os/textandloc/fontservices/textshaperplugin/IcuSource/layout/LEFontInstance.h
author sl@SLION-WIN7.fritz.box
Fri, 15 Jun 2012 03:10:57 +0200
changeset 0 bde4ae8d615e
permissions -rw-r--r--
First public contribution.
     1 
     2 /*
     3  *
     4  * (C) Copyright IBM Corp. 1998-2005 - All Rights Reserved
     5  *
     6  */
     7 
     8 #ifndef __LEFONTINSTANCE_H
     9 #define __LEFONTINSTANCE_H
    10 
    11 #include "LETypes.h"
    12 /**
    13  * \file 
    14  * \brief C++ API: Layout Engine Font Instance object
    15  */
    16 
    17 U_NAMESPACE_BEGIN
    18 
    19 /**
    20  * Instances of this class are used by <code>LEFontInstance::mapCharsToGlyphs</code> and
    21  * <code>LEFontInstance::mapCharToGlyph</code> to adjust character codes before the character
    22  * to glyph mapping process. Examples of this are filtering out control characters
    23  * and character mirroring - replacing a character which has both a left and a right
    24  * hand form with the opposite form.
    25  *
    26  * @stable ICU 3.2
    27  */
    28 class LECharMapper /* not : public UObject because this is an interface/mixin class */
    29 {
    30 public:
    31     /**
    32      * Destructor.
    33      * @stable ICU 3.2
    34      */
    35     virtual inline ~LECharMapper() {};
    36 
    37     /**
    38      * This method does the adjustments.
    39      *
    40      * @param ch - the input character
    41      *
    42      * @return the adjusted character
    43      *
    44      * @stable ICU 2.8
    45      */
    46     virtual LEUnicode32 mapChar(LEUnicode32 ch) const = 0;
    47 };
    48 
    49 /**
    50  * This is a forward reference to the class which holds the per-glyph
    51  * storage.
    52  *
    53  * @draft ICU 3.0
    54  */
    55 class LEGlyphStorage;
    56 
    57 /**
    58  * This is a virtual base class that serves as the interface between a LayoutEngine
    59  * and the platform font environment. It allows a LayoutEngine to access font tables, do
    60  * character to glyph mapping, and obtain metrics information without knowing any platform
    61  * specific details. There are also a few utility methods for converting between points,
    62  * pixels and funits. (font design units)
    63  *
    64  * An instance of an <code>LEFontInstance</code> represents a font at a particular point
    65  * size. Each instance can represent either a single physical font, or a composite font.
    66  * A composite font is a collection of physical fonts, each of which contains a subset of
    67  * the characters contained in the composite font.
    68  *
    69  * Note: with the exception of <code>getSubFont</code>, the methods in this class only
    70  * make sense for a physical font. If you have an <code>LEFontInstance</code> which
    71  * represents a composite font you should only call the methods below which have
    72  * an <code>LEGlyphID</code>, an <code>LEUnicode</code> or an <code>LEUnicode32</code>
    73  * as one of the arguments because these can be used to select a particular subfont.
    74  *
    75  * Subclasses which implement composite fonts should supply an implementation of these
    76  * methods with some default behavior such as returning constant values, or using the
    77  * values from the first subfont.
    78  *
    79  * @draft ICU 3.0
    80  */
    81 class U_LAYOUT_API LEFontInstance : public UObject
    82 {
    83 public:
    84 
    85     /**
    86      * This virtual destructor is here so that the subclass
    87      * destructors can be invoked through the base class.
    88      *
    89      * @stable ICU 2.8
    90      */
    91     virtual inline ~LEFontInstance() {};
    92 
    93     /**
    94      * Get a physical font which can render the given text. For composite fonts,
    95      * if there is no single physical font which can render all of the text,
    96      * return a physical font which can render an initial substring of the text,
    97      * and set the <code>offset</code> parameter to the end of that substring.
    98      *
    99      * Internally, the LayoutEngine works with runs of text all in the same
   100      * font and script, so it is best to call this method with text which is
   101      * in a single script, passing the script code in as a hint. If you don't
   102      * know the script of the text, you can use zero, which is the script code
   103      * for characters used in more than one script.
