os/persistentdata/persistentstorage/sql/SQLite/os_unix.c
author sl@SLION-WIN7.fritz.box
Fri, 15 Jun 2012 03:10:57 +0200
changeset 0 bde4ae8d615e
permissions -rw-r--r--
First public contribution.
     1 /*
     2 ** 2004 May 22
     3 **
     4 ** The author disclaims copyright to this source code.  In place of
     5 ** a legal notice, here is a blessing:
     6 **
     7 **    May you do good and not evil.
     8 **    May you find forgiveness for yourself and forgive others.
     9 **    May you share freely, never taking more than you give.
    10 **
    11 ******************************************************************************
    12 **
    13 ** This file contains code that is specific to Unix systems.
    14 **
    15 ** $Id: os_unix.c,v 1.195 2008/07/30 17:28:04 drh Exp $
    16 */
    17 #include "sqliteInt.h"
    18 #if SQLITE_OS_UNIX              /* This file is used on unix only */
    19 
    20 /*
    21 ** If SQLITE_ENABLE_LOCKING_STYLE is defined, then several different 
    22 ** locking implementations are provided:
    23 **
    24 **   * POSIX locking (the default),
    25 **   * No locking,
    26 **   * Dot-file locking,
    27 **   * flock() locking,
    28 **   * AFP locking (OSX only).
    29 */
    30 /* #define SQLITE_ENABLE_LOCKING_STYLE 0 */
    31 
    32 /*
    33 ** These #defines should enable >2GB file support on Posix if the
    34 ** underlying operating system supports it.  If the OS lacks
    35 ** large file support, these should be no-ops.
    36 **
    37 ** Large file support can be disabled using the -DSQLITE_DISABLE_LFS switch
    38 ** on the compiler command line.  This is necessary if you are compiling
    39 ** on a recent machine (ex: RedHat 7.2) but you want your code to work
    40 ** on an older machine (ex: RedHat 6.0).  If you compile on RedHat 7.2
    41 ** without this option, LFS is enable.  But LFS does not exist in the kernel
    42 ** in RedHat 6.0, so the code won't work.  Hence, for maximum binary
    43 ** portability you should omit LFS.
    44 */
    45 #ifndef SQLITE_DISABLE_LFS
    46 # define _LARGE_FILE       1
    47 # ifndef _FILE_OFFSET_BITS
    48 #   define _FILE_OFFSET_BITS 64
    49 # endif
    50 # define _LARGEFILE_SOURCE 1
    51 #endif
    52 
    53 /*
    54 ** standard include files.
    55 */
    56 #include <sys/types.h>
    57 #include <sys/stat.h>
    58 #include <fcntl.h>
    59 #include <unistd.h>
    60 #include <time.h>
    61 #include <sys/time.h>
    62 #include <errno.h>
    63 
    64 #ifdef SQLITE_ENABLE_LOCKING_STYLE
    65 #include <sys/ioctl.h>
    66 #include <sys/param.h>
    67 #include <sys/mount.h>
    68 #endif /* SQLITE_ENABLE_LOCKING_STYLE */
    69 
    70 /*
    71 ** If we are to be thread-safe, include the pthreads header and define
    72 ** the SQLITE_UNIX_THREADS macro.
    73 */
    74 #if SQLITE_THREADSAFE
    75 # include <pthread.h>
    76 # define SQLITE_UNIX_THREADS 1
    77 #endif
    78 
    79 /*
    80 ** Default permissions when creating a new file
    81 */
    82 #ifndef SQLITE_DEFAULT_FILE_PERMISSIONS
    83 # define SQLITE_DEFAULT_FILE_PERMISSIONS 0644
    84 #endif
    85 
    86 /*
    87 ** Maximum supported path-length.
    88 */
    89 #define MAX_PATHNAME 512
    90 
    91 
    92 /*
    93 ** The unixFile structure is subclass of sqlite3_file specific for the unix
    94 ** protability layer.
    95 */
    96 typedef struct unixFile unixFile;
    97 struct unixFile {
    98   sqlite3_io_methods const *pMethod;  /* Always the first entry */
    99 #ifdef SQLITE_TEST
   100   /* In test mode, increase the size of this structure a bit so that 
   101   ** it is larger than the struct CrashFile defined in test6.c.
   102   */
   103   char aPadding[32];
   104 #endif
   105   struct openCnt *pOpen;    /* Info about all open fd's on this inode */
   106   struct lockInfo *pLock;   /* Info about locks on this inode */
   107 #ifdef SQLITE_ENABLE_LOCKING_STYLE
   108   void *lockingContext;     /* Locking style specific state */
   109 #endif
   110   int h;                    /* The file descriptor */
   111   unsigned char locktype;   /* The type of lock held on this fd */
   112   int dirfd;                /* File descriptor for the directory */
   113 #if SQLITE_THREADSAFE
   114   pthread_t tid;            /* The thread that "owns" this unixFile */
   115 #endif
   116 };
   117 
   118 /*
   119 ** Include code that is common to all os_*.c files
   120 */
   121 #include "os_common.h"
   122 
   123 /*
   124 ** Define various macros that are missing from some systems.
   125 */
   126 #ifndef O_LARGEFILE
   127 # define O_LARGEFILE 0
   128 #endif
   129 #ifdef SQLITE_DISABLE_LFS
   130 # undef O_LARGEFILE
   131 # define O_LARGEFILE 0
   132 #endif
   133 #ifndef O_NOFOLLOW
   134 # define O_NOFOLLOW 0
   135 #endif
   136 #ifndef O_BINARY
   137 # define O_BINARY 0
   138 #endif
   139 
   140 /*
   141 ** The DJGPP compiler environment looks mostly like Unix, but it
   142 ** lacks the fcntl() system call.  So redefine fcntl() to be something
   143 ** that always succeeds.  This means that locking does not occur under
   144 ** DJGPP.  But it is DOS - what did you expect?
   145 */
   146 #ifdef __DJGPP__
   147 # define fcntl(A,B,C) 0
   148 #endif
   149 
   150 /*
   151 ** The threadid macro resolves to the thread-id or to 0.  Used for
   152 ** testing and debugging only.
   153 */
   154 #if SQLITE_THREADSAFE
   155 #define threadid pthread_self()
   156 #else
   157 #define threadid 0
   158 #endif
   159 
   160 /*
   161 ** Set or check the unixFile.tid field.  This field is set when an unixFile
   162 ** is first opened.  All subsequent uses of the unixFile verify that the
   163 ** same thread is operating on the unixFile.  Some operating systems do
   164 ** not allow locks to be overridden by other threads and that restriction
   165 ** means that sqlite3* database handles cannot be moved from one thread
   166 ** to another.  This logic makes sure a user does not try to do that
   167 ** by mistake.
   168 **
   169 ** Version 3.3.1 (2006-01-15):  unixFile can be moved from one thread to
   170 ** another as long as we are running on a system that supports threads
   171 ** overriding each others locks (which now the most common behavior)
   172 ** or if no locks are held.  But the unixFile.pLock field needs to be
   173 ** recomputed because its key includes the thread-id.  See the 
   174 ** transferOwnership() function below for additional information
   175 */
   176 #if SQLITE_THREADSAFE
   177 # define SET_THREADID(X)   (X)->tid = pthread_self()
   178 # define CHECK_THREADID(X) (threadsOverrideEachOthersLocks==0 && \
   179                             !pthread_equal((X)->tid, pthread_self()))
   180 #else
   181 # define SET_THREADID(X)
   182 # define CHECK_THREADID(X) 0
   183 #endif
   184 
   185 /*
   186 ** Here is the dirt on POSIX advisory locks:  ANSI STD 1003.1 (1996)
   187 ** section 6.5.2.2 lines 483 through 490 specify that when a process
   188 ** sets or clears a lock, that operation overrides any prior locks set
   189 ** by the same process.  It does not explicitly say so, but this implies
   190 ** that it overrides locks set by the same process using a different
   191 ** file descriptor.  Consider this test case:
   192 **       int fd2 = open("./file2", O_RDWR|O_CREAT, 0644);
   193 **
   194 ** Suppose ./file1 and ./file2 are really the same file (because
   195 ** one is a hard or symbolic link to the other) then if you set
   196 ** an exclusive lock on fd1, then try to get an exclusive lock
   197 ** on fd2, it works.  I would have expected the second lock to
   198 ** fail since there was already a lock on the file due to fd1.
   199 ** But not so.  Since both locks came from the same process, the
   200 ** second overrides the first, even though they were on different
   201 ** file descriptors opened on different file names.
   202 **
   203 ** Bummer.  If you ask me, this is broken.  Badly broken.  It means
   204 ** that we cannot use POSIX locks to synchronize file access among
   205 ** competing threads of the same process.  POSIX locks will work fine
   206 ** to synchronize access for threads in separate processes, but not
   207 ** threads within the same process.
   208 **
   209 ** To work around the problem, SQLite has to manage file locks internally
   210 ** on its own.  Whenever a new database is opened, we have to find the
   211 ** specific inode of the database file (the inode is determined by the
   212 ** st_dev and st_ino fields of the stat structure that fstat() fills in)
   213 ** and check for locks already existing on that inode.  When locks are
   214 ** created or removed, we have to look at our own internal record of the
   215 ** locks to see if another thread has previously set a lock on that same
   216 ** inode.
   217 **
   218 ** The sqlite3_file structure for POSIX is no longer just an integer file
   219 ** descriptor.  It is now a structure that holds the integer file
   220 ** descriptor and a pointer to a structure that describes the internal
   221 ** locks on the corresponding inode.  There is one locking structure
   222 ** per inode, so if the same inode is opened twice, both unixFile structures
   223 ** point to the same locking structure.  The locking structure keeps
   224 ** a reference count (so we will know when to delete it) and a "cnt"
   225 ** field that tells us its internal lock status.  cnt==0 means the
   226 ** file is unlocked.  cnt==-1 means the file has an exclusive lock.
   227 ** cnt>0 means there are cnt shared locks on the file.
   228 **
   229 ** Any attempt to lock or unlock a file first checks the locking
   230 ** structure.  The fcntl() system call is only invoked to set a 
   231 ** POSIX lock if the internal lock structure transitions between
   232 ** a locked and an unlocked state.
   233 **
   234 ** 2004-Jan-11:
   235 ** More recent discoveries about POSIX advisory locks.  (The more
   236 ** I discover, the more I realize the a POSIX advisory locks are
   237 ** an abomination.)
   238 **
   239 ** If you close a file descriptor that points to a file that has locks,
   240 ** all locks on that file that are owned by the current process are
   241 ** released.  To work around this problem, each unixFile structure contains
   242 ** a pointer to an openCnt structure.  There is one openCnt structure
   243 ** per open inode, which means that multiple unixFile can point to a single
   244 ** openCnt.  When an attempt is made to close an unixFile, if there are
   245 ** other unixFile open on the same inode that are holding locks, the call
   246 ** to close() the file descriptor is deferred until all of the locks clear.
   247 ** The openCnt structure keeps a list of file descriptors that need to
   248 ** be closed and that list is walked (and cleared) when the last lock
   249 ** clears.
   250 **
   251 ** First, under Linux threads, because each thread has a separate
   252 ** process ID, lock operations in one thread do not override locks
   253 ** to the same file in other threads.  Linux threads behave like
   254 ** separate processes in this respect.  But, if you close a file
   255 ** descriptor in linux threads, all locks are cleared, even locks
   256 ** on other threads and even though the other threads have different
   257 ** process IDs.  Linux threads is inconsistent in this respect.
   258 ** (I'm beginning to think that linux threads is an abomination too.)
   259 ** The consequence of this all is that the hash table for the lockInfo
   260 ** structure has to include the process id as part of its key because
   261 ** locks in different threads are treated as distinct.  But the 
   262 ** openCnt structure should not include the process id in its
   263 ** key because close() clears lock on all threads, not just the current
   264 ** thread.  Were it not for this goofiness in linux threads, we could
   265 ** combine the lockInfo and openCnt structures into a single structure.
   266 **
   267 ** 2004-Jun-28:
   268 ** On some versions of linux, threads can override each others locks.
   269 ** On others not.  Sometimes you can change the behavior on the same
   270 ** system by setting the LD_ASSUME_KERNEL environment variable.  The
   271 ** POSIX standard is silent as to which behavior is correct, as far
   272 ** as I can tell, so other versions of unix might show the same
   273 ** inconsistency.  There is no little doubt in my mind that posix
   274 ** advisory locks and linux threads are profoundly broken.
   275 **
   276 ** To work around the inconsistencies, we have to test at runtime 
   277 ** whether or not threads can override each others locks.  This test
   278 ** is run once, the first time any lock is attempted.  A static 
   279 ** variable is set to record the results of this test for future
   280 ** use.
   281 */
   282 
   283 /*
   284 ** An instance of the following structure serves as the key used
   285 ** to locate a particular lockInfo structure given its inode.
   286 **
   287 ** If threads cannot override each others locks, then we set the
   288 ** lockKey.tid field to the thread ID.  If threads can override
   289 ** each others locks then tid is always set to zero.  tid is omitted
   290 ** if we compile without threading support.
   291 */
   292 struct lockKey {
   293   dev_t dev;       /* Device number */
   294   ino_t ino;       /* Inode number */
   295 #if SQLITE_THREADSAFE
   296   pthread_t tid;   /* Thread ID or zero if threads can override each other */
   297 #endif
   298 };
   299 
   300 /*
   301 ** An instance of the following structure is allocated for each open
   302 ** inode on each thread with a different process ID.  (Threads have
   303 ** different process IDs on linux, but not on most other unixes.)
   304 **
   305 ** A single inode can have multiple file descriptors, so each unixFile
   306 ** structure contains a pointer to an instance of this object and this
   307 ** object keeps a count of the number of unixFile pointing to it.
   308 */
   309 struct lockInfo {
   310   struct lockKey key;  /* The lookup key */
   311   int cnt;             /* Number of SHARED locks held */
   312   int locktype;        /* One of SHARED_LOCK, RESERVED_LOCK etc. */
   313   int nRef;            /* Number of pointers to this structure */
   314   struct lockInfo *pNext, *pPrev;   /* List of all lockInfo objects */
   315 };
   316 
   317 /*
   318 ** An instance of the following structure serves as the key used
   319 ** to locate a particular openCnt structure given its inode.  This
   320 ** is the same as the lockKey except that the thread ID is omitted.
   321 */
   322 struct openKey {
   323   dev_t dev;   /* Device number */
   324   ino_t ino;   /* Inode number */
   325 };
   326 
   327 /*
   328 ** An instance of the following structure is allocated for each open
   329 ** inode.  This structure keeps track of the number of locks on that
   330 ** inode.  If a close is attempted against an inode that is holding
   331 ** locks, the close is deferred until all locks clear by adding the
   332 ** file descriptor to be closed to the pending list.
