1.1 --- /dev/null Thu Jan 01 00:00:00 1970 +0000
1.2 +++ b/os/persistentdata/persistentstorage/sql/SQLite/os_unix.c Fri Jun 15 03:10:57 2012 +0200
1.3 @@ -0,0 +1,2750 @@
1.4 +/*
1.5 +** 2004 May 22
1.6 +**
1.7 +** The author disclaims copyright to this source code. In place of
1.8 +** a legal notice, here is a blessing:
1.9 +**
1.10 +** May you do good and not evil.
1.11 +** May you find forgiveness for yourself and forgive others.
1.12 +** May you share freely, never taking more than you give.
1.13 +**
1.14 +******************************************************************************
1.15 +**
1.16 +** This file contains code that is specific to Unix systems.
1.17 +**
1.18 +** $Id: os_unix.c,v 1.195 2008/07/30 17:28:04 drh Exp $
1.19 +*/
1.20 +#include "sqliteInt.h"
1.21 +#if SQLITE_OS_UNIX /* This file is used on unix only */
1.22 +
1.23 +/*
1.24 +** If SQLITE_ENABLE_LOCKING_STYLE is defined, then several different
1.25 +** locking implementations are provided:
1.26 +**
1.27 +** * POSIX locking (the default),
1.28 +** * No locking,
1.29 +** * Dot-file locking,
1.30 +** * flock() locking,
1.31 +** * AFP locking (OSX only).
1.32 +*/
1.33 +/* #define SQLITE_ENABLE_LOCKING_STYLE 0 */
1.34 +
1.35 +/*
1.36 +** These #defines should enable >2GB file support on Posix if the
1.37 +** underlying operating system supports it. If the OS lacks
1.38 +** large file support, these should be no-ops.
1.39 +**
1.40 +** Large file support can be disabled using the -DSQLITE_DISABLE_LFS switch
1.41 +** on the compiler command line. This is necessary if you are compiling
1.42 +** on a recent machine (ex: RedHat 7.2) but you want your code to work
1.43 +** on an older machine (ex: RedHat 6.0). If you compile on RedHat 7.2
1.44 +** without this option, LFS is enable. But LFS does not exist in the kernel
1.45 +** in RedHat 6.0, so the code won't work. Hence, for maximum binary
1.46 +** portability you should omit LFS.
1.47 +*/
1.48 +#ifndef SQLITE_DISABLE_LFS
1.49 +# define _LARGE_FILE 1
1.50 +# ifndef _FILE_OFFSET_BITS
1.51 +# define _FILE_OFFSET_BITS 64
1.52 +# endif
1.53 +# define _LARGEFILE_SOURCE 1
1.54 +#endif
1.55 +
1.56 +/*
1.57 +** standard include files.
1.58 +*/
1.59 +#include <sys/types.h>
1.60 +#include <sys/stat.h>
1.61 +#include <fcntl.h>
1.62 +#include <unistd.h>
1.63 +#include <time.h>
1.64 +#include <sys/time.h>
1.65 +#include <errno.h>
1.66 +
1.67 +#ifdef SQLITE_ENABLE_LOCKING_STYLE
1.68 +#include <sys/ioctl.h>
1.69 +#include <sys/param.h>
1.70 +#include <sys/mount.h>
1.71 +#endif /* SQLITE_ENABLE_LOCKING_STYLE */
1.72 +
1.73 +/*
1.74 +** If we are to be thread-safe, include the pthreads header and define
1.75 +** the SQLITE_UNIX_THREADS macro.
1.76 +*/
1.77 +#if SQLITE_THREADSAFE
1.78 +# include <pthread.h>
1.79 +# define SQLITE_UNIX_THREADS 1
1.80 +#endif
1.81 +
1.82 +/*
1.83 +** Default permissions when creating a new file
1.84 +*/
1.85 +#ifndef SQLITE_DEFAULT_FILE_PERMISSIONS
1.86 +# define SQLITE_DEFAULT_FILE_PERMISSIONS 0644
1.87 +#endif
1.88 +
1.89 +/*
1.90 +** Maximum supported path-length.
1.91 +*/
1.92 +#define MAX_PATHNAME 512
1.93 +
1.94 +
1.95 +/*
1.96 +** The unixFile structure is subclass of sqlite3_file specific for the unix
1.97 +** protability layer.
1.98 +*/
1.99 +typedef struct unixFile unixFile;
1.100 +struct unixFile {
1.101 + sqlite3_io_methods const *pMethod; /* Always the first entry */
1.102 +#ifdef SQLITE_TEST
1.103 + /* In test mode, increase the size of this structure a bit so that
1.104 + ** it is larger than the struct CrashFile defined in test6.c.
1.105 + */
1.106 + char aPadding[32];
1.107 +#endif
1.108 + struct openCnt *pOpen; /* Info about all open fd's on this inode */
1.109 + struct lockInfo *pLock; /* Info about locks on this inode */
1.110 +#ifdef SQLITE_ENABLE_LOCKING_STYLE
1.111 + void *lockingContext; /* Locking style specific state */
1.112 +#endif
1.113 + int h; /* The file descriptor */
1.114 + unsigned char locktype; /* The type of lock held on this fd */
1.115 + int dirfd; /* File descriptor for the directory */
1.116 +#if SQLITE_THREADSAFE
1.117 + pthread_t tid; /* The thread that "owns" this unixFile */
1.118 +#endif
1.119 +};
1.120 +
1.121 +/*
1.122 +** Include code that is common to all os_*.c files
1.123 +*/
1.124 +#include "os_common.h"
1.125 +
1.126 +/*
1.127 +** Define various macros that are missing from some systems.
1.128 +*/
1.129 +#ifndef O_LARGEFILE
1.130 +# define O_LARGEFILE 0
1.131 +#endif
1.132 +#ifdef SQLITE_DISABLE_LFS
1.133 +# undef O_LARGEFILE
1.134 +# define O_LARGEFILE 0
1.135 +#endif
1.136 +#ifndef O_NOFOLLOW
1.137 +# define O_NOFOLLOW 0
1.138 +#endif
1.139 +#ifndef O_BINARY
1.140 +# define O_BINARY 0
1.141 +#endif
1.142 +
1.143 +/*
1.144 +** The DJGPP compiler environment looks mostly like Unix, but it
1.145 +** lacks the fcntl() system call. So redefine fcntl() to be something
1.146 +** that always succeeds. This means that locking does not occur under
1.147 +** DJGPP. But it is DOS - what did you expect?
1.148 +*/
1.149 +#ifdef __DJGPP__
1.150 +# define fcntl(A,B,C) 0
1.151 +#endif
1.152 +
1.153 +/*
1.154 +** The threadid macro resolves to the thread-id or to 0. Used for
1.155 +** testing and debugging only.
1.156 +*/
1.157 +#if SQLITE_THREADSAFE
1.158 +#define threadid pthread_self()
1.159 +#else
1.160 +#define threadid 0
1.161 +#endif
1.162 +
1.163 +/*
1.164 +** Set or check the unixFile.tid field. This field is set when an unixFile
1.165 +** is first opened. All subsequent uses of the unixFile verify that the
1.166 +** same thread is operating on the unixFile. Some operating systems do
1.167 +** not allow locks to be overridden by other threads and that restriction
1.168 +** means that sqlite3* database handles cannot be moved from one thread
1.169 +** to another. This logic makes sure a user does not try to do that
1.170 +** by mistake.
1.171 +**
1.172 +** Version 3.3.1 (2006-01-15): unixFile can be moved from one thread to
1.173 +** another as long as we are running on a system that supports threads
1.174 +** overriding each others locks (which now the most common behavior)
1.175 +** or if no locks are held. But the unixFile.pLock field needs to be
1.176 +** recomputed because its key includes the thread-id. See the
1.177 +** transferOwnership() function below for additional information
1.178 +*/
1.179 +#if SQLITE_THREADSAFE
1.180 +# define SET_THREADID(X) (X)->tid = pthread_self()
1.181 +# define CHECK_THREADID(X) (threadsOverrideEachOthersLocks==0 && \
1.182 + !pthread_equal((X)->tid, pthread_self()))
1.183 +#else
1.184 +# define SET_THREADID(X)
1.185 +# define CHECK_THREADID(X) 0
1.186 +#endif
1.187 +
1.188 +/*
1.189 +** Here is the dirt on POSIX advisory locks: ANSI STD 1003.1 (1996)
1.190 +** section 6.5.2.2 lines 483 through 490 specify that when a process
1.191 +** sets or clears a lock, that operation overrides any prior locks set
1.192 +** by the same process. It does not explicitly say so, but this implies
1.193 +** that it overrides locks set by the same process using a different
1.194 +** file descriptor. Consider this test case:
1.195 +** int fd2 = open("./file2", O_RDWR|O_CREAT, 0644);
1.196 +**
1.197 +** Suppose ./file1 and ./file2 are really the same file (because
1.198 +** one is a hard or symbolic link to the other) then if you set
1.199 +** an exclusive lock on fd1, then try to get an exclusive lock
1.200 +** on fd2, it works. I would have expected the second lock to
1.201 +** fail since there was already a lock on the file due to fd1.
1.202 +** But not so. Since both locks came from the same process, the
1.203 +** second overrides the first, even though they were on different
1.204 +** file descriptors opened on different file names.
1.205 +**
1.206 +** Bummer. If you ask me, this is broken. Badly broken. It means
1.207 +** that we cannot use POSIX locks to synchronize file access among
1.208 +** competing threads of the same process. POSIX locks will work fine
1.209 +** to synchronize access for threads in separate processes, but not
1.210 +** threads within the same process.
1.211 +**
1.212 +** To work around the problem, SQLite has to manage file locks internally
1.213 +** on its own. Whenever a new database is opened, we have to find the
1.214 +** specific inode of the database file (the inode is determined by the
1.215 +** st_dev and st_ino fields of the stat structure that fstat() fills in)
1.216 +** and check for locks already existing on that inode. When locks are
1.217 +** created or removed, we have to look at our own internal record of the
1.218 +** locks to see if another thread has previously set a lock on that same
1.219 +** inode.
1.220 +**
1.221 +** The sqlite3_file structure for POSIX is no longer just an integer file
1.222 +** descriptor. It is now a structure that holds the integer file
1.223 +** descriptor and a pointer to a structure that describes the internal
1.224 +** locks on the corresponding inode. There is one locking structure
1.225 +** per inode, so if the same inode is opened twice, both unixFile structures
1.226 +** point to the same locking structure. The locking structure keeps
1.227 +** a reference count (so we will know when to delete it) and a "cnt"
1.228 +** field that tells us its internal lock status. cnt==0 means the
1.229 +** file is unlocked. cnt==-1 means the file has an exclusive lock.
1.230 +** cnt>0 means there are cnt shared locks on the file.
1.231 +**
1.232 +** Any attempt to lock or unlock a file first checks the locking
1.233 +** structure. The fcntl() system call is only invoked to set a
1.234 +** POSIX lock if the internal lock structure transitions between
1.235 +** a locked and an unlocked state.
1.236 +**
1.237 +** 2004-Jan-11:
1.238 +** More recent discoveries about POSIX advisory locks. (The more
1.239 +** I discover, the more I realize the a POSIX advisory locks are
1.240 +** an abomination.)
1.241 +**
1.242 +** If you close a file descriptor that points to a file that has locks,
1.243 +** all locks on that file that are owned by the current process are
1.244 +** released. To work around this problem, each unixFile structure contains
1.245 +** a pointer to an openCnt structure. There is one openCnt structure
1.246 +** per open inode, which means that multiple unixFile can point to a single
1.247 +** openCnt. When an attempt is made to close an unixFile, if there are
1.248 +** other unixFile open on the same inode that are holding locks, the call
1.249 +** to close() the file descriptor is deferred until all of the locks clear.
1.250 +** The openCnt structure keeps a list of file descriptors that need to
1.251 +** be closed and that list is walked (and cleared) when the last lock
1.252 +** clears.
1.253 +**
1.254 +** First, under Linux threads, because each thread has a separate
1.255 +** process ID, lock operations in one thread do not override locks
1.256 +** to the same file in other threads. Linux threads behave like
1.257 +** separate processes in this respect. But, if you close a file
1.258 +** descriptor in linux threads, all locks are cleared, even locks
1.259 +** on other threads and even though the other threads have different
1.260 +** process IDs. Linux threads is inconsistent in this respect.
1.261 +** (I'm beginning to think that linux threads is an abomination too.)
1.262 +** The consequence of this all is that the hash table for the lockInfo
1.263 +** structure has to include the process id as part of its key because
1.264 +** locks in different threads are treated as distinct. But the
1.265 +** openCnt structure should not include the process id in its
1.266 +** key because close() clears lock on all threads, not just the current
1.267 +** thread. Were it not for this goofiness in linux threads, we could
1.268 +** combine the lockInfo and openCnt structures into a single structure.
1.269 +**
1.270 +** 2004-Jun-28:
1.271 +** On some versions of linux, threads can override each others locks.
1.272 +** On others not. Sometimes you can change the behavior on the same
1.273 +** system by setting the LD_ASSUME_KERNEL environment variable. The
1.274 +** POSIX standard is silent as to which behavior is correct, as far
1.275 +** as I can tell, so other versions of unix might show the same
1.276 +** inconsistency. There is no little doubt in my mind that posix
1.277 +** advisory locks and linux threads are profoundly broken.
1.278 +**
1.279 +** To work around the inconsistencies, we have to test at runtime
1.280 +** whether or not threads can override each others locks. This test
1.281 +** is run once, the first time any lock is attempted. A static
1.282 +** variable is set to record the results of this test for future
1.283 +** use.
1.284 +*/
1.285 +
1.286 +/*
1.287 +** An instance of the following structure serves as the key used
1.288 +** to locate a particular lockInfo structure given its inode.
1.289 +**
1.290 +** If threads cannot override each others locks, then we set the
1.291 +** lockKey.tid field to the thread ID. If threads can override
1.292 +** each others locks then tid is always set to zero. tid is omitted
1.293 +** if we compile without threading support.
1.294 +*/
1.295 +struct lockKey {
1.296 + dev_t dev; /* Device number */
1.297 + ino_t ino; /* Inode number */
1.298 +#if SQLITE_THREADSAFE
1.299 + pthread_t tid; /* Thread ID or zero if threads can override each other */
1.300 +#endif
1.301 +};
1.302 +
1.303 +/*
1.304 +** An instance of the following structure is allocated for each open
1.305 +** inode on each thread with a different process ID. (Threads have
1.306 +** different process IDs on linux, but not on most other unixes.)
1.307 +**
1.308 +** A single inode can have multiple file descriptors, so each unixFile
1.309 +** structure contains a pointer to an instance of this object and this
1.310 +** object keeps a count of the number of unixFile pointing to it.
1.311 +*/
1.312 +struct lockInfo {
1.313 + struct lockKey key; /* The lookup key */
1.314 + int cnt; /* Number of SHARED locks held */
1.315 + int locktype; /* One of SHARED_LOCK, RESERVED_LOCK etc. */
1.316 + int nRef; /* Number of pointers to this structure */
1.317 + struct lockInfo *pNext, *pPrev; /* List of all lockInfo objects */
1.318 +};
1.319 +
1.320 +/*
1.321 +** An instance of the following structure serves as the key used
1.322 +** to locate a particular openCnt structure given its inode. This
1.323 +** is the same as the lockKey except that the thread ID is omitted.
1.324 +*/
1.325 +struct openKey {
1.326 + dev_t dev; /* Device number */
1.327 + ino_t ino; /* Inode number */
1.328 +};
1.329 +
1.330 +/*
1.331 +** An instance of the following structure is allocated for each open
1.332 +** inode. This structure keeps track of the number of locks on that
1.333 +** inode. If a close is attempted against an inode that is holding
1.334 +** locks, the close is deferred until all locks clear by adding the
1.335 +** file descriptor to be closed to the pending list.