   104      *
   105      * The default implementation of this method is intended for instances of
   106      * <code>LEFontInstance</code> which represent a physical font. It returns
   107      * <code>this</code> and indicates that the entire string can be rendered.
   108      *
   109      * This method will return a valid <code>LEFontInstance</code> unless you
   110      * have passed illegal parameters, or an internal error has been encountered. 
   111      * For composite fonts, it may return the warning <code>LE_NO_SUBFONT_WARNING</code>
   112      * to indicate that the returned font may not be able to render all of
   113      * the text. Whenever a valid font is returned, the <code>offset</code> parameter
   114      * will be advanced by at least one.
   115      *
   116      * Subclasses which implement composite fonts must override this method.
   117      * Where it makes sense, they should use the script code as a hint to render
   118      * characters from the COMMON script in the font which is used for the given
   119      * script. For example, if the input text is a series of Arabic words separated
   120      * by spaces, and the script code passed in is <code>arabScriptCode</code> you
   121      * should return the font used for Arabic characters for all of the input text,
   122      * including the spaces. If, on the other hand, the input text contains characters
   123      * which cannot be rendered by the font used for Arabic characters, but which can
   124      * be rendered by another font, you should return that font for those characters.
   125      *
   126      * @param chars   - the array of Unicode characters.
   127      * @param offset  - a pointer to the starting offset in the text. On exit this
   128      *                  will be set the the limit offset of the text which can be
   129      *                  rendered using the returned font.
   130      * @param limit   - the limit offset for the input text.
   131      * @param script  - the script hint.
   132      * @param success - set to an error code if the arguments are illegal, or no font
   133      *                  can be returned for some reason. May also be set to
   134      *                  <code>LE_NO_SUBFONT_WARNING</code> if the subfont which
   135      *                  was returned cannot render all of the text.
   136      *
   137      * @return an <code>LEFontInstance</code> for the sub font which can render the characters, or
   138      *         <code>NULL</code> if there is an error.
   139      *
   140      * @see LEScripts.h
   141      *
   142      * @stable ICU 3.2
   143      */
   144     virtual const LEFontInstance *getSubFont(const LEUnicode chars[], le_int32 *offset, le_int32 limit, le_int32 script, LEErrorCode &success) const;
   145 
   146     //
   147     // Font file access
   148     //
   149 
   150     /**
   151      * This method reads a table from the font. Note that in general,
   152      * it only makes sense to call this method on an <code>LEFontInstance</code>
   153      * which represents a physical font - i.e. one which has been returned by
   154      * <code>getSubFont()</code>. This is because each subfont in a composite font
   155      * will have different tables, and there's no way to know which subfont to access.
   156      *
   157      * Subclasses which represent composite fonts should always return <code>NULL</code>.
   158      *
   159      * @param tableTag - the four byte table tag. (e.g. 'cmap') 
   160      *
   161      * @return the address of the table in memory, or <code>NULL</code>
   162      *         if the table doesn't exist.
   163      *
   164      * @stable ICU 2.8
   165      */
   166     virtual const void *getFontTable(LETag tableTag) const = 0;
   167 
   168     /**
   169      * This method is used to determine if the font can
   170      * render the given character. This can usually be done
   171      * by looking the character up in the font's character
   172      * to glyph mapping.
   173      *
   174      * The default implementation of this method will return
   175      * <code>TRUE</code> if <code>mapCharToGlyph(ch)</code>
   176      * returns a non-zero value.
   177      *
   178      * @param ch - the character to be tested
   179      *
   180      * @return <code>TRUE</code> if the font can render ch.
   181      *
   182      * @stable ICU 3.2
   183      */
   184     virtual inline le_bool canDisplay(LEUnicode32 ch) const;
   185 
   186     /**
   187      * This method returns the number of design units in
   188      * the font's EM square.
   189      *
   190      * @return the number of design units pre EM.
