os/ossrv/ssl/libcrypto/src/crypto/bn/bn_lcl.h
author sl
Tue, 10 Jun 2014 14:32:02 +0200
changeset 1 260cb5ec6c19
permissions -rw-r--r--
Update contrib.
     1 /* crypto/bn/bn_lcl.h */
     2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
     3  * All rights reserved.
     4  *
     5  * This package is an SSL implementation written
     6  * by Eric Young (eay@cryptsoft.com).
     7  * The implementation was written so as to conform with Netscapes SSL.
     8  * 
     9  * This library is free for commercial and non-commercial use as long as
    10  * the following conditions are aheared to.  The following conditions
    11  * apply to all code found in this distribution, be it the RC4, RSA,
    12  * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
    13  * included with this distribution is covered by the same copyright terms
    14  * except that the holder is Tim Hudson (tjh@cryptsoft.com).
    15  * 
    16  * Copyright remains Eric Young's, and as such any Copyright notices in
    17  * the code are not to be removed.
    18  * If this package is used in a product, Eric Young should be given attribution
    19  * as the author of the parts of the library used.
    20  * This can be in the form of a textual message at program startup or
    21  * in documentation (online or textual) provided with the package.
    22  * 
    23  * Redistribution and use in source and binary forms, with or without
    24  * modification, are permitted provided that the following conditions
    25  * are met:
    26  * 1. Redistributions of source code must retain the copyright
    27  *    notice, this list of conditions and the following disclaimer.
    28  * 2. Redistributions in binary form must reproduce the above copyright
    29  *    notice, this list of conditions and the following disclaimer in the
    30  *    documentation and/or other materials provided with the distribution.
    31  * 3. All advertising materials mentioning features or use of this software
    32  *    must display the following acknowledgement:
    33  *    "This product includes cryptographic software written by
    34  *     Eric Young (eay@cryptsoft.com)"
    35  *    The word 'cryptographic' can be left out if the rouines from the library
    36  *    being used are not cryptographic related :-).
    37  * 4. If you include any Windows specific code (or a derivative thereof) from 
    38  *    the apps directory (application code) you must include an acknowledgement:
    39  *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
    40  * 
    41  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
    42  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
    43  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
    44  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
    45  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
    46  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
    47  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
    48  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
    49  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
    50  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
    51  * SUCH DAMAGE.
    52  * 
    53  * The licence and distribution terms for any publically available version or
    54  * derivative of this code cannot be changed.  i.e. this code cannot simply be
    55  * copied and put under another distribution licence
    56  * [including the GNU Public Licence.]
    57  */
    58 /* ====================================================================
    59  * Copyright (c) 1998-2000 The OpenSSL Project.  All rights reserved.
    60  *
    61  * Redistribution and use in source and binary forms, with or without
    62  * modification, are permitted provided that the following conditions
    63  * are met:
    64  *
    65  * 1. Redistributions of source code must retain the above copyright
    66  *    notice, this list of conditions and the following disclaimer. 
    67  *
    68  * 2. Redistributions in binary form must reproduce the above copyright
    69  *    notice, this list of conditions and the following disclaimer in
    70  *    the documentation and/or other materials provided with the
    71  *    distribution.
    72  *
    73  * 3. All advertising materials mentioning features or use of this
    74  *    software must display the following acknowledgment:
    75  *    "This product includes software developed by the OpenSSL Project
    76  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
    77  *
    78  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
    79  *    endorse or promote products derived from this software without
    80  *    prior written permission. For written permission, please contact
    81  *    openssl-core@openssl.org.
    82  *
    83  * 5. Products derived from this software may not be called "OpenSSL"
    84  *    nor may "OpenSSL" appear in their names without prior written
    85  *    permission of the OpenSSL Project.
    86  *
    87  * 6. Redistributions of any form whatsoever must retain the following
    88  *    acknowledgment:
    89  *    "This product includes software developed by the OpenSSL Project
    90  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
    91  *
    92  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
    93  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
    94  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
    95  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
    96  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
    97  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
    98  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
    99  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   100  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
   101  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
   102  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
   103  * OF THE POSSIBILITY OF SUCH DAMAGE.
   104  * ====================================================================
   105  *
   106  * This product includes cryptographic software written by Eric Young
   107  * (eay@cryptsoft.com).  This product includes software written by Tim
   108  * Hudson (tjh@cryptsoft.com).
