os/persistentdata/persistentstorage/sql/SQLite/btree.c
changeset 0 bde4ae8d615e
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/os/persistentdata/persistentstorage/sql/SQLite/btree.c	Fri Jun 15 03:10:57 2012 +0200
     1.3 @@ -0,0 +1,7326 @@
     1.4 +/*
     1.5 +** 2004 April 6
     1.6 +**
     1.7 +** The author disclaims copyright to this source code.  In place of
     1.8 +** a legal notice, here is a blessing:
     1.9 +**
    1.10 +**    May you do good and not evil.
    1.11 +**    May you find forgiveness for yourself and forgive others.
    1.12 +**    May you share freely, never taking more than you give.
    1.13 +**
    1.14 +*************************************************************************
    1.15 +** $Id: btree.c,v 1.495 2008/08/02 17:36:46 danielk1977 Exp $
    1.16 +**
    1.17 +** This file implements a external (disk-based) database using BTrees.
    1.18 +** See the header comment on "btreeInt.h" for additional information.
    1.19 +** Including a description of file format and an overview of operation.
    1.20 +*/
    1.21 +#include "btreeInt.h"
    1.22 +
    1.23 +/*
    1.24 +** The header string that appears at the beginning of every
    1.25 +** SQLite database.
    1.26 +*/
    1.27 +static const char zMagicHeader[] = SQLITE_FILE_HEADER;
    1.28 +
    1.29 +/*
    1.30 +** Set this global variable to 1 to enable tracing using the TRACE
    1.31 +** macro.
    1.32 +*/
    1.33 +#if 0
    1.34 +int sqlite3BtreeTrace=0;  /* True to enable tracing */
    1.35 +# define TRACE(X)  if(sqlite3BtreeTrace){printf X;fflush(stdout);}
    1.36 +#else
    1.37 +# define TRACE(X)
    1.38 +#endif
    1.39 +
    1.40 +
    1.41 +
    1.42 +#ifndef SQLITE_OMIT_SHARED_CACHE
    1.43 +/*
    1.44 +** A flag to indicate whether or not shared cache is enabled.  Also,
    1.45 +** a list of BtShared objects that are eligible for participation
    1.46 +** in shared cache.  The variables have file scope during normal builds,
    1.47 +** but the test harness needs to access these variables so we make them
    1.48 +** global for test builds.
    1.49 +*/
    1.50 +#ifdef SQLITE_TEST
    1.51 +BtShared *sqlite3SharedCacheList = 0;
    1.52 +int sqlite3SharedCacheEnabled = 0;
    1.53 +#else
    1.54 +static BtShared *sqlite3SharedCacheList = 0;
    1.55 +static int sqlite3SharedCacheEnabled = 0;
    1.56 +#endif
    1.57 +#endif /* SQLITE_OMIT_SHARED_CACHE */
    1.58 +
    1.59 +#ifndef SQLITE_OMIT_SHARED_CACHE
    1.60 +/*
    1.61 +** Enable or disable the shared pager and schema features.
    1.62 +**
    1.63 +** This routine has no effect on existing database connections.
    1.64 +** The shared cache setting effects only future calls to
    1.65 +** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
    1.66 +*/
    1.67 +int sqlite3_enable_shared_cache(int enable){
    1.68 +  sqlite3SharedCacheEnabled = enable;
    1.69 +  return SQLITE_OK;
    1.70 +}
    1.71 +#endif
    1.72 +
    1.73 +
    1.74 +/*
    1.75 +** Forward declaration
    1.76 +*/
    1.77 +static int checkReadLocks(Btree*, Pgno, BtCursor*, i64);
    1.78 +
    1.79 +
    1.80 +#ifdef SQLITE_OMIT_SHARED_CACHE
    1.81 +  /*
    1.82 +  ** The functions queryTableLock(), lockTable() and unlockAllTables()
    1.83 +  ** manipulate entries in the BtShared.pLock linked list used to store
    1.84 +  ** shared-cache table level locks. If the library is compiled with the
    1.85 +  ** shared-cache feature disabled, then there is only ever one user
    1.86 +  ** of each BtShared structure and so this locking is not necessary. 
    1.87 +  ** So define the lock related functions as no-ops.
    1.88 +  */
    1.89 +  #define queryTableLock(a,b,c) SQLITE_OK
    1.90 +  #define lockTable(a,b,c) SQLITE_OK
    1.91 +  #define unlockAllTables(a)
    1.92 +#endif
    1.93 +
    1.94 +#ifndef SQLITE_OMIT_SHARED_CACHE
    1.95 +/*
    1.96 +** Query to see if btree handle p may obtain a lock of type eLock 
    1.97 +** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
    1.98 +** SQLITE_OK if the lock may be obtained (by calling lockTable()), or
    1.99 +** SQLITE_LOCKED if not.
   1.100 +*/
   1.101 +static int queryTableLock(Btree *p, Pgno iTab, u8 eLock){
   1.102 +  BtShared *pBt = p->pBt;
   1.103 +  BtLock *pIter;
   1.104 +
   1.105 +  assert( sqlite3BtreeHoldsMutex(p) );
   1.106 +  assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
   1.107 +  assert( p->db!=0 );
   1.108 +  
   1.109 +  /* This is a no-op if the shared-cache is not enabled */
   1.110 +  if( !p->sharable ){
   1.111 +    return SQLITE_OK;
   1.112 +  }
   1.113 +
   1.114 +  /* If some other connection is holding an exclusive lock, the
   1.115 +  ** requested lock may not be obtained.
   1.116 +  */
   1.117 +  if( pBt->pExclusive && pBt->pExclusive!=p ){
   1.118 +    return SQLITE_LOCKED;
   1.119 +  }
   1.120 +
   1.121 +  /* This (along with lockTable()) is where the ReadUncommitted flag is
   1.122 +  ** dealt with. If the caller is querying for a read-lock and the flag is
   1.123 +  ** set, it is unconditionally granted - even if there are write-locks
   1.124 +  ** on the table. If a write-lock is requested, the ReadUncommitted flag
   1.125 +  ** is not considered.
   1.126 +  **
   1.127 +  ** In function lockTable(), if a read-lock is demanded and the 
   1.128 +  ** ReadUncommitted flag is set, no entry is added to the locks list 
   1.129 +  ** (BtShared.pLock).
   1.130 +  **
   1.131 +  ** To summarize: If the ReadUncommitted flag is set, then read cursors do
   1.132 +  ** not create or respect table locks. The locking procedure for a 
   1.133 +  ** write-cursor does not change.
   1.134 +  */
   1.135 +  if( 
   1.136 +    0==(p->db->flags&SQLITE_ReadUncommitted) || 
   1.137 +    eLock==WRITE_LOCK ||
   1.138 +    iTab==MASTER_ROOT
   1.139 +  ){
   1.140 +    for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
   1.141 +      if( pIter->pBtree!=p && pIter->iTable==iTab && 
   1.142 +          (pIter->eLock!=eLock || eLock!=READ_LOCK) ){
   1.143 +        return SQLITE_LOCKED;
   1.144 +      }
   1.145 +    }
   1.146 +  }
   1.147 +  return SQLITE_OK;
   1.148 +}
   1.149 +#endif /* !SQLITE_OMIT_SHARED_CACHE */
   1.150 +
   1.151 +#ifndef SQLITE_OMIT_SHARED_CACHE
   1.152 +/*
   1.153 +** Add a lock on the table with root-page iTable to the shared-btree used
   1.154 +** by Btree handle p. Parameter eLock must be either READ_LOCK or 
   1.155 +** WRITE_LOCK.
   1.156 +**
   1.157 +** SQLITE_OK is returned if the lock is added successfully. SQLITE_BUSY and
   1.158 +** SQLITE_NOMEM may also be returned.
   1.159 +*/
   1.160 +static int lockTable(Btree *p, Pgno iTable, u8 eLock){
   1.161 +  BtShared *pBt = p->pBt;
   1.162 +  BtLock *pLock = 0;
   1.163 +  BtLock *pIter;
   1.164 +
   1.165 +  assert( sqlite3BtreeHoldsMutex(p) );
   1.166 +  assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
   1.167 +  assert( p->db!=0 );
   1.168 +
   1.169 +  /* This is a no-op if the shared-cache is not enabled */
   1.170 +  if( !p->sharable ){
   1.171 +    return SQLITE_OK;
   1.172 +  }
   1.173 +
   1.174 +  assert( SQLITE_OK==queryTableLock(p, iTable, eLock) );
   1.175 +
   1.176 +  /* If the read-uncommitted flag is set and a read-lock is requested,
   1.177 +  ** return early without adding an entry to the BtShared.pLock list. See
   1.178 +  ** comment in function queryTableLock() for more info on handling 
   1.179 +  ** the ReadUncommitted flag.
   1.180 +  */
   1.181 +  if( 
   1.182 +    (p->db->flags&SQLITE_ReadUncommitted) && 
   1.183 +    (eLock==READ_LOCK) &&
   1.184 +    iTable!=MASTER_ROOT
   1.185 +  ){
   1.186 +    return SQLITE_OK;
   1.187 +  }
   1.188 +
   1.189 +  /* First search the list for an existing lock on this table. */
   1.190 +  for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
   1.191 +    if( pIter->iTable==iTable && pIter->pBtree==p ){
   1.192 +      pLock = pIter;
   1.193 +      break;
   1.194 +    }
   1.195 +  }
   1.196 +
   1.197 +  /* If the above search did not find a BtLock struct associating Btree p
   1.198 +  ** with table iTable, allocate one and link it into the list.
   1.199 +  */
   1.200 +  if( !pLock ){
   1.201 +    pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock));
   1.202 +    if( !pLock ){
   1.203 +      return SQLITE_NOMEM;
   1.204 +    }
   1.205 +    pLock->iTable = iTable;
   1.206 +    pLock->pBtree = p;
   1.207 +    pLock->pNext = pBt->pLock;
   1.208 +    pBt->pLock = pLock;
   1.209 +  }
   1.210 +
   1.211 +  /* Set the BtLock.eLock variable to the maximum of the current lock
   1.212 +  ** and the requested lock. This means if a write-lock was already held
   1.213 +  ** and a read-lock requested, we don't incorrectly downgrade the lock.
   1.214 +  */
   1.215 +  assert( WRITE_LOCK>READ_LOCK );
   1.216 +  if( eLock>pLock->eLock ){
   1.217 +    pLock->eLock = eLock;
   1.218 +  }
   1.219 +
   1.220 +  return SQLITE_OK;
   1.221 +}
   1.222 +#endif /* !SQLITE_OMIT_SHARED_CACHE */
   1.223 +
   1.224 +#ifndef SQLITE_OMIT_SHARED_CACHE
   1.225 +/*
   1.226 +** Release all the table locks (locks obtained via calls to the lockTable()
   1.227 +** procedure) held by Btree handle p.
   1.228 +*/
   1.229 +static void unlockAllTables(Btree *p){
   1.230 +  BtShared *pBt = p->pBt;
   1.231 +  BtLock **ppIter = &pBt->pLock;
   1.232 +
   1.233 +  assert( sqlite3BtreeHoldsMutex(p) );
   1.234 +  assert( p->sharable || 0==*ppIter );
   1.235 +
   1.236 +  while( *ppIter ){
   1.237 +    BtLock *pLock = *ppIter;
   1.238 +    assert( pBt->pExclusive==0 || pBt->pExclusive==pLock->pBtree );
   1.239 +    if( pLock->pBtree==p ){
   1.240 +      *ppIter = pLock->pNext;
   1.241 +      sqlite3_free(pLock);
   1.242 +    }else{
   1.243 +      ppIter = &pLock->pNext;
   1.244 +    }
   1.245 +  }
   1.246 +
   1.247 +  if( pBt->pExclusive==p ){
   1.248 +    pBt->pExclusive = 0;
   1.249 +  }
   1.250 +}
   1.251 +#endif /* SQLITE_OMIT_SHARED_CACHE */
   1.252 +
   1.253 +static void releasePage(MemPage *pPage);  /* Forward reference */
   1.254 +
   1.255 +/*
   1.256 +** Verify that the cursor holds a mutex on the BtShared
   1.257 +*/
   1.258 +#ifndef NDEBUG
   1.259 +static int cursorHoldsMutex(BtCursor *p){
   1.260 +  return sqlite3_mutex_held(p->pBt->mutex);
   1.261 +}
   1.262 +#endif
   1.263 +
   1.264 +
   1.265 +#ifndef SQLITE_OMIT_INCRBLOB
   1.266 +/*
   1.267 +** Invalidate the overflow page-list cache for cursor pCur, if any.
   1.268 +*/
   1.269 +static void invalidateOverflowCache(BtCursor *pCur){
   1.270 +  assert( cursorHoldsMutex(pCur) );
   1.271 +  sqlite3_free(pCur->aOverflow);
   1.272 +  pCur->aOverflow = 0;
   1.273 +}
   1.274 +
   1.275 +/*
   1.276 +** Invalidate the overflow page-list cache for all cursors opened
   1.277 +** on the shared btree structure pBt.
   1.278 +*/
   1.279 +static void invalidateAllOverflowCache(BtShared *pBt){
   1.280 +  BtCursor *p;
   1.281 +  assert( sqlite3_mutex_held(pBt->mutex) );
   1.282 +  for(p=pBt->pCursor; p; p=p->pNext){
   1.283 +    invalidateOverflowCache(p);
   1.284 +  }
   1.285 +}
   1.286 +#else
   1.287 +  #define invalidateOverflowCache(x)
   1.288 +  #define invalidateAllOverflowCache(x)
   1.289 +#endif
   1.290 +
   1.291 +/*
   1.292 +** Save the current cursor position in the variables BtCursor.nKey 
   1.293 +** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
   1.294 +*/
   1.295 +static int saveCursorPosition(BtCursor *pCur){
   1.296 +  int rc;
   1.297 +
   1.298 +  assert( CURSOR_VALID==pCur->eState );
   1.299 +  assert( 0==pCur->pKey );
   1.300 +  assert( cursorHoldsMutex(pCur) );
   1.301 +
   1.302 +  rc = sqlite3BtreeKeySize(pCur, &pCur->nKey);
   1.303 +
   1.304 +  /* If this is an intKey table, then the above call to BtreeKeySize()
   1.305 +  ** stores the integer key in pCur->nKey. In this case this value is
   1.306 +  ** all that is required. Otherwise, if pCur is not open on an intKey
   1.307 +  ** table, then malloc space for and store the pCur->nKey bytes of key 
   1.308 +  ** data.
   1.309 +  */
   1.310 +  if( rc==SQLITE_OK && 0==pCur->pPage->intKey){
   1.311 +    void *pKey = sqlite3Malloc(pCur->nKey);
   1.312 +    if( pKey ){
   1.313 +      rc = sqlite3BtreeKey(pCur, 0, pCur->nKey, pKey);
   1.314 +      if( rc==SQLITE_OK ){
   1.315 +        pCur->pKey = pKey;
   1.316 +      }else{
   1.317 +        sqlite3_free(pKey);
   1.318 +      }
   1.319 +    }else{
   1.320 +      rc = SQLITE_NOMEM;
   1.321 +    }
   1.322 +  }
   1.323 +  assert( !pCur->pPage->intKey || !pCur->pKey );
   1.324 +
   1.325 +  if( rc==SQLITE_OK ){
   1.326 +    releasePage(pCur->pPage);
   1.327 +    pCur->pPage = 0;
   1.328 +    pCur->eState = CURSOR_REQUIRESEEK;
   1.329 +  }
   1.330 +
   1.331 +  invalidateOverflowCache(pCur);
   1.332 +  return rc;
   1.333 +}
   1.334 +
   1.335 +/*
   1.336 +** Save the positions of all cursors except pExcept open on the table 
   1.337 +** with root-page iRoot. Usually, this is called just before cursor
   1.338 +** pExcept is used to modify the table (BtreeDelete() or BtreeInsert()).
   1.339 +*/
   1.340 +static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){
   1.341 +  BtCursor *p;
   1.342 +  assert( sqlite3_mutex_held(pBt->mutex) );
   1.343 +  assert( pExcept==0 || pExcept->pBt==pBt );
   1.344 +  for(p=pBt->pCursor; p; p=p->pNext){
   1.345 +    if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) && 
   1.346 +        p->eState==CURSOR_VALID ){
   1.347 +      int rc = saveCursorPosition(p);
   1.348 +      if( SQLITE_OK!=rc ){
   1.349 +        return rc;
   1.350 +      }
   1.351 +    }
   1.352 +  }
   1.353 +  return SQLITE_OK;
   1.354 +}
   1.355 +
   1.356 +/*
   1.357 +** Clear the current cursor position.
   1.358 +*/
   1.359 +static void clearCursorPosition(BtCursor *pCur){
   1.360 +  assert( cursorHoldsMutex(pCur) );
   1.361 +  sqlite3_free(pCur->pKey);
   1.362 +  pCur->pKey = 0;
   1.363 +  pCur->eState = CURSOR_INVALID;
   1.364 +}
   1.365 +
   1.366 +/*
   1.367 +** Restore the cursor to the position it was in (or as close to as possible)
   1.368 +** when saveCursorPosition() was called. Note that this call deletes the 
   1.369 +** saved position info stored by saveCursorPosition(), so there can be
   1.370 +** at most one effective restoreCursorPosition() call after each 
   1.371 +** saveCursorPosition().
   1.372 +*/
   1.373 +int sqlite3BtreeRestoreCursorPosition(BtCursor *pCur){
   1.374 +  int rc;
   1.375 +  assert( cursorHoldsMutex(pCur) );
   1.376 +  assert( pCur->eState>=CURSOR_REQUIRESEEK );
   1.377 +  if( pCur->eState==CURSOR_FAULT ){
   1.378 +    return pCur->skip;
   1.379 +  }
   1.380 +  pCur->eState = CURSOR_INVALID;
   1.381 +  rc = sqlite3BtreeMoveto(pCur, pCur->pKey, 0, pCur->nKey, 0, &pCur->skip);
   1.382 +  if( rc==SQLITE_OK ){
   1.383 +    sqlite3_free(pCur->pKey);
   1.384 +    pCur->pKey = 0;
   1.385 +    assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID );
   1.386 +  }
   1.387 +  return rc;
   1.388 +}
   1.389 +
   1.390 +#define restoreCursorPosition(p) \
   1.391 +  (p->eState>=CURSOR_REQUIRESEEK ? \
   1.392 +         sqlite3BtreeRestoreCursorPosition(p) : \
   1.393 +         SQLITE_OK)
   1.394 +
   1.395 +/*
   1.396 +** Determine whether or not a cursor has moved from the position it
   1.397 +** was last placed at.  Cursor can move when the row they are pointing
   1.398 +** at is deleted out from under them.
   1.399 +**
   1.400 +** This routine returns an error code if something goes wrong.  The
   1.401 +** integer *pHasMoved is set to one if the cursor has moved and 0 if not.
   1.402 +*/
   1.403 +int sqlite3BtreeCursorHasMoved(BtCursor *pCur, int *pHasMoved){
   1.404 +  int rc;
   1.405 +
   1.406 +  rc = restoreCursorPosition(pCur);
   1.407 +  if( rc ){
   1.408 +    *pHasMoved = 1;
   1.409 +    return rc;
   1.410 +  }
   1.411 +  if( pCur->eState!=CURSOR_VALID || pCur->skip!=0 ){
   1.412 +    *pHasMoved = 1;
   1.413 +  }else{
   1.414 +    *pHasMoved = 0;
   1.415 +  }
   1.416 +  return SQLITE_OK;
   1.417 +}
   1.418 +
   1.419 +#ifndef SQLITE_OMIT_AUTOVACUUM
   1.420 +/*
   1.421 +** Given a page number of a regular database page, return the page
   1.422 +** number for the pointer-map page that contains the entry for the
   1.423 +** input page number.
   1.424 +*/
   1.425 +static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){
   1.426 +  int nPagesPerMapPage, iPtrMap, ret;
   1.427 +  assert( sqlite3_mutex_held(pBt->mutex) );
   1.428 +  nPagesPerMapPage = (pBt->usableSize/5)+1;
   1.429 +  iPtrMap = (pgno-2)/nPagesPerMapPage;
   1.430 +  ret = (iPtrMap*nPagesPerMapPage) + 2; 
   1.431 +  if( ret==PENDING_BYTE_PAGE(pBt) ){
   1.432 +    ret++;
   1.433 +  }
   1.434 +  return ret;
   1.435 +}
   1.436 +
   1.437 +/*
   1.438 +** Write an entry into the pointer map.
   1.439 +**
   1.440 +** This routine updates the pointer map entry for page number 'key'
   1.441 +** so that it maps to type 'eType' and parent page number 'pgno'.
   1.442 +** An error code is returned if something goes wrong, otherwise SQLITE_OK.
   1.443 +*/
   1.444 +static int ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent){
   1.445 +  DbPage *pDbPage;  /* The pointer map page */
   1.446 +  u8 *pPtrmap;      /* The pointer map data */
   1.447 +  Pgno iPtrmap;     /* The pointer map page number */
   1.448 +  int offset;       /* Offset in pointer map page */
   1.449 +  int rc;
   1.450 +
   1.451 +  assert( sqlite3_mutex_held(pBt->mutex) );
   1.452 +  /* The master-journal page number must never be used as a pointer map page */
   1.453 +  assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) );
   1.454 +
   1.455 +  assert( pBt->autoVacuum );
   1.456 +  if( key==0 ){
   1.457 +    return SQLITE_CORRUPT_BKPT;
   1.458 +  }
   1.459 +  iPtrmap = PTRMAP_PAGENO(pBt, key);
   1.460 +  rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
   1.461 +  if( rc!=SQLITE_OK ){
   1.462 +    return rc;
   1.463 +  }
   1.464 +  offset = PTRMAP_PTROFFSET(iPtrmap, key);
   1.465 +  pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
   1.466 +
   1.467 +  if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){
   1.468 +    TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent));
   1.469 +    rc = sqlite3PagerWrite(pDbPage);
   1.470 +    if( rc==SQLITE_OK ){
   1.471 +      pPtrmap[offset] = eType;
   1.472 +      put4byte(&pPtrmap[offset+1], parent);
   1.473 +    }
   1.474 +  }
   1.475 +
   1.476 +  sqlite3PagerUnref(pDbPage);
   1.477 +  return rc;
   1.478 +}
   1.479 +
   1.480 +/*
   1.481 +** Read an entry from the pointer map.
   1.482 +**
   1.483 +** This routine retrieves the pointer map entry for page 'key', writing
   1.484 +** the type and parent page number to *pEType and *pPgno respectively.
   1.485 +** An error code is returned if something goes wrong, otherwise SQLITE_OK.
   1.486 +*/
   1.487 +static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){
   1.488 +  DbPage *pDbPage;   /* The pointer map page */
   1.489 +  int iPtrmap;       /* Pointer map page index */
   1.490 +  u8 *pPtrmap;       /* Pointer map page data */
   1.491 +  int offset;        /* Offset of entry in pointer map */
   1.492 +  int rc;
   1.493 +
   1.494 +  assert( sqlite3_mutex_held(pBt->mutex) );
   1.495 +
   1.496 +  iPtrmap = PTRMAP_PAGENO(pBt, key);
   1.497 +  rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
   1.498 +  if( rc!=0 ){
   1.499 +    return rc;
   1.500 +  }
   1.501 +  pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
   1.502 +
   1.503 +  offset = PTRMAP_PTROFFSET(iPtrmap, key);
   1.504 +  assert( pEType!=0 );
   1.505 +  *pEType = pPtrmap[offset];
   1.506 +  if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]);
   1.507 +
   1.508 +  sqlite3PagerUnref(pDbPage);
   1.509 +  if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_BKPT;
   1.510 +  return SQLITE_OK;
   1.511 +}
   1.512 +
   1.513 +#else /* if defined SQLITE_OMIT_AUTOVACUUM */
   1.514 +  #define ptrmapPut(w,x,y,z) SQLITE_OK
   1.515 +  #define ptrmapGet(w,x,y,z) SQLITE_OK
   1.516 +  #define ptrmapPutOvfl(y,z) SQLITE_OK
   1.517 +#endif
   1.518 +
   1.519 +/*
   1.520 +** Given a btree page and a cell index (0 means the first cell on
   1.521 +** the page, 1 means the second cell, and so forth) return a pointer
   1.522 +** to the cell content.
   1.523 +**
   1.524 +** This routine works only for pages that do not contain overflow cells.
   1.525 +*/
   1.526 +#define findCell(P,I) \
   1.527 +  ((P)->aData + ((P)->maskPage & get2byte(&(P)->aData[(P)->cellOffset+2*(I)])))
   1.528 +
   1.529 +/*
   1.530 +** This a more complex version of findCell() that works for
   1.531 +** pages that do contain overflow cells.  See insert
   1.532 +*/
   1.533 +static u8 *findOverflowCell(MemPage *pPage, int iCell){
   1.534 +  int i;
   1.535 +  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
   1.536 +  for(i=pPage->nOverflow-1; i>=0; i--){
   1.537 +    int k;
   1.538 +    struct _OvflCell *pOvfl;
   1.539 +    pOvfl = &pPage->aOvfl[i];
   1.540 +    k = pOvfl->idx;
   1.541 +    if( k<=iCell ){
   1.542 +      if( k==iCell ){
   1.543 +        return pOvfl->pCell;
   1.544 +      }
   1.545 +      iCell--;
   1.546 +    }
   1.547 +  }
   1.548 +  return findCell(pPage, iCell);
   1.549 +}
   1.550 +
   1.551 +/*
   1.552 +** Parse a cell content block and fill in the CellInfo structure.  There
   1.553 +** are two versions of this function.  sqlite3BtreeParseCell() takes a 
   1.554 +** cell index as the second argument and sqlite3BtreeParseCellPtr() 
   1.555 +** takes a pointer to the body of the cell as its second argument.
   1.556 +**
   1.557 +** Within this file, the parseCell() macro can be called instead of
   1.558 +** sqlite3BtreeParseCellPtr(). Using some compilers, this will be faster.
   1.559 +*/
   1.560 +void sqlite3BtreeParseCellPtr(
   1.561 +  MemPage *pPage,         /* Page containing the cell */
   1.562 +  u8 *pCell,              /* Pointer to the cell text. */
   1.563 +  CellInfo *pInfo         /* Fill in this structure */
   1.564 +){
   1.565 +  int n;                  /* Number bytes in cell content header */
   1.566 +  u32 nPayload;           /* Number of bytes of cell payload */
   1.567 +
   1.568 +  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
   1.569 +
   1.570 +  pInfo->pCell = pCell;
   1.571 +  assert( pPage->leaf==0 || pPage->leaf==1 );
   1.572 +  n = pPage->childPtrSize;
   1.573 +  assert( n==4-4*pPage->leaf );
   1.574 +  if( pPage->intKey ){
   1.575 +    if( pPage->hasData ){
   1.576 +      n += getVarint32(&pCell[n], nPayload);
   1.577 +    }else{
   1.578 +      nPayload = 0;
   1.579 +    }
   1.580 +    n += getVarint(&pCell[n], (u64*)&pInfo->nKey);
   1.581 +    pInfo->nData = nPayload;
   1.582 +  }else{
   1.583 +    pInfo->nData = 0;
   1.584 +    n += getVarint32(&pCell[n], nPayload);
   1.585 +    pInfo->nKey = nPayload;
   1.586 +  }
   1.587 +  pInfo->nPayload = nPayload;
   1.588 +  pInfo->nHeader = n;
   1.589 +  if( likely(nPayload<=pPage->maxLocal) ){
   1.590 +    /* This is the (easy) common case where the entire payload fits
   1.591 +    ** on the local page.  No overflow is required.
   1.592 +    */
   1.593 +    int nSize;          /* Total size of cell content in bytes */
   1.594 +    nSize = nPayload + n;
   1.595 +    pInfo->nLocal = nPayload;
   1.596 +    pInfo->iOverflow = 0;
   1.597 +    if( (nSize & ~3)==0 ){
   1.598 +      nSize = 4;        /* Minimum cell size is 4 */
   1.599 +    }
   1.600 +    pInfo->nSize = nSize;
   1.601 +  }else{
   1.602 +    /* If the payload will not fit completely on the local page, we have
   1.603 +    ** to decide how much to store locally and how much to spill onto
   1.604 +    ** overflow pages.  The strategy is to minimize the amount of unused
   1.605 +    ** space on overflow pages while keeping the amount of local storage
   1.606 +    ** in between minLocal and maxLocal.
   1.607 +    **
   1.608 +    ** Warning:  changing the way overflow payload is distributed in any
   1.609 +    ** way will result in an incompatible file format.
   1.610 +    */
   1.611 +    int minLocal;  /* Minimum amount of payload held locally */
   1.612 +    int maxLocal;  /* Maximum amount of payload held locally */
   1.613 +    int surplus;   /* Overflow payload available for local storage */
   1.614 +
   1.615 +    minLocal = pPage->minLocal;
   1.616 +    maxLocal = pPage->maxLocal;
   1.617 +    surplus = minLocal + (nPayload - minLocal)%(pPage->pBt->usableSize - 4);
   1.618 +    if( surplus <= maxLocal ){
   1.619 +      pInfo->nLocal = surplus;
   1.620 +    }else{
   1.621 +      pInfo->nLocal = minLocal;
   1.622 +    }
   1.623 +    pInfo->iOverflow = pInfo->nLocal + n;
   1.624 +    pInfo->nSize = pInfo->iOverflow + 4;
   1.625 +  }
   1.626 +}
   1.627 +#define parseCell(pPage, iCell, pInfo) \
   1.628 +  sqlite3BtreeParseCellPtr((pPage), findCell((pPage), (iCell)), (pInfo))
   1.629 +void sqlite3BtreeParseCell(
   1.630 +  MemPage *pPage,         /* Page containing the cell */
   1.631 +  int iCell,              /* The cell index.  First cell is 0 */
   1.632 +  CellInfo *pInfo         /* Fill in this structure */
   1.633 +){
   1.634 +  parseCell(pPage, iCell, pInfo);
   1.635 +}
   1.636 +
   1.637 +/*
   1.638 +** Compute the total number of bytes that a Cell needs in the cell
   1.639 +** data area of the btree-page.  The return number includes the cell
   1.640 +** data header and the local payload, but not any overflow page or
   1.641 +** the space used by the cell pointer.
   1.642 +*/
   1.643 +#ifndef NDEBUG
   1.644 +static u16 cellSize(MemPage *pPage, int iCell){
   1.645 +  CellInfo info;
   1.646 +  sqlite3BtreeParseCell(pPage, iCell, &info);
   1.647 +  return info.nSize;
   1.648 +}
   1.649 +#endif
   1.650 +static u16 cellSizePtr(MemPage *pPage, u8 *pCell){
   1.651 +  CellInfo info;
   1.652 +  sqlite3BtreeParseCellPtr(pPage, pCell, &info);
   1.653 +  return info.nSize;
   1.654 +}
   1.655 +
   1.656 +#ifndef SQLITE_OMIT_AUTOVACUUM
   1.657 +/*
   1.658 +** If the cell pCell, part of page pPage contains a pointer
   1.659 +** to an overflow page, insert an entry into the pointer-map
   1.660 +** for the overflow page.
   1.661 +*/
   1.662 +static int ptrmapPutOvflPtr(MemPage *pPage, u8 *pCell){
   1.663 +  CellInfo info;
   1.664 +  assert( pCell!=0 );
   1.665 +  sqlite3BtreeParseCellPtr(pPage, pCell, &info);
   1.666 +  assert( (info.nData+(pPage->intKey?0:info.nKey))==info.nPayload );
   1.667 +  if( (info.nData+(pPage->intKey?0:info.nKey))>info.nLocal ){
   1.668 +    Pgno ovfl = get4byte(&pCell[info.iOverflow]);
   1.669 +    return ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno);
   1.670 +  }
   1.671 +  return SQLITE_OK;
   1.672 +}
   1.673 +/*
   1.674 +** If the cell with index iCell on page pPage contains a pointer
   1.675 +** to an overflow page, insert an entry into the pointer-map
   1.676 +** for the overflow page.