   191      *
   192      * @stable ICU 2.8
   193      */
   194     virtual le_int32 getUnitsPerEM() const = 0;
   195 
   196     /**
   197      * This method maps an array of character codes to an array of glyph
   198      * indices, using the font's character to glyph map.
   199      *
   200      * The default implementation iterates over all of the characters and calls
   201      * <code>mapCharToGlyph(ch, mapper)</code> on each one. It also handles surrogate
   202      * characters, storing the glyph ID for the high surrogate, and a deleted glyph (0xFFFF)
   203      * for the low surrogate.
   204      *
   205      * Most sublcasses will not need to implement this method.
   206      *
   207      * @param chars - the character array
   208      * @param offset - the index of the first character
   209      * @param count - the number of characters
   210      * @param reverse - if <code>TRUE</code>, store the glyph indices in reverse order.
   211      * @param mapper - the character mapper.
   212      * @param glyphStorage - the object which contains the output glyph array
   213      *
   214      * @see LECharMapper
   215      *
   216      * @draft ICU 3.0
   217      */
   218     virtual void mapCharsToGlyphs(const LEUnicode chars[], le_int32 offset, le_int32 count, le_bool reverse, const LECharMapper *mapper, LEGlyphStorage &glyphStorage) const;
   219 
   220     /**
   221      * This method maps a single character to a glyph index, using the
   222      * font's character to glyph map. The default implementation of this
   223      * method calls the mapper, and then calls <code>mapCharToGlyph(mappedCh)</code>.
   224      *
   225      * @param ch - the character
   226      * @param mapper - the character mapper
   227      *
   228      * @return the glyph index
   229      *
   230      * @see LECharMapper
   231      *
   232      * @stable ICU 3.2
   233      */
   234     virtual LEGlyphID mapCharToGlyph(LEUnicode32 ch, const LECharMapper *mapper) const;
   235 
   236     /**
   237      * This method maps a single character to a glyph index, using the
   238      * font's character to glyph map. There is no default implementation
   239      * of this method because it requires information about the platform
   240      * font implementation.
   241      *
   242      * @param ch - the character
   243      *
   244      * @return the glyph index
   245      *
   246      * @stable ICU 3.2
   247      */
   248     virtual LEGlyphID mapCharToGlyph(LEUnicode32 ch) const = 0;
   249 
   250     //
   251     // Metrics
   252     //
   253 
   254     /**
   255      * This method gets the X and Y advance of a particular glyph, in pixels.
   256      *
   257      * @param glyph - the glyph index
   258      * @param advance - the X and Y pixel values will be stored here
   259      *
   260      * @stable ICU 3.2
   261      */
   262     virtual void getGlyphAdvance(LEGlyphID glyph, LEPoint &advance) const = 0;
   263 
   264     /**
   265      * This method gets the hinted X and Y pixel coordinates of a particular
   266      * point in the outline of the given glyph.
   267      *
   268      * @param glyph - the glyph index
   269      * @param pointNumber - the number of the point
   270      * @param point - the point's X and Y pixel values will be stored here
   271      *
   272      * @return <code>TRUE</code> if the point coordinates could be stored.
   273      *
   274      * @stable ICU 2.8
   275      */
   276     virtual le_bool getGlyphPoint(LEGlyphID glyph, le_int32 pointNumber, LEPoint &point) const = 0;
   277 
   278     /**
   279      * This method returns the width of the font's EM square
   280      * in pixels.
   281      *
   282      * @return the pixel width of the EM square
   283      *
   284      * @stable ICU 2.8
   285      */
   286     virtual float getXPixelsPerEm() const = 0;
   287 
   288     /**
   289      * This method returns the height of the font's EM square
   290      * in pixels.
   291      *
   292      * @return the pixel height of the EM square
   293      *
   294      * @stable ICU 2.8
   295      */
   296     virtual float getYPixelsPerEm() const = 0;
   297 
   298     /**
   299      * This method converts font design units in the
   300      * X direction to points.
   301      *
   302      * @param xUnits - design units in the X direction
   303      *
   304      * @return points in the X direction
   305      *
   306      * @stable ICU 3.2
   307      */
   308     virtual inline float xUnitsToPoints(float xUnits) const;
   309 
   310     /**
   311      * This method converts font design units in the
   312      * Y direction to points.
