571 int iColumn; /* Table column number */
1572 char affChange; /* True if this register has had an affinity change */
1573 int iReg; /* Register holding value of this column */
1574 } aColCache[10]; /* One for each valid column cache entry */
1575 u32 writeMask; /* Start a write transaction on these databases */
1576 u32 cookieMask; /* Bitmask of schema verified databases */
1577 int cookieGoto; /* Address of OP_Goto to cookie verifier subroutine */
1578 int cookieValue[SQLITE_MAX_ATTACHED+2]; /* Values of cookies to verify */
1579 #ifndef SQLITE_OMIT_SHARED_CACHE
1580 int nTableLock; /* Number of locks in aTableLock */
1581 TableLock *aTableLock; /* Required table locks for shared-cache mode */
1583 int regRowid; /* Register holding rowid of CREATE TABLE entry */
1584 int regRoot; /* Register holding root page number for new objects */
1586 /* Above is constant between recursions. Below is reset before and after
1587 ** each recursion */
1589 int nVar; /* Number of '?' variables seen in the SQL so far */
1590 int nVarExpr; /* Number of used slots in apVarExpr[] */
1591 int nVarExprAlloc; /* Number of allocated slots in apVarExpr[] */
1592 Expr **apVarExpr; /* Pointers to :aaa and $aaaa wildcard expressions */
1593 u8 explain; /* True if the EXPLAIN flag is found on the query */
1594 Token sErrToken; /* The token at which the error occurred */
1595 Token sNameToken; /* Token with unqualified schema object name */
1596 Token sLastToken; /* The last token parsed */
1597 const char *zSql; /* All SQL text */
1598 const char *zTail; /* All SQL text past the last semicolon parsed */
1599 Table *pNewTable; /* A table being constructed by CREATE TABLE */
1600 Trigger *pNewTrigger; /* Trigger under construct by a CREATE TRIGGER */
1601 TriggerStack *trigStack; /* Trigger actions being coded */
1602 const char *zAuthContext; /* The 6th parameter to db->xAuth callbacks */
1603 #ifndef SQLITE_OMIT_VIRTUALTABLE
1604 Token sArg; /* Complete text of a module argument */
1605 u8 declareVtab; /* True if inside sqlite3_declare_vtab() */
1606 int nVtabLock; /* Number of virtual tables to lock */
1607 Table **apVtabLock; /* Pointer to virtual tables needing locking */
1609 int nHeight; /* Expression tree height of current sub-select */
1612 #ifdef SQLITE_OMIT_VIRTUALTABLE
1613 #define IN_DECLARE_VTAB 0
1615 #define IN_DECLARE_VTAB (pParse->declareVtab)
1619 ** An instance of the following structure can be declared on a stack and used
1620 ** to save the Parse.zAuthContext value so that it can be restored later.
1622 struct AuthContext {
1623 const char *zAuthContext; /* Put saved Parse.zAuthContext here */
1624 Parse *pParse; /* The Parse structure */
1628 ** Bitfield flags for P2 value in OP_Insert and OP_Delete
1630 #define OPFLAG_NCHANGE 1 /* Set to update db->nChange */
1631 #define OPFLAG_LASTROWID 2 /* Set to update db->lastRowid */
1632 #define OPFLAG_ISUPDATE 4 /* This OP_Insert is an sql UPDATE */
1633 #define OPFLAG_APPEND 8 /* This is likely to be an append */
1636 * Each trigger present in the database schema is stored as an instance of
1639 * Pointers to instances of struct Trigger are stored in two ways.
1640 * 1. In the "trigHash" hash table (part of the sqlite3* that represents the
1641 * database). This allows Trigger structures to be retrieved by name.
1642 * 2. All triggers associated with a single table form a linked list, using the
1643 * pNext member of struct Trigger. A pointer to the first element of the
1644 * linked list is stored as the "pTrigger" member of the associated
1647 * The "step_list" member points to the first element of a linked list
1648 * containing the SQL statements specified as the trigger program.
1651 char *name; /* The name of the trigger */
1652 char *table; /* The table or view to which the trigger applies */
1653 u8 op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT */
1654 u8 tr_tm; /* One of TRIGGER_BEFORE, TRIGGER_AFTER */
1655 Expr *pWhen; /* The WHEN clause of the expresion (may be NULL) */
1656 IdList *pColumns; /* If this is an UPDATE OF <column-list> trigger,
1657 the <column-list> is stored here */
1658 Token nameToken; /* Token containing zName. Use during parsing only */
1659 Schema *pSchema; /* Schema containing the trigger */
1660 Schema *pTabSchema; /* Schema containing the table */
1661 TriggerStep *step_list; /* Link list of trigger program steps */
1662 Trigger *pNext; /* Next trigger associated with the table */
1666 ** A trigger is either a BEFORE or an AFTER trigger. The following constants
1669 ** If there are multiple triggers, you might of some BEFORE and some AFTER.
1670 ** In that cases, the constants below can be ORed together.
1672 #define TRIGGER_BEFORE 1
1673 #define TRIGGER_AFTER 2
1676 * An instance of struct TriggerStep is used to store a single SQL statement
1677 * that is a part of a trigger-program.
1679 * Instances of struct TriggerStep are stored in a singly linked list (linked
1680 * using the "pNext" member) referenced by the "step_list" member of the
1681 * associated struct Trigger instance. The first element of the linked list is
1682 * the first step of the trigger-program.