   109  *
   110  */
   111 
   112 #ifndef HEADER_BN_LCL_H
   113 #define HEADER_BN_LCL_H
   114 
   115 #include <openssl/bn.h>
   116 
   117 #ifdef  __cplusplus
   118 extern "C" {
   119 #endif
   120 
   121 
   122 /*
   123  * BN_window_bits_for_exponent_size -- macro for sliding window mod_exp functions
   124  *
   125  *
   126  * For window size 'w' (w >= 2) and a random 'b' bits exponent,
   127  * the number of multiplications is a constant plus on average
   128  *
   129  *    2^(w-1) + (b-w)/(w+1);
   130  *
   131  * here  2^(w-1)  is for precomputing the table (we actually need
   132  * entries only for windows that have the lowest bit set), and
   133  * (b-w)/(w+1)  is an approximation for the expected number of
   134  * w-bit windows, not counting the first one.
   135  *
   136  * Thus we should use
   137  *
   138  *    w >= 6  if        b > 671
   139  *     w = 5  if  671 > b > 239
   140  *     w = 4  if  239 > b >  79
   141  *     w = 3  if   79 > b >  23
   142  *    w <= 2  if   23 > b
   143  *
   144  * (with draws in between).  Very small exponents are often selected
   145  * with low Hamming weight, so we use  w = 1  for b <= 23.
   146  */
   147 #if 1
   148 #define BN_window_bits_for_exponent_size(b) \
   149 		((b) > 671 ? 6 : \
   150 		 (b) > 239 ? 5 : \
   151 		 (b) >  79 ? 4 : \
   152 		 (b) >  23 ? 3 : 1)
   153 #else
   154 /* Old SSLeay/OpenSSL table.
   155  * Maximum window size was 5, so this table differs for b==1024;
   156  * but it coincides for other interesting values (b==160, b==512).
   157  */
   158 #define BN_window_bits_for_exponent_size(b) \
   159 		((b) > 255 ? 5 : \
   160 		 (b) > 127 ? 4 : \
   161 		 (b) >  17 ? 3 : 1)
   162 #endif	 
   163 
   164 
   165 
   166 /* BN_mod_exp_mont_conttime is based on the assumption that the
   167  * L1 data cache line width of the target processor is at least
   168  * the following value.
   169  */
   170 #define MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH	( 64 )
   171 #define MOD_EXP_CTIME_MIN_CACHE_LINE_MASK	(MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH - 1)
   172 
   173 /* Window sizes optimized for fixed window size modular exponentiation
   174  * algorithm (BN_mod_exp_mont_consttime).
   175  *
   176  * To achieve the security goals of BN_mode_exp_mont_consttime, the
   177  * maximum size of the window must not exceed
   178  * log_2(MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH). 
   179  *
   180  * Window size thresholds are defined for cache line sizes of 32 and 64,
   181  * cache line sizes where log_2(32)=5 and log_2(64)=6 respectively. A
   182  * window size of 7 should only be used on processors that have a 128
   183  * byte or greater cache line size.
   184  */
   185 #if MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH == 64
   186 
   187 #  define BN_window_bits_for_ctime_exponent_size(b) \
   188 		((b) > 937 ? 6 : \
   189 		 (b) > 306 ? 5 : \
   190 		 (b) >  89 ? 4 : \
   191 		 (b) >  22 ? 3 : 1)
   192 #  define BN_MAX_WINDOW_BITS_FOR_CTIME_EXPONENT_SIZE	(6)
   193 
   194 #elif MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH == 32
   195 
   196 #  define BN_window_bits_for_ctime_exponent_size(b) \
   197 		((b) > 306 ? 5 : \
   198 		 (b) >  89 ? 4 : \
   199 		 (b) >  22 ? 3 : 1)
   200 #  define BN_MAX_WINDOW_BITS_FOR_CTIME_EXPONENT_SIZE	(5)
   201 
   202 #endif
   203 
   204 
   205 /* Pentium pro 16,16,16,32,64 */
   206 /* Alpha       16,16,16,16.64 */
   207 #define BN_MULL_SIZE_NORMAL			(16) /* 32 */
   208 #define BN_MUL_RECURSIVE_SIZE_NORMAL		(16) /* 32 less than */
   209 #define BN_SQR_RECURSIVE_SIZE_NORMAL		(16) /* 32 */
   210 #define BN_MUL_LOW_RECURSIVE_SIZE_NORMAL	(32) /* 32 */
   211 #define BN_MONT_CTX_SET_SIZE_WORD		(64) /* 32 */
   212 
   213 #if !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM) && !defined(PEDANTIC)
   214 /*
   215  * BN_UMULT_HIGH section.