   1.677 +*/
   1.678 +static int ptrmapPutOvfl(MemPage *pPage, int iCell){
   1.679 +  u8 *pCell;
   1.680 +  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
   1.681 +  pCell = findOverflowCell(pPage, iCell);
   1.682 +  return ptrmapPutOvflPtr(pPage, pCell);
   1.683 +}
   1.684 +#endif
   1.685 +
   1.686 +
   1.687 +/*
   1.688 +** Defragment the page given.  All Cells are moved to the
   1.689 +** end of the page and all free space is collected into one
   1.690 +** big FreeBlk that occurs in between the header and cell
   1.691 +** pointer array and the cell content area.
   1.692 +*/
   1.693 +static void defragmentPage(MemPage *pPage){
   1.694 +  int i;                     /* Loop counter */
   1.695 +  int pc;                    /* Address of a i-th cell */
   1.696 +  int addr;                  /* Offset of first byte after cell pointer array */
   1.697 +  int hdr;                   /* Offset to the page header */
   1.698 +  int size;                  /* Size of a cell */
   1.699 +  int usableSize;            /* Number of usable bytes on a page */
   1.700 +  int cellOffset;            /* Offset to the cell pointer array */
   1.701 +  int brk;                   /* Offset to the cell content area */
   1.702 +  int nCell;                 /* Number of cells on the page */
   1.703 +  unsigned char *data;       /* The page data */
   1.704 +  unsigned char *temp;       /* Temp area for cell content */
   1.705 +
   1.706 +  assert( sqlite3PagerIswriteable(pPage->pDbPage) );
   1.707 +  assert( pPage->pBt!=0 );
   1.708 +  assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE );
   1.709 +  assert( pPage->nOverflow==0 );
   1.710 +  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
   1.711 +  temp = sqlite3PagerTempSpace(pPage->pBt->pPager);
   1.712 +  data = pPage->aData;
   1.713 +  hdr = pPage->hdrOffset;
   1.714 +  cellOffset = pPage->cellOffset;
   1.715 +  nCell = pPage->nCell;
   1.716 +  assert( nCell==get2byte(&data[hdr+3]) );
   1.717 +  usableSize = pPage->pBt->usableSize;
   1.718 +  brk = get2byte(&data[hdr+5]);
   1.719 +  memcpy(&temp[brk], &data[brk], usableSize - brk);
   1.720 +  brk = usableSize;
   1.721 +  for(i=0; i<nCell; i++){
   1.722 +    u8 *pAddr;     /* The i-th cell pointer */
   1.723 +    pAddr = &data[cellOffset + i*2];
   1.724 +    pc = get2byte(pAddr);
   1.725 +    assert( pc<pPage->pBt->usableSize );
   1.726 +    size = cellSizePtr(pPage, &temp[pc]);
   1.727 +    brk -= size;
   1.728 +    memcpy(&data[brk], &temp[pc], size);
   1.729 +    put2byte(pAddr, brk);
   1.730 +  }
   1.731 +  assert( brk>=cellOffset+2*nCell );
   1.732 +  put2byte(&data[hdr+5], brk);
   1.733 +  data[hdr+1] = 0;
   1.734 +  data[hdr+2] = 0;
   1.735 +  data[hdr+7] = 0;
   1.736 +  addr = cellOffset+2*nCell;
   1.737 +  memset(&data[addr], 0, brk-addr);
   1.738 +}
   1.739 +
   1.740 +/*
   1.741 +** Allocate nByte bytes of space on a page.
   1.742 +**
   1.743 +** Return the index into pPage->aData[] of the first byte of
   1.744 +** the new allocation.  The caller guarantees that there is enough
   1.745 +** space.  This routine will never fail.
   1.746 +**
   1.747 +** If the page contains nBytes of free space but does not contain
   1.748 +** nBytes of contiguous free space, then this routine automatically
   1.749 +** calls defragementPage() to consolidate all free space before 
   1.750 +** allocating the new chunk.
   1.751 +*/
   1.752 +static int allocateSpace(MemPage *pPage, int nByte){
   1.753 +  int addr, pc, hdr;
   1.754 +  int size;
   1.755 +  int nFrag;
   1.756 +  int top;
   1.757 +  int nCell;
   1.758 +  int cellOffset;
   1.759 +  unsigned char *data;
   1.760 +  
   1.761 +  data = pPage->aData;
   1.762 +  assert( sqlite3PagerIswriteable(pPage->pDbPage) );
   1.763 +  assert( pPage->pBt );
   1.764 +  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
   1.765 +  assert( nByte>=0 );  /* Minimum cell size is 4 */
   1.766 +  assert( pPage->nFree>=nByte );
   1.767 +  assert( pPage->nOverflow==0 );
   1.768 +  pPage->nFree -= nByte;
   1.769 +  hdr = pPage->hdrOffset;
   1.770 +
   1.771 +  nFrag = data[hdr+7];
   1.772 +  if( nFrag<60 ){
   1.773 +    /* Search the freelist looking for a slot big enough to satisfy the
   1.774 +    ** space request. */
   1.775 +    addr = hdr+1;
   1.776 +    while( (pc = get2byte(&data[addr]))>0 ){
   1.777 +      size = get2byte(&data[pc+2]);
   1.778 +      if( size>=nByte ){
   1.779 +        if( size<nByte+4 ){
   1.780 +          memcpy(&data[addr], &data[pc], 2);
   1.781 +          data[hdr+7] = nFrag + size - nByte;
   1.782 +          return pc;
   1.783 +        }else{
   1.784 +          put2byte(&data[pc+2], size-nByte);
   1.785 +          return pc + size - nByte;
   1.786 +        }
   1.787 +      }
   1.788 +      addr = pc;
   1.789 +    }
   1.790 +  }
   1.791 +
   1.792 +  /* Allocate memory from the gap in between the cell pointer array
   1.793 +  ** and the cell content area.
   1.794 +  */
   1.795 +  top = get2byte(&data[hdr+5]);
   1.796 +  nCell = get2byte(&data[hdr+3]);
   1.797 +  cellOffset = pPage->cellOffset;
   1.798 +  if( nFrag>=60 || cellOffset + 2*nCell > top - nByte ){
   1.799 +    defragmentPage(pPage);
   1.800 +    top = get2byte(&data[hdr+5]);
   1.801 +  }
   1.802 +  top -= nByte;
   1.803 +  assert( cellOffset + 2*nCell <= top );
   1.804 +  put2byte(&data[hdr+5], top);
   1.805 +  return top;
   1.806 +}
   1.807 +
   1.808 +/*
   1.809 +** Return a section of the pPage->aData to the freelist.
   1.810 +** The first byte of the new free block is pPage->aDisk[start]
   1.811 +** and the size of the block is "size" bytes.
   1.812 +**
   1.813 +** Most of the effort here is involved in coalesing adjacent
   1.814 +** free blocks into a single big free block.
   1.815 +*/
   1.816 +static void freeSpace(MemPage *pPage, int start, int size){
   1.817 +  int addr, pbegin, hdr;
   1.818 +  unsigned char *data = pPage->aData;
   1.819 +
   1.820 +  assert( pPage->pBt!=0 );
   1.821 +  assert( sqlite3PagerIswriteable(pPage->pDbPage) );
   1.822 +  assert( start>=pPage->hdrOffset+6+(pPage->leaf?0:4) );
   1.823 +  assert( (start + size)<=pPage->pBt->usableSize );
   1.824 +  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
   1.825 +  assert( size>=0 );   /* Minimum cell size is 4 */
   1.826 +
   1.827 +#ifdef SQLITE_SECURE_DELETE
   1.828 +  /* Overwrite deleted information with zeros when the SECURE_DELETE 
   1.829 +  ** option is enabled at compile-time */
   1.830 +  memset(&data[start], 0, size);
   1.831 +#endif
   1.832 +
   1.833 +  /* Add the space back into the linked list of freeblocks */
   1.834 +  hdr = pPage->hdrOffset;
   1.835 +  addr = hdr + 1;
   1.836 +  while( (pbegin = get2byte(&data[addr]))<start && pbegin>0 ){
   1.837 +    assert( pbegin<=pPage->pBt->usableSize-4 );
   1.838 +    assert( pbegin>addr );
   1.839 +    addr = pbegin;
   1.840 +  }
   1.841 +  assert( pbegin<=pPage->pBt->usableSize-4 );
   1.842 +  assert( pbegin>addr || pbegin==0 );
   1.843 +  put2byte(&data[addr], start);
   1.844 +  put2byte(&data[start], pbegin);
   1.845 +  put2byte(&data[start+2], size);
   1.846 +  pPage->nFree += size;
   1.847 +
   1.848 +  /* Coalesce adjacent free blocks */
   1.849 +  addr = pPage->hdrOffset + 1;
   1.850 +  while( (pbegin = get2byte(&data[addr]))>0 ){
   1.851 +    int pnext, psize;
   1.852 +    assert( pbegin>addr );
   1.853 +    assert( pbegin<=pPage->pBt->usableSize-4 );
   1.854 +    pnext = get2byte(&data[pbegin]);
   1.855 +    psize = get2byte(&data[pbegin+2]);
   1.856 +    if( pbegin + psize + 3 >= pnext && pnext>0 ){
   1.857 +      int frag = pnext - (pbegin+psize);
   1.858 +      assert( frag<=data[pPage->hdrOffset+7] );
   1.859 +      data[pPage->hdrOffset+7] -= frag;
   1.860 +      put2byte(&data[pbegin], get2byte(&data[pnext]));
   1.861 +      put2byte(&data[pbegin+2], pnext+get2byte(&data[pnext+2])-pbegin);
   1.862 +    }else{
   1.863 +      addr = pbegin;
   1.864 +    }
   1.865 +  }
   1.866 +
   1.867 +  /* If the cell content area begins with a freeblock, remove it. */
   1.868 +  if( data[hdr+1]==data[hdr+5] && data[hdr+2]==data[hdr+6] ){
   1.869 +    int top;
   1.870 +    pbegin = get2byte(&data[hdr+1]);
   1.871 +    memcpy(&data[hdr+1], &data[pbegin], 2);
   1.872 +    top = get2byte(&data[hdr+5]);
   1.873 +    put2byte(&data[hdr+5], top + get2byte(&data[pbegin+2]));
   1.874 +  }
   1.875 +}
   1.876 +
   1.877 +/*
   1.878 +** Decode the flags byte (the first byte of the header) for a page
   1.879 +** and initialize fields of the MemPage structure accordingly.
   1.880 +**
   1.881 +** Only the following combinations are supported.  Anything different
   1.882 +** indicates a corrupt database files:
   1.883 +**
   1.884 +**         PTF_ZERODATA
   1.885 +**         PTF_ZERODATA | PTF_LEAF
   1.886 +**         PTF_LEAFDATA | PTF_INTKEY
   1.887 +**         PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF
   1.888 +*/
   1.889 +static int decodeFlags(MemPage *pPage, int flagByte){
   1.890 +  BtShared *pBt;     /* A copy of pPage->pBt */
   1.891 +
   1.892 +  assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
   1.893 +  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
   1.894 +  pPage->leaf = flagByte>>3;  assert( PTF_LEAF == 1<<3 );
   1.895 +  flagByte &= ~PTF_LEAF;
   1.896 +  pPage->childPtrSize = 4-4*pPage->leaf;
   1.897 +  pBt = pPage->pBt;
   1.898 +  if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){
   1.899 +    pPage->intKey = 1;
   1.900 +    pPage->hasData = pPage->leaf;
   1.901 +    pPage->maxLocal = pBt->maxLeaf;
   1.902 +    pPage->minLocal = pBt->minLeaf;
   1.903 +  }else if( flagByte==PTF_ZERODATA ){
   1.904 +    pPage->intKey = 0;
   1.905 +    pPage->hasData = 0;
   1.906 +    pPage->maxLocal = pBt->maxLocal;
   1.907 +    pPage->minLocal = pBt->minLocal;
   1.908 +  }else{
   1.909 +    return SQLITE_CORRUPT_BKPT;
   1.910 +  }
   1.911 +  return SQLITE_OK;
   1.912 +}
   1.913 +
   1.914 +/*
   1.915 +** Initialize the auxiliary information for a disk block.
   1.916 +**
   1.917 +** The pParent parameter must be a pointer to the MemPage which
   1.918 +** is the parent of the page being initialized.  The root of a
   1.919 +** BTree has no parent and so for that page, pParent==NULL.
   1.920 +**
   1.921 +** Return SQLITE_OK on success.  If we see that the page does
   1.922 +** not contain a well-formed database page, then return 
   1.923 +** SQLITE_CORRUPT.  Note that a return of SQLITE_OK does not
   1.924 +** guarantee that the page is well-formed.  It only shows that
   1.925 +** we failed to detect any corruption.
   1.926 +*/
   1.927 +int sqlite3BtreeInitPage(
   1.928 +  MemPage *pPage,        /* The page to be initialized */
   1.929 +  MemPage *pParent       /* The parent.  Might be NULL */
   1.930 +){
   1.931 +  int pc;            /* Address of a freeblock within pPage->aData[] */
   1.932 +  int hdr;           /* Offset to beginning of page header */
   1.933 +  u8 *data;          /* Equal to pPage->aData */
   1.934 +  BtShared *pBt;        /* The main btree structure */
   1.935 +  int usableSize;    /* Amount of usable space on each page */
   1.936 +  int cellOffset;    /* Offset from start of page to first cell pointer */
   1.937 +  int nFree;         /* Number of unused bytes on the page */
   1.938 +  int top;           /* First byte of the cell content area */
   1.939 +
   1.940 +  pBt = pPage->pBt;
   1.941 +  assert( pBt!=0 );
   1.942 +  assert( pParent==0 || pParent->pBt==pBt );
   1.943 +  assert( sqlite3_mutex_held(pBt->mutex) );
   1.944 +  assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
   1.945 +  assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
   1.946 +  assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
   1.947 +  if( pPage->pParent!=pParent && (pPage->pParent!=0 || pPage->isInit) ){
   1.948 +    /* The parent page should never change unless the file is corrupt */
   1.949 +    return SQLITE_CORRUPT_BKPT;
   1.950 +  }
   1.951 +  if( pPage->isInit ) return SQLITE_OK;
   1.952 +  if( pPage->pParent==0 && pParent!=0 ){
   1.953 +    pPage->pParent = pParent;
   1.954 +    sqlite3PagerRef(pParent->pDbPage);
   1.955 +  }
   1.956 +  hdr = pPage->hdrOffset;
   1.957 +  data = pPage->aData;
   1.958 +  if( decodeFlags(pPage, data[hdr]) ) return SQLITE_CORRUPT_BKPT;
   1.959 +  assert( pBt->pageSize>=512 && pBt->pageSize<=32768 );
   1.960 +  pPage->maskPage = pBt->pageSize - 1;
   1.961 +  pPage->nOverflow = 0;
   1.962 +  pPage->idxShift = 0;
   1.963 +  usableSize = pBt->usableSize;
   1.964 +  pPage->cellOffset = cellOffset = hdr + 12 - 4*pPage->leaf;
   1.965 +  top = get2byte(&data[hdr+5]);
   1.966 +  pPage->nCell = get2byte(&data[hdr+3]);
   1.967 +  if( pPage->nCell>MX_CELL(pBt) ){
   1.968 +    /* To many cells for a single page.  The page must be corrupt */
   1.969 +    return SQLITE_CORRUPT_BKPT;
   1.970 +  }
   1.971 +  if( pPage->nCell==0 && pParent!=0 && pParent->pgno!=1 ){
   1.972 +    /* All pages must have at least one cell, except for root pages */
   1.973 +    return SQLITE_CORRUPT_BKPT;
   1.974 +  }
   1.975 +
   1.976 +  /* Compute the total free space on the page */
   1.977 +  pc = get2byte(&data[hdr+1]);
   1.978 +  nFree = data[hdr+7] + top - (cellOffset + 2*pPage->nCell);
   1.979 +  while( pc>0 ){
   1.980 +    int next, size;
   1.981 +    if( pc>usableSize-4 ){
   1.982 +      /* Free block is off the page */
   1.983 +      return SQLITE_CORRUPT_BKPT; 
   1.984 +    }
   1.985 +    next = get2byte(&data[pc]);
   1.986 +    size = get2byte(&data[pc+2]);
   1.987 +    if( next>0 && next<=pc+size+3 ){
   1.988 +      /* Free blocks must be in accending order */
   1.989 +      return SQLITE_CORRUPT_BKPT; 
   1.990 +    }
   1.991 +    nFree += size;
   1.992 +    pc = next;
   1.993 +  }
   1.994 +  pPage->nFree = nFree;
   1.995 +  if( nFree>=usableSize ){
   1.996 +    /* Free space cannot exceed total page size */
   1.997 +    return SQLITE_CORRUPT_BKPT; 
   1.998 +  }
   1.999 +
  1.1000 +#if 0
  1.1001 +  /* Check that all the offsets in the cell offset array are within range. 
  1.1002 +  ** 
  1.1003 +  ** Omitting this consistency check and using the pPage->maskPage mask
  1.1004 +  ** to prevent overrunning the page buffer in findCell() results in a
  1.1005 +  ** 2.5% performance gain.
  1.1006 +  */
  1.1007 +  {
  1.1008 +    u8 *pOff;        /* Iterator used to check all cell offsets are in range */
  1.1009 +    u8 *pEnd;        /* Pointer to end of cell offset array */
  1.1010 +    u8 mask;         /* Mask of bits that must be zero in MSB of cell offsets */
  1.1011 +    mask = ~(((u8)(pBt->pageSize>>8))-1);
  1.1012 +    pEnd = &data[cellOffset + pPage->nCell*2];
  1.1013 +    for(pOff=&data[cellOffset]; pOff!=pEnd && !((*pOff)&mask); pOff+=2);
  1.1014 +    if( pOff!=pEnd ){
  1.1015 +      return SQLITE_CORRUPT_BKPT;
  1.1016 +    }
  1.1017 +  }
  1.1018 +#endif
  1.1019 +
  1.1020 +  pPage->isInit = 1;
  1.1021 +  return SQLITE_OK;
  1.1022 +}
  1.1023 +
  1.1024 +/*
  1.1025 +** Set up a raw page so that it looks like a database page holding
  1.1026 +** no entries.
  1.1027 +*/
  1.1028 +static void zeroPage(MemPage *pPage, int flags){
  1.1029 +  unsigned char *data = pPage->aData;
  1.1030 +  BtShared *pBt = pPage->pBt;
  1.1031 +  int hdr = pPage->hdrOffset;
  1.1032 +  int first;
  1.1033 +
  1.1034 +  assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno );
  1.1035 +  assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
  1.1036 +  assert( sqlite3PagerGetData(pPage->pDbPage) == data );
  1.1037 +  assert( sqlite3PagerIswriteable(pPage->pDbPage) );
  1.1038 +  assert( sqlite3_mutex_held(pBt->mutex) );
  1.1039 +  /*memset(&data[hdr], 0, pBt->usableSize - hdr);*/
  1.1040 +  data[hdr] = flags;
  1.1041 +  first = hdr + 8 + 4*((flags&PTF_LEAF)==0);
  1.1042 +  memset(&data[hdr+1], 0, 4);
  1.1043 +  data[hdr+7] = 0;
  1.1044 +  put2byte(&data[hdr+5], pBt->usableSize);
  1.1045 +  pPage->nFree = pBt->usableSize - first;
  1.1046 +  decodeFlags(pPage, flags);
  1.1047 +  pPage->hdrOffset = hdr;
  1.1048 +  pPage->cellOffset = first;
  1.1049 +  pPage->nOverflow = 0;
  1.1050 +  assert( pBt->pageSize>=512 && pBt->pageSize<=32768 );
  1.1051 +  pPage->maskPage = pBt->pageSize - 1;
  1.1052 +  pPage->idxShift = 0;
  1.1053 +  pPage->nCell = 0;
  1.1054 +  pPage->isInit = 1;
  1.1055 +}
  1.1056 +
  1.1057 +/*
  1.1058 +** Get a page from the pager.  Initialize the MemPage.pBt and
  1.1059 +** MemPage.aData elements if needed.
  1.1060 +**
  1.1061 +** If the noContent flag is set, it means that we do not care about
  1.1062 +** the content of the page at this time.  So do not go to the disk
  1.1063 +** to fetch the content.  Just fill in the content with zeros for now.
  1.1064 +** If in the future we call sqlite3PagerWrite() on this page, that
  1.1065 +** means we have started to be concerned about content and the disk
  1.1066 +** read should occur at that point.
  1.1067 +*/
  1.1068 +int sqlite3BtreeGetPage(
  1.1069 +  BtShared *pBt,       /* The btree */
  1.1070 +  Pgno pgno,           /* Number of the page to fetch */
  1.1071 +  MemPage **ppPage,    /* Return the page in this parameter */
  1.1072 +  int noContent        /* Do not load page content if true */
  1.1073 +){
  1.1074 +  int rc;
  1.1075 +  MemPage *pPage;
  1.1076 +  DbPage *pDbPage;
  1.1077 +
  1.1078 +  assert( sqlite3_mutex_held(pBt->mutex) );
  1.1079 +  rc = sqlite3PagerAcquire(pBt->pPager, pgno, (DbPage**)&pDbPage, noContent);
  1.1080 +  if( rc ) return rc;
  1.1081 +  pPage = (MemPage *)sqlite3PagerGetExtra(pDbPage);
  1.1082 +  pPage->aData = sqlite3PagerGetData(pDbPage);
  1.1083 +  pPage->pDbPage = pDbPage;
  1.1084 +  pPage->pBt = pBt;
  1.1085 +  pPage->pgno = pgno;
  1.1086 +  pPage->hdrOffset = pPage->pgno==1 ? 100 : 0;
  1.1087 +  *ppPage = pPage;
  1.1088 +  return SQLITE_OK;
  1.1089 +}
  1.1090 +
  1.1091 +/*
  1.1092 +** Get a page from the pager and initialize it.  This routine
  1.1093 +** is just a convenience wrapper around separate calls to
  1.1094 +** sqlite3BtreeGetPage() and sqlite3BtreeInitPage().
  1.1095 +*/
  1.1096 +static int getAndInitPage(
  1.1097 +  BtShared *pBt,          /* The database file */
  1.1098 +  Pgno pgno,           /* Number of the page to get */
  1.1099 +  MemPage **ppPage,    /* Write the page pointer here */
  1.1100 +  MemPage *pParent     /* Parent of the page */
  1.1101 +){
  1.1102 +  int rc;
  1.1103 +  assert( sqlite3_mutex_held(pBt->mutex) );
  1.1104 +  if( pgno==0 ){
  1.1105 +    return SQLITE_CORRUPT_BKPT; 
  1.1106 +  }
  1.1107 +  rc = sqlite3BtreeGetPage(pBt, pgno, ppPage, 0);
  1.1108 +  if( rc==SQLITE_OK && (*ppPage)->isInit==0 ){
  1.1109 +    rc = sqlite3BtreeInitPage(*ppPage, pParent);
  1.1110 +    if( rc!=SQLITE_OK ){
  1.1111 +      releasePage(*ppPage);
  1.1112 +      *ppPage = 0;
  1.1113 +    }
  1.1114 +  }
  1.1115 +  return rc;
  1.1116 +}
  1.1117 +
  1.1118 +/*
  1.1119 +** Release a MemPage.  This should be called once for each prior
  1.1120 +** call to sqlite3BtreeGetPage.
  1.1121 +*/
  1.1122 +static void releasePage(MemPage *pPage){
  1.1123 +  if( pPage ){
  1.1124 +    assert( pPage->aData );
  1.1125 +    assert( pPage->pBt );
  1.1126 +    assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
  1.1127 +    assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
  1.1128 +    assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  1.1129 +    sqlite3PagerUnref(pPage->pDbPage);
  1.1130 +  }
  1.1131 +}
  1.1132 +
  1.1133 +/*
  1.1134 +** This routine is called when the reference count for a page
  1.1135 +** reaches zero.  We need to unref the pParent pointer when that
  1.1136 +** happens.
  1.1137 +*/
  1.1138 +static void pageDestructor(DbPage *pData, int pageSize){
  1.1139 +  MemPage *pPage;
  1.1140 +  assert( (pageSize & 7)==0 );
  1.1141 +  pPage = (MemPage *)sqlite3PagerGetExtra(pData);
  1.1142 +  assert( pPage->isInit==0 || sqlite3_mutex_held(pPage->pBt->mutex) );
  1.1143 +  if( pPage->pParent ){
  1.1144 +    MemPage *pParent = pPage->pParent;
  1.1145 +    assert( pParent->pBt==pPage->pBt );
  1.1146 +    pPage->pParent = 0;
  1.1147 +    releasePage(pParent);
  1.1148 +  }
  1.1149 +  pPage->isInit = 0;
  1.1150 +}
  1.1151 +
  1.1152 +/*
  1.1153 +** During a rollback, when the pager reloads information into the cache
  1.1154 +** so that the cache is restored to its original state at the start of
  1.1155 +** the transaction, for each page restored this routine is called.
  1.1156 +**
  1.1157 +** This routine needs to reset the extra data section at the end of the
  1.1158 +** page to agree with the restored data.
  1.1159 +*/
  1.1160 +static void pageReinit(DbPage *pData, int pageSize){
  1.1161 +  MemPage *pPage;
  1.1162 +  assert( (pageSize & 7)==0 );
  1.1163 +  pPage = (MemPage *)sqlite3PagerGetExtra(pData);
  1.1164 +  if( pPage->isInit ){
  1.1165 +    assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  1.1166 +    pPage->isInit = 0;
  1.1167 +    sqlite3BtreeInitPage(pPage, pPage->pParent);
  1.1168 +  }
  1.1169 +}
  1.1170 +
  1.1171 +/*
  1.1172 +** Invoke the busy handler for a btree.
  1.1173 +*/
  1.1174 +static int sqlite3BtreeInvokeBusyHandler(void *pArg, int n){
  1.1175 +  BtShared *pBt = (BtShared*)pArg;
  1.1176 +  assert( pBt->db );
  1.1177 +  assert( sqlite3_mutex_held(pBt->db->mutex) );
  1.1178 +  return sqlite3InvokeBusyHandler(&pBt->db->busyHandler);
  1.1179 +}
  1.1180 +
  1.1181 +/*
  1.1182 +** Open a database file.
  1.1183 +** 
  1.1184 +** zFilename is the name of the database file.  If zFilename is NULL
  1.1185 +** a new database with a random name is created.  This randomly named
  1.1186 +** database file will be deleted when sqlite3BtreeClose() is called.
  1.1187 +** If zFilename is ":memory:" then an in-memory database is created
  1.1188 +** that is automatically destroyed when it is closed.
  1.1189 +*/
  1.1190 +int sqlite3BtreeOpen(
  1.1191 +  const char *zFilename,  /* Name of the file containing the BTree database */
  1.1192 +  sqlite3 *db,            /* Associated database handle */
  1.1193 +  Btree **ppBtree,        /* Pointer to new Btree object written here */
  1.1194 +  int flags,              /* Options */
  1.1195 +  int vfsFlags            /* Flags passed through to sqlite3_vfs.xOpen() */
  1.1196 +){
  1.1197 +  sqlite3_vfs *pVfs;      /* The VFS to use for this btree */
  1.1198 +  BtShared *pBt = 0;      /* Shared part of btree structure */
  1.1199 +  Btree *p;               /* Handle to return */
  1.1200 +  int rc = SQLITE_OK;
  1.1201 +  int nReserve;
  1.1202 +  unsigned char zDbHeader[100];
  1.1203 +
  1.1204 +  /* Set the variable isMemdb to true for an in-memory database, or 
  1.1205 +  ** false for a file-based database. This symbol is only required if
  1.1206 +  ** either of the shared-data or autovacuum features are compiled 
  1.1207 +  ** into the library.
  1.1208 +  */
  1.1209 +#if !defined(SQLITE_OMIT_SHARED_CACHE) || !defined(SQLITE_OMIT_AUTOVACUUM)
  1.1210 +  #ifdef SQLITE_OMIT_MEMORYDB
  1.1211 +    const int isMemdb = 0;
  1.1212 +  #else
  1.1213 +    const int isMemdb = zFilename && !strcmp(zFilename, ":memory:");
  1.1214 +  #endif
  1.1215 +#endif
  1.1216 +
  1.1217 +  assert( db!=0 );
  1.1218 +  assert( sqlite3_mutex_held(db->mutex) );
  1.1219 +
  1.1220 +  pVfs = db->pVfs;
  1.1221 +  p = sqlite3MallocZero(sizeof(Btree));
  1.1222 +  if( !p ){
  1.1223 +    return SQLITE_NOMEM;
  1.1224 +  }
  1.1225 +  p->inTrans = TRANS_NONE;
  1.1226 +  p->db = db;
  1.1227 +
  1.1228 +#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
  1.1229 +  /*
  1.1230 +  ** If this Btree is a candidate for shared cache, try to find an
  1.1231 +  ** existing BtShared object that we can share with
  1.1232 +  */
  1.1233 +  if( isMemdb==0
  1.1234 +   && (db->flags & SQLITE_Vtab)==0
  1.1235 +   && zFilename && zFilename[0]
  1.1236 +  ){
  1.1237 +    if( sqlite3SharedCacheEnabled ){
  1.1238 +      int nFullPathname = pVfs->mxPathname+1;
  1.1239 +      char *zFullPathname = sqlite3Malloc(nFullPathname);
  1.1240 +      sqlite3_mutex *mutexShared;
  1.1241 +      p->sharable = 1;
  1.1242 +      db->flags |= SQLITE_SharedCache;
  1.1243 +      if( !zFullPathname ){
  1.1244 +        sqlite3_free(p);
  1.1245 +        return SQLITE_NOMEM;
  1.1246 +      }
  1.1247 +      sqlite3OsFullPathname(pVfs, zFilename, nFullPathname, zFullPathname);
  1.1248 +      mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
  1.1249 +      sqlite3_mutex_enter(mutexShared);
  1.1250 +      for(pBt=sqlite3SharedCacheList; pBt; pBt=pBt->pNext){
  1.1251 +        assert( pBt->nRef>0 );
  1.1252 +        if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager))
  1.1253 +                 && sqlite3PagerVfs(pBt->pPager)==pVfs ){
  1.1254 +          p->pBt = pBt;
  1.1255 +          pBt->nRef++;
  1.1256 +          break;
  1.1257 +        }
  1.1258 +      }
  1.1259 +      sqlite3_mutex_leave(mutexShared);
  1.1260 +      sqlite3_free(zFullPathname);
  1.1261 +    }
  1.1262 +#ifdef SQLITE_DEBUG
  1.1263 +    else{
  1.1264 +      /* In debug mode, we mark all persistent databases as sharable
  1.1265 +      ** even when they are not.  This exercises the locking code and
  1.1266 +      ** gives more opportunity for asserts(sqlite3_mutex_held())
  1.1267 +      ** statements to find locking problems.
  1.1268 +      */
  1.1269 +      p->sharable = 1;
  1.1270 +    }
  1.1271 +#endif
  1.1272 +  }
  1.1273 +#endif
  1.1274 +  if( pBt==0 ){
  1.1275 +    /*
  1.1276 +    ** The following asserts make sure that structures used by the btree are
  1.1277 +    ** the right size.  This is to guard against size changes that result
  1.1278 +    ** when compiling on a different architecture.