   333 */
   334 struct openCnt {
   335   struct openKey key;   /* The lookup key */
   336   int nRef;             /* Number of pointers to this structure */
   337   int nLock;            /* Number of outstanding locks */
   338   int nPending;         /* Number of pending close() operations */
   339   int *aPending;        /* Malloced space holding fd's awaiting a close() */
   340   struct openCnt *pNext, *pPrev;   /* List of all openCnt objects */
   341 };
   342 
   343 /*
   344 ** List of all lockInfo and openCnt objects.  This used to be a hash
   345 ** table.  But the number of objects is rarely more than a dozen and
   346 ** never exceeds a few thousand.  And lookup is not on a critical
   347 ** path oo a simple linked list will suffice.
   348 */
   349 static struct lockInfo *lockList = 0;
   350 static struct openCnt *openList = 0;
   351 
   352 /*
   353 ** The locking styles are associated with the different file locking
   354 ** capabilities supported by different file systems.  
   355 **
   356 ** POSIX locking style fully supports shared and exclusive byte-range locks 
   357 ** AFP locking only supports exclusive byte-range locks
   358 ** FLOCK only supports a single file-global exclusive lock
   359 ** DOTLOCK isn't a true locking style, it refers to the use of a special
   360 **   file named the same as the database file with a '.lock' extension, this
   361 **   can be used on file systems that do not offer any reliable file locking
   362 ** NO locking means that no locking will be attempted, this is only used for
   363 **   read-only file systems currently
   364 ** UNSUPPORTED means that no locking will be attempted, this is only used for
   365 **   file systems that are known to be unsupported
   366 */
   367 #define LOCKING_STYLE_POSIX        1
   368 #define LOCKING_STYLE_NONE         2
   369 #define LOCKING_STYLE_DOTFILE      3
   370 #define LOCKING_STYLE_FLOCK        4
   371 #define LOCKING_STYLE_AFP          5
   372 
   373 /*
   374 ** Helper functions to obtain and relinquish the global mutex.
   375 */
   376 static void enterMutex(){
   377   sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER));
   378 }
   379 static void leaveMutex(){
   380   sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER));
   381 }
   382 
   383 #if SQLITE_THREADSAFE
   384 /*
   385 ** This variable records whether or not threads can override each others
   386 ** locks.
   387 **
   388 **    0:  No.  Threads cannot override each others locks.
   389 **    1:  Yes.  Threads can override each others locks.
   390 **   -1:  We don't know yet.
   391 **
   392 ** On some systems, we know at compile-time if threads can override each
   393 ** others locks.  On those systems, the SQLITE_THREAD_OVERRIDE_LOCK macro
   394 ** will be set appropriately.  On other systems, we have to check at
   395 ** runtime.  On these latter systems, SQLTIE_THREAD_OVERRIDE_LOCK is
   396 ** undefined.
   397 **
   398 ** This variable normally has file scope only.  But during testing, we make
   399 ** it a global so that the test code can change its value in order to verify
   400 ** that the right stuff happens in either case.
   401 */
   402 #ifndef SQLITE_THREAD_OVERRIDE_LOCK
   403 # define SQLITE_THREAD_OVERRIDE_LOCK -1
   404 #endif
   405 #ifdef SQLITE_TEST
   406 int threadsOverrideEachOthersLocks = SQLITE_THREAD_OVERRIDE_LOCK;
   407 #else
   408 static int threadsOverrideEachOthersLocks = SQLITE_THREAD_OVERRIDE_LOCK;
   409 #endif
   410 
   411 /*
   412 ** This structure holds information passed into individual test
   413 ** threads by the testThreadLockingBehavior() routine.
   414 */
   415 struct threadTestData {
   416   int fd;                /* File to be locked */
   417   struct flock lock;     /* The locking operation */
   418   int result;            /* Result of the locking operation */
   419 };
   420 
   421 #ifdef SQLITE_LOCK_TRACE
   422 /*
   423 ** Print out information about all locking operations.
   424 **
   425 ** This routine is used for troubleshooting locks on multithreaded
   426 ** platforms.  Enable by compiling with the -DSQLITE_LOCK_TRACE
   427 ** command-line option on the compiler.  This code is normally
   428 ** turned off.
   429 */
   430 static int lockTrace(int fd, int op, struct flock *p){
   431   char *zOpName, *zType;
   432   int s;
   433   int savedErrno;
   434   if( op==F_GETLK ){
   435     zOpName = "GETLK";
   436   }else if( op==F_SETLK ){
   437     zOpName = "SETLK";
   438   }else{
   439     s = fcntl(fd, op, p);
   440     sqlite3DebugPrintf("fcntl unknown %d %d %d\n", fd, op, s);
   441     return s;
   442   }
   443   if( p->l_type==F_RDLCK ){
   444     zType = "RDLCK";
   445   }else if( p->l_type==F_WRLCK ){
   446     zType = "WRLCK";
   447   }else if( p->l_type==F_UNLCK ){
   448     zType = "UNLCK";
   449   }else{
   450     assert( 0 );
   451   }
   452   assert( p->l_whence==SEEK_SET );
   453   s = fcntl(fd, op, p);
   454   savedErrno = errno;
   455   sqlite3DebugPrintf("fcntl %d %d %s %s %d %d %d %d\n",
   456      threadid, fd, zOpName, zType, (int)p->l_start, (int)p->l_len,
   457      (int)p->l_pid, s);
   458   if( s==(-1) && op==F_SETLK && (p->l_type==F_RDLCK || p->l_type==F_WRLCK) ){
   459     struct flock l2;
   460     l2 = *p;
   461     fcntl(fd, F_GETLK, &l2);
   462     if( l2.l_type==F_RDLCK ){
   463       zType = "RDLCK";
   464     }else if( l2.l_type==F_WRLCK ){
   465       zType = "WRLCK";
   466     }else if( l2.l_type==F_UNLCK ){
   467       zType = "UNLCK";
   468     }else{
   469       assert( 0 );
   470     }
   471     sqlite3DebugPrintf("fcntl-failure-reason: %s %d %d %d\n",
   472        zType, (int)l2.l_start, (int)l2.l_len, (int)l2.l_pid);
   473   }
   474   errno = savedErrno;
   475   return s;
   476 }
   477 #define fcntl lockTrace
   478 #endif /* SQLITE_LOCK_TRACE */
   479 
   480 /*
   481 ** The testThreadLockingBehavior() routine launches two separate
   482 ** threads on this routine.  This routine attempts to lock a file
   483 ** descriptor then returns.  The success or failure of that attempt
   484 ** allows the testThreadLockingBehavior() procedure to determine
   485 ** whether or not threads can override each others locks.
   486 */
   487 static void *threadLockingTest(void *pArg){
   488   struct threadTestData *pData = (struct threadTestData*)pArg;
   489   pData->result = fcntl(pData->fd, F_SETLK, &pData->lock);
   490   return pArg;
   491 }
   492 
   493 /*
   494 ** This procedure attempts to determine whether or not threads
   495 ** can override each others locks then sets the 
   496 ** threadsOverrideEachOthersLocks variable appropriately.
   497 */
   498 static void testThreadLockingBehavior(int fd_orig){
   499   int fd;
   500   struct threadTestData d[2];
   501   pthread_t t[2];
   502 
   503   fd = dup(fd_orig);
   504   if( fd<0 ) return;
   505   memset(d, 0, sizeof(d));
   506   d[0].fd = fd;
   507   d[0].lock.l_type = F_RDLCK;
   508   d[0].lock.l_len = 1;
   509   d[0].lock.l_start = 0;
   510   d[0].lock.l_whence = SEEK_SET;
   511   d[1] = d[0];
   512   d[1].lock.l_type = F_WRLCK;
   513   pthread_create(&t[0], 0, threadLockingTest, &d[0]);
   514   pthread_create(&t[1], 0, threadLockingTest, &d[1]);
   515   pthread_join(t[0], 0);
   516   pthread_join(t[1], 0);
   517   close(fd);
   518   threadsOverrideEachOthersLocks =  d[0].result==0 && d[1].result==0;
   519 }
   520 #endif /* SQLITE_THREADSAFE */
   521 
   522 /*
   523 ** Release a lockInfo structure previously allocated by findLockInfo().
   524 */
   525 static void releaseLockInfo(struct lockInfo *pLock){
   526   if( pLock ){
   527     pLock->nRef--;
   528     if( pLock->nRef==0 ){
   529       if( pLock->pPrev ){
   530         assert( pLock->pPrev->pNext==pLock );
   531         pLock->pPrev->pNext = pLock->pNext;
   532       }else{
   533         assert( lockList==pLock );
   534         lockList = pLock->pNext;
   535       }
   536       if( pLock->pNext ){
   537         assert( pLock->pNext->pPrev==pLock );
   538         pLock->pNext->pPrev = pLock->pPrev;
   539       }
   540       sqlite3_free(pLock);
   541     }
   542   }
   543 }
   544 
   545 /*
   546 ** Release a openCnt structure previously allocated by findLockInfo().
   547 */
   548 static void releaseOpenCnt(struct openCnt *pOpen){
   549   if( pOpen ){
   550     pOpen->nRef--;
   551     if( pOpen->nRef==0 ){
   552       if( pOpen->pPrev ){
   553         assert( pOpen->pPrev->pNext==pOpen );
   554         pOpen->pPrev->pNext = pOpen->pNext;
   555       }else{
   556         assert( openList==pOpen );
   557         openList = pOpen->pNext;
   558       }
   559       if( pOpen->pNext ){
   560         assert( pOpen->pNext->pPrev==pOpen );
   561         pOpen->pNext->pPrev = pOpen->pPrev;
   562       }
   563       sqlite3_free(pOpen->aPending);
   564       sqlite3_free(pOpen);
   565     }
   566   }
   567 }
   568 
   569 #ifdef SQLITE_ENABLE_LOCKING_STYLE
   570 /*
   571 ** Tests a byte-range locking query to see if byte range locks are 
   572 ** supported, if not we fall back to dotlockLockingStyle.
   573 */
   574 static int testLockingStyle(int fd){
   575   struct flock lockInfo;
   576 
   577   /* Test byte-range lock using fcntl(). If the call succeeds, 
   578   ** assume that the file-system supports POSIX style locks. 
   579   */
   580   lockInfo.l_len = 1;
   581   lockInfo.l_start = 0;
   582   lockInfo.l_whence = SEEK_SET;
   583   lockInfo.l_type = F_RDLCK;
   584   if( fcntl(fd, F_GETLK, &lockInfo)!=-1 ) {
   585     return LOCKING_STYLE_POSIX;
   586   }
   587   
   588   /* Testing for flock() can give false positives.  So if if the above 
   589   ** test fails, then we fall back to using dot-file style locking.
   590   */  
   591   return LOCKING_STYLE_DOTFILE;
   592 }
   593 #endif
   594 
   595 /* 
   596 ** If SQLITE_ENABLE_LOCKING_STYLE is defined, this function Examines the 
   597 ** f_fstypename entry in the statfs structure as returned by stat() for 
   598 ** the file system hosting the database file and selects  the appropriate
   599 ** locking style based on its value.  These values and assignments are 
   600 ** based on Darwin/OSX behavior and have not been thoroughly tested on 
   601 ** other systems.
   602 **
   603 ** If SQLITE_ENABLE_LOCKING_STYLE is not defined, this function always
   604 ** returns LOCKING_STYLE_POSIX.
   605 */
   606 static int detectLockingStyle(
   607   sqlite3_vfs *pVfs,
   608   const char *filePath, 
   609   int fd
   610 ){
   611 #ifdef SQLITE_ENABLE_LOCKING_STYLE
   612   struct Mapping {
   613     const char *zFilesystem;
   614     int eLockingStyle;
   615   } aMap[] = {
   616     { "hfs",    LOCKING_STYLE_POSIX },
   617     { "ufs",    LOCKING_STYLE_POSIX },
   618     { "afpfs",  LOCKING_STYLE_AFP },
   619     { "smbfs",  LOCKING_STYLE_FLOCK },
   620     { "msdos",  LOCKING_STYLE_DOTFILE },
   621     { "webdav", LOCKING_STYLE_NONE },
   622     { 0, 0 }
   623   };
   624   int i;
   625   struct statfs fsInfo;
   626 
   627   if( !filePath ){
   628     return LOCKING_STYLE_NONE;
   629   }
   630   if( pVfs->pAppData ){
   631     return (int)pVfs->pAppData;
   632   }
   633 
   634   if( statfs(filePath, &fsInfo) != -1 ){
   635     if( fsInfo.f_flags & MNT_RDONLY ){
   636       return LOCKING_STYLE_NONE;
   637     }
   638     for(i=0; aMap[i].zFilesystem; i++){
   639       if( strcmp(fsInfo.f_fstypename, aMap[i].zFilesystem)==0 ){
   640         return aMap[i].eLockingStyle;
   641       }
   642     }
   643   }
   644 
   645   /* Default case. Handles, amongst others, "nfs". */
   646   return testLockingStyle(fd);  
   647 #endif
   648   return LOCKING_STYLE_POSIX;
   649 }
   650 
   651 /*
   652 ** Given a file descriptor, locate lockInfo and openCnt structures that
   653 ** describes that file descriptor.  Create new ones if necessary.  The
   654 ** return values might be uninitialized if an error occurs.
   655 **
   656 ** Return an appropriate error code.
   657 */
   658 static int findLockInfo(
   659   int fd,                      /* The file descriptor used in the key */
   660   struct lockInfo **ppLock,    /* Return the lockInfo structure here */
   661   struct openCnt **ppOpen      /* Return the openCnt structure here */
   662 ){
   663   int rc;
   664   struct lockKey key1;
   665   struct openKey key2;
   666   struct stat statbuf;
   667   struct lockInfo *pLock;
   668   struct openCnt *pOpen;
   669   rc = fstat(fd, &statbuf);
   670   if( rc!=0 ){
   671 #ifdef EOVERFLOW
   672     if( errno==EOVERFLOW ) return SQLITE_NOLFS;
   673 #endif
   674     return SQLITE_IOERR;
   675   }
   676 
   677   /* On OS X on an msdos filesystem, the inode number is reported
   678   ** incorrectly for zero-size files.  See ticket #3260.  To work
   679   ** around this problem (we consider it a bug in OS X, not SQLite)
   680   ** we always increase the file size to 1 by writing a single byte
   681   ** prior to accessing the inode number.  The one byte written is
   682   ** an ASCII 'S' character which also happens to be the first byte
   683   ** in the header of every SQLite database.  In this way, if there
   684   ** is a race condition such that another thread has already populated
   685   ** the first page of the database, no damage is done.