   216  *
   217  * No, I'm not trying to overwhelm you when stating that the
   218  * product of N-bit numbers is 2*N bits wide:-) No, I don't expect
   219  * you to be impressed when I say that if the compiler doesn't
   220  * support 2*N integer type, then you have to replace every N*N
   221  * multiplication with 4 (N/2)*(N/2) accompanied by some shifts
   222  * and additions which unavoidably results in severe performance
   223  * penalties. Of course provided that the hardware is capable of
   224  * producing 2*N result... That's when you normally start
   225  * considering assembler implementation. However! It should be
   226  * pointed out that some CPUs (most notably Alpha, PowerPC and
   227  * upcoming IA-64 family:-) provide *separate* instruction
   228  * calculating the upper half of the product placing the result
   229  * into a general purpose register. Now *if* the compiler supports
   230  * inline assembler, then it's not impossible to implement the
   231  * "bignum" routines (and have the compiler optimize 'em)
   232  * exhibiting "native" performance in C. That's what BN_UMULT_HIGH
   233  * macro is about:-)
   234  *
   235  *					<appro@fy.chalmers.se>
   236  */
   237 # if defined(__alpha) && (defined(SIXTY_FOUR_BIT_LONG) || defined(SIXTY_FOUR_BIT))
   238 #  if defined(__DECC)
   239 #   include <c_asm.h>
   240 #   define BN_UMULT_HIGH(a,b)	(BN_ULONG)asm("umulh %a0,%a1,%v0",(a),(b))
   241 #  elif defined(__GNUC__)
   242 #   define BN_UMULT_HIGH(a,b)	({	\
   243 	register BN_ULONG ret;		\
   244 	asm ("umulh	%1,%2,%0"	\
   245 	     : "=r"(ret)		\
   246 	     : "r"(a), "r"(b));		\
   247 	ret;			})
   248 #  endif	/* compiler */
   249 # elif defined(_ARCH_PPC) && defined(__64BIT__) && defined(SIXTY_FOUR_BIT_LONG)
   250 #  if defined(__GNUC__)
   251 #   define BN_UMULT_HIGH(a,b)	({	\
   252 	register BN_ULONG ret;		\
   253 	asm ("mulhdu	%0,%1,%2"	\
   254 	     : "=r"(ret)		\
   255 	     : "r"(a), "r"(b));		\
   256 	ret;			})
   257 #  endif	/* compiler */
   258 # elif defined(__x86_64) && defined(SIXTY_FOUR_BIT_LONG)
   259 #  if defined(__GNUC__)
   260 #   define BN_UMULT_HIGH(a,b)	({	\
   261 	register BN_ULONG ret,discard;	\
   262 	asm ("mulq	%3"		\
   263 	     : "=a"(discard),"=d"(ret)	\
   264 	     : "a"(a), "g"(b)		\
   265 	     : "cc");			\
   266 	ret;			})
   267 #   define BN_UMULT_LOHI(low,high,a,b)	\
   268 	asm ("mulq	%3"		\
   269 		: "=a"(low),"=d"(high)	\
   270 		: "a"(a),"g"(b)		\
   271 		: "cc");
   272 #  endif
   273 # elif (defined(_M_AMD64) || defined(_M_X64)) && defined(SIXTY_FOUR_BIT)
   274 #  if defined(_MSC_VER) && _MSC_VER>=1400
   275     unsigned __int64 __umulh	(unsigned __int64 a,unsigned __int64 b);
   276     unsigned __int64 _umul128	(unsigned __int64 a,unsigned __int64 b,
   277 				 unsigned __int64 *h);
   278 #   pragma intrinsic(__umulh,_umul128)
   279 #   define BN_UMULT_HIGH(a,b)		__umulh((a),(b))
   280 #   define BN_UMULT_LOHI(low,high,a,b)	((low)=_umul128((a),(b),&(high)))
   281 #  endif
   282 # endif		/* cpu */