  1.1279 +    */
  1.1280 +    assert( sizeof(i64)==8 || sizeof(i64)==4 );
  1.1281 +    assert( sizeof(u64)==8 || sizeof(u64)==4 );
  1.1282 +    assert( sizeof(u32)==4 );
  1.1283 +    assert( sizeof(u16)==2 );
  1.1284 +    assert( sizeof(Pgno)==4 );
  1.1285 +  
  1.1286 +    pBt = sqlite3MallocZero( sizeof(*pBt) );
  1.1287 +    if( pBt==0 ){
  1.1288 +      rc = SQLITE_NOMEM;
  1.1289 +      goto btree_open_out;
  1.1290 +    }
  1.1291 +    pBt->busyHdr.xFunc = sqlite3BtreeInvokeBusyHandler;
  1.1292 +    pBt->busyHdr.pArg = pBt;
  1.1293 +    rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename,
  1.1294 +                          EXTRA_SIZE, flags, vfsFlags);
  1.1295 +    if( rc==SQLITE_OK ){
  1.1296 +      rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader);
  1.1297 +    }
  1.1298 +    if( rc!=SQLITE_OK ){
  1.1299 +      goto btree_open_out;
  1.1300 +    }
  1.1301 +    sqlite3PagerSetBusyhandler(pBt->pPager, &pBt->busyHdr);
  1.1302 +    p->pBt = pBt;
  1.1303 +  
  1.1304 +    sqlite3PagerSetDestructor(pBt->pPager, pageDestructor);
  1.1305 +    sqlite3PagerSetReiniter(pBt->pPager, pageReinit);
  1.1306 +    pBt->pCursor = 0;
  1.1307 +    pBt->pPage1 = 0;
  1.1308 +    pBt->readOnly = sqlite3PagerIsreadonly(pBt->pPager);
  1.1309 +    pBt->pageSize = get2byte(&zDbHeader[16]);
  1.1310 +    if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
  1.1311 +         || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
  1.1312 +      pBt->pageSize = 0;
  1.1313 +      sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize);
  1.1314 +#ifndef SQLITE_OMIT_AUTOVACUUM
  1.1315 +      /* If the magic name ":memory:" will create an in-memory database, then
  1.1316 +      ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
  1.1317 +      ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
  1.1318 +      ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
  1.1319 +      ** regular file-name. In this case the auto-vacuum applies as per normal.
  1.1320 +      */
  1.1321 +      if( zFilename && !isMemdb ){
  1.1322 +        pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0);
  1.1323 +        pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0);
  1.1324 +      }
  1.1325 +#endif
  1.1326 +      nReserve = 0;
  1.1327 +    }else{
  1.1328 +      nReserve = zDbHeader[20];
  1.1329 +      pBt->pageSizeFixed = 1;
  1.1330 +#ifndef SQLITE_OMIT_AUTOVACUUM
  1.1331 +      pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
  1.1332 +      pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0);
  1.1333 +#endif
  1.1334 +    }
  1.1335 +    pBt->usableSize = pBt->pageSize - nReserve;
  1.1336 +    assert( (pBt->pageSize & 7)==0 );  /* 8-byte alignment of pageSize */
  1.1337 +    sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize);
  1.1338 +   
  1.1339 +#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
  1.1340 +    /* Add the new BtShared object to the linked list sharable BtShareds.
  1.1341 +    */
  1.1342 +    if( p->sharable ){
  1.1343 +      sqlite3_mutex *mutexShared;
  1.1344 +      pBt->nRef = 1;
  1.1345 +      mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
  1.1346 +      if( SQLITE_THREADSAFE && sqlite3Config.bCoreMutex ){
  1.1347 +        pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST);
  1.1348 +        if( pBt->mutex==0 ){
  1.1349 +          rc = SQLITE_NOMEM;
  1.1350 +          db->mallocFailed = 0;
  1.1351 +          goto btree_open_out;
  1.1352 +        }
  1.1353 +      }
  1.1354 +      sqlite3_mutex_enter(mutexShared);
  1.1355 +      pBt->pNext = sqlite3SharedCacheList;
  1.1356 +      sqlite3SharedCacheList = pBt;
  1.1357 +      sqlite3_mutex_leave(mutexShared);
  1.1358 +    }
  1.1359 +#endif
  1.1360 +  }
  1.1361 +
  1.1362 +#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
  1.1363 +  /* If the new Btree uses a sharable pBtShared, then link the new
  1.1364 +  ** Btree into the list of all sharable Btrees for the same connection.
  1.1365 +  ** The list is kept in ascending order by pBt address.
  1.1366 +  */
  1.1367 +  if( p->sharable ){
  1.1368 +    int i;
  1.1369 +    Btree *pSib;
  1.1370 +    for(i=0; i<db->nDb; i++){
  1.1371 +      if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){
  1.1372 +        while( pSib->pPrev ){ pSib = pSib->pPrev; }
  1.1373 +        if( p->pBt<pSib->pBt ){
  1.1374 +          p->pNext = pSib;
  1.1375 +          p->pPrev = 0;
  1.1376 +          pSib->pPrev = p;
  1.1377 +        }else{
  1.1378 +          while( pSib->pNext && pSib->pNext->pBt<p->pBt ){
  1.1379 +            pSib = pSib->pNext;
  1.1380 +          }
  1.1381 +          p->pNext = pSib->pNext;
  1.1382 +          p->pPrev = pSib;
  1.1383 +          if( p->pNext ){
  1.1384 +            p->pNext->pPrev = p;
  1.1385 +          }
  1.1386 +          pSib->pNext = p;
  1.1387 +        }
  1.1388 +        break;
  1.1389 +      }
  1.1390 +    }
  1.1391 +  }
  1.1392 +#endif
  1.1393 +  *ppBtree = p;
  1.1394 +
  1.1395 +btree_open_out:
  1.1396 +  if( rc!=SQLITE_OK ){
  1.1397 +    if( pBt && pBt->pPager ){
  1.1398 +      sqlite3PagerClose(pBt->pPager);
  1.1399 +    }
  1.1400 +    sqlite3_free(pBt);
  1.1401 +    sqlite3_free(p);
  1.1402 +    *ppBtree = 0;
  1.1403 +  }
  1.1404 +  return rc;
  1.1405 +}
  1.1406 +
  1.1407 +/*
  1.1408 +** Decrement the BtShared.nRef counter.  When it reaches zero,
  1.1409 +** remove the BtShared structure from the sharing list.  Return
  1.1410 +** true if the BtShared.nRef counter reaches zero and return
  1.1411 +** false if it is still positive.
  1.1412 +*/
  1.1413 +static int removeFromSharingList(BtShared *pBt){
  1.1414 +#ifndef SQLITE_OMIT_SHARED_CACHE
  1.1415 +  sqlite3_mutex *pMaster;
  1.1416 +  BtShared *pList;
  1.1417 +  int removed = 0;
  1.1418 +
  1.1419 +  assert( sqlite3_mutex_notheld(pBt->mutex) );
  1.1420 +  pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
  1.1421 +  sqlite3_mutex_enter(pMaster);
  1.1422 +  pBt->nRef--;
  1.1423 +  if( pBt->nRef<=0 ){
  1.1424 +    if( sqlite3SharedCacheList==pBt ){
  1.1425 +      sqlite3SharedCacheList = pBt->pNext;
  1.1426 +    }else{
  1.1427 +      pList = sqlite3SharedCacheList;
  1.1428 +      while( ALWAYS(pList) && pList->pNext!=pBt ){
  1.1429 +        pList=pList->pNext;
  1.1430 +      }
  1.1431 +      if( ALWAYS(pList) ){
  1.1432 +        pList->pNext = pBt->pNext;
  1.1433 +      }
  1.1434 +    }
  1.1435 +    if( SQLITE_THREADSAFE ){
  1.1436 +      sqlite3_mutex_free(pBt->mutex);
  1.1437 +    }
  1.1438 +    removed = 1;
  1.1439 +  }
  1.1440 +  sqlite3_mutex_leave(pMaster);
  1.1441 +  return removed;
  1.1442 +#else
  1.1443 +  return 1;
  1.1444 +#endif
  1.1445 +}
  1.1446 +
  1.1447 +/*
  1.1448 +** Make sure pBt->pTmpSpace points to an allocation of 
  1.1449 +** MX_CELL_SIZE(pBt) bytes.
  1.1450 +*/
  1.1451 +static void allocateTempSpace(BtShared *pBt){
  1.1452 +  if( !pBt->pTmpSpace ){
  1.1453 +    pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize );
  1.1454 +  }
  1.1455 +}
  1.1456 +
  1.1457 +/*
  1.1458 +** Free the pBt->pTmpSpace allocation
  1.1459 +*/
  1.1460 +static void freeTempSpace(BtShared *pBt){
  1.1461 +  sqlite3PageFree( pBt->pTmpSpace);
  1.1462 +  pBt->pTmpSpace = 0;
  1.1463 +}
  1.1464 +
  1.1465 +/*
  1.1466 +** Close an open database and invalidate all cursors.
  1.1467 +*/
  1.1468 +int sqlite3BtreeClose(Btree *p){
  1.1469 +  BtShared *pBt = p->pBt;
  1.1470 +  BtCursor *pCur;
  1.1471 +
  1.1472 +  /* Close all cursors opened via this handle.  */
  1.1473 +  assert( sqlite3_mutex_held(p->db->mutex) );
  1.1474 +  sqlite3BtreeEnter(p);
  1.1475 +  pBt->db = p->db;
  1.1476 +  pCur = pBt->pCursor;
  1.1477 +  while( pCur ){
  1.1478 +    BtCursor *pTmp = pCur;
  1.1479 +    pCur = pCur->pNext;
  1.1480 +    if( pTmp->pBtree==p ){
  1.1481 +      sqlite3BtreeCloseCursor(pTmp);
  1.1482 +    }
  1.1483 +  }
  1.1484 +
  1.1485 +  /* Rollback any active transaction and free the handle structure.
  1.1486 +  ** The call to sqlite3BtreeRollback() drops any table-locks held by
  1.1487 +  ** this handle.
  1.1488 +  */
  1.1489 +  sqlite3BtreeRollback(p);
  1.1490 +  sqlite3BtreeLeave(p);
  1.1491 +
  1.1492 +  /* If there are still other outstanding references to the shared-btree
  1.1493 +  ** structure, return now. The remainder of this procedure cleans 
  1.1494 +  ** up the shared-btree.
  1.1495 +  */
  1.1496 +  assert( p->wantToLock==0 && p->locked==0 );
  1.1497 +  if( !p->sharable || removeFromSharingList(pBt) ){
  1.1498 +    /* The pBt is no longer on the sharing list, so we can access
  1.1499 +    ** it without having to hold the mutex.
  1.1500 +    **
  1.1501 +    ** Clean out and delete the BtShared object.
  1.1502 +    */
  1.1503 +    assert( !pBt->pCursor );
  1.1504 +    sqlite3PagerClose(pBt->pPager);
  1.1505 +    if( pBt->xFreeSchema && pBt->pSchema ){
  1.1506 +      pBt->xFreeSchema(pBt->pSchema);
  1.1507 +    }
  1.1508 +    sqlite3_free(pBt->pSchema);
  1.1509 +    freeTempSpace(pBt);
  1.1510 +    sqlite3_free(pBt);
  1.1511 +  }
  1.1512 +
  1.1513 +#ifndef SQLITE_OMIT_SHARED_CACHE
  1.1514 +  assert( p->wantToLock==0 );
  1.1515 +  assert( p->locked==0 );
  1.1516 +  if( p->pPrev ) p->pPrev->pNext = p->pNext;
  1.1517 +  if( p->pNext ) p->pNext->pPrev = p->pPrev;
  1.1518 +#endif
  1.1519 +
  1.1520 +  sqlite3_free(p);
  1.1521 +  return SQLITE_OK;
  1.1522 +}
  1.1523 +
  1.1524 +/*
  1.1525 +** Change the limit on the number of pages allowed in the cache.
  1.1526 +**
  1.1527 +** The maximum number of cache pages is set to the absolute
  1.1528 +** value of mxPage.  If mxPage is negative, the pager will
  1.1529 +** operate asynchronously - it will not stop to do fsync()s
  1.1530 +** to insure data is written to the disk surface before
  1.1531 +** continuing.  Transactions still work if synchronous is off,
  1.1532 +** and the database cannot be corrupted if this program
  1.1533 +** crashes.  But if the operating system crashes or there is
  1.1534 +** an abrupt power failure when synchronous is off, the database
  1.1535 +** could be left in an inconsistent and unrecoverable state.
  1.1536 +** Synchronous is on by default so database corruption is not
  1.1537 +** normally a worry.
  1.1538 +*/
  1.1539 +int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){
  1.1540 +  BtShared *pBt = p->pBt;
  1.1541 +  assert( sqlite3_mutex_held(p->db->mutex) );
  1.1542 +  sqlite3BtreeEnter(p);
  1.1543 +  sqlite3PagerSetCachesize(pBt->pPager, mxPage);
  1.1544 +  sqlite3BtreeLeave(p);
  1.1545 +  return SQLITE_OK;
  1.1546 +}
  1.1547 +
  1.1548 +/*
  1.1549 +** Change the way data is synced to disk in order to increase or decrease
  1.1550 +** how well the database resists damage due to OS crashes and power
  1.1551 +** failures.  Level 1 is the same as asynchronous (no syncs() occur and
  1.1552 +** there is a high probability of damage)  Level 2 is the default.  There
  1.1553 +** is a very low but non-zero probability of damage.  Level 3 reduces the
  1.1554 +** probability of damage to near zero but with a write performance reduction.
  1.1555 +*/
  1.1556 +#ifndef SQLITE_OMIT_PAGER_PRAGMAS
  1.1557 +int sqlite3BtreeSetSafetyLevel(Btree *p, int level, int fullSync){
  1.1558 +  BtShared *pBt = p->pBt;
  1.1559 +  assert( sqlite3_mutex_held(p->db->mutex) );
  1.1560 +  sqlite3BtreeEnter(p);
  1.1561 +  sqlite3PagerSetSafetyLevel(pBt->pPager, level, fullSync);
  1.1562 +  sqlite3BtreeLeave(p);
  1.1563 +  return SQLITE_OK;
  1.1564 +}
  1.1565 +#endif
  1.1566 +
  1.1567 +/*
  1.1568 +** Return TRUE if the given btree is set to safety level 1.  In other
  1.1569 +** words, return TRUE if no sync() occurs on the disk files.
  1.1570 +*/
  1.1571 +int sqlite3BtreeSyncDisabled(Btree *p){
  1.1572 +  BtShared *pBt = p->pBt;
  1.1573 +  int rc;
  1.1574 +  assert( sqlite3_mutex_held(p->db->mutex) );  
  1.1575 +  sqlite3BtreeEnter(p);
  1.1576 +  assert( pBt && pBt->pPager );
  1.1577 +  rc = sqlite3PagerNosync(pBt->pPager);
  1.1578 +  sqlite3BtreeLeave(p);
  1.1579 +  return rc;
  1.1580 +}
  1.1581 +
  1.1582 +#if !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM)
  1.1583 +/*
  1.1584 +** Change the default pages size and the number of reserved bytes per page.
  1.1585 +**
  1.1586 +** The page size must be a power of 2 between 512 and 65536.  If the page
  1.1587 +** size supplied does not meet this constraint then the page size is not
  1.1588 +** changed.
  1.1589 +**
  1.1590 +** Page sizes are constrained to be a power of two so that the region
  1.1591 +** of the database file used for locking (beginning at PENDING_BYTE,
  1.1592 +** the first byte past the 1GB boundary, 0x40000000) needs to occur
  1.1593 +** at the beginning of a page.
  1.1594 +**
  1.1595 +** If parameter nReserve is less than zero, then the number of reserved
  1.1596 +** bytes per page is left unchanged.
  1.1597 +*/
  1.1598 +int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve){
  1.1599 +  int rc = SQLITE_OK;
  1.1600 +  BtShared *pBt = p->pBt;
  1.1601 +  sqlite3BtreeEnter(p);
  1.1602 +  if( pBt->pageSizeFixed ){
  1.1603 +    sqlite3BtreeLeave(p);
  1.1604 +    return SQLITE_READONLY;
  1.1605 +  }
  1.1606 +  if( nReserve<0 ){
  1.1607 +    nReserve = pBt->pageSize - pBt->usableSize;
  1.1608 +  }
  1.1609 +  if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE &&
  1.1610 +        ((pageSize-1)&pageSize)==0 ){
  1.1611 +    assert( (pageSize & 7)==0 );
  1.1612 +    assert( !pBt->pPage1 && !pBt->pCursor );
  1.1613 +    pBt->pageSize = pageSize;
  1.1614 +    freeTempSpace(pBt);
  1.1615 +    rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize);
  1.1616 +  }
  1.1617 +  pBt->usableSize = pBt->pageSize - nReserve;
  1.1618 +  sqlite3BtreeLeave(p);
  1.1619 +  return rc;
  1.1620 +}
  1.1621 +
  1.1622 +/*
  1.1623 +** Return the currently defined page size
  1.1624 +*/
  1.1625 +int sqlite3BtreeGetPageSize(Btree *p){
  1.1626 +  return p->pBt->pageSize;
  1.1627 +}
  1.1628 +int sqlite3BtreeGetReserve(Btree *p){
  1.1629 +  int n;
  1.1630 +  sqlite3BtreeEnter(p);
  1.1631 +  n = p->pBt->pageSize - p->pBt->usableSize;
  1.1632 +  sqlite3BtreeLeave(p);
  1.1633 +  return n;
  1.1634 +}
  1.1635 +
  1.1636 +/*
  1.1637 +** Set the maximum page count for a database if mxPage is positive.
  1.1638 +** No changes are made if mxPage is 0 or negative.
  1.1639 +** Regardless of the value of mxPage, return the maximum page count.
  1.1640 +*/
  1.1641 +int sqlite3BtreeMaxPageCount(Btree *p, int mxPage){
  1.1642 +  int n;
  1.1643 +  sqlite3BtreeEnter(p);
  1.1644 +  n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage);
  1.1645 +  sqlite3BtreeLeave(p);
  1.1646 +  return n;
  1.1647 +}
  1.1648 +#endif /* !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM) */
  1.1649 +
  1.1650 +/*
  1.1651 +** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
  1.1652 +** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
  1.1653 +** is disabled. The default value for the auto-vacuum property is 
  1.1654 +** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
  1.1655 +*/
  1.1656 +int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){
  1.1657 +#ifdef SQLITE_OMIT_AUTOVACUUM
  1.1658 +  return SQLITE_READONLY;
  1.1659 +#else
  1.1660 +  BtShared *pBt = p->pBt;
  1.1661 +  int rc = SQLITE_OK;
  1.1662 +  int av = (autoVacuum?1:0);
  1.1663 +
  1.1664 +  sqlite3BtreeEnter(p);
  1.1665 +  if( pBt->pageSizeFixed && av!=pBt->autoVacuum ){
  1.1666 +    rc = SQLITE_READONLY;
  1.1667 +  }else{
  1.1668 +    pBt->autoVacuum = av;
  1.1669 +  }
  1.1670 +  sqlite3BtreeLeave(p);
  1.1671 +  return rc;
  1.1672 +#endif
  1.1673 +}
  1.1674 +
  1.1675 +/*
  1.1676 +** Return the value of the 'auto-vacuum' property. If auto-vacuum is 
  1.1677 +** enabled 1 is returned. Otherwise 0.
  1.1678 +*/
  1.1679 +int sqlite3BtreeGetAutoVacuum(Btree *p){
  1.1680 +#ifdef SQLITE_OMIT_AUTOVACUUM
  1.1681 +  return BTREE_AUTOVACUUM_NONE;
  1.1682 +#else
  1.1683 +  int rc;
  1.1684 +  sqlite3BtreeEnter(p);
  1.1685 +  rc = (
  1.1686 +    (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE:
  1.1687 +    (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL:
  1.1688 +    BTREE_AUTOVACUUM_INCR
  1.1689 +  );
  1.1690 +  sqlite3BtreeLeave(p);
  1.1691 +  return rc;
  1.1692 +#endif
  1.1693 +}
  1.1694 +
  1.1695 +
  1.1696 +/*
  1.1697 +** Get a reference to pPage1 of the database file.  This will
  1.1698 +** also acquire a readlock on that file.
  1.1699 +**
  1.1700 +** SQLITE_OK is returned on success.  If the file is not a
  1.1701 +** well-formed database file, then SQLITE_CORRUPT is returned.
  1.1702 +** SQLITE_BUSY is returned if the database is locked.  SQLITE_NOMEM
  1.1703 +** is returned if we run out of memory. 
  1.1704 +*/
  1.1705 +static int lockBtree(BtShared *pBt){
  1.1706 +  int rc;
  1.1707 +  MemPage *pPage1;
  1.1708 +  int nPage;
  1.1709 +
  1.1710 +  assert( sqlite3_mutex_held(pBt->mutex) );
  1.1711 +  if( pBt->pPage1 ) return SQLITE_OK;
  1.1712 +  rc = sqlite3BtreeGetPage(pBt, 1, &pPage1, 0);
  1.1713 +  if( rc!=SQLITE_OK ) return rc;
  1.1714 +
  1.1715 +  /* Do some checking to help insure the file we opened really is
  1.1716 +  ** a valid database file. 
  1.1717 +  */
  1.1718 +  rc = sqlite3PagerPagecount(pBt->pPager, &nPage);
  1.1719 +  if( rc!=SQLITE_OK ){
  1.1720 +    goto page1_init_failed;
  1.1721 +  }else if( nPage>0 ){
  1.1722 +    int pageSize;
  1.1723 +    int usableSize;
  1.1724 +    u8 *page1 = pPage1->aData;
  1.1725 +    rc = SQLITE_NOTADB;
  1.1726 +    if( memcmp(page1, zMagicHeader, 16)!=0 ){
  1.1727 +      goto page1_init_failed;
  1.1728 +    }
  1.1729 +    if( page1[18]>1 ){
  1.1730 +      pBt->readOnly = 1;
  1.1731 +    }
  1.1732 +    if( page1[19]>1 ){
  1.1733 +      goto page1_init_failed;
  1.1734 +    }
  1.1735 +
  1.1736 +    /* The maximum embedded fraction must be exactly 25%.  And the minimum
  1.1737 +    ** embedded fraction must be 12.5% for both leaf-data and non-leaf-data.
  1.1738 +    ** The original design allowed these amounts to vary, but as of
  1.1739 +    ** version 3.6.0, we require them to be fixed.
  1.1740 +    */
  1.1741 +    if( memcmp(&page1[21], "\100\040\040",3)!=0 ){
  1.1742 +      goto page1_init_failed;
  1.1743 +    }
  1.1744 +    pageSize = get2byte(&page1[16]);
  1.1745 +    if( ((pageSize-1)&pageSize)!=0 || pageSize<512 ||
  1.1746 +        (SQLITE_MAX_PAGE_SIZE<32768 && pageSize>SQLITE_MAX_PAGE_SIZE)
  1.1747 +    ){
  1.1748 +      goto page1_init_failed;
  1.1749 +    }
  1.1750 +    assert( (pageSize & 7)==0 );
  1.1751 +    usableSize = pageSize - page1[20];
  1.1752 +    if( pageSize!=pBt->pageSize ){
  1.1753 +      /* After reading the first page of the database assuming a page size
  1.1754 +      ** of BtShared.pageSize, we have discovered that the page-size is
  1.1755 +      ** actually pageSize. Unlock the database, leave pBt->pPage1 at
  1.1756 +      ** zero and return SQLITE_OK. The caller will call this function
  1.1757 +      ** again with the correct page-size.
  1.1758 +      */
  1.1759 +      releasePage(pPage1);
  1.1760 +      pBt->usableSize = usableSize;
  1.1761 +      pBt->pageSize = pageSize;
  1.1762 +      freeTempSpace(pBt);
  1.1763 +      sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize);
  1.1764 +      return SQLITE_OK;
  1.1765 +    }
  1.1766 +    if( usableSize<500 ){
  1.1767 +      goto page1_init_failed;
  1.1768 +    }
  1.1769 +    pBt->pageSize = pageSize;
  1.1770 +    pBt->usableSize = usableSize;
  1.1771 +#ifndef SQLITE_OMIT_AUTOVACUUM
  1.1772 +    pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0);
  1.1773 +    pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0);
  1.1774 +#endif
  1.1775 +  }
  1.1776 +
  1.1777 +  /* maxLocal is the maximum amount of payload to store locally for
  1.1778 +  ** a cell.  Make sure it is small enough so that at least minFanout
  1.1779 +  ** cells can will fit on one page.  We assume a 10-byte page header.
  1.1780 +  ** Besides the payload, the cell must store:
  1.1781 +  **     2-byte pointer to the cell
  1.1782 +  **     4-byte child pointer
  1.1783 +  **     9-byte nKey value
  1.1784 +  **     4-byte nData value
  1.1785 +  **     4-byte overflow page pointer
  1.1786 +  ** So a cell consists of a 2-byte poiner, a header which is as much as
  1.1787 +  ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
  1.1788 +  ** page pointer.
  1.1789 +  */
  1.1790 +  pBt->maxLocal = (pBt->usableSize-12)*64/255 - 23;
  1.1791 +  pBt->minLocal = (pBt->usableSize-12)*32/255 - 23;
  1.1792 +  pBt->maxLeaf = pBt->usableSize - 35;
  1.1793 +  pBt->minLeaf = (pBt->usableSize-12)*32/255 - 23;
  1.1794 +  assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
  1.1795 +  pBt->pPage1 = pPage1;
  1.1796 +  return SQLITE_OK;
  1.1797 +
  1.1798 +page1_init_failed:
  1.1799 +  releasePage(pPage1);
  1.1800 +  pBt->pPage1 = 0;
  1.1801 +  return rc;
  1.1802 +}
  1.1803 +
  1.1804 +/*
  1.1805 +** This routine works like lockBtree() except that it also invokes the
  1.1806 +** busy callback if there is lock contention.
  1.1807 +*/
  1.1808 +static int lockBtreeWithRetry(Btree *pRef){
  1.1809 +  int rc = SQLITE_OK;
  1.1810 +
  1.1811 +  assert( sqlite3BtreeHoldsMutex(pRef) );
  1.1812 +  if( pRef->inTrans==TRANS_NONE ){
  1.1813 +    u8 inTransaction = pRef->pBt->inTransaction;
  1.1814 +    btreeIntegrity(pRef);
  1.1815 +    rc = sqlite3BtreeBeginTrans(pRef, 0);
  1.1816 +    pRef->pBt->inTransaction = inTransaction;
  1.1817 +    pRef->inTrans = TRANS_NONE;
  1.1818 +    if( rc==SQLITE_OK ){
  1.1819 +      pRef->pBt->nTransaction--;
  1.1820 +    }
  1.1821 +    btreeIntegrity(pRef);
  1.1822 +  }
  1.1823 +  return rc;
  1.1824 +}
  1.1825 +       
  1.1826 +
  1.1827 +/*
  1.1828 +** If there are no outstanding cursors and we are not in the middle
  1.1829 +** of a transaction but there is a read lock on the database, then
  1.1830 +** this routine unrefs the first page of the database file which 
  1.1831 +** has the effect of releasing the read lock.
  1.1832 +**
  1.1833 +** If there are any outstanding cursors, this routine is a no-op.
  1.1834 +**
  1.1835 +** If there is a transaction in progress, this routine is a no-op.
  1.1836 +*/
  1.1837 +static void unlockBtreeIfUnused(BtShared *pBt){
  1.1838 +  assert( sqlite3_mutex_held(pBt->mutex) );
  1.1839 +  if( pBt->inTransaction==TRANS_NONE && pBt->pCursor==0 && pBt->pPage1!=0 ){
  1.1840 +    if( sqlite3PagerRefcount(pBt->pPager)>=1 ){
  1.1841 +      assert( pBt->pPage1->aData );
  1.1842 +#if 0
  1.1843 +      if( pBt->pPage1->aData==0 ){
  1.1844 +        MemPage *pPage = pBt->pPage1;
  1.1845 +        pPage->aData = sqlite3PagerGetData(pPage->pDbPage);
  1.1846 +        pPage->pBt = pBt;
  1.1847 +        pPage->pgno = 1;
  1.1848 +      }
  1.1849 +#endif
  1.1850 +      releasePage(pBt->pPage1);
  1.1851 +    }
  1.1852 +    pBt->pPage1 = 0;
  1.1853 +    pBt->inStmt = 0;
  1.1854 +  }
  1.1855 +}
  1.1856 +
  1.1857 +/*
  1.1858 +** Create a new database by initializing the first page of the
  1.1859 +** file.
  1.1860 +*/
  1.1861 +static int newDatabase(BtShared *pBt){
  1.1862 +  MemPage *pP1;
  1.1863 +  unsigned char *data;
  1.1864 +  int rc;
  1.1865 +  int nPage;
  1.1866 +
  1.1867 +  assert( sqlite3_mutex_held(pBt->mutex) );
  1.1868 +  rc = sqlite3PagerPagecount(pBt->pPager, &nPage);
  1.1869 +  if( rc!=SQLITE_OK || nPage>0 ){
  1.1870 +    return rc;
  1.1871 +  }
  1.1872 +  pP1 = pBt->pPage1;
  1.1873 +  assert( pP1!=0 );
  1.1874 +  data = pP1->aData;
  1.1875 +  rc = sqlite3PagerWrite(pP1->pDbPage);
  1.1876 +  if( rc ) return rc;
  1.1877 +  memcpy(data, zMagicHeader, sizeof(zMagicHeader));
  1.1878 +  assert( sizeof(zMagicHeader)==16 );
  1.1879 +  put2byte(&data[16], pBt->pageSize);
  1.1880 +  data[18] = 1;
  1.1881 +  data[19] = 1;
  1.1882 +  data[20] = pBt->pageSize - pBt->usableSize;
  1.1883 +  data[21] = 64;
  1.1884 +  data[22] = 32;
  1.1885 +  data[23] = 32;
  1.1886 +  memset(&data[24], 0, 100-24);
  1.1887 +  zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
  1.1888 +  pBt->pageSizeFixed = 1;
  1.1889 +#ifndef SQLITE_OMIT_AUTOVACUUM
  1.1890 +  assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 );
  1.1891 +  assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 );
  1.1892 +  put4byte(&data[36 + 4*4], pBt->autoVacuum);
  1.1893 +  put4byte(&data[36 + 7*4], pBt->incrVacuum);
  1.1894 +#endif
  1.1895 +  return SQLITE_OK;
  1.1896 +}
  1.1897 +
  1.1898 +/*
  1.1899 +** Attempt to start a new transaction. A write-transaction
  1.1900 +** is started if the second argument is nonzero, otherwise a read-
  1.1901 +** transaction.  If the second argument is 2 or more and exclusive
  1.1902 +** transaction is started, meaning that no other process is allowed
  1.1903 +** to access the database.  A preexisting transaction may not be
  1.1904 +** upgraded to exclusive by calling this routine a second time - the
  1.1905 +** exclusivity flag only works for a new transaction.
  1.1906 +**
  1.1907 +** A write-transaction must be started before attempting any 
  1.1908 +** changes to the database.  None of the following routines 
  1.1909 +** will work unless a transaction is started first:
  1.1910 +**
  1.1911 +**      sqlite3BtreeCreateTable()
  1.1912 +**      sqlite3BtreeCreateIndex()
  1.1913 +**      sqlite3BtreeClearTable()
  1.1914 +**      sqlite3BtreeDropTable()
  1.1915 +**      sqlite3BtreeInsert()
  1.1916 +**      sqlite3BtreeDelete()
  1.1917 +**      sqlite3BtreeUpdateMeta()
  1.1918 +**
  1.1919 +** If an initial attempt to acquire the lock fails because of lock contention
  1.1920 +** and the database was previously unlocked, then invoke the busy handler
  1.1921 +** if there is one.  But if there was previously a read-lock, do not
  1.1922 +** invoke the busy handler - just return SQLITE_BUSY.  SQLITE_BUSY is 
  1.1923 +** returned when there is already a read-lock in order to avoid a deadlock.
  1.1924 +**
  1.1925 +** Suppose there are two processes A and B.  A has a read lock and B has
  1.1926 +** a reserved lock.  B tries to promote to exclusive but is blocked because
  1.1927 +** of A's read lock.  A tries to promote to reserved but is blocked by B.
  1.1928 +** One or the other of the two processes must give way or there can be
  1.1929 +** no progress.  By returning SQLITE_BUSY and not invoking the busy callback
  1.1930 +** when A already has a read lock, we encourage A to give up and let B
  1.1931 +** proceed.
  1.1932 +*/
  1.1933 +int sqlite3BtreeBeginTrans(Btree *p, int wrflag){
  1.1934 +  BtShared *pBt = p->pBt;
  1.1935 +  int rc = SQLITE_OK;
  1.1936 +
  1.1937 +  sqlite3BtreeEnter(p);
  1.1938 +  pBt->db = p->db;
  1.1939 +  btreeIntegrity(p);
  1.1940 +
  1.1941 +  /* If the btree is already in a write-transaction, or it
  1.1942 +  ** is already in a read-transaction and a read-transaction
  1.1943 +  ** is requested, this is a no-op.