   686   */
   687   if( statbuf.st_size==0 ){
   688     write(fd, "S", 1);
   689     rc = fstat(fd, &statbuf);
   690     if( rc!=0 ){
   691       return SQLITE_IOERR;
   692     }
   693   }
   694 
   695   memset(&key1, 0, sizeof(key1));
   696   key1.dev = statbuf.st_dev;
   697   key1.ino = statbuf.st_ino;
   698 #if SQLITE_THREADSAFE
   699   if( threadsOverrideEachOthersLocks<0 ){
   700     testThreadLockingBehavior(fd);
   701   }
   702   key1.tid = threadsOverrideEachOthersLocks ? 0 : pthread_self();
   703 #endif
   704   memset(&key2, 0, sizeof(key2));
   705   key2.dev = statbuf.st_dev;
   706   key2.ino = statbuf.st_ino;
   707   pLock = lockList;
   708   while( pLock && memcmp(&key1, &pLock->key, sizeof(key1)) ){
   709     pLock = pLock->pNext;
   710   }
   711   if( pLock==0 ){
   712     pLock = sqlite3_malloc( sizeof(*pLock) );
   713     if( pLock==0 ){
   714       rc = SQLITE_NOMEM;
   715       goto exit_findlockinfo;
   716     }
   717     pLock->key = key1;
   718     pLock->nRef = 1;
   719     pLock->cnt = 0;
   720     pLock->locktype = 0;
   721     pLock->pNext = lockList;
   722     pLock->pPrev = 0;
   723     if( lockList ) lockList->pPrev = pLock;
   724     lockList = pLock;
   725   }else{
   726     pLock->nRef++;
   727   }
   728   *ppLock = pLock;
   729   if( ppOpen!=0 ){
   730     pOpen = openList;
   731     while( pOpen && memcmp(&key2, &pOpen->key, sizeof(key2)) ){
   732       pOpen = pOpen->pNext;
   733     }
   734     if( pOpen==0 ){
   735       pOpen = sqlite3_malloc( sizeof(*pOpen) );
   736       if( pOpen==0 ){
   737         releaseLockInfo(pLock);
   738         rc = SQLITE_NOMEM;
   739         goto exit_findlockinfo;
   740       }
   741       pOpen->key = key2;
   742       pOpen->nRef = 1;
   743       pOpen->nLock = 0;
   744       pOpen->nPending = 0;
   745       pOpen->aPending = 0;
   746       pOpen->pNext = openList;
   747       pOpen->pPrev = 0;
   748       if( openList ) openList->pPrev = pOpen;
   749       openList = pOpen;
   750     }else{
   751       pOpen->nRef++;
   752     }
   753     *ppOpen = pOpen;
   754   }
   755 
   756 exit_findlockinfo:
   757   return rc;
   758 }
   759 
   760 #ifdef SQLITE_DEBUG
   761 /*
   762 ** Helper function for printing out trace information from debugging
   763 ** binaries. This returns the string represetation of the supplied
   764 ** integer lock-type.
   765 */
   766 static const char *locktypeName(int locktype){
   767   switch( locktype ){
   768   case NO_LOCK: return "NONE";
   769   case SHARED_LOCK: return "SHARED";
   770   case RESERVED_LOCK: return "RESERVED";
   771   case PENDING_LOCK: return "PENDING";
   772   case EXCLUSIVE_LOCK: return "EXCLUSIVE";
   773   }
   774   return "ERROR";
   775 }
   776 #endif
   777 
   778 /*
   779 ** If we are currently in a different thread than the thread that the
   780 ** unixFile argument belongs to, then transfer ownership of the unixFile
   781 ** over to the current thread.
   782 **
   783 ** A unixFile is only owned by a thread on systems where one thread is
   784 ** unable to override locks created by a different thread.  RedHat9 is
   785 ** an example of such a system.
   786 **
   787 ** Ownership transfer is only allowed if the unixFile is currently unlocked.
   788 ** If the unixFile is locked and an ownership is wrong, then return
   789 ** SQLITE_MISUSE.  SQLITE_OK is returned if everything works.
   790 */
   791 #if SQLITE_THREADSAFE
   792 static int transferOwnership(unixFile *pFile){
   793   int rc;
   794   pthread_t hSelf;
   795   if( threadsOverrideEachOthersLocks ){
   796     /* Ownership transfers not needed on this system */
   797     return SQLITE_OK;
   798   }
   799   hSelf = pthread_self();
   800   if( pthread_equal(pFile->tid, hSelf) ){
   801     /* We are still in the same thread */
   802     OSTRACE1("No-transfer, same thread\n");
   803     return SQLITE_OK;
   804   }
   805   if( pFile->locktype!=NO_LOCK ){
   806     /* We cannot change ownership while we are holding a lock! */
   807     return SQLITE_MISUSE;
   808   }
   809   OSTRACE4("Transfer ownership of %d from %d to %d\n",
   810             pFile->h, pFile->tid, hSelf);
   811   pFile->tid = hSelf;
   812   if (pFile->pLock != NULL) {
   813     releaseLockInfo(pFile->pLock);
   814     rc = findLockInfo(pFile->h, &pFile->pLock, 0);
   815     OSTRACE5("LOCK    %d is now %s(%s,%d)\n", pFile->h,
   816            locktypeName(pFile->locktype),
   817            locktypeName(pFile->pLock->locktype), pFile->pLock->cnt);
   818     return rc;
   819   } else {
   820     return SQLITE_OK;
   821   }
   822 }
   823 #else
   824   /* On single-threaded builds, ownership transfer is a no-op */
   825 # define transferOwnership(X) SQLITE_OK
   826 #endif
   827 
   828 /*
   829 ** Seek to the offset passed as the second argument, then read cnt 
   830 ** bytes into pBuf. Return the number of bytes actually read.
   831 **
   832 ** NB:  If you define USE_PREAD or USE_PREAD64, then it might also
   833 ** be necessary to define _XOPEN_SOURCE to be 500.  This varies from
   834 ** one system to another.  Since SQLite does not define USE_PREAD
   835 ** any any form by default, we will not attempt to define _XOPEN_SOURCE.
   836 ** See tickets #2741 and #2681.
   837 */
   838 static int seekAndRead(unixFile *id, sqlite3_int64 offset, void *pBuf, int cnt){
   839   int got;
   840   i64 newOffset;
   841   TIMER_START;
   842 #if defined(USE_PREAD)
   843   got = pread(id->h, pBuf, cnt, offset);
   844   SimulateIOError( got = -1 );
   845 #elif defined(USE_PREAD64)
   846   got = pread64(id->h, pBuf, cnt, offset);
   847   SimulateIOError( got = -1 );
   848 #else
   849   newOffset = lseek(id->h, offset, SEEK_SET);
   850   SimulateIOError( newOffset-- );
   851   if( newOffset!=offset ){
   852     return -1;
   853   }
   854   got = read(id->h, pBuf, cnt);
   855 #endif
   856   TIMER_END;
   857   OSTRACE5("READ    %-3d %5d %7lld %llu\n", id->h, got, offset, TIMER_ELAPSED);
   858   return got;
   859 }
   860 
   861 /*
   862 ** Read data from a file into a buffer.  Return SQLITE_OK if all
   863 ** bytes were read successfully and SQLITE_IOERR if anything goes
   864 ** wrong.
   865 */
   866 static int unixRead(
   867   sqlite3_file *id, 
   868   void *pBuf, 
   869   int amt,
   870   sqlite3_int64 offset
   871 ){
   872   int got;
   873   assert( id );
   874   got = seekAndRead((unixFile*)id, offset, pBuf, amt);
   875   if( got==amt ){
   876     return SQLITE_OK;
   877   }else if( got<0 ){
   878     return SQLITE_IOERR_READ;
   879   }else{
   880     memset(&((char*)pBuf)[got], 0, amt-got);
   881     return SQLITE_IOERR_SHORT_READ;
   882   }
   883 }
   884 
   885 /*
   886 ** Seek to the offset in id->offset then read cnt bytes into pBuf.
   887 ** Return the number of bytes actually read.  Update the offset.
   888 */
   889 static int seekAndWrite(unixFile *id, i64 offset, const void *pBuf, int cnt){
   890   int got;
   891   i64 newOffset;
   892   TIMER_START;
   893 #if defined(USE_PREAD)
   894   got = pwrite(id->h, pBuf, cnt, offset);
   895 #elif defined(USE_PREAD64)
   896   got = pwrite64(id->h, pBuf, cnt, offset);
   897 #else
   898   newOffset = lseek(id->h, offset, SEEK_SET);
   899   if( newOffset!=offset ){
   900     return -1;
   901   }
   902   got = write(id->h, pBuf, cnt);
   903 #endif
   904   TIMER_END;
   905   OSTRACE5("WRITE   %-3d %5d %7lld %llu\n", id->h, got, offset, TIMER_ELAPSED);
   906   return got;
   907 }
   908 
   909 
   910 /*
   911 ** Write data from a buffer into a file.  Return SQLITE_OK on success
   912 ** or some other error code on failure.
   913 */
   914 static int unixWrite(
   915   sqlite3_file *id, 
   916   const void *pBuf, 
   917   int amt,
   918   sqlite3_int64 offset 
   919 ){
   920   int wrote = 0;
   921   assert( id );
   922   assert( amt>0 );
   923   while( amt>0 && (wrote = seekAndWrite((unixFile*)id, offset, pBuf, amt))>0 ){
   924     amt -= wrote;
   925     offset += wrote;
   926     pBuf = &((char*)pBuf)[wrote];
   927   }
   928   SimulateIOError(( wrote=(-1), amt=1 ));
   929   SimulateDiskfullError(( wrote=0, amt=1 ));
   930   if( amt>0 ){
   931     if( wrote<0 ){
   932       return SQLITE_IOERR_WRITE;
   933     }else{
   934       return SQLITE_FULL;
   935     }
   936   }
   937   return SQLITE_OK;
   938 }
   939 
   940 #ifdef SQLITE_TEST
   941 /*
   942 ** Count the number of fullsyncs and normal syncs.  This is used to test
   943 ** that syncs and fullsyncs are occuring at the right times.
   944 */
   945 int sqlite3_sync_count = 0;
   946 int sqlite3_fullsync_count = 0;
   947 #endif
   948 
   949 /*
   950 ** Use the fdatasync() API only if the HAVE_FDATASYNC macro is defined.
   951 ** Otherwise use fsync() in its place.
   952 */
   953 #ifndef HAVE_FDATASYNC
   954 # define fdatasync fsync
   955 #endif
   956 
   957 /*
   958 ** Define HAVE_FULLFSYNC to 0 or 1 depending on whether or not
   959 ** the F_FULLFSYNC macro is defined.  F_FULLFSYNC is currently
   960 ** only available on Mac OS X.  But that could change.
   961 */
   962 #ifdef F_FULLFSYNC
   963 # define HAVE_FULLFSYNC 1
   964 #else
   965 # define HAVE_FULLFSYNC 0
   966 #endif
   967 
   968 
   969 /*
   970 ** The fsync() system call does not work as advertised on many
   971 ** unix systems.  The following procedure is an attempt to make
   972 ** it work better.
   973 **
   974 ** The SQLITE_NO_SYNC macro disables all fsync()s.  This is useful
   975 ** for testing when we want to run through the test suite quickly.
   976 ** You are strongly advised *not* to deploy with SQLITE_NO_SYNC
   977 ** enabled, however, since with SQLITE_NO_SYNC enabled, an OS crash
   978 ** or power failure will likely corrupt the database file.
   979 */
   980 static int full_fsync(int fd, int fullSync, int dataOnly){
   981   int rc;
   982 
   983   /* Record the number of times that we do a normal fsync() and 
   984   ** FULLSYNC.  This is used during testing to verify that this procedure
   985   ** gets called with the correct arguments.
   986   */
   987 #ifdef SQLITE_TEST
   988   if( fullSync ) sqlite3_fullsync_count++;
   989   sqlite3_sync_count++;
   990 #endif
   991 
   992   /* If we compiled with the SQLITE_NO_SYNC flag, then syncing is a
   993   ** no-op
   994   */
   995 #ifdef SQLITE_NO_SYNC
   996   rc = SQLITE_OK;
   997 #else
   998 
   999 #if HAVE_FULLFSYNC
  1000   if( fullSync ){
  1001     rc = fcntl(fd, F_FULLFSYNC, 0);
  1002   }else{
  1003     rc = 1;
  1004   }
  1005   /* If the FULLFSYNC failed, fall back to attempting an fsync().
  1006    * It shouldn't be possible for fullfsync to fail on the local 
  1007    * file system (on OSX), so failure indicates that FULLFSYNC
  1008    * isn't supported for this file system. So, attempt an fsync 
  1009    * and (for now) ignore the overhead of a superfluous fcntl call.  
  1010    * It'd be better to detect fullfsync support once and avoid 
  1011    * the fcntl call every time sync is called.
  1012    */
  1013   if( rc ) rc = fsync(fd);
  1014 
  1015 #else 
  1016   if( dataOnly ){
  1017     rc = fdatasync(fd);
  1018   }else{
  1019     rc = fsync(fd);
  1020   }
  1021 #endif /* HAVE_FULLFSYNC */
  1022 #endif /* defined(SQLITE_NO_SYNC) */
  1023 
  1024   return rc;
  1025 }
  1026 
  1027 /*
  1028 ** Make sure all writes to a particular file are committed to disk.
  1029 **
  1030 ** If dataOnly==0 then both the file itself and its metadata (file
  1031 ** size, access time, etc) are synced.  If dataOnly!=0 then only the
  1032 ** file data is synced.
  1033 **
  1034 ** Under Unix, also make sure that the directory entry for the file
  1035 ** has been created by fsync-ing the directory that contains the file.
  1036 ** If we do not do this and we encounter a power failure, the directory
  1037 ** entry for the journal might not exist after we reboot.  The next
  1038 ** SQLite to access the file will not know that the journal exists (because
  1039 ** the directory entry for the journal was never created) and the transaction
  1040 ** will not roll back - possibly leading to database corruption.
