os/persistentdata/persistentstorage/sql/SQLite/btree.c
author sl@SLION-WIN7.fritz.box
Fri, 15 Jun 2012 03:10:57 +0200
changeset 0 bde4ae8d615e
permissions -rw-r--r--
First public contribution.
     1 /*
     2 ** 2004 April 6
     3 **
     4 ** The author disclaims copyright to this source code.  In place of
     5 ** a legal notice, here is a blessing:
     6 **
     7 **    May you do good and not evil.
     8 **    May you find forgiveness for yourself and forgive others.
     9 **    May you share freely, never taking more than you give.
    10 **
    11 *************************************************************************
    12 ** $Id: btree.c,v 1.495 2008/08/02 17:36:46 danielk1977 Exp $
    13 **
    14 ** This file implements a external (disk-based) database using BTrees.
    15 ** See the header comment on "btreeInt.h" for additional information.
    16 ** Including a description of file format and an overview of operation.
    17 */
    18 #include "btreeInt.h"
    19 
    20 /*
    21 ** The header string that appears at the beginning of every
    22 ** SQLite database.
    23 */
    24 static const char zMagicHeader[] = SQLITE_FILE_HEADER;
    25 
    26 /*
    27 ** Set this global variable to 1 to enable tracing using the TRACE
    28 ** macro.
    29 */
    30 #if 0
    31 int sqlite3BtreeTrace=0;  /* True to enable tracing */
    32 # define TRACE(X)  if(sqlite3BtreeTrace){printf X;fflush(stdout);}
    33 #else
    34 # define TRACE(X)
    35 #endif
    36 
    37 
    38 
    39 #ifndef SQLITE_OMIT_SHARED_CACHE
    40 /*
    41 ** A flag to indicate whether or not shared cache is enabled.  Also,
    42 ** a list of BtShared objects that are eligible for participation
    43 ** in shared cache.  The variables have file scope during normal builds,
    44 ** but the test harness needs to access these variables so we make them
    45 ** global for test builds.
    46 */
    47 #ifdef SQLITE_TEST
    48 BtShared *sqlite3SharedCacheList = 0;
    49 int sqlite3SharedCacheEnabled = 0;
    50 #else
    51 static BtShared *sqlite3SharedCacheList = 0;
    52 static int sqlite3SharedCacheEnabled = 0;
    53 #endif
    54 #endif /* SQLITE_OMIT_SHARED_CACHE */
    55 
    56 #ifndef SQLITE_OMIT_SHARED_CACHE
    57 /*
    58 ** Enable or disable the shared pager and schema features.
    59 **
    60 ** This routine has no effect on existing database connections.
    61 ** The shared cache setting effects only future calls to
    62 ** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
    63 */
    64 int sqlite3_enable_shared_cache(int enable){
    65   sqlite3SharedCacheEnabled = enable;
    66   return SQLITE_OK;
    67 }
    68 #endif
    69 
    70 
    71 /*
    72 ** Forward declaration
    73 */
    74 static int checkReadLocks(Btree*, Pgno, BtCursor*, i64);
    75 
    76 
    77 #ifdef SQLITE_OMIT_SHARED_CACHE
    78   /*
    79   ** The functions queryTableLock(), lockTable() and unlockAllTables()
    80   ** manipulate entries in the BtShared.pLock linked list used to store
    81   ** shared-cache table level locks. If the library is compiled with the
    82   ** shared-cache feature disabled, then there is only ever one user
    83   ** of each BtShared structure and so this locking is not necessary. 
    84   ** So define the lock related functions as no-ops.
    85   */
    86   #define queryTableLock(a,b,c) SQLITE_OK
    87   #define lockTable(a,b,c) SQLITE_OK
    88   #define unlockAllTables(a)
    89 #endif
    90 
    91 #ifndef SQLITE_OMIT_SHARED_CACHE
    92 /*
    93 ** Query to see if btree handle p may obtain a lock of type eLock 
    94 ** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
    95 ** SQLITE_OK if the lock may be obtained (by calling lockTable()), or
    96 ** SQLITE_LOCKED if not.
    97 */
    98 static int queryTableLock(Btree *p, Pgno iTab, u8 eLock){
    99   BtShared *pBt = p->pBt;
   100   BtLock *pIter;
   101 
   102   assert( sqlite3BtreeHoldsMutex(p) );
   103   assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
   104   assert( p->db!=0 );
   105   
   106   /* This is a no-op if the shared-cache is not enabled */
   107   if( !p->sharable ){
   108     return SQLITE_OK;
   109   }
   110 
   111   /* If some other connection is holding an exclusive lock, the
   112   ** requested lock may not be obtained.
   113   */
   114   if( pBt->pExclusive && pBt->pExclusive!=p ){
   115     return SQLITE_LOCKED;
   116   }
   117 
   118   /* This (along with lockTable()) is where the ReadUncommitted flag is
   119   ** dealt with. If the caller is querying for a read-lock and the flag is
   120   ** set, it is unconditionally granted - even if there are write-locks
   121   ** on the table. If a write-lock is requested, the ReadUncommitted flag
   122   ** is not considered.
   123   **
   124   ** In function lockTable(), if a read-lock is demanded and the 
   125   ** ReadUncommitted flag is set, no entry is added to the locks list 
   126   ** (BtShared.pLock).
   127   **
   128   ** To summarize: If the ReadUncommitted flag is set, then read cursors do
   129   ** not create or respect table locks. The locking procedure for a 
   130   ** write-cursor does not change.
   131   */
   132   if( 
   133     0==(p->db->flags&SQLITE_ReadUncommitted) || 
   134     eLock==WRITE_LOCK ||
   135     iTab==MASTER_ROOT
   136   ){
   137     for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
   138       if( pIter->pBtree!=p && pIter->iTable==iTab && 
   139           (pIter->eLock!=eLock || eLock!=READ_LOCK) ){
   140         return SQLITE_LOCKED;
   141       }
   142     }
   143   }
   144   return SQLITE_OK;
   145 }
   146 #endif /* !SQLITE_OMIT_SHARED_CACHE */
   147 
   148 #ifndef SQLITE_OMIT_SHARED_CACHE
   149 /*
   150 ** Add a lock on the table with root-page iTable to the shared-btree used
   151 ** by Btree handle p. Parameter eLock must be either READ_LOCK or 
   152 ** WRITE_LOCK.
   153 **
   154 ** SQLITE_OK is returned if the lock is added successfully. SQLITE_BUSY and
   155 ** SQLITE_NOMEM may also be returned.
   156 */
   157 static int lockTable(Btree *p, Pgno iTable, u8 eLock){
   158   BtShared *pBt = p->pBt;
   159   BtLock *pLock = 0;
   160   BtLock *pIter;
   161 
   162   assert( sqlite3BtreeHoldsMutex(p) );
   163   assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
   164   assert( p->db!=0 );
   165 
   166   /* This is a no-op if the shared-cache is not enabled */
   167   if( !p->sharable ){
   168     return SQLITE_OK;
   169   }
   170 
   171   assert( SQLITE_OK==queryTableLock(p, iTable, eLock) );
   172 
   173   /* If the read-uncommitted flag is set and a read-lock is requested,
   174   ** return early without adding an entry to the BtShared.pLock list. See
   175   ** comment in function queryTableLock() for more info on handling 
   176   ** the ReadUncommitted flag.
   177   */
   178   if( 
   179     (p->db->flags&SQLITE_ReadUncommitted) && 
   180     (eLock==READ_LOCK) &&
   181     iTable!=MASTER_ROOT
   182   ){
   183     return SQLITE_OK;
   184   }
   185 
   186   /* First search the list for an existing lock on this table. */
   187   for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
   188     if( pIter->iTable==iTable && pIter->pBtree==p ){
   189       pLock = pIter;
   190       break;
   191     }
   192   }
   193 
   194   /* If the above search did not find a BtLock struct associating Btree p
   195   ** with table iTable, allocate one and link it into the list.
   196   */
   197   if( !pLock ){
   198     pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock));
   199     if( !pLock ){
   200       return SQLITE_NOMEM;
   201     }
   202     pLock->iTable = iTable;
   203     pLock->pBtree = p;
   204     pLock->pNext = pBt->pLock;
   205     pBt->pLock = pLock;
   206   }
   207 
   208   /* Set the BtLock.eLock variable to the maximum of the current lock
   209   ** and the requested lock. This means if a write-lock was already held
   210   ** and a read-lock requested, we don't incorrectly downgrade the lock.
   211   */
   212   assert( WRITE_LOCK>READ_LOCK );
   213   if( eLock>pLock->eLock ){
   214     pLock->eLock = eLock;
   215   }
   216 
   217   return SQLITE_OK;
   218 }
   219 #endif /* !SQLITE_OMIT_SHARED_CACHE */
   220 
   221 #ifndef SQLITE_OMIT_SHARED_CACHE
   222 /*
   223 ** Release all the table locks (locks obtained via calls to the lockTable()
   224 ** procedure) held by Btree handle p.
   225 */
   226 static void unlockAllTables(Btree *p){
   227   BtShared *pBt = p->pBt;
   228   BtLock **ppIter = &pBt->pLock;
   229 
   230   assert( sqlite3BtreeHoldsMutex(p) );
   231   assert( p->sharable || 0==*ppIter );
   232 
   233   while( *ppIter ){
   234     BtLock *pLock = *ppIter;
   235     assert( pBt->pExclusive==0 || pBt->pExclusive==pLock->pBtree );
   236     if( pLock->pBtree==p ){
   237       *ppIter = pLock->pNext;
   238       sqlite3_free(pLock);
   239     }else{
   240       ppIter = &pLock->pNext;
   241     }
   242   }
   243 
   244   if( pBt->pExclusive==p ){
   245     pBt->pExclusive = 0;
   246   }
   247 }
   248 #endif /* SQLITE_OMIT_SHARED_CACHE */
   249 
   250 static void releasePage(MemPage *pPage);  /* Forward reference */
   251 
   252 /*
   253 ** Verify that the cursor holds a mutex on the BtShared
   254 */
   255 #ifndef NDEBUG
   256 static int cursorHoldsMutex(BtCursor *p){
   257   return sqlite3_mutex_held(p->pBt->mutex);
   258 }
   259 #endif
   260 
   261 
   262 #ifndef SQLITE_OMIT_INCRBLOB
   263 /*
   264 ** Invalidate the overflow page-list cache for cursor pCur, if any.
   265 */
   266 static void invalidateOverflowCache(BtCursor *pCur){
   267   assert( cursorHoldsMutex(pCur) );
   268   sqlite3_free(pCur->aOverflow);
   269   pCur->aOverflow = 0;
   270 }
   271 
   272 /*
   273 ** Invalidate the overflow page-list cache for all cursors opened
   274 ** on the shared btree structure pBt.
   275 */
   276 static void invalidateAllOverflowCache(BtShared *pBt){
   277   BtCursor *p;
   278   assert( sqlite3_mutex_held(pBt->mutex) );
   279   for(p=pBt->pCursor; p; p=p->pNext){
   280     invalidateOverflowCache(p);
   281   }
   282 }
   283 #else
   284   #define invalidateOverflowCache(x)
   285   #define invalidateAllOverflowCache(x)
   286 #endif
   287 
   288 /*
   289 ** Save the current cursor position in the variables BtCursor.nKey 
   290 ** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
   291 */
   292 static int saveCursorPosition(BtCursor *pCur){
   293   int rc;
   294 
   295   assert( CURSOR_VALID==pCur->eState );
   296   assert( 0==pCur->pKey );
   297   assert( cursorHoldsMutex(pCur) );
   298 
   299   rc = sqlite3BtreeKeySize(pCur, &pCur->nKey);
   300 
   301   /* If this is an intKey table, then the above call to BtreeKeySize()
   302   ** stores the integer key in pCur->nKey. In this case this value is
   303   ** all that is required. Otherwise, if pCur is not open on an intKey
   304   ** table, then malloc space for and store the pCur->nKey bytes of key 
   305   ** data.
   306   */
   307   if( rc==SQLITE_OK && 0==pCur->pPage->intKey){
   308     void *pKey = sqlite3Malloc(pCur->nKey);
   309     if( pKey ){
   310       rc = sqlite3BtreeKey(pCur, 0, pCur->nKey, pKey);
   311       if( rc==SQLITE_OK ){
   312         pCur->pKey = pKey;
   313       }else{
   314         sqlite3_free(pKey);
   315       }
   316     }else{
   317       rc = SQLITE_NOMEM;
   318     }
   319   }
   320   assert( !pCur->pPage->intKey || !pCur->pKey );
   321 
   322   if( rc==SQLITE_OK ){
   323     releasePage(pCur->pPage);
   324     pCur->pPage = 0;
   325     pCur->eState = CURSOR_REQUIRESEEK;
   326   }
   327 
   328   invalidateOverflowCache(pCur);
   329   return rc;
   330 }
   331 
   332 /*
   333 ** Save the positions of all cursors except pExcept open on the table 
   334 ** with root-page iRoot. Usually, this is called just before cursor
   335 ** pExcept is used to modify the table (BtreeDelete() or BtreeInsert()).
   336 */
   337 static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){
   338   BtCursor *p;
   339   assert( sqlite3_mutex_held(pBt->mutex) );
   340   assert( pExcept==0 || pExcept->pBt==pBt );
   341   for(p=pBt->pCursor; p; p=p->pNext){
   342     if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) && 
   343         p->eState==CURSOR_VALID ){
   344       int rc = saveCursorPosition(p);
   345       if( SQLITE_OK!=rc ){
   346         return rc;
   347       }
   348     }
   349   }
   350   return SQLITE_OK;
   351 }
   352 
   353 /*
   354 ** Clear the current cursor position.
   355 */
   356 static void clearCursorPosition(BtCursor *pCur){
   357   assert( cursorHoldsMutex(pCur) );
   358   sqlite3_free(pCur->pKey);
   359   pCur->pKey = 0;
   360   pCur->eState = CURSOR_INVALID;
   361 }
   362 
   363 /*
   364 ** Restore the cursor to the position it was in (or as close to as possible)
   365 ** when saveCursorPosition() was called. Note that this call deletes the 
   366 ** saved position info stored by saveCursorPosition(), so there can be
   367 ** at most one effective restoreCursorPosition() call after each 
   368 ** saveCursorPosition().
   369 */
   370 int sqlite3BtreeRestoreCursorPosition(BtCursor *pCur){
   371   int rc;
   372   assert( cursorHoldsMutex(pCur) );
   373   assert( pCur->eState>=CURSOR_REQUIRESEEK );
   374   if( pCur->eState==CURSOR_FAULT ){
   375     return pCur->skip;
   376   }
   377   pCur->eState = CURSOR_INVALID;
   378   rc = sqlite3BtreeMoveto(pCur, pCur->pKey, 0, pCur->nKey, 0, &pCur->skip);
   379   if( rc==SQLITE_OK ){
   380     sqlite3_free(pCur->pKey);
   381     pCur->pKey = 0;
   382     assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID );
   383   }
   384   return rc;
   385 }
   386 
   387 #define restoreCursorPosition(p) \
   388   (p->eState>=CURSOR_REQUIRESEEK ? \
   389          sqlite3BtreeRestoreCursorPosition(p) : \
   390          SQLITE_OK)
   391 
   392 /*
   393 ** Determine whether or not a cursor has moved from the position it
   394 ** was last placed at.  Cursor can move when the row they are pointing
   395 ** at is deleted out from under them.
   396 **
   397 ** This routine returns an error code if something goes wrong.  The
   398 ** integer *pHasMoved is set to one if the cursor has moved and 0 if not.
   399 */
   400 int sqlite3BtreeCursorHasMoved(BtCursor *pCur, int *pHasMoved){
   401   int rc;
   402 
   403   rc = restoreCursorPosition(pCur);
   404   if( rc ){
   405     *pHasMoved = 1;
   406     return rc;
   407   }
   408   if( pCur->eState!=CURSOR_VALID || pCur->skip!=0 ){
   409     *pHasMoved = 1;
   410   }else{
   411     *pHasMoved = 0;
   412   }
   413   return SQLITE_OK;
   414 }
   415 
   416 #ifndef SQLITE_OMIT_AUTOVACUUM
   417 /*
   418 ** Given a page number of a regular database page, return the page
   419 ** number for the pointer-map page that contains the entry for the
   420 ** input page number.
   421 */
   422 static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){
   423   int nPagesPerMapPage, iPtrMap, ret;
   424   assert( sqlite3_mutex_held(pBt->mutex) );
   425   nPagesPerMapPage = (pBt->usableSize/5)+1;
   426   iPtrMap = (pgno-2)/nPagesPerMapPage;
   427   ret = (iPtrMap*nPagesPerMapPage) + 2; 
   428   if( ret==PENDING_BYTE_PAGE(pBt) ){
   429     ret++;
   430   }
   431   return ret;
   432 }
   433 
   434 /*
   435 ** Write an entry into the pointer map.
   436 **
   437 ** This routine updates the pointer map entry for page number 'key'
   438 ** so that it maps to type 'eType' and parent page number 'pgno'.
   439 ** An error code is returned if something goes wrong, otherwise SQLITE_OK.
   440 */
   441 static int ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent){
   442   DbPage *pDbPage;  /* The pointer map page */
   443   u8 *pPtrmap;      /* The pointer map data */
   444   Pgno iPtrmap;     /* The pointer map page number */
   445   int offset;       /* Offset in pointer map page */
   446   int rc;
   447 
   448   assert( sqlite3_mutex_held(pBt->mutex) );
   449   /* The master-journal page number must never be used as a pointer map page */
   450   assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) );
   451 
   452   assert( pBt->autoVacuum );
   453   if( key==0 ){
   454     return SQLITE_CORRUPT_BKPT;
   455   }
   456   iPtrmap = PTRMAP_PAGENO(pBt, key);
   457   rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
   458   if( rc!=SQLITE_OK ){
   459     return rc;
   460   }
   461   offset = PTRMAP_PTROFFSET(iPtrmap, key);
   462   pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
   463 
   464   if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){
   465     TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent));
   466     rc = sqlite3PagerWrite(pDbPage);
   467     if( rc==SQLITE_OK ){
   468       pPtrmap[offset] = eType;
   469       put4byte(&pPtrmap[offset+1], parent);
   470     }
   471   }
   472 
   473   sqlite3PagerUnref(pDbPage);
   474   return rc;
   475 }
   476 
   477 /*
   478 ** Read an entry from the pointer map.
   479 **
   480 ** This routine retrieves the pointer map entry for page 'key', writing
   481 ** the type and parent page number to *pEType and *pPgno respectively.
   482 ** An error code is returned if something goes wrong, otherwise SQLITE_OK.
   483 */
   484 static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){
   485   DbPage *pDbPage;   /* The pointer map page */
   486   int iPtrmap;       /* Pointer map page index */
   487   u8 *pPtrmap;       /* Pointer map page data */
   488   int offset;        /* Offset of entry in pointer map */
   489   int rc;
   490 
   491   assert( sqlite3_mutex_held(pBt->mutex) );
   492 
   493   iPtrmap = PTRMAP_PAGENO(pBt, key);
   494   rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
   495   if( rc!=0 ){
   496     return rc;
   497   }
   498   pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
   499 
   500   offset = PTRMAP_PTROFFSET(iPtrmap, key);
   501   assert( pEType!=0 );
   502   *pEType = pPtrmap[offset];
   503   if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]);
   504 
   505   sqlite3PagerUnref(pDbPage);
   506   if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_BKPT;
   507   return SQLITE_OK;
   508 }
   509 
   510 #else /* if defined SQLITE_OMIT_AUTOVACUUM */
   511   #define ptrmapPut(w,x,y,z) SQLITE_OK
   512   #define ptrmapGet(w,x,y,z) SQLITE_OK
   513   #define ptrmapPutOvfl(y,z) SQLITE_OK
   514 #endif
   515 
   516 /*
   517 ** Given a btree page and a cell index (0 means the first cell on
   518 ** the page, 1 means the second cell, and so forth) return a pointer
   519 ** to the cell content.
   520 **
   521 ** This routine works only for pages that do not contain overflow cells.
   522 */
   523 #define findCell(P,I) \
   524   ((P)->aData + ((P)->maskPage & get2byte(&(P)->aData[(P)->cellOffset+2*(I)])))
   525 
   526 /*
   527 ** This a more complex version of findCell() that works for
   528 ** pages that do contain overflow cells.  See insert
   529 */
   530 static u8 *findOverflowCell(MemPage *pPage, int iCell){
   531   int i;
   532   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
   533   for(i=pPage->nOverflow-1; i>=0; i--){
   534     int k;
   535     struct _OvflCell *pOvfl;
   536     pOvfl = &pPage->aOvfl[i];
   537     k = pOvfl->idx;
   538     if( k<=iCell ){
   539       if( k==iCell ){
   540         return pOvfl->pCell;
   541       }
   542       iCell--;
   543     }
   544   }
   545   return findCell(pPage, iCell);
   546 }
   547 
   548 /*
   549 ** Parse a cell content block and fill in the CellInfo structure.  There
   550 ** are two versions of this function.  sqlite3BtreeParseCell() takes a 
   551 ** cell index as the second argument and sqlite3BtreeParseCellPtr() 
   552 ** takes a pointer to the body of the cell as its second argument.
   553 **
   554 ** Within this file, the parseCell() macro can be called instead of
   555 ** sqlite3BtreeParseCellPtr(). Using some compilers, this will be faster.
   556 */
   557 void sqlite3BtreeParseCellPtr(
   558   MemPage *pPage,         /* Page containing the cell */
   559   u8 *pCell,              /* Pointer to the cell text. */
   560   CellInfo *pInfo         /* Fill in this structure */
   561 ){
   562   int n;                  /* Number bytes in cell content header */
   563   u32 nPayload;           /* Number of bytes of cell payload */
   564 
   565   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
   566 
   567   pInfo->pCell = pCell;
   568   assert( pPage->leaf==0 || pPage->leaf==1 );
   569   n = pPage->childPtrSize;
   570   assert( n==4-4*pPage->leaf );
   571   if( pPage->intKey ){
   572     if( pPage->hasData ){
   573       n += getVarint32(&pCell[n], nPayload);
   574     }else{
   575       nPayload = 0;
   576     }
   577     n += getVarint(&pCell[n], (u64*)&pInfo->nKey);
   578     pInfo->nData = nPayload;
   579   }else{
   580     pInfo->nData = 0;
   581     n += getVarint32(&pCell[n], nPayload);
   582     pInfo->nKey = nPayload;
   583   }
   584   pInfo->nPayload = nPayload;
   585   pInfo->nHeader = n;
   586   if( likely(nPayload<=pPage->maxLocal) ){
   587     /* This is the (easy) common case where the entire payload fits
   588     ** on the local page.  No overflow is required.
   589     */
   590     int nSize;          /* Total size of cell content in bytes */
   591     nSize = nPayload + n;
   592     pInfo->nLocal = nPayload;
   593     pInfo->iOverflow = 0;
   594     if( (nSize & ~3)==0 ){
   595       nSize = 4;        /* Minimum cell size is 4 */
   596     }
   597     pInfo->nSize = nSize;
   598   }else{
   599     /* If the payload will not fit completely on the local page, we have
   600     ** to decide how much to store locally and how much to spill onto
   601     ** overflow pages.  The strategy is to minimize the amount of unused
   602     ** space on overflow pages while keeping the amount of local storage
   603     ** in between minLocal and maxLocal.
   604     **
   605     ** Warning:  changing the way overflow payload is distributed in any
   606     ** way will result in an incompatible file format.
   607     */
   608     int minLocal;  /* Minimum amount of payload held locally */
   609     int maxLocal;  /* Maximum amount of payload held locally */
   610     int surplus;   /* Overflow payload available for local storage */
   611 
   612     minLocal = pPage->minLocal;
   613     maxLocal = pPage->maxLocal;
   614     surplus = minLocal + (nPayload - minLocal)%(pPage->pBt->usableSize - 4);
   615     if( surplus <= maxLocal ){
   616       pInfo->nLocal = surplus;
   617     }else{
   618       pInfo->nLocal = minLocal;
   619     }
   620     pInfo->iOverflow = pInfo->nLocal + n;
   621     pInfo->nSize = pInfo->iOverflow + 4;
   622   }
   623 }
   624 #define parseCell(pPage, iCell, pInfo) \
   625   sqlite3BtreeParseCellPtr((pPage), findCell((pPage), (iCell)), (pInfo))
   626 void sqlite3BtreeParseCell(
   627   MemPage *pPage,         /* Page containing the cell */
   628   int iCell,              /* The cell index.  First cell is 0 */
   629   CellInfo *pInfo         /* Fill in this structure */
   630 ){
   631   parseCell(pPage, iCell, pInfo);
   632 }
   633 
   634 /*
   635 ** Compute the total number of bytes that a Cell needs in the cell
   636 ** data area of the btree-page.  The return number includes the cell
   637 ** data header and the local payload, but not any overflow page or
   638 ** the space used by the cell pointer.
   639 */
   640 #ifndef NDEBUG
   641 static u16 cellSize(MemPage *pPage, int iCell){
   642   CellInfo info;
   643   sqlite3BtreeParseCell(pPage, iCell, &info);
   644   return info.nSize;
   645 }
   646 #endif
   647 static u16 cellSizePtr(MemPage *pPage, u8 *pCell){
   648   CellInfo info;
   649   sqlite3BtreeParseCellPtr(pPage, pCell, &info);
   650   return info.nSize;
   651 }
   652 
   653 #ifndef SQLITE_OMIT_AUTOVACUUM
   654 /*
   655 ** If the cell pCell, part of page pPage contains a pointer
   656 ** to an overflow page, insert an entry into the pointer-map
   657 ** for the overflow page.
   658 */
   659 static int ptrmapPutOvflPtr(MemPage *pPage, u8 *pCell){
   660   CellInfo info;
   661   assert( pCell!=0 );
   662   sqlite3BtreeParseCellPtr(pPage, pCell, &info);
   663   assert( (info.nData+(pPage->intKey?0:info.nKey))==info.nPayload );
   664   if( (info.nData+(pPage->intKey?0:info.nKey))>info.nLocal ){
   665     Pgno ovfl = get4byte(&pCell[info.iOverflow]);
   666     return ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno);
   667   }
   668   return SQLITE_OK;
   669 }
   670 /*
   671 ** If the cell with index iCell on page pPage contains a pointer
   672 ** to an overflow page, insert an entry into the pointer-map
   673 ** for the overflow page.
   674 */
   675 static int ptrmapPutOvfl(MemPage *pPage, int iCell){
   676   u8 *pCell;
   677   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
   678   pCell = findOverflowCell(pPage, iCell);
   679   return ptrmapPutOvflPtr(pPage, pCell);
   680 }
   681 #endif
   682 
   683 
   684 /*
   685 ** Defragment the page given.  All Cells are moved to the
   686 ** end of the page and all free space is collected into one
   687 ** big FreeBlk that occurs in between the header and cell
   688 ** pointer array and the cell content area.
   689 */
   690 static void defragmentPage(MemPage *pPage){
   691   int i;                     /* Loop counter */
   692   int pc;                    /* Address of a i-th cell */
   693   int addr;                  /* Offset of first byte after cell pointer array */
   694   int hdr;                   /* Offset to the page header */
   695   int size;                  /* Size of a cell */
   696   int usableSize;            /* Number of usable bytes on a page */
   697   int cellOffset;            /* Offset to the cell pointer array */
   698   int brk;                   /* Offset to the cell content area */
   699   int nCell;                 /* Number of cells on the page */
   700   unsigned char *data;       /* The page data */
   701   unsigned char *temp;       /* Temp area for cell content */
   702 
   703   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
   704   assert( pPage->pBt!=0 );
   705   assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE );
   706   assert( pPage->nOverflow==0 );
   707   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
   708   temp = sqlite3PagerTempSpace(pPage->pBt->pPager);
   709   data = pPage->aData;
   710   hdr = pPage->hdrOffset;
   711   cellOffset = pPage->cellOffset;
   712   nCell = pPage->nCell;
   713   assert( nCell==get2byte(&data[hdr+3]) );
   714   usableSize = pPage->pBt->usableSize;
   715   brk = get2byte(&data[hdr+5]);
   716   memcpy(&temp[brk], &data[brk], usableSize - brk);
   717   brk = usableSize;
   718   for(i=0; i<nCell; i++){
   719     u8 *pAddr;     /* The i-th cell pointer */
   720     pAddr = &data[cellOffset + i*2];
   721     pc = get2byte(pAddr);
   722     assert( pc<pPage->pBt->usableSize );
   723     size = cellSizePtr(pPage, &temp[pc]);
   724     brk -= size;
   725     memcpy(&data[brk], &temp[pc], size);
   726     put2byte(pAddr, brk);
   727   }
   728   assert( brk>=cellOffset+2*nCell );
   729   put2byte(&data[hdr+5], brk);
   730   data[hdr+1] = 0;
   731   data[hdr+2] = 0;
   732   data[hdr+7] = 0;
   733   addr = cellOffset+2*nCell;
   734   memset(&data[addr], 0, brk-addr);
   735 }
   736 
   737 /*
   738 ** Allocate nByte bytes of space on a page.
   739 **
   740 ** Return the index into pPage->aData[] of the first byte of
   741 ** the new allocation.  The caller guarantees that there is enough
   742 ** space.  This routine will never fail.
   743 **
   744 ** If the page contains nBytes of free space but does not contain
   745 ** nBytes of contiguous free space, then this routine automatically
   746 ** calls defragementPage() to consolidate all free space before 
   747 ** allocating the new chunk.
   748 */
   749 static int allocateSpace(MemPage *pPage, int nByte){
   750   int addr, pc, hdr;
   751   int size;
   752   int nFrag;
   753   int top;
   754   int nCell;
   755   int cellOffset;
   756   unsigned char *data;
   757   
   758   data = pPage->aData;
   759   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
   760   assert( pPage->pBt );
   761   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
   762   assert( nByte>=0 );  /* Minimum cell size is 4 */
   763   assert( pPage->nFree>=nByte );
   764   assert( pPage->nOverflow==0 );
   765   pPage->nFree -= nByte;
   766   hdr = pPage->hdrOffset;
   767 
   768   nFrag = data[hdr+7];
   769   if( nFrag<60 ){
   770     /* Search the freelist looking for a slot big enough to satisfy the
   771     ** space request. */
   772     addr = hdr+1;
   773     while( (pc = get2byte(&data[addr]))>0 ){
   774       size = get2byte(&data[pc+2]);
   775       if( size>=nByte ){
   776         if( size<nByte+4 ){
   777           memcpy(&data[addr], &data[pc], 2);
   778           data[hdr+7] = nFrag + size - nByte;
   779           return pc;
   780         }else{
   781           put2byte(&data[pc+2], size-nByte);
   782           return pc + size - nByte;
   783         }
   784       }
   785       addr = pc;
   786     }
   787   }
   788 
   789   /* Allocate memory from the gap in between the cell pointer array
   790   ** and the cell content area.
   791   */
   792   top = get2byte(&data[hdr+5]);
   793   nCell = get2byte(&data[hdr+3]);
   794   cellOffset = pPage->cellOffset;
   795   if( nFrag>=60 || cellOffset + 2*nCell > top - nByte ){
   796     defragmentPage(pPage);
   797     top = get2byte(&data[hdr+5]);
   798   }
   799   top -= nByte;
   800   assert( cellOffset + 2*nCell <= top );
   801   put2byte(&data[hdr+5], top);
   802   return top;
   803 }
   804 
   805 /*
   806 ** Return a section of the pPage->aData to the freelist.
   807 ** The first byte of the new free block is pPage->aDisk[start]
   808 ** and the size of the block is "size" bytes.
   809 **
   810 ** Most of the effort here is involved in coalesing adjacent
   811 ** free blocks into a single big free block.
   812 */
   813 static void freeSpace(MemPage *pPage, int start, int size){
   814   int addr, pbegin, hdr;
   815   unsigned char *data = pPage->aData;
   816 
   817   assert( pPage->pBt!=0 );
   818   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
   819   assert( start>=pPage->hdrOffset+6+(pPage->leaf?0:4) );
   820   assert( (start + size)<=pPage->pBt->usableSize );
   821   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
   822   assert( size>=0 );   /* Minimum cell size is 4 */
   823 
   824 #ifdef SQLITE_SECURE_DELETE
   825   /* Overwrite deleted information with zeros when the SECURE_DELETE 
   826   ** option is enabled at compile-time */
   827   memset(&data[start], 0, size);
   828 #endif
   829 
   830   /* Add the space back into the linked list of freeblocks */
   831   hdr = pPage->hdrOffset;
   832   addr = hdr + 1;
   833   while( (pbegin = get2byte(&data[addr]))<start && pbegin>0 ){
   834     assert( pbegin<=pPage->pBt->usableSize-4 );
   835     assert( pbegin>addr );
   836     addr = pbegin;
   837   }
   838   assert( pbegin<=pPage->pBt->usableSize-4 );
   839   assert( pbegin>addr || pbegin==0 );
   840   put2byte(&data[addr], start);
   841   put2byte(&data[start], pbegin);
   842   put2byte(&data[start+2], size);
   843   pPage->nFree += size;
   844 
   845   /* Coalesce adjacent free blocks */
   846   addr = pPage->hdrOffset + 1;
   847   while( (pbegin = get2byte(&data[addr]))>0 ){
   848     int pnext, psize;
   849     assert( pbegin>addr );
   850     assert( pbegin<=pPage->pBt->usableSize-4 );
   851     pnext = get2byte(&data[pbegin]);
   852     psize = get2byte(&data[pbegin+2]);
   853     if( pbegin + psize + 3 >= pnext && pnext>0 ){
   854       int frag = pnext - (pbegin+psize);
   855       assert( frag<=data[pPage->hdrOffset+7] );
   856       data[pPage->hdrOffset+7] -= frag;
   857       put2byte(&data[pbegin], get2byte(&data[pnext]));
   858       put2byte(&data[pbegin+2], pnext+get2byte(&data[pnext+2])-pbegin);
   859     }else{
   860       addr = pbegin;
   861     }
   862   }
   863 
   864   /* If the cell content area begins with a freeblock, remove it. */
   865   if( data[hdr+1]==data[hdr+5] && data[hdr+2]==data[hdr+6] ){
   866     int top;
   867     pbegin = get2byte(&data[hdr+1]);
   868     memcpy(&data[hdr+1], &data[pbegin], 2);
   869     top = get2byte(&data[hdr+5]);
   870     put2byte(&data[hdr+5], top + get2byte(&data[pbegin+2]));
   871   }
   872 }
   873 
   874 /*
   875 ** Decode the flags byte (the first byte of the header) for a page
   876 ** and initialize fields of the MemPage structure accordingly.
   877 **
   878 ** Only the following combinations are supported.  Anything different
   879 ** indicates a corrupt database files:
   880 **
   881 **         PTF_ZERODATA
   882 **         PTF_ZERODATA | PTF_LEAF
   883 **         PTF_LEAFDATA | PTF_INTKEY
   884 **         PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF
   885 */
   886 static int decodeFlags(MemPage *pPage, int flagByte){
   887   BtShared *pBt;     /* A copy of pPage->pBt */
   888 
   889   assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
   890   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
   891   pPage->leaf = flagByte>>3;  assert( PTF_LEAF == 1<<3 );
   892   flagByte &= ~PTF_LEAF;
   893   pPage->childPtrSize = 4-4*pPage->leaf;
   894   pBt = pPage->pBt;
   895   if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){
   896     pPage->intKey = 1;
   897     pPage->hasData = pPage->leaf;
   898     pPage->maxLocal = pBt->maxLeaf;
   899     pPage->minLocal = pBt->minLeaf;
   900   }else if( flagByte==PTF_ZERODATA ){
   901     pPage->intKey = 0;
   902     pPage->hasData = 0;
   903     pPage->maxLocal = pBt->maxLocal;
   904     pPage->minLocal = pBt->minLocal;
   905   }else{
   906     return SQLITE_CORRUPT_BKPT;
   907   }
   908   return SQLITE_OK;
   909 }
   910 
   911 /*
   912 ** Initialize the auxiliary information for a disk block.
   913 **
   914 ** The pParent parameter must be a pointer to the MemPage which
   915 ** is the parent of the page being initialized.  The root of a
   916 ** BTree has no parent and so for that page, pParent==NULL.
   917 **
   918 ** Return SQLITE_OK on success.  If we see that the page does
   919 ** not contain a well-formed database page, then return 
   920 ** SQLITE_CORRUPT.  Note that a return of SQLITE_OK does not
   921 ** guarantee that the page is well-formed.  It only shows that
   922 ** we failed to detect any corruption.
   923 */
   924 int sqlite3BtreeInitPage(
   925   MemPage *pPage,        /* The page to be initialized */
   926   MemPage *pParent       /* The parent.  Might be NULL */
   927 ){
   928   int pc;            /* Address of a freeblock within pPage->aData[] */
   929   int hdr;           /* Offset to beginning of page header */
   930   u8 *data;          /* Equal to pPage->aData */
   931   BtShared *pBt;        /* The main btree structure */
   932   int usableSize;    /* Amount of usable space on each page */
   933   int cellOffset;    /* Offset from start of page to first cell pointer */
   934   int nFree;         /* Number of unused bytes on the page */
   935   int top;           /* First byte of the cell content area */
   936 
   937   pBt = pPage->pBt;
   938   assert( pBt!=0 );
   939   assert( pParent==0 || pParent->pBt==pBt );
   940   assert( sqlite3_mutex_held(pBt->mutex) );
   941   assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
   942   assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
   943   assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
   944   if( pPage->pParent!=pParent && (pPage->pParent!=0 || pPage->isInit) ){
   945     /* The parent page should never change unless the file is corrupt */
   946     return SQLITE_CORRUPT_BKPT;
   947   }
   948   if( pPage->isInit ) return SQLITE_OK;
   949   if( pPage->pParent==0 && pParent!=0 ){
   950     pPage->pParent = pParent;
   951     sqlite3PagerRef(pParent->pDbPage);
   952   }
   953   hdr = pPage->hdrOffset;
   954   data = pPage->aData;
   955   if( decodeFlags(pPage, data[hdr]) ) return SQLITE_CORRUPT_BKPT;
   956   assert( pBt->pageSize>=512 && pBt->pageSize<=32768 );
   957   pPage->maskPage = pBt->pageSize - 1;
   958   pPage->nOverflow = 0;
   959   pPage->idxShift = 0;
   960   usableSize = pBt->usableSize;
   961   pPage->cellOffset = cellOffset = hdr + 12 - 4*pPage->leaf;
   962   top = get2byte(&data[hdr+5]);
   963   pPage->nCell = get2byte(&data[hdr+3]);
   964   if( pPage->nCell>MX_CELL(pBt) ){
   965     /* To many cells for a single page.  The page must be corrupt */
   966     return SQLITE_CORRUPT_BKPT;
   967   }
   968   if( pPage->nCell==0 && pParent!=0 && pParent->pgno!=1 ){
   969     /* All pages must have at least one cell, except for root pages */
   970     return SQLITE_CORRUPT_BKPT;
   971   }
   972 
   973   /* Compute the total free space on the page */
   974   pc = get2byte(&data[hdr+1]);
   975   nFree = data[hdr+7] + top - (cellOffset + 2*pPage->nCell);
   976   while( pc>0 ){
   977     int next, size;
   978     if( pc>usableSize-4 ){
   979       /* Free block is off the page */
   980       return SQLITE_CORRUPT_BKPT; 
   981     }
   982     next = get2byte(&data[pc]);
   983     size = get2byte(&data[pc+2]);
   984     if( next>0 && next<=pc+size+3 ){
   985       /* Free blocks must be in accending order */
   986       return SQLITE_CORRUPT_BKPT; 
   987     }
   988     nFree += size;
   989     pc = next;
   990   }
   991   pPage->nFree = nFree;
   992   if( nFree>=usableSize ){
   993     /* Free space cannot exceed total page size */
   994     return SQLITE_CORRUPT_BKPT; 
   995   }
   996 
   997 #if 0
   998   /* Check that all the offsets in the cell offset array are within range. 
