First public contribution.
4 * (C) Copyright IBM Corp. 1998-2005 - All Rights Reserved
8 #ifndef __LEFONTINSTANCE_H
9 #define __LEFONTINSTANCE_H
14 * \brief C++ API: Layout Engine Font Instance object
20 * Instances of this class are used by <code>LEFontInstance::mapCharsToGlyphs</code> and
21 * <code>LEFontInstance::mapCharToGlyph</code> to adjust character codes before the character
22 * to glyph mapping process. Examples of this are filtering out control characters
23 * and character mirroring - replacing a character which has both a left and a right
24 * hand form with the opposite form.
28 class LECharMapper /* not : public UObject because this is an interface/mixin class */
35 virtual inline ~LECharMapper() {};
38 * This method does the adjustments.
40 * @param ch - the input character
42 * @return the adjusted character
46 virtual LEUnicode32 mapChar(LEUnicode32 ch) const = 0;
50 * This is a forward reference to the class which holds the per-glyph
58 * This is a virtual base class that serves as the interface between a LayoutEngine
59 * and the platform font environment. It allows a LayoutEngine to access font tables, do
60 * character to glyph mapping, and obtain metrics information without knowing any platform
61 * specific details. There are also a few utility methods for converting between points,
62 * pixels and funits. (font design units)
64 * An instance of an <code>LEFontInstance</code> represents a font at a particular point
65 * size. Each instance can represent either a single physical font, or a composite font.
66 * A composite font is a collection of physical fonts, each of which contains a subset of
67 * the characters contained in the composite font.
69 * Note: with the exception of <code>getSubFont</code>, the methods in this class only
70 * make sense for a physical font. If you have an <code>LEFontInstance</code> which
71 * represents a composite font you should only call the methods below which have
72 * an <code>LEGlyphID</code>, an <code>LEUnicode</code> or an <code>LEUnicode32</code>
73 * as one of the arguments because these can be used to select a particular subfont.
75 * Subclasses which implement composite fonts should supply an implementation of these
76 * methods with some default behavior such as returning constant values, or using the
77 * values from the first subfont.
81 class U_LAYOUT_API LEFontInstance : public UObject
86 * This virtual destructor is here so that the subclass
87 * destructors can be invoked through the base class.
91 virtual inline ~LEFontInstance() {};
94 * Get a physical font which can render the given text. For composite fonts,
95 * if there is no single physical font which can render all of the text,
96 * return a physical font which can render an initial substring of the text,
97 * and set the <code>offset</code> parameter to the end of that substring.
99 * Internally, the LayoutEngine works with runs of text all in the same
100 * font and script, so it is best to call this method with text which is
101 * in a single script, passing the script code in as a hint. If you don't
102 * know the script of the text, you can use zero, which is the script code
103 * for characters used in more than one script.
105 * The default implementation of this method is intended for instances of
106 * <code>LEFontInstance</code> which represent a physical font. It returns
107 * <code>this</code> and indicates that the entire string can be rendered.
109 * This method will return a valid <code>LEFontInstance</code> unless you
110 * have passed illegal parameters, or an internal error has been encountered.
111 * For composite fonts, it may return the warning <code>LE_NO_SUBFONT_WARNING</code>
112 * to indicate that the returned font may not be able to render all of
113 * the text. Whenever a valid font is returned, the <code>offset</code> parameter
114 * will be advanced by at least one.
116 * Subclasses which implement composite fonts must override this method.
117 * Where it makes sense, they should use the script code as a hint to render
118 * characters from the COMMON script in the font which is used for the given
119 * script. For example, if the input text is a series of Arabic words separated
120 * by spaces, and the script code passed in is <code>arabScriptCode</code> you
121 * should return the font used for Arabic characters for all of the input text,
122 * including the spaces. If, on the other hand, the input text contains characters
123 * which cannot be rendered by the font used for Arabic characters, but which can
124 * be rendered by another font, you should return that font for those characters.
126 * @param chars - the array of Unicode characters.
127 * @param offset - a pointer to the starting offset in the text. On exit this
128 * will be set the the limit offset of the text which can be
129 * rendered using the returned font.
130 * @param limit - the limit offset for the input text.
131 * @param script - the script hint.
132 * @param success - set to an error code if the arguments are illegal, or no font
133 * can be returned for some reason. May also be set to
134 * <code>LE_NO_SUBFONT_WARNING</code> if the subfont which
135 * was returned cannot render all of the text.
137 * @return an <code>LEFontInstance</code> for the sub font which can render the characters, or
138 * <code>NULL</code> if there is an error.