  1041 */
  1042 static int unixSync(sqlite3_file *id, int flags){
  1043   int rc;
  1044   unixFile *pFile = (unixFile*)id;
  1045 
  1046   int isDataOnly = (flags&SQLITE_SYNC_DATAONLY);
  1047   int isFullsync = (flags&0x0F)==SQLITE_SYNC_FULL;
  1048 
  1049   /* Check that one of SQLITE_SYNC_NORMAL or FULL was passed */
  1050   assert((flags&0x0F)==SQLITE_SYNC_NORMAL
  1051       || (flags&0x0F)==SQLITE_SYNC_FULL
  1052   );
  1053 
  1054   assert( pFile );
  1055   OSTRACE2("SYNC    %-3d\n", pFile->h);
  1056   rc = full_fsync(pFile->h, isFullsync, isDataOnly);
  1057   SimulateIOError( rc=1 );
  1058   if( rc ){
  1059     return SQLITE_IOERR_FSYNC;
  1060   }
  1061   if( pFile->dirfd>=0 ){
  1062     OSTRACE4("DIRSYNC %-3d (have_fullfsync=%d fullsync=%d)\n", pFile->dirfd,
  1063             HAVE_FULLFSYNC, isFullsync);
  1064 #ifndef SQLITE_DISABLE_DIRSYNC
  1065     /* The directory sync is only attempted if full_fsync is
  1066     ** turned off or unavailable.  If a full_fsync occurred above,
  1067     ** then the directory sync is superfluous.
  1068     */
  1069     if( (!HAVE_FULLFSYNC || !isFullsync) && full_fsync(pFile->dirfd,0,0) ){
  1070        /*
  1071        ** We have received multiple reports of fsync() returning
  1072        ** errors when applied to directories on certain file systems.
  1073        ** A failed directory sync is not a big deal.  So it seems
  1074        ** better to ignore the error.  Ticket #1657
  1075        */
  1076        /* return SQLITE_IOERR; */
  1077     }
  1078 #endif
  1079     close(pFile->dirfd);  /* Only need to sync once, so close the directory */
  1080     pFile->dirfd = -1;    /* when we are done. */
  1081   }
  1082   return SQLITE_OK;
  1083 }
  1084 
  1085 /*
  1086 ** Truncate an open file to a specified size
  1087 */
  1088 static int unixTruncate(sqlite3_file *id, i64 nByte){
  1089   int rc;
  1090   assert( id );
  1091   SimulateIOError( return SQLITE_IOERR_TRUNCATE );
  1092   rc = ftruncate(((unixFile*)id)->h, (off_t)nByte);
  1093   if( rc ){
  1094     return SQLITE_IOERR_TRUNCATE;
  1095   }else{
  1096     return SQLITE_OK;
  1097   }
  1098 }
  1099 
  1100 /*
  1101 ** Determine the current size of a file in bytes
  1102 */
  1103 static int unixFileSize(sqlite3_file *id, i64 *pSize){
  1104   int rc;
  1105   struct stat buf;
  1106   assert( id );
  1107   rc = fstat(((unixFile*)id)->h, &buf);
  1108   SimulateIOError( rc=1 );
  1109   if( rc!=0 ){
  1110     return SQLITE_IOERR_FSTAT;
  1111   }
  1112   *pSize = buf.st_size;
  1113 
  1114   /* When opening a zero-size database, the findLockInfo() procedure
  1115   ** writes a single byte into that file in order to work around a bug
  1116   ** in the OS-X msdos filesystem.  In order to avoid problems with upper
  1117   ** layers, we need to report this file size as zero even though it is
  1118   ** really 1.   Ticket #3260.
  1119   */
  1120   if( *pSize==1 ) *pSize = 0;
  1121 
  1122 
  1123   return SQLITE_OK;
  1124 }
  1125 
  1126 /*
  1127 ** This routine checks if there is a RESERVED lock held on the specified
  1128 ** file by this or any other process. If such a lock is held, return
  1129 ** non-zero.  If the file is unlocked or holds only SHARED locks, then
  1130 ** return zero.
  1131 */
  1132 static int unixCheckReservedLock(sqlite3_file *id, int *pResOut){
  1133   int r = 0;
  1134   unixFile *pFile = (unixFile*)id;
  1135 
  1136   SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; );
  1137 
  1138   assert( pFile );
  1139   enterMutex(); /* Because pFile->pLock is shared across threads */
  1140 
  1141   /* Check if a thread in this process holds such a lock */
  1142   if( pFile->pLock->locktype>SHARED_LOCK ){
  1143     r = 1;
  1144   }
  1145 
  1146   /* Otherwise see if some other process holds it.
  1147   */
  1148   if( !r ){
  1149     struct flock lock;
  1150     lock.l_whence = SEEK_SET;
  1151     lock.l_start = RESERVED_BYTE;
  1152     lock.l_len = 1;
  1153     lock.l_type = F_WRLCK;
  1154     fcntl(pFile->h, F_GETLK, &lock);
  1155     if( lock.l_type!=F_UNLCK ){
  1156       r = 1;
  1157     }
  1158   }
  1159   
  1160   leaveMutex();
  1161   OSTRACE3("TEST WR-LOCK %d %d\n", pFile->h, r);
  1162 
  1163   *pResOut = r;
  1164   return SQLITE_OK;
  1165 }
  1166 
  1167 /*
  1168 ** Lock the file with the lock specified by parameter locktype - one
  1169 ** of the following:
  1170 **
  1171 **     (1) SHARED_LOCK
  1172 **     (2) RESERVED_LOCK
  1173 **     (3) PENDING_LOCK
  1174 **     (4) EXCLUSIVE_LOCK
  1175 **
  1176 ** Sometimes when requesting one lock state, additional lock states
  1177 ** are inserted in between.  The locking might fail on one of the later
  1178 ** transitions leaving the lock state different from what it started but
  1179 ** still short of its goal.  The following chart shows the allowed
  1180 ** transitions and the inserted intermediate states:
  1181 **
  1182 **    UNLOCKED -> SHARED
  1183 **    SHARED -> RESERVED
  1184 **    SHARED -> (PENDING) -> EXCLUSIVE
  1185 **    RESERVED -> (PENDING) -> EXCLUSIVE
  1186 **    PENDING -> EXCLUSIVE
  1187 **
  1188 ** This routine will only increase a lock.  Use the sqlite3OsUnlock()
  1189 ** routine to lower a locking level.
  1190 */
  1191 static int unixLock(sqlite3_file *id, int locktype){
  1192   /* The following describes the implementation of the various locks and
  1193   ** lock transitions in terms of the POSIX advisory shared and exclusive
  1194   ** lock primitives (called read-locks and write-locks below, to avoid
  1195   ** confusion with SQLite lock names). The algorithms are complicated
  1196   ** slightly in order to be compatible with windows systems simultaneously
  1197   ** accessing the same database file, in case that is ever required.
  1198   **
  1199   ** Symbols defined in os.h indentify the 'pending byte' and the 'reserved
  1200   ** byte', each single bytes at well known offsets, and the 'shared byte
  1201   ** range', a range of 510 bytes at a well known offset.
  1202   **
  1203   ** To obtain a SHARED lock, a read-lock is obtained on the 'pending
  1204   ** byte'.  If this is successful, a random byte from the 'shared byte
  1205   ** range' is read-locked and the lock on the 'pending byte' released.
  1206   **
  1207   ** A process may only obtain a RESERVED lock after it has a SHARED lock.
  1208   ** A RESERVED lock is implemented by grabbing a write-lock on the
  1209   ** 'reserved byte'. 
  1210   **
  1211   ** A process may only obtain a PENDING lock after it has obtained a
  1212   ** SHARED lock. A PENDING lock is implemented by obtaining a write-lock
  1213   ** on the 'pending byte'. This ensures that no new SHARED locks can be
  1214   ** obtained, but existing SHARED locks are allowed to persist. A process
  1215   ** does not have to obtain a RESERVED lock on the way to a PENDING lock.
  1216   ** This property is used by the algorithm for rolling back a journal file
  1217   ** after a crash.
  1218   **
  1219   ** An EXCLUSIVE lock, obtained after a PENDING lock is held, is
  1220   ** implemented by obtaining a write-lock on the entire 'shared byte
  1221   ** range'. Since all other locks require a read-lock on one of the bytes
  1222   ** within this range, this ensures that no other locks are held on the
  1223   ** database. 
  1224   **
  1225   ** The reason a single byte cannot be used instead of the 'shared byte
  1226   ** range' is that some versions of windows do not support read-locks. By
  1227   ** locking a random byte from a range, concurrent SHARED locks may exist
  1228   ** even if the locking primitive used is always a write-lock.
  1229   */
  1230   int rc = SQLITE_OK;
  1231   unixFile *pFile = (unixFile*)id;
  1232   struct lockInfo *pLock = pFile->pLock;
  1233   struct flock lock;
  1234   int s;
  1235 
  1236   assert( pFile );
  1237   OSTRACE7("LOCK    %d %s was %s(%s,%d) pid=%d\n", pFile->h,
  1238       locktypeName(locktype), locktypeName(pFile->locktype),
  1239       locktypeName(pLock->locktype), pLock->cnt , getpid());
  1240 
  1241   /* If there is already a lock of this type or more restrictive on the
  1242   ** unixFile, do nothing. Don't use the end_lock: exit path, as
  1243   ** enterMutex() hasn't been called yet.
  1244   */
  1245   if( pFile->locktype>=locktype ){
  1246     OSTRACE3("LOCK    %d %s ok (already held)\n", pFile->h,
  1247             locktypeName(locktype));
  1248     return SQLITE_OK;
  1249   }
  1250 
  1251   /* Make sure the locking sequence is correct
  1252   */
  1253   assert( pFile->locktype!=NO_LOCK || locktype==SHARED_LOCK );
  1254   assert( locktype!=PENDING_LOCK );
  1255   assert( locktype!=RESERVED_LOCK || pFile->locktype==SHARED_LOCK );
  1256 
  1257   /* This mutex is needed because pFile->pLock is shared across threads
  1258   */
  1259   enterMutex();
  1260 
  1261   /* Make sure the current thread owns the pFile.
  1262   */
  1263   rc = transferOwnership(pFile);
  1264   if( rc!=SQLITE_OK ){
  1265     leaveMutex();
  1266     return rc;
  1267   }
  1268   pLock = pFile->pLock;
  1269 
  1270   /* If some thread using this PID has a lock via a different unixFile*
  1271   ** handle that precludes the requested lock, return BUSY.
  1272   */
  1273   if( (pFile->locktype!=pLock->locktype && 
  1274           (pLock->locktype>=PENDING_LOCK || locktype>SHARED_LOCK))
  1275   ){
  1276     rc = SQLITE_BUSY;
  1277     goto end_lock;
  1278   }
  1279 
  1280   /* If a SHARED lock is requested, and some thread using this PID already
  1281   ** has a SHARED or RESERVED lock, then increment reference counts and
  1282   ** return SQLITE_OK.
  1283   */
  1284   if( locktype==SHARED_LOCK && 
  1285       (pLock->locktype==SHARED_LOCK || pLock->locktype==RESERVED_LOCK) ){
  1286     assert( locktype==SHARED_LOCK );
  1287     assert( pFile->locktype==0 );
  1288     assert( pLock->cnt>0 );
  1289     pFile->locktype = SHARED_LOCK;
  1290     pLock->cnt++;
  1291     pFile->pOpen->nLock++;
  1292     goto end_lock;
  1293   }
  1294 
  1295   lock.l_len = 1L;
  1296 
  1297   lock.l_whence = SEEK_SET;
  1298 
  1299   /* A PENDING lock is needed before acquiring a SHARED lock and before
  1300   ** acquiring an EXCLUSIVE lock.  For the SHARED lock, the PENDING will
  1301   ** be released.
  1302   */
  1303   if( locktype==SHARED_LOCK 
  1304       || (locktype==EXCLUSIVE_LOCK && pFile->locktype<PENDING_LOCK)
  1305   ){
  1306     lock.l_type = (locktype==SHARED_LOCK?F_RDLCK:F_WRLCK);
  1307     lock.l_start = PENDING_BYTE;
  1308     s = fcntl(pFile->h, F_SETLK, &lock);
  1309     if( s==(-1) ){
  1310       rc = (errno==EINVAL) ? SQLITE_NOLFS : SQLITE_BUSY;
  1311       goto end_lock;
  1312     }
  1313   }
  1314 
  1315 
  1316   /* If control gets to this point, then actually go ahead and make
  1317   ** operating system calls for the specified lock.
  1318   */
  1319   if( locktype==SHARED_LOCK ){
  1320     assert( pLock->cnt==0 );
  1321     assert( pLock->locktype==0 );
  1322 
  1323     /* Now get the read-lock */
  1324     lock.l_start = SHARED_FIRST;
  1325     lock.l_len = SHARED_SIZE;
  1326     s = fcntl(pFile->h, F_SETLK, &lock);
  1327 
  1328     /* Drop the temporary PENDING lock */
  1329     lock.l_start = PENDING_BYTE;
  1330     lock.l_len = 1L;
  1331     lock.l_type = F_UNLCK;
  1332     if( fcntl(pFile->h, F_SETLK, &lock)!=0 ){
  1333       rc = SQLITE_IOERR_UNLOCK;  /* This should never happen */
  1334       goto end_lock;
  1335     }
  1336     if( s==(-1) ){
  1337       rc = (errno==EINVAL) ? SQLITE_NOLFS : SQLITE_BUSY;
  1338     }else{
  1339       pFile->locktype = SHARED_LOCK;
  1340       pFile->pOpen->nLock++;
  1341       pLock->cnt = 1;
  1342     }
  1343   }else if( locktype==EXCLUSIVE_LOCK && pLock->cnt>1 ){
  1344     /* We are trying for an exclusive lock but another thread in this
  1345     ** same process is still holding a shared lock. */
  1346     rc = SQLITE_BUSY;
  1347   }else{
  1348     /* The request was for a RESERVED or EXCLUSIVE lock.  It is
  1349     ** assumed that there is a SHARED or greater lock on the file
  1350     ** already.
  1351     */
  1352     assert( 0!=pFile->locktype );
  1353     lock.l_type = F_WRLCK;
  1354     switch( locktype ){
  1355       case RESERVED_LOCK:
  1356         lock.l_start = RESERVED_BYTE;
  1357         break;
  1358       case EXCLUSIVE_LOCK:
  1359         lock.l_start = SHARED_FIRST;
  1360         lock.l_len = SHARED_SIZE;
  1361         break;
  1362       default:
  1363         assert(0);
  1364     }
  1365     s = fcntl(pFile->h, F_SETLK, &lock);
  1366     if( s==(-1) ){
  1367       rc = (errno==EINVAL) ? SQLITE_NOLFS : SQLITE_BUSY;
  1368     }
  1369   }
  1370   
  1371   if( rc==SQLITE_OK ){
  1372     pFile->locktype = locktype;
  1373     pLock->locktype = locktype;
  1374   }else if( locktype==EXCLUSIVE_LOCK ){
  1375     pFile->locktype = PENDING_LOCK;
  1376     pLock->locktype = PENDING_LOCK;
  1377   }
  1378 
  1379 end_lock:
  1380   leaveMutex();
  1381   OSTRACE4("LOCK    %d %s %s\n", pFile->h, locktypeName(locktype), 
  1382       rc==SQLITE_OK ? "ok" : "failed");
  1383   return rc;
  1384 }
  1385 
  1386 /*
  1387 ** Lower the locking level on file descriptor pFile to locktype.  locktype
  1388 ** must be either NO_LOCK or SHARED_LOCK.