1.336 +*/
1.337 +struct openCnt {
1.338 + struct openKey key; /* The lookup key */
1.339 + int nRef; /* Number of pointers to this structure */
1.340 + int nLock; /* Number of outstanding locks */
1.341 + int nPending; /* Number of pending close() operations */
1.342 + int *aPending; /* Malloced space holding fd's awaiting a close() */
1.343 + struct openCnt *pNext, *pPrev; /* List of all openCnt objects */
1.344 +};
1.345 +
1.346 +/*
1.347 +** List of all lockInfo and openCnt objects. This used to be a hash
1.348 +** table. But the number of objects is rarely more than a dozen and
1.349 +** never exceeds a few thousand. And lookup is not on a critical
1.350 +** path oo a simple linked list will suffice.
1.351 +*/
1.352 +static struct lockInfo *lockList = 0;
1.353 +static struct openCnt *openList = 0;
1.354 +
1.355 +/*
1.356 +** The locking styles are associated with the different file locking
1.357 +** capabilities supported by different file systems.
1.358 +**
1.359 +** POSIX locking style fully supports shared and exclusive byte-range locks
1.360 +** AFP locking only supports exclusive byte-range locks
1.361 +** FLOCK only supports a single file-global exclusive lock
1.362 +** DOTLOCK isn't a true locking style, it refers to the use of a special
1.363 +** file named the same as the database file with a '.lock' extension, this
1.364 +** can be used on file systems that do not offer any reliable file locking
1.365 +** NO locking means that no locking will be attempted, this is only used for
1.366 +** read-only file systems currently
1.367 +** UNSUPPORTED means that no locking will be attempted, this is only used for
1.368 +** file systems that are known to be unsupported
1.369 +*/
1.370 +#define LOCKING_STYLE_POSIX 1
1.371 +#define LOCKING_STYLE_NONE 2
1.372 +#define LOCKING_STYLE_DOTFILE 3
1.373 +#define LOCKING_STYLE_FLOCK 4
1.374 +#define LOCKING_STYLE_AFP 5
1.375 +
1.376 +/*
1.377 +** Helper functions to obtain and relinquish the global mutex.
1.378 +*/
1.379 +static void enterMutex(){
1.380 + sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER));
1.381 +}
1.382 +static void leaveMutex(){
1.383 + sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER));
1.384 +}
1.385 +
1.386 +#if SQLITE_THREADSAFE
1.387 +/*
1.388 +** This variable records whether or not threads can override each others
1.389 +** locks.
1.390 +**
1.391 +** 0: No. Threads cannot override each others locks.
1.392 +** 1: Yes. Threads can override each others locks.
1.393 +** -1: We don't know yet.
1.394 +**
1.395 +** On some systems, we know at compile-time if threads can override each
1.396 +** others locks. On those systems, the SQLITE_THREAD_OVERRIDE_LOCK macro
1.397 +** will be set appropriately. On other systems, we have to check at
1.398 +** runtime. On these latter systems, SQLTIE_THREAD_OVERRIDE_LOCK is
1.399 +** undefined.
1.400 +**
1.401 +** This variable normally has file scope only. But during testing, we make
1.402 +** it a global so that the test code can change its value in order to verify
1.403 +** that the right stuff happens in either case.
1.404 +*/
1.405 +#ifndef SQLITE_THREAD_OVERRIDE_LOCK
1.406 +# define SQLITE_THREAD_OVERRIDE_LOCK -1
1.407 +#endif
1.408 +#ifdef SQLITE_TEST
1.409 +int threadsOverrideEachOthersLocks = SQLITE_THREAD_OVERRIDE_LOCK;
1.410 +#else
1.411 +static int threadsOverrideEachOthersLocks = SQLITE_THREAD_OVERRIDE_LOCK;
1.412 +#endif
1.413 +
1.414 +/*
1.415 +** This structure holds information passed into individual test
1.416 +** threads by the testThreadLockingBehavior() routine.
1.417 +*/
1.418 +struct threadTestData {
1.419 + int fd; /* File to be locked */
1.420 + struct flock lock; /* The locking operation */
1.421 + int result; /* Result of the locking operation */
1.422 +};
1.423 +
1.424 +#ifdef SQLITE_LOCK_TRACE
1.425 +/*
1.426 +** Print out information about all locking operations.
1.427 +**
1.428 +** This routine is used for troubleshooting locks on multithreaded
1.429 +** platforms. Enable by compiling with the -DSQLITE_LOCK_TRACE
1.430 +** command-line option on the compiler. This code is normally
1.431 +** turned off.
1.432 +*/
1.433 +static int lockTrace(int fd, int op, struct flock *p){
1.434 + char *zOpName, *zType;
1.435 + int s;
1.436 + int savedErrno;
1.437 + if( op==F_GETLK ){
1.438 + zOpName = "GETLK";
1.439 + }else if( op==F_SETLK ){
1.440 + zOpName = "SETLK";
1.441 + }else{
1.442 + s = fcntl(fd, op, p);
1.443 + sqlite3DebugPrintf("fcntl unknown %d %d %d\n", fd, op, s);
1.444 + return s;
1.445 + }
1.446 + if( p->l_type==F_RDLCK ){
1.447 + zType = "RDLCK";
1.448 + }else if( p->l_type==F_WRLCK ){
1.449 + zType = "WRLCK";
1.450 + }else if( p->l_type==F_UNLCK ){
1.451 + zType = "UNLCK";
1.452 + }else{
1.453 + assert( 0 );
1.454 + }
1.455 + assert( p->l_whence==SEEK_SET );
1.456 + s = fcntl(fd, op, p);
1.457 + savedErrno = errno;
1.458 + sqlite3DebugPrintf("fcntl %d %d %s %s %d %d %d %d\n",
1.459 + threadid, fd, zOpName, zType, (int)p->l_start, (int)p->l_len,
1.460 + (int)p->l_pid, s);
1.461 + if( s==(-1) && op==F_SETLK && (p->l_type==F_RDLCK || p->l_type==F_WRLCK) ){
1.462 + struct flock l2;
1.463 + l2 = *p;
1.464 + fcntl(fd, F_GETLK, &l2);
1.465 + if( l2.l_type==F_RDLCK ){
1.466 + zType = "RDLCK";
1.467 + }else if( l2.l_type==F_WRLCK ){
1.468 + zType = "WRLCK";
1.469 + }else if( l2.l_type==F_UNLCK ){
1.470 + zType = "UNLCK";
1.471 + }else{
1.472 + assert( 0 );
1.473 + }
1.474 + sqlite3DebugPrintf("fcntl-failure-reason: %s %d %d %d\n",
1.475 + zType, (int)l2.l_start, (int)l2.l_len, (int)l2.l_pid);
1.476 + }
1.477 + errno = savedErrno;
1.478 + return s;
1.479 +}
1.480 +#define fcntl lockTrace
1.481 +#endif /* SQLITE_LOCK_TRACE */
1.482 +
1.483 +/*
1.484 +** The testThreadLockingBehavior() routine launches two separate
1.485 +** threads on this routine. This routine attempts to lock a file
1.486 +** descriptor then returns. The success or failure of that attempt
1.487 +** allows the testThreadLockingBehavior() procedure to determine
1.488 +** whether or not threads can override each others locks.
1.489 +*/
1.490 +static void *threadLockingTest(void *pArg){
1.491 + struct threadTestData *pData = (struct threadTestData*)pArg;
1.492 + pData->result = fcntl(pData->fd, F_SETLK, &pData->lock);
1.493 + return pArg;
1.494 +}
1.495 +
1.496 +/*
1.497 +** This procedure attempts to determine whether or not threads
1.498 +** can override each others locks then sets the
1.499 +** threadsOverrideEachOthersLocks variable appropriately.
1.500 +*/
1.501 +static void testThreadLockingBehavior(int fd_orig){
1.502 + int fd;
1.503 + struct threadTestData d[2];
1.504 + pthread_t t[2];
1.505 +
1.506 + fd = dup(fd_orig);
1.507 + if( fd<0 ) return;
1.508 + memset(d, 0, sizeof(d));
1.509 + d[0].fd = fd;
1.510 + d[0].lock.l_type = F_RDLCK;
1.511 + d[0].lock.l_len = 1;
1.512 + d[0].lock.l_start = 0;
1.513 + d[0].lock.l_whence = SEEK_SET;
1.514 + d[1] = d[0];
1.515 + d[1].lock.l_type = F_WRLCK;
1.516 + pthread_create(&t[0], 0, threadLockingTest, &d[0]);
1.517 + pthread_create(&t[1], 0, threadLockingTest, &d[1]);
1.518 + pthread_join(t[0], 0);
1.519 + pthread_join(t[1], 0);
1.520 + close(fd);
1.521 + threadsOverrideEachOthersLocks = d[0].result==0 && d[1].result==0;
1.522 +}
1.523 +#endif /* SQLITE_THREADSAFE */
1.524 +
1.525 +/*
1.526 +** Release a lockInfo structure previously allocated by findLockInfo().
1.527 +*/
1.528 +static void releaseLockInfo(struct lockInfo *pLock){
1.529 + if( pLock ){
1.530 + pLock->nRef--;
1.531 + if( pLock->nRef==0 ){
1.532 + if( pLock->pPrev ){
1.533 + assert( pLock->pPrev->pNext==pLock );
1.534 + pLock->pPrev->pNext = pLock->pNext;
1.535 + }else{
1.536 + assert( lockList==pLock );
1.537 + lockList = pLock->pNext;
1.538 + }
1.539 + if( pLock->pNext ){
1.540 + assert( pLock->pNext->pPrev==pLock );
1.541 + pLock->pNext->pPrev = pLock->pPrev;
1.542 + }
1.543 + sqlite3_free(pLock);
1.544 + }
1.545 + }
1.546 +}
1.547 +
1.548 +/*
1.549 +** Release a openCnt structure previously allocated by findLockInfo().
1.550 +*/
1.551 +static void releaseOpenCnt(struct openCnt *pOpen){
1.552 + if( pOpen ){
1.553 + pOpen->nRef--;
1.554 + if( pOpen->nRef==0 ){
1.555 + if( pOpen->pPrev ){
1.556 + assert( pOpen->pPrev->pNext==pOpen );
1.557 + pOpen->pPrev->pNext = pOpen->pNext;
1.558 + }else{
1.559 + assert( openList==pOpen );
1.560 + openList = pOpen->pNext;
1.561 + }
1.562 + if( pOpen->pNext ){
1.563 + assert( pOpen->pNext->pPrev==pOpen );
1.564 + pOpen->pNext->pPrev = pOpen->pPrev;
1.565 + }
1.566 + sqlite3_free(pOpen->aPending);
1.567 + sqlite3_free(pOpen);
1.568 + }
1.569 + }
1.570 +}
1.571 +
1.572 +#ifdef SQLITE_ENABLE_LOCKING_STYLE
1.573 +/*
1.574 +** Tests a byte-range locking query to see if byte range locks are
1.575 +** supported, if not we fall back to dotlockLockingStyle.
1.576 +*/
1.577 +static int testLockingStyle(int fd){
1.578 + struct flock lockInfo;
1.579 +
1.580 + /* Test byte-range lock using fcntl(). If the call succeeds,
1.581 + ** assume that the file-system supports POSIX style locks.
1.582 + */
1.583 + lockInfo.l_len = 1;
1.584 + lockInfo.l_start = 0;
1.585 + lockInfo.l_whence = SEEK_SET;
1.586 + lockInfo.l_type = F_RDLCK;
1.587 + if( fcntl(fd, F_GETLK, &lockInfo)!=-1 ) {
1.588 + return LOCKING_STYLE_POSIX;
1.589 + }
1.590 +
1.591 + /* Testing for flock() can give false positives. So if if the above
1.592 + ** test fails, then we fall back to using dot-file style locking.
1.593 + */
1.594 + return LOCKING_STYLE_DOTFILE;
1.595 +}
1.596 +#endif
1.597 +
1.598 +/*
1.599 +** If SQLITE_ENABLE_LOCKING_STYLE is defined, this function Examines the
1.600 +** f_fstypename entry in the statfs structure as returned by stat() for
1.601 +** the file system hosting the database file and selects the appropriate
1.602 +** locking style based on its value. These values and assignments are
1.603 +** based on Darwin/OSX behavior and have not been thoroughly tested on
1.604 +** other systems.
1.605 +**
1.606 +** If SQLITE_ENABLE_LOCKING_STYLE is not defined, this function always
1.607 +** returns LOCKING_STYLE_POSIX.
1.608 +*/
1.609 +static int detectLockingStyle(
1.610 + sqlite3_vfs *pVfs,
1.611 + const char *filePath,
1.612 + int fd
1.613 +){
1.614 +#ifdef SQLITE_ENABLE_LOCKING_STYLE
1.615 + struct Mapping {
1.616 + const char *zFilesystem;
1.617 + int eLockingStyle;
1.618 + } aMap[] = {
1.619 + { "hfs", LOCKING_STYLE_POSIX },
1.620 + { "ufs", LOCKING_STYLE_POSIX },
1.621 + { "afpfs", LOCKING_STYLE_AFP },
1.622 + { "smbfs", LOCKING_STYLE_FLOCK },
1.623 + { "msdos", LOCKING_STYLE_DOTFILE },
1.624 + { "webdav", LOCKING_STYLE_NONE },
1.625 + { 0, 0 }
1.626 + };
1.627 + int i;
1.628 + struct statfs fsInfo;
1.629 +
1.630 + if( !filePath ){
1.631 + return LOCKING_STYLE_NONE;
1.632 + }
1.633 + if( pVfs->pAppData ){
1.634 + return (int)pVfs->pAppData;
1.635 + }
1.636 +
1.637 + if( statfs(filePath, &fsInfo) != -1 ){
1.638 + if( fsInfo.f_flags & MNT_RDONLY ){
1.639 + return LOCKING_STYLE_NONE;
1.640 + }
1.641 + for(i=0; aMap[i].zFilesystem; i++){
1.642 + if( strcmp(fsInfo.f_fstypename, aMap[i].zFilesystem)==0 ){
1.643 + return aMap[i].eLockingStyle;
1.644 + }
1.645 + }
1.646 + }
1.647 +
1.648 + /* Default case. Handles, amongst others, "nfs". */
1.649 + return testLockingStyle(fd);
1.650 +#endif
1.651 + return LOCKING_STYLE_POSIX;
1.652 +}
1.653 +
1.654 +/*
1.655 +** Given a file descriptor, locate lockInfo and openCnt structures that
1.656 +** describes that file descriptor. Create new ones if necessary. The
1.657 +** return values might be uninitialized if an error occurs.
1.658 +**
1.659 +** Return an appropriate error code.
1.660 +*/
1.661 +static int findLockInfo(
1.662 + int fd, /* The file descriptor used in the key */
1.663 + struct lockInfo **ppLock, /* Return the lockInfo structure here */
1.664 + struct openCnt **ppOpen /* Return the openCnt structure here */
1.665 +){
1.666 + int rc;
1.667 + struct lockKey key1;
1.668 + struct openKey key2;
1.669 + struct stat statbuf;
1.670 + struct lockInfo *pLock;
1.671 + struct openCnt *pOpen;
1.672 + rc = fstat(fd, &statbuf);
1.673 + if( rc!=0 ){
1.674 +#ifdef EOVERFLOW
1.675 + if( errno==EOVERFLOW ) return SQLITE_NOLFS;
1.676 +#endif
1.677 + return SQLITE_IOERR;
1.678 + }
1.679 +
1.680 + /* On OS X on an msdos filesystem, the inode number is reported
1.681 + ** incorrectly for zero-size files. See ticket #3260. To work
1.682 + ** around this problem (we consider it a bug in OS X, not SQLite)
1.683 + ** we always increase the file size to 1 by writing a single byte
1.684 + ** prior to accessing the inode number. The one byte written is
1.685 + ** an ASCII 'S' character which also happens to be the first byte
1.686 + ** in the header of every SQLite database. In this way, if there
1.687 + ** is a race condition such that another thread has already populated
1.688 + ** the first page of the database, no damage is done.