   999   ** 
  1000   ** Omitting this consistency check and using the pPage->maskPage mask
  1001   ** to prevent overrunning the page buffer in findCell() results in a
  1002   ** 2.5% performance gain.
  1003   */
  1004   {
  1005     u8 *pOff;        /* Iterator used to check all cell offsets are in range */
  1006     u8 *pEnd;        /* Pointer to end of cell offset array */
  1007     u8 mask;         /* Mask of bits that must be zero in MSB of cell offsets */
  1008     mask = ~(((u8)(pBt->pageSize>>8))-1);
  1009     pEnd = &data[cellOffset + pPage->nCell*2];
  1010     for(pOff=&data[cellOffset]; pOff!=pEnd && !((*pOff)&mask); pOff+=2);
  1011     if( pOff!=pEnd ){
  1012       return SQLITE_CORRUPT_BKPT;
  1013     }
  1014   }
  1015 #endif
  1016 
  1017   pPage->isInit = 1;
  1018   return SQLITE_OK;
  1019 }
  1020 
  1021 /*
  1022 ** Set up a raw page so that it looks like a database page holding
  1023 ** no entries.
  1024 */
  1025 static void zeroPage(MemPage *pPage, int flags){
  1026   unsigned char *data = pPage->aData;
  1027   BtShared *pBt = pPage->pBt;
  1028   int hdr = pPage->hdrOffset;
  1029   int first;
  1030 
  1031   assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno );
  1032   assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
  1033   assert( sqlite3PagerGetData(pPage->pDbPage) == data );
  1034   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
  1035   assert( sqlite3_mutex_held(pBt->mutex) );
  1036   /*memset(&data[hdr], 0, pBt->usableSize - hdr);*/
  1037   data[hdr] = flags;
  1038   first = hdr + 8 + 4*((flags&PTF_LEAF)==0);
  1039   memset(&data[hdr+1], 0, 4);
  1040   data[hdr+7] = 0;
  1041   put2byte(&data[hdr+5], pBt->usableSize);
  1042   pPage->nFree = pBt->usableSize - first;
  1043   decodeFlags(pPage, flags);
  1044   pPage->hdrOffset = hdr;
  1045   pPage->cellOffset = first;
  1046   pPage->nOverflow = 0;
  1047   assert( pBt->pageSize>=512 && pBt->pageSize<=32768 );
  1048   pPage->maskPage = pBt->pageSize - 1;
  1049   pPage->idxShift = 0;
  1050   pPage->nCell = 0;
  1051   pPage->isInit = 1;
  1052 }
  1053 
  1054 /*
  1055 ** Get a page from the pager.  Initialize the MemPage.pBt and
  1056 ** MemPage.aData elements if needed.
  1057 **
  1058 ** If the noContent flag is set, it means that we do not care about
  1059 ** the content of the page at this time.  So do not go to the disk
  1060 ** to fetch the content.  Just fill in the content with zeros for now.
  1061 ** If in the future we call sqlite3PagerWrite() on this page, that
  1062 ** means we have started to be concerned about content and the disk
  1063 ** read should occur at that point.
  1064 */
  1065 int sqlite3BtreeGetPage(
  1066   BtShared *pBt,       /* The btree */
  1067   Pgno pgno,           /* Number of the page to fetch */
  1068   MemPage **ppPage,    /* Return the page in this parameter */
  1069   int noContent        /* Do not load page content if true */
  1070 ){
  1071   int rc;
  1072   MemPage *pPage;
  1073   DbPage *pDbPage;
  1074 
  1075   assert( sqlite3_mutex_held(pBt->mutex) );
  1076   rc = sqlite3PagerAcquire(pBt->pPager, pgno, (DbPage**)&pDbPage, noContent);
  1077   if( rc ) return rc;
  1078   pPage = (MemPage *)sqlite3PagerGetExtra(pDbPage);
  1079   pPage->aData = sqlite3PagerGetData(pDbPage);
  1080   pPage->pDbPage = pDbPage;
  1081   pPage->pBt = pBt;
  1082   pPage->pgno = pgno;
  1083   pPage->hdrOffset = pPage->pgno==1 ? 100 : 0;
  1084   *ppPage = pPage;
  1085   return SQLITE_OK;
  1086 }
  1087 
  1088 /*
  1089 ** Get a page from the pager and initialize it.  This routine
  1090 ** is just a convenience wrapper around separate calls to
  1091 ** sqlite3BtreeGetPage() and sqlite3BtreeInitPage().
  1092 */
  1093 static int getAndInitPage(
  1094   BtShared *pBt,          /* The database file */
  1095   Pgno pgno,           /* Number of the page to get */
  1096   MemPage **ppPage,    /* Write the page pointer here */
  1097   MemPage *pParent     /* Parent of the page */
  1098 ){
  1099   int rc;
  1100   assert( sqlite3_mutex_held(pBt->mutex) );
  1101   if( pgno==0 ){
  1102     return SQLITE_CORRUPT_BKPT; 
  1103   }
  1104   rc = sqlite3BtreeGetPage(pBt, pgno, ppPage, 0);
  1105   if( rc==SQLITE_OK && (*ppPage)->isInit==0 ){
  1106     rc = sqlite3BtreeInitPage(*ppPage, pParent);
  1107     if( rc!=SQLITE_OK ){
  1108       releasePage(*ppPage);
  1109       *ppPage = 0;
  1110     }
  1111   }
  1112   return rc;
  1113 }
  1114 
  1115 /*
  1116 ** Release a MemPage.  This should be called once for each prior
  1117 ** call to sqlite3BtreeGetPage.
  1118 */
  1119 static void releasePage(MemPage *pPage){
  1120   if( pPage ){
  1121     assert( pPage->aData );
  1122     assert( pPage->pBt );
  1123     assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
  1124     assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
  1125     assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  1126     sqlite3PagerUnref(pPage->pDbPage);
  1127   }
  1128 }
  1129 
  1130 /*
  1131 ** This routine is called when the reference count for a page
  1132 ** reaches zero.  We need to unref the pParent pointer when that
  1133 ** happens.
  1134 */
  1135 static void pageDestructor(DbPage *pData, int pageSize){
  1136   MemPage *pPage;
  1137   assert( (pageSize & 7)==0 );
  1138   pPage = (MemPage *)sqlite3PagerGetExtra(pData);
  1139   assert( pPage->isInit==0 || sqlite3_mutex_held(pPage->pBt->mutex) );
  1140   if( pPage->pParent ){
  1141     MemPage *pParent = pPage->pParent;
  1142     assert( pParent->pBt==pPage->pBt );
  1143     pPage->pParent = 0;
  1144     releasePage(pParent);
  1145   }
  1146   pPage->isInit = 0;
  1147 }
  1148 
  1149 /*
  1150 ** During a rollback, when the pager reloads information into the cache
  1151 ** so that the cache is restored to its original state at the start of
  1152 ** the transaction, for each page restored this routine is called.
  1153 **
  1154 ** This routine needs to reset the extra data section at the end of the
  1155 ** page to agree with the restored data.
  1156 */
  1157 static void pageReinit(DbPage *pData, int pageSize){
  1158   MemPage *pPage;
  1159   assert( (pageSize & 7)==0 );
  1160   pPage = (MemPage *)sqlite3PagerGetExtra(pData);
  1161   if( pPage->isInit ){
  1162     assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  1163     pPage->isInit = 0;
  1164     sqlite3BtreeInitPage(pPage, pPage->pParent);
  1165   }
  1166 }
  1167 
  1168 /*
  1169 ** Invoke the busy handler for a btree.
  1170 */
  1171 static int sqlite3BtreeInvokeBusyHandler(void *pArg, int n){
  1172   BtShared *pBt = (BtShared*)pArg;
  1173   assert( pBt->db );
  1174   assert( sqlite3_mutex_held(pBt->db->mutex) );
  1175   return sqlite3InvokeBusyHandler(&pBt->db->busyHandler);
  1176 }
  1177 
  1178 /*
  1179 ** Open a database file.
  1180 ** 
  1181 ** zFilename is the name of the database file.  If zFilename is NULL
  1182 ** a new database with a random name is created.  This randomly named
  1183 ** database file will be deleted when sqlite3BtreeClose() is called.
  1184 ** If zFilename is ":memory:" then an in-memory database is created
  1185 ** that is automatically destroyed when it is closed.
  1186 */
  1187 int sqlite3BtreeOpen(
  1188   const char *zFilename,  /* Name of the file containing the BTree database */
  1189   sqlite3 *db,            /* Associated database handle */
  1190   Btree **ppBtree,        /* Pointer to new Btree object written here */
  1191   int flags,              /* Options */
  1192   int vfsFlags            /* Flags passed through to sqlite3_vfs.xOpen() */
  1193 ){
  1194   sqlite3_vfs *pVfs;      /* The VFS to use for this btree */
  1195   BtShared *pBt = 0;      /* Shared part of btree structure */
  1196   Btree *p;               /* Handle to return */
  1197   int rc = SQLITE_OK;
  1198   int nReserve;
  1199   unsigned char zDbHeader[100];
  1200 
  1201   /* Set the variable isMemdb to true for an in-memory database, or 
  1202   ** false for a file-based database. This symbol is only required if
  1203   ** either of the shared-data or autovacuum features are compiled 
  1204   ** into the library.
  1205   */
  1206 #if !defined(SQLITE_OMIT_SHARED_CACHE) || !defined(SQLITE_OMIT_AUTOVACUUM)
  1207   #ifdef SQLITE_OMIT_MEMORYDB
  1208     const int isMemdb = 0;
  1209   #else
  1210     const int isMemdb = zFilename && !strcmp(zFilename, ":memory:");
  1211   #endif
  1212 #endif
  1213 
  1214   assert( db!=0 );
  1215   assert( sqlite3_mutex_held(db->mutex) );
  1216 
  1217   pVfs = db->pVfs;
  1218   p = sqlite3MallocZero(sizeof(Btree));
  1219   if( !p ){
  1220     return SQLITE_NOMEM;
  1221   }
  1222   p->inTrans = TRANS_NONE;
  1223   p->db = db;
  1224 
  1225 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
  1226   /*
  1227   ** If this Btree is a candidate for shared cache, try to find an
  1228   ** existing BtShared object that we can share with
  1229   */
  1230   if( isMemdb==0
  1231    && (db->flags & SQLITE_Vtab)==0
  1232    && zFilename && zFilename[0]
  1233   ){
  1234     if( sqlite3SharedCacheEnabled ){
  1235       int nFullPathname = pVfs->mxPathname+1;
  1236       char *zFullPathname = sqlite3Malloc(nFullPathname);
  1237       sqlite3_mutex *mutexShared;
  1238       p->sharable = 1;
  1239       db->flags |= SQLITE_SharedCache;
  1240       if( !zFullPathname ){
  1241         sqlite3_free(p);
  1242         return SQLITE_NOMEM;
  1243       }
  1244       sqlite3OsFullPathname(pVfs, zFilename, nFullPathname, zFullPathname);
  1245       mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
  1246       sqlite3_mutex_enter(mutexShared);
  1247       for(pBt=sqlite3SharedCacheList; pBt; pBt=pBt->pNext){
  1248         assert( pBt->nRef>0 );
  1249         if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager))
  1250                  && sqlite3PagerVfs(pBt->pPager)==pVfs ){
  1251           p->pBt = pBt;
  1252           pBt->nRef++;
  1253           break;
  1254         }
  1255       }
  1256       sqlite3_mutex_leave(mutexShared);
  1257       sqlite3_free(zFullPathname);
  1258     }
  1259 #ifdef SQLITE_DEBUG
  1260     else{
  1261       /* In debug mode, we mark all persistent databases as sharable
  1262       ** even when they are not.  This exercises the locking code and
  1263       ** gives more opportunity for asserts(sqlite3_mutex_held())
  1264       ** statements to find locking problems.
  1265       */
  1266       p->sharable = 1;
  1267     }
  1268 #endif
  1269   }
  1270 #endif
  1271   if( pBt==0 ){
  1272     /*
  1273     ** The following asserts make sure that structures used by the btree are
  1274     ** the right size.  This is to guard against size changes that result
  1275     ** when compiling on a different architecture.
  1276     */
  1277     assert( sizeof(i64)==8 || sizeof(i64)==4 );
  1278     assert( sizeof(u64)==8 || sizeof(u64)==4 );
  1279     assert( sizeof(u32)==4 );
  1280     assert( sizeof(u16)==2 );
  1281     assert( sizeof(Pgno)==4 );
  1282   
  1283     pBt = sqlite3MallocZero( sizeof(*pBt) );
  1284     if( pBt==0 ){
  1285       rc = SQLITE_NOMEM;
  1286       goto btree_open_out;
  1287     }
  1288     pBt->busyHdr.xFunc = sqlite3BtreeInvokeBusyHandler;
  1289     pBt->busyHdr.pArg = pBt;
  1290     rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename,
  1291                           EXTRA_SIZE, flags, vfsFlags);
  1292     if( rc==SQLITE_OK ){
  1293       rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader);
  1294     }
  1295     if( rc!=SQLITE_OK ){
  1296       goto btree_open_out;
  1297     }
  1298     sqlite3PagerSetBusyhandler(pBt->pPager, &pBt->busyHdr);
  1299     p->pBt = pBt;
  1300   
  1301     sqlite3PagerSetDestructor(pBt->pPager, pageDestructor);
  1302     sqlite3PagerSetReiniter(pBt->pPager, pageReinit);
  1303     pBt->pCursor = 0;
  1304     pBt->pPage1 = 0;
  1305     pBt->readOnly = sqlite3PagerIsreadonly(pBt->pPager);
  1306     pBt->pageSize = get2byte(&zDbHeader[16]);
  1307     if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
  1308          || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
  1309       pBt->pageSize = 0;
  1310       sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize);
  1311 #ifndef SQLITE_OMIT_AUTOVACUUM
  1312       /* If the magic name ":memory:" will create an in-memory database, then
  1313       ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
  1314       ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
  1315       ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
  1316       ** regular file-name. In this case the auto-vacuum applies as per normal.
  1317       */
  1318       if( zFilename && !isMemdb ){
  1319         pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0);
  1320         pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0);
  1321       }
  1322 #endif
  1323       nReserve = 0;
  1324     }else{
  1325       nReserve = zDbHeader[20];
  1326       pBt->pageSizeFixed = 1;
  1327 #ifndef SQLITE_OMIT_AUTOVACUUM
  1328       pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
  1329       pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0);
  1330 #endif
  1331     }
  1332     pBt->usableSize = pBt->pageSize - nReserve;
  1333     assert( (pBt->pageSize & 7)==0 );  /* 8-byte alignment of pageSize */
  1334     sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize);
  1335    
  1336 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
  1337     /* Add the new BtShared object to the linked list sharable BtShareds.
  1338     */
  1339     if( p->sharable ){
  1340       sqlite3_mutex *mutexShared;
  1341       pBt->nRef = 1;
  1342       mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
  1343       if( SQLITE_THREADSAFE && sqlite3Config.bCoreMutex ){
  1344         pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST);
  1345         if( pBt->mutex==0 ){
  1346           rc = SQLITE_NOMEM;
  1347           db->mallocFailed = 0;
  1348           goto btree_open_out;
  1349         }
  1350       }
  1351       sqlite3_mutex_enter(mutexShared);
  1352       pBt->pNext = sqlite3SharedCacheList;
  1353       sqlite3SharedCacheList = pBt;
  1354       sqlite3_mutex_leave(mutexShared);
  1355     }
  1356 #endif
  1357   }
  1358 
  1359 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
  1360   /* If the new Btree uses a sharable pBtShared, then link the new
  1361   ** Btree into the list of all sharable Btrees for the same connection.
  1362   ** The list is kept in ascending order by pBt address.
  1363   */
  1364   if( p->sharable ){
  1365     int i;
  1366     Btree *pSib;
  1367     for(i=0; i<db->nDb; i++){
  1368       if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){
  1369         while( pSib->pPrev ){ pSib = pSib->pPrev; }
  1370         if( p->pBt<pSib->pBt ){
  1371           p->pNext = pSib;
  1372           p->pPrev = 0;
  1373           pSib->pPrev = p;
  1374         }else{
  1375           while( pSib->pNext && pSib->pNext->pBt<p->pBt ){
  1376             pSib = pSib->pNext;
  1377           }
  1378           p->pNext = pSib->pNext;
  1379           p->pPrev = pSib;
  1380           if( p->pNext ){
  1381             p->pNext->pPrev = p;
  1382           }
  1383           pSib->pNext = p;
  1384         }
  1385         break;
  1386       }
  1387     }
  1388   }
  1389 #endif
  1390   *ppBtree = p;
  1391 
  1392 btree_open_out:
  1393   if( rc!=SQLITE_OK ){
  1394     if( pBt && pBt->pPager ){
  1395       sqlite3PagerClose(pBt->pPager);
  1396     }
  1397     sqlite3_free(pBt);
  1398     sqlite3_free(p);
  1399     *ppBtree = 0;
  1400   }
  1401   return rc;
  1402 }
  1403 
  1404 /*
  1405 ** Decrement the BtShared.nRef counter.  When it reaches zero,
  1406 ** remove the BtShared structure from the sharing list.  Return
  1407 ** true if the BtShared.nRef counter reaches zero and return
  1408 ** false if it is still positive.
  1409 */
  1410 static int removeFromSharingList(BtShared *pBt){
  1411 #ifndef SQLITE_OMIT_SHARED_CACHE
  1412   sqlite3_mutex *pMaster;
  1413   BtShared *pList;
  1414   int removed = 0;
  1415 
  1416   assert( sqlite3_mutex_notheld(pBt->mutex) );
  1417   pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
  1418   sqlite3_mutex_enter(pMaster);
  1419   pBt->nRef--;
  1420   if( pBt->nRef<=0 ){
  1421     if( sqlite3SharedCacheList==pBt ){
  1422       sqlite3SharedCacheList = pBt->pNext;
  1423     }else{
  1424       pList = sqlite3SharedCacheList;
  1425       while( ALWAYS(pList) && pList->pNext!=pBt ){
  1426         pList=pList->pNext;
  1427       }
  1428       if( ALWAYS(pList) ){
  1429         pList->pNext = pBt->pNext;
  1430       }
  1431     }
  1432     if( SQLITE_THREADSAFE ){
  1433       sqlite3_mutex_free(pBt->mutex);
  1434     }
  1435     removed = 1;
  1436   }
  1437   sqlite3_mutex_leave(pMaster);
  1438   return removed;
  1439 #else
  1440   return 1;
  1441 #endif
  1442 }
  1443 
  1444 /*
  1445 ** Make sure pBt->pTmpSpace points to an allocation of 
  1446 ** MX_CELL_SIZE(pBt) bytes.
  1447 */
  1448 static void allocateTempSpace(BtShared *pBt){
  1449   if( !pBt->pTmpSpace ){
  1450     pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize );
  1451   }
  1452 }
  1453 
  1454 /*
  1455 ** Free the pBt->pTmpSpace allocation
  1456 */
  1457 static void freeTempSpace(BtShared *pBt){
  1458   sqlite3PageFree( pBt->pTmpSpace);
  1459   pBt->pTmpSpace = 0;
  1460 }
  1461 
  1462 /*
  1463 ** Close an open database and invalidate all cursors.
  1464 */
  1465 int sqlite3BtreeClose(Btree *p){
  1466   BtShared *pBt = p->pBt;
  1467   BtCursor *pCur;
  1468 
  1469   /* Close all cursors opened via this handle.  */
  1470   assert( sqlite3_mutex_held(p->db->mutex) );
  1471   sqlite3BtreeEnter(p);
  1472   pBt->db = p->db;
  1473   pCur = pBt->pCursor;
  1474   while( pCur ){
  1475     BtCursor *pTmp = pCur;
  1476     pCur = pCur->pNext;
  1477     if( pTmp->pBtree==p ){
  1478       sqlite3BtreeCloseCursor(pTmp);
  1479     }
  1480   }
  1481 
  1482   /* Rollback any active transaction and free the handle structure.
  1483   ** The call to sqlite3BtreeRollback() drops any table-locks held by
  1484   ** this handle.
  1485   */
  1486   sqlite3BtreeRollback(p);
  1487   sqlite3BtreeLeave(p);
  1488 
  1489   /* If there are still other outstanding references to the shared-btree
  1490   ** structure, return now. The remainder of this procedure cleans 
  1491   ** up the shared-btree.
  1492   */
  1493   assert( p->wantToLock==0 && p->locked==0 );
  1494   if( !p->sharable || removeFromSharingList(pBt) ){
  1495     /* The pBt is no longer on the sharing list, so we can access
  1496     ** it without having to hold the mutex.
  1497     **
  1498     ** Clean out and delete the BtShared object.
  1499     */
  1500     assert( !pBt->pCursor );
  1501     sqlite3PagerClose(pBt->pPager);
  1502     if( pBt->xFreeSchema && pBt->pSchema ){
  1503       pBt->xFreeSchema(pBt->pSchema);
  1504     }
  1505     sqlite3_free(pBt->pSchema);
  1506     freeTempSpace(pBt);
  1507     sqlite3_free(pBt);
  1508   }
  1509 
  1510 #ifndef SQLITE_OMIT_SHARED_CACHE
  1511   assert( p->wantToLock==0 );
  1512   assert( p->locked==0 );
  1513   if( p->pPrev ) p->pPrev->pNext = p->pNext;
  1514   if( p->pNext ) p->pNext->pPrev = p->pPrev;
  1515 #endif
  1516 
  1517   sqlite3_free(p);
  1518   return SQLITE_OK;
  1519 }
  1520 
  1521 /*
  1522 ** Change the limit on the number of pages allowed in the cache.
  1523 **
  1524 ** The maximum number of cache pages is set to the absolute
  1525 ** value of mxPage.  If mxPage is negative, the pager will
  1526 ** operate asynchronously - it will not stop to do fsync()s
  1527 ** to insure data is written to the disk surface before
  1528 ** continuing.  Transactions still work if synchronous is off,
  1529 ** and the database cannot be corrupted if this program
  1530 ** crashes.  But if the operating system crashes or there is
  1531 ** an abrupt power failure when synchronous is off, the database
  1532 ** could be left in an inconsistent and unrecoverable state.
  1533 ** Synchronous is on by default so database corruption is not
  1534 ** normally a worry.
  1535 */
  1536 int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){
  1537   BtShared *pBt = p->pBt;
  1538   assert( sqlite3_mutex_held(p->db->mutex) );
  1539   sqlite3BtreeEnter(p);
  1540   sqlite3PagerSetCachesize(pBt->pPager, mxPage);
  1541   sqlite3BtreeLeave(p);
  1542   return SQLITE_OK;
  1543 }
  1544 
  1545 /*
  1546 ** Change the way data is synced to disk in order to increase or decrease
  1547 ** how well the database resists damage due to OS crashes and power
  1548 ** failures.  Level 1 is the same as asynchronous (no syncs() occur and
  1549 ** there is a high probability of damage)  Level 2 is the default.  There
  1550 ** is a very low but non-zero probability of damage.  Level 3 reduces the
  1551 ** probability of damage to near zero but with a write performance reduction.
  1552 */
  1553 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
  1554 int sqlite3BtreeSetSafetyLevel(Btree *p, int level, int fullSync){
  1555   BtShared *pBt = p->pBt;
  1556   assert( sqlite3_mutex_held(p->db->mutex) );
  1557   sqlite3BtreeEnter(p);
  1558   sqlite3PagerSetSafetyLevel(pBt->pPager, level, fullSync);
  1559   sqlite3BtreeLeave(p);
  1560   return SQLITE_OK;
  1561 }
  1562 #endif
  1563 
  1564 /*
  1565 ** Return TRUE if the given btree is set to safety level 1.  In other
  1566 ** words, return TRUE if no sync() occurs on the disk files.
  1567 */
  1568 int sqlite3BtreeSyncDisabled(Btree *p){
  1569   BtShared *pBt = p->pBt;
  1570   int rc;
  1571   assert( sqlite3_mutex_held(p->db->mutex) );  
  1572   sqlite3BtreeEnter(p);
  1573   assert( pBt && pBt->pPager );
  1574   rc = sqlite3PagerNosync(pBt->pPager);
  1575   sqlite3BtreeLeave(p);
  1576   return rc;
  1577 }
  1578 
  1579 #if !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM)
  1580 /*
  1581 ** Change the default pages size and the number of reserved bytes per page.
  1582 **
  1583 ** The page size must be a power of 2 between 512 and 65536.  If the page
  1584 ** size supplied does not meet this constraint then the page size is not
  1585 ** changed.
  1586 **
  1587 ** Page sizes are constrained to be a power of two so that the region
  1588 ** of the database file used for locking (beginning at PENDING_BYTE,
  1589 ** the first byte past the 1GB boundary, 0x40000000) needs to occur
  1590 ** at the beginning of a page.
  1591 **
  1592 ** If parameter nReserve is less than zero, then the number of reserved
  1593 ** bytes per page is left unchanged.
  1594 */
  1595 int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve){
  1596   int rc = SQLITE_OK;
  1597   BtShared *pBt = p->pBt;
  1598   sqlite3BtreeEnter(p);
  1599   if( pBt->pageSizeFixed ){
  1600     sqlite3BtreeLeave(p);
  1601     return SQLITE_READONLY;
  1602   }
  1603   if( nReserve<0 ){
  1604     nReserve = pBt->pageSize - pBt->usableSize;
  1605   }
  1606   if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE &&
  1607         ((pageSize-1)&pageSize)==0 ){
  1608     assert( (pageSize & 7)==0 );
  1609     assert( !pBt->pPage1 && !pBt->pCursor );
  1610     pBt->pageSize = pageSize;
  1611     freeTempSpace(pBt);
  1612     rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize);
  1613   }
  1614   pBt->usableSize = pBt->pageSize - nReserve;
  1615   sqlite3BtreeLeave(p);
  1616   return rc;
  1617 }
  1618 
  1619 /*
  1620 ** Return the currently defined page size
  1621 */
  1622 int sqlite3BtreeGetPageSize(Btree *p){
  1623   return p->pBt->pageSize;
  1624 }
  1625 int sqlite3BtreeGetReserve(Btree *p){
  1626   int n;
  1627   sqlite3BtreeEnter(p);
  1628   n = p->pBt->pageSize - p->pBt->usableSize;
  1629   sqlite3BtreeLeave(p);
  1630   return n;
  1631 }
  1632 
  1633 /*
  1634 ** Set the maximum page count for a database if mxPage is positive.
  1635 ** No changes are made if mxPage is 0 or negative.
  1636 ** Regardless of the value of mxPage, return the maximum page count.
  1637 */
  1638 int sqlite3BtreeMaxPageCount(Btree *p, int mxPage){
  1639   int n;
  1640   sqlite3BtreeEnter(p);
  1641   n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage);
  1642   sqlite3BtreeLeave(p);
  1643   return n;
  1644 }
  1645 #endif /* !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM) */
  1646 
  1647 /*
  1648 ** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
  1649 ** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
  1650 ** is disabled. The default value for the auto-vacuum property is 
  1651 ** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
  1652 */
  1653 int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){
  1654 #ifdef SQLITE_OMIT_AUTOVACUUM
  1655   return SQLITE_READONLY;
  1656 #else
  1657   BtShared *pBt = p->pBt;
  1658   int rc = SQLITE_OK;
  1659   int av = (autoVacuum?1:0);
  1660 
  1661   sqlite3BtreeEnter(p);
  1662   if( pBt->pageSizeFixed && av!=pBt->autoVacuum ){
  1663     rc = SQLITE_READONLY;
  1664   }else{
  1665     pBt->autoVacuum = av;
  1666   }
  1667   sqlite3BtreeLeave(p);
  1668   return rc;
  1669 #endif
  1670 }
  1671 
  1672 /*
  1673 ** Return the value of the 'auto-vacuum' property. If auto-vacuum is 
  1674 ** enabled 1 is returned. Otherwise 0.
  1675 */
  1676 int sqlite3BtreeGetAutoVacuum(Btree *p){
  1677 #ifdef SQLITE_OMIT_AUTOVACUUM
  1678   return BTREE_AUTOVACUUM_NONE;
  1679 #else
  1680   int rc;
  1681   sqlite3BtreeEnter(p);
  1682   rc = (
  1683     (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE:
  1684     (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL:
  1685     BTREE_AUTOVACUUM_INCR
  1686   );
  1687   sqlite3BtreeLeave(p);
  1688   return rc;
  1689 #endif
  1690 }
  1691 
  1692 
  1693 /*
  1694 ** Get a reference to pPage1 of the database file.  This will
  1695 ** also acquire a readlock on that file.
  1696 **
  1697 ** SQLITE_OK is returned on success.  If the file is not a
  1698 ** well-formed database file, then SQLITE_CORRUPT is returned.
  1699 ** SQLITE_BUSY is returned if the database is locked.  SQLITE_NOMEM
  1700 ** is returned if we run out of memory. 
  1701 */
  1702 static int lockBtree(BtShared *pBt){
  1703   int rc;
  1704   MemPage *pPage1;
  1705   int nPage;
  1706 
  1707   assert( sqlite3_mutex_held(pBt->mutex) );
  1708   if( pBt->pPage1 ) return SQLITE_OK;
  1709   rc = sqlite3BtreeGetPage(pBt, 1, &pPage1, 0);
  1710   if( rc!=SQLITE_OK ) return rc;
  1711 
  1712   /* Do some checking to help insure the file we opened really is
  1713   ** a valid database file. 
  1714   */
  1715   rc = sqlite3PagerPagecount(pBt->pPager, &nPage);
  1716   if( rc!=SQLITE_OK ){
  1717     goto page1_init_failed;
  1718   }else if( nPage>0 ){
  1719     int pageSize;
  1720     int usableSize;
  1721     u8 *page1 = pPage1->aData;
  1722     rc = SQLITE_NOTADB;
  1723     if( memcmp(page1, zMagicHeader, 16)!=0 ){
  1724       goto page1_init_failed;
  1725     }
  1726     if( page1[18]>1 ){
  1727       pBt->readOnly = 1;
  1728     }
  1729     if( page1[19]>1 ){
  1730       goto page1_init_failed;
  1731     }
  1732 
  1733     /* The maximum embedded fraction must be exactly 25%.  And the minimum
  1734     ** embedded fraction must be 12.5% for both leaf-data and non-leaf-data.
  1735     ** The original design allowed these amounts to vary, but as of
  1736     ** version 3.6.0, we require them to be fixed.
  1737     */
  1738     if( memcmp(&page1[21], "\100\040\040",3)!=0 ){
  1739       goto page1_init_failed;
  1740     }
  1741     pageSize = get2byte(&page1[16]);
  1742     if( ((pageSize-1)&pageSize)!=0 || pageSize<512 ||
  1743         (SQLITE_MAX_PAGE_SIZE<32768 && pageSize>SQLITE_MAX_PAGE_SIZE)
  1744     ){
  1745       goto page1_init_failed;
  1746     }
  1747     assert( (pageSize & 7)==0 );
  1748     usableSize = pageSize - page1[20];
  1749     if( pageSize!=pBt->pageSize ){
  1750       /* After reading the first page of the database assuming a page size
  1751       ** of BtShared.pageSize, we have discovered that the page-size is
  1752       ** actually pageSize. Unlock the database, leave pBt->pPage1 at
  1753       ** zero and return SQLITE_OK. The caller will call this function
  1754       ** again with the correct page-size.
  1755       */
  1756       releasePage(pPage1);
  1757       pBt->usableSize = usableSize;
  1758       pBt->pageSize = pageSize;
  1759       freeTempSpace(pBt);
  1760       sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize);
  1761       return SQLITE_OK;
  1762     }
  1763     if( usableSize<500 ){
  1764       goto page1_init_failed;
  1765     }
  1766     pBt->pageSize = pageSize;
  1767     pBt->usableSize = usableSize;
  1768 #ifndef SQLITE_OMIT_AUTOVACUUM
  1769     pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0);
  1770     pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0);
  1771 #endif
  1772   }
  1773 
  1774   /* maxLocal is the maximum amount of payload to store locally for
  1775   ** a cell.  Make sure it is small enough so that at least minFanout
  1776   ** cells can will fit on one page.  We assume a 10-byte page header.
  1777   ** Besides the payload, the cell must store:
  1778   **     2-byte pointer to the cell
  1779   **     4-byte child pointer
  1780   **     9-byte nKey value
  1781   **     4-byte nData value
  1782   **     4-byte overflow page pointer
  1783   ** So a cell consists of a 2-byte poiner, a header which is as much as
  1784   ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
  1785   ** page pointer.
  1786   */
  1787   pBt->maxLocal = (pBt->usableSize-12)*64/255 - 23;
  1788   pBt->minLocal = (pBt->usableSize-12)*32/255 - 23;
  1789   pBt->maxLeaf = pBt->usableSize - 35;
  1790   pBt->minLeaf = (pBt->usableSize-12)*32/255 - 23;
  1791   assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
  1792   pBt->pPage1 = pPage1;
  1793   return SQLITE_OK;
  1794 
  1795 page1_init_failed:
  1796   releasePage(pPage1);
  1797   pBt->pPage1 = 0;
  1798   return rc;
  1799 }
  1800 
  1801 /*
  1802 ** This routine works like lockBtree() except that it also invokes the
  1803 ** busy callback if there is lock contention.
  1804 */
  1805 static int lockBtreeWithRetry(Btree *pRef){
  1806   int rc = SQLITE_OK;
  1807 
  1808   assert( sqlite3BtreeHoldsMutex(pRef) );
  1809   if( pRef->inTrans==TRANS_NONE ){
  1810     u8 inTransaction = pRef->pBt->inTransaction;
  1811     btreeIntegrity(pRef);
  1812     rc = sqlite3BtreeBeginTrans(pRef, 0);
  1813     pRef->pBt->inTransaction = inTransaction;
  1814     pRef->inTrans = TRANS_NONE;
  1815     if( rc==SQLITE_OK ){
  1816       pRef->pBt->nTransaction--;
  1817     }
  1818     btreeIntegrity(pRef);
  1819   }
  1820   return rc;
  1821 }
  1822        
  1823 
  1824 /*
  1825 ** If there are no outstanding cursors and we are not in the middle
  1826 ** of a transaction but there is a read lock on the database, then
  1827 ** this routine unrefs the first page of the database file which 
  1828 ** has the effect of releasing the read lock.
  1829 **
  1830 ** If there are any outstanding cursors, this routine is a no-op.
  1831 **
  1832 ** If there is a transaction in progress, this routine is a no-op.
  1833 */
  1834 static void unlockBtreeIfUnused(BtShared *pBt){
  1835   assert( sqlite3_mutex_held(pBt->mutex) );
  1836   if( pBt->inTransaction==TRANS_NONE && pBt->pCursor==0 && pBt->pPage1!=0 ){
  1837     if( sqlite3PagerRefcount(pBt->pPager)>=1 ){
  1838       assert( pBt->pPage1->aData );
  1839 #if 0
  1840       if( pBt->pPage1->aData==0 ){
  1841         MemPage *pPage = pBt->pPage1;
  1842         pPage->aData = sqlite3PagerGetData(pPage->pDbPage);
  1843         pPage->pBt = pBt;
  1844         pPage->pgno = 1;
  1845       }
  1846 #endif
  1847       releasePage(pBt->pPage1);
  1848     }
  1849     pBt->pPage1 = 0;
  1850     pBt->inStmt = 0;
  1851   }
  1852 }
  1853 
  1854 /*
  1855 ** Create a new database by initializing the first page of the
  1856 ** file.
  1857 */
  1858 static int newDatabase(BtShared *pBt){
  1859   MemPage *pP1;
  1860   unsigned char *data;
  1861   int rc;
  1862   int nPage;
  1863 
  1864   assert( sqlite3_mutex_held(pBt->mutex) );
  1865   rc = sqlite3PagerPagecount(pBt->pPager, &nPage);
  1866   if( rc!=SQLITE_OK || nPage>0 ){
  1867     return rc;
  1868   }
  1869   pP1 = pBt->pPage1;
  1870   assert( pP1!=0 );
  1871   data = pP1->aData;
  1872   rc = sqlite3PagerWrite(pP1->pDbPage);
  1873   if( rc ) return rc;
  1874   memcpy(data, zMagicHeader, sizeof(zMagicHeader));
  1875   assert( sizeof(zMagicHeader)==16 );
  1876   put2byte(&data[16], pBt->pageSize);
  1877   data[18] = 1;
  1878   data[19] = 1;
  1879   data[20] = pBt->pageSize - pBt->usableSize;
  1880   data[21] = 64;
  1881   data[22] = 32;
  1882   data[23] = 32;
  1883   memset(&data[24], 0, 100-24);
  1884   zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
  1885   pBt->pageSizeFixed = 1;
  1886 #ifndef SQLITE_OMIT_AUTOVACUUM
  1887   assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 );
  1888   assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 );
  1889   put4byte(&data[36 + 4*4], pBt->autoVacuum);
  1890   put4byte(&data[36 + 7*4], pBt->incrVacuum);
  1891 #endif
  1892   return SQLITE_OK;
  1893 }
  1894 
  1895 /*
  1896 ** Attempt to start a new transaction. A write-transaction
  1897 ** is started if the second argument is nonzero, otherwise a read-
  1898 ** transaction.  If the second argument is 2 or more and exclusive
  1899 ** transaction is started, meaning that no other process is allowed
  1900 ** to access the database.  A preexisting transaction may not be
  1901 ** upgraded to exclusive by calling this routine a second time - the
  1902 ** exclusivity flag only works for a new transaction.