  1389 **
  1390 ** If the locking level of the file descriptor is already at or below
  1391 ** the requested locking level, this routine is a no-op.
  1392 */
  1393 static int unixUnlock(sqlite3_file *id, int locktype){
  1394   struct lockInfo *pLock;
  1395   struct flock lock;
  1396   int rc = SQLITE_OK;
  1397   unixFile *pFile = (unixFile*)id;
  1398   int h;
  1399 
  1400   assert( pFile );
  1401   OSTRACE7("UNLOCK  %d %d was %d(%d,%d) pid=%d\n", pFile->h, locktype,
  1402       pFile->locktype, pFile->pLock->locktype, pFile->pLock->cnt, getpid());
  1403 
  1404   assert( locktype<=SHARED_LOCK );
  1405   if( pFile->locktype<=locktype ){
  1406     return SQLITE_OK;
  1407   }
  1408   if( CHECK_THREADID(pFile) ){
  1409     return SQLITE_MISUSE;
  1410   }
  1411   enterMutex();
  1412   h = pFile->h;
  1413   pLock = pFile->pLock;
  1414   assert( pLock->cnt!=0 );
  1415   if( pFile->locktype>SHARED_LOCK ){
  1416     assert( pLock->locktype==pFile->locktype );
  1417     SimulateIOErrorBenign(1);
  1418     SimulateIOError( h=(-1) )
  1419     SimulateIOErrorBenign(0);
  1420     if( locktype==SHARED_LOCK ){
  1421       lock.l_type = F_RDLCK;
  1422       lock.l_whence = SEEK_SET;
  1423       lock.l_start = SHARED_FIRST;
  1424       lock.l_len = SHARED_SIZE;
  1425       if( fcntl(h, F_SETLK, &lock)==(-1) ){
  1426         rc = SQLITE_IOERR_RDLOCK;
  1427       }
  1428     }
  1429     lock.l_type = F_UNLCK;
  1430     lock.l_whence = SEEK_SET;
  1431     lock.l_start = PENDING_BYTE;
  1432     lock.l_len = 2L;  assert( PENDING_BYTE+1==RESERVED_BYTE );
  1433     if( fcntl(h, F_SETLK, &lock)!=(-1) ){
  1434       pLock->locktype = SHARED_LOCK;
  1435     }else{
  1436       rc = SQLITE_IOERR_UNLOCK;
  1437     }
  1438   }
  1439   if( locktype==NO_LOCK ){
  1440     struct openCnt *pOpen;
  1441 
  1442     /* Decrement the shared lock counter.  Release the lock using an
  1443     ** OS call only when all threads in this same process have released
  1444     ** the lock.
  1445     */
  1446     pLock->cnt--;
  1447     if( pLock->cnt==0 ){
  1448       lock.l_type = F_UNLCK;
  1449       lock.l_whence = SEEK_SET;
  1450       lock.l_start = lock.l_len = 0L;
  1451       SimulateIOErrorBenign(1);
  1452       SimulateIOError( h=(-1) )
  1453       SimulateIOErrorBenign(0);
  1454       if( fcntl(h, F_SETLK, &lock)!=(-1) ){
  1455         pLock->locktype = NO_LOCK;
  1456       }else{
  1457         rc = SQLITE_IOERR_UNLOCK;
  1458         pLock->cnt = 1;
  1459       }
  1460     }
  1461 
  1462     /* Decrement the count of locks against this same file.  When the
  1463     ** count reaches zero, close any other file descriptors whose close
  1464     ** was deferred because of outstanding locks.
  1465     */
  1466     if( rc==SQLITE_OK ){
  1467       pOpen = pFile->pOpen;
  1468       pOpen->nLock--;
  1469       assert( pOpen->nLock>=0 );
  1470       if( pOpen->nLock==0 && pOpen->nPending>0 ){
  1471         int i;
  1472         for(i=0; i<pOpen->nPending; i++){
  1473           close(pOpen->aPending[i]);
  1474         }
  1475         sqlite3_free(pOpen->aPending);
  1476         pOpen->nPending = 0;
  1477         pOpen->aPending = 0;
  1478       }
  1479     }
  1480   }
  1481   leaveMutex();
  1482   if( rc==SQLITE_OK ) pFile->locktype = locktype;
  1483   return rc;
  1484 }
  1485 
  1486 /*
  1487 ** This function performs the parts of the "close file" operation 
  1488 ** common to all locking schemes. It closes the directory and file
  1489 ** handles, if they are valid, and sets all fields of the unixFile
  1490 ** structure to 0.
  1491 */
  1492 static int closeUnixFile(sqlite3_file *id){
  1493   unixFile *pFile = (unixFile*)id;
  1494   if( pFile ){
  1495     if( pFile->dirfd>=0 ){
  1496       close(pFile->dirfd);
  1497     }
  1498     if( pFile->h>=0 ){
  1499       close(pFile->h);
  1500     }
  1501     OSTRACE2("CLOSE   %-3d\n", pFile->h);
  1502     OpenCounter(-1);
  1503     memset(pFile, 0, sizeof(unixFile));
  1504   }
  1505   return SQLITE_OK;
  1506 }
  1507 
  1508 /*
  1509 ** Close a file.
  1510 */
  1511 static int unixClose(sqlite3_file *id){
  1512   if( id ){
  1513     unixFile *pFile = (unixFile *)id;
  1514     unixUnlock(id, NO_LOCK);
  1515     enterMutex();
  1516     if( pFile->pOpen && pFile->pOpen->nLock ){
  1517       /* If there are outstanding locks, do not actually close the file just
  1518       ** yet because that would clear those locks.  Instead, add the file
  1519       ** descriptor to pOpen->aPending.  It will be automatically closed when
  1520       ** the last lock is cleared.
  1521       */
  1522       int *aNew;
  1523       struct openCnt *pOpen = pFile->pOpen;
  1524       aNew = sqlite3_realloc(pOpen->aPending, (pOpen->nPending+1)*sizeof(int) );
  1525       if( aNew==0 ){
  1526         /* If a malloc fails, just leak the file descriptor */
  1527       }else{
  1528         pOpen->aPending = aNew;
  1529         pOpen->aPending[pOpen->nPending] = pFile->h;
  1530         pOpen->nPending++;
  1531         pFile->h = -1;
  1532       }
  1533     }
  1534     releaseLockInfo(pFile->pLock);
  1535     releaseOpenCnt(pFile->pOpen);
  1536     closeUnixFile(id);
  1537     leaveMutex();
  1538   }
  1539   return SQLITE_OK;
  1540 }
  1541 
  1542 
  1543 #ifdef SQLITE_ENABLE_LOCKING_STYLE
  1544 #pragma mark AFP Support
  1545 
  1546 /*
  1547  ** The afpLockingContext structure contains all afp lock specific state
  1548  */
  1549 typedef struct afpLockingContext afpLockingContext;
  1550 struct afpLockingContext {
  1551   unsigned long long sharedLockByte;
  1552   const char *filePath;
  1553 };
  1554 
  1555 struct ByteRangeLockPB2
  1556 {
  1557   unsigned long long offset;        /* offset to first byte to lock */
  1558   unsigned long long length;        /* nbr of bytes to lock */
  1559   unsigned long long retRangeStart; /* nbr of 1st byte locked if successful */
  1560   unsigned char unLockFlag;         /* 1 = unlock, 0 = lock */
  1561   unsigned char startEndFlag;       /* 1=rel to end of fork, 0=rel to start */
  1562   int fd;                           /* file desc to assoc this lock with */
  1563 };
  1564 
  1565 #define afpfsByteRangeLock2FSCTL        _IOWR('z', 23, struct ByteRangeLockPB2)
  1566 
  1567 /* 
  1568 ** Return 0 on success, 1 on failure.  To match the behavior of the 
  1569 ** normal posix file locking (used in unixLock for example), we should 
  1570 ** provide 'richer' return codes - specifically to differentiate between
  1571 ** 'file busy' and 'file system error' results.
  1572 */
  1573 static int _AFPFSSetLock(
  1574   const char *path, 
  1575   int fd, 
  1576   unsigned long long offset, 
  1577   unsigned long long length, 
  1578   int setLockFlag
  1579 ){
  1580   struct ByteRangeLockPB2       pb;
  1581   int                     err;
  1582   
  1583   pb.unLockFlag = setLockFlag ? 0 : 1;
  1584   pb.startEndFlag = 0;
  1585   pb.offset = offset;
  1586   pb.length = length; 
  1587   pb.fd = fd;
  1588   OSTRACE5("AFPLOCK setting lock %s for %d in range %llx:%llx\n", 
  1589     (setLockFlag?"ON":"OFF"), fd, offset, length);
  1590   err = fsctl(path, afpfsByteRangeLock2FSCTL, &pb, 0);
  1591   if ( err==-1 ) {
  1592     OSTRACE4("AFPLOCK failed to fsctl() '%s' %d %s\n", path, errno, 
  1593       strerror(errno));
  1594     return 1; /* error */
  1595   } else {
  1596     return 0;
  1597   }
  1598 }
  1599 
  1600 /*
  1601  ** This routine checks if there is a RESERVED lock held on the specified
  1602  ** file by this or any other process. If such a lock is held, return
  1603  ** non-zero.  If the file is unlocked or holds only SHARED locks, then
  1604  ** return zero.
  1605  */
  1606 static int afpCheckReservedLock(sqlite3_file *id, int *pResOut){
  1607   int r = 0;
  1608   unixFile *pFile = (unixFile*)id;
  1609   
  1610   assert( pFile ); 
  1611   afpLockingContext *context = (afpLockingContext *) pFile->lockingContext;
  1612   
  1613   /* Check if a thread in this process holds such a lock */
  1614   if( pFile->locktype>SHARED_LOCK ){
  1615     r = 1;
  1616   }
  1617   
  1618   /* Otherwise see if some other process holds it.
  1619    */
  1620   if ( !r ) {
  1621     /* lock the byte */
  1622     int failed = _AFPFSSetLock(context->filePath, pFile->h, RESERVED_BYTE, 1,1);  
  1623     if (failed) {
  1624       /* if we failed to get the lock then someone else must have it */
  1625       r = 1;
  1626     } else {
  1627       /* if we succeeded in taking the reserved lock, unlock it to restore
  1628       ** the original state */
  1629       _AFPFSSetLock(context->filePath, pFile->h, RESERVED_BYTE, 1, 0);
  1630     }
  1631   }
  1632   OSTRACE3("TEST WR-LOCK %d %d\n", pFile->h, r);
  1633   
  1634   *pResOut = r;
  1635   return SQLITE_OK;
  1636 }
  1637 
  1638 /* AFP-style locking following the behavior of unixLock, see the unixLock 
  1639 ** function comments for details of lock management. */
  1640 static int afpLock(sqlite3_file *id, int locktype){
  1641   int rc = SQLITE_OK;
  1642   unixFile *pFile = (unixFile*)id;
  1643   afpLockingContext *context = (afpLockingContext *) pFile->lockingContext;
  1644   
  1645   assert( pFile );
  1646   OSTRACE5("LOCK    %d %s was %s pid=%d\n", pFile->h,
  1647          locktypeName(locktype), locktypeName(pFile->locktype), getpid());
  1648 
  1649   /* If there is already a lock of this type or more restrictive on the
  1650   ** unixFile, do nothing. Don't use the afp_end_lock: exit path, as
  1651   ** enterMutex() hasn't been called yet.
  1652   */
  1653   if( pFile->locktype>=locktype ){
  1654     OSTRACE3("LOCK    %d %s ok (already held)\n", pFile->h,
  1655            locktypeName(locktype));
  1656     return SQLITE_OK;
  1657   }
  1658 
  1659   /* Make sure the locking sequence is correct
  1660   */
  1661   assert( pFile->locktype!=NO_LOCK || locktype==SHARED_LOCK );
  1662   assert( locktype!=PENDING_LOCK );
  1663   assert( locktype!=RESERVED_LOCK || pFile->locktype==SHARED_LOCK );
  1664   
  1665   /* This mutex is needed because pFile->pLock is shared across threads
  1666   */
  1667   enterMutex();
  1668 
  1669   /* Make sure the current thread owns the pFile.
  1670   */
  1671   rc = transferOwnership(pFile);
  1672   if( rc!=SQLITE_OK ){
  1673     leaveMutex();
  1674     return rc;
  1675   }
  1676     
  1677   /* A PENDING lock is needed before acquiring a SHARED lock and before
  1678   ** acquiring an EXCLUSIVE lock.  For the SHARED lock, the PENDING will
  1679   ** be released.
  1680   */
  1681   if( locktype==SHARED_LOCK 
  1682       || (locktype==EXCLUSIVE_LOCK && pFile->locktype<PENDING_LOCK)
  1683   ){
  1684     int failed;
  1685     failed = _AFPFSSetLock(context->filePath, pFile->h, PENDING_BYTE, 1, 1);
  1686     if (failed) {
  1687       rc = SQLITE_BUSY;
  1688       goto afp_end_lock;
  1689     }
  1690   }
  1691   
  1692   /* If control gets to this point, then actually go ahead and make
  1693   ** operating system calls for the specified lock.
  1694   */
  1695   if( locktype==SHARED_LOCK ){
  1696     int lk, failed;
  1697     
  1698     /* Now get the read-lock */
  1699     /* note that the quality of the randomness doesn't matter that much */
  1700     lk = random(); 
  1701     context->sharedLockByte = (lk & 0x7fffffff)%(SHARED_SIZE - 1);
  1702     failed = _AFPFSSetLock(context->filePath, pFile->h, 
  1703       SHARED_FIRST+context->sharedLockByte, 1, 1);
  1704     
  1705     /* Drop the temporary PENDING lock */
  1706     if (_AFPFSSetLock(context->filePath, pFile->h, PENDING_BYTE, 1, 0)) {
  1707       rc = SQLITE_IOERR_UNLOCK;  /* This should never happen */
  1708       goto afp_end_lock;
  1709     }
  1710     
  1711     if( failed ){
  1712       rc = SQLITE_BUSY;
  1713     } else {
  1714       pFile->locktype = SHARED_LOCK;
  1715     }
  1716   }else{
  1717     /* The request was for a RESERVED or EXCLUSIVE lock.  It is
  1718     ** assumed that there is a SHARED or greater lock on the file
  1719     ** already.