1.689 + */
1.690 + if( statbuf.st_size==0 ){
1.691 + write(fd, "S", 1);
1.692 + rc = fstat(fd, &statbuf);
1.693 + if( rc!=0 ){
1.694 + return SQLITE_IOERR;
1.695 + }
1.696 + }
1.697 +
1.698 + memset(&key1, 0, sizeof(key1));
1.699 + key1.dev = statbuf.st_dev;
1.700 + key1.ino = statbuf.st_ino;
1.701 +#if SQLITE_THREADSAFE
1.702 + if( threadsOverrideEachOthersLocks<0 ){
1.703 + testThreadLockingBehavior(fd);
1.704 + }
1.705 + key1.tid = threadsOverrideEachOthersLocks ? 0 : pthread_self();
1.706 +#endif
1.707 + memset(&key2, 0, sizeof(key2));
1.708 + key2.dev = statbuf.st_dev;
1.709 + key2.ino = statbuf.st_ino;
1.710 + pLock = lockList;
1.711 + while( pLock && memcmp(&key1, &pLock->key, sizeof(key1)) ){
1.712 + pLock = pLock->pNext;
1.713 + }
1.714 + if( pLock==0 ){
1.715 + pLock = sqlite3_malloc( sizeof(*pLock) );
1.716 + if( pLock==0 ){
1.717 + rc = SQLITE_NOMEM;
1.718 + goto exit_findlockinfo;
1.719 + }
1.720 + pLock->key = key1;
1.721 + pLock->nRef = 1;
1.722 + pLock->cnt = 0;
1.723 + pLock->locktype = 0;
1.724 + pLock->pNext = lockList;
1.725 + pLock->pPrev = 0;
1.726 + if( lockList ) lockList->pPrev = pLock;
1.727 + lockList = pLock;
1.728 + }else{
1.729 + pLock->nRef++;
1.730 + }
1.731 + *ppLock = pLock;
1.732 + if( ppOpen!=0 ){
1.733 + pOpen = openList;
1.734 + while( pOpen && memcmp(&key2, &pOpen->key, sizeof(key2)) ){
1.735 + pOpen = pOpen->pNext;
1.736 + }
1.737 + if( pOpen==0 ){
1.738 + pOpen = sqlite3_malloc( sizeof(*pOpen) );
1.739 + if( pOpen==0 ){
1.740 + releaseLockInfo(pLock);
1.741 + rc = SQLITE_NOMEM;
1.742 + goto exit_findlockinfo;
1.743 + }
1.744 + pOpen->key = key2;
1.745 + pOpen->nRef = 1;
1.746 + pOpen->nLock = 0;
1.747 + pOpen->nPending = 0;
1.748 + pOpen->aPending = 0;
1.749 + pOpen->pNext = openList;
1.750 + pOpen->pPrev = 0;
1.751 + if( openList ) openList->pPrev = pOpen;
1.752 + openList = pOpen;
1.753 + }else{
1.754 + pOpen->nRef++;
1.755 + }
1.756 + *ppOpen = pOpen;
1.757 + }
1.758 +
1.759 +exit_findlockinfo:
1.760 + return rc;
1.761 +}
1.762 +
1.763 +#ifdef SQLITE_DEBUG
1.764 +/*
1.765 +** Helper function for printing out trace information from debugging
1.766 +** binaries. This returns the string represetation of the supplied
1.767 +** integer lock-type.
1.768 +*/
1.769 +static const char *locktypeName(int locktype){
1.770 + switch( locktype ){
1.771 + case NO_LOCK: return "NONE";
1.772 + case SHARED_LOCK: return "SHARED";
1.773 + case RESERVED_LOCK: return "RESERVED";
1.774 + case PENDING_LOCK: return "PENDING";
1.775 + case EXCLUSIVE_LOCK: return "EXCLUSIVE";
1.776 + }
1.777 + return "ERROR";
1.778 +}
1.779 +#endif
1.780 +
1.781 +/*
1.782 +** If we are currently in a different thread than the thread that the
1.783 +** unixFile argument belongs to, then transfer ownership of the unixFile
1.784 +** over to the current thread.
1.785 +**
1.786 +** A unixFile is only owned by a thread on systems where one thread is
1.787 +** unable to override locks created by a different thread. RedHat9 is
1.788 +** an example of such a system.
1.789 +**
1.790 +** Ownership transfer is only allowed if the unixFile is currently unlocked.
1.791 +** If the unixFile is locked and an ownership is wrong, then return
1.792 +** SQLITE_MISUSE. SQLITE_OK is returned if everything works.
1.793 +*/
1.794 +#if SQLITE_THREADSAFE
1.795 +static int transferOwnership(unixFile *pFile){
1.796 + int rc;
1.797 + pthread_t hSelf;
1.798 + if( threadsOverrideEachOthersLocks ){
1.799 + /* Ownership transfers not needed on this system */
1.800 + return SQLITE_OK;
1.801 + }
1.802 + hSelf = pthread_self();
1.803 + if( pthread_equal(pFile->tid, hSelf) ){
1.804 + /* We are still in the same thread */
1.805 + OSTRACE1("No-transfer, same thread\n");
1.806 + return SQLITE_OK;
1.807 + }
1.808 + if( pFile->locktype!=NO_LOCK ){
1.809 + /* We cannot change ownership while we are holding a lock! */
1.810 + return SQLITE_MISUSE;
1.811 + }
1.812 + OSTRACE4("Transfer ownership of %d from %d to %d\n",
1.813 + pFile->h, pFile->tid, hSelf);
1.814 + pFile->tid = hSelf;
1.815 + if (pFile->pLock != NULL) {
1.816 + releaseLockInfo(pFile->pLock);
1.817 + rc = findLockInfo(pFile->h, &pFile->pLock, 0);
1.818 + OSTRACE5("LOCK %d is now %s(%s,%d)\n", pFile->h,
1.819 + locktypeName(pFile->locktype),
1.820 + locktypeName(pFile->pLock->locktype), pFile->pLock->cnt);
1.821 + return rc;
1.822 + } else {
1.823 + return SQLITE_OK;
1.824 + }
1.825 +}
1.826 +#else
1.827 + /* On single-threaded builds, ownership transfer is a no-op */
1.828 +# define transferOwnership(X) SQLITE_OK
1.829 +#endif
1.830 +
1.831 +/*
1.832 +** Seek to the offset passed as the second argument, then read cnt
1.833 +** bytes into pBuf. Return the number of bytes actually read.
1.834 +**
1.835 +** NB: If you define USE_PREAD or USE_PREAD64, then it might also
1.836 +** be necessary to define _XOPEN_SOURCE to be 500. This varies from
1.837 +** one system to another. Since SQLite does not define USE_PREAD
1.838 +** any any form by default, we will not attempt to define _XOPEN_SOURCE.
1.839 +** See tickets #2741 and #2681.
1.840 +*/
1.841 +static int seekAndRead(unixFile *id, sqlite3_int64 offset, void *pBuf, int cnt){
1.842 + int got;
1.843 + i64 newOffset;
1.844 + TIMER_START;
1.845 +#if defined(USE_PREAD)
1.846 + got = pread(id->h, pBuf, cnt, offset);
1.847 + SimulateIOError( got = -1 );
1.848 +#elif defined(USE_PREAD64)
1.849 + got = pread64(id->h, pBuf, cnt, offset);
1.850 + SimulateIOError( got = -1 );
1.851 +#else
1.852 + newOffset = lseek(id->h, offset, SEEK_SET);
1.853 + SimulateIOError( newOffset-- );
1.854 + if( newOffset!=offset ){
1.855 + return -1;
1.856 + }
1.857 + got = read(id->h, pBuf, cnt);
1.858 +#endif
1.859 + TIMER_END;
1.860 + OSTRACE5("READ %-3d %5d %7lld %llu\n", id->h, got, offset, TIMER_ELAPSED);
1.861 + return got;
1.862 +}
1.863 +
1.864 +/*
1.865 +** Read data from a file into a buffer. Return SQLITE_OK if all
1.866 +** bytes were read successfully and SQLITE_IOERR if anything goes
1.867 +** wrong.
1.868 +*/
1.869 +static int unixRead(
1.870 + sqlite3_file *id,
1.871 + void *pBuf,
1.872 + int amt,
1.873 + sqlite3_int64 offset
1.874 +){
1.875 + int got;
1.876 + assert( id );
1.877 + got = seekAndRead((unixFile*)id, offset, pBuf, amt);
1.878 + if( got==amt ){
1.879 + return SQLITE_OK;
1.880 + }else if( got<0 ){
1.881 + return SQLITE_IOERR_READ;
1.882 + }else{
1.883 + memset(&((char*)pBuf)[got], 0, amt-got);
1.884 + return SQLITE_IOERR_SHORT_READ;
1.885 + }
1.886 +}
1.887 +
1.888 +/*
1.889 +** Seek to the offset in id->offset then read cnt bytes into pBuf.
1.890 +** Return the number of bytes actually read. Update the offset.
1.891 +*/
1.892 +static int seekAndWrite(unixFile *id, i64 offset, const void *pBuf, int cnt){
1.893 + int got;
1.894 + i64 newOffset;
1.895 + TIMER_START;
1.896 +#if defined(USE_PREAD)
1.897 + got = pwrite(id->h, pBuf, cnt, offset);
1.898 +#elif defined(USE_PREAD64)
1.899 + got = pwrite64(id->h, pBuf, cnt, offset);
1.900 +#else
1.901 + newOffset = lseek(id->h, offset, SEEK_SET);
1.902 + if( newOffset!=offset ){
1.903 + return -1;
1.904 + }
1.905 + got = write(id->h, pBuf, cnt);
1.906 +#endif
1.907 + TIMER_END;
1.908 + OSTRACE5("WRITE %-3d %5d %7lld %llu\n", id->h, got, offset, TIMER_ELAPSED);
1.909 + return got;
1.910 +}
1.911 +
1.912 +
1.913 +/*
1.914 +** Write data from a buffer into a file. Return SQLITE_OK on success
1.915 +** or some other error code on failure.
1.916 +*/
1.917 +static int unixWrite(
1.918 + sqlite3_file *id,
1.919 + const void *pBuf,
1.920 + int amt,
1.921 + sqlite3_int64 offset
1.922 +){
1.923 + int wrote = 0;
1.924 + assert( id );
1.925 + assert( amt>0 );
1.926 + while( amt>0 && (wrote = seekAndWrite((unixFile*)id, offset, pBuf, amt))>0 ){
1.927 + amt -= wrote;
1.928 + offset += wrote;
1.929 + pBuf = &((char*)pBuf)[wrote];
1.930 + }
1.931 + SimulateIOError(( wrote=(-1), amt=1 ));
1.932 + SimulateDiskfullError(( wrote=0, amt=1 ));
1.933 + if( amt>0 ){
1.934 + if( wrote<0 ){
1.935 + return SQLITE_IOERR_WRITE;
1.936 + }else{
1.937 + return SQLITE_FULL;
1.938 + }
1.939 + }
1.940 + return SQLITE_OK;
1.941 +}
1.942 +
1.943 +#ifdef SQLITE_TEST
1.944 +/*
1.945 +** Count the number of fullsyncs and normal syncs. This is used to test
1.946 +** that syncs and fullsyncs are occuring at the right times.
1.947 +*/
1.948 +int sqlite3_sync_count = 0;
1.949 +int sqlite3_fullsync_count = 0;
1.950 +#endif
1.951 +
1.952 +/*
1.953 +** Use the fdatasync() API only if the HAVE_FDATASYNC macro is defined.
1.954 +** Otherwise use fsync() in its place.
1.955 +*/
1.956 +#ifndef HAVE_FDATASYNC
1.957 +# define fdatasync fsync
1.958 +#endif
1.959 +
1.960 +/*
1.961 +** Define HAVE_FULLFSYNC to 0 or 1 depending on whether or not
1.962 +** the F_FULLFSYNC macro is defined. F_FULLFSYNC is currently
1.963 +** only available on Mac OS X. But that could change.
1.964 +*/
1.965 +#ifdef F_FULLFSYNC
1.966 +# define HAVE_FULLFSYNC 1
1.967 +#else
1.968 +# define HAVE_FULLFSYNC 0
1.969 +#endif
1.970 +
1.971 +
1.972 +/*
1.973 +** The fsync() system call does not work as advertised on many
1.974 +** unix systems. The following procedure is an attempt to make
1.975 +** it work better.
1.976 +**
1.977 +** The SQLITE_NO_SYNC macro disables all fsync()s. This is useful
1.978 +** for testing when we want to run through the test suite quickly.
1.979 +** You are strongly advised *not* to deploy with SQLITE_NO_SYNC
1.980 +** enabled, however, since with SQLITE_NO_SYNC enabled, an OS crash
1.981 +** or power failure will likely corrupt the database file.
1.982 +*/
1.983 +static int full_fsync(int fd, int fullSync, int dataOnly){
1.984 + int rc;
1.985 +
1.986 + /* Record the number of times that we do a normal fsync() and
1.987 + ** FULLSYNC. This is used during testing to verify that this procedure
1.988 + ** gets called with the correct arguments.
1.989 + */
1.990 +#ifdef SQLITE_TEST
1.991 + if( fullSync ) sqlite3_fullsync_count++;
1.992 + sqlite3_sync_count++;
1.993 +#endif
1.994 +
1.995 + /* If we compiled with the SQLITE_NO_SYNC flag, then syncing is a
1.996 + ** no-op
1.997 + */
1.998 +#ifdef SQLITE_NO_SYNC
1.999 + rc = SQLITE_OK;
1.1000 +#else
1.1001 +
1.1002 +#if HAVE_FULLFSYNC
1.1003 + if( fullSync ){
1.1004 + rc = fcntl(fd, F_FULLFSYNC, 0);
1.1005 + }else{
1.1006 + rc = 1;
1.1007 + }
1.1008 + /* If the FULLFSYNC failed, fall back to attempting an fsync().
1.1009 + * It shouldn't be possible for fullfsync to fail on the local
1.1010 + * file system (on OSX), so failure indicates that FULLFSYNC
1.1011 + * isn't supported for this file system. So, attempt an fsync
1.1012 + * and (for now) ignore the overhead of a superfluous fcntl call.
1.1013 + * It'd be better to detect fullfsync support once and avoid
1.1014 + * the fcntl call every time sync is called.
1.1015 + */
1.1016 + if( rc ) rc = fsync(fd);
1.1017 +
1.1018 +#else
1.1019 + if( dataOnly ){
1.1020 + rc = fdatasync(fd);
1.1021 + }else{
1.1022 + rc = fsync(fd);
1.1023 + }
1.1024 +#endif /* HAVE_FULLFSYNC */
1.1025 +#endif /* defined(SQLITE_NO_SYNC) */
1.1026 +
1.1027 + return rc;
1.1028 +}
1.1029 +
1.1030 +/*
1.1031 +** Make sure all writes to a particular file are committed to disk.
1.1032 +**
1.1033 +** If dataOnly==0 then both the file itself and its metadata (file
1.1034 +** size, access time, etc) are synced. If dataOnly!=0 then only the
1.1035 +** file data is synced.
1.1036 +**
1.1037 +** Under Unix, also make sure that the directory entry for the file
1.1038 +** has been created by fsync-ing the directory that contains the file.
1.1039 +** If we do not do this and we encounter a power failure, the directory
1.1040 +** entry for the journal might not exist after we reboot. The next
1.1041 +** SQLite to access the file will not know that the journal exists (because
1.1042 +** the directory entry for the journal was never created) and the transaction
1.1043 +** will not roll back - possibly leading to database corruption.
1.1044 +*/
1.1045 +static int unixSync(sqlite3_file *id, int flags){
1.1046 + int rc;
1.1047 + unixFile *pFile = (unixFile*)id;
1.1048 +
1.1049 + int isDataOnly = (flags&SQLITE_SYNC_DATAONLY);
1.1050 + int isFullsync = (flags&0x0F)==SQLITE_SYNC_FULL;
1.1051 +
1.1052 + /* Check that one of SQLITE_SYNC_NORMAL or FULL was passed */
1.1053 + assert((flags&0x0F)==SQLITE_SYNC_NORMAL
1.1054 + || (flags&0x0F)==SQLITE_SYNC_FULL
1.1055 + );
1.1056 +
1.1057 + assert( pFile );
1.1058 + OSTRACE2("SYNC %-3d\n", pFile->h);
1.1059 + rc = full_fsync(pFile->h, isFullsync, isDataOnly);
1.1060 + SimulateIOError( rc=1 );
1.1061 + if( rc ){
1.1062 + return SQLITE_IOERR_FSYNC;
1.1063 + }
1.1064 + if( pFile->dirfd>=0 ){
1.1065 + OSTRACE4("DIRSYNC %-3d (have_fullfsync=%d fullsync=%d)\n", pFile->dirfd,
1.1066 + HAVE_FULLFSYNC, isFullsync);
1.1067 +#ifndef SQLITE_DISABLE_DIRSYNC
1.1068 + /* The directory sync is only attempted if full_fsync is
1.1069 + ** turned off or unavailable. If a full_fsync occurred above,
1.1070 + ** then the directory sync is superfluous.