  1.1944 +  */
  1.1945 +  if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){
  1.1946 +    goto trans_begun;
  1.1947 +  }
  1.1948 +
  1.1949 +  /* Write transactions are not possible on a read-only database */
  1.1950 +  if( pBt->readOnly && wrflag ){
  1.1951 +    rc = SQLITE_READONLY;
  1.1952 +    goto trans_begun;
  1.1953 +  }
  1.1954 +
  1.1955 +  /* If another database handle has already opened a write transaction 
  1.1956 +  ** on this shared-btree structure and a second write transaction is
  1.1957 +  ** requested, return SQLITE_BUSY.
  1.1958 +  */
  1.1959 +  if( pBt->inTransaction==TRANS_WRITE && wrflag ){
  1.1960 +    rc = SQLITE_BUSY;
  1.1961 +    goto trans_begun;
  1.1962 +  }
  1.1963 +
  1.1964 +#ifndef SQLITE_OMIT_SHARED_CACHE
  1.1965 +  if( wrflag>1 ){
  1.1966 +    BtLock *pIter;
  1.1967 +    for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
  1.1968 +      if( pIter->pBtree!=p ){
  1.1969 +        rc = SQLITE_BUSY;
  1.1970 +        goto trans_begun;
  1.1971 +      }
  1.1972 +    }
  1.1973 +  }
  1.1974 +#endif
  1.1975 +
  1.1976 +  do {
  1.1977 +    if( pBt->pPage1==0 ){
  1.1978 +      do{
  1.1979 +        rc = lockBtree(pBt);
  1.1980 +      }while( pBt->pPage1==0 && rc==SQLITE_OK );
  1.1981 +    }
  1.1982 +
  1.1983 +    if( rc==SQLITE_OK && wrflag ){
  1.1984 +      if( pBt->readOnly ){
  1.1985 +        rc = SQLITE_READONLY;
  1.1986 +      }else{
  1.1987 +        rc = sqlite3PagerBegin(pBt->pPage1->pDbPage, wrflag>1);
  1.1988 +        if( rc==SQLITE_OK ){
  1.1989 +          rc = newDatabase(pBt);
  1.1990 +        }
  1.1991 +      }
  1.1992 +    }
  1.1993 +  
  1.1994 +    if( rc==SQLITE_OK ){
  1.1995 +      if( wrflag ) pBt->inStmt = 0;
  1.1996 +    }else{
  1.1997 +      unlockBtreeIfUnused(pBt);
  1.1998 +    }
  1.1999 +  }while( rc==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE &&
  1.2000 +          sqlite3BtreeInvokeBusyHandler(pBt, 0) );
  1.2001 +
  1.2002 +  if( rc==SQLITE_OK ){
  1.2003 +    if( p->inTrans==TRANS_NONE ){
  1.2004 +      pBt->nTransaction++;
  1.2005 +    }
  1.2006 +    p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ);
  1.2007 +    if( p->inTrans>pBt->inTransaction ){
  1.2008 +      pBt->inTransaction = p->inTrans;
  1.2009 +    }
  1.2010 +#ifndef SQLITE_OMIT_SHARED_CACHE
  1.2011 +    if( wrflag>1 ){
  1.2012 +      assert( !pBt->pExclusive );
  1.2013 +      pBt->pExclusive = p;
  1.2014 +    }
  1.2015 +#endif
  1.2016 +  }
  1.2017 +
  1.2018 +
  1.2019 +trans_begun:
  1.2020 +  btreeIntegrity(p);
  1.2021 +  sqlite3BtreeLeave(p);
  1.2022 +  return rc;
  1.2023 +}
  1.2024 +
  1.2025 +/*
  1.2026 +** Return the size of the database file in pages.  Or return -1 if
  1.2027 +** there is any kind of error.
  1.2028 +*/
  1.2029 +static int pagerPagecount(Pager *pPager){
  1.2030 +  int rc;
  1.2031 +  int nPage;
  1.2032 +  rc = sqlite3PagerPagecount(pPager, &nPage);
  1.2033 +  return (rc==SQLITE_OK?nPage:-1);
  1.2034 +}
  1.2035 +
  1.2036 +
  1.2037 +#ifndef SQLITE_OMIT_AUTOVACUUM
  1.2038 +
  1.2039 +/*
  1.2040 +** Set the pointer-map entries for all children of page pPage. Also, if
  1.2041 +** pPage contains cells that point to overflow pages, set the pointer
  1.2042 +** map entries for the overflow pages as well.
  1.2043 +*/
  1.2044 +static int setChildPtrmaps(MemPage *pPage){
  1.2045 +  int i;                             /* Counter variable */
  1.2046 +  int nCell;                         /* Number of cells in page pPage */
  1.2047 +  int rc;                            /* Return code */
  1.2048 +  BtShared *pBt = pPage->pBt;
  1.2049 +  int isInitOrig = pPage->isInit;
  1.2050 +  Pgno pgno = pPage->pgno;
  1.2051 +
  1.2052 +  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  1.2053 +  rc = sqlite3BtreeInitPage(pPage, pPage->pParent);
  1.2054 +  if( rc!=SQLITE_OK ){
  1.2055 +    goto set_child_ptrmaps_out;
  1.2056 +  }
  1.2057 +  nCell = pPage->nCell;
  1.2058 +
  1.2059 +  for(i=0; i<nCell; i++){
  1.2060 +    u8 *pCell = findCell(pPage, i);
  1.2061 +
  1.2062 +    rc = ptrmapPutOvflPtr(pPage, pCell);
  1.2063 +    if( rc!=SQLITE_OK ){
  1.2064 +      goto set_child_ptrmaps_out;
  1.2065 +    }
  1.2066 +
  1.2067 +    if( !pPage->leaf ){
  1.2068 +      Pgno childPgno = get4byte(pCell);
  1.2069 +      rc = ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno);
  1.2070 +       if( rc!=SQLITE_OK ) goto set_child_ptrmaps_out;
  1.2071 +    }
  1.2072 +  }
  1.2073 +
  1.2074 +  if( !pPage->leaf ){
  1.2075 +    Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
  1.2076 +    rc = ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno);
  1.2077 +  }
  1.2078 +
  1.2079 +set_child_ptrmaps_out:
  1.2080 +  pPage->isInit = isInitOrig;
  1.2081 +  return rc;
  1.2082 +}
  1.2083 +
  1.2084 +/*
  1.2085 +** Somewhere on pPage, which is guarenteed to be a btree page, not an overflow
  1.2086 +** page, is a pointer to page iFrom. Modify this pointer so that it points to
  1.2087 +** iTo. Parameter eType describes the type of pointer to be modified, as 
  1.2088 +** follows:
  1.2089 +**
  1.2090 +** PTRMAP_BTREE:     pPage is a btree-page. The pointer points at a child 
  1.2091 +**                   page of pPage.
  1.2092 +**
  1.2093 +** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
  1.2094 +**                   page pointed to by one of the cells on pPage.
  1.2095 +**
  1.2096 +** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
  1.2097 +**                   overflow page in the list.
  1.2098 +*/
  1.2099 +static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){
  1.2100 +  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  1.2101 +  if( eType==PTRMAP_OVERFLOW2 ){
  1.2102 +    /* The pointer is always the first 4 bytes of the page in this case.  */
  1.2103 +    if( get4byte(pPage->aData)!=iFrom ){
  1.2104 +      return SQLITE_CORRUPT_BKPT;
  1.2105 +    }
  1.2106 +    put4byte(pPage->aData, iTo);
  1.2107 +  }else{
  1.2108 +    int isInitOrig = pPage->isInit;
  1.2109 +    int i;
  1.2110 +    int nCell;
  1.2111 +
  1.2112 +    sqlite3BtreeInitPage(pPage, 0);
  1.2113 +    nCell = pPage->nCell;
  1.2114 +
  1.2115 +    for(i=0; i<nCell; i++){
  1.2116 +      u8 *pCell = findCell(pPage, i);
  1.2117 +      if( eType==PTRMAP_OVERFLOW1 ){
  1.2118 +        CellInfo info;
  1.2119 +        sqlite3BtreeParseCellPtr(pPage, pCell, &info);
  1.2120 +        if( info.iOverflow ){
  1.2121 +          if( iFrom==get4byte(&pCell[info.iOverflow]) ){
  1.2122 +            put4byte(&pCell[info.iOverflow], iTo);
  1.2123 +            break;
  1.2124 +          }
  1.2125 +        }
  1.2126 +      }else{
  1.2127 +        if( get4byte(pCell)==iFrom ){
  1.2128 +          put4byte(pCell, iTo);
  1.2129 +          break;
  1.2130 +        }
  1.2131 +      }
  1.2132 +    }
  1.2133 +  
  1.2134 +    if( i==nCell ){
  1.2135 +      if( eType!=PTRMAP_BTREE || 
  1.2136 +          get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){
  1.2137 +        return SQLITE_CORRUPT_BKPT;
  1.2138 +      }
  1.2139 +      put4byte(&pPage->aData[pPage->hdrOffset+8], iTo);
  1.2140 +    }
  1.2141 +
  1.2142 +    pPage->isInit = isInitOrig;
  1.2143 +  }
  1.2144 +  return SQLITE_OK;
  1.2145 +}
  1.2146 +
  1.2147 +
  1.2148 +/*
  1.2149 +** Move the open database page pDbPage to location iFreePage in the 
  1.2150 +** database. The pDbPage reference remains valid.
  1.2151 +*/
  1.2152 +static int relocatePage(
  1.2153 +  BtShared *pBt,           /* Btree */
  1.2154 +  MemPage *pDbPage,        /* Open page to move */
  1.2155 +  u8 eType,                /* Pointer map 'type' entry for pDbPage */
  1.2156 +  Pgno iPtrPage,           /* Pointer map 'page-no' entry for pDbPage */
  1.2157 +  Pgno iFreePage,          /* The location to move pDbPage to */
  1.2158 +  int isCommit
  1.2159 +){
  1.2160 +  MemPage *pPtrPage;   /* The page that contains a pointer to pDbPage */
  1.2161 +  Pgno iDbPage = pDbPage->pgno;
  1.2162 +  Pager *pPager = pBt->pPager;
  1.2163 +  int rc;
  1.2164 +
  1.2165 +  assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 || 
  1.2166 +      eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE );
  1.2167 +  assert( sqlite3_mutex_held(pBt->mutex) );
  1.2168 +  assert( pDbPage->pBt==pBt );
  1.2169 +
  1.2170 +  /* Move page iDbPage from its current location to page number iFreePage */
  1.2171 +  TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n", 
  1.2172 +      iDbPage, iFreePage, iPtrPage, eType));
  1.2173 +  rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit);
  1.2174 +  if( rc!=SQLITE_OK ){
  1.2175 +    return rc;
  1.2176 +  }
  1.2177 +  pDbPage->pgno = iFreePage;
  1.2178 +
  1.2179 +  /* If pDbPage was a btree-page, then it may have child pages and/or cells
  1.2180 +  ** that point to overflow pages. The pointer map entries for all these
  1.2181 +  ** pages need to be changed.
  1.2182 +  **
  1.2183 +  ** If pDbPage is an overflow page, then the first 4 bytes may store a
  1.2184 +  ** pointer to a subsequent overflow page. If this is the case, then
  1.2185 +  ** the pointer map needs to be updated for the subsequent overflow page.
  1.2186 +  */
  1.2187 +  if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){
  1.2188 +    rc = setChildPtrmaps(pDbPage);
  1.2189 +    if( rc!=SQLITE_OK ){
  1.2190 +      return rc;
  1.2191 +    }
  1.2192 +  }else{
  1.2193 +    Pgno nextOvfl = get4byte(pDbPage->aData);
  1.2194 +    if( nextOvfl!=0 ){
  1.2195 +      rc = ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage);
  1.2196 +      if( rc!=SQLITE_OK ){
  1.2197 +        return rc;
  1.2198 +      }
  1.2199 +    }
  1.2200 +  }
  1.2201 +
  1.2202 +  /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
  1.2203 +  ** that it points at iFreePage. Also fix the pointer map entry for
  1.2204 +  ** iPtrPage.
  1.2205 +  */
  1.2206 +  if( eType!=PTRMAP_ROOTPAGE ){
  1.2207 +    rc = sqlite3BtreeGetPage(pBt, iPtrPage, &pPtrPage, 0);
  1.2208 +    if( rc!=SQLITE_OK ){
  1.2209 +      return rc;
  1.2210 +    }
  1.2211 +    rc = sqlite3PagerWrite(pPtrPage->pDbPage);
  1.2212 +    if( rc!=SQLITE_OK ){
  1.2213 +      releasePage(pPtrPage);
  1.2214 +      return rc;
  1.2215 +    }
  1.2216 +    rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType);
  1.2217 +    releasePage(pPtrPage);
  1.2218 +    if( rc==SQLITE_OK ){
  1.2219 +      rc = ptrmapPut(pBt, iFreePage, eType, iPtrPage);
  1.2220 +    }
  1.2221 +  }
  1.2222 +  return rc;
  1.2223 +}
  1.2224 +
  1.2225 +/* Forward declaration required by incrVacuumStep(). */
  1.2226 +static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8);
  1.2227 +
  1.2228 +/*
  1.2229 +** Perform a single step of an incremental-vacuum. If successful,
  1.2230 +** return SQLITE_OK. If there is no work to do (and therefore no
  1.2231 +** point in calling this function again), return SQLITE_DONE.
  1.2232 +**
  1.2233 +** More specificly, this function attempts to re-organize the 
  1.2234 +** database so that the last page of the file currently in use
  1.2235 +** is no longer in use.
  1.2236 +**
  1.2237 +** If the nFin parameter is non-zero, the implementation assumes
  1.2238 +** that the caller will keep calling incrVacuumStep() until
  1.2239 +** it returns SQLITE_DONE or an error, and that nFin is the
  1.2240 +** number of pages the database file will contain after this 
  1.2241 +** process is complete.
  1.2242 +*/
  1.2243 +static int incrVacuumStep(BtShared *pBt, Pgno nFin){
  1.2244 +  Pgno iLastPg;             /* Last page in the database */
  1.2245 +  Pgno nFreeList;           /* Number of pages still on the free-list */
  1.2246 +
  1.2247 +  assert( sqlite3_mutex_held(pBt->mutex) );
  1.2248 +  iLastPg = pBt->nTrunc;
  1.2249 +  if( iLastPg==0 ){
  1.2250 +    iLastPg = pagerPagecount(pBt->pPager);
  1.2251 +  }
  1.2252 +
  1.2253 +  if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){
  1.2254 +    int rc;
  1.2255 +    u8 eType;
  1.2256 +    Pgno iPtrPage;
  1.2257 +
  1.2258 +    nFreeList = get4byte(&pBt->pPage1->aData[36]);
  1.2259 +    if( nFreeList==0 || nFin==iLastPg ){
  1.2260 +      return SQLITE_DONE;
  1.2261 +    }
  1.2262 +
  1.2263 +    rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage);
  1.2264 +    if( rc!=SQLITE_OK ){
  1.2265 +      return rc;
  1.2266 +    }
  1.2267 +    if( eType==PTRMAP_ROOTPAGE ){
  1.2268 +      return SQLITE_CORRUPT_BKPT;
  1.2269 +    }
  1.2270 +
  1.2271 +    if( eType==PTRMAP_FREEPAGE ){
  1.2272 +      if( nFin==0 ){
  1.2273 +        /* Remove the page from the files free-list. This is not required
  1.2274 +        ** if nFin is non-zero. In that case, the free-list will be
  1.2275 +        ** truncated to zero after this function returns, so it doesn't 
  1.2276 +        ** matter if it still contains some garbage entries.
  1.2277 +        */
  1.2278 +        Pgno iFreePg;
  1.2279 +        MemPage *pFreePg;
  1.2280 +        rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, 1);
  1.2281 +        if( rc!=SQLITE_OK ){
  1.2282 +          return rc;
  1.2283 +        }
  1.2284 +        assert( iFreePg==iLastPg );
  1.2285 +        releasePage(pFreePg);
  1.2286 +      }
  1.2287 +    } else {
  1.2288 +      Pgno iFreePg;             /* Index of free page to move pLastPg to */
  1.2289 +      MemPage *pLastPg;
  1.2290 +
  1.2291 +      rc = sqlite3BtreeGetPage(pBt, iLastPg, &pLastPg, 0);
  1.2292 +      if( rc!=SQLITE_OK ){
  1.2293 +        return rc;
  1.2294 +      }
  1.2295 +
  1.2296 +      /* If nFin is zero, this loop runs exactly once and page pLastPg
  1.2297 +      ** is swapped with the first free page pulled off the free list.
  1.2298 +      **
  1.2299 +      ** On the other hand, if nFin is greater than zero, then keep
  1.2300 +      ** looping until a free-page located within the first nFin pages
  1.2301 +      ** of the file is found.
  1.2302 +      */
  1.2303 +      do {
  1.2304 +        MemPage *pFreePg;
  1.2305 +        rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, 0, 0);
  1.2306 +        if( rc!=SQLITE_OK ){
  1.2307 +          releasePage(pLastPg);
  1.2308 +          return rc;
  1.2309 +        }
  1.2310 +        releasePage(pFreePg);
  1.2311 +      }while( nFin!=0 && iFreePg>nFin );
  1.2312 +      assert( iFreePg<iLastPg );
  1.2313 +      
  1.2314 +      rc = sqlite3PagerWrite(pLastPg->pDbPage);
  1.2315 +      if( rc==SQLITE_OK ){
  1.2316 +        rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, nFin!=0);
  1.2317 +      }
  1.2318 +      releasePage(pLastPg);
  1.2319 +      if( rc!=SQLITE_OK ){
  1.2320 +        return rc;
  1.2321 +      }
  1.2322 +    }
  1.2323 +  }
  1.2324 +
  1.2325 +  pBt->nTrunc = iLastPg - 1;
  1.2326 +  while( pBt->nTrunc==PENDING_BYTE_PAGE(pBt)||PTRMAP_ISPAGE(pBt, pBt->nTrunc) ){
  1.2327 +    pBt->nTrunc--;
  1.2328 +  }
  1.2329 +  return SQLITE_OK;
  1.2330 +}
  1.2331 +
  1.2332 +/*
  1.2333 +** A write-transaction must be opened before calling this function.
  1.2334 +** It performs a single unit of work towards an incremental vacuum.
  1.2335 +**
  1.2336 +** If the incremental vacuum is finished after this function has run,
  1.2337 +** SQLITE_DONE is returned. If it is not finished, but no error occured,
  1.2338 +** SQLITE_OK is returned. Otherwise an SQLite error code. 
  1.2339 +*/
  1.2340 +int sqlite3BtreeIncrVacuum(Btree *p){
  1.2341 +  int rc;
  1.2342 +  BtShared *pBt = p->pBt;
  1.2343 +
  1.2344 +  sqlite3BtreeEnter(p);
  1.2345 +  pBt->db = p->db;
  1.2346 +  assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE );
  1.2347 +  if( !pBt->autoVacuum ){
  1.2348 +    rc = SQLITE_DONE;
  1.2349 +  }else{
  1.2350 +    invalidateAllOverflowCache(pBt);
  1.2351 +    rc = incrVacuumStep(pBt, 0);
  1.2352 +  }
  1.2353 +  sqlite3BtreeLeave(p);
  1.2354 +  return rc;
  1.2355 +}
  1.2356 +
  1.2357 +/*
  1.2358 +** This routine is called prior to sqlite3PagerCommit when a transaction
  1.2359 +** is commited for an auto-vacuum database.
  1.2360 +**
  1.2361 +** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages
  1.2362 +** the database file should be truncated to during the commit process. 
  1.2363 +** i.e. the database has been reorganized so that only the first *pnTrunc
  1.2364 +** pages are in use.
  1.2365 +*/
  1.2366 +static int autoVacuumCommit(BtShared *pBt, Pgno *pnTrunc){
  1.2367 +  int rc = SQLITE_OK;
  1.2368 +  Pager *pPager = pBt->pPager;
  1.2369 +#ifndef NDEBUG
  1.2370 +  int nRef = sqlite3PagerRefcount(pPager);
  1.2371 +#endif
  1.2372 +
  1.2373 +  assert( sqlite3_mutex_held(pBt->mutex) );
  1.2374 +  invalidateAllOverflowCache(pBt);
  1.2375 +  assert(pBt->autoVacuum);
  1.2376 +  if( !pBt->incrVacuum ){
  1.2377 +    Pgno nFin = 0;
  1.2378 +
  1.2379 +    if( pBt->nTrunc==0 ){
  1.2380 +      Pgno nFree;
  1.2381 +      Pgno nPtrmap;
  1.2382 +      const int pgsz = pBt->pageSize;
  1.2383 +      int nOrig = pagerPagecount(pBt->pPager);
  1.2384 +
  1.2385 +      if( PTRMAP_ISPAGE(pBt, nOrig) ){
  1.2386 +        return SQLITE_CORRUPT_BKPT;
  1.2387 +      }
  1.2388 +      if( nOrig==PENDING_BYTE_PAGE(pBt) ){
  1.2389 +        nOrig--;
  1.2390 +      }
  1.2391 +      nFree = get4byte(&pBt->pPage1->aData[36]);
  1.2392 +      nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+pgsz/5)/(pgsz/5);
  1.2393 +      nFin = nOrig - nFree - nPtrmap;
  1.2394 +      if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<=PENDING_BYTE_PAGE(pBt) ){
  1.2395 +        nFin--;
  1.2396 +      }
  1.2397 +      while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){
  1.2398 +        nFin--;
  1.2399 +      }
  1.2400 +    }
  1.2401 +
  1.2402 +    while( rc==SQLITE_OK ){
  1.2403 +      rc = incrVacuumStep(pBt, nFin);
  1.2404 +    }
  1.2405 +    if( rc==SQLITE_DONE ){
  1.2406 +      assert(nFin==0 || pBt->nTrunc==0 || nFin<=pBt->nTrunc);
  1.2407 +      rc = SQLITE_OK;
  1.2408 +      if( pBt->nTrunc && nFin ){
  1.2409 +        rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
  1.2410 +        put4byte(&pBt->pPage1->aData[32], 0);
  1.2411 +        put4byte(&pBt->pPage1->aData[36], 0);
  1.2412 +        pBt->nTrunc = nFin;
  1.2413 +      }
  1.2414 +    }
  1.2415 +    if( rc!=SQLITE_OK ){
  1.2416 +      sqlite3PagerRollback(pPager);
  1.2417 +    }
  1.2418 +  }
  1.2419 +
  1.2420 +  if( rc==SQLITE_OK ){
  1.2421 +    *pnTrunc = pBt->nTrunc;
  1.2422 +    pBt->nTrunc = 0;
  1.2423 +  }
  1.2424 +  assert( nRef==sqlite3PagerRefcount(pPager) );
  1.2425 +  return rc;
  1.2426 +}
  1.2427 +
  1.2428 +#endif
  1.2429 +
  1.2430 +/*
  1.2431 +** This routine does the first phase of a two-phase commit.  This routine
  1.2432 +** causes a rollback journal to be created (if it does not already exist)
  1.2433 +** and populated with enough information so that if a power loss occurs
  1.2434 +** the database can be restored to its original state by playing back
  1.2435 +** the journal.  Then the contents of the journal are flushed out to
  1.2436 +** the disk.  After the journal is safely on oxide, the changes to the
  1.2437 +** database are written into the database file and flushed to oxide.
  1.2438 +** At the end of this call, the rollback journal still exists on the
  1.2439 +** disk and we are still holding all locks, so the transaction has not
  1.2440 +** committed.  See sqlite3BtreeCommit() for the second phase of the
  1.2441 +** commit process.
  1.2442 +**
  1.2443 +** This call is a no-op if no write-transaction is currently active on pBt.
  1.2444 +**
  1.2445 +** Otherwise, sync the database file for the btree pBt. zMaster points to
  1.2446 +** the name of a master journal file that should be written into the
  1.2447 +** individual journal file, or is NULL, indicating no master journal file 
  1.2448 +** (single database transaction).
  1.2449 +**
  1.2450 +** When this is called, the master journal should already have been
  1.2451 +** created, populated with this journal pointer and synced to disk.
  1.2452 +**
  1.2453 +** Once this is routine has returned, the only thing required to commit
  1.2454 +** the write-transaction for this database file is to delete the journal.
  1.2455 +*/
  1.2456 +int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zMaster){
  1.2457 +  int rc = SQLITE_OK;
  1.2458 +  if( p->inTrans==TRANS_WRITE ){
  1.2459 +    BtShared *pBt = p->pBt;
  1.2460 +    Pgno nTrunc = 0;
  1.2461 +    sqlite3BtreeEnter(p);
  1.2462 +    pBt->db = p->db;
  1.2463 +#ifndef SQLITE_OMIT_AUTOVACUUM
  1.2464 +    if( pBt->autoVacuum ){
  1.2465 +      rc = autoVacuumCommit(pBt, &nTrunc); 
  1.2466 +      if( rc!=SQLITE_OK ){
  1.2467 +        sqlite3BtreeLeave(p);
  1.2468 +        return rc;
  1.2469 +      }
  1.2470 +    }
  1.2471 +#endif
  1.2472 +    rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zMaster, nTrunc, 0);
  1.2473 +    sqlite3BtreeLeave(p);
  1.2474 +  }
  1.2475 +  return rc;
  1.2476 +}
  1.2477 +
  1.2478 +/*
  1.2479 +** Commit the transaction currently in progress.
  1.2480 +**
  1.2481 +** This routine implements the second phase of a 2-phase commit.  The
  1.2482 +** sqlite3BtreeSync() routine does the first phase and should be invoked
  1.2483 +** prior to calling this routine.  The sqlite3BtreeSync() routine did
  1.2484 +** all the work of writing information out to disk and flushing the
  1.2485 +** contents so that they are written onto the disk platter.  All this
  1.2486 +** routine has to do is delete or truncate the rollback journal
  1.2487 +** (which causes the transaction to commit) and drop locks.
  1.2488 +**
  1.2489 +** This will release the write lock on the database file.  If there
  1.2490 +** are no active cursors, it also releases the read lock.
  1.2491 +*/
  1.2492 +int sqlite3BtreeCommitPhaseTwo(Btree *p){
  1.2493 +  BtShared *pBt = p->pBt;
  1.2494 +
  1.2495 +  sqlite3BtreeEnter(p);
  1.2496 +  pBt->db = p->db;
  1.2497 +  btreeIntegrity(p);
  1.2498 +
  1.2499 +  /* If the handle has a write-transaction open, commit the shared-btrees 
  1.2500 +  ** transaction and set the shared state to TRANS_READ.
  1.2501 +  */
  1.2502 +  if( p->inTrans==TRANS_WRITE ){
  1.2503 +    int rc;
  1.2504 +    assert( pBt->inTransaction==TRANS_WRITE );
  1.2505 +    assert( pBt->nTransaction>0 );
  1.2506 +    rc = sqlite3PagerCommitPhaseTwo(pBt->pPager);
  1.2507 +    if( rc!=SQLITE_OK ){
  1.2508 +      sqlite3BtreeLeave(p);
  1.2509 +      return rc;
  1.2510 +    }
  1.2511 +    pBt->inTransaction = TRANS_READ;
  1.2512 +    pBt->inStmt = 0;
  1.2513 +  }
  1.2514 +  unlockAllTables(p);
  1.2515 +
  1.2516 +  /* If the handle has any kind of transaction open, decrement the transaction
  1.2517 +  ** count of the shared btree. If the transaction count reaches 0, set
  1.2518 +  ** the shared state to TRANS_NONE. The unlockBtreeIfUnused() call below
  1.2519 +  ** will unlock the pager.
  1.2520 +  */
  1.2521 +  if( p->inTrans!=TRANS_NONE ){
  1.2522 +    pBt->nTransaction--;
  1.2523 +    if( 0==pBt->nTransaction ){
  1.2524 +      pBt->inTransaction = TRANS_NONE;
  1.2525 +    }
  1.2526 +  }
  1.2527 +
  1.2528 +  /* Set the handles current transaction state to TRANS_NONE and unlock
  1.2529 +  ** the pager if this call closed the only read or write transaction.
  1.2530 +  */
  1.2531 +  p->inTrans = TRANS_NONE;
  1.2532 +  unlockBtreeIfUnused(pBt);
  1.2533 +
  1.2534 +  btreeIntegrity(p);
  1.2535 +  sqlite3BtreeLeave(p);
  1.2536 +  return SQLITE_OK;
  1.2537 +}
  1.2538 +
  1.2539 +/*
  1.2540 +** Do both phases of a commit.
  1.2541 +*/
  1.2542 +int sqlite3BtreeCommit(Btree *p){
  1.2543 +  int rc;
  1.2544 +  sqlite3BtreeEnter(p);
  1.2545 +  rc = sqlite3BtreeCommitPhaseOne(p, 0);
  1.2546 +  if( rc==SQLITE_OK ){
  1.2547 +    rc = sqlite3BtreeCommitPhaseTwo(p);
  1.2548 +  }
  1.2549 +  sqlite3BtreeLeave(p);
  1.2550 +  return rc;
  1.2551 +}
  1.2552 +
  1.2553 +#ifndef NDEBUG
  1.2554 +/*
  1.2555 +** Return the number of write-cursors open on this handle. This is for use
  1.2556 +** in assert() expressions, so it is only compiled if NDEBUG is not
  1.2557 +** defined.
  1.2558 +**
  1.2559 +** For the purposes of this routine, a write-cursor is any cursor that
  1.2560 +** is capable of writing to the databse.  That means the cursor was
  1.2561 +** originally opened for writing and the cursor has not be disabled
  1.2562 +** by having its state changed to CURSOR_FAULT.
  1.2563 +*/
  1.2564 +static int countWriteCursors(BtShared *pBt){
  1.2565 +  BtCursor *pCur;
  1.2566 +  int r = 0;
  1.2567 +  for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
  1.2568 +    if( pCur->wrFlag && pCur->eState!=CURSOR_FAULT ) r++; 
  1.2569 +  }
  1.2570 +  return r;
  1.2571 +}
  1.2572 +#endif
  1.2573 +
  1.2574 +/*
  1.2575 +** This routine sets the state to CURSOR_FAULT and the error
  1.2576 +** code to errCode for every cursor on BtShared that pBtree
  1.2577 +** references.
  1.2578 +**
  1.2579 +** Every cursor is tripped, including cursors that belong
  1.2580 +** to other database connections that happen to be sharing
  1.2581 +** the cache with pBtree.
  1.2582 +**
  1.2583 +** This routine gets called when a rollback occurs.
  1.2584 +** All cursors using the same cache must be tripped
  1.2585 +** to prevent them from trying to use the btree after
  1.2586 +** the rollback.  The rollback may have deleted tables
  1.2587 +** or moved root pages, so it is not sufficient to
  1.2588 +** save the state of the cursor.  The cursor must be
  1.2589 +** invalidated.
  1.2590 +*/
  1.2591 +void sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode){
  1.2592 +  BtCursor *p;
  1.2593 +  sqlite3BtreeEnter(pBtree);
  1.2594 +  for(p=pBtree->pBt->pCursor; p; p=p->pNext){
  1.2595 +    clearCursorPosition(p);
  1.2596 +    p->eState = CURSOR_FAULT;
  1.2597 +    p->skip = errCode;
  1.2598 +  }
  1.2599 +  sqlite3BtreeLeave(pBtree);
  1.2600 +}
  1.2601 +
  1.2602 +/*
  1.2603 +** Rollback the transaction in progress.  All cursors will be
  1.2604 +** invalided by this operation.  Any attempt to use a cursor
  1.2605 +** that was open at the beginning of this operation will result
  1.2606 +** in an error.
  1.2607 +**
  1.2608 +** This will release the write lock on the database file.  If there
  1.2609 +** are no active cursors, it also releases the read lock.
  1.2610 +*/
  1.2611 +int sqlite3BtreeRollback(Btree *p){
  1.2612 +  int rc;
  1.2613 +  BtShared *pBt = p->pBt;
  1.2614 +  MemPage *pPage1;
  1.2615 +
  1.2616 +  sqlite3BtreeEnter(p);
  1.2617 +  pBt->db = p->db;
  1.2618 +  rc = saveAllCursors(pBt, 0, 0);
  1.2619 +#ifndef SQLITE_OMIT_SHARED_CACHE
  1.2620 +  if( rc!=SQLITE_OK ){
  1.2621 +    /* This is a horrible situation. An IO or malloc() error occured whilst
  1.2622 +    ** trying to save cursor positions. If this is an automatic rollback (as
  1.2623 +    ** the result of a constraint, malloc() failure or IO error) then 
  1.2624 +    ** the cache may be internally inconsistent (not contain valid trees) so
  1.2625 +    ** we cannot simply return the error to the caller. Instead, abort 
  1.2626 +    ** all queries that may be using any of the cursors that failed to save.