   313      *
   314      * @param yUnits - design units in the Y direction
   315      *
   316      * @return points in the Y direction
   317      *
   318      * @stable ICU 3.2
   319      */
   320     virtual inline float yUnitsToPoints(float yUnits) const;
   321 
   322     /**
   323      * This method converts font design units to points.
   324      *
   325      * @param units - X and Y design units
   326      * @param points - set to X and Y points
   327      *
   328      * @stable ICU 3.2
   329      */
   330     virtual inline void unitsToPoints(LEPoint &units, LEPoint &points) const;
   331 
   332     /**
   333      * This method converts pixels in the
   334      * X direction to font design units.
   335      *
   336      * @param xPixels - pixels in the X direction
   337      *
   338      * @return font design units in the X direction
   339      *
   340      * @stable ICU 3.2
   341      */
   342     virtual inline float xPixelsToUnits(float xPixels) const;
   343 
   344     /**
   345      * This method converts pixels in the
   346      * Y direction to font design units.
   347      *
   348      * @param yPixels - pixels in the Y direction
   349      *
   350      * @return font design units in the Y direction
   351      *
   352      * @stable ICU 3.2
   353      */
   354     virtual inline float yPixelsToUnits(float yPixels) const;
   355 
   356     /**
   357      * This method converts pixels to font design units.
   358      *
   359      * @param pixels - X and Y pixel
   360      * @param units - set to X and Y font design units
   361      *
   362      * @stable ICU 3.2
   363      */
   364     virtual inline void pixelsToUnits(LEPoint &pixels, LEPoint &units) const;
   365 
   366     /**
   367      * Get the X scale factor from the font's transform. The default
   368      * implementation of <code>transformFunits()</code> will call this method.
   369      *
   370      * @return the X scale factor.
   371      *
   372      *
   373      * @see transformFunits
   374      *
   375      * @stable ICU 3.2
   376      */
   377     virtual float getScaleFactorX() const = 0;
   378 
   379     /**
   380      * Get the Y scale factor from the font's transform. The default
   381      * implementation of <code>transformFunits()</code> will call this method.
   382      *
   383      * @return the Yscale factor.
   384      *
   385      * @see transformFunits
   386      *
   387      * @stable ICU 3.2
   388      */
   389     virtual float getScaleFactorY() const = 0;
   390 
   391     /**
   392      * This method transforms an X, Y point in font design units to a
   393      * pixel coordinate, applying the font's transform. The default
   394      * implementation of this method calls <code>getScaleFactorX()</code>
   395      * and <code>getScaleFactorY()</code>.
   396      *
   397      * @param xFunits - the X coordinate in font design units
   398      * @param yFunits - the Y coordinate in font design units
   399      * @param pixels - the tranformed co-ordinate in pixels
   400      *
   401      * @see getScaleFactorX
   402      * @see getScaleFactorY
   403      *
   404      * @stable ICU 3.2
   405      */
   406     virtual inline void transformFunits(float xFunits, float yFunits, LEPoint &pixels) const;
   407 
   408     /**
   409      * This is a convenience method used to convert
   410      * values in a 16.16 fixed point format to floating point.
   411      *
   412      * @param fixed - the fixed point value
   413      *
   414      * @return the floating point value
   415      *
   416      * @stable ICU 2.8
   417      */
   418     static inline float fixedToFloat(le_int32 fixed);
   419 
   420     /**
   421      * This is a convenience method used to convert
   422      * floating point values to 16.16 fixed point format.
   423      *
   424      * @param theFloat - the floating point value
   425      *
   426      * @return the fixed point value
   427      *
   428      * @stable ICU 2.8
   429      */
   430     static inline le_int32 floatToFixed(float theFloat);
   431 
   432     //
   433     // These methods won't ever be called by the LayoutEngine,
   434     // but are useful for clients of <code>LEFontInstance</code> who
   435     // need to render text.
   436     //
   437 
   438     /**
   439      * Get the font's ascent.