1.1071 + */
1.1072 + if( (!HAVE_FULLFSYNC || !isFullsync) && full_fsync(pFile->dirfd,0,0) ){
1.1073 + /*
1.1074 + ** We have received multiple reports of fsync() returning
1.1075 + ** errors when applied to directories on certain file systems.
1.1076 + ** A failed directory sync is not a big deal. So it seems
1.1077 + ** better to ignore the error. Ticket #1657
1.1078 + */
1.1079 + /* return SQLITE_IOERR; */
1.1080 + }
1.1081 +#endif
1.1082 + close(pFile->dirfd); /* Only need to sync once, so close the directory */
1.1083 + pFile->dirfd = -1; /* when we are done. */
1.1084 + }
1.1085 + return SQLITE_OK;
1.1086 +}
1.1087 +
1.1088 +/*
1.1089 +** Truncate an open file to a specified size
1.1090 +*/
1.1091 +static int unixTruncate(sqlite3_file *id, i64 nByte){
1.1092 + int rc;
1.1093 + assert( id );
1.1094 + SimulateIOError( return SQLITE_IOERR_TRUNCATE );
1.1095 + rc = ftruncate(((unixFile*)id)->h, (off_t)nByte);
1.1096 + if( rc ){
1.1097 + return SQLITE_IOERR_TRUNCATE;
1.1098 + }else{
1.1099 + return SQLITE_OK;
1.1100 + }
1.1101 +}
1.1102 +
1.1103 +/*
1.1104 +** Determine the current size of a file in bytes
1.1105 +*/
1.1106 +static int unixFileSize(sqlite3_file *id, i64 *pSize){
1.1107 + int rc;
1.1108 + struct stat buf;
1.1109 + assert( id );
1.1110 + rc = fstat(((unixFile*)id)->h, &buf);
1.1111 + SimulateIOError( rc=1 );
1.1112 + if( rc!=0 ){
1.1113 + return SQLITE_IOERR_FSTAT;
1.1114 + }
1.1115 + *pSize = buf.st_size;
1.1116 +
1.1117 + /* When opening a zero-size database, the findLockInfo() procedure
1.1118 + ** writes a single byte into that file in order to work around a bug
1.1119 + ** in the OS-X msdos filesystem. In order to avoid problems with upper
1.1120 + ** layers, we need to report this file size as zero even though it is
1.1121 + ** really 1. Ticket #3260.
1.1122 + */
1.1123 + if( *pSize==1 ) *pSize = 0;
1.1124 +
1.1125 +
1.1126 + return SQLITE_OK;
1.1127 +}
1.1128 +
1.1129 +/*
1.1130 +** This routine checks if there is a RESERVED lock held on the specified
1.1131 +** file by this or any other process. If such a lock is held, return
1.1132 +** non-zero. If the file is unlocked or holds only SHARED locks, then
1.1133 +** return zero.
1.1134 +*/
1.1135 +static int unixCheckReservedLock(sqlite3_file *id, int *pResOut){
1.1136 + int r = 0;
1.1137 + unixFile *pFile = (unixFile*)id;
1.1138 +
1.1139 + SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; );
1.1140 +
1.1141 + assert( pFile );
1.1142 + enterMutex(); /* Because pFile->pLock is shared across threads */
1.1143 +
1.1144 + /* Check if a thread in this process holds such a lock */
1.1145 + if( pFile->pLock->locktype>SHARED_LOCK ){
1.1146 + r = 1;
1.1147 + }
1.1148 +
1.1149 + /* Otherwise see if some other process holds it.
1.1150 + */
1.1151 + if( !r ){
1.1152 + struct flock lock;
1.1153 + lock.l_whence = SEEK_SET;
1.1154 + lock.l_start = RESERVED_BYTE;
1.1155 + lock.l_len = 1;
1.1156 + lock.l_type = F_WRLCK;
1.1157 + fcntl(pFile->h, F_GETLK, &lock);
1.1158 + if( lock.l_type!=F_UNLCK ){
1.1159 + r = 1;
1.1160 + }
1.1161 + }
1.1162 +
1.1163 + leaveMutex();
1.1164 + OSTRACE3("TEST WR-LOCK %d %d\n", pFile->h, r);
1.1165 +
1.1166 + *pResOut = r;
1.1167 + return SQLITE_OK;
1.1168 +}
1.1169 +
1.1170 +/*
1.1171 +** Lock the file with the lock specified by parameter locktype - one
1.1172 +** of the following:
1.1173 +**
1.1174 +** (1) SHARED_LOCK
1.1175 +** (2) RESERVED_LOCK
1.1176 +** (3) PENDING_LOCK
1.1177 +** (4) EXCLUSIVE_LOCK
1.1178 +**
1.1179 +** Sometimes when requesting one lock state, additional lock states
1.1180 +** are inserted in between. The locking might fail on one of the later
1.1181 +** transitions leaving the lock state different from what it started but
1.1182 +** still short of its goal. The following chart shows the allowed
1.1183 +** transitions and the inserted intermediate states:
1.1184 +**
1.1185 +** UNLOCKED -> SHARED
1.1186 +** SHARED -> RESERVED
1.1187 +** SHARED -> (PENDING) -> EXCLUSIVE
1.1188 +** RESERVED -> (PENDING) -> EXCLUSIVE
1.1189 +** PENDING -> EXCLUSIVE
1.1190 +**
1.1191 +** This routine will only increase a lock. Use the sqlite3OsUnlock()
1.1192 +** routine to lower a locking level.
1.1193 +*/
1.1194 +static int unixLock(sqlite3_file *id, int locktype){
1.1195 + /* The following describes the implementation of the various locks and
1.1196 + ** lock transitions in terms of the POSIX advisory shared and exclusive
1.1197 + ** lock primitives (called read-locks and write-locks below, to avoid
1.1198 + ** confusion with SQLite lock names). The algorithms are complicated
1.1199 + ** slightly in order to be compatible with windows systems simultaneously
1.1200 + ** accessing the same database file, in case that is ever required.
1.1201 + **
1.1202 + ** Symbols defined in os.h indentify the 'pending byte' and the 'reserved
1.1203 + ** byte', each single bytes at well known offsets, and the 'shared byte
1.1204 + ** range', a range of 510 bytes at a well known offset.
1.1205 + **
1.1206 + ** To obtain a SHARED lock, a read-lock is obtained on the 'pending
1.1207 + ** byte'. If this is successful, a random byte from the 'shared byte
1.1208 + ** range' is read-locked and the lock on the 'pending byte' released.
1.1209 + **
1.1210 + ** A process may only obtain a RESERVED lock after it has a SHARED lock.
1.1211 + ** A RESERVED lock is implemented by grabbing a write-lock on the
1.1212 + ** 'reserved byte'.
1.1213 + **
1.1214 + ** A process may only obtain a PENDING lock after it has obtained a
1.1215 + ** SHARED lock. A PENDING lock is implemented by obtaining a write-lock
1.1216 + ** on the 'pending byte'. This ensures that no new SHARED locks can be
1.1217 + ** obtained, but existing SHARED locks are allowed to persist. A process
1.1218 + ** does not have to obtain a RESERVED lock on the way to a PENDING lock.
1.1219 + ** This property is used by the algorithm for rolling back a journal file
1.1220 + ** after a crash.
1.1221 + **
1.1222 + ** An EXCLUSIVE lock, obtained after a PENDING lock is held, is
1.1223 + ** implemented by obtaining a write-lock on the entire 'shared byte
1.1224 + ** range'. Since all other locks require a read-lock on one of the bytes
1.1225 + ** within this range, this ensures that no other locks are held on the
1.1226 + ** database.
1.1227 + **
1.1228 + ** The reason a single byte cannot be used instead of the 'shared byte
1.1229 + ** range' is that some versions of windows do not support read-locks. By
1.1230 + ** locking a random byte from a range, concurrent SHARED locks may exist
1.1231 + ** even if the locking primitive used is always a write-lock.
1.1232 + */
1.1233 + int rc = SQLITE_OK;
1.1234 + unixFile *pFile = (unixFile*)id;
1.1235 + struct lockInfo *pLock = pFile->pLock;
1.1236 + struct flock lock;
1.1237 + int s;
1.1238 +
1.1239 + assert( pFile );
1.1240 + OSTRACE7("LOCK %d %s was %s(%s,%d) pid=%d\n", pFile->h,
1.1241 + locktypeName(locktype), locktypeName(pFile->locktype),
1.1242 + locktypeName(pLock->locktype), pLock->cnt , getpid());
1.1243 +
1.1244 + /* If there is already a lock of this type or more restrictive on the
1.1245 + ** unixFile, do nothing. Don't use the end_lock: exit path, as
1.1246 + ** enterMutex() hasn't been called yet.
1.1247 + */
1.1248 + if( pFile->locktype>=locktype ){
1.1249 + OSTRACE3("LOCK %d %s ok (already held)\n", pFile->h,
1.1250 + locktypeName(locktype));
1.1251 + return SQLITE_OK;
1.1252 + }
1.1253 +
1.1254 + /* Make sure the locking sequence is correct
1.1255 + */
1.1256 + assert( pFile->locktype!=NO_LOCK || locktype==SHARED_LOCK );
1.1257 + assert( locktype!=PENDING_LOCK );
1.1258 + assert( locktype!=RESERVED_LOCK || pFile->locktype==SHARED_LOCK );
1.1259 +
1.1260 + /* This mutex is needed because pFile->pLock is shared across threads
1.1261 + */
1.1262 + enterMutex();
1.1263 +
1.1264 + /* Make sure the current thread owns the pFile.
1.1265 + */
1.1266 + rc = transferOwnership(pFile);
1.1267 + if( rc!=SQLITE_OK ){
1.1268 + leaveMutex();
1.1269 + return rc;
1.1270 + }
1.1271 + pLock = pFile->pLock;
1.1272 +
1.1273 + /* If some thread using this PID has a lock via a different unixFile*
1.1274 + ** handle that precludes the requested lock, return BUSY.
1.1275 + */
1.1276 + if( (pFile->locktype!=pLock->locktype &&
1.1277 + (pLock->locktype>=PENDING_LOCK || locktype>SHARED_LOCK))
1.1278 + ){
1.1279 + rc = SQLITE_BUSY;
1.1280 + goto end_lock;
1.1281 + }
1.1282 +
1.1283 + /* If a SHARED lock is requested, and some thread using this PID already
1.1284 + ** has a SHARED or RESERVED lock, then increment reference counts and
1.1285 + ** return SQLITE_OK.
1.1286 + */
1.1287 + if( locktype==SHARED_LOCK &&
1.1288 + (pLock->locktype==SHARED_LOCK || pLock->locktype==RESERVED_LOCK) ){
1.1289 + assert( locktype==SHARED_LOCK );
1.1290 + assert( pFile->locktype==0 );
1.1291 + assert( pLock->cnt>0 );
1.1292 + pFile->locktype = SHARED_LOCK;
1.1293 + pLock->cnt++;
1.1294 + pFile->pOpen->nLock++;
1.1295 + goto end_lock;
1.1296 + }
1.1297 +
1.1298 + lock.l_len = 1L;
1.1299 +
1.1300 + lock.l_whence = SEEK_SET;
1.1301 +
1.1302 + /* A PENDING lock is needed before acquiring a SHARED lock and before
1.1303 + ** acquiring an EXCLUSIVE lock. For the SHARED lock, the PENDING will
1.1304 + ** be released.
1.1305 + */
1.1306 + if( locktype==SHARED_LOCK
1.1307 + || (locktype==EXCLUSIVE_LOCK && pFile->locktype<PENDING_LOCK)
1.1308 + ){
1.1309 + lock.l_type = (locktype==SHARED_LOCK?F_RDLCK:F_WRLCK);
1.1310 + lock.l_start = PENDING_BYTE;
1.1311 + s = fcntl(pFile->h, F_SETLK, &lock);
1.1312 + if( s==(-1) ){
1.1313 + rc = (errno==EINVAL) ? SQLITE_NOLFS : SQLITE_BUSY;
1.1314 + goto end_lock;
1.1315 + }
1.1316 + }
1.1317 +
1.1318 +
1.1319 + /* If control gets to this point, then actually go ahead and make
1.1320 + ** operating system calls for the specified lock.
1.1321 + */
1.1322 + if( locktype==SHARED_LOCK ){
1.1323 + assert( pLock->cnt==0 );
1.1324 + assert( pLock->locktype==0 );
1.1325 +
1.1326 + /* Now get the read-lock */
1.1327 + lock.l_start = SHARED_FIRST;
1.1328 + lock.l_len = SHARED_SIZE;
1.1329 + s = fcntl(pFile->h, F_SETLK, &lock);
1.1330 +
1.1331 + /* Drop the temporary PENDING lock */
1.1332 + lock.l_start = PENDING_BYTE;
1.1333 + lock.l_len = 1L;
1.1334 + lock.l_type = F_UNLCK;
1.1335 + if( fcntl(pFile->h, F_SETLK, &lock)!=0 ){
1.1336 + rc = SQLITE_IOERR_UNLOCK; /* This should never happen */
1.1337 + goto end_lock;
1.1338 + }
1.1339 + if( s==(-1) ){
1.1340 + rc = (errno==EINVAL) ? SQLITE_NOLFS : SQLITE_BUSY;
1.1341 + }else{
1.1342 + pFile->locktype = SHARED_LOCK;
1.1343 + pFile->pOpen->nLock++;
1.1344 + pLock->cnt = 1;
1.1345 + }
1.1346 + }else if( locktype==EXCLUSIVE_LOCK && pLock->cnt>1 ){
1.1347 + /* We are trying for an exclusive lock but another thread in this
1.1348 + ** same process is still holding a shared lock. */
1.1349 + rc = SQLITE_BUSY;
1.1350 + }else{
1.1351 + /* The request was for a RESERVED or EXCLUSIVE lock. It is
1.1352 + ** assumed that there is a SHARED or greater lock on the file
1.1353 + ** already.
1.1354 + */
1.1355 + assert( 0!=pFile->locktype );
1.1356 + lock.l_type = F_WRLCK;
1.1357 + switch( locktype ){
1.1358 + case RESERVED_LOCK:
1.1359 + lock.l_start = RESERVED_BYTE;
1.1360 + break;
1.1361 + case EXCLUSIVE_LOCK:
1.1362 + lock.l_start = SHARED_FIRST;
1.1363 + lock.l_len = SHARED_SIZE;
1.1364 + break;
1.1365 + default:
1.1366 + assert(0);
1.1367 + }
1.1368 + s = fcntl(pFile->h, F_SETLK, &lock);
1.1369 + if( s==(-1) ){
1.1370 + rc = (errno==EINVAL) ? SQLITE_NOLFS : SQLITE_BUSY;
1.1371 + }
1.1372 + }
1.1373 +
1.1374 + if( rc==SQLITE_OK ){
1.1375 + pFile->locktype = locktype;
1.1376 + pLock->locktype = locktype;
1.1377 + }else if( locktype==EXCLUSIVE_LOCK ){
1.1378 + pFile->locktype = PENDING_LOCK;
1.1379 + pLock->locktype = PENDING_LOCK;
1.1380 + }
1.1381 +
1.1382 +end_lock:
1.1383 + leaveMutex();
1.1384 + OSTRACE4("LOCK %d %s %s\n", pFile->h, locktypeName(locktype),
1.1385 + rc==SQLITE_OK ? "ok" : "failed");
1.1386 + return rc;
1.1387 +}
1.1388 +
1.1389 +/*
1.1390 +** Lower the locking level on file descriptor pFile to locktype. locktype
1.1391 +** must be either NO_LOCK or SHARED_LOCK.