  1903 **
  1904 ** A write-transaction must be started before attempting any 
  1905 ** changes to the database.  None of the following routines 
  1906 ** will work unless a transaction is started first:
  1907 **
  1908 **      sqlite3BtreeCreateTable()
  1909 **      sqlite3BtreeCreateIndex()
  1910 **      sqlite3BtreeClearTable()
  1911 **      sqlite3BtreeDropTable()
  1912 **      sqlite3BtreeInsert()
  1913 **      sqlite3BtreeDelete()
  1914 **      sqlite3BtreeUpdateMeta()
  1915 **
  1916 ** If an initial attempt to acquire the lock fails because of lock contention
  1917 ** and the database was previously unlocked, then invoke the busy handler
  1918 ** if there is one.  But if there was previously a read-lock, do not
  1919 ** invoke the busy handler - just return SQLITE_BUSY.  SQLITE_BUSY is 
  1920 ** returned when there is already a read-lock in order to avoid a deadlock.
  1921 **
  1922 ** Suppose there are two processes A and B.  A has a read lock and B has
  1923 ** a reserved lock.  B tries to promote to exclusive but is blocked because
  1924 ** of A's read lock.  A tries to promote to reserved but is blocked by B.
  1925 ** One or the other of the two processes must give way or there can be
  1926 ** no progress.  By returning SQLITE_BUSY and not invoking the busy callback
  1927 ** when A already has a read lock, we encourage A to give up and let B
  1928 ** proceed.
  1929 */
  1930 int sqlite3BtreeBeginTrans(Btree *p, int wrflag){
  1931   BtShared *pBt = p->pBt;
  1932   int rc = SQLITE_OK;
  1933 
  1934   sqlite3BtreeEnter(p);
  1935   pBt->db = p->db;
  1936   btreeIntegrity(p);
  1937 
  1938   /* If the btree is already in a write-transaction, or it
  1939   ** is already in a read-transaction and a read-transaction
  1940   ** is requested, this is a no-op.
  1941   */
  1942   if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){
  1943     goto trans_begun;
  1944   }
  1945 
  1946   /* Write transactions are not possible on a read-only database */
  1947   if( pBt->readOnly && wrflag ){
  1948     rc = SQLITE_READONLY;
  1949     goto trans_begun;
  1950   }
  1951 
  1952   /* If another database handle has already opened a write transaction 
  1953   ** on this shared-btree structure and a second write transaction is
  1954   ** requested, return SQLITE_BUSY.
  1955   */
  1956   if( pBt->inTransaction==TRANS_WRITE && wrflag ){
  1957     rc = SQLITE_BUSY;
  1958     goto trans_begun;
  1959   }
  1960 
  1961 #ifndef SQLITE_OMIT_SHARED_CACHE
  1962   if( wrflag>1 ){
  1963     BtLock *pIter;
  1964     for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
  1965       if( pIter->pBtree!=p ){
  1966         rc = SQLITE_BUSY;
  1967         goto trans_begun;
  1968       }
  1969     }
  1970   }
  1971 #endif
  1972 
  1973   do {
  1974     if( pBt->pPage1==0 ){
  1975       do{
  1976         rc = lockBtree(pBt);
  1977       }while( pBt->pPage1==0 && rc==SQLITE_OK );
  1978     }
  1979 
  1980     if( rc==SQLITE_OK && wrflag ){
  1981       if( pBt->readOnly ){
  1982         rc = SQLITE_READONLY;
  1983       }else{
  1984         rc = sqlite3PagerBegin(pBt->pPage1->pDbPage, wrflag>1);
  1985         if( rc==SQLITE_OK ){
  1986           rc = newDatabase(pBt);
  1987         }
  1988       }
  1989     }
  1990   
  1991     if( rc==SQLITE_OK ){
  1992       if( wrflag ) pBt->inStmt = 0;
  1993     }else{
  1994       unlockBtreeIfUnused(pBt);
  1995     }
  1996   }while( rc==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE &&
  1997           sqlite3BtreeInvokeBusyHandler(pBt, 0) );
  1998 
  1999   if( rc==SQLITE_OK ){
  2000     if( p->inTrans==TRANS_NONE ){
  2001       pBt->nTransaction++;
  2002     }
  2003     p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ);
  2004     if( p->inTrans>pBt->inTransaction ){
  2005       pBt->inTransaction = p->inTrans;
  2006     }
  2007 #ifndef SQLITE_OMIT_SHARED_CACHE
  2008     if( wrflag>1 ){
  2009       assert( !pBt->pExclusive );
  2010       pBt->pExclusive = p;
  2011     }
  2012 #endif
  2013   }
  2014 
  2015 
  2016 trans_begun:
  2017   btreeIntegrity(p);
  2018   sqlite3BtreeLeave(p);
  2019   return rc;
  2020 }
  2021 
  2022 /*
  2023 ** Return the size of the database file in pages.  Or return -1 if
  2024 ** there is any kind of error.
  2025 */
  2026 static int pagerPagecount(Pager *pPager){
  2027   int rc;
  2028   int nPage;
  2029   rc = sqlite3PagerPagecount(pPager, &nPage);
  2030   return (rc==SQLITE_OK?nPage:-1);
  2031 }
  2032 
  2033 
  2034 #ifndef SQLITE_OMIT_AUTOVACUUM
  2035 
  2036 /*
  2037 ** Set the pointer-map entries for all children of page pPage. Also, if
  2038 ** pPage contains cells that point to overflow pages, set the pointer
  2039 ** map entries for the overflow pages as well.
  2040 */
  2041 static int setChildPtrmaps(MemPage *pPage){
  2042   int i;                             /* Counter variable */
  2043   int nCell;                         /* Number of cells in page pPage */
  2044   int rc;                            /* Return code */
  2045   BtShared *pBt = pPage->pBt;
  2046   int isInitOrig = pPage->isInit;
  2047   Pgno pgno = pPage->pgno;
  2048 
  2049   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  2050   rc = sqlite3BtreeInitPage(pPage, pPage->pParent);
  2051   if( rc!=SQLITE_OK ){
  2052     goto set_child_ptrmaps_out;
  2053   }
  2054   nCell = pPage->nCell;
  2055 
  2056   for(i=0; i<nCell; i++){
  2057     u8 *pCell = findCell(pPage, i);
  2058 
  2059     rc = ptrmapPutOvflPtr(pPage, pCell);
  2060     if( rc!=SQLITE_OK ){
  2061       goto set_child_ptrmaps_out;
  2062     }
  2063 
  2064     if( !pPage->leaf ){
  2065       Pgno childPgno = get4byte(pCell);
  2066       rc = ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno);
  2067        if( rc!=SQLITE_OK ) goto set_child_ptrmaps_out;
  2068     }
  2069   }
  2070 
  2071   if( !pPage->leaf ){
  2072     Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
  2073     rc = ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno);
  2074   }
  2075 
  2076 set_child_ptrmaps_out:
  2077   pPage->isInit = isInitOrig;
  2078   return rc;
  2079 }
  2080 
  2081 /*
  2082 ** Somewhere on pPage, which is guarenteed to be a btree page, not an overflow
  2083 ** page, is a pointer to page iFrom. Modify this pointer so that it points to
  2084 ** iTo. Parameter eType describes the type of pointer to be modified, as 
  2085 ** follows:
  2086 **
  2087 ** PTRMAP_BTREE:     pPage is a btree-page. The pointer points at a child 
  2088 **                   page of pPage.
  2089 **
  2090 ** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
  2091 **                   page pointed to by one of the cells on pPage.
  2092 **
  2093 ** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
  2094 **                   overflow page in the list.
  2095 */
  2096 static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){
  2097   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  2098   if( eType==PTRMAP_OVERFLOW2 ){
  2099     /* The pointer is always the first 4 bytes of the page in this case.  */
  2100     if( get4byte(pPage->aData)!=iFrom ){
  2101       return SQLITE_CORRUPT_BKPT;
  2102     }
  2103     put4byte(pPage->aData, iTo);
  2104   }else{
  2105     int isInitOrig = pPage->isInit;
  2106     int i;
  2107     int nCell;
  2108 
  2109     sqlite3BtreeInitPage(pPage, 0);
  2110     nCell = pPage->nCell;
  2111 
  2112     for(i=0; i<nCell; i++){
  2113       u8 *pCell = findCell(pPage, i);
  2114       if( eType==PTRMAP_OVERFLOW1 ){
  2115         CellInfo info;
  2116         sqlite3BtreeParseCellPtr(pPage, pCell, &info);
  2117         if( info.iOverflow ){
  2118           if( iFrom==get4byte(&pCell[info.iOverflow]) ){
  2119             put4byte(&pCell[info.iOverflow], iTo);
  2120             break;
  2121           }
  2122         }
  2123       }else{
  2124         if( get4byte(pCell)==iFrom ){
  2125           put4byte(pCell, iTo);
  2126           break;
  2127         }
  2128       }
  2129     }
  2130   
  2131     if( i==nCell ){
  2132       if( eType!=PTRMAP_BTREE || 
  2133           get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){
  2134         return SQLITE_CORRUPT_BKPT;
  2135       }
  2136       put4byte(&pPage->aData[pPage->hdrOffset+8], iTo);
  2137     }
  2138 
  2139     pPage->isInit = isInitOrig;
  2140   }
  2141   return SQLITE_OK;
  2142 }
  2143 
  2144 
  2145 /*
  2146 ** Move the open database page pDbPage to location iFreePage in the 
  2147 ** database. The pDbPage reference remains valid.
  2148 */
  2149 static int relocatePage(
  2150   BtShared *pBt,           /* Btree */
  2151   MemPage *pDbPage,        /* Open page to move */
  2152   u8 eType,                /* Pointer map 'type' entry for pDbPage */
  2153   Pgno iPtrPage,           /* Pointer map 'page-no' entry for pDbPage */
  2154   Pgno iFreePage,          /* The location to move pDbPage to */
  2155   int isCommit
  2156 ){
  2157   MemPage *pPtrPage;   /* The page that contains a pointer to pDbPage */
  2158   Pgno iDbPage = pDbPage->pgno;
  2159   Pager *pPager = pBt->pPager;
  2160   int rc;
  2161 
  2162   assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 || 
  2163       eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE );
  2164   assert( sqlite3_mutex_held(pBt->mutex) );
  2165   assert( pDbPage->pBt==pBt );
  2166 
  2167   /* Move page iDbPage from its current location to page number iFreePage */
  2168   TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n", 
  2169       iDbPage, iFreePage, iPtrPage, eType));
  2170   rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit);
  2171   if( rc!=SQLITE_OK ){
  2172     return rc;
  2173   }
  2174   pDbPage->pgno = iFreePage;
  2175 
  2176   /* If pDbPage was a btree-page, then it may have child pages and/or cells
  2177   ** that point to overflow pages. The pointer map entries for all these
  2178   ** pages need to be changed.
  2179   **
  2180   ** If pDbPage is an overflow page, then the first 4 bytes may store a
  2181   ** pointer to a subsequent overflow page. If this is the case, then
  2182   ** the pointer map needs to be updated for the subsequent overflow page.
  2183   */
  2184   if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){
  2185     rc = setChildPtrmaps(pDbPage);
  2186     if( rc!=SQLITE_OK ){
  2187       return rc;
  2188     }
  2189   }else{
  2190     Pgno nextOvfl = get4byte(pDbPage->aData);
  2191     if( nextOvfl!=0 ){
  2192       rc = ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage);
  2193       if( rc!=SQLITE_OK ){
  2194         return rc;
  2195       }
  2196     }
  2197   }
  2198 
  2199   /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
  2200   ** that it points at iFreePage. Also fix the pointer map entry for
  2201   ** iPtrPage.
  2202   */
  2203   if( eType!=PTRMAP_ROOTPAGE ){
  2204     rc = sqlite3BtreeGetPage(pBt, iPtrPage, &pPtrPage, 0);
  2205     if( rc!=SQLITE_OK ){
  2206       return rc;
  2207     }
  2208     rc = sqlite3PagerWrite(pPtrPage->pDbPage);
  2209     if( rc!=SQLITE_OK ){
  2210       releasePage(pPtrPage);
  2211       return rc;
  2212     }
  2213     rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType);
  2214     releasePage(pPtrPage);
  2215     if( rc==SQLITE_OK ){
  2216       rc = ptrmapPut(pBt, iFreePage, eType, iPtrPage);
  2217     }
  2218   }
  2219   return rc;
  2220 }
  2221 
  2222 /* Forward declaration required by incrVacuumStep(). */
  2223 static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8);
  2224 
  2225 /*
  2226 ** Perform a single step of an incremental-vacuum. If successful,
  2227 ** return SQLITE_OK. If there is no work to do (and therefore no
  2228 ** point in calling this function again), return SQLITE_DONE.
  2229 **
  2230 ** More specificly, this function attempts to re-organize the 
  2231 ** database so that the last page of the file currently in use
  2232 ** is no longer in use.
  2233 **
  2234 ** If the nFin parameter is non-zero, the implementation assumes
  2235 ** that the caller will keep calling incrVacuumStep() until
  2236 ** it returns SQLITE_DONE or an error, and that nFin is the
  2237 ** number of pages the database file will contain after this 
  2238 ** process is complete.
  2239 */
  2240 static int incrVacuumStep(BtShared *pBt, Pgno nFin){
  2241   Pgno iLastPg;             /* Last page in the database */
  2242   Pgno nFreeList;           /* Number of pages still on the free-list */
  2243 
  2244   assert( sqlite3_mutex_held(pBt->mutex) );
  2245   iLastPg = pBt->nTrunc;
  2246   if( iLastPg==0 ){
  2247     iLastPg = pagerPagecount(pBt->pPager);
  2248   }
  2249 
  2250   if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){
  2251     int rc;
  2252     u8 eType;
  2253     Pgno iPtrPage;
  2254 
  2255     nFreeList = get4byte(&pBt->pPage1->aData[36]);
  2256     if( nFreeList==0 || nFin==iLastPg ){
  2257       return SQLITE_DONE;
  2258     }
  2259 
  2260     rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage);
  2261     if( rc!=SQLITE_OK ){
  2262       return rc;
  2263     }
  2264     if( eType==PTRMAP_ROOTPAGE ){
  2265       return SQLITE_CORRUPT_BKPT;
  2266     }
  2267 
  2268     if( eType==PTRMAP_FREEPAGE ){
  2269       if( nFin==0 ){
  2270         /* Remove the page from the files free-list. This is not required
  2271         ** if nFin is non-zero. In that case, the free-list will be
  2272         ** truncated to zero after this function returns, so it doesn't 
  2273         ** matter if it still contains some garbage entries.
  2274         */
  2275         Pgno iFreePg;
  2276         MemPage *pFreePg;
  2277         rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, 1);
  2278         if( rc!=SQLITE_OK ){
  2279           return rc;
  2280         }
  2281         assert( iFreePg==iLastPg );
  2282         releasePage(pFreePg);
  2283       }
  2284     } else {
  2285       Pgno iFreePg;             /* Index of free page to move pLastPg to */
  2286       MemPage *pLastPg;
  2287 
  2288       rc = sqlite3BtreeGetPage(pBt, iLastPg, &pLastPg, 0);
  2289       if( rc!=SQLITE_OK ){
  2290         return rc;
  2291       }
  2292 
  2293       /* If nFin is zero, this loop runs exactly once and page pLastPg
  2294       ** is swapped with the first free page pulled off the free list.
  2295       **
  2296       ** On the other hand, if nFin is greater than zero, then keep
  2297       ** looping until a free-page located within the first nFin pages
  2298       ** of the file is found.
  2299       */
  2300       do {
  2301         MemPage *pFreePg;
  2302         rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, 0, 0);
  2303         if( rc!=SQLITE_OK ){
  2304           releasePage(pLastPg);
  2305           return rc;
  2306         }
  2307         releasePage(pFreePg);
  2308       }while( nFin!=0 && iFreePg>nFin );
  2309       assert( iFreePg<iLastPg );
  2310       
  2311       rc = sqlite3PagerWrite(pLastPg->pDbPage);
  2312       if( rc==SQLITE_OK ){
  2313         rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, nFin!=0);
  2314       }
  2315       releasePage(pLastPg);
  2316       if( rc!=SQLITE_OK ){
  2317         return rc;
  2318       }
  2319     }
  2320   }
  2321 
  2322   pBt->nTrunc = iLastPg - 1;
  2323   while( pBt->nTrunc==PENDING_BYTE_PAGE(pBt)||PTRMAP_ISPAGE(pBt, pBt->nTrunc) ){
  2324     pBt->nTrunc--;
  2325   }
  2326   return SQLITE_OK;
  2327 }
  2328 
  2329 /*
  2330 ** A write-transaction must be opened before calling this function.
  2331 ** It performs a single unit of work towards an incremental vacuum.
  2332 **
  2333 ** If the incremental vacuum is finished after this function has run,
  2334 ** SQLITE_DONE is returned. If it is not finished, but no error occured,
  2335 ** SQLITE_OK is returned. Otherwise an SQLite error code. 
  2336 */
  2337 int sqlite3BtreeIncrVacuum(Btree *p){
  2338   int rc;
  2339   BtShared *pBt = p->pBt;
  2340 
  2341   sqlite3BtreeEnter(p);
  2342   pBt->db = p->db;
  2343   assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE );
  2344   if( !pBt->autoVacuum ){
  2345     rc = SQLITE_DONE;
  2346   }else{
  2347     invalidateAllOverflowCache(pBt);
  2348     rc = incrVacuumStep(pBt, 0);
  2349   }
  2350   sqlite3BtreeLeave(p);
  2351   return rc;
  2352 }
  2353 
  2354 /*
  2355 ** This routine is called prior to sqlite3PagerCommit when a transaction
  2356 ** is commited for an auto-vacuum database.
  2357 **
  2358 ** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages
  2359 ** the database file should be truncated to during the commit process. 
  2360 ** i.e. the database has been reorganized so that only the first *pnTrunc
  2361 ** pages are in use.
  2362 */
  2363 static int autoVacuumCommit(BtShared *pBt, Pgno *pnTrunc){
  2364   int rc = SQLITE_OK;
  2365   Pager *pPager = pBt->pPager;
  2366 #ifndef NDEBUG
  2367   int nRef = sqlite3PagerRefcount(pPager);
  2368 #endif
  2369 
  2370   assert( sqlite3_mutex_held(pBt->mutex) );
  2371   invalidateAllOverflowCache(pBt);
  2372   assert(pBt->autoVacuum);
  2373   if( !pBt->incrVacuum ){
  2374     Pgno nFin = 0;
  2375 
  2376     if( pBt->nTrunc==0 ){
  2377       Pgno nFree;
  2378       Pgno nPtrmap;
  2379       const int pgsz = pBt->pageSize;
  2380       int nOrig = pagerPagecount(pBt->pPager);
  2381 
  2382       if( PTRMAP_ISPAGE(pBt, nOrig) ){
  2383         return SQLITE_CORRUPT_BKPT;
  2384       }
  2385       if( nOrig==PENDING_BYTE_PAGE(pBt) ){
  2386         nOrig--;
  2387       }
  2388       nFree = get4byte(&pBt->pPage1->aData[36]);
  2389       nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+pgsz/5)/(pgsz/5);
  2390       nFin = nOrig - nFree - nPtrmap;
  2391       if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<=PENDING_BYTE_PAGE(pBt) ){
  2392         nFin--;
  2393       }
  2394       while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){
  2395         nFin--;
  2396       }
  2397     }
  2398 
  2399     while( rc==SQLITE_OK ){
  2400       rc = incrVacuumStep(pBt, nFin);
  2401     }
  2402     if( rc==SQLITE_DONE ){
  2403       assert(nFin==0 || pBt->nTrunc==0 || nFin<=pBt->nTrunc);
  2404       rc = SQLITE_OK;
  2405       if( pBt->nTrunc && nFin ){
  2406         rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
  2407         put4byte(&pBt->pPage1->aData[32], 0);
  2408         put4byte(&pBt->pPage1->aData[36], 0);
  2409         pBt->nTrunc = nFin;
  2410       }
  2411     }
  2412     if( rc!=SQLITE_OK ){
  2413       sqlite3PagerRollback(pPager);
  2414     }
  2415   }
  2416 
  2417   if( rc==SQLITE_OK ){
  2418     *pnTrunc = pBt->nTrunc;
  2419     pBt->nTrunc = 0;
  2420   }
  2421   assert( nRef==sqlite3PagerRefcount(pPager) );
  2422   return rc;
  2423 }
  2424 
  2425 #endif
  2426 
  2427 /*
  2428 ** This routine does the first phase of a two-phase commit.  This routine
  2429 ** causes a rollback journal to be created (if it does not already exist)
  2430 ** and populated with enough information so that if a power loss occurs
  2431 ** the database can be restored to its original state by playing back
  2432 ** the journal.  Then the contents of the journal are flushed out to
  2433 ** the disk.  After the journal is safely on oxide, the changes to the
  2434 ** database are written into the database file and flushed to oxide.
  2435 ** At the end of this call, the rollback journal still exists on the
  2436 ** disk and we are still holding all locks, so the transaction has not
  2437 ** committed.  See sqlite3BtreeCommit() for the second phase of the
  2438 ** commit process.
  2439 **
  2440 ** This call is a no-op if no write-transaction is currently active on pBt.
  2441 **
  2442 ** Otherwise, sync the database file for the btree pBt. zMaster points to
  2443 ** the name of a master journal file that should be written into the
  2444 ** individual journal file, or is NULL, indicating no master journal file 
  2445 ** (single database transaction).
  2446 **
  2447 ** When this is called, the master journal should already have been
  2448 ** created, populated with this journal pointer and synced to disk.
  2449 **
  2450 ** Once this is routine has returned, the only thing required to commit
  2451 ** the write-transaction for this database file is to delete the journal.
  2452 */
  2453 int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zMaster){
  2454   int rc = SQLITE_OK;
  2455   if( p->inTrans==TRANS_WRITE ){
  2456     BtShared *pBt = p->pBt;
  2457     Pgno nTrunc = 0;
  2458     sqlite3BtreeEnter(p);
  2459     pBt->db = p->db;
  2460 #ifndef SQLITE_OMIT_AUTOVACUUM
  2461     if( pBt->autoVacuum ){
  2462       rc = autoVacuumCommit(pBt, &nTrunc); 
  2463       if( rc!=SQLITE_OK ){
  2464         sqlite3BtreeLeave(p);
  2465         return rc;
  2466       }
  2467     }
  2468 #endif
  2469     rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zMaster, nTrunc, 0);
  2470     sqlite3BtreeLeave(p);
  2471   }
  2472   return rc;
  2473 }
  2474 
  2475 /*
  2476 ** Commit the transaction currently in progress.
  2477 **
  2478 ** This routine implements the second phase of a 2-phase commit.  The
  2479 ** sqlite3BtreeSync() routine does the first phase and should be invoked
  2480 ** prior to calling this routine.  The sqlite3BtreeSync() routine did
  2481 ** all the work of writing information out to disk and flushing the
  2482 ** contents so that they are written onto the disk platter.  All this
  2483 ** routine has to do is delete or truncate the rollback journal
  2484 ** (which causes the transaction to commit) and drop locks.
  2485 **
  2486 ** This will release the write lock on the database file.  If there
  2487 ** are no active cursors, it also releases the read lock.
  2488 */
  2489 int sqlite3BtreeCommitPhaseTwo(Btree *p){
  2490   BtShared *pBt = p->pBt;
  2491 
  2492   sqlite3BtreeEnter(p);
  2493   pBt->db = p->db;
  2494   btreeIntegrity(p);
  2495 
  2496   /* If the handle has a write-transaction open, commit the shared-btrees 
  2497   ** transaction and set the shared state to TRANS_READ.
  2498   */
  2499   if( p->inTrans==TRANS_WRITE ){
  2500     int rc;
  2501     assert( pBt->inTransaction==TRANS_WRITE );
  2502     assert( pBt->nTransaction>0 );
  2503     rc = sqlite3PagerCommitPhaseTwo(pBt->pPager);
  2504     if( rc!=SQLITE_OK ){
  2505       sqlite3BtreeLeave(p);
  2506       return rc;
  2507     }
  2508     pBt->inTransaction = TRANS_READ;
  2509     pBt->inStmt = 0;
  2510   }
  2511   unlockAllTables(p);
  2512 
  2513   /* If the handle has any kind of transaction open, decrement the transaction
  2514   ** count of the shared btree. If the transaction count reaches 0, set
  2515   ** the shared state to TRANS_NONE. The unlockBtreeIfUnused() call below
  2516   ** will unlock the pager.
  2517   */
  2518   if( p->inTrans!=TRANS_NONE ){
  2519     pBt->nTransaction--;
  2520     if( 0==pBt->nTransaction ){
  2521       pBt->inTransaction = TRANS_NONE;
  2522     }
  2523   }
  2524 
  2525   /* Set the handles current transaction state to TRANS_NONE and unlock
  2526   ** the pager if this call closed the only read or write transaction.
  2527   */
  2528   p->inTrans = TRANS_NONE;
  2529   unlockBtreeIfUnused(pBt);
  2530 
  2531   btreeIntegrity(p);
  2532   sqlite3BtreeLeave(p);
  2533   return SQLITE_OK;
  2534 }
  2535 
  2536 /*
  2537 ** Do both phases of a commit.
  2538 */
  2539 int sqlite3BtreeCommit(Btree *p){
  2540   int rc;
  2541   sqlite3BtreeEnter(p);
  2542   rc = sqlite3BtreeCommitPhaseOne(p, 0);
  2543   if( rc==SQLITE_OK ){
  2544     rc = sqlite3BtreeCommitPhaseTwo(p);
  2545   }
  2546   sqlite3BtreeLeave(p);
  2547   return rc;
  2548 }
  2549 
  2550 #ifndef NDEBUG
  2551 /*
  2552 ** Return the number of write-cursors open on this handle. This is for use
  2553 ** in assert() expressions, so it is only compiled if NDEBUG is not
  2554 ** defined.
  2555 **
  2556 ** For the purposes of this routine, a write-cursor is any cursor that
  2557 ** is capable of writing to the databse.  That means the cursor was
  2558 ** originally opened for writing and the cursor has not be disabled
  2559 ** by having its state changed to CURSOR_FAULT.
  2560 */
  2561 static int countWriteCursors(BtShared *pBt){
  2562   BtCursor *pCur;
  2563   int r = 0;
  2564   for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
  2565     if( pCur->wrFlag && pCur->eState!=CURSOR_FAULT ) r++; 
  2566   }
  2567   return r;
  2568 }
  2569 #endif
  2570 
  2571 /*
  2572 ** This routine sets the state to CURSOR_FAULT and the error
  2573 ** code to errCode for every cursor on BtShared that pBtree
  2574 ** references.
  2575 **
  2576 ** Every cursor is tripped, including cursors that belong
  2577 ** to other database connections that happen to be sharing
  2578 ** the cache with pBtree.
  2579 **
  2580 ** This routine gets called when a rollback occurs.
  2581 ** All cursors using the same cache must be tripped
  2582 ** to prevent them from trying to use the btree after
  2583 ** the rollback.  The rollback may have deleted tables
  2584 ** or moved root pages, so it is not sufficient to
  2585 ** save the state of the cursor.  The cursor must be
  2586 ** invalidated.
  2587 */
  2588 void sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode){
  2589   BtCursor *p;
  2590   sqlite3BtreeEnter(pBtree);
  2591   for(p=pBtree->pBt->pCursor; p; p=p->pNext){
  2592     clearCursorPosition(p);
  2593     p->eState = CURSOR_FAULT;
  2594     p->skip = errCode;
  2595   }
  2596   sqlite3BtreeLeave(pBtree);
  2597 }
  2598 
  2599 /*
  2600 ** Rollback the transaction in progress.  All cursors will be
  2601 ** invalided by this operation.  Any attempt to use a cursor
  2602 ** that was open at the beginning of this operation will result
  2603 ** in an error.
  2604 **
  2605 ** This will release the write lock on the database file.  If there
  2606 ** are no active cursors, it also releases the read lock.
  2607 */
  2608 int sqlite3BtreeRollback(Btree *p){
  2609   int rc;
  2610   BtShared *pBt = p->pBt;
  2611   MemPage *pPage1;
  2612 
  2613   sqlite3BtreeEnter(p);
  2614   pBt->db = p->db;
  2615   rc = saveAllCursors(pBt, 0, 0);
  2616 #ifndef SQLITE_OMIT_SHARED_CACHE
  2617   if( rc!=SQLITE_OK ){
  2618     /* This is a horrible situation. An IO or malloc() error occured whilst
  2619     ** trying to save cursor positions. If this is an automatic rollback (as
  2620     ** the result of a constraint, malloc() failure or IO error) then 
  2621     ** the cache may be internally inconsistent (not contain valid trees) so
  2622     ** we cannot simply return the error to the caller. Instead, abort 
  2623     ** all queries that may be using any of the cursors that failed to save.
  2624     */
  2625     sqlite3BtreeTripAllCursors(p, rc);
  2626   }
  2627 #endif
  2628   btreeIntegrity(p);
  2629   unlockAllTables(p);
  2630 
  2631   if( p->inTrans==TRANS_WRITE ){
  2632     int rc2;
  2633 
  2634 #ifndef SQLITE_OMIT_AUTOVACUUM
  2635     pBt->nTrunc = 0;
  2636 #endif
  2637 
  2638     assert( TRANS_WRITE==pBt->inTransaction );
  2639     rc2 = sqlite3PagerRollback(pBt->pPager);
  2640     if( rc2!=SQLITE_OK ){
  2641       rc = rc2;
  2642     }
  2643 
  2644     /* The rollback may have destroyed the pPage1->aData value.  So
  2645     ** call sqlite3BtreeGetPage() on page 1 again to make
  2646     ** sure pPage1->aData is set correctly. */
  2647     if( sqlite3BtreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){
  2648       releasePage(pPage1);
  2649     }
  2650     assert( countWriteCursors(pBt)==0 );
  2651     pBt->inTransaction = TRANS_READ;
  2652   }
  2653 
  2654   if( p->inTrans!=TRANS_NONE ){
  2655     assert( pBt->nTransaction>0 );
  2656     pBt->nTransaction--;
  2657     if( 0==pBt->nTransaction ){
  2658       pBt->inTransaction = TRANS_NONE;
  2659     }
  2660   }
  2661 
  2662   p->inTrans = TRANS_NONE;
  2663   pBt->inStmt = 0;
  2664   unlockBtreeIfUnused(pBt);
  2665 
  2666   btreeIntegrity(p);
  2667   sqlite3BtreeLeave(p);
  2668   return rc;
  2669 }
  2670 
  2671 /*
  2672 ** Start a statement subtransaction.  The subtransaction can
  2673 ** can be rolled back independently of the main transaction.
  2674 ** You must start a transaction before starting a subtransaction.
  2675 ** The subtransaction is ended automatically if the main transaction
  2676 ** commits or rolls back.
  2677 **
  2678 ** Only one subtransaction may be active at a time.  It is an error to try
  2679 ** to start a new subtransaction if another subtransaction is already active.
  2680 **
  2681 ** Statement subtransactions are used around individual SQL statements
  2682 ** that are contained within a BEGIN...COMMIT block.  If a constraint
  2683 ** error occurs within the statement, the effect of that one statement
  2684 ** can be rolled back without having to rollback the entire transaction.
  2685 */
  2686 int sqlite3BtreeBeginStmt(Btree *p){
  2687   int rc;
  2688   BtShared *pBt = p->pBt;
  2689   sqlite3BtreeEnter(p);
  2690   pBt->db = p->db;
  2691   if( (p->inTrans!=TRANS_WRITE) || pBt->inStmt ){
  2692     rc = pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
  2693   }else{
  2694     assert( pBt->inTransaction==TRANS_WRITE );
  2695     rc = pBt->readOnly ? SQLITE_OK : sqlite3PagerStmtBegin(pBt->pPager);
  2696     pBt->inStmt = 1;
  2697   }
  2698   sqlite3BtreeLeave(p);
  2699   return rc;
  2700 }
  2701 
  2702 
  2703 /*
  2704 ** Commit the statment subtransaction currently in progress.  If no
  2705 ** subtransaction is active, this is a no-op.
  2706 */
  2707 int sqlite3BtreeCommitStmt(Btree *p){
  2708   int rc;
  2709   BtShared *pBt = p->pBt;
  2710   sqlite3BtreeEnter(p);
  2711   pBt->db = p->db;
  2712   if( pBt->inStmt && !pBt->readOnly ){
  2713     rc = sqlite3PagerStmtCommit(pBt->pPager);
  2714   }else{
  2715     rc = SQLITE_OK;
  2716   }
  2717   pBt->inStmt = 0;
  2718   sqlite3BtreeLeave(p);
  2719   return rc;
  2720 }
  2721 
  2722 /*
  2723 ** Rollback the active statement subtransaction.  If no subtransaction
  2724 ** is active this routine is a no-op.
  2725 **
  2726 ** All cursors will be invalidated by this operation.  Any attempt
  2727 ** to use a cursor that was open at the beginning of this operation
  2728 ** will result in an error.
  2729 */
  2730 int sqlite3BtreeRollbackStmt(Btree *p){
  2731   int rc = SQLITE_OK;
  2732   BtShared *pBt = p->pBt;
  2733   sqlite3BtreeEnter(p);
  2734   pBt->db = p->db;
  2735   if( pBt->inStmt && !pBt->readOnly ){
  2736     rc = sqlite3PagerStmtRollback(pBt->pPager);
  2737     pBt->inStmt = 0;
  2738   }
  2739   sqlite3BtreeLeave(p);
  2740   return rc;
  2741 }
  2742 
  2743 /*
  2744 ** Create a new cursor for the BTree whose root is on the page
  2745 ** iTable.  The act of acquiring a cursor gets a read lock on 
  2746 ** the database file.
  2747 **
  2748 ** If wrFlag==0, then the cursor can only be used for reading.
  2749 ** If wrFlag==1, then the cursor can be used for reading or for
  2750 ** writing if other conditions for writing are also met.  These
  2751 ** are the conditions that must be met in order for writing to
  2752 ** be allowed:
  2753 **
  2754 ** 1:  The cursor must have been opened with wrFlag==1
  2755 **
  2756 ** 2:  Other database connections that share the same pager cache
  2757 **     but which are not in the READ_UNCOMMITTED state may not have
  2758 **     cursors open with wrFlag==0 on the same table.  Otherwise
  2759 **     the changes made by this write cursor would be visible to
  2760 **     the read cursors in the other database connection.
  2761 **
  2762 ** 3:  The database must be writable (not on read-only media)
  2763 **
  2764 ** 4:  There must be an active transaction.
  2765 **
  2766 ** No checking is done to make sure that page iTable really is the
  2767 ** root page of a b-tree.  If it is not, then the cursor acquired
  2768 ** will not work correctly.
  2769 */
  2770 static int btreeCursor(
  2771   Btree *p,                              /* The btree */
  2772   int iTable,                            /* Root page of table to open */
  2773   int wrFlag,                            /* 1 to write. 0 read-only */
  2774   struct KeyInfo *pKeyInfo,              /* First arg to comparison function */
  2775   BtCursor *pCur                         /* Space for new cursor */
  2776 ){
  2777   int rc;
  2778   BtShared *pBt = p->pBt;
  2779 
  2780   assert( sqlite3BtreeHoldsMutex(p) );
  2781   if( wrFlag ){
  2782     if( pBt->readOnly ){
  2783       return SQLITE_READONLY;
  2784     }
  2785     if( checkReadLocks(p, iTable, 0, 0) ){
  2786       return SQLITE_LOCKED;
  2787     }
  2788   }
  2789 
  2790   if( pBt->pPage1==0 ){
  2791     rc = lockBtreeWithRetry(p);
  2792     if( rc!=SQLITE_OK ){
  2793       return rc;
  2794     }
  2795     if( pBt->readOnly && wrFlag ){
  2796       return SQLITE_READONLY;
  2797     }
  2798   }
  2799   pCur->pgnoRoot = (Pgno)iTable;
  2800   if( iTable==1 && pagerPagecount(pBt->pPager)==0 ){
  2801     rc = SQLITE_EMPTY;
  2802     goto create_cursor_exception;
  2803   }
  2804   rc = getAndInitPage(pBt, pCur->pgnoRoot, &pCur->pPage, 0);
  2805   if( rc!=SQLITE_OK ){
  2806     goto create_cursor_exception;
  2807   }
  2808 
  2809   /* Now that no other errors can occur, finish filling in the BtCursor
  2810   ** variables, link the cursor into the BtShared list and set *ppCur (the
  2811   ** output argument to this function).
  2812   */
  2813   pCur->pKeyInfo = pKeyInfo;
  2814   pCur->pBtree = p;
  2815   pCur->pBt = pBt;
  2816   pCur->wrFlag = wrFlag;
  2817   pCur->pNext = pBt->pCursor;
  2818   if( pCur->pNext ){
  2819     pCur->pNext->pPrev = pCur;
  2820   }
  2821   pBt->pCursor = pCur;
  2822   pCur->eState = CURSOR_INVALID;
  2823 
  2824   return SQLITE_OK;
  2825 
  2826 create_cursor_exception:
  2827   releasePage(pCur->pPage);
  2828   unlockBtreeIfUnused(pBt);
  2829   return rc;
  2830 }
  2831 int sqlite3BtreeCursor(
  2832   Btree *p,                                   /* The btree */
  2833   int iTable,                                 /* Root page of table to open */
  2834   int wrFlag,                                 /* 1 to write. 0 read-only */
  2835   struct KeyInfo *pKeyInfo,                   /* First arg to xCompare() */
  2836   BtCursor *pCur                              /* Write new cursor here */
  2837 ){
  2838   int rc;
  2839   sqlite3BtreeEnter(p);
  2840   p->pBt->db = p->db;
  2841   rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
  2842   sqlite3BtreeLeave(p);
  2843   return rc;
  2844 }
  2845 int sqlite3BtreeCursorSize(){
  2846   return sizeof(BtCursor);
  2847 }
  2848 
  2849 
  2850 
  2851 /*
  2852 ** Close a cursor.  The read lock on the database file is released
  2853 ** when the last cursor is closed.
  2854 */
  2855 int sqlite3BtreeCloseCursor(BtCursor *pCur){
  2856   Btree *pBtree = pCur->pBtree;
  2857   if( pBtree ){
  2858     BtShared *pBt = pCur->pBt;
  2859     sqlite3BtreeEnter(pBtree);
  2860     pBt->db = pBtree->db;
  2861     clearCursorPosition(pCur);
  2862     if( pCur->pPrev ){
  2863       pCur->pPrev->pNext = pCur->pNext;
  2864     }else{
  2865       pBt->pCursor = pCur->pNext;
  2866     }
  2867     if( pCur->pNext ){
  2868       pCur->pNext->pPrev = pCur->pPrev;
  2869     }
  2870     releasePage(pCur->pPage);
  2871     unlockBtreeIfUnused(pBt);
  2872     invalidateOverflowCache(pCur);
  2873     /* sqlite3_free(pCur); */
  2874     sqlite3BtreeLeave(pBtree);
  2875   }
  2876   return SQLITE_OK;
  2877 }
  2878 
  2879 /*
  2880 ** Make a temporary cursor by filling in the fields of pTempCur.