   283 #endif		/* OPENSSL_NO_ASM */
   284 
   285 /*************************************************************
   286  * Using the long long type
   287  */
   288 #define Lw(t)    (((BN_ULONG)(t))&BN_MASK2)
   289 #define Hw(t)    (((BN_ULONG)((t)>>BN_BITS2))&BN_MASK2)
   290 
   291 #ifdef BN_DEBUG_RAND
   292 #define bn_clear_top2max(a) \
   293 	{ \
   294 	int      ind = (a)->dmax - (a)->top; \
   295 	BN_ULONG *ftl = &(a)->d[(a)->top-1]; \
   296 	for (; ind != 0; ind--) \
   297 		*(++ftl) = 0x0; \
   298 	}
   299 #else
   300 #define bn_clear_top2max(a)
   301 #endif
   302 
   303 #ifdef BN_LLONG
   304 #define mul_add(r,a,w,c) { \
   305 	BN_ULLONG t; \
   306 	t=(BN_ULLONG)w * (a) + (r) + (c); \
   307 	(r)= Lw(t); \
   308 	(c)= Hw(t); \
   309 	}
   310 
   311 #define mul(r,a,w,c) { \
   312 	BN_ULLONG t; \
   313 	t=(BN_ULLONG)w * (a) + (c); \
   314 	(r)= Lw(t); \
   315 	(c)= Hw(t); \
   316 	}
   317 
   318 #define sqr(r0,r1,a) { \
   319 	BN_ULLONG t; \
   320 	t=(BN_ULLONG)(a)*(a); \
   321 	(r0)=Lw(t); \
   322 	(r1)=Hw(t); \
   323 	}
   324 
   325 #elif defined(BN_UMULT_LOHI)
   326 #define mul_add(r,a,w,c) {		\
   327 	BN_ULONG high,low,ret,tmp=(a);	\
   328 	ret =  (r);			\
   329 	BN_UMULT_LOHI(low,high,w,tmp);	\
   330 	ret += (c);			\
   331 	(c) =  (ret<(c))?1:0;		\
   332 	(c) += high;			\
   333 	ret += low;			\
   334 	(c) += (ret<low)?1:0;		\
   335 	(r) =  ret;			\
   336 	}
   337 
   338 #define mul(r,a,w,c)	{		\
   339 	BN_ULONG high,low,ret,ta=(a);	\
   340 	BN_UMULT_LOHI(low,high,w,ta);	\
   341 	ret =  low + (c);		\
   342 	(c) =  high;			\
   343 	(c) += (ret<low)?1:0;		\
   344 	(r) =  ret;			\
   345 	}
   346 
   347 #define sqr(r0,r1,a)	{		\
   348 	BN_ULONG tmp=(a);		\
   349 	BN_UMULT_LOHI(r0,r1,tmp,tmp);	\
   350 	}
   351 
   352 #elif defined(BN_UMULT_HIGH)
   353 #define mul_add(r,a,w,c) {		\
   354 	BN_ULONG high,low,ret,tmp=(a);	\
   355 	ret =  (r);			\
   356 	high=  BN_UMULT_HIGH(w,tmp);	\
   357 	ret += (c);			\
   358 	low =  (w) * tmp;		\
   359 	(c) =  (ret<(c))?1:0;		\
   360 	(c) += high;			\
   361 	ret += low;			\
   362 	(c) += (ret<low)?1:0;		\
   363 	(r) =  ret;			\
   364 	}
   365 
   366 #define mul(r,a,w,c)	{		\
   367 	BN_ULONG high,low,ret,ta=(a);	\
   368 	low =  (w) * ta;		\
   369 	high=  BN_UMULT_HIGH(w,ta);	\
   370 	ret =  low + (c);		\
   371 	(c) =  high;			\
   372 	(c) += (ret<low)?1:0;		\
   373 	(r) =  ret;			\
   374 	}
   375 
   376 #define sqr(r0,r1,a)	{		\
   377 	BN_ULONG tmp=(a);		\
   378 	(r0) = tmp * tmp;		\
   379 	(r1) = BN_UMULT_HIGH(tmp,tmp);	\
   380 	}
   381 
   382 #else
   383 /*************************************************************
   384  * No long long type
   385  */
   386 
   387 #define LBITS(a)	((a)&BN_MASK2l)
   388 #define HBITS(a)	(((a)>>BN_BITS4)&BN_MASK2l)
   389 #define	L2HBITS(a)	(((a)<<BN_BITS4)&BN_MASK2)
   390 
   391 #define LLBITS(a)	((a)&BN_MASKl)
   392 #define LHBITS(a)	(((a)>>BN_BITS2)&BN_MASKl)
   393 #define	LL2HBITS(a)	((BN_ULLONG)((a)&BN_MASKl)<<BN_BITS2)