1.1392 +**
1.1393 +** If the locking level of the file descriptor is already at or below
1.1394 +** the requested locking level, this routine is a no-op.
1.1395 +*/
1.1396 +static int unixUnlock(sqlite3_file *id, int locktype){
1.1397 + struct lockInfo *pLock;
1.1398 + struct flock lock;
1.1399 + int rc = SQLITE_OK;
1.1400 + unixFile *pFile = (unixFile*)id;
1.1401 + int h;
1.1402 +
1.1403 + assert( pFile );
1.1404 + OSTRACE7("UNLOCK %d %d was %d(%d,%d) pid=%d\n", pFile->h, locktype,
1.1405 + pFile->locktype, pFile->pLock->locktype, pFile->pLock->cnt, getpid());
1.1406 +
1.1407 + assert( locktype<=SHARED_LOCK );
1.1408 + if( pFile->locktype<=locktype ){
1.1409 + return SQLITE_OK;
1.1410 + }
1.1411 + if( CHECK_THREADID(pFile) ){
1.1412 + return SQLITE_MISUSE;
1.1413 + }
1.1414 + enterMutex();
1.1415 + h = pFile->h;
1.1416 + pLock = pFile->pLock;
1.1417 + assert( pLock->cnt!=0 );
1.1418 + if( pFile->locktype>SHARED_LOCK ){
1.1419 + assert( pLock->locktype==pFile->locktype );
1.1420 + SimulateIOErrorBenign(1);
1.1421 + SimulateIOError( h=(-1) )
1.1422 + SimulateIOErrorBenign(0);
1.1423 + if( locktype==SHARED_LOCK ){
1.1424 + lock.l_type = F_RDLCK;
1.1425 + lock.l_whence = SEEK_SET;
1.1426 + lock.l_start = SHARED_FIRST;
1.1427 + lock.l_len = SHARED_SIZE;
1.1428 + if( fcntl(h, F_SETLK, &lock)==(-1) ){
1.1429 + rc = SQLITE_IOERR_RDLOCK;
1.1430 + }
1.1431 + }
1.1432 + lock.l_type = F_UNLCK;
1.1433 + lock.l_whence = SEEK_SET;
1.1434 + lock.l_start = PENDING_BYTE;
1.1435 + lock.l_len = 2L; assert( PENDING_BYTE+1==RESERVED_BYTE );
1.1436 + if( fcntl(h, F_SETLK, &lock)!=(-1) ){
1.1437 + pLock->locktype = SHARED_LOCK;
1.1438 + }else{
1.1439 + rc = SQLITE_IOERR_UNLOCK;
1.1440 + }
1.1441 + }
1.1442 + if( locktype==NO_LOCK ){
1.1443 + struct openCnt *pOpen;
1.1444 +
1.1445 + /* Decrement the shared lock counter. Release the lock using an
1.1446 + ** OS call only when all threads in this same process have released
1.1447 + ** the lock.
1.1448 + */
1.1449 + pLock->cnt--;
1.1450 + if( pLock->cnt==0 ){
1.1451 + lock.l_type = F_UNLCK;
1.1452 + lock.l_whence = SEEK_SET;
1.1453 + lock.l_start = lock.l_len = 0L;
1.1454 + SimulateIOErrorBenign(1);
1.1455 + SimulateIOError( h=(-1) )
1.1456 + SimulateIOErrorBenign(0);
1.1457 + if( fcntl(h, F_SETLK, &lock)!=(-1) ){
1.1458 + pLock->locktype = NO_LOCK;
1.1459 + }else{
1.1460 + rc = SQLITE_IOERR_UNLOCK;
1.1461 + pLock->cnt = 1;
1.1462 + }
1.1463 + }
1.1464 +
1.1465 + /* Decrement the count of locks against this same file. When the
1.1466 + ** count reaches zero, close any other file descriptors whose close
1.1467 + ** was deferred because of outstanding locks.
1.1468 + */
1.1469 + if( rc==SQLITE_OK ){
1.1470 + pOpen = pFile->pOpen;
1.1471 + pOpen->nLock--;
1.1472 + assert( pOpen->nLock>=0 );
1.1473 + if( pOpen->nLock==0 && pOpen->nPending>0 ){
1.1474 + int i;
1.1475 + for(i=0; i<pOpen->nPending; i++){
1.1476 + close(pOpen->aPending[i]);
1.1477 + }
1.1478 + sqlite3_free(pOpen->aPending);
1.1479 + pOpen->nPending = 0;
1.1480 + pOpen->aPending = 0;
1.1481 + }
1.1482 + }
1.1483 + }
1.1484 + leaveMutex();
1.1485 + if( rc==SQLITE_OK ) pFile->locktype = locktype;
1.1486 + return rc;
1.1487 +}
1.1488 +
1.1489 +/*
1.1490 +** This function performs the parts of the "close file" operation
1.1491 +** common to all locking schemes. It closes the directory and file
1.1492 +** handles, if they are valid, and sets all fields of the unixFile
1.1493 +** structure to 0.
1.1494 +*/
1.1495 +static int closeUnixFile(sqlite3_file *id){
1.1496 + unixFile *pFile = (unixFile*)id;
1.1497 + if( pFile ){
1.1498 + if( pFile->dirfd>=0 ){
1.1499 + close(pFile->dirfd);
1.1500 + }
1.1501 + if( pFile->h>=0 ){
1.1502 + close(pFile->h);
1.1503 + }
1.1504 + OSTRACE2("CLOSE %-3d\n", pFile->h);
1.1505 + OpenCounter(-1);
1.1506 + memset(pFile, 0, sizeof(unixFile));
1.1507 + }
1.1508 + return SQLITE_OK;
1.1509 +}
1.1510 +
1.1511 +/*
1.1512 +** Close a file.
1.1513 +*/
1.1514 +static int unixClose(sqlite3_file *id){
1.1515 + if( id ){
1.1516 + unixFile *pFile = (unixFile *)id;
1.1517 + unixUnlock(id, NO_LOCK);
1.1518 + enterMutex();
1.1519 + if( pFile->pOpen && pFile->pOpen->nLock ){
1.1520 + /* If there are outstanding locks, do not actually close the file just
1.1521 + ** yet because that would clear those locks. Instead, add the file
1.1522 + ** descriptor to pOpen->aPending. It will be automatically closed when
1.1523 + ** the last lock is cleared.
1.1524 + */
1.1525 + int *aNew;
1.1526 + struct openCnt *pOpen = pFile->pOpen;
1.1527 + aNew = sqlite3_realloc(pOpen->aPending, (pOpen->nPending+1)*sizeof(int) );
1.1528 + if( aNew==0 ){
1.1529 + /* If a malloc fails, just leak the file descriptor */
1.1530 + }else{
1.1531 + pOpen->aPending = aNew;
1.1532 + pOpen->aPending[pOpen->nPending] = pFile->h;
1.1533 + pOpen->nPending++;
1.1534 + pFile->h = -1;
1.1535 + }
1.1536 + }
1.1537 + releaseLockInfo(pFile->pLock);
1.1538 + releaseOpenCnt(pFile->pOpen);
1.1539 + closeUnixFile(id);
1.1540 + leaveMutex();
1.1541 + }
1.1542 + return SQLITE_OK;
1.1543 +}
1.1544 +
1.1545 +
1.1546 +#ifdef SQLITE_ENABLE_LOCKING_STYLE
1.1547 +#pragma mark AFP Support
1.1548 +
1.1549 +/*
1.1550 + ** The afpLockingContext structure contains all afp lock specific state
1.1551 + */
1.1552 +typedef struct afpLockingContext afpLockingContext;
1.1553 +struct afpLockingContext {
1.1554 + unsigned long long sharedLockByte;
1.1555 + const char *filePath;
1.1556 +};
1.1557 +
1.1558 +struct ByteRangeLockPB2
1.1559 +{
1.1560 + unsigned long long offset; /* offset to first byte to lock */
1.1561 + unsigned long long length; /* nbr of bytes to lock */
1.1562 + unsigned long long retRangeStart; /* nbr of 1st byte locked if successful */
1.1563 + unsigned char unLockFlag; /* 1 = unlock, 0 = lock */
1.1564 + unsigned char startEndFlag; /* 1=rel to end of fork, 0=rel to start */
1.1565 + int fd; /* file desc to assoc this lock with */
1.1566 +};
1.1567 +
1.1568 +#define afpfsByteRangeLock2FSCTL _IOWR('z', 23, struct ByteRangeLockPB2)
1.1569 +
1.1570 +/*
1.1571 +** Return 0 on success, 1 on failure. To match the behavior of the
1.1572 +** normal posix file locking (used in unixLock for example), we should
1.1573 +** provide 'richer' return codes - specifically to differentiate between
1.1574 +** 'file busy' and 'file system error' results.
1.1575 +*/
1.1576 +static int _AFPFSSetLock(
1.1577 + const char *path,
1.1578 + int fd,
1.1579 + unsigned long long offset,
1.1580 + unsigned long long length,
1.1581 + int setLockFlag
1.1582 +){
1.1583 + struct ByteRangeLockPB2 pb;
1.1584 + int err;
1.1585 +
1.1586 + pb.unLockFlag = setLockFlag ? 0 : 1;
1.1587 + pb.startEndFlag = 0;
1.1588 + pb.offset = offset;
1.1589 + pb.length = length;
1.1590 + pb.fd = fd;
1.1591 + OSTRACE5("AFPLOCK setting lock %s for %d in range %llx:%llx\n",
1.1592 + (setLockFlag?"ON":"OFF"), fd, offset, length);
1.1593 + err = fsctl(path, afpfsByteRangeLock2FSCTL, &pb, 0);
1.1594 + if ( err==-1 ) {
1.1595 + OSTRACE4("AFPLOCK failed to fsctl() '%s' %d %s\n", path, errno,
1.1596 + strerror(errno));
1.1597 + return 1; /* error */
1.1598 + } else {
1.1599 + return 0;
1.1600 + }
1.1601 +}
1.1602 +
1.1603 +/*
1.1604 + ** This routine checks if there is a RESERVED lock held on the specified
1.1605 + ** file by this or any other process. If such a lock is held, return
1.1606 + ** non-zero. If the file is unlocked or holds only SHARED locks, then
1.1607 + ** return zero.
1.1608 + */
1.1609 +static int afpCheckReservedLock(sqlite3_file *id, int *pResOut){
1.1610 + int r = 0;
1.1611 + unixFile *pFile = (unixFile*)id;
1.1612 +
1.1613 + assert( pFile );
1.1614 + afpLockingContext *context = (afpLockingContext *) pFile->lockingContext;
1.1615 +
1.1616 + /* Check if a thread in this process holds such a lock */
1.1617 + if( pFile->locktype>SHARED_LOCK ){
1.1618 + r = 1;
1.1619 + }
1.1620 +
1.1621 + /* Otherwise see if some other process holds it.
1.1622 + */
1.1623 + if ( !r ) {
1.1624 + /* lock the byte */
1.1625 + int failed = _AFPFSSetLock(context->filePath, pFile->h, RESERVED_BYTE, 1,1);
1.1626 + if (failed) {
1.1627 + /* if we failed to get the lock then someone else must have it */
1.1628 + r = 1;
1.1629 + } else {
1.1630 + /* if we succeeded in taking the reserved lock, unlock it to restore
1.1631 + ** the original state */
1.1632 + _AFPFSSetLock(context->filePath, pFile->h, RESERVED_BYTE, 1, 0);
1.1633 + }
1.1634 + }
1.1635 + OSTRACE3("TEST WR-LOCK %d %d\n", pFile->h, r);
1.1636 +
1.1637 + *pResOut = r;
1.1638 + return SQLITE_OK;
1.1639 +}
1.1640 +
1.1641 +/* AFP-style locking following the behavior of unixLock, see the unixLock
1.1642 +** function comments for details of lock management. */
1.1643 +static int afpLock(sqlite3_file *id, int locktype){
1.1644 + int rc = SQLITE_OK;
1.1645 + unixFile *pFile = (unixFile*)id;
1.1646 + afpLockingContext *context = (afpLockingContext *) pFile->lockingContext;
1.1647 +
1.1648 + assert( pFile );
1.1649 + OSTRACE5("LOCK %d %s was %s pid=%d\n", pFile->h,
1.1650 + locktypeName(locktype), locktypeName(pFile->locktype), getpid());
1.1651 +
1.1652 + /* If there is already a lock of this type or more restrictive on the
1.1653 + ** unixFile, do nothing. Don't use the afp_end_lock: exit path, as
1.1654 + ** enterMutex() hasn't been called yet.
1.1655 + */
1.1656 + if( pFile->locktype>=locktype ){
1.1657 + OSTRACE3("LOCK %d %s ok (already held)\n", pFile->h,
1.1658 + locktypeName(locktype));
1.1659 + return SQLITE_OK;
1.1660 + }
1.1661 +
1.1662 + /* Make sure the locking sequence is correct
1.1663 + */
1.1664 + assert( pFile->locktype!=NO_LOCK || locktype==SHARED_LOCK );
1.1665 + assert( locktype!=PENDING_LOCK );
1.1666 + assert( locktype!=RESERVED_LOCK || pFile->locktype==SHARED_LOCK );
1.1667 +
1.1668 + /* This mutex is needed because pFile->pLock is shared across threads
1.1669 + */
1.1670 + enterMutex();
1.1671 +
1.1672 + /* Make sure the current thread owns the pFile.
1.1673 + */
1.1674 + rc = transferOwnership(pFile);
1.1675 + if( rc!=SQLITE_OK ){
1.1676 + leaveMutex();
1.1677 + return rc;
1.1678 + }
1.1679 +
1.1680 + /* A PENDING lock is needed before acquiring a SHARED lock and before
1.1681 + ** acquiring an EXCLUSIVE lock. For the SHARED lock, the PENDING will
1.1682 + ** be released.
1.1683 + */
1.1684 + if( locktype==SHARED_LOCK
1.1685 + || (locktype==EXCLUSIVE_LOCK && pFile->locktype<PENDING_LOCK)
1.1686 + ){
1.1687 + int failed;
1.1688 + failed = _AFPFSSetLock(context->filePath, pFile->h, PENDING_BYTE, 1, 1);
1.1689 + if (failed) {
1.1690 + rc = SQLITE_BUSY;
1.1691 + goto afp_end_lock;
1.1692 + }
1.1693 + }
1.1694 +
1.1695 + /* If control gets to this point, then actually go ahead and make
1.1696 + ** operating system calls for the specified lock.
1.1697 + */
1.1698 + if( locktype==SHARED_LOCK ){
1.1699 + int lk, failed;
1.1700 +
1.1701 + /* Now get the read-lock */
1.1702 + /* note that the quality of the randomness doesn't matter that much */
1.1703 + lk = random();
1.1704 + context->sharedLockByte = (lk & 0x7fffffff)%(SHARED_SIZE - 1);
1.1705 + failed = _AFPFSSetLock(context->filePath, pFile->h,
1.1706 + SHARED_FIRST+context->sharedLockByte, 1, 1);
1.1707 +
1.1708 + /* Drop the temporary PENDING lock */
1.1709 + if (_AFPFSSetLock(context->filePath, pFile->h, PENDING_BYTE, 1, 0)) {
1.1710 + rc = SQLITE_IOERR_UNLOCK; /* This should never happen */
1.1711 + goto afp_end_lock;
1.1712 + }
1.1713 +
1.1714 + if( failed ){
1.1715 + rc = SQLITE_BUSY;
1.1716 + } else {
1.1717 + pFile->locktype = SHARED_LOCK;
1.1718 + }
1.1719 + }else{
1.1720 + /* The request was for a RESERVED or EXCLUSIVE lock. It is
1.1721 + ** assumed that there is a SHARED or greater lock on the file
1.1722 + ** already.