1684 * The "op" member indicates whether this is a "DELETE", "INSERT", "UPDATE" or
1685 * "SELECT" statement. The meanings of the other members is determined by the
1686 * value of "op" as follows:
1689 * orconf -> stores the ON CONFLICT algorithm
1690 * pSelect -> If this is an INSERT INTO ... SELECT ... statement, then
1691 * this stores a pointer to the SELECT statement. Otherwise NULL.
1692 * target -> A token holding the name of the table to insert into.
1693 * pExprList -> If this is an INSERT INTO ... VALUES ... statement, then
1694 * this stores values to be inserted. Otherwise NULL.
1695 * pIdList -> If this is an INSERT INTO ... (<column-names>) VALUES ...
1696 * statement, then this stores the column-names to be
1700 * target -> A token holding the name of the table to delete from.
1701 * pWhere -> The WHERE clause of the DELETE statement if one is specified.
1705 * target -> A token holding the name of the table to update rows of.
1706 * pWhere -> The WHERE clause of the UPDATE statement if one is specified.
1708 * pExprList -> A list of the columns to update and the expressions to update
1709 * them to. See sqlite3Update() documentation of "pChanges"
1713 struct TriggerStep {
1714 int op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT, TK_SELECT */
1715 int orconf; /* OE_Rollback etc. */
1716 Trigger *pTrig; /* The trigger that this step is a part of */
1718 Select *pSelect; /* Valid for SELECT and sometimes
1719 INSERT steps (when pExprList == 0) */
1720 Token target; /* Valid for DELETE, UPDATE, INSERT steps */
1721 Expr *pWhere; /* Valid for DELETE, UPDATE steps */
1722 ExprList *pExprList; /* Valid for UPDATE statements and sometimes
1723 INSERT steps (when pSelect == 0) */
1724 IdList *pIdList; /* Valid for INSERT statements only */
1725 TriggerStep *pNext; /* Next in the link-list */
1726 TriggerStep *pLast; /* Last element in link-list. Valid for 1st elem only */
1730 * An instance of struct TriggerStack stores information required during code
1731 * generation of a single trigger program. While the trigger program is being
1732 * coded, its associated TriggerStack instance is pointed to by the
1733 * "pTriggerStack" member of the Parse structure.
1735 * The pTab member points to the table that triggers are being coded on. The
1736 * newIdx member contains the index of the vdbe cursor that points at the temp
1737 * table that stores the new.* references. If new.* references are not valid
1738 * for the trigger being coded (for example an ON DELETE trigger), then newIdx
1739 * is set to -1. The oldIdx member is analogous to newIdx, for old.* references.
1741 * The ON CONFLICT policy to be used for the trigger program steps is stored
1742 * as the orconf member. If this is OE_Default, then the ON CONFLICT clause
1743 * specified for individual triggers steps is used.
1745 * struct TriggerStack has a "pNext" member, to allow linked lists to be
1746 * constructed. When coding nested triggers (triggers fired by other triggers)
1747 * each nested trigger stores its parent trigger's TriggerStack as the "pNext"
1748 * pointer. Once the nested trigger has been coded, the pNext value is restored
1749 * to the pTriggerStack member of the Parse stucture and coding of the parent
1750 * trigger continues.
1752 * Before a nested trigger is coded, the linked list pointed to by the
1753 * pTriggerStack is scanned to ensure that the trigger is not about to be coded
1754 * recursively. If this condition is detected, the nested trigger is not coded.
1756 struct TriggerStack {
1757 Table *pTab; /* Table that triggers are currently being coded on */
1758 int newIdx; /* Index of vdbe cursor to "new" temp table */
1759 int oldIdx; /* Index of vdbe cursor to "old" temp table */
1762 int orconf; /* Current orconf policy */
1763 int ignoreJump; /* where to jump to for a RAISE(IGNORE) */
1764 Trigger *pTrigger; /* The trigger currently being coded */
1765 TriggerStack *pNext; /* Next trigger down on the trigger stack */
1769 ** The following structure contains information used by the sqliteFix...
1770 ** routines as they walk the parse tree to make database references
1773 typedef struct DbFixer DbFixer;
1775 Parse *pParse; /* The parsing context. Error messages written here */
1776 const char *zDb; /* Make sure all objects are contained in this database */
1777 const char *zType; /* Type of the container - used for error messages */
1778 const Token *pName; /* Name of the container - used for error messages */
1782 ** An objected used to accumulate the text of a string where we
1783 ** do not necessarily know how big the string will be in the end.
1786 sqlite3 *db; /* Optional database for lookaside. Can be NULL */
1787 char *zBase; /* A base allocation. Not from malloc. */
1788 char *zText; /* The string collected so far */
1789 int nChar; /* Length of the string so far */
1790 int nAlloc; /* Amount of space allocated in zText */
1791 int mxAlloc; /* Maximum allowed string length */
1792 u8 mallocFailed; /* Becomes true if any memory allocation fails */
1793 u8 useMalloc; /* True if zText is enlargable using realloc */
1794 u8 tooBig; /* Becomes true if string size exceeds limits */
1798 ** A pointer to this structure is used to communicate information
1799 ** from sqlite3Init and OP_ParseSchema into the sqlite3InitCallback.