  1.2627 +    */
  1.2628 +    sqlite3BtreeTripAllCursors(p, rc);
  1.2629 +  }
  1.2630 +#endif
  1.2631 +  btreeIntegrity(p);
  1.2632 +  unlockAllTables(p);
  1.2633 +
  1.2634 +  if( p->inTrans==TRANS_WRITE ){
  1.2635 +    int rc2;
  1.2636 +
  1.2637 +#ifndef SQLITE_OMIT_AUTOVACUUM
  1.2638 +    pBt->nTrunc = 0;
  1.2639 +#endif
  1.2640 +
  1.2641 +    assert( TRANS_WRITE==pBt->inTransaction );
  1.2642 +    rc2 = sqlite3PagerRollback(pBt->pPager);
  1.2643 +    if( rc2!=SQLITE_OK ){
  1.2644 +      rc = rc2;
  1.2645 +    }
  1.2646 +
  1.2647 +    /* The rollback may have destroyed the pPage1->aData value.  So
  1.2648 +    ** call sqlite3BtreeGetPage() on page 1 again to make
  1.2649 +    ** sure pPage1->aData is set correctly. */
  1.2650 +    if( sqlite3BtreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){
  1.2651 +      releasePage(pPage1);
  1.2652 +    }
  1.2653 +    assert( countWriteCursors(pBt)==0 );
  1.2654 +    pBt->inTransaction = TRANS_READ;
  1.2655 +  }
  1.2656 +
  1.2657 +  if( p->inTrans!=TRANS_NONE ){
  1.2658 +    assert( pBt->nTransaction>0 );
  1.2659 +    pBt->nTransaction--;
  1.2660 +    if( 0==pBt->nTransaction ){
  1.2661 +      pBt->inTransaction = TRANS_NONE;
  1.2662 +    }
  1.2663 +  }
  1.2664 +
  1.2665 +  p->inTrans = TRANS_NONE;
  1.2666 +  pBt->inStmt = 0;
  1.2667 +  unlockBtreeIfUnused(pBt);
  1.2668 +
  1.2669 +  btreeIntegrity(p);
  1.2670 +  sqlite3BtreeLeave(p);
  1.2671 +  return rc;
  1.2672 +}
  1.2673 +
  1.2674 +/*
  1.2675 +** Start a statement subtransaction.  The subtransaction can
  1.2676 +** can be rolled back independently of the main transaction.
  1.2677 +** You must start a transaction before starting a subtransaction.
  1.2678 +** The subtransaction is ended automatically if the main transaction
  1.2679 +** commits or rolls back.
  1.2680 +**
  1.2681 +** Only one subtransaction may be active at a time.  It is an error to try
  1.2682 +** to start a new subtransaction if another subtransaction is already active.
  1.2683 +**
  1.2684 +** Statement subtransactions are used around individual SQL statements
  1.2685 +** that are contained within a BEGIN...COMMIT block.  If a constraint
  1.2686 +** error occurs within the statement, the effect of that one statement
  1.2687 +** can be rolled back without having to rollback the entire transaction.
  1.2688 +*/
  1.2689 +int sqlite3BtreeBeginStmt(Btree *p){
  1.2690 +  int rc;
  1.2691 +  BtShared *pBt = p->pBt;
  1.2692 +  sqlite3BtreeEnter(p);
  1.2693 +  pBt->db = p->db;
  1.2694 +  if( (p->inTrans!=TRANS_WRITE) || pBt->inStmt ){
  1.2695 +    rc = pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
  1.2696 +  }else{
  1.2697 +    assert( pBt->inTransaction==TRANS_WRITE );
  1.2698 +    rc = pBt->readOnly ? SQLITE_OK : sqlite3PagerStmtBegin(pBt->pPager);
  1.2699 +    pBt->inStmt = 1;
  1.2700 +  }
  1.2701 +  sqlite3BtreeLeave(p);
  1.2702 +  return rc;
  1.2703 +}
  1.2704 +
  1.2705 +
  1.2706 +/*
  1.2707 +** Commit the statment subtransaction currently in progress.  If no
  1.2708 +** subtransaction is active, this is a no-op.
  1.2709 +*/
  1.2710 +int sqlite3BtreeCommitStmt(Btree *p){
  1.2711 +  int rc;
  1.2712 +  BtShared *pBt = p->pBt;
  1.2713 +  sqlite3BtreeEnter(p);
  1.2714 +  pBt->db = p->db;
  1.2715 +  if( pBt->inStmt && !pBt->readOnly ){
  1.2716 +    rc = sqlite3PagerStmtCommit(pBt->pPager);
  1.2717 +  }else{
  1.2718 +    rc = SQLITE_OK;
  1.2719 +  }
  1.2720 +  pBt->inStmt = 0;
  1.2721 +  sqlite3BtreeLeave(p);
  1.2722 +  return rc;
  1.2723 +}
  1.2724 +
  1.2725 +/*
  1.2726 +** Rollback the active statement subtransaction.  If no subtransaction
  1.2727 +** is active this routine is a no-op.
  1.2728 +**
  1.2729 +** All cursors will be invalidated by this operation.  Any attempt
  1.2730 +** to use a cursor that was open at the beginning of this operation
  1.2731 +** will result in an error.
  1.2732 +*/
  1.2733 +int sqlite3BtreeRollbackStmt(Btree *p){
  1.2734 +  int rc = SQLITE_OK;
  1.2735 +  BtShared *pBt = p->pBt;
  1.2736 +  sqlite3BtreeEnter(p);
  1.2737 +  pBt->db = p->db;
  1.2738 +  if( pBt->inStmt && !pBt->readOnly ){
  1.2739 +    rc = sqlite3PagerStmtRollback(pBt->pPager);
  1.2740 +    pBt->inStmt = 0;
  1.2741 +  }
  1.2742 +  sqlite3BtreeLeave(p);
  1.2743 +  return rc;
  1.2744 +}
  1.2745 +
  1.2746 +/*
  1.2747 +** Create a new cursor for the BTree whose root is on the page
  1.2748 +** iTable.  The act of acquiring a cursor gets a read lock on 
  1.2749 +** the database file.
  1.2750 +**
  1.2751 +** If wrFlag==0, then the cursor can only be used for reading.
  1.2752 +** If wrFlag==1, then the cursor can be used for reading or for
  1.2753 +** writing if other conditions for writing are also met.  These
  1.2754 +** are the conditions that must be met in order for writing to
  1.2755 +** be allowed:
  1.2756 +**
  1.2757 +** 1:  The cursor must have been opened with wrFlag==1
  1.2758 +**
  1.2759 +** 2:  Other database connections that share the same pager cache
  1.2760 +**     but which are not in the READ_UNCOMMITTED state may not have
  1.2761 +**     cursors open with wrFlag==0 on the same table.  Otherwise
  1.2762 +**     the changes made by this write cursor would be visible to
  1.2763 +**     the read cursors in the other database connection.
  1.2764 +**
  1.2765 +** 3:  The database must be writable (not on read-only media)
  1.2766 +**
  1.2767 +** 4:  There must be an active transaction.
  1.2768 +**
  1.2769 +** No checking is done to make sure that page iTable really is the
  1.2770 +** root page of a b-tree.  If it is not, then the cursor acquired
  1.2771 +** will not work correctly.
  1.2772 +*/
  1.2773 +static int btreeCursor(
  1.2774 +  Btree *p,                              /* The btree */
  1.2775 +  int iTable,                            /* Root page of table to open */
  1.2776 +  int wrFlag,                            /* 1 to write. 0 read-only */
  1.2777 +  struct KeyInfo *pKeyInfo,              /* First arg to comparison function */
  1.2778 +  BtCursor *pCur                         /* Space for new cursor */
  1.2779 +){
  1.2780 +  int rc;
  1.2781 +  BtShared *pBt = p->pBt;
  1.2782 +
  1.2783 +  assert( sqlite3BtreeHoldsMutex(p) );
  1.2784 +  if( wrFlag ){
  1.2785 +    if( pBt->readOnly ){
  1.2786 +      return SQLITE_READONLY;
  1.2787 +    }
  1.2788 +    if( checkReadLocks(p, iTable, 0, 0) ){
  1.2789 +      return SQLITE_LOCKED;
  1.2790 +    }
  1.2791 +  }
  1.2792 +
  1.2793 +  if( pBt->pPage1==0 ){
  1.2794 +    rc = lockBtreeWithRetry(p);
  1.2795 +    if( rc!=SQLITE_OK ){
  1.2796 +      return rc;
  1.2797 +    }
  1.2798 +    if( pBt->readOnly && wrFlag ){
  1.2799 +      return SQLITE_READONLY;
  1.2800 +    }
  1.2801 +  }
  1.2802 +  pCur->pgnoRoot = (Pgno)iTable;
  1.2803 +  if( iTable==1 && pagerPagecount(pBt->pPager)==0 ){
  1.2804 +    rc = SQLITE_EMPTY;
  1.2805 +    goto create_cursor_exception;
  1.2806 +  }
  1.2807 +  rc = getAndInitPage(pBt, pCur->pgnoRoot, &pCur->pPage, 0);
  1.2808 +  if( rc!=SQLITE_OK ){
  1.2809 +    goto create_cursor_exception;
  1.2810 +  }
  1.2811 +
  1.2812 +  /* Now that no other errors can occur, finish filling in the BtCursor
  1.2813 +  ** variables, link the cursor into the BtShared list and set *ppCur (the
  1.2814 +  ** output argument to this function).
  1.2815 +  */
  1.2816 +  pCur->pKeyInfo = pKeyInfo;
  1.2817 +  pCur->pBtree = p;
  1.2818 +  pCur->pBt = pBt;
  1.2819 +  pCur->wrFlag = wrFlag;
  1.2820 +  pCur->pNext = pBt->pCursor;
  1.2821 +  if( pCur->pNext ){
  1.2822 +    pCur->pNext->pPrev = pCur;
  1.2823 +  }
  1.2824 +  pBt->pCursor = pCur;
  1.2825 +  pCur->eState = CURSOR_INVALID;
  1.2826 +
  1.2827 +  return SQLITE_OK;
  1.2828 +
  1.2829 +create_cursor_exception:
  1.2830 +  releasePage(pCur->pPage);
  1.2831 +  unlockBtreeIfUnused(pBt);
  1.2832 +  return rc;
  1.2833 +}
  1.2834 +int sqlite3BtreeCursor(
  1.2835 +  Btree *p,                                   /* The btree */
  1.2836 +  int iTable,                                 /* Root page of table to open */
  1.2837 +  int wrFlag,                                 /* 1 to write. 0 read-only */
  1.2838 +  struct KeyInfo *pKeyInfo,                   /* First arg to xCompare() */
  1.2839 +  BtCursor *pCur                              /* Write new cursor here */
  1.2840 +){
  1.2841 +  int rc;
  1.2842 +  sqlite3BtreeEnter(p);
  1.2843 +  p->pBt->db = p->db;
  1.2844 +  rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
  1.2845 +  sqlite3BtreeLeave(p);
  1.2846 +  return rc;
  1.2847 +}
  1.2848 +int sqlite3BtreeCursorSize(){
  1.2849 +  return sizeof(BtCursor);
  1.2850 +}
  1.2851 +
  1.2852 +
  1.2853 +
  1.2854 +/*
  1.2855 +** Close a cursor.  The read lock on the database file is released
  1.2856 +** when the last cursor is closed.
  1.2857 +*/
  1.2858 +int sqlite3BtreeCloseCursor(BtCursor *pCur){
  1.2859 +  Btree *pBtree = pCur->pBtree;
  1.2860 +  if( pBtree ){
  1.2861 +    BtShared *pBt = pCur->pBt;
  1.2862 +    sqlite3BtreeEnter(pBtree);
  1.2863 +    pBt->db = pBtree->db;
  1.2864 +    clearCursorPosition(pCur);
  1.2865 +    if( pCur->pPrev ){
  1.2866 +      pCur->pPrev->pNext = pCur->pNext;
  1.2867 +    }else{
  1.2868 +      pBt->pCursor = pCur->pNext;
  1.2869 +    }
  1.2870 +    if( pCur->pNext ){
  1.2871 +      pCur->pNext->pPrev = pCur->pPrev;
  1.2872 +    }
  1.2873 +    releasePage(pCur->pPage);
  1.2874 +    unlockBtreeIfUnused(pBt);
  1.2875 +    invalidateOverflowCache(pCur);
  1.2876 +    /* sqlite3_free(pCur); */
  1.2877 +    sqlite3BtreeLeave(pBtree);
  1.2878 +  }
  1.2879 +  return SQLITE_OK;
  1.2880 +}
  1.2881 +
  1.2882 +/*
  1.2883 +** Make a temporary cursor by filling in the fields of pTempCur.
  1.2884 +** The temporary cursor is not on the cursor list for the Btree.
  1.2885 +*/
  1.2886 +void sqlite3BtreeGetTempCursor(BtCursor *pCur, BtCursor *pTempCur){
  1.2887 +  assert( cursorHoldsMutex(pCur) );
  1.2888 +  memcpy(pTempCur, pCur, sizeof(*pCur));
  1.2889 +  pTempCur->pNext = 0;
  1.2890 +  pTempCur->pPrev = 0;
  1.2891 +  if( pTempCur->pPage ){
  1.2892 +    sqlite3PagerRef(pTempCur->pPage->pDbPage);
  1.2893 +  }
  1.2894 +}
  1.2895 +
  1.2896 +/*
  1.2897 +** Delete a temporary cursor such as was made by the CreateTemporaryCursor()
  1.2898 +** function above.
  1.2899 +*/
  1.2900 +void sqlite3BtreeReleaseTempCursor(BtCursor *pCur){
  1.2901 +  assert( cursorHoldsMutex(pCur) );
  1.2902 +  if( pCur->pPage ){
  1.2903 +    sqlite3PagerUnref(pCur->pPage->pDbPage);
  1.2904 +  }
  1.2905 +}
  1.2906 +
  1.2907 +/*
  1.2908 +** Make sure the BtCursor* given in the argument has a valid
  1.2909 +** BtCursor.info structure.  If it is not already valid, call
  1.2910 +** sqlite3BtreeParseCell() to fill it in.
  1.2911 +**
  1.2912 +** BtCursor.info is a cache of the information in the current cell.
  1.2913 +** Using this cache reduces the number of calls to sqlite3BtreeParseCell().
  1.2914 +**
  1.2915 +** 2007-06-25:  There is a bug in some versions of MSVC that cause the
  1.2916 +** compiler to crash when getCellInfo() is implemented as a macro.
  1.2917 +** But there is a measureable speed advantage to using the macro on gcc
  1.2918 +** (when less compiler optimizations like -Os or -O0 are used and the
  1.2919 +** compiler is not doing agressive inlining.)  So we use a real function
  1.2920 +** for MSVC and a macro for everything else.  Ticket #2457.
  1.2921 +*/
  1.2922 +#ifndef NDEBUG
  1.2923 +  static void assertCellInfo(BtCursor *pCur){
  1.2924 +    CellInfo info;
  1.2925 +    memset(&info, 0, sizeof(info));
  1.2926 +    sqlite3BtreeParseCell(pCur->pPage, pCur->idx, &info);
  1.2927 +    assert( memcmp(&info, &pCur->info, sizeof(info))==0 );
  1.2928 +  }
  1.2929 +#else
  1.2930 +  #define assertCellInfo(x)
  1.2931 +#endif
  1.2932 +#ifdef _MSC_VER
  1.2933 +  /* Use a real function in MSVC to work around bugs in that compiler. */
  1.2934 +  static void getCellInfo(BtCursor *pCur){
  1.2935 +    if( pCur->info.nSize==0 ){
  1.2936 +      sqlite3BtreeParseCell(pCur->pPage, pCur->idx, &pCur->info);
  1.2937 +      pCur->validNKey = 1;
  1.2938 +    }else{
  1.2939 +      assertCellInfo(pCur);
  1.2940 +    }
  1.2941 +  }
  1.2942 +#else /* if not _MSC_VER */
  1.2943 +  /* Use a macro in all other compilers so that the function is inlined */
  1.2944 +#define getCellInfo(pCur)                                               \
  1.2945 +  if( pCur->info.nSize==0 ){                                            \
  1.2946 +    sqlite3BtreeParseCell(pCur->pPage, pCur->idx, &pCur->info);         \
  1.2947 +    pCur->validNKey = 1;                                                \
  1.2948 +  }else{                                                                \
  1.2949 +    assertCellInfo(pCur);                                               \
  1.2950 +  }
  1.2951 +#endif /* _MSC_VER */
  1.2952 +
  1.2953 +/*
  1.2954 +** Set *pSize to the size of the buffer needed to hold the value of
  1.2955 +** the key for the current entry.  If the cursor is not pointing
  1.2956 +** to a valid entry, *pSize is set to 0. 
  1.2957 +**
  1.2958 +** For a table with the INTKEY flag set, this routine returns the key
  1.2959 +** itself, not the number of bytes in the key.
  1.2960 +*/
  1.2961 +int sqlite3BtreeKeySize(BtCursor *pCur, i64 *pSize){
  1.2962 +  int rc;
  1.2963 +
  1.2964 +  assert( cursorHoldsMutex(pCur) );
  1.2965 +  rc = restoreCursorPosition(pCur);
  1.2966 +  if( rc==SQLITE_OK ){
  1.2967 +    assert( pCur->eState==CURSOR_INVALID || pCur->eState==CURSOR_VALID );
  1.2968 +    if( pCur->eState==CURSOR_INVALID ){
  1.2969 +      *pSize = 0;
  1.2970 +    }else{
  1.2971 +      getCellInfo(pCur);
  1.2972 +      *pSize = pCur->info.nKey;
  1.2973 +    }
  1.2974 +  }
  1.2975 +  return rc;
  1.2976 +}
  1.2977 +
  1.2978 +/*
  1.2979 +** Set *pSize to the number of bytes of data in the entry the
  1.2980 +** cursor currently points to.  Always return SQLITE_OK.
  1.2981 +** Failure is not possible.  If the cursor is not currently
  1.2982 +** pointing to an entry (which can happen, for example, if
  1.2983 +** the database is empty) then *pSize is set to 0.
  1.2984 +*/
  1.2985 +int sqlite3BtreeDataSize(BtCursor *pCur, u32 *pSize){
  1.2986 +  int rc;
  1.2987 +
  1.2988 +  assert( cursorHoldsMutex(pCur) );
  1.2989 +  rc = restoreCursorPosition(pCur);
  1.2990 +  if( rc==SQLITE_OK ){
  1.2991 +    assert( pCur->eState==CURSOR_INVALID || pCur->eState==CURSOR_VALID );
  1.2992 +    if( pCur->eState==CURSOR_INVALID ){
  1.2993 +      /* Not pointing at a valid entry - set *pSize to 0. */
  1.2994 +      *pSize = 0;
  1.2995 +    }else{
  1.2996 +      getCellInfo(pCur);
  1.2997 +      *pSize = pCur->info.nData;
  1.2998 +    }
  1.2999 +  }
  1.3000 +  return rc;
  1.3001 +}
  1.3002 +
  1.3003 +/*
  1.3004 +** Given the page number of an overflow page in the database (parameter
  1.3005 +** ovfl), this function finds the page number of the next page in the 
  1.3006 +** linked list of overflow pages. If possible, it uses the auto-vacuum
  1.3007 +** pointer-map data instead of reading the content of page ovfl to do so. 
  1.3008 +**
  1.3009 +** If an error occurs an SQLite error code is returned. Otherwise:
  1.3010 +**
  1.3011 +** Unless pPgnoNext is NULL, the page number of the next overflow 
  1.3012 +** page in the linked list is written to *pPgnoNext. If page ovfl
  1.3013 +** is the last page in its linked list, *pPgnoNext is set to zero. 
  1.3014 +**
  1.3015 +** If ppPage is not NULL, *ppPage is set to the MemPage* handle
  1.3016 +** for page ovfl. The underlying pager page may have been requested
  1.3017 +** with the noContent flag set, so the page data accessable via
  1.3018 +** this handle may not be trusted.
  1.3019 +*/
  1.3020 +static int getOverflowPage(
  1.3021 +  BtShared *pBt, 
  1.3022 +  Pgno ovfl,                   /* Overflow page */
  1.3023 +  MemPage **ppPage,            /* OUT: MemPage handle */
  1.3024 +  Pgno *pPgnoNext              /* OUT: Next overflow page number */
  1.3025 +){
  1.3026 +  Pgno next = 0;
  1.3027 +  int rc = SQLITE_OK;          /* Initialized to placate warning */
  1.3028 +
  1.3029 +  assert( sqlite3_mutex_held(pBt->mutex) );
  1.3030 +  /* One of these must not be NULL. Otherwise, why call this function? */
  1.3031 +  assert(ppPage || pPgnoNext);
  1.3032 +
  1.3033 +  /* If pPgnoNext is NULL, then this function is being called to obtain
  1.3034 +  ** a MemPage* reference only. No page-data is required in this case.
  1.3035 +  */
  1.3036 +  if( !pPgnoNext ){
  1.3037 +    return sqlite3BtreeGetPage(pBt, ovfl, ppPage, 1);
  1.3038 +  }
  1.3039 +
  1.3040 +#ifndef SQLITE_OMIT_AUTOVACUUM
  1.3041 +  /* Try to find the next page in the overflow list using the
  1.3042 +  ** autovacuum pointer-map pages. Guess that the next page in 
  1.3043 +  ** the overflow list is page number (ovfl+1). If that guess turns 
  1.3044 +  ** out to be wrong, fall back to loading the data of page 
  1.3045 +  ** number ovfl to determine the next page number.
  1.3046 +  */
  1.3047 +  if( pBt->autoVacuum ){
  1.3048 +    Pgno pgno;
  1.3049 +    Pgno iGuess = ovfl+1;
  1.3050 +    u8 eType;
  1.3051 +
  1.3052 +    while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){
  1.3053 +      iGuess++;
  1.3054 +    }
  1.3055 +
  1.3056 +    if( iGuess<=pagerPagecount(pBt->pPager) ){
  1.3057 +      rc = ptrmapGet(pBt, iGuess, &eType, &pgno);
  1.3058 +      if( rc!=SQLITE_OK ){
  1.3059 +        return rc;
  1.3060 +      }
  1.3061 +      if( eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){
  1.3062 +        next = iGuess;
  1.3063 +      }
  1.3064 +    }
  1.3065 +  }
  1.3066 +#endif
  1.3067 +
  1.3068 +  if( next==0 || ppPage ){
  1.3069 +    MemPage *pPage = 0;
  1.3070 +
  1.3071 +    rc = sqlite3BtreeGetPage(pBt, ovfl, &pPage, next!=0);
  1.3072 +    assert(rc==SQLITE_OK || pPage==0);
  1.3073 +    if( next==0 && rc==SQLITE_OK ){
  1.3074 +      next = get4byte(pPage->aData);
  1.3075 +    }
  1.3076 +
  1.3077 +    if( ppPage ){
  1.3078 +      *ppPage = pPage;
  1.3079 +    }else{
  1.3080 +      releasePage(pPage);
  1.3081 +    }
  1.3082 +  }
  1.3083 +  *pPgnoNext = next;
  1.3084 +
  1.3085 +  return rc;
  1.3086 +}
  1.3087 +
  1.3088 +/*
  1.3089 +** Copy data from a buffer to a page, or from a page to a buffer.
  1.3090 +**
  1.3091 +** pPayload is a pointer to data stored on database page pDbPage.
  1.3092 +** If argument eOp is false, then nByte bytes of data are copied
  1.3093 +** from pPayload to the buffer pointed at by pBuf. If eOp is true,
  1.3094 +** then sqlite3PagerWrite() is called on pDbPage and nByte bytes
  1.3095 +** of data are copied from the buffer pBuf to pPayload.
  1.3096 +**
  1.3097 +** SQLITE_OK is returned on success, otherwise an error code.
  1.3098 +*/
  1.3099 +static int copyPayload(
  1.3100 +  void *pPayload,           /* Pointer to page data */
  1.3101 +  void *pBuf,               /* Pointer to buffer */
  1.3102 +  int nByte,                /* Number of bytes to copy */
  1.3103 +  int eOp,                  /* 0 -> copy from page, 1 -> copy to page */
  1.3104 +  DbPage *pDbPage           /* Page containing pPayload */
  1.3105 +){
  1.3106 +  if( eOp ){
  1.3107 +    /* Copy data from buffer to page (a write operation) */
  1.3108 +    int rc = sqlite3PagerWrite(pDbPage);
  1.3109 +    if( rc!=SQLITE_OK ){
  1.3110 +      return rc;
  1.3111 +    }
  1.3112 +    memcpy(pPayload, pBuf, nByte);
  1.3113 +  }else{
  1.3114 +    /* Copy data from page to buffer (a read operation) */
  1.3115 +    memcpy(pBuf, pPayload, nByte);
  1.3116 +  }
  1.3117 +  return SQLITE_OK;
  1.3118 +}
  1.3119 +
  1.3120 +/*
  1.3121 +** This function is used to read or overwrite payload information
  1.3122 +** for the entry that the pCur cursor is pointing to. If the eOp
  1.3123 +** parameter is 0, this is a read operation (data copied into
  1.3124 +** buffer pBuf). If it is non-zero, a write (data copied from
  1.3125 +** buffer pBuf).
  1.3126 +**
  1.3127 +** A total of "amt" bytes are read or written beginning at "offset".
  1.3128 +** Data is read to or from the buffer pBuf.
  1.3129 +**
  1.3130 +** This routine does not make a distinction between key and data.
  1.3131 +** It just reads or writes bytes from the payload area.  Data might 
  1.3132 +** appear on the main page or be scattered out on multiple overflow 
  1.3133 +** pages.
  1.3134 +**
  1.3135 +** If the BtCursor.isIncrblobHandle flag is set, and the current
  1.3136 +** cursor entry uses one or more overflow pages, this function
  1.3137 +** allocates space for and lazily popluates the overflow page-list 
  1.3138 +** cache array (BtCursor.aOverflow). Subsequent calls use this
  1.3139 +** cache to make seeking to the supplied offset more efficient.
  1.3140 +**
  1.3141 +** Once an overflow page-list cache has been allocated, it may be
  1.3142 +** invalidated if some other cursor writes to the same table, or if
  1.3143 +** the cursor is moved to a different row. Additionally, in auto-vacuum
  1.3144 +** mode, the following events may invalidate an overflow page-list cache.
  1.3145 +**
  1.3146 +**   * An incremental vacuum,
  1.3147 +**   * A commit in auto_vacuum="full" mode,
  1.3148 +**   * Creating a table (may require moving an overflow page).
  1.3149 +*/
  1.3150 +static int accessPayload(
  1.3151 +  BtCursor *pCur,      /* Cursor pointing to entry to read from */
  1.3152 +  int offset,          /* Begin reading this far into payload */
  1.3153 +  int amt,             /* Read this many bytes */
  1.3154 +  unsigned char *pBuf, /* Write the bytes into this buffer */ 
  1.3155 +  int skipKey,         /* offset begins at data if this is true */
  1.3156 +  int eOp              /* zero to read. non-zero to write. */
  1.3157 +){
  1.3158 +  unsigned char *aPayload;
  1.3159 +  int rc = SQLITE_OK;
  1.3160 +  u32 nKey;
  1.3161 +  int iIdx = 0;
  1.3162 +  MemPage *pPage = pCur->pPage;     /* Btree page of current cursor entry */
  1.3163 +  BtShared *pBt;                   /* Btree this cursor belongs to */
  1.3164 +
  1.3165 +  assert( pPage );
  1.3166 +  assert( pCur->eState==CURSOR_VALID );
  1.3167 +  assert( pCur->idx>=0 && pCur->idx<pPage->nCell );
  1.3168 +  assert( offset>=0 );
  1.3169 +  assert( cursorHoldsMutex(pCur) );
  1.3170 +
  1.3171 +  getCellInfo(pCur);
  1.3172 +  aPayload = pCur->info.pCell + pCur->info.nHeader;
  1.3173 +  nKey = (pPage->intKey ? 0 : pCur->info.nKey);
  1.3174 +
  1.3175 +  if( skipKey ){
  1.3176 +    offset += nKey;
  1.3177 +  }
  1.3178 +  if( offset+amt > nKey+pCur->info.nData ){
  1.3179 +    /* Trying to read or write past the end of the data is an error */
  1.3180 +    return SQLITE_ERROR;
  1.3181 +  }
  1.3182 +
  1.3183 +  /* Check if data must be read/written to/from the btree page itself. */
  1.3184 +  if( offset<pCur->info.nLocal ){
  1.3185 +    int a = amt;
  1.3186 +    if( a+offset>pCur->info.nLocal ){
  1.3187 +      a = pCur->info.nLocal - offset;
  1.3188 +    }
  1.3189 +    rc = copyPayload(&aPayload[offset], pBuf, a, eOp, pPage->pDbPage);
  1.3190 +    offset = 0;
  1.3191 +    pBuf += a;
  1.3192 +    amt -= a;
  1.3193 +  }else{
  1.3194 +    offset -= pCur->info.nLocal;
  1.3195 +  }
  1.3196 +
  1.3197 +  pBt = pCur->pBt;
  1.3198 +  if( rc==SQLITE_OK && amt>0 ){
  1.3199 +    const int ovflSize = pBt->usableSize - 4;  /* Bytes content per ovfl page */
  1.3200 +    Pgno nextPage;
  1.3201 +
  1.3202 +    nextPage = get4byte(&aPayload[pCur->info.nLocal]);
  1.3203 +
  1.3204 +#ifndef SQLITE_OMIT_INCRBLOB
  1.3205 +    /* If the isIncrblobHandle flag is set and the BtCursor.aOverflow[]
  1.3206 +    ** has not been allocated, allocate it now. The array is sized at
  1.3207 +    ** one entry for each overflow page in the overflow chain. The
  1.3208 +    ** page number of the first overflow page is stored in aOverflow[0],
  1.3209 +    ** etc. A value of 0 in the aOverflow[] array means "not yet known"
  1.3210 +    ** (the cache is lazily populated).
  1.3211 +    */
  1.3212 +    if( pCur->isIncrblobHandle && !pCur->aOverflow ){
  1.3213 +      int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize;
  1.3214 +      pCur->aOverflow = (Pgno *)sqlite3MallocZero(sizeof(Pgno)*nOvfl);
  1.3215 +      if( nOvfl && !pCur->aOverflow ){
  1.3216 +        rc = SQLITE_NOMEM;
  1.3217 +      }
  1.3218 +    }
  1.3219 +
  1.3220 +    /* If the overflow page-list cache has been allocated and the
  1.3221 +    ** entry for the first required overflow page is valid, skip
  1.3222 +    ** directly to it.
  1.3223 +    */
  1.3224 +    if( pCur->aOverflow && pCur->aOverflow[offset/ovflSize] ){
  1.3225 +      iIdx = (offset/ovflSize);
  1.3226 +      nextPage = pCur->aOverflow[iIdx];
  1.3227 +      offset = (offset%ovflSize);
  1.3228 +    }
  1.3229 +#endif
  1.3230 +
  1.3231 +    for( ; rc==SQLITE_OK && amt>0 && nextPage; iIdx++){
  1.3232 +
  1.3233 +#ifndef SQLITE_OMIT_INCRBLOB
  1.3234 +      /* If required, populate the overflow page-list cache. */
  1.3235 +      if( pCur->aOverflow ){
  1.3236 +        assert(!pCur->aOverflow[iIdx] || pCur->aOverflow[iIdx]==nextPage);
  1.3237 +        pCur->aOverflow[iIdx] = nextPage;
  1.3238 +      }
  1.3239 +#endif
  1.3240 +
  1.3241 +      if( offset>=ovflSize ){
  1.3242 +        /* The only reason to read this page is to obtain the page
  1.3243 +        ** number for the next page in the overflow chain. The page
  1.3244 +        ** data is not required. So first try to lookup the overflow
  1.3245 +        ** page-list cache, if any, then fall back to the getOverflowPage()
  1.3246 +        ** function.