1.1723 + */
1.1724 + int failed = 0;
1.1725 + assert( 0!=pFile->locktype );
1.1726 + if (locktype >= RESERVED_LOCK && pFile->locktype < RESERVED_LOCK) {
1.1727 + /* Acquire a RESERVED lock */
1.1728 + failed = _AFPFSSetLock(context->filePath, pFile->h, RESERVED_BYTE, 1,1);
1.1729 + }
1.1730 + if (!failed && locktype == EXCLUSIVE_LOCK) {
1.1731 + /* Acquire an EXCLUSIVE lock */
1.1732 +
1.1733 + /* Remove the shared lock before trying the range. we'll need to
1.1734 + ** reestablish the shared lock if we can't get the afpUnlock
1.1735 + */
1.1736 + if (!_AFPFSSetLock(context->filePath, pFile->h, SHARED_FIRST +
1.1737 + context->sharedLockByte, 1, 0)) {
1.1738 + /* now attemmpt to get the exclusive lock range */
1.1739 + failed = _AFPFSSetLock(context->filePath, pFile->h, SHARED_FIRST,
1.1740 + SHARED_SIZE, 1);
1.1741 + if (failed && _AFPFSSetLock(context->filePath, pFile->h, SHARED_FIRST +
1.1742 + context->sharedLockByte, 1, 1)) {
1.1743 + rc = SQLITE_IOERR_RDLOCK; /* this should never happen */
1.1744 + }
1.1745 + } else {
1.1746 + /* */
1.1747 + rc = SQLITE_IOERR_UNLOCK; /* this should never happen */
1.1748 + }
1.1749 + }
1.1750 + if( failed && rc == SQLITE_OK){
1.1751 + rc = SQLITE_BUSY;
1.1752 + }
1.1753 + }
1.1754 +
1.1755 + if( rc==SQLITE_OK ){
1.1756 + pFile->locktype = locktype;
1.1757 + }else if( locktype==EXCLUSIVE_LOCK ){
1.1758 + pFile->locktype = PENDING_LOCK;
1.1759 + }
1.1760 +
1.1761 +afp_end_lock:
1.1762 + leaveMutex();
1.1763 + OSTRACE4("LOCK %d %s %s\n", pFile->h, locktypeName(locktype),
1.1764 + rc==SQLITE_OK ? "ok" : "failed");
1.1765 + return rc;
1.1766 +}
1.1767 +
1.1768 +/*
1.1769 +** Lower the locking level on file descriptor pFile to locktype. locktype
1.1770 +** must be either NO_LOCK or SHARED_LOCK.
1.1771 +**
1.1772 +** If the locking level of the file descriptor is already at or below
1.1773 +** the requested locking level, this routine is a no-op.
1.1774 +*/
1.1775 +static int afpUnlock(sqlite3_file *id, int locktype) {
1.1776 + int rc = SQLITE_OK;
1.1777 + unixFile *pFile = (unixFile*)id;
1.1778 + afpLockingContext *context = (afpLockingContext *) pFile->lockingContext;
1.1779 +
1.1780 + assert( pFile );
1.1781 + OSTRACE5("UNLOCK %d %d was %d pid=%d\n", pFile->h, locktype,
1.1782 + pFile->locktype, getpid());
1.1783 +
1.1784 + assert( locktype<=SHARED_LOCK );
1.1785 + if( pFile->locktype<=locktype ){
1.1786 + return SQLITE_OK;
1.1787 + }
1.1788 + if( CHECK_THREADID(pFile) ){
1.1789 + return SQLITE_MISUSE;
1.1790 + }
1.1791 + enterMutex();
1.1792 + if( pFile->locktype>SHARED_LOCK ){
1.1793 + if( locktype==SHARED_LOCK ){
1.1794 + int failed = 0;
1.1795 +
1.1796 + /* unlock the exclusive range - then re-establish the shared lock */
1.1797 + if (pFile->locktype==EXCLUSIVE_LOCK) {
1.1798 + failed = _AFPFSSetLock(context->filePath, pFile->h, SHARED_FIRST,
1.1799 + SHARED_SIZE, 0);
1.1800 + if (!failed) {
1.1801 + /* successfully removed the exclusive lock */
1.1802 + if (_AFPFSSetLock(context->filePath, pFile->h, SHARED_FIRST+
1.1803 + context->sharedLockByte, 1, 1)) {
1.1804 + /* failed to re-establish our shared lock */
1.1805 + rc = SQLITE_IOERR_RDLOCK; /* This should never happen */
1.1806 + }
1.1807 + } else {
1.1808 + /* This should never happen - failed to unlock the exclusive range */
1.1809 + rc = SQLITE_IOERR_UNLOCK;
1.1810 + }
1.1811 + }
1.1812 + }
1.1813 + if (rc == SQLITE_OK && pFile->locktype>=PENDING_LOCK) {
1.1814 + if (_AFPFSSetLock(context->filePath, pFile->h, PENDING_BYTE, 1, 0)){
1.1815 + /* failed to release the pending lock */
1.1816 + rc = SQLITE_IOERR_UNLOCK; /* This should never happen */
1.1817 + }
1.1818 + }
1.1819 + if (rc == SQLITE_OK && pFile->locktype>=RESERVED_LOCK) {
1.1820 + if (_AFPFSSetLock(context->filePath, pFile->h, RESERVED_BYTE, 1, 0)) {
1.1821 + /* failed to release the reserved lock */
1.1822 + rc = SQLITE_IOERR_UNLOCK; /* This should never happen */
1.1823 + }
1.1824 + }
1.1825 + }
1.1826 + if( locktype==NO_LOCK ){
1.1827 + int failed = _AFPFSSetLock(context->filePath, pFile->h,
1.1828 + SHARED_FIRST + context->sharedLockByte, 1, 0);
1.1829 + if (failed) {
1.1830 + rc = SQLITE_IOERR_UNLOCK; /* This should never happen */
1.1831 + }
1.1832 + }
1.1833 + if (rc == SQLITE_OK)
1.1834 + pFile->locktype = locktype;
1.1835 + leaveMutex();
1.1836 + return rc;
1.1837 +}
1.1838 +
1.1839 +/*
1.1840 +** Close a file & cleanup AFP specific locking context
1.1841 +*/
1.1842 +static int afpClose(sqlite3_file *id) {
1.1843 + if( id ){
1.1844 + unixFile *pFile = (unixFile*)id;
1.1845 + afpUnlock(id, NO_LOCK);
1.1846 + sqlite3_free(pFile->lockingContext);
1.1847 + }
1.1848 + return closeUnixFile(id);
1.1849 +}
1.1850 +
1.1851 +
1.1852 +#pragma mark flock() style locking
1.1853 +
1.1854 +/*
1.1855 +** The flockLockingContext is not used
1.1856 +*/
1.1857 +typedef void flockLockingContext;
1.1858 +
1.1859 +static int flockCheckReservedLock(sqlite3_file *id, int *pResOut){
1.1860 + int r = 1;
1.1861 + unixFile *pFile = (unixFile*)id;
1.1862 +
1.1863 + if (pFile->locktype != RESERVED_LOCK) {
1.1864 + /* attempt to get the lock */
1.1865 + int rc = flock(pFile->h, LOCK_EX | LOCK_NB);
1.1866 + if (!rc) {
1.1867 + /* got the lock, unlock it */
1.1868 + flock(pFile->h, LOCK_UN);
1.1869 + r = 0; /* no one has it reserved */
1.1870 + }
1.1871 + }
1.1872 +
1.1873 + *pResOut = r;
1.1874 + return SQLITE_OK;
1.1875 +}
1.1876 +
1.1877 +static int flockLock(sqlite3_file *id, int locktype) {
1.1878 + unixFile *pFile = (unixFile*)id;
1.1879 +
1.1880 + /* if we already have a lock, it is exclusive.
1.1881 + ** Just adjust level and punt on outta here. */
1.1882 + if (pFile->locktype > NO_LOCK) {
1.1883 + pFile->locktype = locktype;
1.1884 + return SQLITE_OK;
1.1885 + }
1.1886 +
1.1887 + /* grab an exclusive lock */
1.1888 + int rc = flock(pFile->h, LOCK_EX | LOCK_NB);
1.1889 + if (rc) {
1.1890 + /* didn't get, must be busy */
1.1891 + return SQLITE_BUSY;
1.1892 + } else {
1.1893 + /* got it, set the type and return ok */
1.1894 + pFile->locktype = locktype;
1.1895 + return SQLITE_OK;
1.1896 + }
1.1897 +}
1.1898 +
1.1899 +static int flockUnlock(sqlite3_file *id, int locktype) {
1.1900 + unixFile *pFile = (unixFile*)id;
1.1901 +
1.1902 + assert( locktype<=SHARED_LOCK );
1.1903 +
1.1904 + /* no-op if possible */
1.1905 + if( pFile->locktype==locktype ){
1.1906 + return SQLITE_OK;
1.1907 + }
1.1908 +
1.1909 + /* shared can just be set because we always have an exclusive */
1.1910 + if (locktype==SHARED_LOCK) {
1.1911 + pFile->locktype = locktype;
1.1912 + return SQLITE_OK;
1.1913 + }
1.1914 +
1.1915 + /* no, really, unlock. */
1.1916 + int rc = flock(pFile->h, LOCK_UN);
1.1917 + if (rc)
1.1918 + return SQLITE_IOERR_UNLOCK;
1.1919 + else {
1.1920 + pFile->locktype = NO_LOCK;
1.1921 + return SQLITE_OK;
1.1922 + }
1.1923 +}
1.1924 +
1.1925 +/*
1.1926 +** Close a file.
1.1927 +*/
1.1928 +static int flockClose(sqlite3_file *id) {
1.1929 + if( id ){
1.1930 + flockUnlock(id, NO_LOCK);
1.1931 + }
1.1932 + return closeUnixFile(id);
1.1933 +}
1.1934 +
1.1935 +#pragma mark Old-School .lock file based locking
1.1936 +
1.1937 +static int dotlockCheckReservedLock(sqlite3_file *id, int *pResOut) {
1.1938 + int r = 1;
1.1939 + unixFile *pFile = (unixFile*)id;
1.1940 + char *zLockFile = (char *)pFile->lockingContext;
1.1941 +
1.1942 + if (pFile->locktype != RESERVED_LOCK) {
1.1943 + struct stat statBuf;
1.1944 + if (lstat(zLockFile, &statBuf) != 0){
1.1945 + /* file does not exist, we could have it if we want it */
1.1946 + r = 0;
1.1947 + }
1.1948 + }
1.1949 +
1.1950 + *pResOut = r;
1.1951 + return SQLITE_OK;
1.1952 +}
1.1953 +
1.1954 +static int dotlockLock(sqlite3_file *id, int locktype) {
1.1955 + unixFile *pFile = (unixFile*)id;
1.1956 + int fd;
1.1957 + char *zLockFile = (char *)pFile->lockingContext;
1.1958 +
1.1959 + /* if we already have a lock, it is exclusive.
1.1960 + ** Just adjust level and punt on outta here. */
1.1961 + if (pFile->locktype > NO_LOCK) {
1.1962 + pFile->locktype = locktype;
1.1963 +
1.1964 + /* Always update the timestamp on the old file */
1.1965 + utimes(zLockFile, NULL);
1.1966 + return SQLITE_OK;
1.1967 + }
1.1968 +
1.1969 + /* check to see if lock file already exists */
1.1970 + struct stat statBuf;
1.1971 + if (lstat(zLockFile,&statBuf) == 0){
1.1972 + return SQLITE_BUSY; /* it does, busy */
1.1973 + }
1.1974 +
1.1975 + /* grab an exclusive lock */
1.1976 + fd = open(zLockFile,O_RDONLY|O_CREAT|O_EXCL,0600);
1.1977 + if( fd<0 ){
1.1978 + /* failed to open/create the file, someone else may have stolen the lock */
1.1979 + return SQLITE_BUSY;
1.1980 + }
1.1981 + close(fd);
1.1982 +
1.1983 + /* got it, set the type and return ok */
1.1984 + pFile->locktype = locktype;
1.1985 + return SQLITE_OK;
1.1986 +}
1.1987 +
1.1988 +static int dotlockUnlock(sqlite3_file *id, int locktype) {
1.1989 + unixFile *pFile = (unixFile*)id;
1.1990 + char *zLockFile = (char *)pFile->lockingContext;
1.1991 +
1.1992 + assert( locktype<=SHARED_LOCK );
1.1993 +
1.1994 + /* no-op if possible */
1.1995 + if( pFile->locktype==locktype ){
1.1996 + return SQLITE_OK;
1.1997 + }
1.1998 +
1.1999 + /* shared can just be set because we always have an exclusive */
1.2000 + if (locktype==SHARED_LOCK) {
1.2001 + pFile->locktype = locktype;
1.2002 + return SQLITE_OK;
1.2003 + }
1.2004 +
1.2005 + /* no, really, unlock. */
1.2006 + unlink(zLockFile);
1.2007 + pFile->locktype = NO_LOCK;
1.2008 + return SQLITE_OK;
1.2009 +}
1.2010 +
1.2011 +/*
1.2012 + ** Close a file.
1.2013 + */
1.2014 +static int dotlockClose(sqlite3_file *id) {
1.2015 + if( id ){
1.2016 + unixFile *pFile = (unixFile*)id;
1.2017 + dotlockUnlock(id, NO_LOCK);
1.2018 + sqlite3_free(pFile->lockingContext);
1.2019 + }
1.2020 + return closeUnixFile(id);
1.2021 +}
1.2022 +
1.2023 +
1.2024 +#endif /* SQLITE_ENABLE_LOCKING_STYLE */
1.2025 +
1.2026 +/*
1.2027 +** The nolockLockingContext is void
1.2028 +*/
1.2029 +typedef void nolockLockingContext;
1.2030 +
1.2031 +static int nolockCheckReservedLock(sqlite3_file *id, int *pResOut) {
1.2032 + *pResOut = 0;
1.2033 + return SQLITE_OK;
1.2034 +}
1.2035 +
1.2036 +static int nolockLock(sqlite3_file *id, int locktype) {
1.2037 + return SQLITE_OK;
1.2038 +}
1.2039 +
1.2040 +static int nolockUnlock(sqlite3_file *id, int locktype) {
1.2041 + return SQLITE_OK;
1.2042 +}
1.2043 +
1.2044 +/*
1.2045 +** Close a file.
1.2046 +*/
1.2047 +static int nolockClose(sqlite3_file *id) {
1.2048 + return closeUnixFile(id);
1.2049 +}
1.2050 +
1.2051 +
1.2052 +/*
1.2053 +** Information and control of an open file handle.
1.2054 +*/
1.2055 +static int unixFileControl(sqlite3_file *id, int op, void *pArg){
1.2056 + switch( op ){
1.2057 + case SQLITE_FCNTL_LOCKSTATE: {
1.2058 + *(int*)pArg = ((unixFile*)id)->locktype;
1.2059 + return SQLITE_OK;
1.2060 + }
1.2061 + }
1.2062 + return SQLITE_ERROR;
1.2063 +}
1.2064 +
1.2065 +/*
1.2066 +** Return the sector size in bytes of the underlying block device for
1.2067 +** the specified file. This is almost always 512 bytes, but may be
1.2068 +** larger for some devices.
1.2069 +**
1.2070 +** SQLite code assumes this function cannot fail. It also assumes that
1.2071 +** if two files are created in the same file-system directory (i.e.
1.2072 +** a database and its journal file) that the sector size will be the
1.2073 +** same for both.
1.2074 +*/
1.2075 +static int unixSectorSize(sqlite3_file *id){
1.2076 + return SQLITE_DEFAULT_SECTOR_SIZE;
1.2077 +}
1.2078 +
1.2079 +/*
1.2080 +** Return the device characteristics for the file. This is always 0.
1.2081 +*/
1.2082 +static int unixDeviceCharacteristics(sqlite3_file *id){
1.2083 + return 0;
1.2084 +}
1.2085 +
1.2086 +/*
1.2087 +** Initialize the contents of the unixFile structure pointed to by pId.
1.2088 +**
1.2089 +** When locking extensions are enabled, the filepath and locking style
1.2090 +** are needed to determine the unixFile pMethod to use for locking operations.
1.2091 +** The locking-style specific lockingContext data structure is created
1.2092 +** and assigned here also.