1802 sqlite3 *db; /* The database being initialized */
1803 int iDb; /* 0 for main database. 1 for TEMP, 2.. for ATTACHed */
1804 char **pzErrMsg; /* Error message stored here */
1805 int rc; /* Result code stored here */
1809 ** Structure containing global configuration data for the SQLite library.
1811 ** This structure also contains some state information.
1813 struct Sqlite3Config {
1814 int bMemstat; /* True to enable memory status */
1815 int bCoreMutex; /* True to enable core mutexing */
1816 int bFullMutex; /* True to enable full mutexing */
1817 int mxStrlen; /* Maximum string length */
1818 int szLookaside; /* Default lookaside buffer size */
1819 int nLookaside; /* Default lookaside buffer count */
1820 sqlite3_mem_methods m; /* Low-level memory allocation interface */
1821 sqlite3_mutex_methods mutex; /* Low-level mutex interface */
1822 void *pHeap; /* Heap storage space */
1823 int nHeap; /* Size of pHeap[] */
1824 int mnReq, mxReq; /* Min and max heap requests sizes */
1825 void *pScratch; /* Scratch memory */
1826 int szScratch; /* Size of each scratch buffer */
1827 int nScratch; /* Number of scratch buffers */
1828 void *pPage; /* Page cache memory */
1829 int szPage; /* Size of each page in pPage[] */
1830 int nPage; /* Number of pages in pPage[] */
1831 int isInit; /* True after initialization has finished */
1832 int isMallocInit; /* True after malloc is initialized */
1833 sqlite3_mutex *pInitMutex; /* Mutex used by sqlite3_initialize() */
1834 int nSmall; /* alloc size threshold used by mem6.c */
1835 int mxParserStack; /* maximum depth of the parser stack */
1839 ** Assuming zIn points to the first byte of a UTF-8 character,
1840 ** advance zIn to point to the first byte of the next UTF-8 character.
1842 #define SQLITE_SKIP_UTF8(zIn) { \
1843 if( (*(zIn++))>=0xc0 ){ \
1844 while( (*zIn & 0xc0)==0x80 ){ zIn++; } \
1849 ** The SQLITE_CORRUPT_BKPT macro can be either a constant (for production
1850 ** builds) or a function call (for debugging). If it is a function call,
1851 ** it allows the operator to set a breakpoint at the spot where database
1852 ** corruption is first detected.
1855 int sqlite3Corrupt(void);
1856 # define SQLITE_CORRUPT_BKPT sqlite3Corrupt()
1858 # define SQLITE_CORRUPT_BKPT SQLITE_CORRUPT
1862 ** Internal function prototypes
1864 int sqlite3StrICmp(const char *, const char *);
1865 int sqlite3StrNICmp(const char *, const char *, int);
1866 int sqlite3IsNumber(const char*, int*, u8);
1867 int sqlite3Strlen(sqlite3*, const char*);
1869 int sqlite3MallocInit(void);
1870 void sqlite3MallocEnd(void);
1871 void *sqlite3Malloc(int);
1872 void *sqlite3MallocZero(int);
1873 void *sqlite3DbMallocZero(sqlite3*, int);
1874 void *sqlite3DbMallocRaw(sqlite3*, int);
1875 char *sqlite3DbStrDup(sqlite3*,const char*);
1876 char *sqlite3DbStrNDup(sqlite3*,const char*, int);
1877 void *sqlite3Realloc(void*, int);
1878 void *sqlite3DbReallocOrFree(sqlite3 *, void *, int);
1879 void *sqlite3DbRealloc(sqlite3 *, void *, int);
1880 void sqlite3DbFree(sqlite3*, void*);
1881 int sqlite3MallocSize(void*);
1882 int sqlite3DbMallocSize(sqlite3*, void*);
1883 void *sqlite3ScratchMalloc(int);
1884 void sqlite3ScratchFree(void*);
1885 void *sqlite3PageMalloc(int);
1886 void sqlite3PageFree(void*);
1887 void sqlite3MemSetDefault(void);
1888 const sqlite3_mem_methods *sqlite3MemGetDefault(void);
1889 const sqlite3_mem_methods *sqlite3MemGetMemsys5(void);
1890 const sqlite3_mem_methods *sqlite3MemGetMemsys3(void);
1891 const sqlite3_mem_methods *sqlite3MemGetMemsys6(void);
1892 void sqlite3BenignMallocHooks(void (*)(void), void (*)(void));
1894 #ifndef SQLITE_MUTEX_NOOP
1895 sqlite3_mutex_methods *sqlite3DefaultMutex(void);
1896 sqlite3_mutex *sqlite3MutexAlloc(int);
1897 int sqlite3MutexInit(void);
1898 int sqlite3MutexEnd(void);
1901 void sqlite3StatusReset(void);
1902 int sqlite3StatusValue(int);
1903 void sqlite3StatusAdd(int, int);
1904 void sqlite3StatusSet(int, int);