   394 
   395 #define mul64(l,h,bl,bh) \
   396 	{ \
   397 	BN_ULONG m,m1,lt,ht; \
   398  \
   399 	lt=l; \
   400 	ht=h; \
   401 	m =(bh)*(lt); \
   402 	lt=(bl)*(lt); \
   403 	m1=(bl)*(ht); \
   404 	ht =(bh)*(ht); \
   405 	m=(m+m1)&BN_MASK2; if (m < m1) ht+=L2HBITS((BN_ULONG)1); \
   406 	ht+=HBITS(m); \
   407 	m1=L2HBITS(m); \
   408 	lt=(lt+m1)&BN_MASK2; if (lt < m1) ht++; \
   409 	(l)=lt; \
   410 	(h)=ht; \
   411 	}
   412 
   413 #define sqr64(lo,ho,in) \
   414 	{ \
   415 	BN_ULONG l,h,m; \
   416  \
   417 	h=(in); \
   418 	l=LBITS(h); \
   419 	h=HBITS(h); \
   420 	m =(l)*(h); \
   421 	l*=l; \
   422 	h*=h; \
   423 	h+=(m&BN_MASK2h1)>>(BN_BITS4-1); \
   424 	m =(m&BN_MASK2l)<<(BN_BITS4+1); \
   425 	l=(l+m)&BN_MASK2; if (l < m) h++; \
   426 	(lo)=l; \
   427 	(ho)=h; \
   428 	}
   429 
   430 #define mul_add(r,a,bl,bh,c) { \
   431 	BN_ULONG l,h; \
   432  \
   433 	h= (a); \
   434 	l=LBITS(h); \
   435 	h=HBITS(h); \
   436 	mul64(l,h,(bl),(bh)); \
   437  \
   438 	/* non-multiply part */ \
   439 	l=(l+(c))&BN_MASK2; if (l < (c)) h++; \
   440 	(c)=(r); \
   441 	l=(l+(c))&BN_MASK2; if (l < (c)) h++; \
   442 	(c)=h&BN_MASK2; \
   443 	(r)=l; \
   444 	}
   445 
   446 #define mul(r,a,bl,bh,c) { \
   447 	BN_ULONG l,h; \
   448  \
   449 	h= (a); \
   450 	l=LBITS(h); \
   451 	h=HBITS(h); \
   452 	mul64(l,h,(bl),(bh)); \
   453  \
   454 	/* non-multiply part */ \
   455 	l+=(c); if ((l&BN_MASK2) < (c)) h++; \
   456 	(c)=h&BN_MASK2; \
   457 	(r)=l&BN_MASK2; \
   458 	}
   459 #endif /* !BN_LLONG */
   460 
   461 void bn_mul_normal(BN_ULONG *r,BN_ULONG *a,int na,BN_ULONG *b,int nb);
   462 IMPORT_C void bn_mul_comba8(BN_ULONG *r,BN_ULONG *a,BN_ULONG *b);
   463 IMPORT_C void bn_mul_comba4(BN_ULONG *r,BN_ULONG *a,BN_ULONG *b);
   464 void bn_sqr_normal(BN_ULONG *r, const BN_ULONG *a, int n, BN_ULONG *tmp);
   465 IMPORT_C void bn_sqr_comba8(BN_ULONG *r,const BN_ULONG *a);
   466 IMPORT_C void bn_sqr_comba4(BN_ULONG *r,const BN_ULONG *a);
   467 IMPORT_C int bn_cmp_words(const BN_ULONG *a,const BN_ULONG *b,int n);
   468 IMPORT_C int bn_cmp_part_words(const BN_ULONG *a, const BN_ULONG *b,
   469 	int cl, int dl);
   470 void bn_mul_recursive(BN_ULONG *r,BN_ULONG *a,BN_ULONG *b,int n2,
   471 	int dna,int dnb,BN_ULONG *t);
   472 void bn_mul_part_recursive(BN_ULONG *r,BN_ULONG *a,BN_ULONG *b,
   473 	int n,int tna,int tnb,BN_ULONG *t);
   474 void bn_sqr_recursive(BN_ULONG *r,const BN_ULONG *a, int n2, BN_ULONG *t);
   475 void bn_mul_low_normal(BN_ULONG *r,BN_ULONG *a,BN_ULONG *b, int n);
   476 void bn_mul_low_recursive(BN_ULONG *r,BN_ULONG *a,BN_ULONG *b,int n2,
   477 	BN_ULONG *t);
   478 void bn_mul_high(BN_ULONG *r,BN_ULONG *a,BN_ULONG *b,BN_ULONG *l,int n2,
   479 	BN_ULONG *t);
   480 BN_ULONG bn_add_part_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b,
   481 	int cl, int dl);
   482 BN_ULONG bn_sub_part_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b,
   483 	int cl, int dl);
   484 
   485 #ifdef  __cplusplus
   486 }
   487 #endif
   488 
   489 #endif