1.2093 +*/
1.2094 +static int fillInUnixFile(
1.2095 + sqlite3_vfs *pVfs, /* Pointer to vfs object */
1.2096 + int h, /* Open file descriptor of file being opened */
1.2097 + int dirfd, /* Directory file descriptor */
1.2098 + sqlite3_file *pId, /* Write to the unixFile structure here */
1.2099 + const char *zFilename, /* Name of the file being opened */
1.2100 + int noLock /* Omit locking if true */
1.2101 +){
1.2102 + int eLockingStyle;
1.2103 + unixFile *pNew = (unixFile *)pId;
1.2104 + int rc = SQLITE_OK;
1.2105 +
1.2106 + /* Macro to define the static contents of an sqlite3_io_methods
1.2107 + ** structure for a unix backend file. Different locking methods
1.2108 + ** require different functions for the xClose, xLock, xUnlock and
1.2109 + ** xCheckReservedLock methods.
1.2110 + */
1.2111 + #define IOMETHODS(xClose, xLock, xUnlock, xCheckReservedLock) { \
1.2112 + 1, /* iVersion */ \
1.2113 + xClose, /* xClose */ \
1.2114 + unixRead, /* xRead */ \
1.2115 + unixWrite, /* xWrite */ \
1.2116 + unixTruncate, /* xTruncate */ \
1.2117 + unixSync, /* xSync */ \
1.2118 + unixFileSize, /* xFileSize */ \
1.2119 + xLock, /* xLock */ \
1.2120 + xUnlock, /* xUnlock */ \
1.2121 + xCheckReservedLock, /* xCheckReservedLock */ \
1.2122 + unixFileControl, /* xFileControl */ \
1.2123 + unixSectorSize, /* xSectorSize */ \
1.2124 + unixDeviceCharacteristics /* xDeviceCapabilities */ \
1.2125 + }
1.2126 + static sqlite3_io_methods aIoMethod[] = {
1.2127 + IOMETHODS(unixClose, unixLock, unixUnlock, unixCheckReservedLock)
1.2128 + ,IOMETHODS(nolockClose, nolockLock, nolockUnlock, nolockCheckReservedLock)
1.2129 +#ifdef SQLITE_ENABLE_LOCKING_STYLE
1.2130 + ,IOMETHODS(dotlockClose, dotlockLock, dotlockUnlock,dotlockCheckReservedLock)
1.2131 + ,IOMETHODS(flockClose, flockLock, flockUnlock, flockCheckReservedLock)
1.2132 + ,IOMETHODS(afpClose, afpLock, afpUnlock, afpCheckReservedLock)
1.2133 +#endif
1.2134 + };
1.2135 + /* The order of the IOMETHODS macros above is important. It must be the
1.2136 + ** same order as the LOCKING_STYLE numbers
1.2137 + */
1.2138 + assert(LOCKING_STYLE_POSIX==1);
1.2139 + assert(LOCKING_STYLE_NONE==2);
1.2140 + assert(LOCKING_STYLE_DOTFILE==3);
1.2141 + assert(LOCKING_STYLE_FLOCK==4);
1.2142 + assert(LOCKING_STYLE_AFP==5);
1.2143 +
1.2144 + assert( pNew->pLock==NULL );
1.2145 + assert( pNew->pOpen==NULL );
1.2146 +
1.2147 + OSTRACE3("OPEN %-3d %s\n", h, zFilename);
1.2148 + pNew->h = h;
1.2149 + pNew->dirfd = dirfd;
1.2150 + SET_THREADID(pNew);
1.2151 +
1.2152 + if( noLock ){
1.2153 + eLockingStyle = LOCKING_STYLE_NONE;
1.2154 + }else{
1.2155 + eLockingStyle = detectLockingStyle(pVfs, zFilename, h);
1.2156 + }
1.2157 +
1.2158 + switch( eLockingStyle ){
1.2159 +
1.2160 + case LOCKING_STYLE_POSIX: {
1.2161 + enterMutex();
1.2162 + rc = findLockInfo(h, &pNew->pLock, &pNew->pOpen);
1.2163 + leaveMutex();
1.2164 + break;
1.2165 + }
1.2166 +
1.2167 +#ifdef SQLITE_ENABLE_LOCKING_STYLE
1.2168 + case LOCKING_STYLE_AFP: {
1.2169 + /* AFP locking uses the file path so it needs to be included in
1.2170 + ** the afpLockingContext.
1.2171 + */
1.2172 + afpLockingContext *pCtx;
1.2173 + pNew->lockingContext = pCtx = sqlite3_malloc( sizeof(*pCtx) );
1.2174 + if( pCtx==0 ){
1.2175 + rc = SQLITE_NOMEM;
1.2176 + }else{
1.2177 + /* NB: zFilename exists and remains valid until the file is closed
1.2178 + ** according to requirement F11141. So we do not need to make a
1.2179 + ** copy of the filename. */
1.2180 + pCtx->filePath = zFilename;
1.2181 + srandomdev();
1.2182 + }
1.2183 + break;
1.2184 + }
1.2185 +
1.2186 + case LOCKING_STYLE_DOTFILE: {
1.2187 + /* Dotfile locking uses the file path so it needs to be included in
1.2188 + ** the dotlockLockingContext
1.2189 + */
1.2190 + char *zLockFile;
1.2191 + int nFilename;
1.2192 + nFilename = strlen(zFilename) + 6;
1.2193 + zLockFile = (char *)sqlite3_malloc(nFilename);
1.2194 + if( zLockFile==0 ){
1.2195 + rc = SQLITE_NOMEM;
1.2196 + }else{
1.2197 + sqlite3_snprintf(nFilename, zLockFile, "%s.lock", zFilename);
1.2198 + }
1.2199 + pNew->lockingContext = zLockFile;
1.2200 + break;
1.2201 + }
1.2202 +
1.2203 + case LOCKING_STYLE_FLOCK:
1.2204 + case LOCKING_STYLE_NONE:
1.2205 + break;
1.2206 +#endif
1.2207 + }
1.2208 +
1.2209 + if( rc!=SQLITE_OK ){
1.2210 + if( dirfd>=0 ) close(dirfd);
1.2211 + close(h);
1.2212 + }else{
1.2213 + pNew->pMethod = &aIoMethod[eLockingStyle-1];
1.2214 + OpenCounter(+1);
1.2215 + }
1.2216 + return rc;
1.2217 +}
1.2218 +
1.2219 +/*
1.2220 +** Open a file descriptor to the directory containing file zFilename.
1.2221 +** If successful, *pFd is set to the opened file descriptor and
1.2222 +** SQLITE_OK is returned. If an error occurs, either SQLITE_NOMEM
1.2223 +** or SQLITE_CANTOPEN is returned and *pFd is set to an undefined
1.2224 +** value.
1.2225 +**
1.2226 +** If SQLITE_OK is returned, the caller is responsible for closing
1.2227 +** the file descriptor *pFd using close().
1.2228 +*/
1.2229 +static int openDirectory(const char *zFilename, int *pFd){
1.2230 + int ii;
1.2231 + int fd = -1;
1.2232 + char zDirname[MAX_PATHNAME+1];
1.2233 +
1.2234 + sqlite3_snprintf(MAX_PATHNAME, zDirname, "%s", zFilename);
1.2235 + for(ii=strlen(zDirname); ii>=0 && zDirname[ii]!='/'; ii--);
1.2236 + if( ii>0 ){
1.2237 + zDirname[ii] = '\0';
1.2238 + fd = open(zDirname, O_RDONLY|O_BINARY, 0);
1.2239 + if( fd>=0 ){
1.2240 +#ifdef FD_CLOEXEC
1.2241 + fcntl(fd, F_SETFD, fcntl(fd, F_GETFD, 0) | FD_CLOEXEC);
1.2242 +#endif
1.2243 + OSTRACE3("OPENDIR %-3d %s\n", fd, zDirname);
1.2244 + }
1.2245 + }
1.2246 + *pFd = fd;
1.2247 + return (fd>=0?SQLITE_OK:SQLITE_CANTOPEN);
1.2248 +}
1.2249 +
1.2250 +/*
1.2251 +** Create a temporary file name in zBuf. zBuf must be allocated
1.2252 +** by the calling process and must be big enough to hold at least
1.2253 +** pVfs->mxPathname bytes.
1.2254 +*/
1.2255 +static int getTempname(int nBuf, char *zBuf){
1.2256 + static const char *azDirs[] = {
1.2257 + 0,
1.2258 + "/var/tmp",
1.2259 + "/usr/tmp",
1.2260 + "/tmp",
1.2261 + ".",
1.2262 + };
1.2263 + static const unsigned char zChars[] =
1.2264 + "abcdefghijklmnopqrstuvwxyz"
1.2265 + "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
1.2266 + "0123456789";
1.2267 + int i, j;
1.2268 + struct stat buf;
1.2269 + const char *zDir = ".";
1.2270 +
1.2271 + /* It's odd to simulate an io-error here, but really this is just
1.2272 + ** using the io-error infrastructure to test that SQLite handles this
1.2273 + ** function failing.
1.2274 + */
1.2275 + SimulateIOError( return SQLITE_IOERR );
1.2276 +
1.2277 + azDirs[0] = sqlite3_temp_directory;
1.2278 + for(i=0; i<sizeof(azDirs)/sizeof(azDirs[0]); i++){
1.2279 + if( azDirs[i]==0 ) continue;
1.2280 + if( stat(azDirs[i], &buf) ) continue;
1.2281 + if( !S_ISDIR(buf.st_mode) ) continue;
1.2282 + if( access(azDirs[i], 07) ) continue;
1.2283 + zDir = azDirs[i];
1.2284 + break;
1.2285 + }
1.2286 +
1.2287 + /* Check that the output buffer is large enough for the temporary file
1.2288 + ** name. If it is not, return SQLITE_ERROR.
1.2289 + */
1.2290 + if( (strlen(zDir) + strlen(SQLITE_TEMP_FILE_PREFIX) + 17) >= nBuf ){
1.2291 + return SQLITE_ERROR;
1.2292 + }
1.2293 +
1.2294 + do{
1.2295 + sqlite3_snprintf(nBuf-17, zBuf, "%s/"SQLITE_TEMP_FILE_PREFIX, zDir);
1.2296 + j = strlen(zBuf);
1.2297 + sqlite3_randomness(15, &zBuf[j]);
1.2298 + for(i=0; i<15; i++, j++){
1.2299 + zBuf[j] = (char)zChars[ ((unsigned char)zBuf[j])%(sizeof(zChars)-1) ];
1.2300 + }
1.2301 + zBuf[j] = 0;
1.2302 + }while( access(zBuf,0)==0 );
1.2303 + return SQLITE_OK;
1.2304 +}
1.2305 +
1.2306 +
1.2307 +/*
1.2308 +** Open the file zPath.
1.2309 +**
1.2310 +** Previously, the SQLite OS layer used three functions in place of this
1.2311 +** one:
1.2312 +**
1.2313 +** sqlite3OsOpenReadWrite();
1.2314 +** sqlite3OsOpenReadOnly();
1.2315 +** sqlite3OsOpenExclusive();
1.2316 +**
1.2317 +** These calls correspond to the following combinations of flags:
1.2318 +**
1.2319 +** ReadWrite() -> (READWRITE | CREATE)
1.2320 +** ReadOnly() -> (READONLY)
1.2321 +** OpenExclusive() -> (READWRITE | CREATE | EXCLUSIVE)
1.2322 +**
1.2323 +** The old OpenExclusive() accepted a boolean argument - "delFlag". If
1.2324 +** true, the file was configured to be automatically deleted when the
1.2325 +** file handle closed. To achieve the same effect using this new
1.2326 +** interface, add the DELETEONCLOSE flag to those specified above for
1.2327 +** OpenExclusive().
1.2328 +*/
1.2329 +static int unixOpen(
1.2330 + sqlite3_vfs *pVfs,
1.2331 + const char *zPath,
1.2332 + sqlite3_file *pFile,
1.2333 + int flags,
1.2334 + int *pOutFlags
1.2335 +){
1.2336 + int fd = 0; /* File descriptor returned by open() */
1.2337 + int dirfd = -1; /* Directory file descriptor */
1.2338 + int oflags = 0; /* Flags to pass to open() */
1.2339 + int eType = flags&0xFFFFFF00; /* Type of file to open */
1.2340 + int noLock; /* True to omit locking primitives */
1.2341 +
1.2342 + int isExclusive = (flags & SQLITE_OPEN_EXCLUSIVE);
1.2343 + int isDelete = (flags & SQLITE_OPEN_DELETEONCLOSE);
1.2344 + int isCreate = (flags & SQLITE_OPEN_CREATE);
1.2345 + int isReadonly = (flags & SQLITE_OPEN_READONLY);
1.2346 + int isReadWrite = (flags & SQLITE_OPEN_READWRITE);
1.2347 +
1.2348 + /* If creating a master or main-file journal, this function will open
1.2349 + ** a file-descriptor on the directory too. The first time unixSync()
1.2350 + ** is called the directory file descriptor will be fsync()ed and close()d.
1.2351 + */
1.2352 + int isOpenDirectory = (isCreate &&
1.2353 + (eType==SQLITE_OPEN_MASTER_JOURNAL || eType==SQLITE_OPEN_MAIN_JOURNAL)
1.2354 + );
1.2355 +
1.2356 + /* If argument zPath is a NULL pointer, this function is required to open
1.2357 + ** a temporary file. Use this buffer to store the file name in.
1.2358 + */
1.2359 + char zTmpname[MAX_PATHNAME+1];
1.2360 + const char *zName = zPath;
1.2361 +
1.2362 + /* Check the following statements are true:
1.2363 + **
1.2364 + ** (a) Exactly one of the READWRITE and READONLY flags must be set, and
1.2365 + ** (b) if CREATE is set, then READWRITE must also be set, and
1.2366 + ** (c) if EXCLUSIVE is set, then CREATE must also be set.
1.2367 + ** (d) if DELETEONCLOSE is set, then CREATE must also be set.
1.2368 + */
1.2369 + assert((isReadonly==0 || isReadWrite==0) && (isReadWrite || isReadonly));
1.2370 + assert(isCreate==0 || isReadWrite);
1.2371 + assert(isExclusive==0 || isCreate);
1.2372 + assert(isDelete==0 || isCreate);
1.2373 +
1.2374 + /* The main DB, main journal, and master journal are never automatically
1.2375 + ** deleted
1.2376 + */
1.2377 + assert( eType!=SQLITE_OPEN_MAIN_DB || !isDelete );
1.2378 + assert( eType!=SQLITE_OPEN_MAIN_JOURNAL || !isDelete );
1.2379 + assert( eType!=SQLITE_OPEN_MASTER_JOURNAL || !isDelete );
1.2380 +
1.2381 + /* Assert that the upper layer has set one of the "file-type" flags. */
1.2382 + assert( eType==SQLITE_OPEN_MAIN_DB || eType==SQLITE_OPEN_TEMP_DB
1.2383 + || eType==SQLITE_OPEN_MAIN_JOURNAL || eType==SQLITE_OPEN_TEMP_JOURNAL
1.2384 + || eType==SQLITE_OPEN_SUBJOURNAL || eType==SQLITE_OPEN_MASTER_JOURNAL
1.2385 + || eType==SQLITE_OPEN_TRANSIENT_DB
1.2386 + );
1.2387 +
1.2388 + memset(pFile, 0, sizeof(unixFile));
1.2389 +
1.2390 + if( !zName ){
1.2391 + int rc;
1.2392 + assert(isDelete && !isOpenDirectory);
1.2393 + rc = getTempname(MAX_PATHNAME+1, zTmpname);
1.2394 + if( rc!=SQLITE_OK ){
1.2395 + return rc;
1.2396 + }
1.2397 + zName = zTmpname;
1.2398 + }
1.2399 +
1.2400 + if( isReadonly ) oflags |= O_RDONLY;
1.2401 + if( isReadWrite ) oflags |= O_RDWR;
1.2402 + if( isCreate ) oflags |= O_CREAT;
1.2403 + if( isExclusive ) oflags |= (O_EXCL|O_NOFOLLOW);
1.2404 + oflags |= (O_LARGEFILE|O_BINARY);
1.2405 +
1.2406 + fd = open(zName, oflags, isDelete?0600:SQLITE_DEFAULT_FILE_PERMISSIONS);
1.2407 + if( fd<0 && errno!=EISDIR && isReadWrite && !isExclusive ){
1.2408 + /* Failed to open the file for read/write access. Try read-only. */
1.2409 + flags &= ~(SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE);
1.2410 + flags |= SQLITE_OPEN_READONLY;
1.2411 + return unixOpen(pVfs, zPath, pFile, flags, pOutFlags);
1.2412 + }
1.2413 + if( fd<0 ){
1.2414 + return SQLITE_CANTOPEN;
1.2415 + }
1.2416 + if( isDelete ){
1.2417 + unlink(zName);
1.2418 + }
1.2419 + if( pOutFlags ){
1.2420 + *pOutFlags = flags;
1.2421 + }
1.2422 +
1.2423 + assert(fd!=0);
1.2424 + if( isOpenDirectory ){
1.2425 + int rc = openDirectory(zPath, &dirfd);
1.2426 + if( rc!=SQLITE_OK ){
1.2427 + close(fd);
1.2428 + return rc;
1.2429 + }
1.2430 + }
1.2431 +
1.2432 +#ifdef FD_CLOEXEC
1.2433 + fcntl(fd, F_SETFD, fcntl(fd, F_GETFD, 0) | FD_CLOEXEC);
1.2434 +#endif
1.2435 +
1.2436 + noLock = eType!=SQLITE_OPEN_MAIN_DB;
1.2437 + return fillInUnixFile(pVfs, fd, dirfd, pFile, zPath, noLock);
1.2438 +}
1.2439 +
1.2440 +/*
1.2441 +** Delete the file at zPath. If the dirSync argument is true, fsync()
1.2442 +** the directory after deleting the file.