  2881 ** The temporary cursor is not on the cursor list for the Btree.
  2882 */
  2883 void sqlite3BtreeGetTempCursor(BtCursor *pCur, BtCursor *pTempCur){
  2884   assert( cursorHoldsMutex(pCur) );
  2885   memcpy(pTempCur, pCur, sizeof(*pCur));
  2886   pTempCur->pNext = 0;
  2887   pTempCur->pPrev = 0;
  2888   if( pTempCur->pPage ){
  2889     sqlite3PagerRef(pTempCur->pPage->pDbPage);
  2890   }
  2891 }
  2892 
  2893 /*
  2894 ** Delete a temporary cursor such as was made by the CreateTemporaryCursor()
  2895 ** function above.
  2896 */
  2897 void sqlite3BtreeReleaseTempCursor(BtCursor *pCur){
  2898   assert( cursorHoldsMutex(pCur) );
  2899   if( pCur->pPage ){
  2900     sqlite3PagerUnref(pCur->pPage->pDbPage);
  2901   }
  2902 }
  2903 
  2904 /*
  2905 ** Make sure the BtCursor* given in the argument has a valid
  2906 ** BtCursor.info structure.  If it is not already valid, call
  2907 ** sqlite3BtreeParseCell() to fill it in.
  2908 **
  2909 ** BtCursor.info is a cache of the information in the current cell.
  2910 ** Using this cache reduces the number of calls to sqlite3BtreeParseCell().
  2911 **
  2912 ** 2007-06-25:  There is a bug in some versions of MSVC that cause the
  2913 ** compiler to crash when getCellInfo() is implemented as a macro.
  2914 ** But there is a measureable speed advantage to using the macro on gcc
  2915 ** (when less compiler optimizations like -Os or -O0 are used and the
  2916 ** compiler is not doing agressive inlining.)  So we use a real function
  2917 ** for MSVC and a macro for everything else.  Ticket #2457.
  2918 */
  2919 #ifndef NDEBUG
  2920   static void assertCellInfo(BtCursor *pCur){
  2921     CellInfo info;
  2922     memset(&info, 0, sizeof(info));
  2923     sqlite3BtreeParseCell(pCur->pPage, pCur->idx, &info);
  2924     assert( memcmp(&info, &pCur->info, sizeof(info))==0 );
  2925   }
  2926 #else
  2927   #define assertCellInfo(x)
  2928 #endif
  2929 #ifdef _MSC_VER
  2930   /* Use a real function in MSVC to work around bugs in that compiler. */
  2931   static void getCellInfo(BtCursor *pCur){
  2932     if( pCur->info.nSize==0 ){
  2933       sqlite3BtreeParseCell(pCur->pPage, pCur->idx, &pCur->info);
  2934       pCur->validNKey = 1;
  2935     }else{
  2936       assertCellInfo(pCur);
  2937     }
  2938   }
  2939 #else /* if not _MSC_VER */
  2940   /* Use a macro in all other compilers so that the function is inlined */
  2941 #define getCellInfo(pCur)                                               \
  2942   if( pCur->info.nSize==0 ){                                            \
  2943     sqlite3BtreeParseCell(pCur->pPage, pCur->idx, &pCur->info);         \
  2944     pCur->validNKey = 1;                                                \
  2945   }else{                                                                \
  2946     assertCellInfo(pCur);                                               \
  2947   }
  2948 #endif /* _MSC_VER */
  2949 
  2950 /*
  2951 ** Set *pSize to the size of the buffer needed to hold the value of
  2952 ** the key for the current entry.  If the cursor is not pointing
  2953 ** to a valid entry, *pSize is set to 0. 
  2954 **
  2955 ** For a table with the INTKEY flag set, this routine returns the key
  2956 ** itself, not the number of bytes in the key.
  2957 */
  2958 int sqlite3BtreeKeySize(BtCursor *pCur, i64 *pSize){
  2959   int rc;
  2960 
  2961   assert( cursorHoldsMutex(pCur) );
  2962   rc = restoreCursorPosition(pCur);
  2963   if( rc==SQLITE_OK ){
  2964     assert( pCur->eState==CURSOR_INVALID || pCur->eState==CURSOR_VALID );
  2965     if( pCur->eState==CURSOR_INVALID ){
  2966       *pSize = 0;
  2967     }else{
  2968       getCellInfo(pCur);
  2969       *pSize = pCur->info.nKey;
  2970     }
  2971   }
  2972   return rc;
  2973 }
  2974 
  2975 /*
  2976 ** Set *pSize to the number of bytes of data in the entry the
  2977 ** cursor currently points to.  Always return SQLITE_OK.
  2978 ** Failure is not possible.  If the cursor is not currently
  2979 ** pointing to an entry (which can happen, for example, if
  2980 ** the database is empty) then *pSize is set to 0.
  2981 */
  2982 int sqlite3BtreeDataSize(BtCursor *pCur, u32 *pSize){
  2983   int rc;
  2984 
  2985   assert( cursorHoldsMutex(pCur) );
  2986   rc = restoreCursorPosition(pCur);
  2987   if( rc==SQLITE_OK ){
  2988     assert( pCur->eState==CURSOR_INVALID || pCur->eState==CURSOR_VALID );
  2989     if( pCur->eState==CURSOR_INVALID ){
  2990       /* Not pointing at a valid entry - set *pSize to 0. */
  2991       *pSize = 0;
  2992     }else{
  2993       getCellInfo(pCur);
  2994       *pSize = pCur->info.nData;
  2995     }
  2996   }
  2997   return rc;
  2998 }
  2999 
  3000 /*
  3001 ** Given the page number of an overflow page in the database (parameter
  3002 ** ovfl), this function finds the page number of the next page in the 
  3003 ** linked list of overflow pages. If possible, it uses the auto-vacuum
  3004 ** pointer-map data instead of reading the content of page ovfl to do so. 
  3005 **
  3006 ** If an error occurs an SQLite error code is returned. Otherwise:
  3007 **
  3008 ** Unless pPgnoNext is NULL, the page number of the next overflow 
  3009 ** page in the linked list is written to *pPgnoNext. If page ovfl
  3010 ** is the last page in its linked list, *pPgnoNext is set to zero. 
  3011 **
  3012 ** If ppPage is not NULL, *ppPage is set to the MemPage* handle
  3013 ** for page ovfl. The underlying pager page may have been requested
  3014 ** with the noContent flag set, so the page data accessable via
  3015 ** this handle may not be trusted.
  3016 */
  3017 static int getOverflowPage(
  3018   BtShared *pBt, 
  3019   Pgno ovfl,                   /* Overflow page */
  3020   MemPage **ppPage,            /* OUT: MemPage handle */
  3021   Pgno *pPgnoNext              /* OUT: Next overflow page number */
  3022 ){
  3023   Pgno next = 0;
  3024   int rc = SQLITE_OK;          /* Initialized to placate warning */
  3025 
  3026   assert( sqlite3_mutex_held(pBt->mutex) );
  3027   /* One of these must not be NULL. Otherwise, why call this function? */
  3028   assert(ppPage || pPgnoNext);
  3029 
  3030   /* If pPgnoNext is NULL, then this function is being called to obtain
  3031   ** a MemPage* reference only. No page-data is required in this case.
  3032   */
  3033   if( !pPgnoNext ){
  3034     return sqlite3BtreeGetPage(pBt, ovfl, ppPage, 1);
  3035   }
  3036 
  3037 #ifndef SQLITE_OMIT_AUTOVACUUM
  3038   /* Try to find the next page in the overflow list using the
  3039   ** autovacuum pointer-map pages. Guess that the next page in 
  3040   ** the overflow list is page number (ovfl+1). If that guess turns 
  3041   ** out to be wrong, fall back to loading the data of page 
  3042   ** number ovfl to determine the next page number.
  3043   */
  3044   if( pBt->autoVacuum ){
  3045     Pgno pgno;
  3046     Pgno iGuess = ovfl+1;
  3047     u8 eType;
  3048 
  3049     while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){
  3050       iGuess++;
  3051     }
  3052 
  3053     if( iGuess<=pagerPagecount(pBt->pPager) ){
  3054       rc = ptrmapGet(pBt, iGuess, &eType, &pgno);
  3055       if( rc!=SQLITE_OK ){
  3056         return rc;
  3057       }
  3058       if( eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){
  3059         next = iGuess;
  3060       }
  3061     }
  3062   }
  3063 #endif
  3064 
  3065   if( next==0 || ppPage ){
  3066     MemPage *pPage = 0;
  3067 
  3068     rc = sqlite3BtreeGetPage(pBt, ovfl, &pPage, next!=0);
  3069     assert(rc==SQLITE_OK || pPage==0);
  3070     if( next==0 && rc==SQLITE_OK ){
  3071       next = get4byte(pPage->aData);
  3072     }
  3073 
  3074     if( ppPage ){
  3075       *ppPage = pPage;
  3076     }else{
  3077       releasePage(pPage);
  3078     }
  3079   }
  3080   *pPgnoNext = next;
  3081 
  3082   return rc;
  3083 }
  3084 
  3085 /*
  3086 ** Copy data from a buffer to a page, or from a page to a buffer.
  3087 **
  3088 ** pPayload is a pointer to data stored on database page pDbPage.
  3089 ** If argument eOp is false, then nByte bytes of data are copied
  3090 ** from pPayload to the buffer pointed at by pBuf. If eOp is true,
  3091 ** then sqlite3PagerWrite() is called on pDbPage and nByte bytes
  3092 ** of data are copied from the buffer pBuf to pPayload.
  3093 **
  3094 ** SQLITE_OK is returned on success, otherwise an error code.
  3095 */
  3096 static int copyPayload(
  3097   void *pPayload,           /* Pointer to page data */
  3098   void *pBuf,               /* Pointer to buffer */
  3099   int nByte,                /* Number of bytes to copy */
  3100   int eOp,                  /* 0 -> copy from page, 1 -> copy to page */
  3101   DbPage *pDbPage           /* Page containing pPayload */
  3102 ){
  3103   if( eOp ){
  3104     /* Copy data from buffer to page (a write operation) */
  3105     int rc = sqlite3PagerWrite(pDbPage);
  3106     if( rc!=SQLITE_OK ){
  3107       return rc;
  3108     }
  3109     memcpy(pPayload, pBuf, nByte);
  3110   }else{
  3111     /* Copy data from page to buffer (a read operation) */
  3112     memcpy(pBuf, pPayload, nByte);
  3113   }
  3114   return SQLITE_OK;
  3115 }
  3116 
  3117 /*
  3118 ** This function is used to read or overwrite payload information
  3119 ** for the entry that the pCur cursor is pointing to. If the eOp
  3120 ** parameter is 0, this is a read operation (data copied into
  3121 ** buffer pBuf). If it is non-zero, a write (data copied from
  3122 ** buffer pBuf).
  3123 **
  3124 ** A total of "amt" bytes are read or written beginning at "offset".
  3125 ** Data is read to or from the buffer pBuf.
  3126 **
  3127 ** This routine does not make a distinction between key and data.
  3128 ** It just reads or writes bytes from the payload area.  Data might 
  3129 ** appear on the main page or be scattered out on multiple overflow 
  3130 ** pages.
  3131 **
  3132 ** If the BtCursor.isIncrblobHandle flag is set, and the current
  3133 ** cursor entry uses one or more overflow pages, this function
  3134 ** allocates space for and lazily popluates the overflow page-list 
  3135 ** cache array (BtCursor.aOverflow). Subsequent calls use this
  3136 ** cache to make seeking to the supplied offset more efficient.
  3137 **
  3138 ** Once an overflow page-list cache has been allocated, it may be
  3139 ** invalidated if some other cursor writes to the same table, or if
  3140 ** the cursor is moved to a different row. Additionally, in auto-vacuum
  3141 ** mode, the following events may invalidate an overflow page-list cache.
  3142 **
  3143 **   * An incremental vacuum,
  3144 **   * A commit in auto_vacuum="full" mode,
  3145 **   * Creating a table (may require moving an overflow page).
  3146 */
  3147 static int accessPayload(
  3148   BtCursor *pCur,      /* Cursor pointing to entry to read from */
  3149   int offset,          /* Begin reading this far into payload */
  3150   int amt,             /* Read this many bytes */
  3151   unsigned char *pBuf, /* Write the bytes into this buffer */ 
  3152   int skipKey,         /* offset begins at data if this is true */
  3153   int eOp              /* zero to read. non-zero to write. */
  3154 ){
  3155   unsigned char *aPayload;
  3156   int rc = SQLITE_OK;
  3157   u32 nKey;
  3158   int iIdx = 0;
  3159   MemPage *pPage = pCur->pPage;     /* Btree page of current cursor entry */
  3160   BtShared *pBt;                   /* Btree this cursor belongs to */
  3161 
  3162   assert( pPage );
  3163   assert( pCur->eState==CURSOR_VALID );
  3164   assert( pCur->idx>=0 && pCur->idx<pPage->nCell );
  3165   assert( offset>=0 );
  3166   assert( cursorHoldsMutex(pCur) );
  3167 
  3168   getCellInfo(pCur);
  3169   aPayload = pCur->info.pCell + pCur->info.nHeader;
  3170   nKey = (pPage->intKey ? 0 : pCur->info.nKey);
  3171 
  3172   if( skipKey ){
  3173     offset += nKey;
  3174   }
  3175   if( offset+amt > nKey+pCur->info.nData ){
  3176     /* Trying to read or write past the end of the data is an error */
  3177     return SQLITE_ERROR;
  3178   }
  3179 
  3180   /* Check if data must be read/written to/from the btree page itself. */
  3181   if( offset<pCur->info.nLocal ){
  3182     int a = amt;
  3183     if( a+offset>pCur->info.nLocal ){
  3184       a = pCur->info.nLocal - offset;
  3185     }
  3186     rc = copyPayload(&aPayload[offset], pBuf, a, eOp, pPage->pDbPage);
  3187     offset = 0;
  3188     pBuf += a;
  3189     amt -= a;
  3190   }else{
  3191     offset -= pCur->info.nLocal;
  3192   }
  3193 
  3194   pBt = pCur->pBt;
  3195   if( rc==SQLITE_OK && amt>0 ){
  3196     const int ovflSize = pBt->usableSize - 4;  /* Bytes content per ovfl page */
  3197     Pgno nextPage;
  3198 
  3199     nextPage = get4byte(&aPayload[pCur->info.nLocal]);
  3200 
  3201 #ifndef SQLITE_OMIT_INCRBLOB
  3202     /* If the isIncrblobHandle flag is set and the BtCursor.aOverflow[]
  3203     ** has not been allocated, allocate it now. The array is sized at
  3204     ** one entry for each overflow page in the overflow chain. The
  3205     ** page number of the first overflow page is stored in aOverflow[0],
  3206     ** etc. A value of 0 in the aOverflow[] array means "not yet known"
  3207     ** (the cache is lazily populated).
  3208     */
  3209     if( pCur->isIncrblobHandle && !pCur->aOverflow ){
  3210       int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize;
  3211       pCur->aOverflow = (Pgno *)sqlite3MallocZero(sizeof(Pgno)*nOvfl);
  3212       if( nOvfl && !pCur->aOverflow ){
  3213         rc = SQLITE_NOMEM;
  3214       }
  3215     }
  3216 
  3217     /* If the overflow page-list cache has been allocated and the
  3218     ** entry for the first required overflow page is valid, skip
  3219     ** directly to it.
  3220     */
  3221     if( pCur->aOverflow && pCur->aOverflow[offset/ovflSize] ){
  3222       iIdx = (offset/ovflSize);
  3223       nextPage = pCur->aOverflow[iIdx];
  3224       offset = (offset%ovflSize);
  3225     }
  3226 #endif
  3227 
  3228     for( ; rc==SQLITE_OK && amt>0 && nextPage; iIdx++){
  3229 
  3230 #ifndef SQLITE_OMIT_INCRBLOB
  3231       /* If required, populate the overflow page-list cache. */
  3232       if( pCur->aOverflow ){
  3233         assert(!pCur->aOverflow[iIdx] || pCur->aOverflow[iIdx]==nextPage);
  3234         pCur->aOverflow[iIdx] = nextPage;
  3235       }
  3236 #endif
  3237 
  3238       if( offset>=ovflSize ){
  3239         /* The only reason to read this page is to obtain the page
  3240         ** number for the next page in the overflow chain. The page
  3241         ** data is not required. So first try to lookup the overflow
  3242         ** page-list cache, if any, then fall back to the getOverflowPage()
  3243         ** function.
  3244         */
  3245 #ifndef SQLITE_OMIT_INCRBLOB
  3246         if( pCur->aOverflow && pCur->aOverflow[iIdx+1] ){
  3247           nextPage = pCur->aOverflow[iIdx+1];
  3248         } else 
  3249 #endif
  3250           rc = getOverflowPage(pBt, nextPage, 0, &nextPage);
  3251         offset -= ovflSize;
  3252       }else{
  3253         /* Need to read this page properly. It contains some of the
  3254         ** range of data that is being read (eOp==0) or written (eOp!=0).
  3255         */
  3256         DbPage *pDbPage;
  3257         int a = amt;
  3258         rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage);
  3259         if( rc==SQLITE_OK ){
  3260           aPayload = sqlite3PagerGetData(pDbPage);
  3261           nextPage = get4byte(aPayload);
  3262           if( a + offset > ovflSize ){
  3263             a = ovflSize - offset;
  3264           }
  3265           rc = copyPayload(&aPayload[offset+4], pBuf, a, eOp, pDbPage);
  3266           sqlite3PagerUnref(pDbPage);
  3267           offset = 0;
  3268           amt -= a;
  3269           pBuf += a;
  3270         }
  3271       }
  3272     }
  3273   }
  3274 
  3275   if( rc==SQLITE_OK && amt>0 ){
  3276     return SQLITE_CORRUPT_BKPT;
  3277   }
  3278   return rc;
  3279 }
  3280 
  3281 /*
  3282 ** Read part of the key associated with cursor pCur.  Exactly
  3283 ** "amt" bytes will be transfered into pBuf[].  The transfer
  3284 ** begins at "offset".
  3285 **
  3286 ** Return SQLITE_OK on success or an error code if anything goes
  3287 ** wrong.  An error is returned if "offset+amt" is larger than
  3288 ** the available payload.
  3289 */
  3290 int sqlite3BtreeKey(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
  3291   int rc;
  3292 
  3293   assert( cursorHoldsMutex(pCur) );
  3294   rc = restoreCursorPosition(pCur);
  3295   if( rc==SQLITE_OK ){
  3296     assert( pCur->eState==CURSOR_VALID );
  3297     assert( pCur->pPage!=0 );
  3298     if( pCur->pPage->intKey ){
  3299       return SQLITE_CORRUPT_BKPT;
  3300     }
  3301     assert( pCur->pPage->intKey==0 );
  3302     assert( pCur->idx>=0 && pCur->idx<pCur->pPage->nCell );
  3303     rc = accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0, 0);
  3304   }
  3305   return rc;
  3306 }
  3307 
  3308 /*
  3309 ** Read part of the data associated with cursor pCur.  Exactly
  3310 ** "amt" bytes will be transfered into pBuf[].  The transfer
  3311 ** begins at "offset".
  3312 **
  3313 ** Return SQLITE_OK on success or an error code if anything goes
  3314 ** wrong.  An error is returned if "offset+amt" is larger than
  3315 ** the available payload.
  3316 */
  3317 int sqlite3BtreeData(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
  3318   int rc;
  3319 
  3320 #ifndef SQLITE_OMIT_INCRBLOB
  3321   if ( pCur->eState==CURSOR_INVALID ){
  3322     return SQLITE_ABORT;
  3323   }
  3324 #endif
  3325 
  3326   assert( cursorHoldsMutex(pCur) );
  3327   rc = restoreCursorPosition(pCur);
  3328   if( rc==SQLITE_OK ){
  3329     assert( pCur->eState==CURSOR_VALID );
  3330     assert( pCur->pPage!=0 );
  3331     assert( pCur->idx>=0 && pCur->idx<pCur->pPage->nCell );
  3332     rc = accessPayload(pCur, offset, amt, pBuf, 1, 0);
  3333   }
  3334   return rc;
  3335 }
  3336 
  3337 /*
  3338 ** Return a pointer to payload information from the entry that the 
  3339 ** pCur cursor is pointing to.  The pointer is to the beginning of
  3340 ** the key if skipKey==0 and it points to the beginning of data if
  3341 ** skipKey==1.  The number of bytes of available key/data is written
  3342 ** into *pAmt.  If *pAmt==0, then the value returned will not be
  3343 ** a valid pointer.
  3344 **
  3345 ** This routine is an optimization.  It is common for the entire key
  3346 ** and data to fit on the local page and for there to be no overflow
  3347 ** pages.  When that is so, this routine can be used to access the
  3348 ** key and data without making a copy.  If the key and/or data spills
  3349 ** onto overflow pages, then accessPayload() must be used to reassembly
  3350 ** the key/data and copy it into a preallocated buffer.
  3351 **
  3352 ** The pointer returned by this routine looks directly into the cached
  3353 ** page of the database.  The data might change or move the next time
  3354 ** any btree routine is called.
  3355 */
  3356 static const unsigned char *fetchPayload(
  3357   BtCursor *pCur,      /* Cursor pointing to entry to read from */
  3358   int *pAmt,           /* Write the number of available bytes here */
  3359   int skipKey          /* read beginning at data if this is true */
  3360 ){
  3361   unsigned char *aPayload;
  3362   MemPage *pPage;
  3363   u32 nKey;
  3364   int nLocal;
  3365 
  3366   assert( pCur!=0 && pCur->pPage!=0 );
  3367   assert( pCur->eState==CURSOR_VALID );
  3368   assert( cursorHoldsMutex(pCur) );
  3369   pPage = pCur->pPage;
  3370   assert( pCur->idx>=0 && pCur->idx<pPage->nCell );
  3371   getCellInfo(pCur);
  3372   aPayload = pCur->info.pCell;
  3373   aPayload += pCur->info.nHeader;
  3374   if( pPage->intKey ){
  3375     nKey = 0;
  3376   }else{
  3377     nKey = pCur->info.nKey;
  3378   }
  3379   if( skipKey ){
  3380     aPayload += nKey;
  3381     nLocal = pCur->info.nLocal - nKey;
  3382   }else{
  3383     nLocal = pCur->info.nLocal;
  3384     if( nLocal>nKey ){
  3385       nLocal = nKey;
  3386     }
  3387   }
  3388   *pAmt = nLocal;
  3389   return aPayload;
  3390 }
  3391 
  3392 
  3393 /*
  3394 ** For the entry that cursor pCur is point to, return as
  3395 ** many bytes of the key or data as are available on the local
  3396 ** b-tree page.  Write the number of available bytes into *pAmt.
  3397 **
  3398 ** The pointer returned is ephemeral.  The key/data may move
  3399 ** or be destroyed on the next call to any Btree routine,
  3400 ** including calls from other threads against the same cache.
  3401 ** Hence, a mutex on the BtShared should be held prior to calling
  3402 ** this routine.
  3403 **
  3404 ** These routines is used to get quick access to key and data
  3405 ** in the common case where no overflow pages are used.
  3406 */
  3407 const void *sqlite3BtreeKeyFetch(BtCursor *pCur, int *pAmt){
  3408   assert( cursorHoldsMutex(pCur) );
  3409   if( pCur->eState==CURSOR_VALID ){
  3410     return (const void*)fetchPayload(pCur, pAmt, 0);
  3411   }
  3412   return 0;
  3413 }
  3414 const void *sqlite3BtreeDataFetch(BtCursor *pCur, int *pAmt){
  3415   assert( cursorHoldsMutex(pCur) );
  3416   if( pCur->eState==CURSOR_VALID ){
  3417     return (const void*)fetchPayload(pCur, pAmt, 1);
  3418   }
  3419   return 0;
  3420 }
  3421 
  3422 
  3423 /*
  3424 ** Move the cursor down to a new child page.  The newPgno argument is the
  3425 ** page number of the child page to move to.
  3426 */
  3427 static int moveToChild(BtCursor *pCur, u32 newPgno){
  3428   int rc;
  3429   MemPage *pNewPage;
  3430   MemPage *pOldPage;
  3431   BtShared *pBt = pCur->pBt;
  3432 
  3433   assert( cursorHoldsMutex(pCur) );
  3434   assert( pCur->eState==CURSOR_VALID );
  3435   rc = getAndInitPage(pBt, newPgno, &pNewPage, pCur->pPage);
  3436   if( rc ) return rc;
  3437   pNewPage->idxParent = pCur->idx;
  3438   pOldPage = pCur->pPage;
  3439   pOldPage->idxShift = 0;
  3440   releasePage(pOldPage);
  3441   pCur->pPage = pNewPage;
  3442   pCur->idx = 0;
  3443   pCur->info.nSize = 0;
  3444   pCur->validNKey = 0;
  3445   if( pNewPage->nCell<1 ){
  3446     return SQLITE_CORRUPT_BKPT;
  3447   }
  3448   return SQLITE_OK;
  3449 }
  3450 
  3451 /*
  3452 ** Return true if the page is the virtual root of its table.
  3453 **
  3454 ** The virtual root page is the root page for most tables.  But
  3455 ** for the table rooted on page 1, sometime the real root page
  3456 ** is empty except for the right-pointer.  In such cases the
  3457 ** virtual root page is the page that the right-pointer of page
  3458 ** 1 is pointing to.
  3459 */
  3460 int sqlite3BtreeIsRootPage(MemPage *pPage){
  3461   MemPage *pParent;
  3462 
  3463   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  3464   pParent = pPage->pParent;
  3465   if( pParent==0 ) return 1;
  3466   if( pParent->pgno>1 ) return 0;
  3467   if( get2byte(&pParent->aData[pParent->hdrOffset+3])==0 ) return 1;
  3468   return 0;
  3469 }
  3470 
  3471 /*
  3472 ** Move the cursor up to the parent page.
  3473 **
  3474 ** pCur->idx is set to the cell index that contains the pointer
  3475 ** to the page we are coming from.  If we are coming from the
  3476 ** right-most child page then pCur->idx is set to one more than
  3477 ** the largest cell index.
  3478 */
  3479 void sqlite3BtreeMoveToParent(BtCursor *pCur){
  3480   MemPage *pParent;
  3481   MemPage *pPage;
  3482   int idxParent;
  3483 
  3484   assert( cursorHoldsMutex(pCur) );
  3485   assert( pCur->eState==CURSOR_VALID );
  3486   pPage = pCur->pPage;
  3487   assert( pPage!=0 );
  3488   assert( !sqlite3BtreeIsRootPage(pPage) );
  3489   pParent = pPage->pParent;
  3490   assert( pParent!=0 );
  3491   idxParent = pPage->idxParent;
  3492   sqlite3PagerRef(pParent->pDbPage);
  3493   releasePage(pPage);
  3494   pCur->pPage = pParent;
  3495   pCur->info.nSize = 0;
  3496   pCur->validNKey = 0;
  3497   assert( pParent->idxShift==0 );
  3498   pCur->idx = idxParent;
  3499 }
  3500 
  3501 /*
  3502 ** Move the cursor to the root page
  3503 */
  3504 static int moveToRoot(BtCursor *pCur){
  3505   MemPage *pRoot;
  3506   int rc = SQLITE_OK;
  3507   Btree *p = pCur->pBtree;
  3508   BtShared *pBt = p->pBt;
  3509 
  3510   assert( cursorHoldsMutex(pCur) );
  3511   assert( CURSOR_INVALID < CURSOR_REQUIRESEEK );
  3512   assert( CURSOR_VALID   < CURSOR_REQUIRESEEK );
  3513   assert( CURSOR_FAULT   > CURSOR_REQUIRESEEK );
  3514   if( pCur->eState>=CURSOR_REQUIRESEEK ){
  3515     if( pCur->eState==CURSOR_FAULT ){
  3516       return pCur->skip;
  3517     }
  3518     clearCursorPosition(pCur);
  3519   }
  3520   pRoot = pCur->pPage;
  3521   if( pRoot && pRoot->pgno==pCur->pgnoRoot ){
  3522     assert( pRoot->isInit );
  3523   }else{
  3524     if( 
  3525       SQLITE_OK!=(rc = getAndInitPage(pBt, pCur->pgnoRoot, &pRoot, 0))
  3526     ){
  3527       pCur->eState = CURSOR_INVALID;
  3528       return rc;
  3529     }
  3530     releasePage(pCur->pPage);
  3531     pCur->pPage = pRoot;
  3532   }
  3533   pCur->idx = 0;
  3534   pCur->info.nSize = 0;
  3535   pCur->atLast = 0;
  3536   pCur->validNKey = 0;
  3537   if( pRoot->nCell==0 && !pRoot->leaf ){
  3538     Pgno subpage;
  3539     assert( pRoot->pgno==1 );
  3540     subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
  3541     assert( subpage>0 );
  3542     pCur->eState = CURSOR_VALID;
  3543     rc = moveToChild(pCur, subpage);
  3544   }
  3545   pCur->eState = ((pCur->pPage->nCell>0)?CURSOR_VALID:CURSOR_INVALID);
  3546   return rc;
  3547 }
  3548 
  3549 /*
  3550 ** Move the cursor down to the left-most leaf entry beneath the
  3551 ** entry to which it is currently pointing.
  3552 **
  3553 ** The left-most leaf is the one with the smallest key - the first
  3554 ** in ascending order.
  3555 */
  3556 static int moveToLeftmost(BtCursor *pCur){
  3557   Pgno pgno;
  3558   int rc = SQLITE_OK;
  3559   MemPage *pPage;
  3560 
  3561   assert( cursorHoldsMutex(pCur) );
  3562   assert( pCur->eState==CURSOR_VALID );
  3563   while( rc==SQLITE_OK && !(pPage = pCur->pPage)->leaf ){
  3564     assert( pCur->idx>=0 && pCur->idx<pPage->nCell );
  3565     pgno = get4byte(findCell(pPage, pCur->idx));
  3566     rc = moveToChild(pCur, pgno);
  3567   }
  3568   return rc;
  3569 }
  3570 
  3571 /*
  3572 ** Move the cursor down to the right-most leaf entry beneath the
  3573 ** page to which it is currently pointing.  Notice the difference
  3574 ** between moveToLeftmost() and moveToRightmost().  moveToLeftmost()
  3575 ** finds the left-most entry beneath the *entry* whereas moveToRightmost()
  3576 ** finds the right-most entry beneath the *page*.
  3577 **
  3578 ** The right-most entry is the one with the largest key - the last
  3579 ** key in ascending order.
  3580 */
  3581 static int moveToRightmost(BtCursor *pCur){
  3582   Pgno pgno;
  3583   int rc = SQLITE_OK;
  3584   MemPage *pPage;
  3585 
  3586   assert( cursorHoldsMutex(pCur) );
  3587   assert( pCur->eState==CURSOR_VALID );
  3588   while( rc==SQLITE_OK && !(pPage = pCur->pPage)->leaf ){
  3589     pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
  3590     pCur->idx = pPage->nCell;
  3591     rc = moveToChild(pCur, pgno);
  3592   }
  3593   if( rc==SQLITE_OK ){
  3594     pCur->idx = pPage->nCell - 1;
  3595     pCur->info.nSize = 0;
  3596     pCur->validNKey = 0;
  3597   }
  3598   return SQLITE_OK;
  3599 }
  3600 
  3601 /* Move the cursor to the first entry in the table.  Return SQLITE_OK
  3602 ** on success.  Set *pRes to 0 if the cursor actually points to something
  3603 ** or set *pRes to 1 if the table is empty.
  3604 */
  3605 int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
  3606   int rc;
  3607 
  3608   assert( cursorHoldsMutex(pCur) );
  3609   assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
  3610   rc = moveToRoot(pCur);
  3611   if( rc==SQLITE_OK ){
  3612     if( pCur->eState==CURSOR_INVALID ){
  3613       assert( pCur->pPage->nCell==0 );
  3614       *pRes = 1;
  3615       rc = SQLITE_OK;
  3616     }else{
  3617       assert( pCur->pPage->nCell>0 );
  3618       *pRes = 0;
  3619       rc = moveToLeftmost(pCur);
  3620     }
  3621   }
  3622   return rc;
  3623 }
  3624 
  3625 /* Move the cursor to the last entry in the table.  Return SQLITE_OK
  3626 ** on success.  Set *pRes to 0 if the cursor actually points to something
  3627 ** or set *pRes to 1 if the table is empty.
  3628 */
  3629 int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
  3630   int rc;
  3631  
  3632   assert( cursorHoldsMutex(pCur) );
  3633   assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
  3634   rc = moveToRoot(pCur);
  3635   if( rc==SQLITE_OK ){
  3636     if( CURSOR_INVALID==pCur->eState ){
  3637       assert( pCur->pPage->nCell==0 );
  3638       *pRes = 1;
  3639     }else{
  3640       assert( pCur->eState==CURSOR_VALID );
  3641       *pRes = 0;
  3642       rc = moveToRightmost(pCur);
  3643       getCellInfo(pCur);
  3644       pCur->atLast = rc==SQLITE_OK;
  3645     }
  3646   }
  3647   return rc;
  3648 }
  3649 
  3650 /* Move the cursor so that it points to an entry near the key 
  3651 ** specified by pKey/nKey/pUnKey. Return a success code.
  3652 **
  3653 ** For INTKEY tables, only the nKey parameter is used.  pKey 
  3654 ** and pUnKey must be NULL.  For index tables, either pUnKey
  3655 ** must point to a key that has already been unpacked, or else
  3656 ** pKey/nKey describes a blob containing the key.
  3657 **
  3658 ** If an exact match is not found, then the cursor is always
  3659 ** left pointing at a leaf page which would hold the entry if it
  3660 ** were present.  The cursor might point to an entry that comes
  3661 ** before or after the key.
  3662 **
  3663 ** The result of comparing the key with the entry to which the
  3664 ** cursor is written to *pRes if pRes!=NULL.  The meaning of
  3665 ** this value is as follows:
  3666 **
  3667 **     *pRes<0      The cursor is left pointing at an entry that
  3668 **                  is smaller than pKey or if the table is empty
  3669 **                  and the cursor is therefore left point to nothing.
  3670 **
  3671 **     *pRes==0     The cursor is left pointing at an entry that
  3672 **                  exactly matches pKey.
  3673 **
  3674 **     *pRes>0      The cursor is left pointing at an entry that
  3675 **                  is larger than pKey.
  3676 **
  3677 */
  3678 int sqlite3BtreeMoveto(
  3679   BtCursor *pCur,        /* The cursor to be moved */
  3680   const void *pKey,      /* The key content for indices.  Not used by tables */
  3681   UnpackedRecord *pUnKey,/* Unpacked version of pKey */
  3682   i64 nKey,              /* Size of pKey.  Or the key for tables */
  3683   int biasRight,         /* If true, bias the search to the high end */
  3684   int *pRes              /* Search result flag */
  3685 ){
  3686   int rc;
  3687   char aSpace[200];
  3688 
  3689   assert( cursorHoldsMutex(pCur) );
  3690   assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
  3691 
  3692   /* If the cursor is already positioned at the point we are trying
  3693   ** to move to, then just return without doing any work */
  3694   if( pCur->eState==CURSOR_VALID && pCur->validNKey && pCur->pPage->intKey ){
  3695     if( pCur->info.nKey==nKey ){
  3696       *pRes = 0;
  3697       return SQLITE_OK;
  3698     }
  3699     if( pCur->atLast && pCur->info.nKey<nKey ){
  3700       *pRes = -1;
  3701       return SQLITE_OK;
  3702     }
  3703   }
  3704 
  3705 
  3706   rc = moveToRoot(pCur);
  3707   if( rc ){
  3708     return rc;
  3709   }
  3710   assert( pCur->pPage );
  3711   assert( pCur->pPage->isInit );
  3712   if( pCur->eState==CURSOR_INVALID ){
  3713     *pRes = -1;
  3714     assert( pCur->pPage->nCell==0 );
  3715     return SQLITE_OK;
  3716   }
  3717   if( pCur->pPage->intKey ){
  3718     /* We are given an SQL table to search.  The key is the integer
  3719     ** rowid contained in nKey.  pKey and pUnKey should both be NULL */
  3720     assert( pUnKey==0 );
  3721     assert( pKey==0 );
  3722   }else if( pUnKey==0 ){
  3723     /* We are to search an SQL index using a key encoded as a blob.