  1.3247 +        */
  1.3248 +#ifndef SQLITE_OMIT_INCRBLOB
  1.3249 +        if( pCur->aOverflow && pCur->aOverflow[iIdx+1] ){
  1.3250 +          nextPage = pCur->aOverflow[iIdx+1];
  1.3251 +        } else 
  1.3252 +#endif
  1.3253 +          rc = getOverflowPage(pBt, nextPage, 0, &nextPage);
  1.3254 +        offset -= ovflSize;
  1.3255 +      }else{
  1.3256 +        /* Need to read this page properly. It contains some of the
  1.3257 +        ** range of data that is being read (eOp==0) or written (eOp!=0).
  1.3258 +        */
  1.3259 +        DbPage *pDbPage;
  1.3260 +        int a = amt;
  1.3261 +        rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage);
  1.3262 +        if( rc==SQLITE_OK ){
  1.3263 +          aPayload = sqlite3PagerGetData(pDbPage);
  1.3264 +          nextPage = get4byte(aPayload);
  1.3265 +          if( a + offset > ovflSize ){
  1.3266 +            a = ovflSize - offset;
  1.3267 +          }
  1.3268 +          rc = copyPayload(&aPayload[offset+4], pBuf, a, eOp, pDbPage);
  1.3269 +          sqlite3PagerUnref(pDbPage);
  1.3270 +          offset = 0;
  1.3271 +          amt -= a;
  1.3272 +          pBuf += a;
  1.3273 +        }
  1.3274 +      }
  1.3275 +    }
  1.3276 +  }
  1.3277 +
  1.3278 +  if( rc==SQLITE_OK && amt>0 ){
  1.3279 +    return SQLITE_CORRUPT_BKPT;
  1.3280 +  }
  1.3281 +  return rc;
  1.3282 +}
  1.3283 +
  1.3284 +/*
  1.3285 +** Read part of the key associated with cursor pCur.  Exactly
  1.3286 +** "amt" bytes will be transfered into pBuf[].  The transfer
  1.3287 +** begins at "offset".
  1.3288 +**
  1.3289 +** Return SQLITE_OK on success or an error code if anything goes
  1.3290 +** wrong.  An error is returned if "offset+amt" is larger than
  1.3291 +** the available payload.
  1.3292 +*/
  1.3293 +int sqlite3BtreeKey(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
  1.3294 +  int rc;
  1.3295 +
  1.3296 +  assert( cursorHoldsMutex(pCur) );
  1.3297 +  rc = restoreCursorPosition(pCur);
  1.3298 +  if( rc==SQLITE_OK ){
  1.3299 +    assert( pCur->eState==CURSOR_VALID );
  1.3300 +    assert( pCur->pPage!=0 );
  1.3301 +    if( pCur->pPage->intKey ){
  1.3302 +      return SQLITE_CORRUPT_BKPT;
  1.3303 +    }
  1.3304 +    assert( pCur->pPage->intKey==0 );
  1.3305 +    assert( pCur->idx>=0 && pCur->idx<pCur->pPage->nCell );
  1.3306 +    rc = accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0, 0);
  1.3307 +  }
  1.3308 +  return rc;
  1.3309 +}
  1.3310 +
  1.3311 +/*
  1.3312 +** Read part of the data associated with cursor pCur.  Exactly
  1.3313 +** "amt" bytes will be transfered into pBuf[].  The transfer
  1.3314 +** begins at "offset".
  1.3315 +**
  1.3316 +** Return SQLITE_OK on success or an error code if anything goes
  1.3317 +** wrong.  An error is returned if "offset+amt" is larger than
  1.3318 +** the available payload.
  1.3319 +*/
  1.3320 +int sqlite3BtreeData(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
  1.3321 +  int rc;
  1.3322 +
  1.3323 +#ifndef SQLITE_OMIT_INCRBLOB
  1.3324 +  if ( pCur->eState==CURSOR_INVALID ){
  1.3325 +    return SQLITE_ABORT;
  1.3326 +  }
  1.3327 +#endif
  1.3328 +
  1.3329 +  assert( cursorHoldsMutex(pCur) );
  1.3330 +  rc = restoreCursorPosition(pCur);
  1.3331 +  if( rc==SQLITE_OK ){
  1.3332 +    assert( pCur->eState==CURSOR_VALID );
  1.3333 +    assert( pCur->pPage!=0 );
  1.3334 +    assert( pCur->idx>=0 && pCur->idx<pCur->pPage->nCell );
  1.3335 +    rc = accessPayload(pCur, offset, amt, pBuf, 1, 0);
  1.3336 +  }
  1.3337 +  return rc;
  1.3338 +}
  1.3339 +
  1.3340 +/*
  1.3341 +** Return a pointer to payload information from the entry that the 
  1.3342 +** pCur cursor is pointing to.  The pointer is to the beginning of
  1.3343 +** the key if skipKey==0 and it points to the beginning of data if
  1.3344 +** skipKey==1.  The number of bytes of available key/data is written
  1.3345 +** into *pAmt.  If *pAmt==0, then the value returned will not be
  1.3346 +** a valid pointer.
  1.3347 +**
  1.3348 +** This routine is an optimization.  It is common for the entire key
  1.3349 +** and data to fit on the local page and for there to be no overflow
  1.3350 +** pages.  When that is so, this routine can be used to access the
  1.3351 +** key and data without making a copy.  If the key and/or data spills
  1.3352 +** onto overflow pages, then accessPayload() must be used to reassembly
  1.3353 +** the key/data and copy it into a preallocated buffer.
  1.3354 +**
  1.3355 +** The pointer returned by this routine looks directly into the cached
  1.3356 +** page of the database.  The data might change or move the next time
  1.3357 +** any btree routine is called.
  1.3358 +*/
  1.3359 +static const unsigned char *fetchPayload(
  1.3360 +  BtCursor *pCur,      /* Cursor pointing to entry to read from */
  1.3361 +  int *pAmt,           /* Write the number of available bytes here */
  1.3362 +  int skipKey          /* read beginning at data if this is true */
  1.3363 +){
  1.3364 +  unsigned char *aPayload;
  1.3365 +  MemPage *pPage;
  1.3366 +  u32 nKey;
  1.3367 +  int nLocal;
  1.3368 +
  1.3369 +  assert( pCur!=0 && pCur->pPage!=0 );
  1.3370 +  assert( pCur->eState==CURSOR_VALID );
  1.3371 +  assert( cursorHoldsMutex(pCur) );
  1.3372 +  pPage = pCur->pPage;
  1.3373 +  assert( pCur->idx>=0 && pCur->idx<pPage->nCell );
  1.3374 +  getCellInfo(pCur);
  1.3375 +  aPayload = pCur->info.pCell;
  1.3376 +  aPayload += pCur->info.nHeader;
  1.3377 +  if( pPage->intKey ){
  1.3378 +    nKey = 0;
  1.3379 +  }else{
  1.3380 +    nKey = pCur->info.nKey;
  1.3381 +  }
  1.3382 +  if( skipKey ){
  1.3383 +    aPayload += nKey;
  1.3384 +    nLocal = pCur->info.nLocal - nKey;
  1.3385 +  }else{
  1.3386 +    nLocal = pCur->info.nLocal;
  1.3387 +    if( nLocal>nKey ){
  1.3388 +      nLocal = nKey;
  1.3389 +    }
  1.3390 +  }
  1.3391 +  *pAmt = nLocal;
  1.3392 +  return aPayload;
  1.3393 +}
  1.3394 +
  1.3395 +
  1.3396 +/*
  1.3397 +** For the entry that cursor pCur is point to, return as
  1.3398 +** many bytes of the key or data as are available on the local
  1.3399 +** b-tree page.  Write the number of available bytes into *pAmt.
  1.3400 +**
  1.3401 +** The pointer returned is ephemeral.  The key/data may move
  1.3402 +** or be destroyed on the next call to any Btree routine,
  1.3403 +** including calls from other threads against the same cache.
  1.3404 +** Hence, a mutex on the BtShared should be held prior to calling
  1.3405 +** this routine.
  1.3406 +**
  1.3407 +** These routines is used to get quick access to key and data
  1.3408 +** in the common case where no overflow pages are used.
  1.3409 +*/
  1.3410 +const void *sqlite3BtreeKeyFetch(BtCursor *pCur, int *pAmt){
  1.3411 +  assert( cursorHoldsMutex(pCur) );
  1.3412 +  if( pCur->eState==CURSOR_VALID ){
  1.3413 +    return (const void*)fetchPayload(pCur, pAmt, 0);
  1.3414 +  }
  1.3415 +  return 0;
  1.3416 +}
  1.3417 +const void *sqlite3BtreeDataFetch(BtCursor *pCur, int *pAmt){
  1.3418 +  assert( cursorHoldsMutex(pCur) );
  1.3419 +  if( pCur->eState==CURSOR_VALID ){
  1.3420 +    return (const void*)fetchPayload(pCur, pAmt, 1);
  1.3421 +  }
  1.3422 +  return 0;
  1.3423 +}
  1.3424 +
  1.3425 +
  1.3426 +/*
  1.3427 +** Move the cursor down to a new child page.  The newPgno argument is the
  1.3428 +** page number of the child page to move to.
  1.3429 +*/
  1.3430 +static int moveToChild(BtCursor *pCur, u32 newPgno){
  1.3431 +  int rc;
  1.3432 +  MemPage *pNewPage;
  1.3433 +  MemPage *pOldPage;
  1.3434 +  BtShared *pBt = pCur->pBt;
  1.3435 +
  1.3436 +  assert( cursorHoldsMutex(pCur) );
  1.3437 +  assert( pCur->eState==CURSOR_VALID );
  1.3438 +  rc = getAndInitPage(pBt, newPgno, &pNewPage, pCur->pPage);
  1.3439 +  if( rc ) return rc;
  1.3440 +  pNewPage->idxParent = pCur->idx;
  1.3441 +  pOldPage = pCur->pPage;
  1.3442 +  pOldPage->idxShift = 0;
  1.3443 +  releasePage(pOldPage);
  1.3444 +  pCur->pPage = pNewPage;
  1.3445 +  pCur->idx = 0;
  1.3446 +  pCur->info.nSize = 0;
  1.3447 +  pCur->validNKey = 0;
  1.3448 +  if( pNewPage->nCell<1 ){
  1.3449 +    return SQLITE_CORRUPT_BKPT;
  1.3450 +  }
  1.3451 +  return SQLITE_OK;
  1.3452 +}
  1.3453 +
  1.3454 +/*
  1.3455 +** Return true if the page is the virtual root of its table.
  1.3456 +**
  1.3457 +** The virtual root page is the root page for most tables.  But
  1.3458 +** for the table rooted on page 1, sometime the real root page
  1.3459 +** is empty except for the right-pointer.  In such cases the
  1.3460 +** virtual root page is the page that the right-pointer of page
  1.3461 +** 1 is pointing to.
  1.3462 +*/
  1.3463 +int sqlite3BtreeIsRootPage(MemPage *pPage){
  1.3464 +  MemPage *pParent;
  1.3465 +
  1.3466 +  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  1.3467 +  pParent = pPage->pParent;
  1.3468 +  if( pParent==0 ) return 1;
  1.3469 +  if( pParent->pgno>1 ) return 0;
  1.3470 +  if( get2byte(&pParent->aData[pParent->hdrOffset+3])==0 ) return 1;
  1.3471 +  return 0;
  1.3472 +}
  1.3473 +
  1.3474 +/*
  1.3475 +** Move the cursor up to the parent page.
  1.3476 +**
  1.3477 +** pCur->idx is set to the cell index that contains the pointer
  1.3478 +** to the page we are coming from.  If we are coming from the
  1.3479 +** right-most child page then pCur->idx is set to one more than
  1.3480 +** the largest cell index.
  1.3481 +*/
  1.3482 +void sqlite3BtreeMoveToParent(BtCursor *pCur){
  1.3483 +  MemPage *pParent;
  1.3484 +  MemPage *pPage;
  1.3485 +  int idxParent;
  1.3486 +
  1.3487 +  assert( cursorHoldsMutex(pCur) );
  1.3488 +  assert( pCur->eState==CURSOR_VALID );
  1.3489 +  pPage = pCur->pPage;
  1.3490 +  assert( pPage!=0 );
  1.3491 +  assert( !sqlite3BtreeIsRootPage(pPage) );
  1.3492 +  pParent = pPage->pParent;
  1.3493 +  assert( pParent!=0 );
  1.3494 +  idxParent = pPage->idxParent;
  1.3495 +  sqlite3PagerRef(pParent->pDbPage);
  1.3496 +  releasePage(pPage);
  1.3497 +  pCur->pPage = pParent;
  1.3498 +  pCur->info.nSize = 0;
  1.3499 +  pCur->validNKey = 0;
  1.3500 +  assert( pParent->idxShift==0 );
  1.3501 +  pCur->idx = idxParent;
  1.3502 +}
  1.3503 +
  1.3504 +/*
  1.3505 +** Move the cursor to the root page
  1.3506 +*/
  1.3507 +static int moveToRoot(BtCursor *pCur){
  1.3508 +  MemPage *pRoot;
  1.3509 +  int rc = SQLITE_OK;
  1.3510 +  Btree *p = pCur->pBtree;
  1.3511 +  BtShared *pBt = p->pBt;
  1.3512 +
  1.3513 +  assert( cursorHoldsMutex(pCur) );
  1.3514 +  assert( CURSOR_INVALID < CURSOR_REQUIRESEEK );
  1.3515 +  assert( CURSOR_VALID   < CURSOR_REQUIRESEEK );
  1.3516 +  assert( CURSOR_FAULT   > CURSOR_REQUIRESEEK );
  1.3517 +  if( pCur->eState>=CURSOR_REQUIRESEEK ){
  1.3518 +    if( pCur->eState==CURSOR_FAULT ){
  1.3519 +      return pCur->skip;
  1.3520 +    }
  1.3521 +    clearCursorPosition(pCur);
  1.3522 +  }
  1.3523 +  pRoot = pCur->pPage;
  1.3524 +  if( pRoot && pRoot->pgno==pCur->pgnoRoot ){
  1.3525 +    assert( pRoot->isInit );
  1.3526 +  }else{
  1.3527 +    if( 
  1.3528 +      SQLITE_OK!=(rc = getAndInitPage(pBt, pCur->pgnoRoot, &pRoot, 0))
  1.3529 +    ){
  1.3530 +      pCur->eState = CURSOR_INVALID;
  1.3531 +      return rc;
  1.3532 +    }
  1.3533 +    releasePage(pCur->pPage);
  1.3534 +    pCur->pPage = pRoot;
  1.3535 +  }
  1.3536 +  pCur->idx = 0;
  1.3537 +  pCur->info.nSize = 0;
  1.3538 +  pCur->atLast = 0;
  1.3539 +  pCur->validNKey = 0;
  1.3540 +  if( pRoot->nCell==0 && !pRoot->leaf ){
  1.3541 +    Pgno subpage;
  1.3542 +    assert( pRoot->pgno==1 );
  1.3543 +    subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
  1.3544 +    assert( subpage>0 );
  1.3545 +    pCur->eState = CURSOR_VALID;
  1.3546 +    rc = moveToChild(pCur, subpage);
  1.3547 +  }
  1.3548 +  pCur->eState = ((pCur->pPage->nCell>0)?CURSOR_VALID:CURSOR_INVALID);
  1.3549 +  return rc;
  1.3550 +}
  1.3551 +
  1.3552 +/*
  1.3553 +** Move the cursor down to the left-most leaf entry beneath the
  1.3554 +** entry to which it is currently pointing.
  1.3555 +**
  1.3556 +** The left-most leaf is the one with the smallest key - the first
  1.3557 +** in ascending order.
  1.3558 +*/
  1.3559 +static int moveToLeftmost(BtCursor *pCur){
  1.3560 +  Pgno pgno;
  1.3561 +  int rc = SQLITE_OK;
  1.3562 +  MemPage *pPage;
  1.3563 +
  1.3564 +  assert( cursorHoldsMutex(pCur) );
  1.3565 +  assert( pCur->eState==CURSOR_VALID );
  1.3566 +  while( rc==SQLITE_OK && !(pPage = pCur->pPage)->leaf ){
  1.3567 +    assert( pCur->idx>=0 && pCur->idx<pPage->nCell );
  1.3568 +    pgno = get4byte(findCell(pPage, pCur->idx));
  1.3569 +    rc = moveToChild(pCur, pgno);
  1.3570 +  }
  1.3571 +  return rc;
  1.3572 +}
  1.3573 +
  1.3574 +/*
  1.3575 +** Move the cursor down to the right-most leaf entry beneath the
  1.3576 +** page to which it is currently pointing.  Notice the difference
  1.3577 +** between moveToLeftmost() and moveToRightmost().  moveToLeftmost()
  1.3578 +** finds the left-most entry beneath the *entry* whereas moveToRightmost()
  1.3579 +** finds the right-most entry beneath the *page*.
  1.3580 +**
  1.3581 +** The right-most entry is the one with the largest key - the last
  1.3582 +** key in ascending order.
  1.3583 +*/
  1.3584 +static int moveToRightmost(BtCursor *pCur){
  1.3585 +  Pgno pgno;
  1.3586 +  int rc = SQLITE_OK;
  1.3587 +  MemPage *pPage;
  1.3588 +
  1.3589 +  assert( cursorHoldsMutex(pCur) );
  1.3590 +  assert( pCur->eState==CURSOR_VALID );
  1.3591 +  while( rc==SQLITE_OK && !(pPage = pCur->pPage)->leaf ){
  1.3592 +    pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
  1.3593 +    pCur->idx = pPage->nCell;
  1.3594 +    rc = moveToChild(pCur, pgno);
  1.3595 +  }
  1.3596 +  if( rc==SQLITE_OK ){
  1.3597 +    pCur->idx = pPage->nCell - 1;
  1.3598 +    pCur->info.nSize = 0;
  1.3599 +    pCur->validNKey = 0;
  1.3600 +  }
  1.3601 +  return SQLITE_OK;
  1.3602 +}
  1.3603 +
  1.3604 +/* Move the cursor to the first entry in the table.  Return SQLITE_OK
  1.3605 +** on success.  Set *pRes to 0 if the cursor actually points to something
  1.3606 +** or set *pRes to 1 if the table is empty.
  1.3607 +*/
  1.3608 +int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
  1.3609 +  int rc;
  1.3610 +
  1.3611 +  assert( cursorHoldsMutex(pCur) );
  1.3612 +  assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
  1.3613 +  rc = moveToRoot(pCur);
  1.3614 +  if( rc==SQLITE_OK ){
  1.3615 +    if( pCur->eState==CURSOR_INVALID ){
  1.3616 +      assert( pCur->pPage->nCell==0 );
  1.3617 +      *pRes = 1;
  1.3618 +      rc = SQLITE_OK;
  1.3619 +    }else{
  1.3620 +      assert( pCur->pPage->nCell>0 );
  1.3621 +      *pRes = 0;
  1.3622 +      rc = moveToLeftmost(pCur);
  1.3623 +    }
  1.3624 +  }
  1.3625 +  return rc;
  1.3626 +}
  1.3627 +
  1.3628 +/* Move the cursor to the last entry in the table.  Return SQLITE_OK
  1.3629 +** on success.  Set *pRes to 0 if the cursor actually points to something
  1.3630 +** or set *pRes to 1 if the table is empty.
  1.3631 +*/
  1.3632 +int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
  1.3633 +  int rc;
  1.3634 + 
  1.3635 +  assert( cursorHoldsMutex(pCur) );
  1.3636 +  assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
  1.3637 +  rc = moveToRoot(pCur);
  1.3638 +  if( rc==SQLITE_OK ){
  1.3639 +    if( CURSOR_INVALID==pCur->eState ){
  1.3640 +      assert( pCur->pPage->nCell==0 );
  1.3641 +      *pRes = 1;
  1.3642 +    }else{
  1.3643 +      assert( pCur->eState==CURSOR_VALID );
  1.3644 +      *pRes = 0;
  1.3645 +      rc = moveToRightmost(pCur);
  1.3646 +      getCellInfo(pCur);
  1.3647 +      pCur->atLast = rc==SQLITE_OK;
  1.3648 +    }
  1.3649 +  }
  1.3650 +  return rc;
  1.3651 +}
  1.3652 +
  1.3653 +/* Move the cursor so that it points to an entry near the key 
  1.3654 +** specified by pKey/nKey/pUnKey. Return a success code.
  1.3655 +**
  1.3656 +** For INTKEY tables, only the nKey parameter is used.  pKey 
  1.3657 +** and pUnKey must be NULL.  For index tables, either pUnKey
  1.3658 +** must point to a key that has already been unpacked, or else
  1.3659 +** pKey/nKey describes a blob containing the key.
  1.3660 +**
  1.3661 +** If an exact match is not found, then the cursor is always
  1.3662 +** left pointing at a leaf page which would hold the entry if it
  1.3663 +** were present.  The cursor might point to an entry that comes
  1.3664 +** before or after the key.
  1.3665 +**
  1.3666 +** The result of comparing the key with the entry to which the
  1.3667 +** cursor is written to *pRes if pRes!=NULL.  The meaning of
  1.3668 +** this value is as follows:
  1.3669 +**
  1.3670 +**     *pRes<0      The cursor is left pointing at an entry that
  1.3671 +**                  is smaller than pKey or if the table is empty
  1.3672 +**                  and the cursor is therefore left point to nothing.
  1.3673 +**
  1.3674 +**     *pRes==0     The cursor is left pointing at an entry that
  1.3675 +**                  exactly matches pKey.
  1.3676 +**
  1.3677 +**     *pRes>0      The cursor is left pointing at an entry that
  1.3678 +**                  is larger than pKey.
  1.3679 +**
  1.3680 +*/
  1.3681 +int sqlite3BtreeMoveto(
  1.3682 +  BtCursor *pCur,        /* The cursor to be moved */
  1.3683 +  const void *pKey,      /* The key content for indices.  Not used by tables */
  1.3684 +  UnpackedRecord *pUnKey,/* Unpacked version of pKey */
  1.3685 +  i64 nKey,              /* Size of pKey.  Or the key for tables */
  1.3686 +  int biasRight,         /* If true, bias the search to the high end */
  1.3687 +  int *pRes              /* Search result flag */
  1.3688 +){
  1.3689 +  int rc;
  1.3690 +  char aSpace[200];
  1.3691 +
  1.3692 +  assert( cursorHoldsMutex(pCur) );
  1.3693 +  assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
  1.3694 +
  1.3695 +  /* If the cursor is already positioned at the point we are trying
  1.3696 +  ** to move to, then just return without doing any work */
  1.3697 +  if( pCur->eState==CURSOR_VALID && pCur->validNKey && pCur->pPage->intKey ){
  1.3698 +    if( pCur->info.nKey==nKey ){
  1.3699 +      *pRes = 0;
  1.3700 +      return SQLITE_OK;
  1.3701 +    }
  1.3702 +    if( pCur->atLast && pCur->info.nKey<nKey ){
  1.3703 +      *pRes = -1;
  1.3704 +      return SQLITE_OK;
  1.3705 +    }
  1.3706 +  }
  1.3707 +
  1.3708 +
  1.3709 +  rc = moveToRoot(pCur);
  1.3710 +  if( rc ){
  1.3711 +    return rc;
  1.3712 +  }
  1.3713 +  assert( pCur->pPage );
  1.3714 +  assert( pCur->pPage->isInit );
  1.3715 +  if( pCur->eState==CURSOR_INVALID ){
  1.3716 +    *pRes = -1;
  1.3717 +    assert( pCur->pPage->nCell==0 );
  1.3718 +    return SQLITE_OK;
  1.3719 +  }
  1.3720 +  if( pCur->pPage->intKey ){
  1.3721 +    /* We are given an SQL table to search.  The key is the integer
  1.3722 +    ** rowid contained in nKey.  pKey and pUnKey should both be NULL */
  1.3723 +    assert( pUnKey==0 );
  1.3724 +    assert( pKey==0 );
  1.3725 +  }else if( pUnKey==0 ){
  1.3726 +    /* We are to search an SQL index using a key encoded as a blob.
  1.3727 +    ** The blob is found at pKey and is nKey bytes in length.  Unpack
  1.3728 +    ** this key so that we can use it. */
  1.3729 +    assert( pKey!=0 );
  1.3730 +    pUnKey = sqlite3VdbeRecordUnpack(pCur->pKeyInfo, nKey, pKey,
  1.3731 +                                   aSpace, sizeof(aSpace));
  1.3732 +    if( pUnKey==0 ) return SQLITE_NOMEM;
  1.3733 +  }else{
  1.3734 +    /* We are to search an SQL index using a key that is already unpacked
  1.3735 +    ** and handed to us in pUnKey. */
  1.3736 +    assert( pKey==0 );
  1.3737 +  }
  1.3738 +  for(;;){
  1.3739 +    int lwr, upr;
  1.3740 +    Pgno chldPg;
  1.3741 +    MemPage *pPage = pCur->pPage;
  1.3742 +    int c = -1;  /* pRes return if table is empty must be -1 */
  1.3743 +    lwr = 0;
  1.3744 +    upr = pPage->nCell-1;
  1.3745 +    if( !pPage->intKey && pUnKey==0 ){
  1.3746 +      rc = SQLITE_CORRUPT_BKPT;
  1.3747 +      goto moveto_finish;
  1.3748 +    }
  1.3749 +    if( biasRight ){
  1.3750 +      pCur->idx = upr;
  1.3751 +    }else{
  1.3752 +      pCur->idx = (upr+lwr)/2;
  1.3753 +    }
  1.3754 +    if( lwr<=upr ) for(;;){
  1.3755 +      void *pCellKey;
  1.3756 +      i64 nCellKey;
  1.3757 +      pCur->info.nSize = 0;
  1.3758 +      pCur->validNKey = 1;
  1.3759 +      if( pPage->intKey ){
  1.3760 +        u8 *pCell;
  1.3761 +        pCell = findCell(pPage, pCur->idx) + pPage->childPtrSize;
  1.3762 +        if( pPage->hasData ){
  1.3763 +          u32 dummy;
  1.3764 +          pCell += getVarint32(pCell, dummy);
  1.3765 +        }
  1.3766 +        getVarint(pCell, (u64*)&nCellKey);
  1.3767 +        if( nCellKey==nKey ){
  1.3768 +          c = 0;
  1.3769 +        }else if( nCellKey<nKey ){
  1.3770 +          c = -1;
  1.3771 +        }else{
  1.3772 +          assert( nCellKey>nKey );
  1.3773 +          c = +1;
  1.3774 +        }
  1.3775 +      }else{
  1.3776 +        int available;
  1.3777 +        pCellKey = (void *)fetchPayload(pCur, &available, 0);
  1.3778 +        nCellKey = pCur->info.nKey;
  1.3779 +        if( available>=nCellKey ){
  1.3780 +          c = sqlite3VdbeRecordCompare(nCellKey, pCellKey, pUnKey);
  1.3781 +        }else{
  1.3782 +          pCellKey = sqlite3Malloc( nCellKey );
  1.3783 +          if( pCellKey==0 ){
  1.3784 +            rc = SQLITE_NOMEM;
  1.3785 +            goto moveto_finish;
  1.3786 +          }
  1.3787 +          rc = sqlite3BtreeKey(pCur, 0, nCellKey, (void *)pCellKey);
  1.3788 +          c = sqlite3VdbeRecordCompare(nCellKey, pCellKey, pUnKey);
  1.3789 +          sqlite3_free(pCellKey);
  1.3790 +          if( rc ) goto moveto_finish;
  1.3791 +        }
  1.3792 +      }
  1.3793 +      if( c==0 ){
  1.3794 +        pCur->info.nKey = nCellKey;
  1.3795 +        if( pPage->intKey && !pPage->leaf ){
  1.3796 +          lwr = pCur->idx;
  1.3797 +          upr = lwr - 1;
  1.3798 +          break;
  1.3799 +        }else{
  1.3800 +          if( pRes ) *pRes = 0;
  1.3801 +          rc = SQLITE_OK;
  1.3802 +          goto moveto_finish;
  1.3803 +        }
  1.3804 +      }
  1.3805 +      if( c<0 ){
  1.3806 +        lwr = pCur->idx+1;
  1.3807 +      }else{
  1.3808 +        upr = pCur->idx-1;
  1.3809 +      }
  1.3810 +      if( lwr>upr ){
  1.3811 +        pCur->info.nKey = nCellKey;
  1.3812 +        break;
  1.3813 +      }
  1.3814 +      pCur->idx = (lwr+upr)/2;
  1.3815 +    }
  1.3816 +    assert( lwr==upr+1 );
  1.3817 +    assert( pPage->isInit );
  1.3818 +    if( pPage->leaf ){
  1.3819 +      chldPg = 0;
  1.3820 +    }else if( lwr>=pPage->nCell ){
  1.3821 +      chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
  1.3822 +    }else{
  1.3823 +      chldPg = get4byte(findCell(pPage, lwr));
  1.3824 +    }
  1.3825 +    if( chldPg==0 ){
  1.3826 +      assert( pCur->idx>=0 && pCur->idx<pCur->pPage->nCell );
  1.3827 +      if( pRes ) *pRes = c;
  1.3828 +      rc = SQLITE_OK;
  1.3829 +      goto moveto_finish;
  1.3830 +    }
  1.3831 +    pCur->idx = lwr;
  1.3832 +    pCur->info.nSize = 0;
  1.3833 +    pCur->validNKey = 0;
  1.3834 +    rc = moveToChild(pCur, chldPg);
  1.3835 +    if( rc ) goto moveto_finish;
  1.3836 +  }
  1.3837 +moveto_finish:
  1.3838 +  if( pKey ){
  1.3839 +    /* If we created our own unpacked key at the top of this
  1.3840 +    ** procedure, then destroy that key before returning. */
  1.3841 +    sqlite3VdbeDeleteUnpackedRecord(pUnKey);
  1.3842 +  }
  1.3843 +  return rc;
  1.3844 +}
  1.3845 +
  1.3846 +
  1.3847 +/*
  1.3848 +** Return TRUE if the cursor is not pointing at an entry of the table.
  1.3849 +**
  1.3850 +** TRUE will be returned after a call to sqlite3BtreeNext() moves
  1.3851 +** past the last entry in the table or sqlite3BtreePrev() moves past
  1.3852 +** the first entry.  TRUE is also returned if the table is empty.
  1.3853 +*/
  1.3854 +int sqlite3BtreeEof(BtCursor *pCur){
  1.3855 +  /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
  1.3856 +  ** have been deleted? This API will need to change to return an error code
  1.3857 +  ** as well as the boolean result value.
  1.3858 +  */
  1.3859 +  return (CURSOR_VALID!=pCur->eState);
  1.3860 +}
  1.3861 +
  1.3862 +/*
  1.3863 +** Return the database connection handle for a cursor.
  1.3864 +*/
  1.3865 +sqlite3 *sqlite3BtreeCursorDb(const BtCursor *pCur){
  1.3866 +  assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
  1.3867 +  return pCur->pBtree->db;
  1.3868 +}
  1.3869 +
  1.3870 +/*
  1.3871 +** Advance the cursor to the next entry in the database.  If
  1.3872 +** successful then set *pRes=0.  If the cursor
  1.3873 +** was already pointing to the last entry in the database before
  1.3874 +** this routine was called, then set *pRes=1.