  1720     */
  1721     int failed = 0;
  1722     assert( 0!=pFile->locktype );
  1723     if (locktype >= RESERVED_LOCK && pFile->locktype < RESERVED_LOCK) {
  1724         /* Acquire a RESERVED lock */
  1725         failed = _AFPFSSetLock(context->filePath, pFile->h, RESERVED_BYTE, 1,1);
  1726     }
  1727     if (!failed && locktype == EXCLUSIVE_LOCK) {
  1728       /* Acquire an EXCLUSIVE lock */
  1729         
  1730       /* Remove the shared lock before trying the range.  we'll need to 
  1731       ** reestablish the shared lock if we can't get the  afpUnlock
  1732       */
  1733       if (!_AFPFSSetLock(context->filePath, pFile->h, SHARED_FIRST +
  1734                          context->sharedLockByte, 1, 0)) {
  1735         /* now attemmpt to get the exclusive lock range */
  1736         failed = _AFPFSSetLock(context->filePath, pFile->h, SHARED_FIRST, 
  1737                                SHARED_SIZE, 1);
  1738         if (failed && _AFPFSSetLock(context->filePath, pFile->h, SHARED_FIRST +
  1739                                     context->sharedLockByte, 1, 1)) {
  1740           rc = SQLITE_IOERR_RDLOCK; /* this should never happen */
  1741         }
  1742       } else {
  1743         /* */
  1744         rc = SQLITE_IOERR_UNLOCK; /* this should never happen */
  1745       }
  1746     }
  1747     if( failed && rc == SQLITE_OK){
  1748       rc = SQLITE_BUSY;
  1749     }
  1750   }
  1751   
  1752   if( rc==SQLITE_OK ){
  1753     pFile->locktype = locktype;
  1754   }else if( locktype==EXCLUSIVE_LOCK ){
  1755     pFile->locktype = PENDING_LOCK;
  1756   }
  1757   
  1758 afp_end_lock:
  1759   leaveMutex();
  1760   OSTRACE4("LOCK    %d %s %s\n", pFile->h, locktypeName(locktype), 
  1761          rc==SQLITE_OK ? "ok" : "failed");
  1762   return rc;
  1763 }
  1764 
  1765 /*
  1766 ** Lower the locking level on file descriptor pFile to locktype.  locktype
  1767 ** must be either NO_LOCK or SHARED_LOCK.
  1768 **
  1769 ** If the locking level of the file descriptor is already at or below
  1770 ** the requested locking level, this routine is a no-op.
  1771 */
  1772 static int afpUnlock(sqlite3_file *id, int locktype) {
  1773   int rc = SQLITE_OK;
  1774   unixFile *pFile = (unixFile*)id;
  1775   afpLockingContext *context = (afpLockingContext *) pFile->lockingContext;
  1776 
  1777   assert( pFile );
  1778   OSTRACE5("UNLOCK  %d %d was %d pid=%d\n", pFile->h, locktype,
  1779          pFile->locktype, getpid());
  1780   
  1781   assert( locktype<=SHARED_LOCK );
  1782   if( pFile->locktype<=locktype ){
  1783     return SQLITE_OK;
  1784   }
  1785   if( CHECK_THREADID(pFile) ){
  1786     return SQLITE_MISUSE;
  1787   }
  1788   enterMutex();
  1789   if( pFile->locktype>SHARED_LOCK ){
  1790     if( locktype==SHARED_LOCK ){
  1791       int failed = 0;
  1792 
  1793       /* unlock the exclusive range - then re-establish the shared lock */
  1794       if (pFile->locktype==EXCLUSIVE_LOCK) {
  1795         failed = _AFPFSSetLock(context->filePath, pFile->h, SHARED_FIRST, 
  1796                                  SHARED_SIZE, 0);
  1797         if (!failed) {
  1798           /* successfully removed the exclusive lock */
  1799           if (_AFPFSSetLock(context->filePath, pFile->h, SHARED_FIRST+
  1800                             context->sharedLockByte, 1, 1)) {
  1801             /* failed to re-establish our shared lock */
  1802             rc = SQLITE_IOERR_RDLOCK; /* This should never happen */
  1803           }
  1804         } else {
  1805           /* This should never happen - failed to unlock the exclusive range */
  1806           rc = SQLITE_IOERR_UNLOCK;
  1807         } 
  1808       }
  1809     }
  1810     if (rc == SQLITE_OK && pFile->locktype>=PENDING_LOCK) {
  1811       if (_AFPFSSetLock(context->filePath, pFile->h, PENDING_BYTE, 1, 0)){
  1812         /* failed to release the pending lock */
  1813         rc = SQLITE_IOERR_UNLOCK; /* This should never happen */
  1814       }
  1815     } 
  1816     if (rc == SQLITE_OK && pFile->locktype>=RESERVED_LOCK) {
  1817       if (_AFPFSSetLock(context->filePath, pFile->h, RESERVED_BYTE, 1, 0)) {
  1818         /* failed to release the reserved lock */
  1819         rc = SQLITE_IOERR_UNLOCK;  /* This should never happen */
  1820       }
  1821     } 
  1822   }
  1823   if( locktype==NO_LOCK ){
  1824     int failed = _AFPFSSetLock(context->filePath, pFile->h, 
  1825                                SHARED_FIRST + context->sharedLockByte, 1, 0);
  1826     if (failed) {
  1827       rc = SQLITE_IOERR_UNLOCK;  /* This should never happen */
  1828     }
  1829   }
  1830   if (rc == SQLITE_OK)
  1831     pFile->locktype = locktype;
  1832   leaveMutex();
  1833   return rc;
  1834 }
  1835 
  1836 /*
  1837 ** Close a file & cleanup AFP specific locking context 
  1838 */
  1839 static int afpClose(sqlite3_file *id) {
  1840   if( id ){
  1841     unixFile *pFile = (unixFile*)id;
  1842     afpUnlock(id, NO_LOCK);
  1843     sqlite3_free(pFile->lockingContext);
  1844   }
  1845   return closeUnixFile(id);
  1846 }
  1847 
  1848 
  1849 #pragma mark flock() style locking
  1850 
  1851 /*
  1852 ** The flockLockingContext is not used
  1853 */
  1854 typedef void flockLockingContext;
  1855 
  1856 static int flockCheckReservedLock(sqlite3_file *id, int *pResOut){
  1857   int r = 1;
  1858   unixFile *pFile = (unixFile*)id;
  1859   
  1860   if (pFile->locktype != RESERVED_LOCK) {
  1861     /* attempt to get the lock */
  1862     int rc = flock(pFile->h, LOCK_EX | LOCK_NB);
  1863     if (!rc) {
  1864       /* got the lock, unlock it */
  1865       flock(pFile->h, LOCK_UN);
  1866       r = 0;  /* no one has it reserved */
  1867     }
  1868   }
  1869 
  1870   *pResOut = r;
  1871   return SQLITE_OK;
  1872 }
  1873 
  1874 static int flockLock(sqlite3_file *id, int locktype) {
  1875   unixFile *pFile = (unixFile*)id;
  1876   
  1877   /* if we already have a lock, it is exclusive.  
  1878   ** Just adjust level and punt on outta here. */
  1879   if (pFile->locktype > NO_LOCK) {
  1880     pFile->locktype = locktype;
  1881     return SQLITE_OK;
  1882   }
  1883   
  1884   /* grab an exclusive lock */
  1885   int rc = flock(pFile->h, LOCK_EX | LOCK_NB);
  1886   if (rc) {
  1887     /* didn't get, must be busy */
  1888     return SQLITE_BUSY;
  1889   } else {
  1890     /* got it, set the type and return ok */
  1891     pFile->locktype = locktype;
  1892     return SQLITE_OK;
  1893   }
  1894 }
  1895 
  1896 static int flockUnlock(sqlite3_file *id, int locktype) {
  1897   unixFile *pFile = (unixFile*)id;
  1898   
  1899   assert( locktype<=SHARED_LOCK );
  1900   
  1901   /* no-op if possible */
  1902   if( pFile->locktype==locktype ){
  1903     return SQLITE_OK;
  1904   }
  1905   
  1906   /* shared can just be set because we always have an exclusive */
  1907   if (locktype==SHARED_LOCK) {
  1908     pFile->locktype = locktype;
  1909     return SQLITE_OK;
  1910   }
  1911   
  1912   /* no, really, unlock. */
  1913   int rc = flock(pFile->h, LOCK_UN);
  1914   if (rc)
  1915     return SQLITE_IOERR_UNLOCK;
  1916   else {
  1917     pFile->locktype = NO_LOCK;
  1918     return SQLITE_OK;
  1919   }
  1920 }
  1921 
  1922 /*
  1923 ** Close a file.
  1924 */
  1925 static int flockClose(sqlite3_file *id) {
  1926   if( id ){
  1927     flockUnlock(id, NO_LOCK);
  1928   }
  1929   return closeUnixFile(id);
  1930 }
  1931 
  1932 #pragma mark Old-School .lock file based locking
  1933 
  1934 static int dotlockCheckReservedLock(sqlite3_file *id, int *pResOut) {
  1935   int r = 1;
  1936   unixFile *pFile = (unixFile*)id;
  1937   char *zLockFile = (char *)pFile->lockingContext;
  1938 
  1939   if (pFile->locktype != RESERVED_LOCK) {
  1940     struct stat statBuf;
  1941     if (lstat(zLockFile, &statBuf) != 0){
  1942       /* file does not exist, we could have it if we want it */
  1943       r = 0;
  1944     }
  1945   }
  1946 
  1947   *pResOut = r;
  1948   return SQLITE_OK;
  1949 }
  1950 
  1951 static int dotlockLock(sqlite3_file *id, int locktype) {
  1952   unixFile *pFile = (unixFile*)id;
  1953   int fd;
  1954   char *zLockFile = (char *)pFile->lockingContext;
  1955 
  1956   /* if we already have a lock, it is exclusive.  
  1957   ** Just adjust level and punt on outta here. */
  1958   if (pFile->locktype > NO_LOCK) {
  1959     pFile->locktype = locktype;
  1960     
  1961     /* Always update the timestamp on the old file */
  1962     utimes(zLockFile, NULL);
  1963     return SQLITE_OK;
  1964   }
  1965   
  1966   /* check to see if lock file already exists */
  1967   struct stat statBuf;
  1968   if (lstat(zLockFile,&statBuf) == 0){
  1969     return SQLITE_BUSY; /* it does, busy */
  1970   }
  1971   
  1972   /* grab an exclusive lock */
  1973   fd = open(zLockFile,O_RDONLY|O_CREAT|O_EXCL,0600);
  1974   if( fd<0 ){
  1975     /* failed to open/create the file, someone else may have stolen the lock */
  1976     return SQLITE_BUSY; 
  1977   }
  1978   close(fd);
  1979   
  1980   /* got it, set the type and return ok */
  1981   pFile->locktype = locktype;
  1982   return SQLITE_OK;
  1983 }
  1984 
  1985 static int dotlockUnlock(sqlite3_file *id, int locktype) {
  1986   unixFile *pFile = (unixFile*)id;
  1987   char *zLockFile = (char *)pFile->lockingContext;
  1988 
  1989   assert( locktype<=SHARED_LOCK );
  1990   
  1991   /* no-op if possible */
  1992   if( pFile->locktype==locktype ){
  1993     return SQLITE_OK;
  1994   }
  1995   
  1996   /* shared can just be set because we always have an exclusive */
  1997   if (locktype==SHARED_LOCK) {
  1998     pFile->locktype = locktype;
  1999     return SQLITE_OK;
  2000   }
  2001   
  2002   /* no, really, unlock. */
  2003   unlink(zLockFile);
  2004   pFile->locktype = NO_LOCK;
  2005   return SQLITE_OK;
  2006 }
  2007 
  2008 /*
  2009  ** Close a file.
  2010  */
  2011 static int dotlockClose(sqlite3_file *id) {
  2012   if( id ){
  2013     unixFile *pFile = (unixFile*)id;
  2014     dotlockUnlock(id, NO_LOCK);
  2015     sqlite3_free(pFile->lockingContext);
  2016   }
  2017   return closeUnixFile(id);
  2018 }
  2019 
  2020 
  2021 #endif /* SQLITE_ENABLE_LOCKING_STYLE */
  2022 
  2023 /*
  2024 ** The nolockLockingContext is void
  2025 */
  2026 typedef void nolockLockingContext;
  2027 
  2028 static int nolockCheckReservedLock(sqlite3_file *id, int *pResOut) {
  2029   *pResOut = 0;
  2030   return SQLITE_OK;
  2031 }
  2032 
  2033 static int nolockLock(sqlite3_file *id, int locktype) {
  2034   return SQLITE_OK;
  2035 }
  2036 
  2037 static int nolockUnlock(sqlite3_file *id, int locktype) {
  2038   return SQLITE_OK;
  2039 }
  2040 
  2041 /*
  2042 ** Close a file.
  2043 */
  2044 static int nolockClose(sqlite3_file *id) {
  2045   return closeUnixFile(id);
  2046 }
  2047 
  2048 
  2049 /*
  2050 ** Information and control of an open file handle.
  2051 */
  2052 static int unixFileControl(sqlite3_file *id, int op, void *pArg){
  2053   switch( op ){
  2054     case SQLITE_FCNTL_LOCKSTATE: {
  2055       *(int*)pArg = ((unixFile*)id)->locktype;
  2056       return SQLITE_OK;
  2057     }
  2058   }
  2059   return SQLITE_ERROR;
  2060 }
  2061 
  2062 /*
  2063 ** Return the sector size in bytes of the underlying block device for
  2064 ** the specified file. This is almost always 512 bytes, but may be
  2065 ** larger for some devices.
  2066 **
  2067 ** SQLite code assumes this function cannot fail. It also assumes that
  2068 ** if two files are created in the same file-system directory (i.e.
  2069 ** a database and its journal file) that the sector size will be the
  2070 ** same for both.
  2071 */
  2072 static int unixSectorSize(sqlite3_file *id){
  2073   return SQLITE_DEFAULT_SECTOR_SIZE;
  2074 }
  2075 
  2076 /*
  2077 ** Return the device characteristics for the file. This is always 0.
  2078 */
  2079 static int unixDeviceCharacteristics(sqlite3_file *id){
  2080   return 0;
  2081 }
  2082 
  2083 /*
  2084 ** Initialize the contents of the unixFile structure pointed to by pId.
  2085 **
  2086 ** When locking extensions are enabled, the filepath and locking style 
  2087 ** are needed to determine the unixFile pMethod to use for locking operations.
  2088 ** The locking-style specific lockingContext data structure is created 
  2089 ** and assigned here also.