  3724     ** The blob is found at pKey and is nKey bytes in length.  Unpack
  3725     ** this key so that we can use it. */
  3726     assert( pKey!=0 );
  3727     pUnKey = sqlite3VdbeRecordUnpack(pCur->pKeyInfo, nKey, pKey,
  3728                                    aSpace, sizeof(aSpace));
  3729     if( pUnKey==0 ) return SQLITE_NOMEM;
  3730   }else{
  3731     /* We are to search an SQL index using a key that is already unpacked
  3732     ** and handed to us in pUnKey. */
  3733     assert( pKey==0 );
  3734   }
  3735   for(;;){
  3736     int lwr, upr;
  3737     Pgno chldPg;
  3738     MemPage *pPage = pCur->pPage;
  3739     int c = -1;  /* pRes return if table is empty must be -1 */
  3740     lwr = 0;
  3741     upr = pPage->nCell-1;
  3742     if( !pPage->intKey && pUnKey==0 ){
  3743       rc = SQLITE_CORRUPT_BKPT;
  3744       goto moveto_finish;
  3745     }
  3746     if( biasRight ){
  3747       pCur->idx = upr;
  3748     }else{
  3749       pCur->idx = (upr+lwr)/2;
  3750     }
  3751     if( lwr<=upr ) for(;;){
  3752       void *pCellKey;
  3753       i64 nCellKey;
  3754       pCur->info.nSize = 0;
  3755       pCur->validNKey = 1;
  3756       if( pPage->intKey ){
  3757         u8 *pCell;
  3758         pCell = findCell(pPage, pCur->idx) + pPage->childPtrSize;
  3759         if( pPage->hasData ){
  3760           u32 dummy;
  3761           pCell += getVarint32(pCell, dummy);
  3762         }
  3763         getVarint(pCell, (u64*)&nCellKey);
  3764         if( nCellKey==nKey ){
  3765           c = 0;
  3766         }else if( nCellKey<nKey ){
  3767           c = -1;
  3768         }else{
  3769           assert( nCellKey>nKey );
  3770           c = +1;
  3771         }
  3772       }else{
  3773         int available;
  3774         pCellKey = (void *)fetchPayload(pCur, &available, 0);
  3775         nCellKey = pCur->info.nKey;
  3776         if( available>=nCellKey ){
  3777           c = sqlite3VdbeRecordCompare(nCellKey, pCellKey, pUnKey);
  3778         }else{
  3779           pCellKey = sqlite3Malloc( nCellKey );
  3780           if( pCellKey==0 ){
  3781             rc = SQLITE_NOMEM;
  3782             goto moveto_finish;
  3783           }
  3784           rc = sqlite3BtreeKey(pCur, 0, nCellKey, (void *)pCellKey);
  3785           c = sqlite3VdbeRecordCompare(nCellKey, pCellKey, pUnKey);
  3786           sqlite3_free(pCellKey);
  3787           if( rc ) goto moveto_finish;
  3788         }
  3789       }
  3790       if( c==0 ){
  3791         pCur->info.nKey = nCellKey;
  3792         if( pPage->intKey && !pPage->leaf ){
  3793           lwr = pCur->idx;
  3794           upr = lwr - 1;
  3795           break;
  3796         }else{
  3797           if( pRes ) *pRes = 0;
  3798           rc = SQLITE_OK;
  3799           goto moveto_finish;
  3800         }
  3801       }
  3802       if( c<0 ){
  3803         lwr = pCur->idx+1;
  3804       }else{
  3805         upr = pCur->idx-1;
  3806       }
  3807       if( lwr>upr ){
  3808         pCur->info.nKey = nCellKey;
  3809         break;
  3810       }
  3811       pCur->idx = (lwr+upr)/2;
  3812     }
  3813     assert( lwr==upr+1 );
  3814     assert( pPage->isInit );
  3815     if( pPage->leaf ){
  3816       chldPg = 0;
  3817     }else if( lwr>=pPage->nCell ){
  3818       chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
  3819     }else{
  3820       chldPg = get4byte(findCell(pPage, lwr));
  3821     }
  3822     if( chldPg==0 ){
  3823       assert( pCur->idx>=0 && pCur->idx<pCur->pPage->nCell );
  3824       if( pRes ) *pRes = c;
  3825       rc = SQLITE_OK;
  3826       goto moveto_finish;
  3827     }
  3828     pCur->idx = lwr;
  3829     pCur->info.nSize = 0;
  3830     pCur->validNKey = 0;
  3831     rc = moveToChild(pCur, chldPg);
  3832     if( rc ) goto moveto_finish;
  3833   }
  3834 moveto_finish:
  3835   if( pKey ){
  3836     /* If we created our own unpacked key at the top of this
  3837     ** procedure, then destroy that key before returning. */
  3838     sqlite3VdbeDeleteUnpackedRecord(pUnKey);
  3839   }
  3840   return rc;
  3841 }
  3842 
  3843 
  3844 /*
  3845 ** Return TRUE if the cursor is not pointing at an entry of the table.
  3846 **
  3847 ** TRUE will be returned after a call to sqlite3BtreeNext() moves
  3848 ** past the last entry in the table or sqlite3BtreePrev() moves past
  3849 ** the first entry.  TRUE is also returned if the table is empty.
  3850 */
  3851 int sqlite3BtreeEof(BtCursor *pCur){
  3852   /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
  3853   ** have been deleted? This API will need to change to return an error code
  3854   ** as well as the boolean result value.
  3855   */
  3856   return (CURSOR_VALID!=pCur->eState);
  3857 }
  3858 
  3859 /*
  3860 ** Return the database connection handle for a cursor.
  3861 */
  3862 sqlite3 *sqlite3BtreeCursorDb(const BtCursor *pCur){
  3863   assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
  3864   return pCur->pBtree->db;
  3865 }
  3866 
  3867 /*
  3868 ** Advance the cursor to the next entry in the database.  If
  3869 ** successful then set *pRes=0.  If the cursor
  3870 ** was already pointing to the last entry in the database before
  3871 ** this routine was called, then set *pRes=1.
  3872 */
  3873 int sqlite3BtreeNext(BtCursor *pCur, int *pRes){
  3874   int rc;
  3875   MemPage *pPage;
  3876 
  3877   assert( cursorHoldsMutex(pCur) );
  3878   rc = restoreCursorPosition(pCur);
  3879   if( rc!=SQLITE_OK ){
  3880     return rc;
  3881   }
  3882   assert( pRes!=0 );
  3883   pPage = pCur->pPage;
  3884   if( CURSOR_INVALID==pCur->eState ){
  3885     *pRes = 1;
  3886     return SQLITE_OK;
  3887   }
  3888   if( pCur->skip>0 ){
  3889     pCur->skip = 0;
  3890     *pRes = 0;
  3891     return SQLITE_OK;
  3892   }
  3893   pCur->skip = 0;
  3894 
  3895   assert( pPage->isInit );
  3896   assert( pCur->idx<pPage->nCell );
  3897 
  3898   pCur->idx++;
  3899   pCur->info.nSize = 0;
  3900   pCur->validNKey = 0;
  3901   if( pCur->idx>=pPage->nCell ){
  3902     if( !pPage->leaf ){
  3903       rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
  3904       if( rc ) return rc;
  3905       rc = moveToLeftmost(pCur);
  3906       *pRes = 0;
  3907       return rc;
  3908     }
  3909     do{
  3910       if( sqlite3BtreeIsRootPage(pPage) ){
  3911         *pRes = 1;
  3912         pCur->eState = CURSOR_INVALID;
  3913         return SQLITE_OK;
  3914       }
  3915       sqlite3BtreeMoveToParent(pCur);
  3916       pPage = pCur->pPage;
  3917     }while( pCur->idx>=pPage->nCell );
  3918     *pRes = 0;
  3919     if( pPage->intKey ){
  3920       rc = sqlite3BtreeNext(pCur, pRes);
  3921     }else{
  3922       rc = SQLITE_OK;
  3923     }
  3924     return rc;
  3925   }
  3926   *pRes = 0;
  3927   if( pPage->leaf ){
  3928     return SQLITE_OK;
  3929   }
  3930   rc = moveToLeftmost(pCur);
  3931   return rc;
  3932 }
  3933 
  3934 
  3935 /*
  3936 ** Step the cursor to the back to the previous entry in the database.  If
  3937 ** successful then set *pRes=0.  If the cursor
  3938 ** was already pointing to the first entry in the database before
  3939 ** this routine was called, then set *pRes=1.
  3940 */
  3941 int sqlite3BtreePrevious(BtCursor *pCur, int *pRes){
  3942   int rc;
  3943   Pgno pgno;
  3944   MemPage *pPage;
  3945 
  3946   assert( cursorHoldsMutex(pCur) );
  3947   rc = restoreCursorPosition(pCur);
  3948   if( rc!=SQLITE_OK ){
  3949     return rc;
  3950   }
  3951   pCur->atLast = 0;
  3952   if( CURSOR_INVALID==pCur->eState ){
  3953     *pRes = 1;
  3954     return SQLITE_OK;
  3955   }
  3956   if( pCur->skip<0 ){
  3957     pCur->skip = 0;
  3958     *pRes = 0;
  3959     return SQLITE_OK;
  3960   }
  3961   pCur->skip = 0;
  3962 
  3963   pPage = pCur->pPage;
  3964   assert( pPage->isInit );
  3965   assert( pCur->idx>=0 );
  3966   if( !pPage->leaf ){
  3967     pgno = get4byte( findCell(pPage, pCur->idx) );
  3968     rc = moveToChild(pCur, pgno);
  3969     if( rc ){
  3970       return rc;
  3971     }
  3972     rc = moveToRightmost(pCur);
  3973   }else{
  3974     while( pCur->idx==0 ){
  3975       if( sqlite3BtreeIsRootPage(pPage) ){
  3976         pCur->eState = CURSOR_INVALID;
  3977         *pRes = 1;
  3978         return SQLITE_OK;
  3979       }
  3980       sqlite3BtreeMoveToParent(pCur);
  3981       pPage = pCur->pPage;
  3982     }
  3983     pCur->idx--;
  3984     pCur->info.nSize = 0;
  3985     pCur->validNKey = 0;
  3986     if( pPage->intKey && !pPage->leaf ){
  3987       rc = sqlite3BtreePrevious(pCur, pRes);
  3988     }else{
  3989       rc = SQLITE_OK;
  3990     }
  3991   }
  3992   *pRes = 0;
  3993   return rc;
  3994 }
  3995 
  3996 /*
  3997 ** Allocate a new page from the database file.
  3998 **
  3999 ** The new page is marked as dirty.  (In other words, sqlite3PagerWrite()
  4000 ** has already been called on the new page.)  The new page has also
  4001 ** been referenced and the calling routine is responsible for calling
  4002 ** sqlite3PagerUnref() on the new page when it is done.
  4003 **
  4004 ** SQLITE_OK is returned on success.  Any other return value indicates
  4005 ** an error.  *ppPage and *pPgno are undefined in the event of an error.
  4006 ** Do not invoke sqlite3PagerUnref() on *ppPage if an error is returned.
  4007 **
  4008 ** If the "nearby" parameter is not 0, then a (feeble) effort is made to 
  4009 ** locate a page close to the page number "nearby".  This can be used in an
  4010 ** attempt to keep related pages close to each other in the database file,
  4011 ** which in turn can make database access faster.
  4012 **
  4013 ** If the "exact" parameter is not 0, and the page-number nearby exists 
  4014 ** anywhere on the free-list, then it is guarenteed to be returned. This
  4015 ** is only used by auto-vacuum databases when allocating a new table.
  4016 */
  4017 static int allocateBtreePage(
  4018   BtShared *pBt, 
  4019   MemPage **ppPage, 
  4020   Pgno *pPgno, 
  4021   Pgno nearby,
  4022   u8 exact
  4023 ){
  4024   MemPage *pPage1;
  4025   int rc;
  4026   int n;     /* Number of pages on the freelist */
  4027   int k;     /* Number of leaves on the trunk of the freelist */
  4028   MemPage *pTrunk = 0;
  4029   MemPage *pPrevTrunk = 0;
  4030 
  4031   assert( sqlite3_mutex_held(pBt->mutex) );
  4032   pPage1 = pBt->pPage1;
  4033   n = get4byte(&pPage1->aData[36]);
  4034   if( n>0 ){
  4035     /* There are pages on the freelist.  Reuse one of those pages. */
  4036     Pgno iTrunk;
  4037     u8 searchList = 0; /* If the free-list must be searched for 'nearby' */
  4038     
  4039     /* If the 'exact' parameter was true and a query of the pointer-map
  4040     ** shows that the page 'nearby' is somewhere on the free-list, then
  4041     ** the entire-list will be searched for that page.
  4042     */
  4043 #ifndef SQLITE_OMIT_AUTOVACUUM
  4044     if( exact && nearby<=pagerPagecount(pBt->pPager) ){
  4045       u8 eType;
  4046       assert( nearby>0 );
  4047       assert( pBt->autoVacuum );
  4048       rc = ptrmapGet(pBt, nearby, &eType, 0);
  4049       if( rc ) return rc;
  4050       if( eType==PTRMAP_FREEPAGE ){
  4051         searchList = 1;
  4052       }
  4053       *pPgno = nearby;
  4054     }
  4055 #endif
  4056 
  4057     /* Decrement the free-list count by 1. Set iTrunk to the index of the
  4058     ** first free-list trunk page. iPrevTrunk is initially 1.
  4059     */
  4060     rc = sqlite3PagerWrite(pPage1->pDbPage);
  4061     if( rc ) return rc;
  4062     put4byte(&pPage1->aData[36], n-1);
  4063 
  4064     /* The code within this loop is run only once if the 'searchList' variable
  4065     ** is not true. Otherwise, it runs once for each trunk-page on the
  4066     ** free-list until the page 'nearby' is located.
  4067     */
  4068     do {
  4069       pPrevTrunk = pTrunk;
  4070       if( pPrevTrunk ){
  4071         iTrunk = get4byte(&pPrevTrunk->aData[0]);
  4072       }else{
  4073         iTrunk = get4byte(&pPage1->aData[32]);
  4074       }
  4075       rc = sqlite3BtreeGetPage(pBt, iTrunk, &pTrunk, 0);
  4076       if( rc ){
  4077         pTrunk = 0;
  4078         goto end_allocate_page;
  4079       }
  4080 
  4081       k = get4byte(&pTrunk->aData[4]);
  4082       if( k==0 && !searchList ){
  4083         /* The trunk has no leaves and the list is not being searched. 
  4084         ** So extract the trunk page itself and use it as the newly 
  4085         ** allocated page */
  4086         assert( pPrevTrunk==0 );
  4087         rc = sqlite3PagerWrite(pTrunk->pDbPage);
  4088         if( rc ){
  4089           goto end_allocate_page;
  4090         }
  4091         *pPgno = iTrunk;
  4092         memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
  4093         *ppPage = pTrunk;
  4094         pTrunk = 0;
  4095         TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
  4096       }else if( k>pBt->usableSize/4 - 2 ){
  4097         /* Value of k is out of range.  Database corruption */
  4098         rc = SQLITE_CORRUPT_BKPT;
  4099         goto end_allocate_page;
  4100 #ifndef SQLITE_OMIT_AUTOVACUUM
  4101       }else if( searchList && nearby==iTrunk ){
  4102         /* The list is being searched and this trunk page is the page
  4103         ** to allocate, regardless of whether it has leaves.
  4104         */
  4105         assert( *pPgno==iTrunk );
  4106         *ppPage = pTrunk;
  4107         searchList = 0;
  4108         rc = sqlite3PagerWrite(pTrunk->pDbPage);
  4109         if( rc ){
  4110           goto end_allocate_page;
  4111         }
  4112         if( k==0 ){
  4113           if( !pPrevTrunk ){
  4114             memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
  4115           }else{
  4116             memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4);
  4117           }
  4118         }else{
  4119           /* The trunk page is required by the caller but it contains 
  4120           ** pointers to free-list leaves. The first leaf becomes a trunk
  4121           ** page in this case.
  4122           */
  4123           MemPage *pNewTrunk;
  4124           Pgno iNewTrunk = get4byte(&pTrunk->aData[8]);
  4125           rc = sqlite3BtreeGetPage(pBt, iNewTrunk, &pNewTrunk, 0);
  4126           if( rc!=SQLITE_OK ){
  4127             goto end_allocate_page;
  4128           }
  4129           rc = sqlite3PagerWrite(pNewTrunk->pDbPage);
  4130           if( rc!=SQLITE_OK ){
  4131             releasePage(pNewTrunk);
  4132             goto end_allocate_page;
  4133           }
  4134           memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4);
  4135           put4byte(&pNewTrunk->aData[4], k-1);
  4136           memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4);
  4137           releasePage(pNewTrunk);
  4138           if( !pPrevTrunk ){
  4139             put4byte(&pPage1->aData[32], iNewTrunk);
  4140           }else{
  4141             rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
  4142             if( rc ){
  4143               goto end_allocate_page;
  4144             }
  4145             put4byte(&pPrevTrunk->aData[0], iNewTrunk);
  4146           }
  4147         }
  4148         pTrunk = 0;
  4149         TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
  4150 #endif
  4151       }else{
  4152         /* Extract a leaf from the trunk */
  4153         int closest;
  4154         Pgno iPage;
  4155         unsigned char *aData = pTrunk->aData;
  4156         rc = sqlite3PagerWrite(pTrunk->pDbPage);
  4157         if( rc ){
  4158           goto end_allocate_page;
  4159         }
  4160         if( nearby>0 ){
  4161           int i, dist;
  4162           closest = 0;
  4163           dist = get4byte(&aData[8]) - nearby;
  4164           if( dist<0 ) dist = -dist;
  4165           for(i=1; i<k; i++){
  4166             int d2 = get4byte(&aData[8+i*4]) - nearby;
  4167             if( d2<0 ) d2 = -d2;
  4168             if( d2<dist ){
  4169               closest = i;
  4170               dist = d2;
  4171             }
  4172           }
  4173         }else{
  4174           closest = 0;
  4175         }
  4176 
  4177         iPage = get4byte(&aData[8+closest*4]);
  4178         if( !searchList || iPage==nearby ){
  4179           int nPage;
  4180           *pPgno = iPage;
  4181           nPage = pagerPagecount(pBt->pPager);
  4182           if( *pPgno>nPage ){
  4183             /* Free page off the end of the file */
  4184             rc = SQLITE_CORRUPT_BKPT;
  4185             goto end_allocate_page;
  4186           }
  4187           TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
  4188                  ": %d more free pages\n",
  4189                  *pPgno, closest+1, k, pTrunk->pgno, n-1));
  4190           if( closest<k-1 ){
  4191             memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
  4192           }
  4193           put4byte(&aData[4], k-1);
  4194           rc = sqlite3BtreeGetPage(pBt, *pPgno, ppPage, 1);
  4195           if( rc==SQLITE_OK ){
  4196             sqlite3PagerDontRollback((*ppPage)->pDbPage);
  4197             rc = sqlite3PagerWrite((*ppPage)->pDbPage);
  4198             if( rc!=SQLITE_OK ){
  4199               releasePage(*ppPage);
  4200             }
  4201           }
  4202           searchList = 0;
  4203         }
  4204       }
  4205       releasePage(pPrevTrunk);
  4206       pPrevTrunk = 0;
  4207     }while( searchList );
  4208   }else{
  4209     /* There are no pages on the freelist, so create a new page at the
  4210     ** end of the file */
  4211     int nPage = pagerPagecount(pBt->pPager);
  4212     *pPgno = nPage + 1;
  4213 
  4214 #ifndef SQLITE_OMIT_AUTOVACUUM
  4215     if( pBt->nTrunc ){
  4216       /* An incr-vacuum has already run within this transaction. So the
  4217       ** page to allocate is not from the physical end of the file, but
  4218       ** at pBt->nTrunc. 
  4219       */
  4220       *pPgno = pBt->nTrunc+1;
  4221       if( *pPgno==PENDING_BYTE_PAGE(pBt) ){
  4222         (*pPgno)++;
  4223       }
  4224     }
  4225     if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, *pPgno) ){
  4226       /* If *pPgno refers to a pointer-map page, allocate two new pages
  4227       ** at the end of the file instead of one. The first allocated page
  4228       ** becomes a new pointer-map page, the second is used by the caller.
  4229       */
  4230       TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", *pPgno));
  4231       assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
  4232       (*pPgno)++;
  4233       if( *pPgno==PENDING_BYTE_PAGE(pBt) ){ (*pPgno)++; }
  4234     }
  4235     if( pBt->nTrunc ){
  4236       pBt->nTrunc = *pPgno;
  4237     }
  4238 #endif
  4239 
  4240     assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
  4241     rc = sqlite3BtreeGetPage(pBt, *pPgno, ppPage, 0);
  4242     if( rc ) return rc;
  4243     rc = sqlite3PagerWrite((*ppPage)->pDbPage);
  4244     if( rc!=SQLITE_OK ){
  4245       releasePage(*ppPage);
  4246     }
  4247     TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
  4248   }
  4249 
  4250   assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
  4251 
  4252 end_allocate_page:
  4253   releasePage(pTrunk);
  4254   releasePage(pPrevTrunk);
  4255   return rc;
  4256 }
  4257 
  4258 /*
  4259 ** Add a page of the database file to the freelist.
  4260 **
  4261 ** sqlite3PagerUnref() is NOT called for pPage.
  4262 */
  4263 static int freePage(MemPage *pPage){
  4264   BtShared *pBt = pPage->pBt;
  4265   MemPage *pPage1 = pBt->pPage1;
  4266   int rc, n, k;
  4267 
  4268   /* Prepare the page for freeing */
  4269   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  4270   assert( pPage->pgno>1 );
  4271   pPage->isInit = 0;
  4272   releasePage(pPage->pParent);
  4273   pPage->pParent = 0;
  4274 
  4275   /* Increment the free page count on pPage1 */
  4276   rc = sqlite3PagerWrite(pPage1->pDbPage);
  4277   if( rc ) return rc;
  4278   n = get4byte(&pPage1->aData[36]);
  4279   put4byte(&pPage1->aData[36], n+1);
  4280 
  4281 #ifdef SQLITE_SECURE_DELETE
  4282   /* If the SQLITE_SECURE_DELETE compile-time option is enabled, then
  4283   ** always fully overwrite deleted information with zeros.
  4284   */
  4285   rc = sqlite3PagerWrite(pPage->pDbPage);
  4286   if( rc ) return rc;
  4287   memset(pPage->aData, 0, pPage->pBt->pageSize);
  4288 #endif
  4289 
  4290   /* If the database supports auto-vacuum, write an entry in the pointer-map
  4291   ** to indicate that the page is free.
  4292   */
  4293   if( ISAUTOVACUUM ){
  4294     rc = ptrmapPut(pBt, pPage->pgno, PTRMAP_FREEPAGE, 0);
  4295     if( rc ) return rc;
  4296   }
  4297 
  4298   if( n==0 ){
  4299     /* This is the first free page */
  4300     rc = sqlite3PagerWrite(pPage->pDbPage);
  4301     if( rc ) return rc;
  4302     memset(pPage->aData, 0, 8);
  4303     put4byte(&pPage1->aData[32], pPage->pgno);
  4304     TRACE(("FREE-PAGE: %d first\n", pPage->pgno));
  4305   }else{
  4306     /* Other free pages already exist.  Retrive the first trunk page
  4307     ** of the freelist and find out how many leaves it has. */
  4308     MemPage *pTrunk;
  4309     rc = sqlite3BtreeGetPage(pBt, get4byte(&pPage1->aData[32]), &pTrunk, 0);
  4310     if( rc ) return rc;
  4311     k = get4byte(&pTrunk->aData[4]);
  4312     if( k>=pBt->usableSize/4 - 8 ){
  4313       /* The trunk is full.  Turn the page being freed into a new
  4314       ** trunk page with no leaves.
  4315       **
  4316       ** Note that the trunk page is not really full until it contains
  4317       ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have
  4318       ** coded.  But due to a coding error in versions of SQLite prior to
  4319       ** 3.6.0, databases with freelist trunk pages holding more than
  4320       ** usableSize/4 - 8 entries will be reported as corrupt.  In order
  4321       ** to maintain backwards compatibility with older versions of SQLite,
  4322       ** we will contain to restrict the number of entries to usableSize/4 - 8
  4323       ** for now.  At some point in the future (once everyone has upgraded
  4324       ** to 3.6.0 or later) we should consider fixing the conditional above
  4325       ** to read "usableSize/4-2" instead of "usableSize/4-8".
  4326       */
  4327       rc = sqlite3PagerWrite(pPage->pDbPage);
  4328       if( rc==SQLITE_OK ){
  4329         put4byte(pPage->aData, pTrunk->pgno);
  4330         put4byte(&pPage->aData[4], 0);
  4331         put4byte(&pPage1->aData[32], pPage->pgno);
  4332         TRACE(("FREE-PAGE: %d new trunk page replacing %d\n",
  4333                 pPage->pgno, pTrunk->pgno));
  4334       }
  4335     }else if( k<0 ){
  4336       rc = SQLITE_CORRUPT;
  4337     }else{
  4338       /* Add the newly freed page as a leaf on the current trunk */
  4339       rc = sqlite3PagerWrite(pTrunk->pDbPage);
  4340       if( rc==SQLITE_OK ){
  4341         put4byte(&pTrunk->aData[4], k+1);
  4342         put4byte(&pTrunk->aData[8+k*4], pPage->pgno);
  4343 #ifndef SQLITE_SECURE_DELETE
  4344         sqlite3PagerDontWrite(pPage->pDbPage);
  4345 #endif
  4346       }
  4347       TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno));
  4348     }
  4349     releasePage(pTrunk);
  4350   }
  4351   return rc;
  4352 }
  4353 
  4354 /*
  4355 ** Free any overflow pages associated with the given Cell.
  4356 */
  4357 static int clearCell(MemPage *pPage, unsigned char *pCell){
  4358   BtShared *pBt = pPage->pBt;
  4359   CellInfo info;
  4360   Pgno ovflPgno;
  4361   int rc;
  4362   int nOvfl;
  4363   int ovflPageSize;
  4364 
  4365   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  4366   sqlite3BtreeParseCellPtr(pPage, pCell, &info);
  4367   if( info.iOverflow==0 ){
  4368     return SQLITE_OK;  /* No overflow pages. Return without doing anything */
  4369   }
  4370   ovflPgno = get4byte(&pCell[info.iOverflow]);
  4371   ovflPageSize = pBt->usableSize - 4;
  4372   nOvfl = (info.nPayload - info.nLocal + ovflPageSize - 1)/ovflPageSize;
  4373   assert( ovflPgno==0 || nOvfl>0 );
  4374   while( nOvfl-- ){
  4375     MemPage *pOvfl;
  4376     if( ovflPgno==0 || ovflPgno>pagerPagecount(pBt->pPager) ){
  4377       return SQLITE_CORRUPT_BKPT;
  4378     }
  4379 
  4380     rc = getOverflowPage(pBt, ovflPgno, &pOvfl, (nOvfl==0)?0:&ovflPgno);
  4381     if( rc ) return rc;
  4382     rc = freePage(pOvfl);
  4383     sqlite3PagerUnref(pOvfl->pDbPage);
  4384     if( rc ) return rc;
  4385   }
  4386   return SQLITE_OK;
  4387 }
  4388 
  4389 /*
  4390 ** Create the byte sequence used to represent a cell on page pPage
  4391 ** and write that byte sequence into pCell[].  Overflow pages are
  4392 ** allocated and filled in as necessary.  The calling procedure
  4393 ** is responsible for making sure sufficient space has been allocated
  4394 ** for pCell[].
  4395 **
  4396 ** Note that pCell does not necessary need to point to the pPage->aData
  4397 ** area.  pCell might point to some temporary storage.  The cell will
  4398 ** be constructed in this temporary area then copied into pPage->aData
  4399 ** later.
  4400 */
  4401 static int fillInCell(
  4402   MemPage *pPage,                /* The page that contains the cell */
  4403   unsigned char *pCell,          /* Complete text of the cell */
  4404   const void *pKey, i64 nKey,    /* The key */
  4405   const void *pData,int nData,   /* The data */
  4406   int nZero,                     /* Extra zero bytes to append to pData */
  4407   int *pnSize                    /* Write cell size here */
  4408 ){
  4409   int nPayload;
  4410   const u8 *pSrc;
  4411   int nSrc, n, rc;
  4412   int spaceLeft;
  4413   MemPage *pOvfl = 0;
  4414   MemPage *pToRelease = 0;
  4415   unsigned char *pPrior;
  4416   unsigned char *pPayload;
  4417   BtShared *pBt = pPage->pBt;
  4418   Pgno pgnoOvfl = 0;
  4419   int nHeader;
  4420   CellInfo info;
  4421 
  4422   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  4423 
  4424   /* Fill in the header. */
  4425   nHeader = 0;
  4426   if( !pPage->leaf ){
  4427     nHeader += 4;
  4428   }
  4429   if( pPage->hasData ){
  4430     nHeader += putVarint(&pCell[nHeader], nData+nZero);
  4431   }else{
  4432     nData = nZero = 0;
  4433   }
  4434   nHeader += putVarint(&pCell[nHeader], *(u64*)&nKey);
  4435   sqlite3BtreeParseCellPtr(pPage, pCell, &info);
  4436   assert( info.nHeader==nHeader );
  4437   assert( info.nKey==nKey );
  4438   assert( info.nData==nData+nZero );
  4439   
  4440   /* Fill in the payload */
  4441   nPayload = nData + nZero;
  4442   if( pPage->intKey ){
  4443     pSrc = pData;
  4444     nSrc = nData;
  4445     nData = 0;
  4446   }else{
  4447     nPayload += nKey;
  4448     pSrc = pKey;
  4449     nSrc = nKey;
  4450   }
  4451   *pnSize = info.nSize;
  4452   spaceLeft = info.nLocal;
  4453   pPayload = &pCell[nHeader];
  4454   pPrior = &pCell[info.iOverflow];
  4455 
  4456   while( nPayload>0 ){
  4457     if( spaceLeft==0 ){
  4458       int isExact = 0;
  4459 #ifndef SQLITE_OMIT_AUTOVACUUM
  4460       Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */
  4461       if( pBt->autoVacuum ){
  4462         do{
  4463           pgnoOvfl++;
  4464         } while( 
  4465           PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt) 
  4466         );
  4467         if( pgnoOvfl>1 ){
  4468           /* isExact = 1; */
  4469         }
  4470       }
  4471 #endif
  4472       rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, isExact);
  4473 #ifndef SQLITE_OMIT_AUTOVACUUM
  4474       /* If the database supports auto-vacuum, and the second or subsequent
  4475       ** overflow page is being allocated, add an entry to the pointer-map
  4476       ** for that page now. 
  4477       **
  4478       ** If this is the first overflow page, then write a partial entry 
  4479       ** to the pointer-map. If we write nothing to this pointer-map slot,
  4480       ** then the optimistic overflow chain processing in clearCell()
  4481       ** may misinterpret the uninitialised values and delete the
  4482       ** wrong pages from the database.
  4483       */
  4484       if( pBt->autoVacuum && rc==SQLITE_OK ){
  4485         u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1);
  4486         rc = ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap);
  4487         if( rc ){
  4488           releasePage(pOvfl);
  4489         }
  4490       }
  4491 #endif
  4492       if( rc ){
  4493         releasePage(pToRelease);
  4494         return rc;
  4495       }
  4496       put4byte(pPrior, pgnoOvfl);
  4497       releasePage(pToRelease);
  4498       pToRelease = pOvfl;
  4499       pPrior = pOvfl->aData;
  4500       put4byte(pPrior, 0);
  4501       pPayload = &pOvfl->aData[4];
  4502       spaceLeft = pBt->usableSize - 4;
  4503     }
  4504     n = nPayload;
  4505     if( n>spaceLeft ) n = spaceLeft;
  4506     if( nSrc>0 ){
  4507       if( n>nSrc ) n = nSrc;
  4508       assert( pSrc );
  4509       memcpy(pPayload, pSrc, n);
  4510     }else{
  4511       memset(pPayload, 0, n);
  4512     }
  4513     nPayload -= n;
  4514     pPayload += n;
  4515     pSrc += n;
  4516     nSrc -= n;
  4517     spaceLeft -= n;
  4518     if( nSrc==0 ){
  4519       nSrc = nData;
  4520       pSrc = pData;
  4521     }
  4522   }
  4523   releasePage(pToRelease);
  4524   return SQLITE_OK;
  4525 }
  4526 
  4527 
  4528 /*
  4529 ** Change the MemPage.pParent pointer on the page whose number is
  4530 ** given in the second argument so that MemPage.pParent holds the
  4531 ** pointer in the third argument.
  4532 **
  4533 ** If the final argument, updatePtrmap, is non-zero and the database
  4534 ** is an auto-vacuum database, then the pointer-map entry for pgno
  4535 ** is updated.
  4536 */
  4537 static int reparentPage(
  4538   BtShared *pBt,                /* B-Tree structure */
  4539   Pgno pgno,                    /* Page number of child being adopted */
  4540   MemPage *pNewParent,          /* New parent of pgno */
  4541   int idx,                      /* Index of child page pgno in pNewParent */
  4542   int updatePtrmap              /* If true, update pointer-map for pgno */
  4543 ){
  4544   MemPage *pThis;
  4545   DbPage *pDbPage;
  4546 
  4547   assert( sqlite3_mutex_held(pBt->mutex) );
  4548   assert( pNewParent!=0 );
  4549   if( pgno==0 ) return SQLITE_OK;
  4550   assert( pBt->pPager!=0 );
  4551   pDbPage = sqlite3PagerLookup(pBt->pPager, pgno);
  4552   if( pDbPage ){
  4553     pThis = (MemPage *)sqlite3PagerGetExtra(pDbPage);
  4554     if( pThis->isInit ){
  4555       assert( pThis->aData==sqlite3PagerGetData(pDbPage) );
  4556       if( pThis->pParent!=pNewParent ){
  4557         if( pThis->pParent ) sqlite3PagerUnref(pThis->pParent->pDbPage);
  4558         pThis->pParent = pNewParent;
  4559         sqlite3PagerRef(pNewParent->pDbPage);
  4560       }
  4561       pThis->idxParent = idx;
  4562     }
  4563     sqlite3PagerUnref(pDbPage);
  4564   }
  4565 
  4566   if( ISAUTOVACUUM && updatePtrmap ){
  4567     return ptrmapPut(pBt, pgno, PTRMAP_BTREE, pNewParent->pgno);
  4568   }
  4569 
  4570 #ifndef NDEBUG
  4571   /* If the updatePtrmap flag was clear, assert that the entry in the
  4572   ** pointer-map is already correct.
  4573   */
  4574   if( ISAUTOVACUUM ){
  4575     pDbPage = sqlite3PagerLookup(pBt->pPager,PTRMAP_PAGENO(pBt,pgno));
  4576     if( pDbPage ){
  4577       u8 eType;
  4578       Pgno ii;
  4579       int rc = ptrmapGet(pBt, pgno, &eType, &ii);
  4580       assert( rc==SQLITE_OK && ii==pNewParent->pgno && eType==PTRMAP_BTREE );
  4581       sqlite3PagerUnref(pDbPage);
  4582     }
  4583   }
  4584 #endif
  4585 
  4586   return SQLITE_OK;
  4587 }
  4588 
  4589 
  4590 
  4591 /*
  4592 ** Change the pParent pointer of all children of pPage to point back
  4593 ** to pPage.
  4594 **
  4595 ** In other words, for every child of pPage, invoke reparentPage()
  4596 ** to make sure that each child knows that pPage is its parent.
  4597 **
  4598 ** This routine gets called after you memcpy() one page into
  4599 ** another.
  4600 **
  4601 ** If updatePtrmap is true, then the pointer-map entries for all child
  4602 ** pages of pPage are updated.
  4603 */
  4604 static int reparentChildPages(MemPage *pPage, int updatePtrmap){
  4605   int rc = SQLITE_OK;
  4606   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  4607   if( !pPage->leaf ){
  4608     int i;
  4609     BtShared *pBt = pPage->pBt;
  4610     Pgno iRight = get4byte(&pPage->aData[pPage->hdrOffset+8]);
  4611 
  4612     for(i=0; i<pPage->nCell; i++){
  4613       u8 *pCell = findCell(pPage, i);
  4614       rc = reparentPage(pBt, get4byte(pCell), pPage, i, updatePtrmap);
  4615       if( rc!=SQLITE_OK ) return rc;
  4616     }
  4617     rc = reparentPage(pBt, iRight, pPage, i, updatePtrmap);
  4618     pPage->idxShift = 0;
  4619   }
  4620   return rc;
  4621 }
  4622 
  4623 /*
  4624 ** Remove the i-th cell from pPage.  This routine effects pPage only.
  4625 ** The cell content is not freed or deallocated.  It is assumed that
  4626 ** the cell content has been copied someplace else.  This routine just
  4627 ** removes the reference to the cell from pPage.
  4628 **
  4629 ** "sz" must be the number of bytes in the cell.
  4630 */
  4631 static void dropCell(MemPage *pPage, int idx, int sz){
  4632   int i;          /* Loop counter */
  4633   int pc;         /* Offset to cell content of cell being deleted */
  4634   u8 *data;       /* pPage->aData */
  4635   u8 *ptr;        /* Used to move bytes around within data[] */
  4636 
  4637   assert( idx>=0 && idx<pPage->nCell );
  4638   assert( sz==cellSize(pPage, idx) );
  4639   assert( sqlite3PagerIswriteable(pPage->pDbPage) );
  4640   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  4641   data = pPage->aData;
  4642   ptr = &data[pPage->cellOffset + 2*idx];
  4643   pc = get2byte(ptr);
  4644   assert( pc>10 && pc+sz<=pPage->pBt->usableSize );
  4645   freeSpace(pPage, pc, sz);
  4646   for(i=idx+1; i<pPage->nCell; i++, ptr+=2){
  4647     ptr[0] = ptr[2];
  4648     ptr[1] = ptr[3];
  4649   }
  4650   pPage->nCell--;
  4651   put2byte(&data[pPage->hdrOffset+3], pPage->nCell);
  4652   pPage->nFree += 2;
  4653   pPage->idxShift = 1;
  4654 }
  4655 
  4656 /*
  4657 ** Insert a new cell on pPage at cell index "i".  pCell points to the
  4658 ** content of the cell.
  4659 **
  4660 ** If the cell content will fit on the page, then put it there.  If it
  4661 ** will not fit, then make a copy of the cell content into pTemp if
  4662 ** pTemp is not null.  Regardless of pTemp, allocate a new entry
  4663 ** in pPage->aOvfl[] and make it point to the cell content (either
  4664 ** in pTemp or the original pCell) and also record its index. 
  4665 ** Allocating a new entry in pPage->aCell[] implies that 
  4666 ** pPage->nOverflow is incremented.
  4667 **
  4668 ** If nSkip is non-zero, then do not copy the first nSkip bytes of the
  4669 ** cell. The caller will overwrite them after this function returns. If
  4670 ** nSkip is non-zero, then pCell may not point to an invalid memory location 
  4671 ** (but pCell+nSkip is always valid).
  4672 */
  4673 static int insertCell(
  4674   MemPage *pPage,   /* Page into which we are copying */
  4675   int i,            /* New cell becomes the i-th cell of the page */
  4676   u8 *pCell,        /* Content of the new cell */
  4677   int sz,           /* Bytes of content in pCell */
  4678   u8 *pTemp,        /* Temp storage space for pCell, if needed */
  4679   u8 nSkip          /* Do not write the first nSkip bytes of the cell */
  4680 ){
  4681   int idx;          /* Where to write new cell content in data[] */
  4682   int j;            /* Loop counter */
  4683   int top;          /* First byte of content for any cell in data[] */
  4684   int end;          /* First byte past the last cell pointer in data[] */
  4685   int ins;          /* Index in data[] where new cell pointer is inserted */
  4686   int hdr;          /* Offset into data[] of the page header */
  4687   int cellOffset;   /* Address of first cell pointer in data[] */
  4688   u8 *data;         /* The content of the whole page */
  4689   u8 *ptr;          /* Used for moving information around in data[] */
  4690 
  4691   assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
  4692   assert( sz==cellSizePtr(pPage, pCell) );
  4693   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  4694   if( pPage->nOverflow || sz+2>pPage->nFree ){
  4695     if( pTemp ){
  4696       memcpy(pTemp+nSkip, pCell+nSkip, sz-nSkip);
  4697       pCell = pTemp;
  4698     }
  4699     j = pPage->nOverflow++;
  4700     assert( j<sizeof(pPage->aOvfl)/sizeof(pPage->aOvfl[0]) );
  4701     pPage->aOvfl[j].pCell = pCell;
  4702     pPage->aOvfl[j].idx = i;
  4703     pPage->nFree = 0;
  4704   }else{
  4705     int rc = sqlite3PagerWrite(pPage->pDbPage);
  4706     if( rc!=SQLITE_OK ){
  4707       return rc;
  4708     }
  4709     assert( sqlite3PagerIswriteable(pPage->pDbPage) );
  4710     data = pPage->aData;
  4711     hdr = pPage->hdrOffset;
  4712     top = get2byte(&data[hdr+5]);
  4713     cellOffset = pPage->cellOffset;
  4714     end = cellOffset + 2*pPage->nCell + 2;
  4715     ins = cellOffset + 2*i;
  4716     if( end > top - sz ){
  4717       defragmentPage(pPage);
  4718       top = get2byte(&data[hdr+5]);
  4719       assert( end + sz <= top );
  4720     }
  4721     idx = allocateSpace(pPage, sz);
  4722     assert( idx>0 );
  4723     assert( end <= get2byte(&data[hdr+5]) );
  4724     pPage->nCell++;
  4725     pPage->nFree -= 2;
  4726     memcpy(&data[idx+nSkip], pCell+nSkip, sz-nSkip);
  4727     for(j=end-2, ptr=&data[j]; j>ins; j-=2, ptr-=2){
  4728       ptr[0] = ptr[-2];
  4729       ptr[1] = ptr[-1];
  4730     }
  4731     put2byte(&data[ins], idx);
  4732     put2byte(&data[hdr+3], pPage->nCell);
  4733     pPage->idxShift = 1;
  4734 #ifndef SQLITE_OMIT_AUTOVACUUM
  4735     if( pPage->pBt->autoVacuum ){
  4736       /* The cell may contain a pointer to an overflow page. If so, write
  4737       ** the entry for the overflow page into the pointer map.