144 virtual const LEFontInstance *getSubFont(const LEUnicode chars[], le_int32 *offset, le_int32 limit, le_int32 script, LEErrorCode &success) const;
151 * This method reads a table from the font. Note that in general,
152 * it only makes sense to call this method on an <code>LEFontInstance</code>
153 * which represents a physical font - i.e. one which has been returned by
154 * <code>getSubFont()</code>. This is because each subfont in a composite font
155 * will have different tables, and there's no way to know which subfont to access.
157 * Subclasses which represent composite fonts should always return <code>NULL</code>.
159 * @param tableTag - the four byte table tag. (e.g. 'cmap')
161 * @return the address of the table in memory, or <code>NULL</code>
162 * if the table doesn't exist.
166 virtual const void *getFontTable(LETag tableTag) const = 0;
169 * This method is used to determine if the font can
170 * render the given character. This can usually be done
171 * by looking the character up in the font's character
174 * The default implementation of this method will return
175 * <code>TRUE</code> if <code>mapCharToGlyph(ch)</code>
176 * returns a non-zero value.
178 * @param ch - the character to be tested
180 * @return <code>TRUE</code> if the font can render ch.
184 virtual inline le_bool canDisplay(LEUnicode32 ch) const;
187 * This method returns the number of design units in
188 * the font's EM square.
190 * @return the number of design units pre EM.
194 virtual le_int32 getUnitsPerEM() const = 0;
197 * This method maps an array of character codes to an array of glyph
198 * indices, using the font's character to glyph map.
200 * The default implementation iterates over all of the characters and calls
201 * <code>mapCharToGlyph(ch, mapper)</code> on each one. It also handles surrogate
202 * characters, storing the glyph ID for the high surrogate, and a deleted glyph (0xFFFF)
203 * for the low surrogate.
205 * Most sublcasses will not need to implement this method.
207 * @param chars - the character array
208 * @param offset - the index of the first character
209 * @param count - the number of characters
210 * @param reverse - if <code>TRUE</code>, store the glyph indices in reverse order.
211 * @param mapper - the character mapper.
212 * @param glyphStorage - the object which contains the output glyph array
218 virtual void mapCharsToGlyphs(const LEUnicode chars[], le_int32 offset, le_int32 count, le_bool reverse, const LECharMapper *mapper, LEGlyphStorage &glyphStorage) const;
221 * This method maps a single character to a glyph index, using the
222 * font's character to glyph map. The default implementation of this
223 * method calls the mapper, and then calls <code>mapCharToGlyph(mappedCh)</code>.
225 * @param ch - the character
226 * @param mapper - the character mapper
228 * @return the glyph index
234 virtual LEGlyphID mapCharToGlyph(LEUnicode32 ch, const LECharMapper *mapper) const;
237 * This method maps a single character to a glyph index, using the
238 * font's character to glyph map. There is no default implementation
239 * of this method because it requires information about the platform
240 * font implementation.
242 * @param ch - the character
244 * @return the glyph index
248 virtual LEGlyphID mapCharToGlyph(LEUnicode32 ch) const = 0;
255 * This method gets the X and Y advance of a particular glyph, in pixels.
257 * @param glyph - the glyph index
258 * @param advance - the X and Y pixel values will be stored here
262 virtual void getGlyphAdvance(LEGlyphID glyph, LEPoint &advance) const = 0;
265 * This method gets the hinted X and Y pixel coordinates of a particular
266 * point in the outline of the given glyph.
268 * @param glyph - the glyph index
269 * @param pointNumber - the number of the point
270 * @param point - the point's X and Y pixel values will be stored here
272 * @return <code>TRUE</code> if the point coordinates could be stored.
276 virtual le_bool getGlyphPoint(LEGlyphID glyph, le_int32 pointNumber, LEPoint &point) const = 0;
279 * This method returns the width of the font's EM square
282 * @return the pixel width of the EM square
286 virtual float getXPixelsPerEm() const = 0;
289 * This method returns the height of the font's EM square
292 * @return the pixel height of the EM square
296 virtual float getYPixelsPerEm() const = 0;
299 * This method converts font design units in the
300 * X direction to points.
302 * @param xUnits - design units in the X direction
304 * @return points in the X direction
308 virtual inline float xUnitsToPoints(float xUnits) const;
311 * This method converts font design units in the
312 * Y direction to points.
314 * @param yUnits - design units in the Y direction
316 * @return points in the Y direction
320 virtual inline float yUnitsToPoints(float yUnits) const;
323 * This method converts font design units to points.
325 * @param units - X and Y design units
326 * @param points - set to X and Y points
330 virtual inline void unitsToPoints(LEPoint &units, LEPoint &points) const;
333 * This method converts pixels in the
334 * X direction to font design units.
336 * @param xPixels - pixels in the X direction
338 * @return font design units in the X direction
342 virtual inline float xPixelsToUnits(float xPixels) const;
345 * This method converts pixels in the
346 * Y direction to font design units.