   440      *
   441      * @return the font's ascent, in points. This value
   442      * will always be positive.
   443      *
   444      * @stable ICU 3.2
   445      */
   446     virtual le_int32 getAscent() const = 0;
   447 
   448     /**
   449      * Get the font's descent.
   450      *
   451      * @return the font's descent, in points. This value
   452      * will always be positive.
   453      *
   454      * @stable ICU 3.2
   455      */
   456     virtual le_int32 getDescent() const = 0;
   457 
   458     /**
   459      * Get the font's leading.
   460      *
   461      * @return the font's leading, in points. This value
   462      * will always be positive.
   463      *
   464      * @stable ICU 3.2
   465      */
   466     virtual le_int32 getLeading() const = 0;
   467 
   468     /**
   469      * Get the line height required to display text in
   470      * this font. The default implementation of this method
   471      * returns the sum of the ascent, descent, and leading.
   472      *
   473      * @return the line height, in points. This vaule will
   474      * always be positive.
   475      *
   476      * @stable ICU 3.2
   477      */
   478     virtual le_int32 getLineHeight() const;
   479 
   480     /**
   481      * ICU "poor man's RTTI", returns a UClassID for the actual class.
   482      *
   483      * @stable ICU 3.2
   484      */
   485     virtual UClassID getDynamicClassID() const;
   486 
   487     /**
   488      * ICU "poor man's RTTI", returns a UClassID for this class.
   489      *
   490      * @stable ICU 3.2
   491      */
   492     static UClassID getStaticClassID();
   493 
   494 };
   495 
   496 inline le_bool LEFontInstance::canDisplay(LEUnicode32 ch) const
   497 {
   498     return LE_GET_GLYPH(mapCharToGlyph(ch)) != 0;
   499 }
   500 
   501 inline float LEFontInstance::xUnitsToPoints(float xUnits) const
   502 {
   503     return (xUnits * getXPixelsPerEm()) / (float) getUnitsPerEM();
   504 }
   505 
   506 inline float LEFontInstance::yUnitsToPoints(float yUnits) const
   507 {
   508     return (yUnits * getYPixelsPerEm()) / (float) getUnitsPerEM();
   509 }
   510 
   511 inline void LEFontInstance::unitsToPoints(LEPoint &units, LEPoint &points) const
   512 {
   513     points.fX = xUnitsToPoints(units.fX);
   514     points.fY = yUnitsToPoints(units.fY);
   515 }
   516 
   517 inline float LEFontInstance::xPixelsToUnits(float xPixels) const
   518 {
   519     return (xPixels * getUnitsPerEM()) / (float) getXPixelsPerEm();
   520 }
   521 
   522 inline float LEFontInstance::yPixelsToUnits(float yPixels) const
   523 {
   524     return (yPixels * getUnitsPerEM()) / (float) getYPixelsPerEm();
   525 }
   526 
   527 inline void LEFontInstance::pixelsToUnits(LEPoint &pixels, LEPoint &units) const
   528 {
   529     units.fX = xPixelsToUnits(pixels.fX);
   530     units.fY = yPixelsToUnits(pixels.fY);
   531 }
   532 
   533 inline void LEFontInstance::transformFunits(float xFunits, float yFunits, LEPoint &pixels) const
   534 {
   535     pixels.fX = xUnitsToPoints(xFunits) * getScaleFactorX();
   536     pixels.fY = yUnitsToPoints(yFunits) * getScaleFactorY();
   537 }
   538 
   539 inline float LEFontInstance::fixedToFloat(le_int32 fixed)
   540 {
   541     return (float) (fixed / 65536.0);
   542 }
   543 
   544 inline le_int32 LEFontInstance::floatToFixed(float theFloat)
   545 {
   546     return (le_int32) (theFloat * 65536.0);
   547 }
   548 
   549 inline le_int32 LEFontInstance::getLineHeight() const
   550 {
   551     return getAscent() + getDescent() + getLeading();
   552 }
   553 
   554 U_NAMESPACE_END
   555 #endif
   556 
   557