  4738       */
  4739       CellInfo info;
  4740       sqlite3BtreeParseCellPtr(pPage, pCell, &info);
  4741       assert( (info.nData+(pPage->intKey?0:info.nKey))==info.nPayload );
  4742       if( (info.nData+(pPage->intKey?0:info.nKey))>info.nLocal ){
  4743         Pgno pgnoOvfl = get4byte(&pCell[info.iOverflow]);
  4744         rc = ptrmapPut(pPage->pBt, pgnoOvfl, PTRMAP_OVERFLOW1, pPage->pgno);
  4745         if( rc!=SQLITE_OK ) return rc;
  4746       }
  4747     }
  4748 #endif
  4749   }
  4750 
  4751   return SQLITE_OK;
  4752 }
  4753 
  4754 /*
  4755 ** Add a list of cells to a page.  The page should be initially empty.
  4756 ** The cells are guaranteed to fit on the page.
  4757 */
  4758 static void assemblePage(
  4759   MemPage *pPage,   /* The page to be assemblied */
  4760   int nCell,        /* The number of cells to add to this page */
  4761   u8 **apCell,      /* Pointers to cell bodies */
  4762   u16 *aSize        /* Sizes of the cells */
  4763 ){
  4764   int i;            /* Loop counter */
  4765   int totalSize;    /* Total size of all cells */
  4766   int hdr;          /* Index of page header */
  4767   int cellptr;      /* Address of next cell pointer */
  4768   int cellbody;     /* Address of next cell body */
  4769   u8 *data;         /* Data for the page */
  4770 
  4771   assert( pPage->nOverflow==0 );
  4772   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  4773   totalSize = 0;
  4774   for(i=0; i<nCell; i++){
  4775     totalSize += aSize[i];
  4776   }
  4777   assert( totalSize+2*nCell<=pPage->nFree );
  4778   assert( pPage->nCell==0 );
  4779   cellptr = pPage->cellOffset;
  4780   data = pPage->aData;
  4781   hdr = pPage->hdrOffset;
  4782   put2byte(&data[hdr+3], nCell);
  4783   if( nCell ){
  4784     cellbody = allocateSpace(pPage, totalSize);
  4785     assert( cellbody>0 );
  4786     assert( pPage->nFree >= 2*nCell );
  4787     pPage->nFree -= 2*nCell;
  4788     for(i=0; i<nCell; i++){
  4789       put2byte(&data[cellptr], cellbody);
  4790       memcpy(&data[cellbody], apCell[i], aSize[i]);
  4791       cellptr += 2;
  4792       cellbody += aSize[i];
  4793     }
  4794     assert( cellbody==pPage->pBt->usableSize );
  4795   }
  4796   pPage->nCell = nCell;
  4797 }
  4798 
  4799 /*
  4800 ** The following parameters determine how many adjacent pages get involved
  4801 ** in a balancing operation.  NN is the number of neighbors on either side
  4802 ** of the page that participate in the balancing operation.  NB is the
  4803 ** total number of pages that participate, including the target page and
  4804 ** NN neighbors on either side.
  4805 **
  4806 ** The minimum value of NN is 1 (of course).  Increasing NN above 1
  4807 ** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
  4808 ** in exchange for a larger degradation in INSERT and UPDATE performance.
  4809 ** The value of NN appears to give the best results overall.
  4810 */
  4811 #define NN 1             /* Number of neighbors on either side of pPage */
  4812 #define NB (NN*2+1)      /* Total pages involved in the balance */
  4813 
  4814 /* Forward reference */
  4815 static int balance(MemPage*, int);
  4816 
  4817 #ifndef SQLITE_OMIT_QUICKBALANCE
  4818 /*
  4819 ** This version of balance() handles the common special case where
  4820 ** a new entry is being inserted on the extreme right-end of the
  4821 ** tree, in other words, when the new entry will become the largest
  4822 ** entry in the tree.
  4823 **
  4824 ** Instead of trying balance the 3 right-most leaf pages, just add
  4825 ** a new page to the right-hand side and put the one new entry in
  4826 ** that page.  This leaves the right side of the tree somewhat
  4827 ** unbalanced.  But odds are that we will be inserting new entries
  4828 ** at the end soon afterwards so the nearly empty page will quickly
  4829 ** fill up.  On average.
  4830 **
  4831 ** pPage is the leaf page which is the right-most page in the tree.
  4832 ** pParent is its parent.  pPage must have a single overflow entry
  4833 ** which is also the right-most entry on the page.
  4834 */
  4835 static int balance_quick(MemPage *pPage, MemPage *pParent){
  4836   int rc;
  4837   MemPage *pNew;
  4838   Pgno pgnoNew;
  4839   u8 *pCell;
  4840   u16 szCell;
  4841   CellInfo info;
  4842   BtShared *pBt = pPage->pBt;
  4843   int parentIdx = pParent->nCell;   /* pParent new divider cell index */
  4844   int parentSize;                   /* Size of new divider cell */
  4845   u8 parentCell[64];                /* Space for the new divider cell */
  4846 
  4847   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  4848 
  4849   /* Allocate a new page. Insert the overflow cell from pPage
  4850   ** into it. Then remove the overflow cell from pPage.
  4851   */
  4852   rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
  4853   if( rc!=SQLITE_OK ){
  4854     return rc;
  4855   }
  4856   pCell = pPage->aOvfl[0].pCell;
  4857   szCell = cellSizePtr(pPage, pCell);
  4858   zeroPage(pNew, pPage->aData[0]);
  4859   assemblePage(pNew, 1, &pCell, &szCell);
  4860   pPage->nOverflow = 0;
  4861 
  4862   /* Set the parent of the newly allocated page to pParent. */
  4863   pNew->pParent = pParent;
  4864   sqlite3PagerRef(pParent->pDbPage);
  4865 
  4866   /* pPage is currently the right-child of pParent. Change this
  4867   ** so that the right-child is the new page allocated above and
  4868   ** pPage is the next-to-right child. 
  4869   **
  4870   ** Ignore the return value of the call to fillInCell(). fillInCell()
  4871   ** may only return other than SQLITE_OK if it is required to allocate
  4872   ** one or more overflow pages. Since an internal table B-Tree cell 
  4873   ** may never spill over onto an overflow page (it is a maximum of 
  4874   ** 13 bytes in size), it is not neccessary to check the return code.
  4875   **
  4876   ** Similarly, the insertCell() function cannot fail if the page
  4877   ** being inserted into is already writable and the cell does not 
  4878   ** contain an overflow pointer. So ignore this return code too.
  4879   */
  4880   assert( pPage->nCell>0 );
  4881   pCell = findCell(pPage, pPage->nCell-1);
  4882   sqlite3BtreeParseCellPtr(pPage, pCell, &info);
  4883   fillInCell(pParent, parentCell, 0, info.nKey, 0, 0, 0, &parentSize);
  4884   assert( parentSize<64 );
  4885   assert( sqlite3PagerIswriteable(pParent->pDbPage) );
  4886   insertCell(pParent, parentIdx, parentCell, parentSize, 0, 4);
  4887   put4byte(findOverflowCell(pParent,parentIdx), pPage->pgno);
  4888   put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew);
  4889 
  4890   /* If this is an auto-vacuum database, update the pointer map
  4891   ** with entries for the new page, and any pointer from the 
  4892   ** cell on the page to an overflow page.
  4893   */
  4894   if( ISAUTOVACUUM ){
  4895     rc = ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno);
  4896     if( rc==SQLITE_OK ){
  4897       rc = ptrmapPutOvfl(pNew, 0);
  4898     }
  4899     if( rc!=SQLITE_OK ){
  4900       releasePage(pNew);
  4901       return rc;
  4902     }
  4903   }
  4904 
  4905   /* Release the reference to the new page and balance the parent page,
  4906   ** in case the divider cell inserted caused it to become overfull.
  4907   */
  4908   releasePage(pNew);
  4909   return balance(pParent, 0);
  4910 }
  4911 #endif /* SQLITE_OMIT_QUICKBALANCE */
  4912 
  4913 /*
  4914 ** This routine redistributes Cells on pPage and up to NN*2 siblings
  4915 ** of pPage so that all pages have about the same amount of free space.
  4916 ** Usually NN siblings on either side of pPage is used in the balancing,
  4917 ** though more siblings might come from one side if pPage is the first
  4918 ** or last child of its parent.  If pPage has fewer than 2*NN siblings
  4919 ** (something which can only happen if pPage is the root page or a 
  4920 ** child of root) then all available siblings participate in the balancing.
  4921 **
  4922 ** The number of siblings of pPage might be increased or decreased by one or
  4923 ** two in an effort to keep pages nearly full but not over full. The root page
  4924 ** is special and is allowed to be nearly empty. If pPage is 
  4925 ** the root page, then the depth of the tree might be increased
  4926 ** or decreased by one, as necessary, to keep the root page from being
  4927 ** overfull or completely empty.
  4928 **
  4929 ** Note that when this routine is called, some of the Cells on pPage
  4930 ** might not actually be stored in pPage->aData[].  This can happen
  4931 ** if the page is overfull.  Part of the job of this routine is to
  4932 ** make sure all Cells for pPage once again fit in pPage->aData[].
  4933 **
  4934 ** In the course of balancing the siblings of pPage, the parent of pPage
  4935 ** might become overfull or underfull.  If that happens, then this routine
  4936 ** is called recursively on the parent.
  4937 **
  4938 ** If this routine fails for any reason, it might leave the database
  4939 ** in a corrupted state.  So if this routine fails, the database should
  4940 ** be rolled back.
  4941 */
  4942 static int balance_nonroot(MemPage *pPage){
  4943   MemPage *pParent;            /* The parent of pPage */
  4944   BtShared *pBt;               /* The whole database */
  4945   int nCell = 0;               /* Number of cells in apCell[] */
  4946   int nMaxCells = 0;           /* Allocated size of apCell, szCell, aFrom. */
  4947   int nOld;                    /* Number of pages in apOld[] */
  4948   int nNew;                    /* Number of pages in apNew[] */
  4949   int nDiv;                    /* Number of cells in apDiv[] */
  4950   int i, j, k;                 /* Loop counters */
  4951   int idx;                     /* Index of pPage in pParent->aCell[] */
  4952   int nxDiv;                   /* Next divider slot in pParent->aCell[] */
  4953   int rc;                      /* The return code */
  4954   int leafCorrection;          /* 4 if pPage is a leaf.  0 if not */
  4955   int leafData;                /* True if pPage is a leaf of a LEAFDATA tree */
  4956   int usableSpace;             /* Bytes in pPage beyond the header */
  4957   int pageFlags;               /* Value of pPage->aData[0] */
  4958   int subtotal;                /* Subtotal of bytes in cells on one page */
  4959   int iSpace1 = 0;             /* First unused byte of aSpace1[] */
  4960   int iSpace2 = 0;             /* First unused byte of aSpace2[] */
  4961   int szScratch;               /* Size of scratch memory requested */
  4962   MemPage *apOld[NB];          /* pPage and up to two siblings */
  4963   Pgno pgnoOld[NB];            /* Page numbers for each page in apOld[] */
  4964   MemPage *apCopy[NB];         /* Private copies of apOld[] pages */
  4965   MemPage *apNew[NB+2];        /* pPage and up to NB siblings after balancing */
  4966   Pgno pgnoNew[NB+2];          /* Page numbers for each page in apNew[] */
  4967   u8 *apDiv[NB];               /* Divider cells in pParent */
  4968   int cntNew[NB+2];            /* Index in aCell[] of cell after i-th page */
  4969   int szNew[NB+2];             /* Combined size of cells place on i-th page */
  4970   u8 **apCell = 0;             /* All cells begin balanced */
  4971   u16 *szCell;                 /* Local size of all cells in apCell[] */
  4972   u8 *aCopy[NB];         /* Space for holding data of apCopy[] */
  4973   u8 *aSpace1;           /* Space for copies of dividers cells before balance */
  4974   u8 *aSpace2 = 0;       /* Space for overflow dividers cells after balance */
  4975   u8 *aFrom = 0;
  4976 
  4977   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  4978 
  4979   /* 
  4980   ** Find the parent page.
  4981   */
  4982   assert( pPage->isInit );
  4983   assert( sqlite3PagerIswriteable(pPage->pDbPage) || pPage->nOverflow==1 );
  4984   pBt = pPage->pBt;
  4985   pParent = pPage->pParent;
  4986   assert( pParent );
  4987   if( SQLITE_OK!=(rc = sqlite3PagerWrite(pParent->pDbPage)) ){
  4988     return rc;
  4989   }
  4990 
  4991   TRACE(("BALANCE: begin page %d child of %d\n", pPage->pgno, pParent->pgno));
  4992 
  4993 #ifndef SQLITE_OMIT_QUICKBALANCE
  4994   /*
  4995   ** A special case:  If a new entry has just been inserted into a
  4996   ** table (that is, a btree with integer keys and all data at the leaves)
  4997   ** and the new entry is the right-most entry in the tree (it has the
  4998   ** largest key) then use the special balance_quick() routine for
  4999   ** balancing.  balance_quick() is much faster and results in a tighter
  5000   ** packing of data in the common case.
  5001   */
  5002   if( pPage->leaf &&
  5003       pPage->intKey &&
  5004       pPage->nOverflow==1 &&
  5005       pPage->aOvfl[0].idx==pPage->nCell &&
  5006       pPage->pParent->pgno!=1 &&
  5007       get4byte(&pParent->aData[pParent->hdrOffset+8])==pPage->pgno
  5008   ){
  5009     assert( pPage->intKey );
  5010     /*
  5011     ** TODO: Check the siblings to the left of pPage. It may be that
  5012     ** they are not full and no new page is required.
  5013     */
  5014     return balance_quick(pPage, pParent);
  5015   }
  5016 #endif
  5017 
  5018   if( SQLITE_OK!=(rc = sqlite3PagerWrite(pPage->pDbPage)) ){
  5019     return rc;
  5020   }
  5021 
  5022   /*
  5023   ** Find the cell in the parent page whose left child points back
  5024   ** to pPage.  The "idx" variable is the index of that cell.  If pPage
  5025   ** is the rightmost child of pParent then set idx to pParent->nCell 
  5026   */
  5027   if( pParent->idxShift ){
  5028     Pgno pgno;
  5029     pgno = pPage->pgno;
  5030     assert( pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
  5031     for(idx=0; idx<pParent->nCell; idx++){
  5032       if( get4byte(findCell(pParent, idx))==pgno ){
  5033         break;
  5034       }
  5035     }
  5036     assert( idx<pParent->nCell
  5037              || get4byte(&pParent->aData[pParent->hdrOffset+8])==pgno );
  5038   }else{
  5039     idx = pPage->idxParent;
  5040   }
  5041 
  5042   /*
  5043   ** Initialize variables so that it will be safe to jump
  5044   ** directly to balance_cleanup at any moment.
  5045   */
  5046   nOld = nNew = 0;
  5047   sqlite3PagerRef(pParent->pDbPage);
  5048 
  5049   /*
  5050   ** Find sibling pages to pPage and the cells in pParent that divide
  5051   ** the siblings.  An attempt is made to find NN siblings on either
  5052   ** side of pPage.  More siblings are taken from one side, however, if
  5053   ** pPage there are fewer than NN siblings on the other side.  If pParent
  5054   ** has NB or fewer children then all children of pParent are taken.
  5055   */
  5056   nxDiv = idx - NN;
  5057   if( nxDiv + NB > pParent->nCell ){
  5058     nxDiv = pParent->nCell - NB + 1;
  5059   }
  5060   if( nxDiv<0 ){
  5061     nxDiv = 0;
  5062   }
  5063   nDiv = 0;
  5064   for(i=0, k=nxDiv; i<NB; i++, k++){
  5065     if( k<pParent->nCell ){
  5066       apDiv[i] = findCell(pParent, k);
  5067       nDiv++;
  5068       assert( !pParent->leaf );
  5069       pgnoOld[i] = get4byte(apDiv[i]);
  5070     }else if( k==pParent->nCell ){
  5071       pgnoOld[i] = get4byte(&pParent->aData[pParent->hdrOffset+8]);
  5072     }else{
  5073       break;
  5074     }
  5075     rc = getAndInitPage(pBt, pgnoOld[i], &apOld[i], pParent);
  5076     if( rc ) goto balance_cleanup;
  5077     apOld[i]->idxParent = k;
  5078     apCopy[i] = 0;
  5079     assert( i==nOld );
  5080     nOld++;
  5081     nMaxCells += 1+apOld[i]->nCell+apOld[i]->nOverflow;
  5082   }
  5083 
  5084   /* Make nMaxCells a multiple of 4 in order to preserve 8-byte
  5085   ** alignment */
  5086   nMaxCells = (nMaxCells + 3)&~3;
  5087 
  5088   /*
  5089   ** Allocate space for memory structures
  5090   */
  5091   szScratch =
  5092        nMaxCells*sizeof(u8*)                       /* apCell */
  5093      + nMaxCells*sizeof(u16)                       /* szCell */
  5094      + (ROUND8(sizeof(MemPage))+pBt->pageSize)*NB  /* aCopy */
  5095      + pBt->pageSize                               /* aSpace1 */
  5096      + (ISAUTOVACUUM ? nMaxCells : 0);             /* aFrom */
  5097   apCell = sqlite3ScratchMalloc( szScratch ); 
  5098   if( apCell==0 ){
  5099     rc = SQLITE_NOMEM;
  5100     goto balance_cleanup;
  5101   }
  5102   szCell = (u16*)&apCell[nMaxCells];
  5103   aCopy[0] = (u8*)&szCell[nMaxCells];
  5104   assert( ((aCopy[0] - (u8*)apCell) & 7)==0 ); /* 8-byte alignment required */
  5105   for(i=1; i<NB; i++){
  5106     aCopy[i] = &aCopy[i-1][pBt->pageSize+ROUND8(sizeof(MemPage))];
  5107     assert( ((aCopy[i] - (u8*)apCell) & 7)==0 ); /* 8-byte alignment required */
  5108   }
  5109   aSpace1 = &aCopy[NB-1][pBt->pageSize+ROUND8(sizeof(MemPage))];
  5110   assert( ((aSpace1 - (u8*)apCell) & 7)==0 ); /* 8-byte alignment required */
  5111   if( ISAUTOVACUUM ){
  5112     aFrom = &aSpace1[pBt->pageSize];
  5113   }
  5114   aSpace2 = sqlite3PageMalloc(pBt->pageSize);
  5115   if( aSpace2==0 ){
  5116     rc = SQLITE_NOMEM;
  5117     goto balance_cleanup;
  5118   }
  5119   
  5120   /*
  5121   ** Make copies of the content of pPage and its siblings into aOld[].
  5122   ** The rest of this function will use data from the copies rather
  5123   ** that the original pages since the original pages will be in the
  5124   ** process of being overwritten.
  5125   */
  5126   for(i=0; i<nOld; i++){
  5127     MemPage *p = apCopy[i] = (MemPage*)aCopy[i];
  5128     memcpy(p, apOld[i], sizeof(MemPage));
  5129     p->aData = (void*)&p[1];
  5130     memcpy(p->aData, apOld[i]->aData, pBt->pageSize);
  5131   }
  5132 
  5133   /*
  5134   ** Load pointers to all cells on sibling pages and the divider cells
  5135   ** into the local apCell[] array.  Make copies of the divider cells
  5136   ** into space obtained form aSpace1[] and remove the the divider Cells
  5137   ** from pParent.
  5138   **
  5139   ** If the siblings are on leaf pages, then the child pointers of the
  5140   ** divider cells are stripped from the cells before they are copied
  5141   ** into aSpace1[].  In this way, all cells in apCell[] are without
  5142   ** child pointers.  If siblings are not leaves, then all cell in
  5143   ** apCell[] include child pointers.  Either way, all cells in apCell[]
  5144   ** are alike.
  5145   **
  5146   ** leafCorrection:  4 if pPage is a leaf.  0 if pPage is not a leaf.
  5147   **       leafData:  1 if pPage holds key+data and pParent holds only keys.
  5148   */
  5149   nCell = 0;
  5150   leafCorrection = pPage->leaf*4;
  5151   leafData = pPage->hasData;
  5152   for(i=0; i<nOld; i++){
  5153     MemPage *pOld = apCopy[i];
  5154     int limit = pOld->nCell+pOld->nOverflow;
  5155     for(j=0; j<limit; j++){
  5156       assert( nCell<nMaxCells );
  5157       apCell[nCell] = findOverflowCell(pOld, j);
  5158       szCell[nCell] = cellSizePtr(pOld, apCell[nCell]);
  5159       if( ISAUTOVACUUM ){
  5160         int a;
  5161         aFrom[nCell] = i;
  5162         for(a=0; a<pOld->nOverflow; a++){
  5163           if( pOld->aOvfl[a].pCell==apCell[nCell] ){
  5164             aFrom[nCell] = 0xFF;
  5165             break;
  5166           }
  5167         }
  5168       }
  5169       nCell++;
  5170     }
  5171     if( i<nOld-1 ){
  5172       u16 sz = cellSizePtr(pParent, apDiv[i]);
  5173       if( leafData ){
  5174         /* With the LEAFDATA flag, pParent cells hold only INTKEYs that
  5175         ** are duplicates of keys on the child pages.  We need to remove
  5176         ** the divider cells from pParent, but the dividers cells are not
  5177         ** added to apCell[] because they are duplicates of child cells.
  5178         */
  5179         dropCell(pParent, nxDiv, sz);
  5180       }else{
  5181         u8 *pTemp;
  5182         assert( nCell<nMaxCells );
  5183         szCell[nCell] = sz;
  5184         pTemp = &aSpace1[iSpace1];
  5185         iSpace1 += sz;
  5186         assert( sz<=pBt->pageSize/4 );
  5187         assert( iSpace1<=pBt->pageSize );
  5188         memcpy(pTemp, apDiv[i], sz);
  5189         apCell[nCell] = pTemp+leafCorrection;
  5190         if( ISAUTOVACUUM ){
  5191           aFrom[nCell] = 0xFF;
  5192         }
  5193         dropCell(pParent, nxDiv, sz);
  5194         szCell[nCell] -= leafCorrection;
  5195         assert( get4byte(pTemp)==pgnoOld[i] );
  5196         if( !pOld->leaf ){
  5197           assert( leafCorrection==0 );
  5198           /* The right pointer of the child page pOld becomes the left
  5199           ** pointer of the divider cell */
  5200           memcpy(apCell[nCell], &pOld->aData[pOld->hdrOffset+8], 4);
  5201         }else{
  5202           assert( leafCorrection==4 );
  5203           if( szCell[nCell]<4 ){
  5204             /* Do not allow any cells smaller than 4 bytes. */
  5205             szCell[nCell] = 4;
  5206           }
  5207         }
  5208         nCell++;
  5209       }
  5210     }
  5211   }
  5212 
  5213   /*
  5214   ** Figure out the number of pages needed to hold all nCell cells.
  5215   ** Store this number in "k".  Also compute szNew[] which is the total
  5216   ** size of all cells on the i-th page and cntNew[] which is the index
  5217   ** in apCell[] of the cell that divides page i from page i+1.  
  5218   ** cntNew[k] should equal nCell.
  5219   **
  5220   ** Values computed by this block:
  5221   **
  5222   **           k: The total number of sibling pages
  5223   **    szNew[i]: Spaced used on the i-th sibling page.
  5224   **   cntNew[i]: Index in apCell[] and szCell[] for the first cell to
  5225   **              the right of the i-th sibling page.
  5226   ** usableSpace: Number of bytes of space available on each sibling.
  5227   ** 
  5228   */
  5229   usableSpace = pBt->usableSize - 12 + leafCorrection;
  5230   for(subtotal=k=i=0; i<nCell; i++){
  5231     assert( i<nMaxCells );
  5232     subtotal += szCell[i] + 2;
  5233     if( subtotal > usableSpace ){
  5234       szNew[k] = subtotal - szCell[i];
  5235       cntNew[k] = i;
  5236       if( leafData ){ i--; }
  5237       subtotal = 0;
  5238       k++;
  5239     }
  5240   }
  5241   szNew[k] = subtotal;
  5242   cntNew[k] = nCell;
  5243   k++;
  5244 
  5245   /*
  5246   ** The packing computed by the previous block is biased toward the siblings
  5247   ** on the left side.  The left siblings are always nearly full, while the
  5248   ** right-most sibling might be nearly empty.  This block of code attempts
  5249   ** to adjust the packing of siblings to get a better balance.
  5250   **
  5251   ** This adjustment is more than an optimization.  The packing above might
  5252   ** be so out of balance as to be illegal.  For example, the right-most
  5253   ** sibling might be completely empty.  This adjustment is not optional.
  5254   */
  5255   for(i=k-1; i>0; i--){
  5256     int szRight = szNew[i];  /* Size of sibling on the right */
  5257     int szLeft = szNew[i-1]; /* Size of sibling on the left */
  5258     int r;              /* Index of right-most cell in left sibling */
  5259     int d;              /* Index of first cell to the left of right sibling */
  5260 
  5261     r = cntNew[i-1] - 1;
  5262     d = r + 1 - leafData;
  5263     assert( d<nMaxCells );
  5264     assert( r<nMaxCells );
  5265     while( szRight==0 || szRight+szCell[d]+2<=szLeft-(szCell[r]+2) ){
  5266       szRight += szCell[d] + 2;
  5267       szLeft -= szCell[r] + 2;
  5268       cntNew[i-1]--;
  5269       r = cntNew[i-1] - 1;
  5270       d = r + 1 - leafData;
  5271     }
  5272     szNew[i] = szRight;
  5273     szNew[i-1] = szLeft;
  5274   }
  5275 
  5276   /* Either we found one or more cells (cntnew[0])>0) or we are the
  5277   ** a virtual root page.  A virtual root page is when the real root
  5278   ** page is page 1 and we are the only child of that page.
  5279   */
  5280   assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) );
  5281 
  5282   /*
  5283   ** Allocate k new pages.  Reuse old pages where possible.
  5284   */
  5285   assert( pPage->pgno>1 );
  5286   pageFlags = pPage->aData[0];
  5287   for(i=0; i<k; i++){
  5288     MemPage *pNew;
  5289     if( i<nOld ){
  5290       pNew = apNew[i] = apOld[i];
  5291       pgnoNew[i] = pgnoOld[i];
  5292       apOld[i] = 0;
  5293       rc = sqlite3PagerWrite(pNew->pDbPage);
  5294       nNew++;
  5295       if( rc ) goto balance_cleanup;
  5296     }else{
  5297       assert( i>0 );
  5298       rc = allocateBtreePage(pBt, &pNew, &pgnoNew[i], pgnoNew[i-1], 0);
  5299       if( rc ) goto balance_cleanup;
  5300       apNew[i] = pNew;
  5301       nNew++;
  5302     }
  5303   }
  5304 
  5305   /* Free any old pages that were not reused as new pages.
  5306   */
  5307   while( i<nOld ){
  5308     rc = freePage(apOld[i]);
  5309     if( rc ) goto balance_cleanup;
  5310     releasePage(apOld[i]);
  5311     apOld[i] = 0;
  5312     i++;
  5313   }
  5314 
  5315   /*
  5316   ** Put the new pages in accending order.  This helps to
  5317   ** keep entries in the disk file in order so that a scan
  5318   ** of the table is a linear scan through the file.  That
  5319   ** in turn helps the operating system to deliver pages
  5320   ** from the disk more rapidly.
  5321   **
  5322   ** An O(n^2) insertion sort algorithm is used, but since
  5323   ** n is never more than NB (a small constant), that should
  5324   ** not be a problem.
  5325   **
  5326   ** When NB==3, this one optimization makes the database
  5327   ** about 25% faster for large insertions and deletions.
  5328   */
  5329   for(i=0; i<k-1; i++){
  5330     int minV = pgnoNew[i];
  5331     int minI = i;
  5332     for(j=i+1; j<k; j++){
  5333       if( pgnoNew[j]<(unsigned)minV ){
  5334         minI = j;
  5335         minV = pgnoNew[j];
  5336       }
  5337     }
  5338     if( minI>i ){
  5339       int t;
  5340       MemPage *pT;
  5341       t = pgnoNew[i];
  5342       pT = apNew[i];
  5343       pgnoNew[i] = pgnoNew[minI];
  5344       apNew[i] = apNew[minI];
  5345       pgnoNew[minI] = t;
  5346       apNew[minI] = pT;
  5347     }
  5348   }
  5349   TRACE(("BALANCE: old: %d %d %d  new: %d(%d) %d(%d) %d(%d) %d(%d) %d(%d)\n",
  5350     pgnoOld[0], 
  5351     nOld>=2 ? pgnoOld[1] : 0,
  5352     nOld>=3 ? pgnoOld[2] : 0,
  5353     pgnoNew[0], szNew[0],
  5354     nNew>=2 ? pgnoNew[1] : 0, nNew>=2 ? szNew[1] : 0,
  5355     nNew>=3 ? pgnoNew[2] : 0, nNew>=3 ? szNew[2] : 0,
  5356     nNew>=4 ? pgnoNew[3] : 0, nNew>=4 ? szNew[3] : 0,
  5357     nNew>=5 ? pgnoNew[4] : 0, nNew>=5 ? szNew[4] : 0));
  5358 
  5359   /*
  5360   ** Evenly distribute the data in apCell[] across the new pages.
  5361   ** Insert divider cells into pParent as necessary.
  5362   */
  5363   j = 0;
  5364   for(i=0; i<nNew; i++){
  5365     /* Assemble the new sibling page. */
  5366     MemPage *pNew = apNew[i];
  5367     assert( j<nMaxCells );
  5368     assert( pNew->pgno==pgnoNew[i] );
  5369     zeroPage(pNew, pageFlags);
  5370     assemblePage(pNew, cntNew[i]-j, &apCell[j], &szCell[j]);
  5371     assert( pNew->nCell>0 || (nNew==1 && cntNew[0]==0) );
  5372     assert( pNew->nOverflow==0 );
  5373 
  5374     /* If this is an auto-vacuum database, update the pointer map entries
  5375     ** that point to the siblings that were rearranged. These can be: left
  5376     ** children of cells, the right-child of the page, or overflow pages
  5377     ** pointed to by cells.
  5378     */
  5379     if( ISAUTOVACUUM ){
  5380       for(k=j; k<cntNew[i]; k++){
  5381         assert( k<nMaxCells );
  5382         if( aFrom[k]==0xFF || apCopy[aFrom[k]]->pgno!=pNew->pgno ){
  5383           rc = ptrmapPutOvfl(pNew, k-j);
  5384           if( rc==SQLITE_OK && leafCorrection==0 ){
  5385             rc = ptrmapPut(pBt, get4byte(apCell[k]), PTRMAP_BTREE, pNew->pgno);
  5386           }
  5387           if( rc!=SQLITE_OK ){
  5388             goto balance_cleanup;
  5389           }
  5390         }
  5391       }
  5392     }
  5393 
  5394     j = cntNew[i];
  5395 
  5396     /* If the sibling page assembled above was not the right-most sibling,
  5397     ** insert a divider cell into the parent page.
  5398     */
  5399     if( i<nNew-1 && j<nCell ){
  5400       u8 *pCell;
  5401       u8 *pTemp;
  5402       int sz;
  5403 
  5404       assert( j<nMaxCells );
  5405       pCell = apCell[j];
  5406       sz = szCell[j] + leafCorrection;
  5407       pTemp = &aSpace2[iSpace2];
  5408       if( !pNew->leaf ){
  5409         memcpy(&pNew->aData[8], pCell, 4);
  5410         if( ISAUTOVACUUM 
  5411          && (aFrom[j]==0xFF || apCopy[aFrom[j]]->pgno!=pNew->pgno)
  5412         ){
  5413           rc = ptrmapPut(pBt, get4byte(pCell), PTRMAP_BTREE, pNew->pgno);
  5414           if( rc!=SQLITE_OK ){
  5415             goto balance_cleanup;
  5416           }
  5417         }
  5418       }else if( leafData ){
  5419         /* If the tree is a leaf-data tree, and the siblings are leaves, 
  5420         ** then there is no divider cell in apCell[]. Instead, the divider 
  5421         ** cell consists of the integer key for the right-most cell of 
  5422         ** the sibling-page assembled above only.
  5423         */
  5424         CellInfo info;
  5425         j--;
  5426         sqlite3BtreeParseCellPtr(pNew, apCell[j], &info);
  5427         pCell = pTemp;
  5428         fillInCell(pParent, pCell, 0, info.nKey, 0, 0, 0, &sz);
  5429         pTemp = 0;
  5430       }else{
  5431         pCell -= 4;
  5432         /* Obscure case for non-leaf-data trees: If the cell at pCell was
  5433         ** previously stored on a leaf node, and its reported size was 4
  5434         ** bytes, then it may actually be smaller than this 
  5435         ** (see sqlite3BtreeParseCellPtr(), 4 bytes is the minimum size of
  5436         ** any cell). But it is important to pass the correct size to 
  5437         ** insertCell(), so reparse the cell now.
  5438         **
  5439         ** Note that this can never happen in an SQLite data file, as all
  5440         ** cells are at least 4 bytes. It only happens in b-trees used
  5441         ** to evaluate "IN (SELECT ...)" and similar clauses.
  5442         */
  5443         if( szCell[j]==4 ){
  5444           assert(leafCorrection==4);
  5445           sz = cellSizePtr(pParent, pCell);
  5446         }
  5447       }
  5448       iSpace2 += sz;
  5449       assert( sz<=pBt->pageSize/4 );
  5450       assert( iSpace2<=pBt->pageSize );
  5451       rc = insertCell(pParent, nxDiv, pCell, sz, pTemp, 4);
  5452       if( rc!=SQLITE_OK ) goto balance_cleanup;
  5453       put4byte(findOverflowCell(pParent,nxDiv), pNew->pgno);
  5454 
  5455       /* If this is an auto-vacuum database, and not a leaf-data tree,
  5456       ** then update the pointer map with an entry for the overflow page
  5457       ** that the cell just inserted points to (if any).
  5458       */
  5459       if( ISAUTOVACUUM && !leafData ){
  5460         rc = ptrmapPutOvfl(pParent, nxDiv);
  5461         if( rc!=SQLITE_OK ){
  5462           goto balance_cleanup;
  5463         }
  5464       }
  5465       j++;
  5466       nxDiv++;
  5467     }
  5468 
  5469     /* Set the pointer-map entry for the new sibling page. */
  5470     if( ISAUTOVACUUM ){
  5471       rc = ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno);
  5472       if( rc!=SQLITE_OK ){
  5473         goto balance_cleanup;
  5474       }
  5475     }
  5476   }
  5477   assert( j==nCell );
  5478   assert( nOld>0 );
  5479   assert( nNew>0 );
  5480   if( (pageFlags & PTF_LEAF)==0 ){
  5481     u8 *zChild = &apCopy[nOld-1]->aData[8];
  5482     memcpy(&apNew[nNew-1]->aData[8], zChild, 4);
  5483     if( ISAUTOVACUUM ){
  5484       rc = ptrmapPut(pBt, get4byte(zChild), PTRMAP_BTREE, apNew[nNew-1]->pgno);
  5485       if( rc!=SQLITE_OK ){
  5486         goto balance_cleanup;
  5487       }
  5488     }
  5489   }
  5490   if( nxDiv==pParent->nCell+pParent->nOverflow ){
  5491     /* Right-most sibling is the right-most child of pParent */
  5492     put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew[nNew-1]);
  5493   }else{
  5494     /* Right-most sibling is the left child of the first entry in pParent
  5495     ** past the right-most divider entry */
  5496     put4byte(findOverflowCell(pParent, nxDiv), pgnoNew[nNew-1]);
  5497   }
  5498 
  5499   /*
  5500   ** Reparent children of all cells.
  5501   */
  5502   for(i=0; i<nNew; i++){
  5503     rc = reparentChildPages(apNew[i], 0);
  5504     if( rc!=SQLITE_OK ) goto balance_cleanup;
  5505   }
  5506   rc = reparentChildPages(pParent, 0);
  5507   if( rc!=SQLITE_OK ) goto balance_cleanup;
  5508 
  5509   /*
  5510   ** Balance the parent page.  Note that the current page (pPage) might
  5511   ** have been added to the freelist so it might no longer be initialized.
  5512   ** But the parent page will always be initialized.
  5513   */
  5514   assert( pParent->isInit );
  5515   sqlite3ScratchFree(apCell);
  5516   apCell = 0;
  5517   rc = balance(pParent, 0);
  5518   
  5519   /*
  5520   ** Cleanup before returning.
  5521   */
  5522 balance_cleanup:
  5523   sqlite3PageFree(aSpace2);
  5524   sqlite3ScratchFree(apCell);
  5525   for(i=0; i<nOld; i++){
  5526     releasePage(apOld[i]);
  5527   }
  5528   for(i=0; i<nNew; i++){
  5529     releasePage(apNew[i]);
  5530   }
  5531   releasePage(pParent);
  5532   TRACE(("BALANCE: finished with %d: old=%d new=%d cells=%d\n",
  5533           pPage->pgno, nOld, nNew, nCell));
  5534   return rc;
  5535 }
  5536 
  5537 /*
  5538 ** This routine is called for the root page of a btree when the root
  5539 ** page contains no cells.  This is an opportunity to make the tree
  5540 ** shallower by one level.