1906 int sqlite3IsNaN(double);
1908 void sqlite3VXPrintf(StrAccum*, int, const char*, va_list);
1909 char *sqlite3MPrintf(sqlite3*,const char*, ...);
1910 char *sqlite3VMPrintf(sqlite3*,const char*, va_list);
1911 char *sqlite3MAppendf(sqlite3*,char*,const char*,...);
1912 #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG)
1913 void sqlite3DebugPrintf(const char*, ...);
1915 #if defined(SQLITE_TEST)
1916 void *sqlite3TestTextToPtr(const char*);
1918 void sqlite3SetString(char **, sqlite3*, const char*, ...);
1919 void sqlite3ErrorMsg(Parse*, const char*, ...);
1920 void sqlite3ErrorClear(Parse*);
1921 void sqlite3Dequote(char*);
1922 void sqlite3DequoteExpr(sqlite3*, Expr*);
1923 int sqlite3KeywordCode(const unsigned char*, int);
1924 int sqlite3RunParser(Parse*, const char*, char **);
1925 void sqlite3FinishCoding(Parse*);
1926 int sqlite3GetTempReg(Parse*);
1927 void sqlite3ReleaseTempReg(Parse*,int);
1928 int sqlite3GetTempRange(Parse*,int);
1929 void sqlite3ReleaseTempRange(Parse*,int,int);
1930 Expr *sqlite3Expr(sqlite3*, int, Expr*, Expr*, const Token*);
1931 Expr *sqlite3PExpr(Parse*, int, Expr*, Expr*, const Token*);
1932 Expr *sqlite3RegisterExpr(Parse*,Token*);
1933 Expr *sqlite3ExprAnd(sqlite3*,Expr*, Expr*);
1934 void sqlite3ExprSpan(Expr*,Token*,Token*);
1935 Expr *sqlite3ExprFunction(Parse*,ExprList*, Token*);
1936 void sqlite3ExprAssignVarNumber(Parse*, Expr*);
1937 void sqlite3ExprDelete(sqlite3*, Expr*);
1938 ExprList *sqlite3ExprListAppend(Parse*,ExprList*,Expr*,Token*);
1939 void sqlite3ExprListDelete(sqlite3*, ExprList*);
1940 int sqlite3Init(sqlite3*, char**);
1941 int sqlite3InitCallback(void*, int, char**, char**);
1942 void sqlite3Pragma(Parse*,Token*,Token*,Token*,int);
1943 void sqlite3ResetInternalSchema(sqlite3*, int);
1944 void sqlite3BeginParse(Parse*,int);
1945 void sqlite3CommitInternalChanges(sqlite3*);
1946 Table *sqlite3ResultSetOfSelect(Parse*,char*,Select*);
1947 void sqlite3OpenMasterTable(Parse *, int);
1948 void sqlite3StartTable(Parse*,Token*,Token*,int,int,int,int);
1949 void sqlite3AddColumn(Parse*,Token*);
1950 void sqlite3AddNotNull(Parse*, int);
1951 void sqlite3AddPrimaryKey(Parse*, ExprList*, int, int, int);
1952 void sqlite3AddCheckConstraint(Parse*, Expr*);
1953 void sqlite3AddColumnType(Parse*,Token*);
1954 void sqlite3AddDefaultValue(Parse*,Expr*);
1955 void sqlite3AddCollateType(Parse*, Token*);
1956 void sqlite3EndTable(Parse*,Token*,Token*,Select*);
1958 Bitvec *sqlite3BitvecCreate(u32);
1959 int sqlite3BitvecTest(Bitvec*, u32);
1960 int sqlite3BitvecSet(Bitvec*, u32);
1961 void sqlite3BitvecClear(Bitvec*, u32);
1962 void sqlite3BitvecDestroy(Bitvec*);
1963 int sqlite3BitvecBuiltinTest(int,int*);
1965 void sqlite3CreateView(Parse*,Token*,Token*,Token*,Select*,int,int);
1967 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
1968 int sqlite3ViewGetColumnNames(Parse*,Table*);
1970 # define sqlite3ViewGetColumnNames(A,B) 0
1973 void sqlite3DropTable(Parse*, SrcList*, int, int);
1974 void sqlite3DeleteTable(Table*);
1975 void sqlite3Insert(Parse*, SrcList*, ExprList*, Select*, IdList*, int);
1976 void *sqlite3ArrayAllocate(sqlite3*,void*,int,int,int*,int*,int*);
1977 IdList *sqlite3IdListAppend(sqlite3*, IdList*, Token*);
1978 int sqlite3IdListIndex(IdList*,const char*);
1979 SrcList *sqlite3SrcListAppend(sqlite3*, SrcList*, Token*, Token*);
1980 SrcList *sqlite3SrcListAppendFromTerm(Parse*, SrcList*, Token*, Token*, Token*,
1981 Select*, Expr*, IdList*);
1982 void sqlite3SrcListShiftJoinType(SrcList*);
1983 void sqlite3SrcListAssignCursors(Parse*, SrcList*);
1984 void sqlite3IdListDelete(sqlite3*, IdList*);
1985 void sqlite3SrcListDelete(sqlite3*, SrcList*);
1986 void sqlite3CreateIndex(Parse*,Token*,Token*,SrcList*,ExprList*,int,Token*,
1988 void sqlite3DropIndex(Parse*, SrcList*, int);
1989 int sqlite3Select(Parse*, Select*, SelectDest*, Select*, int, int*);