348 * @param yPixels - pixels in the Y direction
350 * @return font design units in the Y direction
354 virtual inline float yPixelsToUnits(float yPixels) const;
357 * This method converts pixels to font design units.
359 * @param pixels - X and Y pixel
360 * @param units - set to X and Y font design units
364 virtual inline void pixelsToUnits(LEPoint &pixels, LEPoint &units) const;
367 * Get the X scale factor from the font's transform. The default
368 * implementation of <code>transformFunits()</code> will call this method.
370 * @return the X scale factor.
373 * @see transformFunits
377 virtual float getScaleFactorX() const = 0;
380 * Get the Y scale factor from the font's transform. The default
381 * implementation of <code>transformFunits()</code> will call this method.
383 * @return the Yscale factor.
385 * @see transformFunits
389 virtual float getScaleFactorY() const = 0;
392 * This method transforms an X, Y point in font design units to a
393 * pixel coordinate, applying the font's transform. The default
394 * implementation of this method calls <code>getScaleFactorX()</code>
395 * and <code>getScaleFactorY()</code>.
397 * @param xFunits - the X coordinate in font design units
398 * @param yFunits - the Y coordinate in font design units
399 * @param pixels - the tranformed co-ordinate in pixels
401 * @see getScaleFactorX
402 * @see getScaleFactorY
406 virtual inline void transformFunits(float xFunits, float yFunits, LEPoint &pixels) const;
409 * This is a convenience method used to convert
410 * values in a 16.16 fixed point format to floating point.
412 * @param fixed - the fixed point value
414 * @return the floating point value
418 static inline float fixedToFloat(le_int32 fixed);
421 * This is a convenience method used to convert
422 * floating point values to 16.16 fixed point format.
424 * @param theFloat - the floating point value
426 * @return the fixed point value
430 static inline le_int32 floatToFixed(float theFloat);
433 // These methods won't ever be called by the LayoutEngine,
434 // but are useful for clients of <code>LEFontInstance</code> who
435 // need to render text.
439 * Get the font's ascent.
441 * @return the font's ascent, in points. This value
442 * will always be positive.
446 virtual le_int32 getAscent() const = 0;
449 * Get the font's descent.
451 * @return the font's descent, in points. This value
452 * will always be positive.
456 virtual le_int32 getDescent() const = 0;
459 * Get the font's leading.
461 * @return the font's leading, in points. This value
462 * will always be positive.
466 virtual le_int32 getLeading() const = 0;
469 * Get the line height required to display text in
470 * this font. The default implementation of this method
471 * returns the sum of the ascent, descent, and leading.
473 * @return the line height, in points. This vaule will
474 * always be positive.
478 virtual le_int32 getLineHeight() const;
481 * ICU "poor man's RTTI", returns a UClassID for the actual class.
485 virtual UClassID getDynamicClassID() const;
488 * ICU "poor man's RTTI", returns a UClassID for this class.
492 static UClassID getStaticClassID();
496 inline le_bool LEFontInstance::canDisplay(LEUnicode32 ch) const
498 return LE_GET_GLYPH(mapCharToGlyph(ch)) != 0;
501 inline float LEFontInstance::xUnitsToPoints(float xUnits) const
503 return (xUnits * getXPixelsPerEm()) / (float) getUnitsPerEM();
506 inline float LEFontInstance::yUnitsToPoints(float yUnits) const
508 return (yUnits * getYPixelsPerEm()) / (float) getUnitsPerEM();
511 inline void LEFontInstance::unitsToPoints(LEPoint &units, LEPoint &points) const
513 points.fX = xUnitsToPoints(units.fX);
514 points.fY = yUnitsToPoints(units.fY);
517 inline float LEFontInstance::xPixelsToUnits(float xPixels) const
519 return (xPixels * getUnitsPerEM()) / (float) getXPixelsPerEm();
522 inline float LEFontInstance::yPixelsToUnits(float yPixels) const
524 return (yPixels * getUnitsPerEM()) / (float) getYPixelsPerEm();
527 inline void LEFontInstance::pixelsToUnits(LEPoint &pixels, LEPoint &units) const
529 units.fX = xPixelsToUnits(pixels.fX);
530 units.fY = yPixelsToUnits(pixels.fY);
533 inline void LEFontInstance::transformFunits(float xFunits, float yFunits, LEPoint &pixels) const
535 pixels.fX = xUnitsToPoints(xFunits) * getScaleFactorX();
536 pixels.fY = yUnitsToPoints(yFunits) * getScaleFactorY();
539 inline float LEFontInstance::fixedToFloat(le_int32 fixed)
541 return (float) (fixed / 65536.0);
544 inline le_int32 LEFontInstance::floatToFixed(float theFloat)
546 return (le_int32) (theFloat * 65536.0);
549 inline le_int32 LEFontInstance::getLineHeight() const
551 return getAscent() + getDescent() + getLeading();