  2090 */
  2091 static int fillInUnixFile(
  2092   sqlite3_vfs *pVfs,      /* Pointer to vfs object */
  2093   int h,                  /* Open file descriptor of file being opened */
  2094   int dirfd,              /* Directory file descriptor */
  2095   sqlite3_file *pId,      /* Write to the unixFile structure here */
  2096   const char *zFilename,  /* Name of the file being opened */
  2097   int noLock              /* Omit locking if true */
  2098 ){
  2099   int eLockingStyle;
  2100   unixFile *pNew = (unixFile *)pId;
  2101   int rc = SQLITE_OK;
  2102 
  2103   /* Macro to define the static contents of an sqlite3_io_methods 
  2104   ** structure for a unix backend file. Different locking methods
  2105   ** require different functions for the xClose, xLock, xUnlock and
  2106   ** xCheckReservedLock methods.
  2107   */
  2108   #define IOMETHODS(xClose, xLock, xUnlock, xCheckReservedLock) {    \
  2109     1,                          /* iVersion */                           \
  2110     xClose,                     /* xClose */                             \
  2111     unixRead,                   /* xRead */                              \
  2112     unixWrite,                  /* xWrite */                             \
  2113     unixTruncate,               /* xTruncate */                          \
  2114     unixSync,                   /* xSync */                              \
  2115     unixFileSize,               /* xFileSize */                          \
  2116     xLock,                      /* xLock */                              \
  2117     xUnlock,                    /* xUnlock */                            \
  2118     xCheckReservedLock,         /* xCheckReservedLock */                 \
  2119     unixFileControl,            /* xFileControl */                       \
  2120     unixSectorSize,             /* xSectorSize */                        \
  2121     unixDeviceCharacteristics   /* xDeviceCapabilities */                \
  2122   }
  2123   static sqlite3_io_methods aIoMethod[] = {
  2124     IOMETHODS(unixClose, unixLock, unixUnlock, unixCheckReservedLock) 
  2125    ,IOMETHODS(nolockClose, nolockLock, nolockUnlock, nolockCheckReservedLock)
  2126 #ifdef SQLITE_ENABLE_LOCKING_STYLE
  2127    ,IOMETHODS(dotlockClose, dotlockLock, dotlockUnlock,dotlockCheckReservedLock)
  2128    ,IOMETHODS(flockClose, flockLock, flockUnlock, flockCheckReservedLock)
  2129    ,IOMETHODS(afpClose, afpLock, afpUnlock, afpCheckReservedLock)
  2130 #endif
  2131   };
  2132   /* The order of the IOMETHODS macros above is important.  It must be the
  2133   ** same order as the LOCKING_STYLE numbers
  2134   */
  2135   assert(LOCKING_STYLE_POSIX==1);
  2136   assert(LOCKING_STYLE_NONE==2);
  2137   assert(LOCKING_STYLE_DOTFILE==3);
  2138   assert(LOCKING_STYLE_FLOCK==4);
  2139   assert(LOCKING_STYLE_AFP==5);
  2140 
  2141   assert( pNew->pLock==NULL );
  2142   assert( pNew->pOpen==NULL );
  2143 
  2144   OSTRACE3("OPEN    %-3d %s\n", h, zFilename);    
  2145   pNew->h = h;
  2146   pNew->dirfd = dirfd;
  2147   SET_THREADID(pNew);
  2148 
  2149   if( noLock ){
  2150     eLockingStyle = LOCKING_STYLE_NONE;
  2151   }else{
  2152     eLockingStyle = detectLockingStyle(pVfs, zFilename, h);
  2153   }
  2154 
  2155   switch( eLockingStyle ){
  2156 
  2157     case LOCKING_STYLE_POSIX: {
  2158       enterMutex();
  2159       rc = findLockInfo(h, &pNew->pLock, &pNew->pOpen);
  2160       leaveMutex();
  2161       break;
  2162     }
  2163 
  2164 #ifdef SQLITE_ENABLE_LOCKING_STYLE
  2165     case LOCKING_STYLE_AFP: {
  2166       /* AFP locking uses the file path so it needs to be included in
  2167       ** the afpLockingContext.
  2168       */
  2169       afpLockingContext *pCtx;
  2170       pNew->lockingContext = pCtx = sqlite3_malloc( sizeof(*pCtx) );
  2171       if( pCtx==0 ){
  2172         rc = SQLITE_NOMEM;
  2173       }else{
  2174         /* NB: zFilename exists and remains valid until the file is closed
  2175         ** according to requirement F11141.  So we do not need to make a
  2176         ** copy of the filename. */
  2177         pCtx->filePath = zFilename;
  2178         srandomdev();
  2179       }
  2180       break;
  2181     }
  2182 
  2183     case LOCKING_STYLE_DOTFILE: {
  2184       /* Dotfile locking uses the file path so it needs to be included in
  2185       ** the dotlockLockingContext 
  2186       */
  2187       char *zLockFile;
  2188       int nFilename;
  2189       nFilename = strlen(zFilename) + 6;
  2190       zLockFile = (char *)sqlite3_malloc(nFilename);
  2191       if( zLockFile==0 ){
  2192         rc = SQLITE_NOMEM;
  2193       }else{
  2194         sqlite3_snprintf(nFilename, zLockFile, "%s.lock", zFilename);
  2195       }
  2196       pNew->lockingContext = zLockFile;
  2197       break;
  2198     }
  2199 
  2200     case LOCKING_STYLE_FLOCK: 
  2201     case LOCKING_STYLE_NONE: 
  2202       break;
  2203 #endif
  2204   }
  2205 
  2206   if( rc!=SQLITE_OK ){
  2207     if( dirfd>=0 ) close(dirfd);
  2208     close(h);
  2209   }else{
  2210     pNew->pMethod = &aIoMethod[eLockingStyle-1];
  2211     OpenCounter(+1);
  2212   }
  2213   return rc;
  2214 }
  2215 
  2216 /*
  2217 ** Open a file descriptor to the directory containing file zFilename.
  2218 ** If successful, *pFd is set to the opened file descriptor and
  2219 ** SQLITE_OK is returned. If an error occurs, either SQLITE_NOMEM
  2220 ** or SQLITE_CANTOPEN is returned and *pFd is set to an undefined
  2221 ** value.
  2222 **
  2223 ** If SQLITE_OK is returned, the caller is responsible for closing
  2224 ** the file descriptor *pFd using close().
  2225 */
  2226 static int openDirectory(const char *zFilename, int *pFd){
  2227   int ii;
  2228   int fd = -1;
  2229   char zDirname[MAX_PATHNAME+1];
  2230 
  2231   sqlite3_snprintf(MAX_PATHNAME, zDirname, "%s", zFilename);
  2232   for(ii=strlen(zDirname); ii>=0 && zDirname[ii]!='/'; ii--);
  2233   if( ii>0 ){
  2234     zDirname[ii] = '\0';
  2235     fd = open(zDirname, O_RDONLY|O_BINARY, 0);
  2236     if( fd>=0 ){
  2237 #ifdef FD_CLOEXEC
  2238       fcntl(fd, F_SETFD, fcntl(fd, F_GETFD, 0) | FD_CLOEXEC);
  2239 #endif
  2240       OSTRACE3("OPENDIR %-3d %s\n", fd, zDirname);
  2241     }
  2242   }
  2243   *pFd = fd;
  2244   return (fd>=0?SQLITE_OK:SQLITE_CANTOPEN);
  2245 }
  2246 
  2247 /*
  2248 ** Create a temporary file name in zBuf.  zBuf must be allocated
  2249 ** by the calling process and must be big enough to hold at least
  2250 ** pVfs->mxPathname bytes.
  2251 */
  2252 static int getTempname(int nBuf, char *zBuf){
  2253   static const char *azDirs[] = {
  2254      0,
  2255      "/var/tmp",
  2256      "/usr/tmp",
  2257      "/tmp",
  2258      ".",
  2259   };
  2260   static const unsigned char zChars[] =
  2261     "abcdefghijklmnopqrstuvwxyz"
  2262     "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
  2263     "0123456789";
  2264   int i, j;
  2265   struct stat buf;
  2266   const char *zDir = ".";
  2267 
  2268   /* It's odd to simulate an io-error here, but really this is just
  2269   ** using the io-error infrastructure to test that SQLite handles this
  2270   ** function failing. 
  2271   */
  2272   SimulateIOError( return SQLITE_IOERR );
  2273 
  2274   azDirs[0] = sqlite3_temp_directory;
  2275   for(i=0; i<sizeof(azDirs)/sizeof(azDirs[0]); i++){
  2276     if( azDirs[i]==0 ) continue;
  2277     if( stat(azDirs[i], &buf) ) continue;
  2278     if( !S_ISDIR(buf.st_mode) ) continue;
  2279     if( access(azDirs[i], 07) ) continue;
  2280     zDir = azDirs[i];
  2281     break;
  2282   }
  2283 
  2284   /* Check that the output buffer is large enough for the temporary file 
  2285   ** name. If it is not, return SQLITE_ERROR.
  2286   */
  2287   if( (strlen(zDir) + strlen(SQLITE_TEMP_FILE_PREFIX) + 17) >= nBuf ){
  2288     return SQLITE_ERROR;
  2289   }
  2290 
  2291   do{
  2292     sqlite3_snprintf(nBuf-17, zBuf, "%s/"SQLITE_TEMP_FILE_PREFIX, zDir);
  2293     j = strlen(zBuf);
  2294     sqlite3_randomness(15, &zBuf[j]);
  2295     for(i=0; i<15; i++, j++){
  2296       zBuf[j] = (char)zChars[ ((unsigned char)zBuf[j])%(sizeof(zChars)-1) ];
  2297     }
  2298     zBuf[j] = 0;
  2299   }while( access(zBuf,0)==0 );
  2300   return SQLITE_OK;
  2301 }
  2302 
  2303 
  2304 /*
  2305 ** Open the file zPath.
  2306 ** 
  2307 ** Previously, the SQLite OS layer used three functions in place of this
  2308 ** one:
  2309 **
  2310 **     sqlite3OsOpenReadWrite();
  2311 **     sqlite3OsOpenReadOnly();
  2312 **     sqlite3OsOpenExclusive();
  2313 **
  2314 ** These calls correspond to the following combinations of flags:
  2315 **
  2316 **     ReadWrite() ->     (READWRITE | CREATE)
  2317 **     ReadOnly()  ->     (READONLY) 
  2318 **     OpenExclusive() -> (READWRITE | CREATE | EXCLUSIVE)
  2319 **
  2320 ** The old OpenExclusive() accepted a boolean argument - "delFlag". If
  2321 ** true, the file was configured to be automatically deleted when the
  2322 ** file handle closed. To achieve the same effect using this new 
  2323 ** interface, add the DELETEONCLOSE flag to those specified above for 
  2324 ** OpenExclusive().
  2325 */
  2326 static int unixOpen(
  2327   sqlite3_vfs *pVfs, 
  2328   const char *zPath, 
  2329   sqlite3_file *pFile,
  2330   int flags,
  2331   int *pOutFlags
  2332 ){
  2333   int fd = 0;                    /* File descriptor returned by open() */
  2334   int dirfd = -1;                /* Directory file descriptor */
  2335   int oflags = 0;                /* Flags to pass to open() */
  2336   int eType = flags&0xFFFFFF00;  /* Type of file to open */
  2337   int noLock;                    /* True to omit locking primitives */
  2338 
  2339   int isExclusive  = (flags & SQLITE_OPEN_EXCLUSIVE);
  2340   int isDelete     = (flags & SQLITE_OPEN_DELETEONCLOSE);
  2341   int isCreate     = (flags & SQLITE_OPEN_CREATE);
  2342   int isReadonly   = (flags & SQLITE_OPEN_READONLY);
  2343   int isReadWrite  = (flags & SQLITE_OPEN_READWRITE);
  2344 
  2345   /* If creating a master or main-file journal, this function will open
  2346   ** a file-descriptor on the directory too. The first time unixSync()
  2347   ** is called the directory file descriptor will be fsync()ed and close()d.
  2348   */
  2349   int isOpenDirectory = (isCreate && 
  2350       (eType==SQLITE_OPEN_MASTER_JOURNAL || eType==SQLITE_OPEN_MAIN_JOURNAL)
  2351   );
  2352 
  2353   /* If argument zPath is a NULL pointer, this function is required to open
  2354   ** a temporary file. Use this buffer to store the file name in.
  2355   */
  2356   char zTmpname[MAX_PATHNAME+1];
  2357   const char *zName = zPath;
  2358 
  2359   /* Check the following statements are true: 
  2360   **
  2361   **   (a) Exactly one of the READWRITE and READONLY flags must be set, and 
  2362   **   (b) if CREATE is set, then READWRITE must also be set, and
  2363   **   (c) if EXCLUSIVE is set, then CREATE must also be set.
  2364   **   (d) if DELETEONCLOSE is set, then CREATE must also be set.
  2365   */
  2366   assert((isReadonly==0 || isReadWrite==0) && (isReadWrite || isReadonly));
  2367   assert(isCreate==0 || isReadWrite);
  2368   assert(isExclusive==0 || isCreate);
  2369   assert(isDelete==0 || isCreate);
  2370 
  2371   /* The main DB, main journal, and master journal are never automatically
  2372   ** deleted
  2373   */
  2374   assert( eType!=SQLITE_OPEN_MAIN_DB || !isDelete );
  2375   assert( eType!=SQLITE_OPEN_MAIN_JOURNAL || !isDelete );
  2376   assert( eType!=SQLITE_OPEN_MASTER_JOURNAL || !isDelete );
  2377 
  2378   /* Assert that the upper layer has set one of the "file-type" flags. */
  2379   assert( eType==SQLITE_OPEN_MAIN_DB      || eType==SQLITE_OPEN_TEMP_DB 
  2380        || eType==SQLITE_OPEN_MAIN_JOURNAL || eType==SQLITE_OPEN_TEMP_JOURNAL 
  2381        || eType==SQLITE_OPEN_SUBJOURNAL   || eType==SQLITE_OPEN_MASTER_JOURNAL 
  2382        || eType==SQLITE_OPEN_TRANSIENT_DB
  2383   );
  2384 
  2385   memset(pFile, 0, sizeof(unixFile));
  2386 
  2387   if( !zName ){
  2388     int rc;
  2389     assert(isDelete && !isOpenDirectory);
  2390     rc = getTempname(MAX_PATHNAME+1, zTmpname);
  2391     if( rc!=SQLITE_OK ){
  2392       return rc;
  2393     }
  2394     zName = zTmpname;
  2395   }
  2396 
  2397   if( isReadonly )  oflags |= O_RDONLY;
  2398   if( isReadWrite ) oflags |= O_RDWR;
  2399   if( isCreate )    oflags |= O_CREAT;
  2400   if( isExclusive ) oflags |= (O_EXCL|O_NOFOLLOW);
  2401   oflags |= (O_LARGEFILE|O_BINARY);
  2402 
  2403   fd = open(zName, oflags, isDelete?0600:SQLITE_DEFAULT_FILE_PERMISSIONS);
  2404   if( fd<0 && errno!=EISDIR && isReadWrite && !isExclusive ){
  2405     /* Failed to open the file for read/write access. Try read-only. */
  2406     flags &= ~(SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE);
  2407     flags |= SQLITE_OPEN_READONLY;
  2408     return unixOpen(pVfs, zPath, pFile, flags, pOutFlags);
  2409   }
  2410   if( fd<0 ){
  2411     return SQLITE_CANTOPEN;
  2412   }
  2413   if( isDelete ){
  2414     unlink(zName);
  2415   }
  2416   if( pOutFlags ){
  2417     *pOutFlags = flags;
  2418   }
  2419 
  2420   assert(fd!=0);
  2421   if( isOpenDirectory ){
  2422     int rc = openDirectory(zPath, &dirfd);
  2423     if( rc!=SQLITE_OK ){
  2424       close(fd);
  2425       return rc;
  2426     }
  2427   }
  2428 
  2429 #ifdef FD_CLOEXEC
  2430   fcntl(fd, F_SETFD, fcntl(fd, F_GETFD, 0) | FD_CLOEXEC);
  2431 #endif
  2432 
  2433   noLock = eType!=SQLITE_OPEN_MAIN_DB;
  2434   return fillInUnixFile(pVfs, fd, dirfd, pFile, zPath, noLock);
  2435 }
  2436 
  2437 /*
  2438 ** Delete the file at zPath. If the dirSync argument is true, fsync()
  2439 ** the directory after deleting the file.