1990 Select *sqlite3SelectNew(Parse*,ExprList*,SrcList*,Expr*,ExprList*,
1991 Expr*,ExprList*,int,Expr*,Expr*);
1992 void sqlite3SelectDelete(sqlite3*, Select*);
1993 Table *sqlite3SrcListLookup(Parse*, SrcList*);
1994 int sqlite3IsReadOnly(Parse*, Table*, int);
1995 void sqlite3OpenTable(Parse*, int iCur, int iDb, Table*, int);
1996 void sqlite3DeleteFrom(Parse*, SrcList*, Expr*);
1997 void sqlite3Update(Parse*, SrcList*, ExprList*, Expr*, int);
1998 WhereInfo *sqlite3WhereBegin(Parse*, SrcList*, Expr*, ExprList**, u8);
1999 void sqlite3WhereEnd(WhereInfo*);
2000 int sqlite3ExprCodeGetColumn(Parse*, Table*, int, int, int, int);
2001 void sqlite3ExprCodeMove(Parse*, int, int, int);
2002 void sqlite3ExprCodeCopy(Parse*, int, int, int);
2003 void sqlite3ExprClearColumnCache(Parse*, int);
2004 void sqlite3ExprCacheAffinityChange(Parse*, int, int);
2005 int sqlite3ExprWritableRegister(Parse*,int,int);
2006 void sqlite3ExprHardCopy(Parse*,int,int);
2007 int sqlite3ExprCode(Parse*, Expr*, int);
2008 int sqlite3ExprCodeTemp(Parse*, Expr*, int*);
2009 int sqlite3ExprCodeTarget(Parse*, Expr*, int);
2010 int sqlite3ExprCodeAndCache(Parse*, Expr*, int);
2011 void sqlite3ExprCodeConstants(Parse*, Expr*);
2012 int sqlite3ExprCodeExprList(Parse*, ExprList*, int, int);
2013 void sqlite3ExprIfTrue(Parse*, Expr*, int, int);
2014 void sqlite3ExprIfFalse(Parse*, Expr*, int, int);
2015 Table *sqlite3FindTable(sqlite3*,const char*, const char*);
2016 Table *sqlite3LocateTable(Parse*,int isView,const char*, const char*);
2017 Index *sqlite3FindIndex(sqlite3*,const char*, const char*);
2018 void sqlite3UnlinkAndDeleteTable(sqlite3*,int,const char*);
2019 void sqlite3UnlinkAndDeleteIndex(sqlite3*,int,const char*);
2020 void sqlite3Vacuum(Parse*);
2021 int sqlite3RunVacuum(char**, sqlite3*);
2022 char *sqlite3NameFromToken(sqlite3*, Token*);
2023 int sqlite3ExprCompare(Expr*, Expr*);
2024 int sqlite3ExprResolveNames(NameContext *, Expr *);
2025 void sqlite3ExprAnalyzeAggregates(NameContext*, Expr*);
2026 void sqlite3ExprAnalyzeAggList(NameContext*,ExprList*);
2027 Vdbe *sqlite3GetVdbe(Parse*);
2028 Expr *sqlite3CreateIdExpr(Parse *, const char*);
2029 void sqlite3PrngSaveState(void);
2030 void sqlite3PrngRestoreState(void);
2031 void sqlite3PrngResetState(void);
2032 void sqlite3RollbackAll(sqlite3*);
2033 void sqlite3CodeVerifySchema(Parse*, int);
2034 void sqlite3BeginTransaction(Parse*, int);
2035 void sqlite3CommitTransaction(Parse*);
2036 void sqlite3RollbackTransaction(Parse*);
2037 int sqlite3ExprIsConstant(Expr*);
2038 int sqlite3ExprIsConstantNotJoin(Expr*);
2039 int sqlite3ExprIsConstantOrFunction(Expr*);
2040 int sqlite3ExprIsInteger(Expr*, int*);
2041 int sqlite3IsRowid(const char*);
2042 void sqlite3GenerateRowDelete(Parse*, Table*, int, int, int);
2043 void sqlite3GenerateRowIndexDelete(Parse*, Table*, int, int*);
2044 int sqlite3GenerateIndexKey(Parse*, Index*, int, int, int);
2045 void sqlite3GenerateConstraintChecks(Parse*,Table*,int,int,
2046 int*,int,int,int,int);
2047 void sqlite3CompleteInsertion(Parse*, Table*, int, int, int*,int,int,int,int);
2048 int sqlite3OpenTableAndIndices(Parse*, Table*, int, int);
2049 void sqlite3BeginWriteOperation(Parse*, int, int);
2050 Expr *sqlite3ExprDup(sqlite3*,Expr*);
2051 void sqlite3TokenCopy(sqlite3*,Token*, Token*);
2052 ExprList *sqlite3ExprListDup(sqlite3*,ExprList*);
2053 SrcList *sqlite3SrcListDup(sqlite3*,SrcList*);
2054 IdList *sqlite3IdListDup(sqlite3*,IdList*);
2055 Select *sqlite3SelectDup(sqlite3*,Select*);
2056 FuncDef *sqlite3FindFunction(sqlite3*,const char*,int,int,u8,int);
2057 void sqlite3RegisterBuiltinFunctions(sqlite3*);
2058 void sqlite3RegisterDateTimeFunctions(sqlite3*);
2060 int sqlite3SafetyOn(sqlite3*);
2061 int sqlite3SafetyOff(sqlite3*);
2063 # define sqlite3SafetyOn(A) 0
2064 # define sqlite3SafetyOff(A) 0
2066 int sqlite3SafetyCheckOk(sqlite3*);
2067 int sqlite3SafetyCheckSickOrOk(sqlite3*);
2068 void sqlite3ChangeCookie(Parse*, int);