  5541 */
  5542 static int balance_shallower(MemPage *pPage){
  5543   MemPage *pChild;             /* The only child page of pPage */
  5544   Pgno pgnoChild;              /* Page number for pChild */
  5545   int rc = SQLITE_OK;          /* Return code from subprocedures */
  5546   BtShared *pBt;                  /* The main BTree structure */
  5547   int mxCellPerPage;           /* Maximum number of cells per page */
  5548   u8 **apCell;                 /* All cells from pages being balanced */
  5549   u16 *szCell;                 /* Local size of all cells */
  5550 
  5551   assert( pPage->pParent==0 );
  5552   assert( pPage->nCell==0 );
  5553   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  5554   pBt = pPage->pBt;
  5555   mxCellPerPage = MX_CELL(pBt);
  5556   apCell = sqlite3Malloc( mxCellPerPage*(sizeof(u8*)+sizeof(u16)) );
  5557   if( apCell==0 ) return SQLITE_NOMEM;
  5558   szCell = (u16*)&apCell[mxCellPerPage];
  5559   if( pPage->leaf ){
  5560     /* The table is completely empty */
  5561     TRACE(("BALANCE: empty table %d\n", pPage->pgno));
  5562   }else{
  5563     /* The root page is empty but has one child.  Transfer the
  5564     ** information from that one child into the root page if it 
  5565     ** will fit.  This reduces the depth of the tree by one.
  5566     **
  5567     ** If the root page is page 1, it has less space available than
  5568     ** its child (due to the 100 byte header that occurs at the beginning
  5569     ** of the database fle), so it might not be able to hold all of the 
  5570     ** information currently contained in the child.  If this is the 
  5571     ** case, then do not do the transfer.  Leave page 1 empty except
  5572     ** for the right-pointer to the child page.  The child page becomes
  5573     ** the virtual root of the tree.
  5574     */
  5575     pgnoChild = get4byte(&pPage->aData[pPage->hdrOffset+8]);
  5576     assert( pgnoChild>0 );
  5577     assert( pgnoChild<=pagerPagecount(pPage->pBt->pPager) );
  5578     rc = sqlite3BtreeGetPage(pPage->pBt, pgnoChild, &pChild, 0);
  5579     if( rc ) goto end_shallow_balance;
  5580     if( pPage->pgno==1 ){
  5581       rc = sqlite3BtreeInitPage(pChild, pPage);
  5582       if( rc ) goto end_shallow_balance;
  5583       assert( pChild->nOverflow==0 );
  5584       if( pChild->nFree>=100 ){
  5585         /* The child information will fit on the root page, so do the
  5586         ** copy */
  5587         int i;
  5588         zeroPage(pPage, pChild->aData[0]);
  5589         for(i=0; i<pChild->nCell; i++){
  5590           apCell[i] = findCell(pChild,i);
  5591           szCell[i] = cellSizePtr(pChild, apCell[i]);
  5592         }
  5593         assemblePage(pPage, pChild->nCell, apCell, szCell);
  5594         /* Copy the right-pointer of the child to the parent. */
  5595         put4byte(&pPage->aData[pPage->hdrOffset+8], 
  5596             get4byte(&pChild->aData[pChild->hdrOffset+8]));
  5597         freePage(pChild);
  5598         TRACE(("BALANCE: child %d transfer to page 1\n", pChild->pgno));
  5599       }else{
  5600         /* The child has more information that will fit on the root.
  5601         ** The tree is already balanced.  Do nothing. */
  5602         TRACE(("BALANCE: child %d will not fit on page 1\n", pChild->pgno));
  5603       }
  5604     }else{
  5605       memcpy(pPage->aData, pChild->aData, pPage->pBt->usableSize);
  5606       pPage->isInit = 0;
  5607       pPage->pParent = 0;
  5608       rc = sqlite3BtreeInitPage(pPage, 0);
  5609       assert( rc==SQLITE_OK );
  5610       freePage(pChild);
  5611       TRACE(("BALANCE: transfer child %d into root %d\n",
  5612               pChild->pgno, pPage->pgno));
  5613     }
  5614     rc = reparentChildPages(pPage, 1);
  5615     assert( pPage->nOverflow==0 );
  5616     if( ISAUTOVACUUM ){
  5617       int i;
  5618       for(i=0; i<pPage->nCell; i++){ 
  5619         rc = ptrmapPutOvfl(pPage, i);
  5620         if( rc!=SQLITE_OK ){
  5621           goto end_shallow_balance;
  5622         }
  5623       }
  5624     }
  5625     releasePage(pChild);
  5626   }
  5627 end_shallow_balance:
  5628   sqlite3_free(apCell);
  5629   return rc;
  5630 }
  5631 
  5632 
  5633 /*
  5634 ** The root page is overfull
  5635 **
  5636 ** When this happens, Create a new child page and copy the
  5637 ** contents of the root into the child.  Then make the root
  5638 ** page an empty page with rightChild pointing to the new
  5639 ** child.   Finally, call balance_internal() on the new child
  5640 ** to cause it to split.
  5641 */
  5642 static int balance_deeper(MemPage *pPage){
  5643   int rc;             /* Return value from subprocedures */
  5644   MemPage *pChild;    /* Pointer to a new child page */
  5645   Pgno pgnoChild;     /* Page number of the new child page */
  5646   BtShared *pBt;         /* The BTree */
  5647   int usableSize;     /* Total usable size of a page */
  5648   u8 *data;           /* Content of the parent page */
  5649   u8 *cdata;          /* Content of the child page */
  5650   int hdr;            /* Offset to page header in parent */
  5651   int brk;            /* Offset to content of first cell in parent */
  5652 
  5653   assert( pPage->pParent==0 );
  5654   assert( pPage->nOverflow>0 );
  5655   pBt = pPage->pBt;
  5656   assert( sqlite3_mutex_held(pBt->mutex) );
  5657   rc = allocateBtreePage(pBt, &pChild, &pgnoChild, pPage->pgno, 0);
  5658   if( rc ) return rc;
  5659   assert( sqlite3PagerIswriteable(pChild->pDbPage) );
  5660   usableSize = pBt->usableSize;
  5661   data = pPage->aData;
  5662   hdr = pPage->hdrOffset;
  5663   brk = get2byte(&data[hdr+5]);
  5664   cdata = pChild->aData;
  5665   memcpy(cdata, &data[hdr], pPage->cellOffset+2*pPage->nCell-hdr);
  5666   memcpy(&cdata[brk], &data[brk], usableSize-brk);
  5667   if( pChild->isInit ) return SQLITE_CORRUPT;
  5668   rc = sqlite3BtreeInitPage(pChild, pPage);
  5669   if( rc ) goto balancedeeper_out;
  5670   memcpy(pChild->aOvfl, pPage->aOvfl, pPage->nOverflow*sizeof(pPage->aOvfl[0]));
  5671   pChild->nOverflow = pPage->nOverflow;
  5672   if( pChild->nOverflow ){
  5673     pChild->nFree = 0;
  5674   }
  5675   assert( pChild->nCell==pPage->nCell );
  5676   zeroPage(pPage, pChild->aData[0] & ~PTF_LEAF);
  5677   put4byte(&pPage->aData[pPage->hdrOffset+8], pgnoChild);
  5678   TRACE(("BALANCE: copy root %d into %d\n", pPage->pgno, pChild->pgno));
  5679   if( ISAUTOVACUUM ){
  5680     int i;
  5681     rc = ptrmapPut(pBt, pChild->pgno, PTRMAP_BTREE, pPage->pgno);
  5682     if( rc ) goto balancedeeper_out;
  5683     for(i=0; i<pChild->nCell; i++){
  5684       rc = ptrmapPutOvfl(pChild, i);
  5685       if( rc!=SQLITE_OK ){
  5686         goto balancedeeper_out;
  5687       }
  5688     }
  5689     rc = reparentChildPages(pChild, 1);
  5690   }
  5691   if( rc==SQLITE_OK ){
  5692     rc = balance_nonroot(pChild);
  5693   }
  5694 
  5695 balancedeeper_out:
  5696   releasePage(pChild);
  5697   return rc;
  5698 }
  5699 
  5700 /*
  5701 ** Decide if the page pPage needs to be balanced.  If balancing is
  5702 ** required, call the appropriate balancing routine.
  5703 */
  5704 static int balance(MemPage *pPage, int insert){
  5705   int rc = SQLITE_OK;
  5706   assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  5707   if( pPage->pParent==0 ){
  5708     rc = sqlite3PagerWrite(pPage->pDbPage);
  5709     if( rc==SQLITE_OK && pPage->nOverflow>0 ){
  5710       rc = balance_deeper(pPage);
  5711     }
  5712     if( rc==SQLITE_OK && pPage->nCell==0 ){
  5713       rc = balance_shallower(pPage);
  5714     }
  5715   }else{
  5716     if( pPage->nOverflow>0 || 
  5717         (!insert && pPage->nFree>pPage->pBt->usableSize*2/3) ){
  5718       rc = balance_nonroot(pPage);
  5719     }
  5720   }
  5721   return rc;
  5722 }
  5723 
  5724 /*
  5725 ** This routine checks all cursors that point to table pgnoRoot.
  5726 ** If any of those cursors were opened with wrFlag==0 in a different
  5727 ** database connection (a database connection that shares the pager
  5728 ** cache with the current connection) and that other connection 
  5729 ** is not in the ReadUncommmitted state, then this routine returns 
  5730 ** SQLITE_LOCKED.
  5731 **
  5732 ** As well as cursors with wrFlag==0, cursors with wrFlag==1 and 
  5733 ** isIncrblobHandle==1 are also considered 'read' cursors. Incremental 
  5734 ** blob cursors are used for both reading and writing.
  5735 **
  5736 ** When pgnoRoot is the root page of an intkey table, this function is also
  5737 ** responsible for invalidating incremental blob cursors when the table row
  5738 ** on which they are opened is deleted or modified. Cursors are invalidated
  5739 ** according to the following rules:
  5740 **
  5741 **   1) When BtreeClearTable() is called to completely delete the contents
  5742 **      of a B-Tree table, pExclude is set to zero and parameter iRow is 
  5743 **      set to non-zero. In this case all incremental blob cursors open
  5744 **      on the table rooted at pgnoRoot are invalidated.
  5745 **
  5746 **   2) When BtreeInsert(), BtreeDelete() or BtreePutData() is called to 
  5747 **      modify a table row via an SQL statement, pExclude is set to the 
  5748 **      write cursor used to do the modification and parameter iRow is set
  5749 **      to the integer row id of the B-Tree entry being modified. Unless
  5750 **      pExclude is itself an incremental blob cursor, then all incremental
  5751 **      blob cursors open on row iRow of the B-Tree are invalidated.
  5752 **
  5753 **   3) If both pExclude and iRow are set to zero, no incremental blob 
  5754 **      cursors are invalidated.
  5755 */
  5756 static int checkReadLocks(
  5757   Btree *pBtree, 
  5758   Pgno pgnoRoot, 
  5759   BtCursor *pExclude,
  5760   i64 iRow
  5761 ){
  5762   BtCursor *p;
  5763   BtShared *pBt = pBtree->pBt;
  5764   sqlite3 *db = pBtree->db;
  5765   assert( sqlite3BtreeHoldsMutex(pBtree) );
  5766   for(p=pBt->pCursor; p; p=p->pNext){
  5767     if( p==pExclude ) continue;
  5768     if( p->pgnoRoot!=pgnoRoot ) continue;
  5769 #ifndef SQLITE_OMIT_INCRBLOB
  5770     if( p->isIncrblobHandle && ( 
  5771          (!pExclude && iRow)
  5772       || (pExclude && !pExclude->isIncrblobHandle && p->info.nKey==iRow)
  5773     )){
  5774       p->eState = CURSOR_INVALID;
  5775     }
  5776 #endif
  5777     if( p->eState!=CURSOR_VALID ) continue;
  5778     if( p->wrFlag==0 
  5779 #ifndef SQLITE_OMIT_INCRBLOB
  5780      || p->isIncrblobHandle
  5781 #endif
  5782     ){
  5783       sqlite3 *dbOther = p->pBtree->db;
  5784       if( dbOther==0 ||
  5785          (dbOther!=db && (dbOther->flags & SQLITE_ReadUncommitted)==0) ){
  5786         return SQLITE_LOCKED;
  5787       }
  5788     }
  5789   }
  5790   return SQLITE_OK;
  5791 }
  5792 
  5793 /*
  5794 ** Insert a new record into the BTree.  The key is given by (pKey,nKey)
  5795 ** and the data is given by (pData,nData).  The cursor is used only to
  5796 ** define what table the record should be inserted into.  The cursor
  5797 ** is left pointing at a random location.
  5798 **
  5799 ** For an INTKEY table, only the nKey value of the key is used.  pKey is
  5800 ** ignored.  For a ZERODATA table, the pData and nData are both ignored.
  5801 */
  5802 int sqlite3BtreeInsert(
  5803   BtCursor *pCur,                /* Insert data into the table of this cursor */
  5804   const void *pKey, i64 nKey,    /* The key of the new record */
  5805   const void *pData, int nData,  /* The data of the new record */
  5806   int nZero,                     /* Number of extra 0 bytes to append to data */
  5807   int appendBias                 /* True if this is likely an append */
  5808 ){
  5809   int rc;
  5810   int loc;
  5811   int szNew;
  5812   MemPage *pPage;
  5813   Btree *p = pCur->pBtree;
  5814   BtShared *pBt = p->pBt;
  5815   unsigned char *oldCell;
  5816   unsigned char *newCell = 0;
  5817 
  5818   assert( cursorHoldsMutex(pCur) );
  5819   if( pBt->inTransaction!=TRANS_WRITE ){
  5820     /* Must start a transaction before doing an insert */
  5821     rc = pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
  5822     return rc;
  5823   }
  5824   assert( !pBt->readOnly );
  5825   if( !pCur->wrFlag ){
  5826     return SQLITE_PERM;   /* Cursor not open for writing */
  5827   }
  5828   if( checkReadLocks(pCur->pBtree, pCur->pgnoRoot, pCur, nKey) ){
  5829     return SQLITE_LOCKED; /* The table pCur points to has a read lock */
  5830   }
  5831   if( pCur->eState==CURSOR_FAULT ){
  5832     return pCur->skip;
  5833   }
  5834 
  5835   /* Save the positions of any other cursors open on this table */
  5836   clearCursorPosition(pCur);
  5837   if( 
  5838     SQLITE_OK!=(rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur)) ||
  5839     SQLITE_OK!=(rc = sqlite3BtreeMoveto(pCur, pKey, 0, nKey, appendBias, &loc))
  5840   ){
  5841     return rc;
  5842   }
  5843 
  5844   pPage = pCur->pPage;
  5845   assert( pPage->intKey || nKey>=0 );
  5846   assert( pPage->leaf || !pPage->intKey );
  5847   TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
  5848           pCur->pgnoRoot, nKey, nData, pPage->pgno,
  5849           loc==0 ? "overwrite" : "new entry"));
  5850   assert( pPage->isInit );
  5851   allocateTempSpace(pBt);
  5852   newCell = pBt->pTmpSpace;
  5853   if( newCell==0 ) return SQLITE_NOMEM;
  5854   rc = fillInCell(pPage, newCell, pKey, nKey, pData, nData, nZero, &szNew);
  5855   if( rc ) goto end_insert;
  5856   assert( szNew==cellSizePtr(pPage, newCell) );
  5857   assert( szNew<=MX_CELL_SIZE(pBt) );
  5858   if( loc==0 && CURSOR_VALID==pCur->eState ){
  5859     u16 szOld;
  5860     assert( pCur->idx>=0 && pCur->idx<pPage->nCell );
  5861     rc = sqlite3PagerWrite(pPage->pDbPage);
  5862     if( rc ){
  5863       goto end_insert;
  5864     }
  5865     oldCell = findCell(pPage, pCur->idx);
  5866     if( !pPage->leaf ){
  5867       memcpy(newCell, oldCell, 4);
  5868     }
  5869     szOld = cellSizePtr(pPage, oldCell);
  5870     rc = clearCell(pPage, oldCell);
  5871     if( rc ) goto end_insert;
  5872     dropCell(pPage, pCur->idx, szOld);
  5873   }else if( loc<0 && pPage->nCell>0 ){
  5874     assert( pPage->leaf );
  5875     pCur->idx++;
  5876     pCur->info.nSize = 0;
  5877     pCur->validNKey = 0;
  5878   }else{
  5879     assert( pPage->leaf );
  5880   }
  5881   rc = insertCell(pPage, pCur->idx, newCell, szNew, 0, 0);
  5882   if( rc!=SQLITE_OK ) goto end_insert;
  5883   rc = balance(pPage, 1);
  5884   if( rc==SQLITE_OK ){
  5885     moveToRoot(pCur);
  5886   }
  5887 end_insert:
  5888   return rc;
  5889 }
  5890 
  5891 /*
  5892 ** Delete the entry that the cursor is pointing to.  The cursor
  5893 ** is left pointing at a random location.
  5894 */
  5895 int sqlite3BtreeDelete(BtCursor *pCur){
  5896   MemPage *pPage = pCur->pPage;
  5897   unsigned char *pCell;
  5898   int rc;
  5899   Pgno pgnoChild = 0;
  5900   Btree *p = pCur->pBtree;
  5901   BtShared *pBt = p->pBt;
  5902 
  5903   assert( cursorHoldsMutex(pCur) );
  5904   assert( pPage->isInit );
  5905   if( pBt->inTransaction!=TRANS_WRITE ){
  5906     /* Must start a transaction before doing a delete */
  5907     rc = pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
  5908     return rc;
  5909   }
  5910   assert( !pBt->readOnly );
  5911   if( pCur->eState==CURSOR_FAULT ){
  5912     return pCur->skip;
  5913   }
  5914   if( pCur->idx >= pPage->nCell ){
  5915     return SQLITE_ERROR;  /* The cursor is not pointing to anything */
  5916   }
  5917   if( !pCur->wrFlag ){
  5918     return SQLITE_PERM;   /* Did not open this cursor for writing */
  5919   }
  5920   if( checkReadLocks(pCur->pBtree, pCur->pgnoRoot, pCur, pCur->info.nKey) ){
  5921     return SQLITE_LOCKED; /* The table pCur points to has a read lock */
  5922   }
  5923 
  5924   /* Restore the current cursor position (a no-op if the cursor is not in 
  5925   ** CURSOR_REQUIRESEEK state) and save the positions of any other cursors 
  5926   ** open on the same table. Then call sqlite3PagerWrite() on the page
  5927   ** that the entry will be deleted from.
  5928   */
  5929   if( 
  5930     (rc = restoreCursorPosition(pCur))!=0 ||
  5931     (rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur))!=0 ||
  5932     (rc = sqlite3PagerWrite(pPage->pDbPage))!=0
  5933   ){
  5934     return rc;
  5935   }
  5936 
  5937   /* Locate the cell within its page and leave pCell pointing to the
  5938   ** data. The clearCell() call frees any overflow pages associated with the
  5939   ** cell. The cell itself is still intact.
  5940   */
  5941   pCell = findCell(pPage, pCur->idx);
  5942   if( !pPage->leaf ){
  5943     pgnoChild = get4byte(pCell);
  5944   }
  5945   rc = clearCell(pPage, pCell);
  5946   if( rc ){
  5947     return rc;
  5948   }
  5949 
  5950   if( !pPage->leaf ){
  5951     /*
  5952     ** The entry we are about to delete is not a leaf so if we do not
  5953     ** do something we will leave a hole on an internal page.
  5954     ** We have to fill the hole by moving in a cell from a leaf.  The
  5955     ** next Cell after the one to be deleted is guaranteed to exist and
  5956     ** to be a leaf so we can use it.
  5957     */
  5958     BtCursor leafCur;
  5959     unsigned char *pNext;
  5960     int notUsed;
  5961     unsigned char *tempCell = 0;
  5962     assert( !pPage->intKey );
  5963     sqlite3BtreeGetTempCursor(pCur, &leafCur);
  5964     rc = sqlite3BtreeNext(&leafCur, &notUsed);
  5965     if( rc==SQLITE_OK ){
  5966       rc = sqlite3PagerWrite(leafCur.pPage->pDbPage);
  5967     }
  5968     if( rc==SQLITE_OK ){
  5969       u16 szNext;
  5970       TRACE(("DELETE: table=%d delete internal from %d replace from leaf %d\n",
  5971          pCur->pgnoRoot, pPage->pgno, leafCur.pPage->pgno));
  5972       dropCell(pPage, pCur->idx, cellSizePtr(pPage, pCell));
  5973       pNext = findCell(leafCur.pPage, leafCur.idx);
  5974       szNext = cellSizePtr(leafCur.pPage, pNext);
  5975       assert( MX_CELL_SIZE(pBt)>=szNext+4 );
  5976       allocateTempSpace(pBt);
  5977       tempCell = pBt->pTmpSpace;
  5978       if( tempCell==0 ){
  5979         rc = SQLITE_NOMEM;
  5980       }
  5981       if( rc==SQLITE_OK ){
  5982         rc = insertCell(pPage, pCur->idx, pNext-4, szNext+4, tempCell, 0);
  5983       }
  5984       if( rc==SQLITE_OK ){
  5985         put4byte(findOverflowCell(pPage, pCur->idx), pgnoChild);
  5986         rc = balance(pPage, 0);
  5987       }
  5988       if( rc==SQLITE_OK ){
  5989         dropCell(leafCur.pPage, leafCur.idx, szNext);
  5990         rc = balance(leafCur.pPage, 0);
  5991       }
  5992     }
  5993     sqlite3BtreeReleaseTempCursor(&leafCur);
  5994   }else{
  5995     TRACE(("DELETE: table=%d delete from leaf %d\n",
  5996        pCur->pgnoRoot, pPage->pgno));
  5997     dropCell(pPage, pCur->idx, cellSizePtr(pPage, pCell));
  5998     rc = balance(pPage, 0);
  5999   }
  6000   if( rc==SQLITE_OK ){
  6001     moveToRoot(pCur);
  6002   }
  6003   return rc;
  6004 }
  6005 
  6006 /*
  6007 ** Create a new BTree table.  Write into *piTable the page
  6008 ** number for the root page of the new table.
  6009 **
  6010 ** The type of type is determined by the flags parameter.  Only the
  6011 ** following values of flags are currently in use.  Other values for
  6012 ** flags might not work:
  6013 **
  6014 **     BTREE_INTKEY|BTREE_LEAFDATA     Used for SQL tables with rowid keys
  6015 **     BTREE_ZERODATA                  Used for SQL indices
  6016 */
  6017 static int btreeCreateTable(Btree *p, int *piTable, int flags){
  6018   BtShared *pBt = p->pBt;
  6019   MemPage *pRoot;
  6020   Pgno pgnoRoot;
  6021   int rc;
  6022 
  6023   assert( sqlite3BtreeHoldsMutex(p) );
  6024   if( pBt->inTransaction!=TRANS_WRITE ){
  6025     /* Must start a transaction first */
  6026     rc = pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
  6027     return rc;
  6028   }
  6029   assert( !pBt->readOnly );
  6030 
  6031 #ifdef SQLITE_OMIT_AUTOVACUUM
  6032   rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
  6033   if( rc ){
  6034     return rc;
  6035   }
  6036 #else
  6037   if( pBt->autoVacuum ){
  6038     Pgno pgnoMove;      /* Move a page here to make room for the root-page */
  6039     MemPage *pPageMove; /* The page to move to. */
  6040 
  6041     /* Creating a new table may probably require moving an existing database
  6042     ** to make room for the new tables root page. In case this page turns
  6043     ** out to be an overflow page, delete all overflow page-map caches
  6044     ** held by open cursors.
  6045     */
  6046     invalidateAllOverflowCache(pBt);
  6047 
  6048     /* Read the value of meta[3] from the database to determine where the
  6049     ** root page of the new table should go. meta[3] is the largest root-page
  6050     ** created so far, so the new root-page is (meta[3]+1).
  6051     */
  6052     rc = sqlite3BtreeGetMeta(p, 4, &pgnoRoot);
  6053     if( rc!=SQLITE_OK ){
  6054       return rc;
  6055     }
  6056     pgnoRoot++;
  6057 
  6058     /* The new root-page may not be allocated on a pointer-map page, or the
  6059     ** PENDING_BYTE page.
  6060     */
  6061     while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) ||
  6062         pgnoRoot==PENDING_BYTE_PAGE(pBt) ){
  6063       pgnoRoot++;
  6064     }
  6065     assert( pgnoRoot>=3 );
  6066 
  6067     /* Allocate a page. The page that currently resides at pgnoRoot will
  6068     ** be moved to the allocated page (unless the allocated page happens
  6069     ** to reside at pgnoRoot).
  6070     */
  6071     rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, 1);
  6072     if( rc!=SQLITE_OK ){
  6073       return rc;
  6074     }
  6075 
  6076     if( pgnoMove!=pgnoRoot ){
  6077       /* pgnoRoot is the page that will be used for the root-page of
  6078       ** the new table (assuming an error did not occur). But we were
  6079       ** allocated pgnoMove. If required (i.e. if it was not allocated
  6080       ** by extending the file), the current page at position pgnoMove
  6081       ** is already journaled.
  6082       */
  6083       u8 eType;
  6084       Pgno iPtrPage;
  6085 
  6086       releasePage(pPageMove);
  6087 
  6088       /* Move the page currently at pgnoRoot to pgnoMove. */
  6089       rc = sqlite3BtreeGetPage(pBt, pgnoRoot, &pRoot, 0);
  6090       if( rc!=SQLITE_OK ){
  6091         return rc;
  6092       }
  6093       rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
  6094       if( rc!=SQLITE_OK || eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
  6095         releasePage(pRoot);
  6096         return rc;
  6097       }
  6098       assert( eType!=PTRMAP_ROOTPAGE );
  6099       assert( eType!=PTRMAP_FREEPAGE );
  6100       rc = sqlite3PagerWrite(pRoot->pDbPage);
  6101       if( rc!=SQLITE_OK ){
  6102         releasePage(pRoot);
  6103         return rc;
  6104       }
  6105       rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0);
  6106       releasePage(pRoot);
  6107 
  6108       /* Obtain the page at pgnoRoot */
  6109       if( rc!=SQLITE_OK ){
  6110         return rc;
  6111       }
  6112       rc = sqlite3BtreeGetPage(pBt, pgnoRoot, &pRoot, 0);
  6113       if( rc!=SQLITE_OK ){
  6114         return rc;
  6115       }
  6116       rc = sqlite3PagerWrite(pRoot->pDbPage);
  6117       if( rc!=SQLITE_OK ){
  6118         releasePage(pRoot);
  6119         return rc;
  6120       }
  6121     }else{
  6122       pRoot = pPageMove;
  6123     } 
  6124 
  6125     /* Update the pointer-map and meta-data with the new root-page number. */
  6126     rc = ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0);
  6127     if( rc ){
  6128       releasePage(pRoot);
  6129       return rc;
  6130     }
  6131     rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot);
  6132     if( rc ){
  6133       releasePage(pRoot);
  6134       return rc;
  6135     }
  6136 
  6137   }else{
  6138     rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
  6139     if( rc ) return rc;
  6140   }
  6141 #endif
  6142   assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
  6143   zeroPage(pRoot, flags | PTF_LEAF);
  6144   sqlite3PagerUnref(pRoot->pDbPage);
  6145   *piTable = (int)pgnoRoot;
  6146   return SQLITE_OK;
  6147 }
  6148 int sqlite3BtreeCreateTable(Btree *p, int *piTable, int flags){
  6149   int rc;
  6150   sqlite3BtreeEnter(p);
  6151   p->pBt->db = p->db;
  6152   rc = btreeCreateTable(p, piTable, flags);
  6153   sqlite3BtreeLeave(p);
  6154   return rc;
  6155 }
  6156 
  6157 /*
  6158 ** Erase the given database page and all its children.  Return
  6159 ** the page to the freelist.
  6160 */
  6161 static int clearDatabasePage(
  6162   BtShared *pBt,           /* The BTree that contains the table */
  6163   Pgno pgno,            /* Page number to clear */
  6164   MemPage *pParent,     /* Parent page.  NULL for the root */
  6165   int freePageFlag      /* Deallocate page if true */
  6166 ){
  6167   MemPage *pPage = 0;
  6168   int rc;
  6169   unsigned char *pCell;
  6170   int i;
  6171 
  6172   assert( sqlite3_mutex_held(pBt->mutex) );
  6173   if( pgno>pagerPagecount(pBt->pPager) ){
  6174     return SQLITE_CORRUPT_BKPT;
  6175   }
  6176 
  6177   rc = getAndInitPage(pBt, pgno, &pPage, pParent);
  6178   if( rc ) goto cleardatabasepage_out;
  6179   for(i=0; i<pPage->nCell; i++){
  6180     pCell = findCell(pPage, i);
  6181     if( !pPage->leaf ){
  6182       rc = clearDatabasePage(pBt, get4byte(pCell), pPage->pParent, 1);
  6183       if( rc ) goto cleardatabasepage_out;
  6184     }
  6185     rc = clearCell(pPage, pCell);
  6186     if( rc ) goto cleardatabasepage_out;
  6187   }
  6188   if( !pPage->leaf ){
  6189     rc = clearDatabasePage(pBt, get4byte(&pPage->aData[8]), pPage->pParent, 1);
  6190     if( rc ) goto cleardatabasepage_out;
  6191   }
  6192   if( freePageFlag ){
  6193     rc = freePage(pPage);
  6194   }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){
  6195     zeroPage(pPage, pPage->aData[0] | PTF_LEAF);
  6196   }
  6197 
  6198 cleardatabasepage_out:
  6199   releasePage(pPage);
  6200   return rc;
  6201 }
  6202 
  6203 /*
  6204 ** Delete all information from a single table in the database.  iTable is
  6205 ** the page number of the root of the table.  After this routine returns,
  6206 ** the root page is empty, but still exists.
  6207 **
  6208 ** This routine will fail with SQLITE_LOCKED if there are any open
  6209 ** read cursors on the table.  Open write cursors are moved to the
  6210 ** root of the table.
  6211 */
  6212 int sqlite3BtreeClearTable(Btree *p, int iTable){
  6213   int rc;
  6214   BtShared *pBt = p->pBt;
  6215   sqlite3BtreeEnter(p);
  6216   pBt->db = p->db;
  6217   if( p->inTrans!=TRANS_WRITE ){
  6218     rc = pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
  6219   }else if( (rc = checkReadLocks(p, iTable, 0, 1))!=SQLITE_OK ){
  6220     /* nothing to do */
  6221   }else if( SQLITE_OK!=(rc = saveAllCursors(pBt, iTable, 0)) ){
  6222     /* nothing to do */
  6223   }else{
  6224     rc = clearDatabasePage(pBt, (Pgno)iTable, 0, 0);
  6225   }
  6226   sqlite3BtreeLeave(p);
  6227   return rc;
  6228 }
  6229 
  6230 /*
  6231 ** Erase all information in a table and add the root of the table to
  6232 ** the freelist.  Except, the root of the principle table (the one on
  6233 ** page 1) is never added to the freelist.
  6234 **
  6235 ** This routine will fail with SQLITE_LOCKED if there are any open
  6236 ** cursors on the table.
  6237 **
  6238 ** If AUTOVACUUM is enabled and the page at iTable is not the last
  6239 ** root page in the database file, then the last root page 
  6240 ** in the database file is moved into the slot formerly occupied by
  6241 ** iTable and that last slot formerly occupied by the last root page
  6242 ** is added to the freelist instead of iTable.  In this say, all
  6243 ** root pages are kept at the beginning of the database file, which
  6244 ** is necessary for AUTOVACUUM to work right.  *piMoved is set to the 
  6245 ** page number that used to be the last root page in the file before
  6246 ** the move.  If no page gets moved, *piMoved is set to 0.
  6247 ** The last root page is recorded in meta[3] and the value of
  6248 ** meta[3] is updated by this procedure.
  6249 */
  6250 static int btreeDropTable(Btree *p, int iTable, int *piMoved){
  6251   int rc;
  6252   MemPage *pPage = 0;
  6253   BtShared *pBt = p->pBt;
  6254 
  6255   assert( sqlite3BtreeHoldsMutex(p) );
  6256   if( p->inTrans!=TRANS_WRITE ){
  6257     return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
  6258   }
  6259 
  6260   /* It is illegal to drop a table if any cursors are open on the
  6261   ** database. This is because in auto-vacuum mode the backend may
  6262   ** need to move another root-page to fill a gap left by the deleted
  6263   ** root page. If an open cursor was using this page a problem would 
  6264   ** occur.
  6265   */
  6266   if( pBt->pCursor ){
  6267     return SQLITE_LOCKED;
  6268   }
  6269 
  6270   rc = sqlite3BtreeGetPage(pBt, (Pgno)iTable, &pPage, 0);
  6271   if( rc ) return rc;
  6272   rc = sqlite3BtreeClearTable(p, iTable);
  6273   if( rc ){
  6274     releasePage(pPage);
  6275     return rc;
  6276   }
  6277 
  6278   *piMoved = 0;
  6279 
  6280   if( iTable>1 ){
  6281 #ifdef SQLITE_OMIT_AUTOVACUUM
  6282     rc = freePage(pPage);
  6283     releasePage(pPage);
  6284 #else
  6285     if( pBt->autoVacuum ){
  6286       Pgno maxRootPgno;
  6287       rc = sqlite3BtreeGetMeta(p, 4, &maxRootPgno);
  6288       if( rc!=SQLITE_OK ){
  6289         releasePage(pPage);
  6290         return rc;
  6291       }
  6292 
  6293       if( iTable==maxRootPgno ){
  6294         /* If the table being dropped is the table with the largest root-page
  6295         ** number in the database, put the root page on the free list. 
  6296         */
  6297         rc = freePage(pPage);
  6298         releasePage(pPage);
  6299         if( rc!=SQLITE_OK ){
  6300           return rc;
  6301         }
  6302       }else{
  6303         /* The table being dropped does not have the largest root-page
  6304         ** number in the database. So move the page that does into the 
  6305         ** gap left by the deleted root-page.
  6306         */
  6307         MemPage *pMove;
  6308         releasePage(pPage);
  6309         rc = sqlite3BtreeGetPage(pBt, maxRootPgno, &pMove, 0);
  6310         if( rc!=SQLITE_OK ){
  6311           return rc;
  6312         }
  6313         rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0);
  6314         releasePage(pMove);
  6315         if( rc!=SQLITE_OK ){
  6316           return rc;
  6317         }
  6318         rc = sqlite3BtreeGetPage(pBt, maxRootPgno, &pMove, 0);
  6319         if( rc!=SQLITE_OK ){
  6320           return rc;
  6321         }
  6322         rc = freePage(pMove);
  6323         releasePage(pMove);
  6324         if( rc!=SQLITE_OK ){
  6325           return rc;
  6326         }
  6327         *piMoved = maxRootPgno;
  6328       }
  6329 
  6330       /* Set the new 'max-root-page' value in the database header. This
  6331       ** is the old value less one, less one more if that happens to
  6332       ** be a root-page number, less one again if that is the
  6333       ** PENDING_BYTE_PAGE.
  6334       */
  6335       maxRootPgno--;
  6336       if( maxRootPgno==PENDING_BYTE_PAGE(pBt) ){
  6337         maxRootPgno--;
  6338       }
  6339       if( maxRootPgno==PTRMAP_PAGENO(pBt, maxRootPgno) ){
  6340         maxRootPgno--;
  6341       }
  6342       assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) );
  6343 
  6344       rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno);
  6345     }else{
  6346       rc = freePage(pPage);
  6347       releasePage(pPage);
  6348     }
  6349 #endif
  6350   }else{
  6351     /* If sqlite3BtreeDropTable was called on page 1. */
  6352     zeroPage(pPage, PTF_INTKEY|PTF_LEAF );
  6353     releasePage(pPage);
  6354   }
  6355   return rc;  
  6356 }
  6357 int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){
  6358   int rc;
  6359   sqlite3BtreeEnter(p);
  6360   p->pBt->db = p->db;
  6361   rc = btreeDropTable(p, iTable, piMoved);
  6362   sqlite3BtreeLeave(p);
  6363   return rc;
  6364 }
  6365 
  6366 
  6367 /*
  6368 ** Read the meta-information out of a database file.  Meta[0]
  6369 ** is the number of free pages currently in the database.  Meta[1]
  6370 ** through meta[15] are available for use by higher layers.  Meta[0]
  6371 ** is read-only, the others are read/write.
  6372 ** 
  6373 ** The schema layer numbers meta values differently.  At the schema
  6374 ** layer (and the SetCookie and ReadCookie opcodes) the number of
  6375 ** free pages is not visible.  So Cookie[0] is the same as Meta[1].
  6376 */
  6377 int sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){
  6378   DbPage *pDbPage;
  6379   int rc;
  6380   unsigned char *pP1;
  6381   BtShared *pBt = p->pBt;
  6382 
  6383   sqlite3BtreeEnter(p);
  6384   pBt->db = p->db;
  6385 
  6386   /* Reading a meta-data value requires a read-lock on page 1 (and hence
  6387   ** the sqlite_master table. We grab this lock regardless of whether or
  6388   ** not the SQLITE_ReadUncommitted flag is set (the table rooted at page
  6389   ** 1 is treated as a special case by queryTableLock() and lockTable()).
  6390   */
  6391   rc = queryTableLock(p, 1, READ_LOCK);
  6392   if( rc!=SQLITE_OK ){
  6393     sqlite3BtreeLeave(p);
  6394     return rc;
  6395   }
  6396 
  6397   assert( idx>=0 && idx<=15 );
  6398   rc = sqlite3PagerGet(pBt->pPager, 1, &pDbPage);
  6399   if( rc ){
  6400     sqlite3BtreeLeave(p);
  6401     return rc;
  6402   }
  6403   pP1 = (unsigned char *)sqlite3PagerGetData(pDbPage);
  6404   *pMeta = get4byte(&pP1[36 + idx*4]);
  6405   sqlite3PagerUnref(pDbPage);
  6406 
  6407   /* If autovacuumed is disabled in this build but we are trying to 
  6408   ** access an autovacuumed database, then make the database readonly. 
  6409   */
  6410 #ifdef SQLITE_OMIT_AUTOVACUUM
  6411   if( idx==4 && *pMeta>0 ) pBt->readOnly = 1;
  6412 #endif
  6413 
  6414   /* Grab the read-lock on page 1. */
  6415   rc = lockTable(p, 1, READ_LOCK);
  6416   sqlite3BtreeLeave(p);
  6417   return rc;
  6418 }
  6419 
  6420 /*
  6421 ** Write meta-information back into the database.  Meta[0] is
  6422 ** read-only and may not be written.