  2440 */
  2441 static int unixDelete(sqlite3_vfs *pVfs, const char *zPath, int dirSync){
  2442   int rc = SQLITE_OK;
  2443   SimulateIOError(return SQLITE_IOERR_DELETE);
  2444   unlink(zPath);
  2445   if( dirSync ){
  2446     int fd;
  2447     rc = openDirectory(zPath, &fd);
  2448     if( rc==SQLITE_OK ){
  2449       if( fsync(fd) ){
  2450         rc = SQLITE_IOERR_DIR_FSYNC;
  2451       }
  2452       close(fd);
  2453     }
  2454   }
  2455   return rc;
  2456 }
  2457 
  2458 /*
  2459 ** Test the existance of or access permissions of file zPath. The
  2460 ** test performed depends on the value of flags:
  2461 **
  2462 **     SQLITE_ACCESS_EXISTS: Return 1 if the file exists
  2463 **     SQLITE_ACCESS_READWRITE: Return 1 if the file is read and writable.
  2464 **     SQLITE_ACCESS_READONLY: Return 1 if the file is readable.
  2465 **
  2466 ** Otherwise return 0.
  2467 */
  2468 static int unixAccess(
  2469   sqlite3_vfs *pVfs, 
  2470   const char *zPath, 
  2471   int flags, 
  2472   int *pResOut
  2473 ){
  2474   int amode = 0;
  2475   SimulateIOError( return SQLITE_IOERR_ACCESS; );
  2476   switch( flags ){
  2477     case SQLITE_ACCESS_EXISTS:
  2478       amode = F_OK;
  2479       break;
  2480     case SQLITE_ACCESS_READWRITE:
  2481       amode = W_OK|R_OK;
  2482       break;
  2483     case SQLITE_ACCESS_READ:
  2484       amode = R_OK;
  2485       break;
  2486 
  2487     default:
  2488       assert(!"Invalid flags argument");
  2489   }
  2490   *pResOut = (access(zPath, amode)==0);
  2491   return SQLITE_OK;
  2492 }
  2493 
  2494 
  2495 /*
  2496 ** Turn a relative pathname into a full pathname. The relative path
  2497 ** is stored as a nul-terminated string in the buffer pointed to by
  2498 ** zPath. 
  2499 **
  2500 ** zOut points to a buffer of at least sqlite3_vfs.mxPathname bytes 
  2501 ** (in this case, MAX_PATHNAME bytes). The full-path is written to
  2502 ** this buffer before returning.
  2503 */
  2504 static int unixFullPathname(
  2505   sqlite3_vfs *pVfs,            /* Pointer to vfs object */
  2506   const char *zPath,            /* Possibly relative input path */
  2507   int nOut,                     /* Size of output buffer in bytes */
  2508   char *zOut                    /* Output buffer */
  2509 ){
  2510 
  2511   /* It's odd to simulate an io-error here, but really this is just
  2512   ** using the io-error infrastructure to test that SQLite handles this
  2513   ** function failing. This function could fail if, for example, the
  2514   ** current working directly has been unlinked.
  2515   */
  2516   SimulateIOError( return SQLITE_ERROR );
  2517 
  2518   assert( pVfs->mxPathname==MAX_PATHNAME );
  2519   zOut[nOut-1] = '\0';
  2520   if( zPath[0]=='/' ){
  2521     sqlite3_snprintf(nOut, zOut, "%s", zPath);
  2522   }else{
  2523     int nCwd;
  2524     if( getcwd(zOut, nOut-1)==0 ){
  2525       return SQLITE_CANTOPEN;
  2526     }
  2527     nCwd = strlen(zOut);
  2528     sqlite3_snprintf(nOut-nCwd, &zOut[nCwd], "/%s", zPath);
  2529   }
  2530   return SQLITE_OK;
  2531 
  2532 #if 0
  2533   /*
  2534   ** Remove "/./" path elements and convert "/A/./" path elements
  2535   ** to just "/".
  2536   */
  2537   if( zFull ){
  2538     int i, j;
  2539     for(i=j=0; zFull[i]; i++){
  2540       if( zFull[i]=='/' ){
  2541         if( zFull[i+1]=='/' ) continue;
  2542         if( zFull[i+1]=='.' && zFull[i+2]=='/' ){
  2543           i += 1;
  2544           continue;
  2545         }
  2546         if( zFull[i+1]=='.' && zFull[i+2]=='.' && zFull[i+3]=='/' ){
  2547           while( j>0 && zFull[j-1]!='/' ){ j--; }
  2548           i += 3;
  2549           continue;
  2550         }
  2551       }
  2552       zFull[j++] = zFull[i];
  2553     }
  2554     zFull[j] = 0;
  2555   }
  2556 #endif
  2557 }
  2558 
  2559 
  2560 #ifndef SQLITE_OMIT_LOAD_EXTENSION
  2561 /*
  2562 ** Interfaces for opening a shared library, finding entry points
  2563 ** within the shared library, and closing the shared library.
  2564 */
  2565 #include <dlfcn.h>
  2566 static void *unixDlOpen(sqlite3_vfs *pVfs, const char *zFilename){
  2567   return dlopen(zFilename, RTLD_NOW | RTLD_GLOBAL);
  2568 }
  2569 
  2570 /*
  2571 ** SQLite calls this function immediately after a call to unixDlSym() or
  2572 ** unixDlOpen() fails (returns a null pointer). If a more detailed error
  2573 ** message is available, it is written to zBufOut. If no error message
  2574 ** is available, zBufOut is left unmodified and SQLite uses a default
  2575 ** error message.
  2576 */
  2577 static void unixDlError(sqlite3_vfs *pVfs, int nBuf, char *zBufOut){
  2578   char *zErr;
  2579   enterMutex();
  2580   zErr = dlerror();
  2581   if( zErr ){
  2582     sqlite3_snprintf(nBuf, zBufOut, "%s", zErr);
  2583   }
  2584   leaveMutex();
  2585 }
  2586 static void *unixDlSym(sqlite3_vfs *pVfs, void *pHandle, const char *zSymbol){
  2587   return dlsym(pHandle, zSymbol);
  2588 }
  2589 static void unixDlClose(sqlite3_vfs *pVfs, void *pHandle){
  2590   dlclose(pHandle);
  2591 }
  2592 #else /* if SQLITE_OMIT_LOAD_EXTENSION is defined: */
  2593   #define unixDlOpen  0
  2594   #define unixDlError 0
  2595   #define unixDlSym   0
  2596   #define unixDlClose 0
  2597 #endif
  2598 
  2599 /*
  2600 ** Write nBuf bytes of random data to the supplied buffer zBuf.
  2601 */
  2602 static int unixRandomness(sqlite3_vfs *pVfs, int nBuf, char *zBuf){
  2603 
  2604   assert(nBuf>=(sizeof(time_t)+sizeof(int)));
  2605 
  2606   /* We have to initialize zBuf to prevent valgrind from reporting
  2607   ** errors.  The reports issued by valgrind are incorrect - we would
  2608   ** prefer that the randomness be increased by making use of the
  2609   ** uninitialized space in zBuf - but valgrind errors tend to worry
  2610   ** some users.  Rather than argue, it seems easier just to initialize
  2611   ** the whole array and silence valgrind, even if that means less randomness
  2612   ** in the random seed.
  2613   **
  2614   ** When testing, initializing zBuf[] to zero is all we do.  That means
  2615   ** that we always use the same random number sequence.  This makes the
  2616   ** tests repeatable.
  2617   */
  2618   memset(zBuf, 0, nBuf);
  2619 #if !defined(SQLITE_TEST)
  2620   {
  2621     int pid, fd;
  2622     fd = open("/dev/urandom", O_RDONLY);
  2623     if( fd<0 ){
  2624       time_t t;
  2625       time(&t);
  2626       memcpy(zBuf, &t, sizeof(t));
  2627       pid = getpid();
  2628       memcpy(&zBuf[sizeof(t)], &pid, sizeof(pid));
  2629     }else{
  2630       read(fd, zBuf, nBuf);
  2631       close(fd);
  2632     }
  2633   }
  2634 #endif
  2635   return SQLITE_OK;
  2636 }
  2637 
  2638 
  2639 /*
  2640 ** Sleep for a little while.  Return the amount of time slept.
  2641 ** The argument is the number of microseconds we want to sleep.
  2642 ** The return value is the number of microseconds of sleep actually
  2643 ** requested from the underlying operating system, a number which
  2644 ** might be greater than or equal to the argument, but not less
  2645 ** than the argument.
  2646 */
  2647 static int unixSleep(sqlite3_vfs *pVfs, int microseconds){
  2648 #if defined(HAVE_USLEEP) && HAVE_USLEEP
  2649   usleep(microseconds);
  2650   return microseconds;
  2651 #else
  2652   int seconds = (microseconds+999999)/1000000;
  2653   sleep(seconds);
  2654   return seconds*1000000;
  2655 #endif
  2656 }
  2657 
  2658 /*
  2659 ** The following variable, if set to a non-zero value, becomes the result
  2660 ** returned from sqlite3OsCurrentTime().  This is used for testing.
  2661 */
  2662 #ifdef SQLITE_TEST
  2663 int sqlite3_current_time = 0;
  2664 #endif
  2665 
  2666 /*
  2667 ** Find the current time (in Universal Coordinated Time).  Write the
  2668 ** current time and date as a Julian Day number into *prNow and
  2669 ** return 0.  Return 1 if the time and date cannot be found.
  2670 */
  2671 static int unixCurrentTime(sqlite3_vfs *pVfs, double *prNow){
  2672 #ifdef NO_GETTOD
  2673   time_t t;
  2674   time(&t);
  2675   *prNow = t/86400.0 + 2440587.5;
  2676 #else
  2677   struct timeval sNow;
  2678   gettimeofday(&sNow, 0);
  2679   *prNow = 2440587.5 + sNow.tv_sec/86400.0 + sNow.tv_usec/86400000000.0;
  2680 #endif
  2681 #ifdef SQLITE_TEST
  2682   if( sqlite3_current_time ){
  2683     *prNow = sqlite3_current_time/86400.0 + 2440587.5;
  2684   }
  2685 #endif
  2686   return 0;
  2687 }
  2688 
  2689 static int unixGetLastError(sqlite3_vfs *pVfs, int nBuf, char *zBuf){
  2690   return 0;
  2691 }
  2692 
  2693 /*
  2694 ** Initialize the operating system interface.
  2695 */
  2696 int sqlite3_os_init(void){ 
  2697   /* Macro to define the static contents of an sqlite3_vfs structure for
  2698   ** the unix backend. The two parameters are the values to use for
  2699   ** the sqlite3_vfs.zName and sqlite3_vfs.pAppData fields, respectively.
  2700   ** 
  2701   */
  2702   #define UNIXVFS(zVfsName, pVfsAppData) {                  \
  2703     1,                    /* iVersion */                    \
  2704     sizeof(unixFile),     /* szOsFile */                    \
  2705     MAX_PATHNAME,         /* mxPathname */                  \
  2706     0,                    /* pNext */                       \
  2707     zVfsName,             /* zName */                       \
  2708     (void *)pVfsAppData,  /* pAppData */                    \
  2709     unixOpen,             /* xOpen */                       \
  2710     unixDelete,           /* xDelete */                     \
  2711     unixAccess,           /* xAccess */                     \
  2712     unixFullPathname,     /* xFullPathname */               \
  2713     unixDlOpen,           /* xDlOpen */                     \
  2714     unixDlError,          /* xDlError */                    \
  2715     unixDlSym,            /* xDlSym */                      \
  2716     unixDlClose,          /* xDlClose */                    \
  2717     unixRandomness,       /* xRandomness */                 \
  2718     unixSleep,            /* xSleep */                      \
  2719     unixCurrentTime,      /* xCurrentTime */                \
  2720     unixGetLastError      /* xGetLastError */               \
  2721   }
  2722 
  2723   static sqlite3_vfs unixVfs = UNIXVFS("unix", 0);
  2724 #ifdef SQLITE_ENABLE_LOCKING_STYLE
  2725 #if 0
  2726   int i;
  2727   static sqlite3_vfs aVfs[] = {
  2728     UNIXVFS("unix-posix",   LOCKING_STYLE_POSIX), 
  2729     UNIXVFS("unix-afp",     LOCKING_STYLE_AFP), 
  2730     UNIXVFS("unix-flock",   LOCKING_STYLE_FLOCK), 
  2731     UNIXVFS("unix-dotfile", LOCKING_STYLE_DOTFILE), 
  2732     UNIXVFS("unix-none",    LOCKING_STYLE_NONE)
  2733   };
  2734   for(i=0; i<(sizeof(aVfs)/sizeof(sqlite3_vfs)); i++){
  2735     sqlite3_vfs_register(&aVfs[i], 0);
  2736   }
  2737 #endif
  2738 #endif
  2739   sqlite3_vfs_register(&unixVfs, 1);
  2740   return SQLITE_OK; 
  2741 }
  2742 
  2743 /*
  2744 ** Shutdown the operating system interface. This is a no-op for unix.
  2745 */
  2746 int sqlite3_os_end(void){ 
  2747   return SQLITE_OK; 
  2748 }
  2749  
  2750 #endif /* SQLITE_OS_UNIX */