2069 void sqlite3MaterializeView(Parse*, Select*, Expr*, int);
2071 #ifndef SQLITE_OMIT_TRIGGER
2072 void sqlite3BeginTrigger(Parse*, Token*,Token*,int,int,IdList*,SrcList*,
2074 void sqlite3FinishTrigger(Parse*, TriggerStep*, Token*);
2075 void sqlite3DropTrigger(Parse*, SrcList*, int);
2076 void sqlite3DropTriggerPtr(Parse*, Trigger*);
2077 int sqlite3TriggersExist(Parse*, Table*, int, ExprList*);
2078 int sqlite3CodeRowTrigger(Parse*, int, ExprList*, int, Table *, int, int,
2079 int, int, u32*, u32*);
2080 void sqliteViewTriggers(Parse*, Table*, Expr*, int, ExprList*);
2081 void sqlite3DeleteTriggerStep(sqlite3*, TriggerStep*);
2082 TriggerStep *sqlite3TriggerSelectStep(sqlite3*,Select*);
2083 TriggerStep *sqlite3TriggerInsertStep(sqlite3*,Token*, IdList*,
2084 ExprList*,Select*,int);
2085 TriggerStep *sqlite3TriggerUpdateStep(sqlite3*,Token*,ExprList*, Expr*, int);
2086 TriggerStep *sqlite3TriggerDeleteStep(sqlite3*,Token*, Expr*);
2087 void sqlite3DeleteTrigger(sqlite3*, Trigger*);
2088 void sqlite3UnlinkAndDeleteTrigger(sqlite3*,int,const char*);
2090 # define sqlite3TriggersExist(A,B,C,D,E,F) 0
2091 # define sqlite3DeleteTrigger(A,B)
2092 # define sqlite3DropTriggerPtr(A,B)
2093 # define sqlite3UnlinkAndDeleteTrigger(A,B,C)
2094 # define sqlite3CodeRowTrigger(A,B,C,D,E,F,G,H,I,J,K) 0
2097 int sqlite3JoinType(Parse*, Token*, Token*, Token*);
2098 void sqlite3CreateForeignKey(Parse*, ExprList*, Token*, ExprList*, int);
2099 void sqlite3DeferForeignKey(Parse*, int);
2100 #ifndef SQLITE_OMIT_AUTHORIZATION
2101 void sqlite3AuthRead(Parse*,Expr*,Schema*,SrcList*);
2102 int sqlite3AuthCheck(Parse*,int, const char*, const char*, const char*);
2103 void sqlite3AuthContextPush(Parse*, AuthContext*, const char*);
2104 void sqlite3AuthContextPop(AuthContext*);
2106 # define sqlite3AuthRead(a,b,c,d)
2107 # define sqlite3AuthCheck(a,b,c,d,e) SQLITE_OK
2108 # define sqlite3AuthContextPush(a,b,c)
2109 # define sqlite3AuthContextPop(a) ((void)(a))
2111 void sqlite3Attach(Parse*, Expr*, Expr*, Expr*);
2112 void sqlite3Detach(Parse*, Expr*);
2113 int sqlite3BtreeFactory(const sqlite3 *db, const char *zFilename,
2114 int omitJournal, int nCache, int flags, Btree **ppBtree);
2115 int sqlite3FixInit(DbFixer*, Parse*, int, const char*, const Token*);
2116 int sqlite3FixSrcList(DbFixer*, SrcList*);
2117 int sqlite3FixSelect(DbFixer*, Select*);
2118 int sqlite3FixExpr(DbFixer*, Expr*);
2119 int sqlite3FixExprList(DbFixer*, ExprList*);
2120 int sqlite3FixTriggerStep(DbFixer*, TriggerStep*);
2121 int sqlite3AtoF(const char *z, double*);
2122 char *sqlite3_snprintf(int,char*,const char*,...);
2123 int sqlite3GetInt32(const char *, int*);
2124 int sqlite3FitsIn64Bits(const char *, int);
2125 int sqlite3Utf16ByteLen(const void *pData, int nChar);
2126 int sqlite3Utf8CharLen(const char *pData, int nByte);
2127 int sqlite3Utf8Read(const u8*, const u8*, const u8**);
2130 ** Routines to read and write variable-length integers. These used to
2131 ** be defined locally, but now we use the varint routines in the util.c
2132 ** file. Code should use the MACRO forms below, as the Varint32 versions
2133 ** are coded to assume the single byte case is already handled (which
2134 ** the MACRO form does).
2136 int sqlite3PutVarint(unsigned char*, u64);
2137 int sqlite3PutVarint32(unsigned char*, u32);
2138 int sqlite3GetVarint(const unsigned char *, u64 *);
2139 int sqlite3GetVarint32(const unsigned char *, u32 *);
2140 int sqlite3VarintLen(u64 v);
2143 ** The header of a record consists of a sequence variable-length integers.
2144 ** These integers are almost always small and are encoded as a single byte.
2145 ** The following macros take advantage this fact to provide a fast encode
2146 ** and decode of the integers in a record header. It is faster for the common
2147 ** case where the integer is a single byte. It is a little slower when the
2148 ** integer is two or more bytes. But overall it is faster.