  6423 */
  6424 int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){
  6425   BtShared *pBt = p->pBt;
  6426   unsigned char *pP1;
  6427   int rc;
  6428   assert( idx>=1 && idx<=15 );
  6429   sqlite3BtreeEnter(p);
  6430   pBt->db = p->db;
  6431   if( p->inTrans!=TRANS_WRITE ){
  6432     rc = pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
  6433   }else{
  6434     assert( pBt->pPage1!=0 );
  6435     pP1 = pBt->pPage1->aData;
  6436     rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
  6437     if( rc==SQLITE_OK ){
  6438       put4byte(&pP1[36 + idx*4], iMeta);
  6439 #ifndef SQLITE_OMIT_AUTOVACUUM
  6440       if( idx==7 ){
  6441         assert( pBt->autoVacuum || iMeta==0 );
  6442         assert( iMeta==0 || iMeta==1 );
  6443         pBt->incrVacuum = iMeta;
  6444       }
  6445 #endif
  6446     }
  6447   }
  6448   sqlite3BtreeLeave(p);
  6449   return rc;
  6450 }
  6451 
  6452 /*
  6453 ** Return the flag byte at the beginning of the page that the cursor
  6454 ** is currently pointing to.
  6455 */
  6456 int sqlite3BtreeFlags(BtCursor *pCur){
  6457   /* TODO: What about CURSOR_REQUIRESEEK state? Probably need to call
  6458   ** restoreCursorPosition() here.
  6459   */
  6460   MemPage *pPage;
  6461   restoreCursorPosition(pCur);
  6462   pPage = pCur->pPage;
  6463   assert( cursorHoldsMutex(pCur) );
  6464   assert( pPage->pBt==pCur->pBt );
  6465   return pPage ? pPage->aData[pPage->hdrOffset] : 0;
  6466 }
  6467 
  6468 
  6469 /*
  6470 ** Return the pager associated with a BTree.  This routine is used for
  6471 ** testing and debugging only.
  6472 */
  6473 Pager *sqlite3BtreePager(Btree *p){
  6474   return p->pBt->pPager;
  6475 }
  6476 
  6477 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
  6478 /*
  6479 ** Append a message to the error message string.
  6480 */
  6481 static void checkAppendMsg(
  6482   IntegrityCk *pCheck,
  6483   char *zMsg1,
  6484   const char *zFormat,
  6485   ...
  6486 ){
  6487   va_list ap;
  6488   if( !pCheck->mxErr ) return;
  6489   pCheck->mxErr--;
  6490   pCheck->nErr++;
  6491   va_start(ap, zFormat);
  6492   if( pCheck->errMsg.nChar ){
  6493     sqlite3StrAccumAppend(&pCheck->errMsg, "\n", 1);
  6494   }
  6495   if( zMsg1 ){
  6496     sqlite3StrAccumAppend(&pCheck->errMsg, zMsg1, -1);
  6497   }
  6498   sqlite3VXPrintf(&pCheck->errMsg, 1, zFormat, ap);
  6499   va_end(ap);
  6500   if( pCheck->errMsg.mallocFailed ){
  6501     pCheck->mallocFailed = 1;
  6502   }
  6503 }
  6504 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
  6505 
  6506 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
  6507 /*
  6508 ** Add 1 to the reference count for page iPage.  If this is the second
  6509 ** reference to the page, add an error message to pCheck->zErrMsg.
  6510 ** Return 1 if there are 2 ore more references to the page and 0 if
  6511 ** if this is the first reference to the page.
  6512 **
  6513 ** Also check that the page number is in bounds.
  6514 */
  6515 static int checkRef(IntegrityCk *pCheck, int iPage, char *zContext){
  6516   if( iPage==0 ) return 1;
  6517   if( iPage>pCheck->nPage || iPage<0 ){
  6518     checkAppendMsg(pCheck, zContext, "invalid page number %d", iPage);
  6519     return 1;
  6520   }
  6521   if( pCheck->anRef[iPage]==1 ){
  6522     checkAppendMsg(pCheck, zContext, "2nd reference to page %d", iPage);
  6523     return 1;
  6524   }
  6525   return  (pCheck->anRef[iPage]++)>1;
  6526 }
  6527 
  6528 #ifndef SQLITE_OMIT_AUTOVACUUM
  6529 /*
  6530 ** Check that the entry in the pointer-map for page iChild maps to 
  6531 ** page iParent, pointer type ptrType. If not, append an error message
  6532 ** to pCheck.
  6533 */
  6534 static void checkPtrmap(
  6535   IntegrityCk *pCheck,   /* Integrity check context */
  6536   Pgno iChild,           /* Child page number */
  6537   u8 eType,              /* Expected pointer map type */
  6538   Pgno iParent,          /* Expected pointer map parent page number */
  6539   char *zContext         /* Context description (used for error msg) */
  6540 ){
  6541   int rc;
  6542   u8 ePtrmapType;
  6543   Pgno iPtrmapParent;
  6544 
  6545   rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent);
  6546   if( rc!=SQLITE_OK ){
  6547     checkAppendMsg(pCheck, zContext, "Failed to read ptrmap key=%d", iChild);
  6548     return;
  6549   }
  6550 
  6551   if( ePtrmapType!=eType || iPtrmapParent!=iParent ){
  6552     checkAppendMsg(pCheck, zContext, 
  6553       "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)", 
  6554       iChild, eType, iParent, ePtrmapType, iPtrmapParent);
  6555   }
  6556 }
  6557 #endif
  6558 
  6559 /*
  6560 ** Check the integrity of the freelist or of an overflow page list.
  6561 ** Verify that the number of pages on the list is N.
  6562 */
  6563 static void checkList(
  6564   IntegrityCk *pCheck,  /* Integrity checking context */
  6565   int isFreeList,       /* True for a freelist.  False for overflow page list */
  6566   int iPage,            /* Page number for first page in the list */
  6567   int N,                /* Expected number of pages in the list */
  6568   char *zContext        /* Context for error messages */
  6569 ){
  6570   int i;
  6571   int expected = N;
  6572   int iFirst = iPage;
  6573   while( N-- > 0 && pCheck->mxErr ){
  6574     DbPage *pOvflPage;
  6575     unsigned char *pOvflData;
  6576     if( iPage<1 ){
  6577       checkAppendMsg(pCheck, zContext,
  6578          "%d of %d pages missing from overflow list starting at %d",
  6579           N+1, expected, iFirst);
  6580       break;
  6581     }
  6582     if( checkRef(pCheck, iPage, zContext) ) break;
  6583     if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage) ){
  6584       checkAppendMsg(pCheck, zContext, "failed to get page %d", iPage);
  6585       break;
  6586     }
  6587     pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage);
  6588     if( isFreeList ){
  6589       int n = get4byte(&pOvflData[4]);
  6590 #ifndef SQLITE_OMIT_AUTOVACUUM
  6591       if( pCheck->pBt->autoVacuum ){
  6592         checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0, zContext);
  6593       }
  6594 #endif
  6595       if( n>pCheck->pBt->usableSize/4-2 ){
  6596         checkAppendMsg(pCheck, zContext,
  6597            "freelist leaf count too big on page %d", iPage);
  6598         N--;
  6599       }else{
  6600         for(i=0; i<n; i++){
  6601           Pgno iFreePage = get4byte(&pOvflData[8+i*4]);
  6602 #ifndef SQLITE_OMIT_AUTOVACUUM
  6603           if( pCheck->pBt->autoVacuum ){
  6604             checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0, zContext);
  6605           }
  6606 #endif
  6607           checkRef(pCheck, iFreePage, zContext);
  6608         }
  6609         N -= n;
  6610       }
  6611     }
  6612 #ifndef SQLITE_OMIT_AUTOVACUUM
  6613     else{
  6614       /* If this database supports auto-vacuum and iPage is not the last
  6615       ** page in this overflow list, check that the pointer-map entry for
  6616       ** the following page matches iPage.
  6617       */
  6618       if( pCheck->pBt->autoVacuum && N>0 ){
  6619         i = get4byte(pOvflData);
  6620         checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage, zContext);
  6621       }
  6622     }
  6623 #endif
  6624     iPage = get4byte(pOvflData);
  6625     sqlite3PagerUnref(pOvflPage);
  6626   }
  6627 }
  6628 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
  6629 
  6630 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
  6631 /*
  6632 ** Do various sanity checks on a single page of a tree.  Return
  6633 ** the tree depth.  Root pages return 0.  Parents of root pages
  6634 ** return 1, and so forth.
  6635 ** 
  6636 ** These checks are done:
  6637 **
  6638 **      1.  Make sure that cells and freeblocks do not overlap
  6639 **          but combine to completely cover the page.
  6640 **  NO  2.  Make sure cell keys are in order.
  6641 **  NO  3.  Make sure no key is less than or equal to zLowerBound.
  6642 **  NO  4.  Make sure no key is greater than or equal to zUpperBound.
  6643 **      5.  Check the integrity of overflow pages.
  6644 **      6.  Recursively call checkTreePage on all children.
  6645 **      7.  Verify that the depth of all children is the same.
  6646 **      8.  Make sure this page is at least 33% full or else it is
  6647 **          the root of the tree.
  6648 */
  6649 static int checkTreePage(
  6650   IntegrityCk *pCheck,  /* Context for the sanity check */
  6651   int iPage,            /* Page number of the page to check */
  6652   MemPage *pParent,     /* Parent page */
  6653   char *zParentContext  /* Parent context */
  6654 ){
  6655   MemPage *pPage;
  6656   int i, rc, depth, d2, pgno, cnt;
  6657   int hdr, cellStart;
  6658   int nCell;
  6659   u8 *data;
  6660   BtShared *pBt;
  6661   int usableSize;
  6662   char zContext[100];
  6663   char *hit;
  6664 
  6665   sqlite3_snprintf(sizeof(zContext), zContext, "Page %d: ", iPage);
  6666 
  6667   /* Check that the page exists
  6668   */
  6669   pBt = pCheck->pBt;
  6670   usableSize = pBt->usableSize;
  6671   if( iPage==0 ) return 0;
  6672   if( checkRef(pCheck, iPage, zParentContext) ) return 0;
  6673   if( (rc = sqlite3BtreeGetPage(pBt, (Pgno)iPage, &pPage, 0))!=0 ){
  6674     checkAppendMsg(pCheck, zContext,
  6675        "unable to get the page. error code=%d", rc);
  6676     return 0;
  6677   }
  6678   if( (rc = sqlite3BtreeInitPage(pPage, pParent))!=0 ){
  6679     checkAppendMsg(pCheck, zContext, 
  6680                    "sqlite3BtreeInitPage() returns error code %d", rc);
  6681     releasePage(pPage);
  6682     return 0;
  6683   }
  6684 
  6685   /* Check out all the cells.
  6686   */
  6687   depth = 0;
  6688   for(i=0; i<pPage->nCell && pCheck->mxErr; i++){
  6689     u8 *pCell;
  6690     int sz;
  6691     CellInfo info;
  6692 
  6693     /* Check payload overflow pages
  6694     */
  6695     sqlite3_snprintf(sizeof(zContext), zContext,
  6696              "On tree page %d cell %d: ", iPage, i);
  6697     pCell = findCell(pPage,i);
  6698     sqlite3BtreeParseCellPtr(pPage, pCell, &info);
  6699     sz = info.nData;
  6700     if( !pPage->intKey ) sz += info.nKey;
  6701     assert( sz==info.nPayload );
  6702     if( sz>info.nLocal ){
  6703       int nPage = (sz - info.nLocal + usableSize - 5)/(usableSize - 4);
  6704       Pgno pgnoOvfl = get4byte(&pCell[info.iOverflow]);
  6705 #ifndef SQLITE_OMIT_AUTOVACUUM
  6706       if( pBt->autoVacuum ){
  6707         checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage, zContext);
  6708       }
  6709 #endif
  6710       checkList(pCheck, 0, pgnoOvfl, nPage, zContext);
  6711     }
  6712 
  6713     /* Check sanity of left child page.
  6714     */
  6715     if( !pPage->leaf ){
  6716       pgno = get4byte(pCell);
  6717 #ifndef SQLITE_OMIT_AUTOVACUUM
  6718       if( pBt->autoVacuum ){
  6719         checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, zContext);
  6720       }
  6721 #endif
  6722       d2 = checkTreePage(pCheck,pgno,pPage,zContext);
  6723       if( i>0 && d2!=depth ){
  6724         checkAppendMsg(pCheck, zContext, "Child page depth differs");
  6725       }
  6726       depth = d2;
  6727     }
  6728   }
  6729   if( !pPage->leaf ){
  6730     pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
  6731     sqlite3_snprintf(sizeof(zContext), zContext, 
  6732                      "On page %d at right child: ", iPage);
  6733 #ifndef SQLITE_OMIT_AUTOVACUUM
  6734     if( pBt->autoVacuum ){
  6735       checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, 0);
  6736     }
  6737 #endif
  6738     checkTreePage(pCheck, pgno, pPage, zContext);
  6739   }
  6740  
  6741   /* Check for complete coverage of the page
  6742   */
  6743   data = pPage->aData;
  6744   hdr = pPage->hdrOffset;
  6745   hit = sqlite3PageMalloc( pBt->pageSize );
  6746   if( hit==0 ){
  6747     pCheck->mallocFailed = 1;
  6748   }else{
  6749     memset(hit, 0, usableSize );
  6750     memset(hit, 1, get2byte(&data[hdr+5]));
  6751     nCell = get2byte(&data[hdr+3]);
  6752     cellStart = hdr + 12 - 4*pPage->leaf;
  6753     for(i=0; i<nCell; i++){
  6754       int pc = get2byte(&data[cellStart+i*2]);
  6755       u16 size = cellSizePtr(pPage, &data[pc]);
  6756       int j;
  6757       if( (pc+size-1)>=usableSize || pc<0 ){
  6758         checkAppendMsg(pCheck, 0, 
  6759             "Corruption detected in cell %d on page %d",i,iPage,0);
  6760       }else{
  6761         for(j=pc+size-1; j>=pc; j--) hit[j]++;
  6762       }
  6763     }
  6764     for(cnt=0, i=get2byte(&data[hdr+1]); i>0 && i<usableSize && cnt<10000; 
  6765            cnt++){
  6766       int size = get2byte(&data[i+2]);
  6767       int j;
  6768       if( (i+size-1)>=usableSize || i<0 ){
  6769         checkAppendMsg(pCheck, 0,  
  6770             "Corruption detected in cell %d on page %d",i,iPage,0);
  6771       }else{
  6772         for(j=i+size-1; j>=i; j--) hit[j]++;
  6773       }
  6774       i = get2byte(&data[i]);
  6775     }
  6776     for(i=cnt=0; i<usableSize; i++){
  6777       if( hit[i]==0 ){
  6778         cnt++;
  6779       }else if( hit[i]>1 ){
  6780         checkAppendMsg(pCheck, 0,
  6781           "Multiple uses for byte %d of page %d", i, iPage);
  6782         break;
  6783       }
  6784     }
  6785     if( cnt!=data[hdr+7] ){
  6786       checkAppendMsg(pCheck, 0, 
  6787           "Fragmented space is %d byte reported as %d on page %d",
  6788           cnt, data[hdr+7], iPage);
  6789     }
  6790   }
  6791   sqlite3PageFree(hit);
  6792 
  6793   releasePage(pPage);
  6794   return depth+1;
  6795 }
  6796 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
  6797 
  6798 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
  6799 /*
  6800 ** This routine does a complete check of the given BTree file.  aRoot[] is
  6801 ** an array of pages numbers were each page number is the root page of
  6802 ** a table.  nRoot is the number of entries in aRoot.
  6803 **
  6804 ** Write the number of error seen in *pnErr.  Except for some memory
  6805 ** allocation errors,  nn error message is held in memory obtained from
  6806 ** malloc is returned if *pnErr is non-zero.  If *pnErr==0 then NULL is
  6807 ** returned.
  6808 */
  6809 char *sqlite3BtreeIntegrityCheck(
  6810   Btree *p,     /* The btree to be checked */
  6811   int *aRoot,   /* An array of root pages numbers for individual trees */
  6812   int nRoot,    /* Number of entries in aRoot[] */
  6813   int mxErr,    /* Stop reporting errors after this many */
  6814   int *pnErr    /* Write number of errors seen to this variable */
  6815 ){
  6816   int i;
  6817   int nRef;
  6818   IntegrityCk sCheck;
  6819   BtShared *pBt = p->pBt;
  6820   char zErr[100];
  6821 
  6822   sqlite3BtreeEnter(p);
  6823   pBt->db = p->db;
  6824   nRef = sqlite3PagerRefcount(pBt->pPager);
  6825   if( lockBtreeWithRetry(p)!=SQLITE_OK ){
  6826     *pnErr = 1;
  6827     sqlite3BtreeLeave(p);
  6828     return sqlite3DbStrDup(0, "cannot acquire a read lock on the database");
  6829   }
  6830   sCheck.pBt = pBt;
  6831   sCheck.pPager = pBt->pPager;
  6832   sCheck.nPage = pagerPagecount(sCheck.pPager);
  6833   sCheck.mxErr = mxErr;
  6834   sCheck.nErr = 0;
  6835   sCheck.mallocFailed = 0;
  6836   *pnErr = 0;
  6837 #ifndef SQLITE_OMIT_AUTOVACUUM
  6838   if( pBt->nTrunc!=0 ){
  6839     sCheck.nPage = pBt->nTrunc;
  6840   }
  6841 #endif
  6842   if( sCheck.nPage==0 ){
  6843     unlockBtreeIfUnused(pBt);
  6844     sqlite3BtreeLeave(p);
  6845     return 0;
  6846   }
  6847   sCheck.anRef = sqlite3Malloc( (sCheck.nPage+1)*sizeof(sCheck.anRef[0]) );
  6848   if( !sCheck.anRef ){
  6849     unlockBtreeIfUnused(pBt);
  6850     *pnErr = 1;
  6851     sqlite3BtreeLeave(p);
  6852     return 0;
  6853   }
  6854   for(i=0; i<=sCheck.nPage; i++){ sCheck.anRef[i] = 0; }
  6855   i = PENDING_BYTE_PAGE(pBt);
  6856   if( i<=sCheck.nPage ){
  6857     sCheck.anRef[i] = 1;
  6858   }
  6859   sqlite3StrAccumInit(&sCheck.errMsg, zErr, sizeof(zErr), 20000);
  6860 
  6861   /* Check the integrity of the freelist
  6862   */
  6863   checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
  6864             get4byte(&pBt->pPage1->aData[36]), "Main freelist: ");
  6865 
  6866   /* Check all the tables.
  6867   */
  6868   for(i=0; i<nRoot && sCheck.mxErr; i++){
  6869     if( aRoot[i]==0 ) continue;
  6870 #ifndef SQLITE_OMIT_AUTOVACUUM
  6871     if( pBt->autoVacuum && aRoot[i]>1 ){
  6872       checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0, 0);
  6873     }
  6874 #endif
  6875     checkTreePage(&sCheck, aRoot[i], 0, "List of tree roots: ");
  6876   }
  6877 
  6878   /* Make sure every page in the file is referenced
  6879   */
  6880   for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){
  6881 #ifdef SQLITE_OMIT_AUTOVACUUM
  6882     if( sCheck.anRef[i]==0 ){
  6883       checkAppendMsg(&sCheck, 0, "Page %d is never used", i);
  6884     }
  6885 #else
  6886     /* If the database supports auto-vacuum, make sure no tables contain
  6887     ** references to pointer-map pages.
  6888     */
  6889     if( sCheck.anRef[i]==0 && 
  6890        (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){
  6891       checkAppendMsg(&sCheck, 0, "Page %d is never used", i);
  6892     }
  6893     if( sCheck.anRef[i]!=0 && 
  6894        (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
  6895       checkAppendMsg(&sCheck, 0, "Pointer map page %d is referenced", i);
  6896     }
  6897 #endif
  6898   }
  6899 
  6900   /* Make sure this analysis did not leave any unref() pages
  6901   */
  6902   unlockBtreeIfUnused(pBt);
  6903   if( nRef != sqlite3PagerRefcount(pBt->pPager) ){
  6904     checkAppendMsg(&sCheck, 0, 
  6905       "Outstanding page count goes from %d to %d during this analysis",
  6906       nRef, sqlite3PagerRefcount(pBt->pPager)
  6907     );
  6908   }
  6909 
  6910   /* Clean  up and report errors.
  6911   */
  6912   sqlite3BtreeLeave(p);
  6913   sqlite3_free(sCheck.anRef);
  6914   if( sCheck.mallocFailed ){
  6915     sqlite3StrAccumReset(&sCheck.errMsg);
  6916     *pnErr = sCheck.nErr+1;
  6917     return 0;
  6918   }
  6919   *pnErr = sCheck.nErr;
  6920   if( sCheck.nErr==0 ) sqlite3StrAccumReset(&sCheck.errMsg);
  6921   return sqlite3StrAccumFinish(&sCheck.errMsg);
  6922 }
  6923 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
  6924 
  6925 /*
  6926 ** Return the full pathname of the underlying database file.
  6927 **
  6928 ** The pager filename is invariant as long as the pager is
  6929 ** open so it is safe to access without the BtShared mutex.
  6930 */
  6931 const char *sqlite3BtreeGetFilename(Btree *p){
  6932   assert( p->pBt->pPager!=0 );
  6933   return sqlite3PagerFilename(p->pBt->pPager);
  6934 }
  6935 
  6936 /*
  6937 ** Return the pathname of the directory that contains the database file.
  6938 **
  6939 ** The pager directory name is invariant as long as the pager is
  6940 ** open so it is safe to access without the BtShared mutex.
  6941 */
  6942 const char *sqlite3BtreeGetDirname(Btree *p){
  6943   assert( p->pBt->pPager!=0 );
  6944   return sqlite3PagerDirname(p->pBt->pPager);
  6945 }
  6946 
  6947 /*
  6948 ** Return the pathname of the journal file for this database. The return
  6949 ** value of this routine is the same regardless of whether the journal file
  6950 ** has been created or not.
  6951 **
  6952 ** The pager journal filename is invariant as long as the pager is
  6953 ** open so it is safe to access without the BtShared mutex.
  6954 */
  6955 const char *sqlite3BtreeGetJournalname(Btree *p){
  6956   assert( p->pBt->pPager!=0 );
  6957   return sqlite3PagerJournalname(p->pBt->pPager);
  6958 }
  6959 
  6960 #ifndef SQLITE_OMIT_VACUUM
  6961 /*
  6962 ** Copy the complete content of pBtFrom into pBtTo.  A transaction
  6963 ** must be active for both files.
  6964 **
  6965 ** The size of file pTo may be reduced by this operation.
  6966 ** If anything goes wrong, the transaction on pTo is rolled back. 
  6967 **
  6968 ** If successful, CommitPhaseOne() may be called on pTo before returning. 
  6969 ** The caller should finish committing the transaction on pTo by calling
  6970 ** sqlite3BtreeCommit().
  6971 */
  6972 static int btreeCopyFile(Btree *pTo, Btree *pFrom){
  6973   int rc = SQLITE_OK;
  6974   Pgno i;
  6975 
  6976   Pgno nFromPage;     /* Number of pages in pFrom */
  6977   Pgno nToPage;       /* Number of pages in pTo */
  6978   Pgno nNewPage;      /* Number of pages in pTo after the copy */
  6979 
  6980   Pgno iSkip;         /* Pending byte page in pTo */
  6981   int nToPageSize;    /* Page size of pTo in bytes */
  6982   int nFromPageSize;  /* Page size of pFrom in bytes */
  6983 
  6984   BtShared *pBtTo = pTo->pBt;
  6985   BtShared *pBtFrom = pFrom->pBt;
  6986   pBtTo->db = pTo->db;
  6987   pBtFrom->db = pFrom->db;
  6988 
  6989   nToPageSize = pBtTo->pageSize;
  6990   nFromPageSize = pBtFrom->pageSize;
  6991 
  6992   if( pTo->inTrans!=TRANS_WRITE || pFrom->inTrans!=TRANS_WRITE ){
  6993     return SQLITE_ERROR;
  6994   }
  6995   if( pBtTo->pCursor ){
  6996     return SQLITE_BUSY;
  6997   }
  6998 
  6999   nToPage = pagerPagecount(pBtTo->pPager);
  7000   nFromPage = pagerPagecount(pBtFrom->pPager);
  7001   iSkip = PENDING_BYTE_PAGE(pBtTo);
  7002 
  7003   /* Variable nNewPage is the number of pages required to store the
  7004   ** contents of pFrom using the current page-size of pTo.
  7005   */
  7006   nNewPage = ((i64)nFromPage * (i64)nFromPageSize + (i64)nToPageSize - 1) / 
  7007       (i64)nToPageSize;
  7008 
  7009   for(i=1; rc==SQLITE_OK && (i<=nToPage || i<=nNewPage); i++){
  7010 
  7011     /* Journal the original page.
  7012     **
  7013     ** iSkip is the page number of the locking page (PENDING_BYTE_PAGE)
  7014     ** in database *pTo (before the copy). This page is never written 
  7015     ** into the journal file. Unless i==iSkip or the page was not
  7016     ** present in pTo before the copy operation, journal page i from pTo.
  7017     */
  7018     if( i!=iSkip && i<=nToPage ){
  7019       DbPage *pDbPage = 0;
  7020       rc = sqlite3PagerGet(pBtTo->pPager, i, &pDbPage);
  7021       if( rc==SQLITE_OK ){
  7022         rc = sqlite3PagerWrite(pDbPage);
  7023         if( rc==SQLITE_OK && i>nFromPage ){
  7024           /* Yeah.  It seems wierd to call DontWrite() right after Write(). But
  7025           ** that is because the names of those procedures do not exactly 
  7026           ** represent what they do.  Write() really means "put this page in the
  7027           ** rollback journal and mark it as dirty so that it will be written
  7028           ** to the database file later."  DontWrite() undoes the second part of
  7029           ** that and prevents the page from being written to the database. The
  7030           ** page is still on the rollback journal, though.  And that is the 
  7031           ** whole point of this block: to put pages on the rollback journal. 
  7032           */
  7033           sqlite3PagerDontWrite(pDbPage);
  7034         }
  7035         sqlite3PagerUnref(pDbPage);
  7036       }
  7037     }
  7038 
  7039     /* Overwrite the data in page i of the target database */
  7040     if( rc==SQLITE_OK && i!=iSkip && i<=nNewPage ){
  7041 
  7042       DbPage *pToPage = 0;
  7043       sqlite3_int64 iOff;
  7044 
  7045       rc = sqlite3PagerGet(pBtTo->pPager, i, &pToPage);
  7046       if( rc==SQLITE_OK ){
  7047         rc = sqlite3PagerWrite(pToPage);
  7048       }
  7049 
  7050       for(
  7051         iOff=(i-1)*nToPageSize; 
  7052         rc==SQLITE_OK && iOff<i*nToPageSize; 
  7053         iOff += nFromPageSize
  7054       ){
  7055         DbPage *pFromPage = 0;
  7056         Pgno iFrom = (iOff/nFromPageSize)+1;
  7057 
  7058         if( iFrom==PENDING_BYTE_PAGE(pBtFrom) ){
  7059           continue;
  7060         }
  7061 
  7062         rc = sqlite3PagerGet(pBtFrom->pPager, iFrom, &pFromPage);
  7063         if( rc==SQLITE_OK ){
  7064           char *zTo = sqlite3PagerGetData(pToPage);
  7065           char *zFrom = sqlite3PagerGetData(pFromPage);
  7066           int nCopy;
  7067 
  7068           if( nFromPageSize>=nToPageSize ){
  7069             zFrom += ((i-1)*nToPageSize - ((iFrom-1)*nFromPageSize));
  7070             nCopy = nToPageSize;
  7071           }else{
  7072             zTo += (((iFrom-1)*nFromPageSize) - (i-1)*nToPageSize);
  7073             nCopy = nFromPageSize;
  7074           }
  7075 
  7076           memcpy(zTo, zFrom, nCopy);
  7077 	  sqlite3PagerUnref(pFromPage);
  7078         }
  7079       }
  7080 
  7081       if( pToPage ) sqlite3PagerUnref(pToPage);
  7082     }
  7083   }
  7084 
  7085   /* If things have worked so far, the database file may need to be 
  7086   ** truncated. The complex part is that it may need to be truncated to
  7087   ** a size that is not an integer multiple of nToPageSize - the current
  7088   ** page size used by the pager associated with B-Tree pTo.
  7089   **
  7090   ** For example, say the page-size of pTo is 2048 bytes and the original 
  7091   ** number of pages is 5 (10 KB file). If pFrom has a page size of 1024 
  7092   ** bytes and 9 pages, then the file needs to be truncated to 9KB.
  7093   */
  7094   if( rc==SQLITE_OK ){
  7095     if( nFromPageSize!=nToPageSize ){
  7096       sqlite3_file *pFile = sqlite3PagerFile(pBtTo->pPager);
  7097       i64 iSize = (i64)nFromPageSize * (i64)nFromPage;
  7098       i64 iNow = (i64)((nToPage>nNewPage)?nToPage:nNewPage) * (i64)nToPageSize; 
  7099       i64 iPending = ((i64)PENDING_BYTE_PAGE(pBtTo)-1) *(i64)nToPageSize;
  7100   
  7101       assert( iSize<=iNow );
  7102   
  7103       /* Commit phase one syncs the journal file associated with pTo 
  7104       ** containing the original data. It does not sync the database file
  7105       ** itself. After doing this it is safe to use OsTruncate() and other
  7106       ** file APIs on the database file directly.
  7107       */
  7108       pBtTo->db = pTo->db;
  7109       rc = sqlite3PagerCommitPhaseOne(pBtTo->pPager, 0, 0, 1);
  7110       if( iSize<iNow && rc==SQLITE_OK ){
  7111         rc = sqlite3OsTruncate(pFile, iSize);
  7112       }
  7113   
  7114       /* The loop that copied data from database pFrom to pTo did not
  7115       ** populate the locking page of database pTo. If the page-size of
  7116       ** pFrom is smaller than that of pTo, this means some data will
  7117       ** not have been copied. 
  7118       **
  7119       ** This block copies the missing data from database pFrom to pTo 
  7120       ** using file APIs. This is safe because at this point we know that
  7121       ** all of the original data from pTo has been synced into the 
  7122       ** journal file. At this point it would be safe to do anything at
  7123       ** all to the database file except truncate it to zero bytes.
  7124       */
  7125       if( rc==SQLITE_OK && nFromPageSize<nToPageSize && iSize>iPending){
  7126         i64 iOff;
  7127         for(
  7128           iOff=iPending; 
  7129           rc==SQLITE_OK && iOff<(iPending+nToPageSize); 
  7130           iOff += nFromPageSize
  7131         ){
  7132           DbPage *pFromPage = 0;
  7133           Pgno iFrom = (iOff/nFromPageSize)+1;
  7134   
  7135           if( iFrom==PENDING_BYTE_PAGE(pBtFrom) || iFrom>nFromPage ){
  7136             continue;
  7137           }
  7138   
  7139           rc = sqlite3PagerGet(pBtFrom->pPager, iFrom, &pFromPage);
  7140           if( rc==SQLITE_OK ){
  7141             char *zFrom = sqlite3PagerGetData(pFromPage);
  7142   	  rc = sqlite3OsWrite(pFile, zFrom, nFromPageSize, iOff);
  7143             sqlite3PagerUnref(pFromPage);
  7144           }
  7145         }
  7146       }
  7147   
  7148       /* Sync the database file */
  7149       if( rc==SQLITE_OK ){
  7150         rc = sqlite3PagerSync(pBtTo->pPager);
  7151       }
  7152     }else{
  7153       rc = sqlite3PagerTruncate(pBtTo->pPager, nNewPage);
  7154     }
  7155     if( rc==SQLITE_OK ){
  7156       pBtTo->pageSizeFixed = 0;
  7157     }
  7158   }
  7159 
  7160   if( rc ){
  7161     sqlite3BtreeRollback(pTo);
  7162   }
  7163 
  7164   return rc;  
  7165 }
  7166 int sqlite3BtreeCopyFile(Btree *pTo, Btree *pFrom){
  7167   int rc;
  7168   sqlite3BtreeEnter(pTo);
  7169   sqlite3BtreeEnter(pFrom);
  7170   rc = btreeCopyFile(pTo, pFrom);
  7171   sqlite3BtreeLeave(pFrom);
  7172   sqlite3BtreeLeave(pTo);
  7173   return rc;
  7174 }
  7175 
  7176 #endif /* SQLITE_OMIT_VACUUM */
  7177 
  7178 /*
  7179 ** Return non-zero if a transaction is active.
  7180 */
  7181 int sqlite3BtreeIsInTrans(Btree *p){
  7182   assert( p==0 || sqlite3_mutex_held(p->db->mutex) );
  7183   return (p && (p->inTrans==TRANS_WRITE));
  7184 }
  7185 
  7186 /*
  7187 ** Return non-zero if a statement transaction is active.
  7188 */
  7189 int sqlite3BtreeIsInStmt(Btree *p){
  7190   assert( sqlite3BtreeHoldsMutex(p) );
  7191   return (p->pBt && p->pBt->inStmt);
  7192 }
  7193 
  7194 /*
  7195 ** Return non-zero if a read (or write) transaction is active.
  7196 */
  7197 int sqlite3BtreeIsInReadTrans(Btree *p){
  7198   assert( sqlite3_mutex_held(p->db->mutex) );
  7199   return (p && (p->inTrans!=TRANS_NONE));
  7200 }
  7201 
  7202 /*
  7203 ** This function returns a pointer to a blob of memory associated with
  7204 ** a single shared-btree. The memory is used by client code for its own
  7205 ** purposes (for example, to store a high-level schema associated with 
  7206 ** the shared-btree). The btree layer manages reference counting issues.
  7207 **
  7208 ** The first time this is called on a shared-btree, nBytes bytes of memory
  7209 ** are allocated, zeroed, and returned to the caller. For each subsequent 
  7210 ** call the nBytes parameter is ignored and a pointer to the same blob
  7211 ** of memory returned. 
  7212 **
  7213 ** If the nBytes parameter is 0 and the blob of memory has not yet been
  7214 ** allocated, a null pointer is returned. If the blob has already been
  7215 ** allocated, it is returned as normal.
  7216 **
  7217 ** Just before the shared-btree is closed, the function passed as the 
  7218 ** xFree argument when the memory allocation was made is invoked on the 
  7219 ** blob of allocated memory. This function should not call sqlite3_free()
  7220 ** on the memory, the btree layer does that.
  7221 */
  7222 void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){
  7223   BtShared *pBt = p->pBt;
  7224   sqlite3BtreeEnter(p);
  7225   if( !pBt->pSchema && nBytes ){
  7226     pBt->pSchema = sqlite3MallocZero(nBytes);
  7227     pBt->xFreeSchema = xFree;
  7228   }
  7229   sqlite3BtreeLeave(p);
  7230   return pBt->pSchema;
  7231 }
  7232 
  7233 /*
  7234 ** Return true if another user of the same shared btree as the argument
  7235 ** handle holds an exclusive lock on the sqlite_master table.
  7236 */
  7237 int sqlite3BtreeSchemaLocked(Btree *p){
  7238   int rc;
  7239   assert( sqlite3_mutex_held(p->db->mutex) );
  7240   sqlite3BtreeEnter(p);
  7241   rc = (queryTableLock(p, MASTER_ROOT, READ_LOCK)!=SQLITE_OK);
  7242   sqlite3BtreeLeave(p);
  7243   return rc;
  7244 }
  7245 
  7246 
  7247 #ifndef SQLITE_OMIT_SHARED_CACHE
  7248 /*
  7249 ** Obtain a lock on the table whose root page is iTab.  The
  7250 ** lock is a write lock if isWritelock is true or a read lock
  7251 ** if it is false.
  7252 */
  7253 int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){
  7254   int rc = SQLITE_OK;
  7255   if( p->sharable ){
  7256     u8 lockType = READ_LOCK + isWriteLock;
  7257     assert( READ_LOCK+1==WRITE_LOCK );
  7258     assert( isWriteLock==0 || isWriteLock==1 );
  7259     sqlite3BtreeEnter(p);
  7260     rc = queryTableLock(p, iTab, lockType);
  7261     if( rc==SQLITE_OK ){
  7262       rc = lockTable(p, iTab, lockType);
  7263     }
  7264     sqlite3BtreeLeave(p);
  7265   }
  7266   return rc;
  7267 }
  7268 #endif
  7269 
  7270 #ifndef SQLITE_OMIT_INCRBLOB
  7271 /*
  7272 ** Argument pCsr must be a cursor opened for writing on an 
  7273 ** INTKEY table currently pointing at a valid table entry. 
  7274 ** This function modifies the data stored as part of that entry.
  7275 ** Only the data content may only be modified, it is not possible
  7276 ** to change the length of the data stored.
  7277 */
  7278 int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){
  7279   assert( cursorHoldsMutex(pCsr) );
  7280   assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) );
  7281   assert(pCsr->isIncrblobHandle);
  7282 
  7283   restoreCursorPosition(pCsr);
  7284   assert( pCsr->eState!=CURSOR_REQUIRESEEK );
  7285   if( pCsr->eState!=CURSOR_VALID ){
  7286     return SQLITE_ABORT;
  7287   }
  7288 
  7289   /* Check some preconditions: 
  7290   **   (a) the cursor is open for writing,
  7291   **   (b) there is no read-lock on the table being modified and
  7292   **   (c) the cursor points at a valid row of an intKey table.
  7293   */
  7294   if( !pCsr->wrFlag ){
  7295     return SQLITE_READONLY;
  7296   }
  7297   assert( !pCsr->pBt->readOnly 
  7298           && pCsr->pBt->inTransaction==TRANS_WRITE );
  7299   if( checkReadLocks(pCsr->pBtree, pCsr->pgnoRoot, pCsr, 0) ){
  7300     return SQLITE_LOCKED; /* The table pCur points to has a read lock */
  7301   }
  7302   if( pCsr->eState==CURSOR_INVALID || !pCsr->pPage->intKey ){
  7303     return SQLITE_ERROR;
  7304   }
  7305 
  7306   return accessPayload(pCsr, offset, amt, (unsigned char *)z, 0, 1);
  7307 }
  7308 
  7309 /* 
  7310 ** Set a flag on this cursor to cache the locations of pages from the 
  7311 ** overflow list for the current row. This is used by cursors opened
  7312 ** for incremental blob IO only.
  7313 **
  7314 ** This function sets a flag only. The actual page location cache
  7315 ** (stored in BtCursor.aOverflow[]) is allocated and used by function
  7316 ** accessPayload() (the worker function for sqlite3BtreeData() and
  7317 ** sqlite3BtreePutData()).
  7318 */
  7319 void sqlite3BtreeCacheOverflow(BtCursor *pCur){
  7320   assert( cursorHoldsMutex(pCur) );
  7321   assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
  7322   assert(!pCur->isIncrblobHandle);
  7323   assert(!pCur->aOverflow);
  7324   pCur->isIncrblobHandle = 1;
  7325 }
  7326 #endif