  1.3875 +*/
  1.3876 +int sqlite3BtreeNext(BtCursor *pCur, int *pRes){
  1.3877 +  int rc;
  1.3878 +  MemPage *pPage;
  1.3879 +
  1.3880 +  assert( cursorHoldsMutex(pCur) );
  1.3881 +  rc = restoreCursorPosition(pCur);
  1.3882 +  if( rc!=SQLITE_OK ){
  1.3883 +    return rc;
  1.3884 +  }
  1.3885 +  assert( pRes!=0 );
  1.3886 +  pPage = pCur->pPage;
  1.3887 +  if( CURSOR_INVALID==pCur->eState ){
  1.3888 +    *pRes = 1;
  1.3889 +    return SQLITE_OK;
  1.3890 +  }
  1.3891 +  if( pCur->skip>0 ){
  1.3892 +    pCur->skip = 0;
  1.3893 +    *pRes = 0;
  1.3894 +    return SQLITE_OK;
  1.3895 +  }
  1.3896 +  pCur->skip = 0;
  1.3897 +
  1.3898 +  assert( pPage->isInit );
  1.3899 +  assert( pCur->idx<pPage->nCell );
  1.3900 +
  1.3901 +  pCur->idx++;
  1.3902 +  pCur->info.nSize = 0;
  1.3903 +  pCur->validNKey = 0;
  1.3904 +  if( pCur->idx>=pPage->nCell ){
  1.3905 +    if( !pPage->leaf ){
  1.3906 +      rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
  1.3907 +      if( rc ) return rc;
  1.3908 +      rc = moveToLeftmost(pCur);
  1.3909 +      *pRes = 0;
  1.3910 +      return rc;
  1.3911 +    }
  1.3912 +    do{
  1.3913 +      if( sqlite3BtreeIsRootPage(pPage) ){
  1.3914 +        *pRes = 1;
  1.3915 +        pCur->eState = CURSOR_INVALID;
  1.3916 +        return SQLITE_OK;
  1.3917 +      }
  1.3918 +      sqlite3BtreeMoveToParent(pCur);
  1.3919 +      pPage = pCur->pPage;
  1.3920 +    }while( pCur->idx>=pPage->nCell );
  1.3921 +    *pRes = 0;
  1.3922 +    if( pPage->intKey ){
  1.3923 +      rc = sqlite3BtreeNext(pCur, pRes);
  1.3924 +    }else{
  1.3925 +      rc = SQLITE_OK;
  1.3926 +    }
  1.3927 +    return rc;
  1.3928 +  }
  1.3929 +  *pRes = 0;
  1.3930 +  if( pPage->leaf ){
  1.3931 +    return SQLITE_OK;
  1.3932 +  }
  1.3933 +  rc = moveToLeftmost(pCur);
  1.3934 +  return rc;
  1.3935 +}
  1.3936 +
  1.3937 +
  1.3938 +/*
  1.3939 +** Step the cursor to the back to the previous entry in the database.  If
  1.3940 +** successful then set *pRes=0.  If the cursor
  1.3941 +** was already pointing to the first entry in the database before
  1.3942 +** this routine was called, then set *pRes=1.
  1.3943 +*/
  1.3944 +int sqlite3BtreePrevious(BtCursor *pCur, int *pRes){
  1.3945 +  int rc;
  1.3946 +  Pgno pgno;
  1.3947 +  MemPage *pPage;
  1.3948 +
  1.3949 +  assert( cursorHoldsMutex(pCur) );
  1.3950 +  rc = restoreCursorPosition(pCur);
  1.3951 +  if( rc!=SQLITE_OK ){
  1.3952 +    return rc;
  1.3953 +  }
  1.3954 +  pCur->atLast = 0;
  1.3955 +  if( CURSOR_INVALID==pCur->eState ){
  1.3956 +    *pRes = 1;
  1.3957 +    return SQLITE_OK;
  1.3958 +  }
  1.3959 +  if( pCur->skip<0 ){
  1.3960 +    pCur->skip = 0;
  1.3961 +    *pRes = 0;
  1.3962 +    return SQLITE_OK;
  1.3963 +  }
  1.3964 +  pCur->skip = 0;
  1.3965 +
  1.3966 +  pPage = pCur->pPage;
  1.3967 +  assert( pPage->isInit );
  1.3968 +  assert( pCur->idx>=0 );
  1.3969 +  if( !pPage->leaf ){
  1.3970 +    pgno = get4byte( findCell(pPage, pCur->idx) );
  1.3971 +    rc = moveToChild(pCur, pgno);
  1.3972 +    if( rc ){
  1.3973 +      return rc;
  1.3974 +    }
  1.3975 +    rc = moveToRightmost(pCur);
  1.3976 +  }else{
  1.3977 +    while( pCur->idx==0 ){
  1.3978 +      if( sqlite3BtreeIsRootPage(pPage) ){
  1.3979 +        pCur->eState = CURSOR_INVALID;
  1.3980 +        *pRes = 1;
  1.3981 +        return SQLITE_OK;
  1.3982 +      }
  1.3983 +      sqlite3BtreeMoveToParent(pCur);
  1.3984 +      pPage = pCur->pPage;
  1.3985 +    }
  1.3986 +    pCur->idx--;
  1.3987 +    pCur->info.nSize = 0;
  1.3988 +    pCur->validNKey = 0;
  1.3989 +    if( pPage->intKey && !pPage->leaf ){
  1.3990 +      rc = sqlite3BtreePrevious(pCur, pRes);
  1.3991 +    }else{
  1.3992 +      rc = SQLITE_OK;
  1.3993 +    }
  1.3994 +  }
  1.3995 +  *pRes = 0;
  1.3996 +  return rc;
  1.3997 +}
  1.3998 +
  1.3999 +/*
  1.4000 +** Allocate a new page from the database file.
  1.4001 +**
  1.4002 +** The new page is marked as dirty.  (In other words, sqlite3PagerWrite()
  1.4003 +** has already been called on the new page.)  The new page has also
  1.4004 +** been referenced and the calling routine is responsible for calling
  1.4005 +** sqlite3PagerUnref() on the new page when it is done.
  1.4006 +**
  1.4007 +** SQLITE_OK is returned on success.  Any other return value indicates
  1.4008 +** an error.  *ppPage and *pPgno are undefined in the event of an error.
  1.4009 +** Do not invoke sqlite3PagerUnref() on *ppPage if an error is returned.
  1.4010 +**
  1.4011 +** If the "nearby" parameter is not 0, then a (feeble) effort is made to 
  1.4012 +** locate a page close to the page number "nearby".  This can be used in an
  1.4013 +** attempt to keep related pages close to each other in the database file,
  1.4014 +** which in turn can make database access faster.
  1.4015 +**
  1.4016 +** If the "exact" parameter is not 0, and the page-number nearby exists 
  1.4017 +** anywhere on the free-list, then it is guarenteed to be returned. This
  1.4018 +** is only used by auto-vacuum databases when allocating a new table.
  1.4019 +*/
  1.4020 +static int allocateBtreePage(
  1.4021 +  BtShared *pBt, 
  1.4022 +  MemPage **ppPage, 
  1.4023 +  Pgno *pPgno, 
  1.4024 +  Pgno nearby,
  1.4025 +  u8 exact
  1.4026 +){
  1.4027 +  MemPage *pPage1;
  1.4028 +  int rc;
  1.4029 +  int n;     /* Number of pages on the freelist */
  1.4030 +  int k;     /* Number of leaves on the trunk of the freelist */
  1.4031 +  MemPage *pTrunk = 0;
  1.4032 +  MemPage *pPrevTrunk = 0;
  1.4033 +
  1.4034 +  assert( sqlite3_mutex_held(pBt->mutex) );
  1.4035 +  pPage1 = pBt->pPage1;
  1.4036 +  n = get4byte(&pPage1->aData[36]);
  1.4037 +  if( n>0 ){
  1.4038 +    /* There are pages on the freelist.  Reuse one of those pages. */
  1.4039 +    Pgno iTrunk;
  1.4040 +    u8 searchList = 0; /* If the free-list must be searched for 'nearby' */
  1.4041 +    
  1.4042 +    /* If the 'exact' parameter was true and a query of the pointer-map
  1.4043 +    ** shows that the page 'nearby' is somewhere on the free-list, then
  1.4044 +    ** the entire-list will be searched for that page.
  1.4045 +    */
  1.4046 +#ifndef SQLITE_OMIT_AUTOVACUUM
  1.4047 +    if( exact && nearby<=pagerPagecount(pBt->pPager) ){
  1.4048 +      u8 eType;
  1.4049 +      assert( nearby>0 );
  1.4050 +      assert( pBt->autoVacuum );
  1.4051 +      rc = ptrmapGet(pBt, nearby, &eType, 0);
  1.4052 +      if( rc ) return rc;
  1.4053 +      if( eType==PTRMAP_FREEPAGE ){
  1.4054 +        searchList = 1;
  1.4055 +      }
  1.4056 +      *pPgno = nearby;
  1.4057 +    }
  1.4058 +#endif
  1.4059 +
  1.4060 +    /* Decrement the free-list count by 1. Set iTrunk to the index of the
  1.4061 +    ** first free-list trunk page. iPrevTrunk is initially 1.
  1.4062 +    */
  1.4063 +    rc = sqlite3PagerWrite(pPage1->pDbPage);
  1.4064 +    if( rc ) return rc;
  1.4065 +    put4byte(&pPage1->aData[36], n-1);
  1.4066 +
  1.4067 +    /* The code within this loop is run only once if the 'searchList' variable
  1.4068 +    ** is not true. Otherwise, it runs once for each trunk-page on the
  1.4069 +    ** free-list until the page 'nearby' is located.
  1.4070 +    */
  1.4071 +    do {
  1.4072 +      pPrevTrunk = pTrunk;
  1.4073 +      if( pPrevTrunk ){
  1.4074 +        iTrunk = get4byte(&pPrevTrunk->aData[0]);
  1.4075 +      }else{
  1.4076 +        iTrunk = get4byte(&pPage1->aData[32]);
  1.4077 +      }
  1.4078 +      rc = sqlite3BtreeGetPage(pBt, iTrunk, &pTrunk, 0);
  1.4079 +      if( rc ){
  1.4080 +        pTrunk = 0;
  1.4081 +        goto end_allocate_page;
  1.4082 +      }
  1.4083 +
  1.4084 +      k = get4byte(&pTrunk->aData[4]);
  1.4085 +      if( k==0 && !searchList ){
  1.4086 +        /* The trunk has no leaves and the list is not being searched. 
  1.4087 +        ** So extract the trunk page itself and use it as the newly 
  1.4088 +        ** allocated page */
  1.4089 +        assert( pPrevTrunk==0 );
  1.4090 +        rc = sqlite3PagerWrite(pTrunk->pDbPage);
  1.4091 +        if( rc ){
  1.4092 +          goto end_allocate_page;
  1.4093 +        }
  1.4094 +        *pPgno = iTrunk;
  1.4095 +        memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
  1.4096 +        *ppPage = pTrunk;
  1.4097 +        pTrunk = 0;
  1.4098 +        TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
  1.4099 +      }else if( k>pBt->usableSize/4 - 2 ){
  1.4100 +        /* Value of k is out of range.  Database corruption */
  1.4101 +        rc = SQLITE_CORRUPT_BKPT;
  1.4102 +        goto end_allocate_page;
  1.4103 +#ifndef SQLITE_OMIT_AUTOVACUUM
  1.4104 +      }else if( searchList && nearby==iTrunk ){
  1.4105 +        /* The list is being searched and this trunk page is the page
  1.4106 +        ** to allocate, regardless of whether it has leaves.
  1.4107 +        */
  1.4108 +        assert( *pPgno==iTrunk );
  1.4109 +        *ppPage = pTrunk;
  1.4110 +        searchList = 0;
  1.4111 +        rc = sqlite3PagerWrite(pTrunk->pDbPage);
  1.4112 +        if( rc ){
  1.4113 +          goto end_allocate_page;
  1.4114 +        }
  1.4115 +        if( k==0 ){
  1.4116 +          if( !pPrevTrunk ){
  1.4117 +            memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
  1.4118 +          }else{
  1.4119 +            memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4);
  1.4120 +          }
  1.4121 +        }else{
  1.4122 +          /* The trunk page is required by the caller but it contains 
  1.4123 +          ** pointers to free-list leaves. The first leaf becomes a trunk
  1.4124 +          ** page in this case.
  1.4125 +          */
  1.4126 +          MemPage *pNewTrunk;
  1.4127 +          Pgno iNewTrunk = get4byte(&pTrunk->aData[8]);
  1.4128 +          rc = sqlite3BtreeGetPage(pBt, iNewTrunk, &pNewTrunk, 0);
  1.4129 +          if( rc!=SQLITE_OK ){
  1.4130 +            goto end_allocate_page;
  1.4131 +          }
  1.4132 +          rc = sqlite3PagerWrite(pNewTrunk->pDbPage);
  1.4133 +          if( rc!=SQLITE_OK ){
  1.4134 +            releasePage(pNewTrunk);
  1.4135 +            goto end_allocate_page;
  1.4136 +          }
  1.4137 +          memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4);
  1.4138 +          put4byte(&pNewTrunk->aData[4], k-1);
  1.4139 +          memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4);
  1.4140 +          releasePage(pNewTrunk);
  1.4141 +          if( !pPrevTrunk ){
  1.4142 +            put4byte(&pPage1->aData[32], iNewTrunk);
  1.4143 +          }else{
  1.4144 +            rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
  1.4145 +            if( rc ){
  1.4146 +              goto end_allocate_page;
  1.4147 +            }
  1.4148 +            put4byte(&pPrevTrunk->aData[0], iNewTrunk);
  1.4149 +          }
  1.4150 +        }
  1.4151 +        pTrunk = 0;
  1.4152 +        TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
  1.4153 +#endif
  1.4154 +      }else{
  1.4155 +        /* Extract a leaf from the trunk */
  1.4156 +        int closest;
  1.4157 +        Pgno iPage;
  1.4158 +        unsigned char *aData = pTrunk->aData;
  1.4159 +        rc = sqlite3PagerWrite(pTrunk->pDbPage);
  1.4160 +        if( rc ){
  1.4161 +          goto end_allocate_page;
  1.4162 +        }
  1.4163 +        if( nearby>0 ){
  1.4164 +          int i, dist;
  1.4165 +          closest = 0;
  1.4166 +          dist = get4byte(&aData[8]) - nearby;
  1.4167 +          if( dist<0 ) dist = -dist;
  1.4168 +          for(i=1; i<k; i++){
  1.4169 +            int d2 = get4byte(&aData[8+i*4]) - nearby;
  1.4170 +            if( d2<0 ) d2 = -d2;
  1.4171 +            if( d2<dist ){
  1.4172 +              closest = i;
  1.4173 +              dist = d2;
  1.4174 +            }
  1.4175 +          }
  1.4176 +        }else{
  1.4177 +          closest = 0;
  1.4178 +        }
  1.4179 +
  1.4180 +        iPage = get4byte(&aData[8+closest*4]);
  1.4181 +        if( !searchList || iPage==nearby ){
  1.4182 +          int nPage;
  1.4183 +          *pPgno = iPage;
  1.4184 +          nPage = pagerPagecount(pBt->pPager);
  1.4185 +          if( *pPgno>nPage ){
  1.4186 +            /* Free page off the end of the file */
  1.4187 +            rc = SQLITE_CORRUPT_BKPT;
  1.4188 +            goto end_allocate_page;
  1.4189 +          }
  1.4190 +          TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
  1.4191 +                 ": %d more free pages\n",
  1.4192 +                 *pPgno, closest+1, k, pTrunk->pgno, n-1));
  1.4193 +          if( closest<k-1 ){
  1.4194 +            memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
  1.4195 +          }
  1.4196 +          put4byte(&aData[4], k-1);
  1.4197 +          rc = sqlite3BtreeGetPage(pBt, *pPgno, ppPage, 1);
  1.4198 +          if( rc==SQLITE_OK ){
  1.4199 +            sqlite3PagerDontRollback((*ppPage)->pDbPage);
  1.4200 +            rc = sqlite3PagerWrite((*ppPage)->pDbPage);
  1.4201 +            if( rc!=SQLITE_OK ){
  1.4202 +              releasePage(*ppPage);
  1.4203 +            }
  1.4204 +          }
  1.4205 +          searchList = 0;
  1.4206 +        }
  1.4207 +      }
  1.4208 +      releasePage(pPrevTrunk);
  1.4209 +      pPrevTrunk = 0;
  1.4210 +    }while( searchList );
  1.4211 +  }else{
  1.4212 +    /* There are no pages on the freelist, so create a new page at the
  1.4213 +    ** end of the file */
  1.4214 +    int nPage = pagerPagecount(pBt->pPager);
  1.4215 +    *pPgno = nPage + 1;
  1.4216 +
  1.4217 +#ifndef SQLITE_OMIT_AUTOVACUUM
  1.4218 +    if( pBt->nTrunc ){
  1.4219 +      /* An incr-vacuum has already run within this transaction. So the
  1.4220 +      ** page to allocate is not from the physical end of the file, but
  1.4221 +      ** at pBt->nTrunc. 
  1.4222 +      */
  1.4223 +      *pPgno = pBt->nTrunc+1;
  1.4224 +      if( *pPgno==PENDING_BYTE_PAGE(pBt) ){
  1.4225 +        (*pPgno)++;
  1.4226 +      }
  1.4227 +    }
  1.4228 +    if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, *pPgno) ){
  1.4229 +      /* If *pPgno refers to a pointer-map page, allocate two new pages
  1.4230 +      ** at the end of the file instead of one. The first allocated page
  1.4231 +      ** becomes a new pointer-map page, the second is used by the caller.
  1.4232 +      */
  1.4233 +      TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", *pPgno));
  1.4234 +      assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
  1.4235 +      (*pPgno)++;
  1.4236 +      if( *pPgno==PENDING_BYTE_PAGE(pBt) ){ (*pPgno)++; }
  1.4237 +    }
  1.4238 +    if( pBt->nTrunc ){
  1.4239 +      pBt->nTrunc = *pPgno;
  1.4240 +    }
  1.4241 +#endif
  1.4242 +
  1.4243 +    assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
  1.4244 +    rc = sqlite3BtreeGetPage(pBt, *pPgno, ppPage, 0);
  1.4245 +    if( rc ) return rc;
  1.4246 +    rc = sqlite3PagerWrite((*ppPage)->pDbPage);
  1.4247 +    if( rc!=SQLITE_OK ){
  1.4248 +      releasePage(*ppPage);
  1.4249 +    }
  1.4250 +    TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
  1.4251 +  }
  1.4252 +
  1.4253 +  assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
  1.4254 +
  1.4255 +end_allocate_page:
  1.4256 +  releasePage(pTrunk);
  1.4257 +  releasePage(pPrevTrunk);
  1.4258 +  return rc;
  1.4259 +}
  1.4260 +
  1.4261 +/*
  1.4262 +** Add a page of the database file to the freelist.
  1.4263 +**
  1.4264 +** sqlite3PagerUnref() is NOT called for pPage.
  1.4265 +*/
  1.4266 +static int freePage(MemPage *pPage){
  1.4267 +  BtShared *pBt = pPage->pBt;
  1.4268 +  MemPage *pPage1 = pBt->pPage1;
  1.4269 +  int rc, n, k;
  1.4270 +
  1.4271 +  /* Prepare the page for freeing */
  1.4272 +  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  1.4273 +  assert( pPage->pgno>1 );
  1.4274 +  pPage->isInit = 0;
  1.4275 +  releasePage(pPage->pParent);
  1.4276 +  pPage->pParent = 0;
  1.4277 +
  1.4278 +  /* Increment the free page count on pPage1 */
  1.4279 +  rc = sqlite3PagerWrite(pPage1->pDbPage);
  1.4280 +  if( rc ) return rc;
  1.4281 +  n = get4byte(&pPage1->aData[36]);
  1.4282 +  put4byte(&pPage1->aData[36], n+1);
  1.4283 +
  1.4284 +#ifdef SQLITE_SECURE_DELETE
  1.4285 +  /* If the SQLITE_SECURE_DELETE compile-time option is enabled, then
  1.4286 +  ** always fully overwrite deleted information with zeros.
  1.4287 +  */
  1.4288 +  rc = sqlite3PagerWrite(pPage->pDbPage);
  1.4289 +  if( rc ) return rc;
  1.4290 +  memset(pPage->aData, 0, pPage->pBt->pageSize);
  1.4291 +#endif
  1.4292 +
  1.4293 +  /* If the database supports auto-vacuum, write an entry in the pointer-map
  1.4294 +  ** to indicate that the page is free.
  1.4295 +  */
  1.4296 +  if( ISAUTOVACUUM ){
  1.4297 +    rc = ptrmapPut(pBt, pPage->pgno, PTRMAP_FREEPAGE, 0);
  1.4298 +    if( rc ) return rc;
  1.4299 +  }
  1.4300 +
  1.4301 +  if( n==0 ){
  1.4302 +    /* This is the first free page */
  1.4303 +    rc = sqlite3PagerWrite(pPage->pDbPage);
  1.4304 +    if( rc ) return rc;
  1.4305 +    memset(pPage->aData, 0, 8);
  1.4306 +    put4byte(&pPage1->aData[32], pPage->pgno);
  1.4307 +    TRACE(("FREE-PAGE: %d first\n", pPage->pgno));
  1.4308 +  }else{
  1.4309 +    /* Other free pages already exist.  Retrive the first trunk page
  1.4310 +    ** of the freelist and find out how many leaves it has. */
  1.4311 +    MemPage *pTrunk;
  1.4312 +    rc = sqlite3BtreeGetPage(pBt, get4byte(&pPage1->aData[32]), &pTrunk, 0);
  1.4313 +    if( rc ) return rc;
  1.4314 +    k = get4byte(&pTrunk->aData[4]);
  1.4315 +    if( k>=pBt->usableSize/4 - 8 ){
  1.4316 +      /* The trunk is full.  Turn the page being freed into a new
  1.4317 +      ** trunk page with no leaves.
  1.4318 +      **
  1.4319 +      ** Note that the trunk page is not really full until it contains
  1.4320 +      ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have
  1.4321 +      ** coded.  But due to a coding error in versions of SQLite prior to
  1.4322 +      ** 3.6.0, databases with freelist trunk pages holding more than
  1.4323 +      ** usableSize/4 - 8 entries will be reported as corrupt.  In order
  1.4324 +      ** to maintain backwards compatibility with older versions of SQLite,
  1.4325 +      ** we will contain to restrict the number of entries to usableSize/4 - 8
  1.4326 +      ** for now.  At some point in the future (once everyone has upgraded
  1.4327 +      ** to 3.6.0 or later) we should consider fixing the conditional above
  1.4328 +      ** to read "usableSize/4-2" instead of "usableSize/4-8".
  1.4329 +      */
  1.4330 +      rc = sqlite3PagerWrite(pPage->pDbPage);
  1.4331 +      if( rc==SQLITE_OK ){
  1.4332 +        put4byte(pPage->aData, pTrunk->pgno);
  1.4333 +        put4byte(&pPage->aData[4], 0);
  1.4334 +        put4byte(&pPage1->aData[32], pPage->pgno);
  1.4335 +        TRACE(("FREE-PAGE: %d new trunk page replacing %d\n",
  1.4336 +                pPage->pgno, pTrunk->pgno));
  1.4337 +      }
  1.4338 +    }else if( k<0 ){
  1.4339 +      rc = SQLITE_CORRUPT;
  1.4340 +    }else{
  1.4341 +      /* Add the newly freed page as a leaf on the current trunk */
  1.4342 +      rc = sqlite3PagerWrite(pTrunk->pDbPage);
  1.4343 +      if( rc==SQLITE_OK ){
  1.4344 +        put4byte(&pTrunk->aData[4], k+1);
  1.4345 +        put4byte(&pTrunk->aData[8+k*4], pPage->pgno);
  1.4346 +#ifndef SQLITE_SECURE_DELETE
  1.4347 +        sqlite3PagerDontWrite(pPage->pDbPage);
  1.4348 +#endif
  1.4349 +      }
  1.4350 +      TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno));
  1.4351 +    }
  1.4352 +    releasePage(pTrunk);
  1.4353 +  }
  1.4354 +  return rc;
  1.4355 +}
  1.4356 +
  1.4357 +/*
  1.4358 +** Free any overflow pages associated with the given Cell.
  1.4359 +*/
  1.4360 +static int clearCell(MemPage *pPage, unsigned char *pCell){
  1.4361 +  BtShared *pBt = pPage->pBt;
  1.4362 +  CellInfo info;
  1.4363 +  Pgno ovflPgno;
  1.4364 +  int rc;
  1.4365 +  int nOvfl;
  1.4366 +  int ovflPageSize;
  1.4367 +
  1.4368 +  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  1.4369 +  sqlite3BtreeParseCellPtr(pPage, pCell, &info);
  1.4370 +  if( info.iOverflow==0 ){
  1.4371 +    return SQLITE_OK;  /* No overflow pages. Return without doing anything */
  1.4372 +  }
  1.4373 +  ovflPgno = get4byte(&pCell[info.iOverflow]);
  1.4374 +  ovflPageSize = pBt->usableSize - 4;
  1.4375 +  nOvfl = (info.nPayload - info.nLocal + ovflPageSize - 1)/ovflPageSize;
  1.4376 +  assert( ovflPgno==0 || nOvfl>0 );
  1.4377 +  while( nOvfl-- ){
  1.4378 +    MemPage *pOvfl;
  1.4379 +    if( ovflPgno==0 || ovflPgno>pagerPagecount(pBt->pPager) ){
  1.4380 +      return SQLITE_CORRUPT_BKPT;
  1.4381 +    }
  1.4382 +
  1.4383 +    rc = getOverflowPage(pBt, ovflPgno, &pOvfl, (nOvfl==0)?0:&ovflPgno);
  1.4384 +    if( rc ) return rc;
  1.4385 +    rc = freePage(pOvfl);
  1.4386 +    sqlite3PagerUnref(pOvfl->pDbPage);
  1.4387 +    if( rc ) return rc;
  1.4388 +  }
  1.4389 +  return SQLITE_OK;
  1.4390 +}
  1.4391 +
  1.4392 +/*
  1.4393 +** Create the byte sequence used to represent a cell on page pPage
  1.4394 +** and write that byte sequence into pCell[].  Overflow pages are
  1.4395 +** allocated and filled in as necessary.  The calling procedure
  1.4396 +** is responsible for making sure sufficient space has been allocated
  1.4397 +** for pCell[].
  1.4398 +**
  1.4399 +** Note that pCell does not necessary need to point to the pPage->aData
  1.4400 +** area.  pCell might point to some temporary storage.  The cell will
  1.4401 +** be constructed in this temporary area then copied into pPage->aData
  1.4402 +** later.
  1.4403 +*/
  1.4404 +static int fillInCell(
  1.4405 +  MemPage *pPage,                /* The page that contains the cell */
  1.4406 +  unsigned char *pCell,          /* Complete text of the cell */
  1.4407 +  const void *pKey, i64 nKey,    /* The key */
  1.4408 +  const void *pData,int nData,   /* The data */
  1.4409 +  int nZero,                     /* Extra zero bytes to append to pData */
  1.4410 +  int *pnSize                    /* Write cell size here */
  1.4411 +){
  1.4412 +  int nPayload;
  1.4413 +  const u8 *pSrc;
  1.4414 +  int nSrc, n, rc;
  1.4415 +  int spaceLeft;
  1.4416 +  MemPage *pOvfl = 0;
  1.4417 +  MemPage *pToRelease = 0;
  1.4418 +  unsigned char *pPrior;
  1.4419 +  unsigned char *pPayload;
  1.4420 +  BtShared *pBt = pPage->pBt;
  1.4421 +  Pgno pgnoOvfl = 0;
  1.4422 +  int nHeader;
  1.4423 +  CellInfo info;
  1.4424 +
  1.4425 +  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  1.4426 +
  1.4427 +  /* Fill in the header. */
  1.4428 +  nHeader = 0;
  1.4429 +  if( !pPage->leaf ){
  1.4430 +    nHeader += 4;
  1.4431 +  }
  1.4432 +  if( pPage->hasData ){
  1.4433 +    nHeader += putVarint(&pCell[nHeader], nData+nZero);
  1.4434 +  }else{
  1.4435 +    nData = nZero = 0;
  1.4436 +  }
  1.4437 +  nHeader += putVarint(&pCell[nHeader], *(u64*)&nKey);
  1.4438 +  sqlite3BtreeParseCellPtr(pPage, pCell, &info);
  1.4439 +  assert( info.nHeader==nHeader );
  1.4440 +  assert( info.nKey==nKey );
  1.4441 +  assert( info.nData==nData+nZero );
  1.4442 +  
  1.4443 +  /* Fill in the payload */
  1.4444 +  nPayload = nData + nZero;
  1.4445 +  if( pPage->intKey ){
  1.4446 +    pSrc = pData;
  1.4447 +    nSrc = nData;
  1.4448 +    nData = 0;
  1.4449 +  }else{
  1.4450 +    nPayload += nKey;
  1.4451 +    pSrc = pKey;
  1.4452 +    nSrc = nKey;
  1.4453 +  }
  1.4454 +  *pnSize = info.nSize;
  1.4455 +  spaceLeft = info.nLocal;
  1.4456 +  pPayload = &pCell[nHeader];
  1.4457 +  pPrior = &pCell[info.iOverflow];
  1.4458 +
  1.4459 +  while( nPayload>0 ){
  1.4460 +    if( spaceLeft==0 ){
  1.4461 +      int isExact = 0;
  1.4462 +#ifndef SQLITE_OMIT_AUTOVACUUM
  1.4463 +      Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */
  1.4464 +      if( pBt->autoVacuum ){
  1.4465 +        do{
  1.4466 +          pgnoOvfl++;
  1.4467 +        } while( 
  1.4468 +          PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt) 
  1.4469 +        );
  1.4470 +        if( pgnoOvfl>1 ){
  1.4471 +          /* isExact = 1; */
  1.4472 +        }
  1.4473 +      }
  1.4474 +#endif
  1.4475 +      rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, isExact);
  1.4476 +#ifndef SQLITE_OMIT_AUTOVACUUM
  1.4477 +      /* If the database supports auto-vacuum, and the second or subsequent
  1.4478 +      ** overflow page is being allocated, add an entry to the pointer-map
  1.4479 +      ** for that page now. 
  1.4480 +      **
  1.4481 +      ** If this is the first overflow page, then write a partial entry 
  1.4482 +      ** to the pointer-map. If we write nothing to this pointer-map slot,
  1.4483 +      ** then the optimistic overflow chain processing in clearCell()
  1.4484 +      ** may misinterpret the uninitialised values and delete the
  1.4485 +      ** wrong pages from the database.
  1.4486 +      */
  1.4487 +      if( pBt->autoVacuum && rc==SQLITE_OK ){
  1.4488 +        u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1);
  1.4489 +        rc = ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap);
  1.4490 +        if( rc ){
  1.4491 +          releasePage(pOvfl);
  1.4492 +        }
  1.4493 +      }
  1.4494 +#endif
  1.4495 +      if( rc ){
  1.4496 +        releasePage(pToRelease);
  1.4497 +        return rc;
  1.4498 +      }
  1.4499 +      put4byte(pPrior, pgnoOvfl);
  1.4500 +      releasePage(pToRelease);
  1.4501 +      pToRelease = pOvfl;
  1.4502 +      pPrior = pOvfl->aData;
  1.4503 +      put4byte(pPrior, 0);
  1.4504 +      pPayload = &pOvfl->aData[4];
  1.4505 +      spaceLeft = pBt->usableSize - 4;
  1.4506 +    }
  1.4507 +    n = nPayload;
  1.4508 +    if( n>spaceLeft ) n = spaceLeft;
  1.4509 +    if( nSrc>0 ){
  1.4510 +      if( n>nSrc ) n = nSrc;
  1.4511 +      assert( pSrc );
  1.4512 +      memcpy(pPayload, pSrc, n);
  1.4513 +    }else{
  1.4514 +      memset(pPayload, 0, n);
  1.4515 +    }
  1.4516 +    nPayload -= n;
  1.4517 +    pPayload += n;
  1.4518 +    pSrc += n;
  1.4519 +    nSrc -= n;
  1.4520 +    spaceLeft -= n;
  1.4521 +    if( nSrc==0 ){
  1.4522 +      nSrc = nData;
  1.4523 +      pSrc = pData;
  1.4524 +    }
  1.4525 +  }
  1.4526 +  releasePage(pToRelease);
  1.4527 +  return SQLITE_OK;
  1.4528 +}
  1.4529 +
  1.4530 +
  1.4531 +/*
  1.4532 +** Change the MemPage.pParent pointer on the page whose number is
  1.4533 +** given in the second argument so that MemPage.pParent holds the
  1.4534 +** pointer in the third argument.
  1.4535 +**
  1.4536 +** If the final argument, updatePtrmap, is non-zero and the database
  1.4537 +** is an auto-vacuum database, then the pointer-map entry for pgno
  1.4538 +** is updated.