2150 ** The following expressions are equivalent:
2152 ** x = sqlite3GetVarint32( A, &B );
2153 ** x = sqlite3PutVarint32( A, B );
2155 ** x = getVarint32( A, B );
2156 ** x = putVarint32( A, B );
2159 #define getVarint32(A,B) ((*(A)<(unsigned char)0x80) ? ((B) = (u32)*(A)),1 : sqlite3GetVarint32((A), &(B)))
2160 #define putVarint32(A,B) (((B)<(u32)0x80) ? (*(A) = (unsigned char)(B)),1 : sqlite3PutVarint32((A), (B)))
2161 #define getVarint sqlite3GetVarint
2162 #define putVarint sqlite3PutVarint
2165 void sqlite3IndexAffinityStr(Vdbe *, Index *);
2166 void sqlite3TableAffinityStr(Vdbe *, Table *);
2167 char sqlite3CompareAffinity(Expr *pExpr, char aff2);
2168 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity);
2169 char sqlite3ExprAffinity(Expr *pExpr);
2170 int sqlite3Atoi64(const char*, i64*);
2171 void sqlite3Error(sqlite3*, int, const char*,...);
2172 void *sqlite3HexToBlob(sqlite3*, const char *z, int n);
2173 int sqlite3TwoPartName(Parse *, Token *, Token *, Token **);
2174 const char *sqlite3ErrStr(int);
2175 int sqlite3ReadSchema(Parse *pParse);
2176 CollSeq *sqlite3FindCollSeq(sqlite3*,u8 enc, const char *,int,int);
2177 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName, int nName);
2178 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr);
2179 Expr *sqlite3ExprSetColl(Parse *pParse, Expr *, Token *);
2180 int sqlite3CheckCollSeq(Parse *, CollSeq *);
2181 int sqlite3CheckObjectName(Parse *, const char *);
2182 void sqlite3VdbeSetChanges(sqlite3 *, int);
2184 const void *sqlite3ValueText(sqlite3_value*, u8);
2185 int sqlite3ValueBytes(sqlite3_value*, u8);
2186 void sqlite3ValueSetStr(sqlite3_value*, int, const void *,u8,
2188 void sqlite3ValueFree(sqlite3_value*);
2189 sqlite3_value *sqlite3ValueNew(sqlite3 *);
2190 char *sqlite3Utf16to8(sqlite3 *, const void*, int);
2191 int sqlite3ValueFromExpr(sqlite3 *, Expr *, u8, u8, sqlite3_value **);
2192 void sqlite3ValueApplyAffinity(sqlite3_value *, u8, u8);
2193 #ifndef SQLITE_AMALGAMATION
2194 extern const unsigned char sqlite3UpperToLower[];
2195 extern struct Sqlite3Config sqlite3Config;
2197 void sqlite3RootPageMoved(Db*, int, int);
2198 void sqlite3Reindex(Parse*, Token*, Token*);
2199 void sqlite3AlterFunctions(sqlite3*);
2200 void sqlite3AlterRenameTable(Parse*, SrcList*, Token*);
2201 int sqlite3GetToken(const unsigned char *, int *);
2202 void sqlite3NestedParse(Parse*, const char*, ...);
2203 void sqlite3ExpirePreparedStatements(sqlite3*);
2204 void sqlite3CodeSubselect(Parse *, Expr *, int);
2205 int sqlite3SelectResolve(Parse *, Select *, NameContext *);
2206 void sqlite3ColumnDefault(Vdbe *, Table *, int);
2207 void sqlite3AlterFinishAddColumn(Parse *, Token *);
2208 void sqlite3AlterBeginAddColumn(Parse *, SrcList *);
2209 CollSeq *sqlite3GetCollSeq(sqlite3*, CollSeq *, const char *, int);
2210 char sqlite3AffinityType(const Token*);
2211 void sqlite3Analyze(Parse*, Token*, Token*);
2212 int sqlite3InvokeBusyHandler(BusyHandler*);
2213 int sqlite3FindDb(sqlite3*, Token*);
2214 int sqlite3AnalysisLoad(sqlite3*,int iDB);
2215 void sqlite3DefaultRowEst(Index*);
2216 void sqlite3RegisterLikeFunctions(sqlite3*, int);
2217 int sqlite3IsLikeFunction(sqlite3*,Expr*,int*,char*);
2218 void sqlite3AttachFunctions(sqlite3 *);
2219 void sqlite3MinimumFileFormat(Parse*, int, int);
2220 void sqlite3SchemaFree(void *);
2221 Schema *sqlite3SchemaGet(sqlite3 *, Btree *);
2222 int sqlite3SchemaToIndex(sqlite3 *db, Schema *);
2223 KeyInfo *sqlite3IndexKeyinfo(Parse *, Index *);
2224 int sqlite3CreateFunc(sqlite3 *, const char *, int, int, void *,
2225 void (*)(sqlite3_context*,int,sqlite3_value **),
2226 void (*)(sqlite3_context*,int,sqlite3_value **), void (*)(sqlite3_context*));
2227 int sqlite3ApiExit(sqlite3 *db, int);
2228 int sqlite3OpenTempDatabase(Parse *);