1.2443 +*/
1.2444 +static int unixDelete(sqlite3_vfs *pVfs, const char *zPath, int dirSync){
1.2445 + int rc = SQLITE_OK;
1.2446 + SimulateIOError(return SQLITE_IOERR_DELETE);
1.2447 + unlink(zPath);
1.2448 + if( dirSync ){
1.2449 + int fd;
1.2450 + rc = openDirectory(zPath, &fd);
1.2451 + if( rc==SQLITE_OK ){
1.2452 + if( fsync(fd) ){
1.2453 + rc = SQLITE_IOERR_DIR_FSYNC;
1.2454 + }
1.2455 + close(fd);
1.2456 + }
1.2457 + }
1.2458 + return rc;
1.2459 +}
1.2460 +
1.2461 +/*
1.2462 +** Test the existance of or access permissions of file zPath. The
1.2463 +** test performed depends on the value of flags:
1.2464 +**
1.2465 +** SQLITE_ACCESS_EXISTS: Return 1 if the file exists
1.2466 +** SQLITE_ACCESS_READWRITE: Return 1 if the file is read and writable.
1.2467 +** SQLITE_ACCESS_READONLY: Return 1 if the file is readable.
1.2468 +**
1.2469 +** Otherwise return 0.
1.2470 +*/
1.2471 +static int unixAccess(
1.2472 + sqlite3_vfs *pVfs,
1.2473 + const char *zPath,
1.2474 + int flags,
1.2475 + int *pResOut
1.2476 +){
1.2477 + int amode = 0;
1.2478 + SimulateIOError( return SQLITE_IOERR_ACCESS; );
1.2479 + switch( flags ){
1.2480 + case SQLITE_ACCESS_EXISTS:
1.2481 + amode = F_OK;
1.2482 + break;
1.2483 + case SQLITE_ACCESS_READWRITE:
1.2484 + amode = W_OK|R_OK;
1.2485 + break;
1.2486 + case SQLITE_ACCESS_READ:
1.2487 + amode = R_OK;
1.2488 + break;
1.2489 +
1.2490 + default:
1.2491 + assert(!"Invalid flags argument");
1.2492 + }
1.2493 + *pResOut = (access(zPath, amode)==0);
1.2494 + return SQLITE_OK;
1.2495 +}
1.2496 +
1.2497 +
1.2498 +/*
1.2499 +** Turn a relative pathname into a full pathname. The relative path
1.2500 +** is stored as a nul-terminated string in the buffer pointed to by
1.2501 +** zPath.
1.2502 +**
1.2503 +** zOut points to a buffer of at least sqlite3_vfs.mxPathname bytes
1.2504 +** (in this case, MAX_PATHNAME bytes). The full-path is written to
1.2505 +** this buffer before returning.
1.2506 +*/
1.2507 +static int unixFullPathname(
1.2508 + sqlite3_vfs *pVfs, /* Pointer to vfs object */
1.2509 + const char *zPath, /* Possibly relative input path */
1.2510 + int nOut, /* Size of output buffer in bytes */
1.2511 + char *zOut /* Output buffer */
1.2512 +){
1.2513 +
1.2514 + /* It's odd to simulate an io-error here, but really this is just
1.2515 + ** using the io-error infrastructure to test that SQLite handles this
1.2516 + ** function failing. This function could fail if, for example, the
1.2517 + ** current working directly has been unlinked.
1.2518 + */
1.2519 + SimulateIOError( return SQLITE_ERROR );
1.2520 +
1.2521 + assert( pVfs->mxPathname==MAX_PATHNAME );
1.2522 + zOut[nOut-1] = '\0';
1.2523 + if( zPath[0]=='/' ){
1.2524 + sqlite3_snprintf(nOut, zOut, "%s", zPath);
1.2525 + }else{
1.2526 + int nCwd;
1.2527 + if( getcwd(zOut, nOut-1)==0 ){
1.2528 + return SQLITE_CANTOPEN;
1.2529 + }
1.2530 + nCwd = strlen(zOut);
1.2531 + sqlite3_snprintf(nOut-nCwd, &zOut[nCwd], "/%s", zPath);
1.2532 + }
1.2533 + return SQLITE_OK;
1.2534 +
1.2535 +#if 0
1.2536 + /*
1.2537 + ** Remove "/./" path elements and convert "/A/./" path elements
1.2538 + ** to just "/".
1.2539 + */
1.2540 + if( zFull ){
1.2541 + int i, j;
1.2542 + for(i=j=0; zFull[i]; i++){
1.2543 + if( zFull[i]=='/' ){
1.2544 + if( zFull[i+1]=='/' ) continue;
1.2545 + if( zFull[i+1]=='.' && zFull[i+2]=='/' ){
1.2546 + i += 1;
1.2547 + continue;
1.2548 + }
1.2549 + if( zFull[i+1]=='.' && zFull[i+2]=='.' && zFull[i+3]=='/' ){
1.2550 + while( j>0 && zFull[j-1]!='/' ){ j--; }
1.2551 + i += 3;
1.2552 + continue;
1.2553 + }
1.2554 + }
1.2555 + zFull[j++] = zFull[i];
1.2556 + }
1.2557 + zFull[j] = 0;
1.2558 + }
1.2559 +#endif
1.2560 +}
1.2561 +
1.2562 +
1.2563 +#ifndef SQLITE_OMIT_LOAD_EXTENSION
1.2564 +/*
1.2565 +** Interfaces for opening a shared library, finding entry points
1.2566 +** within the shared library, and closing the shared library.
1.2567 +*/
1.2568 +#include <dlfcn.h>
1.2569 +static void *unixDlOpen(sqlite3_vfs *pVfs, const char *zFilename){
1.2570 + return dlopen(zFilename, RTLD_NOW | RTLD_GLOBAL);
1.2571 +}
1.2572 +
1.2573 +/*
1.2574 +** SQLite calls this function immediately after a call to unixDlSym() or
1.2575 +** unixDlOpen() fails (returns a null pointer). If a more detailed error
1.2576 +** message is available, it is written to zBufOut. If no error message
1.2577 +** is available, zBufOut is left unmodified and SQLite uses a default
1.2578 +** error message.
1.2579 +*/
1.2580 +static void unixDlError(sqlite3_vfs *pVfs, int nBuf, char *zBufOut){
1.2581 + char *zErr;
1.2582 + enterMutex();
1.2583 + zErr = dlerror();
1.2584 + if( zErr ){
1.2585 + sqlite3_snprintf(nBuf, zBufOut, "%s", zErr);
1.2586 + }
1.2587 + leaveMutex();
1.2588 +}
1.2589 +static void *unixDlSym(sqlite3_vfs *pVfs, void *pHandle, const char *zSymbol){
1.2590 + return dlsym(pHandle, zSymbol);
1.2591 +}
1.2592 +static void unixDlClose(sqlite3_vfs *pVfs, void *pHandle){
1.2593 + dlclose(pHandle);
1.2594 +}
1.2595 +#else /* if SQLITE_OMIT_LOAD_EXTENSION is defined: */
1.2596 + #define unixDlOpen 0
1.2597 + #define unixDlError 0
1.2598 + #define unixDlSym 0
1.2599 + #define unixDlClose 0
1.2600 +#endif
1.2601 +
1.2602 +/*
1.2603 +** Write nBuf bytes of random data to the supplied buffer zBuf.
1.2604 +*/
1.2605 +static int unixRandomness(sqlite3_vfs *pVfs, int nBuf, char *zBuf){
1.2606 +
1.2607 + assert(nBuf>=(sizeof(time_t)+sizeof(int)));
1.2608 +
1.2609 + /* We have to initialize zBuf to prevent valgrind from reporting
1.2610 + ** errors. The reports issued by valgrind are incorrect - we would
1.2611 + ** prefer that the randomness be increased by making use of the
1.2612 + ** uninitialized space in zBuf - but valgrind errors tend to worry
1.2613 + ** some users. Rather than argue, it seems easier just to initialize
1.2614 + ** the whole array and silence valgrind, even if that means less randomness
1.2615 + ** in the random seed.
1.2616 + **
1.2617 + ** When testing, initializing zBuf[] to zero is all we do. That means
1.2618 + ** that we always use the same random number sequence. This makes the
1.2619 + ** tests repeatable.
1.2620 + */
1.2621 + memset(zBuf, 0, nBuf);
1.2622 +#if !defined(SQLITE_TEST)
1.2623 + {
1.2624 + int pid, fd;
1.2625 + fd = open("/dev/urandom", O_RDONLY);
1.2626 + if( fd<0 ){
1.2627 + time_t t;
1.2628 + time(&t);
1.2629 + memcpy(zBuf, &t, sizeof(t));
1.2630 + pid = getpid();
1.2631 + memcpy(&zBuf[sizeof(t)], &pid, sizeof(pid));
1.2632 + }else{
1.2633 + read(fd, zBuf, nBuf);
1.2634 + close(fd);
1.2635 + }
1.2636 + }
1.2637 +#endif
1.2638 + return SQLITE_OK;
1.2639 +}
1.2640 +
1.2641 +
1.2642 +/*
1.2643 +** Sleep for a little while. Return the amount of time slept.
1.2644 +** The argument is the number of microseconds we want to sleep.
1.2645 +** The return value is the number of microseconds of sleep actually
1.2646 +** requested from the underlying operating system, a number which
1.2647 +** might be greater than or equal to the argument, but not less
1.2648 +** than the argument.
1.2649 +*/
1.2650 +static int unixSleep(sqlite3_vfs *pVfs, int microseconds){
1.2651 +#if defined(HAVE_USLEEP) && HAVE_USLEEP
1.2652 + usleep(microseconds);
1.2653 + return microseconds;
1.2654 +#else
1.2655 + int seconds = (microseconds+999999)/1000000;
1.2656 + sleep(seconds);
1.2657 + return seconds*1000000;
1.2658 +#endif
1.2659 +}
1.2660 +
1.2661 +/*
1.2662 +** The following variable, if set to a non-zero value, becomes the result
1.2663 +** returned from sqlite3OsCurrentTime(). This is used for testing.
1.2664 +*/
1.2665 +#ifdef SQLITE_TEST
1.2666 +int sqlite3_current_time = 0;
1.2667 +#endif
1.2668 +
1.2669 +/*
1.2670 +** Find the current time (in Universal Coordinated Time). Write the
1.2671 +** current time and date as a Julian Day number into *prNow and
1.2672 +** return 0. Return 1 if the time and date cannot be found.
1.2673 +*/
1.2674 +static int unixCurrentTime(sqlite3_vfs *pVfs, double *prNow){
1.2675 +#ifdef NO_GETTOD
1.2676 + time_t t;
1.2677 + time(&t);
1.2678 + *prNow = t/86400.0 + 2440587.5;
1.2679 +#else
1.2680 + struct timeval sNow;
1.2681 + gettimeofday(&sNow, 0);
1.2682 + *prNow = 2440587.5 + sNow.tv_sec/86400.0 + sNow.tv_usec/86400000000.0;
1.2683 +#endif
1.2684 +#ifdef SQLITE_TEST
1.2685 + if( sqlite3_current_time ){
1.2686 + *prNow = sqlite3_current_time/86400.0 + 2440587.5;
1.2687 + }
1.2688 +#endif
1.2689 + return 0;
1.2690 +}
1.2691 +
1.2692 +static int unixGetLastError(sqlite3_vfs *pVfs, int nBuf, char *zBuf){
1.2693 + return 0;
1.2694 +}
1.2695 +
1.2696 +/*
1.2697 +** Initialize the operating system interface.
1.2698 +*/
1.2699 +int sqlite3_os_init(void){
1.2700 + /* Macro to define the static contents of an sqlite3_vfs structure for
1.2701 + ** the unix backend. The two parameters are the values to use for
1.2702 + ** the sqlite3_vfs.zName and sqlite3_vfs.pAppData fields, respectively.
1.2703 + **
1.2704 + */
1.2705 + #define UNIXVFS(zVfsName, pVfsAppData) { \
1.2706 + 1, /* iVersion */ \
1.2707 + sizeof(unixFile), /* szOsFile */ \
1.2708 + MAX_PATHNAME, /* mxPathname */ \
1.2709 + 0, /* pNext */ \
1.2710 + zVfsName, /* zName */ \
1.2711 + (void *)pVfsAppData, /* pAppData */ \
1.2712 + unixOpen, /* xOpen */ \
1.2713 + unixDelete, /* xDelete */ \
1.2714 + unixAccess, /* xAccess */ \
1.2715 + unixFullPathname, /* xFullPathname */ \
1.2716 + unixDlOpen, /* xDlOpen */ \
1.2717 + unixDlError, /* xDlError */ \
1.2718 + unixDlSym, /* xDlSym */ \
1.2719 + unixDlClose, /* xDlClose */ \
1.2720 + unixRandomness, /* xRandomness */ \
1.2721 + unixSleep, /* xSleep */ \
1.2722 + unixCurrentTime, /* xCurrentTime */ \
1.2723 + unixGetLastError /* xGetLastError */ \
1.2724 + }
1.2725 +
1.2726 + static sqlite3_vfs unixVfs = UNIXVFS("unix", 0);
1.2727 +#ifdef SQLITE_ENABLE_LOCKING_STYLE
1.2728 +#if 0
1.2729 + int i;
1.2730 + static sqlite3_vfs aVfs[] = {
1.2731 + UNIXVFS("unix-posix", LOCKING_STYLE_POSIX),
1.2732 + UNIXVFS("unix-afp", LOCKING_STYLE_AFP),
1.2733 + UNIXVFS("unix-flock", LOCKING_STYLE_FLOCK),
1.2734 + UNIXVFS("unix-dotfile", LOCKING_STYLE_DOTFILE),
1.2735 + UNIXVFS("unix-none", LOCKING_STYLE_NONE)
1.2736 + };
1.2737 + for(i=0; i<(sizeof(aVfs)/sizeof(sqlite3_vfs)); i++){
1.2738 + sqlite3_vfs_register(&aVfs[i], 0);
1.2739 + }
1.2740 +#endif
1.2741 +#endif
1.2742 + sqlite3_vfs_register(&unixVfs, 1);
1.2743 + return SQLITE_OK;
1.2744 +}
1.2745 +
1.2746 +/*
1.2747 +** Shutdown the operating system interface. This is a no-op for unix.
1.2748 +*/
1.2749 +int sqlite3_os_end(void){
1.2750 + return SQLITE_OK;
1.2751 +}
1.2752 +
1.2753 +#endif /* SQLITE_OS_UNIX */