2230 void sqlite3StrAccumInit(StrAccum*, char*, int, int);
2231 void sqlite3StrAccumAppend(StrAccum*,const char*,int);
2232 char *sqlite3StrAccumFinish(StrAccum*);
2233 void sqlite3StrAccumReset(StrAccum*);
2234 void sqlite3SelectDestInit(SelectDest*,int,int);
2237 ** The interface to the LEMON-generated parser
2239 void *sqlite3ParserAlloc(void*(*)(size_t));
2240 void sqlite3ParserFree(void*, void(*)(void*));
2241 void sqlite3Parser(void*, int, Token, Parse*);
2242 #ifdef YYTRACKMAXSTACKDEPTH
2243 int sqlite3ParserStackPeak(void*);
2246 int sqlite3AutoLoadExtensions(sqlite3*);
2247 #ifndef SQLITE_OMIT_LOAD_EXTENSION
2248 void sqlite3CloseExtensions(sqlite3*);
2250 # define sqlite3CloseExtensions(X)
2253 #ifndef SQLITE_OMIT_SHARED_CACHE
2254 void sqlite3TableLock(Parse *, int, int, u8, const char *);
2256 #define sqlite3TableLock(v,w,x,y,z)
2260 int sqlite3Utf8To8(unsigned char*);
2263 #ifdef SQLITE_OMIT_VIRTUALTABLE
2264 # define sqlite3VtabClear(X)
2265 # define sqlite3VtabSync(X,Y) SQLITE_OK
2266 # define sqlite3VtabRollback(X)
2267 # define sqlite3VtabCommit(X)
2269 void sqlite3VtabClear(Table*);
2270 int sqlite3VtabSync(sqlite3 *db, char **);
2271 int sqlite3VtabRollback(sqlite3 *db);
2272 int sqlite3VtabCommit(sqlite3 *db);
2274 void sqlite3VtabMakeWritable(Parse*,Table*);
2275 void sqlite3VtabLock(sqlite3_vtab*);
2276 void sqlite3VtabUnlock(sqlite3*, sqlite3_vtab*);
2277 void sqlite3VtabBeginParse(Parse*, Token*, Token*, Token*);
2278 void sqlite3VtabFinishParse(Parse*, Token*);
2279 void sqlite3VtabArgInit(Parse*);
2280 void sqlite3VtabArgExtend(Parse*, Token*);
2281 int sqlite3VtabCallCreate(sqlite3*, int, const char *, char **);
2282 int sqlite3VtabCallConnect(Parse*, Table*);
2283 int sqlite3VtabCallDestroy(sqlite3*, int, const char *);
2284 int sqlite3VtabBegin(sqlite3 *, sqlite3_vtab *);
2285 FuncDef *sqlite3VtabOverloadFunction(sqlite3 *,FuncDef*, int nArg, Expr*);
2286 void sqlite3InvalidFunction(sqlite3_context*,int,sqlite3_value**);
2287 int sqlite3Reprepare(Vdbe*);
2288 void sqlite3ExprListCheckLength(Parse*, ExprList*, const char*);
2289 CollSeq *sqlite3BinaryCompareCollSeq(Parse *, Expr *, Expr *);
2293 ** Available fault injectors. Should be numbered beginning with 0.
2295 #define SQLITE_FAULTINJECTOR_MALLOC 0
2296 #define SQLITE_FAULTINJECTOR_COUNT 1
2299 ** The interface to the code in fault.c used for identifying "benign"
2300 ** malloc failures. This is only present if SQLITE_OMIT_BUILTIN_TEST
2303 #ifndef SQLITE_OMIT_BUILTIN_TEST
2304 void sqlite3BeginBenignMalloc(void);
2305 void sqlite3EndBenignMalloc(void);
2307 #define sqlite3BeginBenignMalloc()
2308 #define sqlite3EndBenignMalloc()
2311 #define IN_INDEX_ROWID 1
2312 #define IN_INDEX_EPH 2
2313 #define IN_INDEX_INDEX 3
2314 int sqlite3FindInIndex(Parse *, Expr *, int*);
2316 #ifdef SQLITE_ENABLE_ATOMIC_WRITE
2317 int sqlite3JournalOpen(sqlite3_vfs *, const char *, sqlite3_file *, int, int);
2318 int sqlite3JournalSize(sqlite3_vfs *);
2319 int sqlite3JournalCreate(sqlite3_file *);
2321 #define sqlite3JournalSize(pVfs) ((pVfs)->szOsFile)
2324 #if SQLITE_MAX_EXPR_DEPTH>0
2325 void sqlite3ExprSetHeight(Parse *pParse, Expr *p);
2326 int sqlite3SelectExprHeight(Select *);
2328 #define sqlite3ExprSetHeight(x,y)
2329 #define sqlite3SelectExprHeight(x) 0
2332 u32 sqlite3Get4byte(const u8*);
2333 void sqlite3Put4byte(u8*, u32);
2340 void sqlite3ParserTrace(FILE*, char *);
2344 ** If the SQLITE_ENABLE IOTRACE exists then the global variable
2345 ** sqlite3IoTrace is a pointer to a printf-like routine used to
2346 ** print I/O tracing messages.
2348 #ifdef SQLITE_ENABLE_IOTRACE
2349 # define IOTRACE(A) if( sqlite3IoTrace ){ sqlite3IoTrace A; }
2350 void sqlite3VdbeIOTraceSql(Vdbe*);
2351 SQLITE_EXTERN void (*sqlite3IoTrace)(const char*,...);
2354 # define sqlite3VdbeIOTraceSql(X)