  1.4539 +*/
  1.4540 +static int reparentPage(
  1.4541 +  BtShared *pBt,                /* B-Tree structure */
  1.4542 +  Pgno pgno,                    /* Page number of child being adopted */
  1.4543 +  MemPage *pNewParent,          /* New parent of pgno */
  1.4544 +  int idx,                      /* Index of child page pgno in pNewParent */
  1.4545 +  int updatePtrmap              /* If true, update pointer-map for pgno */
  1.4546 +){
  1.4547 +  MemPage *pThis;
  1.4548 +  DbPage *pDbPage;
  1.4549 +
  1.4550 +  assert( sqlite3_mutex_held(pBt->mutex) );
  1.4551 +  assert( pNewParent!=0 );
  1.4552 +  if( pgno==0 ) return SQLITE_OK;
  1.4553 +  assert( pBt->pPager!=0 );
  1.4554 +  pDbPage = sqlite3PagerLookup(pBt->pPager, pgno);
  1.4555 +  if( pDbPage ){
  1.4556 +    pThis = (MemPage *)sqlite3PagerGetExtra(pDbPage);
  1.4557 +    if( pThis->isInit ){
  1.4558 +      assert( pThis->aData==sqlite3PagerGetData(pDbPage) );
  1.4559 +      if( pThis->pParent!=pNewParent ){
  1.4560 +        if( pThis->pParent ) sqlite3PagerUnref(pThis->pParent->pDbPage);
  1.4561 +        pThis->pParent = pNewParent;
  1.4562 +        sqlite3PagerRef(pNewParent->pDbPage);
  1.4563 +      }
  1.4564 +      pThis->idxParent = idx;
  1.4565 +    }
  1.4566 +    sqlite3PagerUnref(pDbPage);
  1.4567 +  }
  1.4568 +
  1.4569 +  if( ISAUTOVACUUM && updatePtrmap ){
  1.4570 +    return ptrmapPut(pBt, pgno, PTRMAP_BTREE, pNewParent->pgno);
  1.4571 +  }
  1.4572 +
  1.4573 +#ifndef NDEBUG
  1.4574 +  /* If the updatePtrmap flag was clear, assert that the entry in the
  1.4575 +  ** pointer-map is already correct.
  1.4576 +  */
  1.4577 +  if( ISAUTOVACUUM ){
  1.4578 +    pDbPage = sqlite3PagerLookup(pBt->pPager,PTRMAP_PAGENO(pBt,pgno));
  1.4579 +    if( pDbPage ){
  1.4580 +      u8 eType;
  1.4581 +      Pgno ii;
  1.4582 +      int rc = ptrmapGet(pBt, pgno, &eType, &ii);
  1.4583 +      assert( rc==SQLITE_OK && ii==pNewParent->pgno && eType==PTRMAP_BTREE );
  1.4584 +      sqlite3PagerUnref(pDbPage);
  1.4585 +    }
  1.4586 +  }
  1.4587 +#endif
  1.4588 +
  1.4589 +  return SQLITE_OK;
  1.4590 +}
  1.4591 +
  1.4592 +
  1.4593 +
  1.4594 +/*
  1.4595 +** Change the pParent pointer of all children of pPage to point back
  1.4596 +** to pPage.
  1.4597 +**
  1.4598 +** In other words, for every child of pPage, invoke reparentPage()
  1.4599 +** to make sure that each child knows that pPage is its parent.
  1.4600 +**
  1.4601 +** This routine gets called after you memcpy() one page into
  1.4602 +** another.
  1.4603 +**
  1.4604 +** If updatePtrmap is true, then the pointer-map entries for all child
  1.4605 +** pages of pPage are updated.
  1.4606 +*/
  1.4607 +static int reparentChildPages(MemPage *pPage, int updatePtrmap){
  1.4608 +  int rc = SQLITE_OK;
  1.4609 +  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  1.4610 +  if( !pPage->leaf ){
  1.4611 +    int i;
  1.4612 +    BtShared *pBt = pPage->pBt;
  1.4613 +    Pgno iRight = get4byte(&pPage->aData[pPage->hdrOffset+8]);
  1.4614 +
  1.4615 +    for(i=0; i<pPage->nCell; i++){
  1.4616 +      u8 *pCell = findCell(pPage, i);
  1.4617 +      rc = reparentPage(pBt, get4byte(pCell), pPage, i, updatePtrmap);
  1.4618 +      if( rc!=SQLITE_OK ) return rc;
  1.4619 +    }
  1.4620 +    rc = reparentPage(pBt, iRight, pPage, i, updatePtrmap);
  1.4621 +    pPage->idxShift = 0;
  1.4622 +  }
  1.4623 +  return rc;
  1.4624 +}
  1.4625 +
  1.4626 +/*
  1.4627 +** Remove the i-th cell from pPage.  This routine effects pPage only.
  1.4628 +** The cell content is not freed or deallocated.  It is assumed that
  1.4629 +** the cell content has been copied someplace else.  This routine just
  1.4630 +** removes the reference to the cell from pPage.
  1.4631 +**
  1.4632 +** "sz" must be the number of bytes in the cell.
  1.4633 +*/
  1.4634 +static void dropCell(MemPage *pPage, int idx, int sz){
  1.4635 +  int i;          /* Loop counter */
  1.4636 +  int pc;         /* Offset to cell content of cell being deleted */
  1.4637 +  u8 *data;       /* pPage->aData */
  1.4638 +  u8 *ptr;        /* Used to move bytes around within data[] */
  1.4639 +
  1.4640 +  assert( idx>=0 && idx<pPage->nCell );
  1.4641 +  assert( sz==cellSize(pPage, idx) );
  1.4642 +  assert( sqlite3PagerIswriteable(pPage->pDbPage) );
  1.4643 +  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  1.4644 +  data = pPage->aData;
  1.4645 +  ptr = &data[pPage->cellOffset + 2*idx];
  1.4646 +  pc = get2byte(ptr);
  1.4647 +  assert( pc>10 && pc+sz<=pPage->pBt->usableSize );
  1.4648 +  freeSpace(pPage, pc, sz);
  1.4649 +  for(i=idx+1; i<pPage->nCell; i++, ptr+=2){
  1.4650 +    ptr[0] = ptr[2];
  1.4651 +    ptr[1] = ptr[3];
  1.4652 +  }
  1.4653 +  pPage->nCell--;
  1.4654 +  put2byte(&data[pPage->hdrOffset+3], pPage->nCell);
  1.4655 +  pPage->nFree += 2;
  1.4656 +  pPage->idxShift = 1;
  1.4657 +}
  1.4658 +
  1.4659 +/*
  1.4660 +** Insert a new cell on pPage at cell index "i".  pCell points to the
  1.4661 +** content of the cell.
  1.4662 +**
  1.4663 +** If the cell content will fit on the page, then put it there.  If it
  1.4664 +** will not fit, then make a copy of the cell content into pTemp if
  1.4665 +** pTemp is not null.  Regardless of pTemp, allocate a new entry
  1.4666 +** in pPage->aOvfl[] and make it point to the cell content (either
  1.4667 +** in pTemp or the original pCell) and also record its index. 
  1.4668 +** Allocating a new entry in pPage->aCell[] implies that 
  1.4669 +** pPage->nOverflow is incremented.
  1.4670 +**
  1.4671 +** If nSkip is non-zero, then do not copy the first nSkip bytes of the
  1.4672 +** cell. The caller will overwrite them after this function returns. If
  1.4673 +** nSkip is non-zero, then pCell may not point to an invalid memory location 
  1.4674 +** (but pCell+nSkip is always valid).
  1.4675 +*/
  1.4676 +static int insertCell(
  1.4677 +  MemPage *pPage,   /* Page into which we are copying */
  1.4678 +  int i,            /* New cell becomes the i-th cell of the page */
  1.4679 +  u8 *pCell,        /* Content of the new cell */
  1.4680 +  int sz,           /* Bytes of content in pCell */
  1.4681 +  u8 *pTemp,        /* Temp storage space for pCell, if needed */
  1.4682 +  u8 nSkip          /* Do not write the first nSkip bytes of the cell */
  1.4683 +){
  1.4684 +  int idx;          /* Where to write new cell content in data[] */
  1.4685 +  int j;            /* Loop counter */
  1.4686 +  int top;          /* First byte of content for any cell in data[] */
  1.4687 +  int end;          /* First byte past the last cell pointer in data[] */
  1.4688 +  int ins;          /* Index in data[] where new cell pointer is inserted */
  1.4689 +  int hdr;          /* Offset into data[] of the page header */
  1.4690 +  int cellOffset;   /* Address of first cell pointer in data[] */
  1.4691 +  u8 *data;         /* The content of the whole page */
  1.4692 +  u8 *ptr;          /* Used for moving information around in data[] */
  1.4693 +
  1.4694 +  assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
  1.4695 +  assert( sz==cellSizePtr(pPage, pCell) );
  1.4696 +  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  1.4697 +  if( pPage->nOverflow || sz+2>pPage->nFree ){
  1.4698 +    if( pTemp ){
  1.4699 +      memcpy(pTemp+nSkip, pCell+nSkip, sz-nSkip);
  1.4700 +      pCell = pTemp;
  1.4701 +    }
  1.4702 +    j = pPage->nOverflow++;
  1.4703 +    assert( j<sizeof(pPage->aOvfl)/sizeof(pPage->aOvfl[0]) );
  1.4704 +    pPage->aOvfl[j].pCell = pCell;
  1.4705 +    pPage->aOvfl[j].idx = i;
  1.4706 +    pPage->nFree = 0;
  1.4707 +  }else{
  1.4708 +    int rc = sqlite3PagerWrite(pPage->pDbPage);
  1.4709 +    if( rc!=SQLITE_OK ){
  1.4710 +      return rc;
  1.4711 +    }
  1.4712 +    assert( sqlite3PagerIswriteable(pPage->pDbPage) );
  1.4713 +    data = pPage->aData;
  1.4714 +    hdr = pPage->hdrOffset;
  1.4715 +    top = get2byte(&data[hdr+5]);
  1.4716 +    cellOffset = pPage->cellOffset;
  1.4717 +    end = cellOffset + 2*pPage->nCell + 2;
  1.4718 +    ins = cellOffset + 2*i;
  1.4719 +    if( end > top - sz ){
  1.4720 +      defragmentPage(pPage);
  1.4721 +      top = get2byte(&data[hdr+5]);
  1.4722 +      assert( end + sz <= top );
  1.4723 +    }
  1.4724 +    idx = allocateSpace(pPage, sz);
  1.4725 +    assert( idx>0 );
  1.4726 +    assert( end <= get2byte(&data[hdr+5]) );
  1.4727 +    pPage->nCell++;
  1.4728 +    pPage->nFree -= 2;
  1.4729 +    memcpy(&data[idx+nSkip], pCell+nSkip, sz-nSkip);
  1.4730 +    for(j=end-2, ptr=&data[j]; j>ins; j-=2, ptr-=2){
  1.4731 +      ptr[0] = ptr[-2];
  1.4732 +      ptr[1] = ptr[-1];
  1.4733 +    }
  1.4734 +    put2byte(&data[ins], idx);
  1.4735 +    put2byte(&data[hdr+3], pPage->nCell);
  1.4736 +    pPage->idxShift = 1;
  1.4737 +#ifndef SQLITE_OMIT_AUTOVACUUM
  1.4738 +    if( pPage->pBt->autoVacuum ){
  1.4739 +      /* The cell may contain a pointer to an overflow page. If so, write
  1.4740 +      ** the entry for the overflow page into the pointer map.
  1.4741 +      */
  1.4742 +      CellInfo info;
  1.4743 +      sqlite3BtreeParseCellPtr(pPage, pCell, &info);
  1.4744 +      assert( (info.nData+(pPage->intKey?0:info.nKey))==info.nPayload );
  1.4745 +      if( (info.nData+(pPage->intKey?0:info.nKey))>info.nLocal ){
  1.4746 +        Pgno pgnoOvfl = get4byte(&pCell[info.iOverflow]);
  1.4747 +        rc = ptrmapPut(pPage->pBt, pgnoOvfl, PTRMAP_OVERFLOW1, pPage->pgno);
  1.4748 +        if( rc!=SQLITE_OK ) return rc;
  1.4749 +      }
  1.4750 +    }
  1.4751 +#endif
  1.4752 +  }
  1.4753 +
  1.4754 +  return SQLITE_OK;
  1.4755 +}
  1.4756 +
  1.4757 +/*
  1.4758 +** Add a list of cells to a page.  The page should be initially empty.
  1.4759 +** The cells are guaranteed to fit on the page.
  1.4760 +*/
  1.4761 +static void assemblePage(
  1.4762 +  MemPage *pPage,   /* The page to be assemblied */
  1.4763 +  int nCell,        /* The number of cells to add to this page */
  1.4764 +  u8 **apCell,      /* Pointers to cell bodies */
  1.4765 +  u16 *aSize        /* Sizes of the cells */
  1.4766 +){
  1.4767 +  int i;            /* Loop counter */
  1.4768 +  int totalSize;    /* Total size of all cells */
  1.4769 +  int hdr;          /* Index of page header */
  1.4770 +  int cellptr;      /* Address of next cell pointer */
  1.4771 +  int cellbody;     /* Address of next cell body */
  1.4772 +  u8 *data;         /* Data for the page */
  1.4773 +
  1.4774 +  assert( pPage->nOverflow==0 );
  1.4775 +  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  1.4776 +  totalSize = 0;
  1.4777 +  for(i=0; i<nCell; i++){
  1.4778 +    totalSize += aSize[i];
  1.4779 +  }
  1.4780 +  assert( totalSize+2*nCell<=pPage->nFree );
  1.4781 +  assert( pPage->nCell==0 );
  1.4782 +  cellptr = pPage->cellOffset;
  1.4783 +  data = pPage->aData;
  1.4784 +  hdr = pPage->hdrOffset;
  1.4785 +  put2byte(&data[hdr+3], nCell);
  1.4786 +  if( nCell ){
  1.4787 +    cellbody = allocateSpace(pPage, totalSize);
  1.4788 +    assert( cellbody>0 );
  1.4789 +    assert( pPage->nFree >= 2*nCell );
  1.4790 +    pPage->nFree -= 2*nCell;
  1.4791 +    for(i=0; i<nCell; i++){
  1.4792 +      put2byte(&data[cellptr], cellbody);
  1.4793 +      memcpy(&data[cellbody], apCell[i], aSize[i]);
  1.4794 +      cellptr += 2;
  1.4795 +      cellbody += aSize[i];
  1.4796 +    }
  1.4797 +    assert( cellbody==pPage->pBt->usableSize );
  1.4798 +  }
  1.4799 +  pPage->nCell = nCell;
  1.4800 +}
  1.4801 +
  1.4802 +/*
  1.4803 +** The following parameters determine how many adjacent pages get involved
  1.4804 +** in a balancing operation.  NN is the number of neighbors on either side
  1.4805 +** of the page that participate in the balancing operation.  NB is the
  1.4806 +** total number of pages that participate, including the target page and
  1.4807 +** NN neighbors on either side.
  1.4808 +**
  1.4809 +** The minimum value of NN is 1 (of course).  Increasing NN above 1
  1.4810 +** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
  1.4811 +** in exchange for a larger degradation in INSERT and UPDATE performance.
  1.4812 +** The value of NN appears to give the best results overall.
  1.4813 +*/
  1.4814 +#define NN 1             /* Number of neighbors on either side of pPage */
  1.4815 +#define NB (NN*2+1)      /* Total pages involved in the balance */
  1.4816 +
  1.4817 +/* Forward reference */
  1.4818 +static int balance(MemPage*, int);
  1.4819 +
  1.4820 +#ifndef SQLITE_OMIT_QUICKBALANCE
  1.4821 +/*
  1.4822 +** This version of balance() handles the common special case where
  1.4823 +** a new entry is being inserted on the extreme right-end of the
  1.4824 +** tree, in other words, when the new entry will become the largest
  1.4825 +** entry in the tree.
  1.4826 +**
  1.4827 +** Instead of trying balance the 3 right-most leaf pages, just add
  1.4828 +** a new page to the right-hand side and put the one new entry in
  1.4829 +** that page.  This leaves the right side of the tree somewhat
  1.4830 +** unbalanced.  But odds are that we will be inserting new entries
  1.4831 +** at the end soon afterwards so the nearly empty page will quickly
  1.4832 +** fill up.  On average.
  1.4833 +**
  1.4834 +** pPage is the leaf page which is the right-most page in the tree.
  1.4835 +** pParent is its parent.  pPage must have a single overflow entry
  1.4836 +** which is also the right-most entry on the page.
  1.4837 +*/
  1.4838 +static int balance_quick(MemPage *pPage, MemPage *pParent){
  1.4839 +  int rc;
  1.4840 +  MemPage *pNew;
  1.4841 +  Pgno pgnoNew;
  1.4842 +  u8 *pCell;
  1.4843 +  u16 szCell;
  1.4844 +  CellInfo info;
  1.4845 +  BtShared *pBt = pPage->pBt;
  1.4846 +  int parentIdx = pParent->nCell;   /* pParent new divider cell index */
  1.4847 +  int parentSize;                   /* Size of new divider cell */
  1.4848 +  u8 parentCell[64];                /* Space for the new divider cell */
  1.4849 +
  1.4850 +  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  1.4851 +
  1.4852 +  /* Allocate a new page. Insert the overflow cell from pPage
  1.4853 +  ** into it. Then remove the overflow cell from pPage.
  1.4854 +  */
  1.4855 +  rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
  1.4856 +  if( rc!=SQLITE_OK ){
  1.4857 +    return rc;
  1.4858 +  }
  1.4859 +  pCell = pPage->aOvfl[0].pCell;
  1.4860 +  szCell = cellSizePtr(pPage, pCell);
  1.4861 +  zeroPage(pNew, pPage->aData[0]);
  1.4862 +  assemblePage(pNew, 1, &pCell, &szCell);
  1.4863 +  pPage->nOverflow = 0;
  1.4864 +
  1.4865 +  /* Set the parent of the newly allocated page to pParent. */
  1.4866 +  pNew->pParent = pParent;
  1.4867 +  sqlite3PagerRef(pParent->pDbPage);
  1.4868 +
  1.4869 +  /* pPage is currently the right-child of pParent. Change this
  1.4870 +  ** so that the right-child is the new page allocated above and
  1.4871 +  ** pPage is the next-to-right child. 
  1.4872 +  **
  1.4873 +  ** Ignore the return value of the call to fillInCell(). fillInCell()
  1.4874 +  ** may only return other than SQLITE_OK if it is required to allocate
  1.4875 +  ** one or more overflow pages. Since an internal table B-Tree cell 
  1.4876 +  ** may never spill over onto an overflow page (it is a maximum of 
  1.4877 +  ** 13 bytes in size), it is not neccessary to check the return code.
  1.4878 +  **
  1.4879 +  ** Similarly, the insertCell() function cannot fail if the page
  1.4880 +  ** being inserted into is already writable and the cell does not 
  1.4881 +  ** contain an overflow pointer. So ignore this return code too.
  1.4882 +  */
  1.4883 +  assert( pPage->nCell>0 );
  1.4884 +  pCell = findCell(pPage, pPage->nCell-1);
  1.4885 +  sqlite3BtreeParseCellPtr(pPage, pCell, &info);
  1.4886 +  fillInCell(pParent, parentCell, 0, info.nKey, 0, 0, 0, &parentSize);
  1.4887 +  assert( parentSize<64 );
  1.4888 +  assert( sqlite3PagerIswriteable(pParent->pDbPage) );
  1.4889 +  insertCell(pParent, parentIdx, parentCell, parentSize, 0, 4);
  1.4890 +  put4byte(findOverflowCell(pParent,parentIdx), pPage->pgno);
  1.4891 +  put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew);
  1.4892 +
  1.4893 +  /* If this is an auto-vacuum database, update the pointer map
  1.4894 +  ** with entries for the new page, and any pointer from the 
  1.4895 +  ** cell on the page to an overflow page.
  1.4896 +  */
  1.4897 +  if( ISAUTOVACUUM ){
  1.4898 +    rc = ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno);
  1.4899 +    if( rc==SQLITE_OK ){
  1.4900 +      rc = ptrmapPutOvfl(pNew, 0);
  1.4901 +    }
  1.4902 +    if( rc!=SQLITE_OK ){
  1.4903 +      releasePage(pNew);
  1.4904 +      return rc;
  1.4905 +    }
  1.4906 +  }
  1.4907 +
  1.4908 +  /* Release the reference to the new page and balance the parent page,
  1.4909 +  ** in case the divider cell inserted caused it to become overfull.
  1.4910 +  */
  1.4911 +  releasePage(pNew);
  1.4912 +  return balance(pParent, 0);
  1.4913 +}
  1.4914 +#endif /* SQLITE_OMIT_QUICKBALANCE */
  1.4915 +
  1.4916 +/*
  1.4917 +** This routine redistributes Cells on pPage and up to NN*2 siblings
  1.4918 +** of pPage so that all pages have about the same amount of free space.
  1.4919 +** Usually NN siblings on either side of pPage is used in the balancing,
  1.4920 +** though more siblings might come from one side if pPage is the first
  1.4921 +** or last child of its parent.  If pPage has fewer than 2*NN siblings
  1.4922 +** (something which can only happen if pPage is the root page or a 
  1.4923 +** child of root) then all available siblings participate in the balancing.
  1.4924 +**
  1.4925 +** The number of siblings of pPage might be increased or decreased by one or
  1.4926 +** two in an effort to keep pages nearly full but not over full. The root page
  1.4927 +** is special and is allowed to be nearly empty. If pPage is 
  1.4928 +** the root page, then the depth of the tree might be increased
  1.4929 +** or decreased by one, as necessary, to keep the root page from being
  1.4930 +** overfull or completely empty.
  1.4931 +**
  1.4932 +** Note that when this routine is called, some of the Cells on pPage
  1.4933 +** might not actually be stored in pPage->aData[].  This can happen
  1.4934 +** if the page is overfull.  Part of the job of this routine is to
  1.4935 +** make sure all Cells for pPage once again fit in pPage->aData[].
  1.4936 +**
  1.4937 +** In the course of balancing the siblings of pPage, the parent of pPage
  1.4938 +** might become overfull or underfull.  If that happens, then this routine
  1.4939 +** is called recursively on the parent.
  1.4940 +**
  1.4941 +** If this routine fails for any reason, it might leave the database
  1.4942 +** in a corrupted state.  So if this routine fails, the database should
  1.4943 +** be rolled back.
  1.4944 +*/
  1.4945 +static int balance_nonroot(MemPage *pPage){
  1.4946 +  MemPage *pParent;            /* The parent of pPage */
  1.4947 +  BtShared *pBt;               /* The whole database */
  1.4948 +  int nCell = 0;               /* Number of cells in apCell[] */
  1.4949 +  int nMaxCells = 0;           /* Allocated size of apCell, szCell, aFrom. */
  1.4950 +  int nOld;                    /* Number of pages in apOld[] */
  1.4951 +  int nNew;                    /* Number of pages in apNew[] */
  1.4952 +  int nDiv;                    /* Number of cells in apDiv[] */
  1.4953 +  int i, j, k;                 /* Loop counters */
  1.4954 +  int idx;                     /* Index of pPage in pParent->aCell[] */
  1.4955 +  int nxDiv;                   /* Next divider slot in pParent->aCell[] */
  1.4956 +  int rc;                      /* The return code */
  1.4957 +  int leafCorrection;          /* 4 if pPage is a leaf.  0 if not */
  1.4958 +  int leafData;                /* True if pPage is a leaf of a LEAFDATA tree */
  1.4959 +  int usableSpace;             /* Bytes in pPage beyond the header */
  1.4960 +  int pageFlags;               /* Value of pPage->aData[0] */
  1.4961 +  int subtotal;                /* Subtotal of bytes in cells on one page */
  1.4962 +  int iSpace1 = 0;             /* First unused byte of aSpace1[] */
  1.4963 +  int iSpace2 = 0;             /* First unused byte of aSpace2[] */
  1.4964 +  int szScratch;               /* Size of scratch memory requested */
  1.4965 +  MemPage *apOld[NB];          /* pPage and up to two siblings */
  1.4966 +  Pgno pgnoOld[NB];            /* Page numbers for each page in apOld[] */
  1.4967 +  MemPage *apCopy[NB];         /* Private copies of apOld[] pages */
  1.4968 +  MemPage *apNew[NB+2];        /* pPage and up to NB siblings after balancing */
  1.4969 +  Pgno pgnoNew[NB+2];          /* Page numbers for each page in apNew[] */
  1.4970 +  u8 *apDiv[NB];               /* Divider cells in pParent */
  1.4971 +  int cntNew[NB+2];            /* Index in aCell[] of cell after i-th page */
  1.4972 +  int szNew[NB+2];             /* Combined size of cells place on i-th page */
  1.4973 +  u8 **apCell = 0;             /* All cells begin balanced */
  1.4974 +  u16 *szCell;                 /* Local size of all cells in apCell[] */
  1.4975 +  u8 *aCopy[NB];         /* Space for holding data of apCopy[] */
  1.4976 +  u8 *aSpace1;           /* Space for copies of dividers cells before balance */
  1.4977 +  u8 *aSpace2 = 0;       /* Space for overflow dividers cells after balance */
  1.4978 +  u8 *aFrom = 0;
  1.4979 +
  1.4980 +  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  1.4981 +
  1.4982 +  /* 
  1.4983 +  ** Find the parent page.
  1.4984 +  */
  1.4985 +  assert( pPage->isInit );
  1.4986 +  assert( sqlite3PagerIswriteable(pPage->pDbPage) || pPage->nOverflow==1 );
  1.4987 +  pBt = pPage->pBt;
  1.4988 +  pParent = pPage->pParent;
  1.4989 +  assert( pParent );
  1.4990 +  if( SQLITE_OK!=(rc = sqlite3PagerWrite(pParent->pDbPage)) ){
  1.4991 +    return rc;
  1.4992 +  }
  1.4993 +
  1.4994 +  TRACE(("BALANCE: begin page %d child of %d\n", pPage->pgno, pParent->pgno));
  1.4995 +
  1.4996 +#ifndef SQLITE_OMIT_QUICKBALANCE
  1.4997 +  /*
  1.4998 +  ** A special case:  If a new entry has just been inserted into a
  1.4999 +  ** table (that is, a btree with integer keys and all data at the leaves)
  1.5000 +  ** and the new entry is the right-most entry in the tree (it has the
  1.5001 +  ** largest key) then use the special balance_quick() routine for
  1.5002 +  ** balancing.  balance_quick() is much faster and results in a tighter
  1.5003 +  ** packing of data in the common case.
  1.5004 +  */
  1.5005 +  if( pPage->leaf &&
  1.5006 +      pPage->intKey &&
  1.5007 +      pPage->nOverflow==1 &&
  1.5008 +      pPage->aOvfl[0].idx==pPage->nCell &&
  1.5009 +      pPage->pParent->pgno!=1 &&
  1.5010 +      get4byte(&pParent->aData[pParent->hdrOffset+8])==pPage->pgno
  1.5011 +  ){
  1.5012 +    assert( pPage->intKey );
  1.5013 +    /*
  1.5014 +    ** TODO: Check the siblings to the left of pPage. It may be that
  1.5015 +    ** they are not full and no new page is required.
  1.5016 +    */
  1.5017 +    return balance_quick(pPage, pParent);
  1.5018 +  }
  1.5019 +#endif
  1.5020 +
  1.5021 +  if( SQLITE_OK!=(rc = sqlite3PagerWrite(pPage->pDbPage)) ){
  1.5022 +    return rc;
  1.5023 +  }
  1.5024 +
  1.5025 +  /*
  1.5026 +  ** Find the cell in the parent page whose left child points back
  1.5027 +  ** to pPage.  The "idx" variable is the index of that cell.  If pPage
  1.5028 +  ** is the rightmost child of pParent then set idx to pParent->nCell 
  1.5029 +  */
  1.5030 +  if( pParent->idxShift ){
  1.5031 +    Pgno pgno;
  1.5032 +    pgno = pPage->pgno;
  1.5033 +    assert( pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
  1.5034 +    for(idx=0; idx<pParent->nCell; idx++){
  1.5035 +      if( get4byte(findCell(pParent, idx))==pgno ){
  1.5036 +        break;
  1.5037 +      }
  1.5038 +    }
  1.5039 +    assert( idx<pParent->nCell
  1.5040 +             || get4byte(&pParent->aData[pParent->hdrOffset+8])==pgno );
  1.5041 +  }else{
  1.5042 +    idx = pPage->idxParent;
  1.5043 +  }
  1.5044 +
  1.5045 +  /*
  1.5046 +  ** Initialize variables so that it will be safe to jump
  1.5047 +  ** directly to balance_cleanup at any moment.
  1.5048 +  */
  1.5049 +  nOld = nNew = 0;
  1.5050 +  sqlite3PagerRef(pParent->pDbPage);
  1.5051 +
  1.5052 +  /*
  1.5053 +  ** Find sibling pages to pPage and the cells in pParent that divide
  1.5054 +  ** the siblings.  An attempt is made to find NN siblings on either
  1.5055 +  ** side of pPage.  More siblings are taken from one side, however, if
  1.5056 +  ** pPage there are fewer than NN siblings on the other side.  If pParent
  1.5057 +  ** has NB or fewer children then all children of pParent are taken.
  1.5058 +  */
  1.5059 +  nxDiv = idx - NN;
  1.5060 +  if( nxDiv + NB > pParent->nCell ){
  1.5061 +    nxDiv = pParent->nCell - NB + 1;
  1.5062 +  }
  1.5063 +  if( nxDiv<0 ){
  1.5064 +    nxDiv = 0;
  1.5065 +  }
  1.5066 +  nDiv = 0;
  1.5067 +  for(i=0, k=nxDiv; i<NB; i++, k++){
  1.5068 +    if( k<pParent->nCell ){
  1.5069 +      apDiv[i] = findCell(pParent, k);
  1.5070 +      nDiv++;
  1.5071 +      assert( !pParent->leaf );
  1.5072 +      pgnoOld[i] = get4byte(apDiv[i]);
  1.5073 +    }else if( k==pParent->nCell ){
  1.5074 +      pgnoOld[i] = get4byte(&pParent->aData[pParent->hdrOffset+8]);
  1.5075 +    }else{
  1.5076 +      break;
  1.5077 +    }
  1.5078 +    rc = getAndInitPage(pBt, pgnoOld[i], &apOld[i], pParent);
  1.5079 +    if( rc ) goto balance_cleanup;
  1.5080 +    apOld[i]->idxParent = k;
  1.5081 +    apCopy[i] = 0;
  1.5082 +    assert( i==nOld );
  1.5083 +    nOld++;
  1.5084 +    nMaxCells += 1+apOld[i]->nCell+apOld[i]->nOverflow;
  1.5085 +  }
  1.5086 +
  1.5087 +  /* Make nMaxCells a multiple of 4 in order to preserve 8-byte
  1.5088 +  ** alignment */
  1.5089 +  nMaxCells = (nMaxCells + 3)&~3;
  1.5090 +
  1.5091 +  /*
  1.5092 +  ** Allocate space for memory structures
  1.5093 +  */
  1.5094 +  szScratch =
  1.5095 +       nMaxCells*sizeof(u8*)                       /* apCell */
  1.5096 +     + nMaxCells*sizeof(u16)                       /* szCell */
  1.5097 +     + (ROUND8(sizeof(MemPage))+pBt->pageSize)*NB  /* aCopy */
  1.5098 +     + pBt->pageSize                               /* aSpace1 */
  1.5099 +     + (ISAUTOVACUUM ? nMaxCells : 0);             /* aFrom */
  1.5100 +  apCell = sqlite3ScratchMalloc( szScratch ); 
  1.5101 +  if( apCell==0 ){
  1.5102 +    rc = SQLITE_NOMEM;
  1.5103 +    goto balance_cleanup;
  1.5104 +  }
  1.5105 +  szCell = (u16*)&apCell[nMaxCells];
  1.5106 +  aCopy[0] = (u8*)&szCell[nMaxCells];
  1.5107 +  assert( ((aCopy[0] - (u8*)apCell) & 7)==0 ); /* 8-byte alignment required */
  1.5108 +  for(i=1; i<NB; i++){
  1.5109 +    aCopy[i] = &aCopy[i-1][pBt->pageSize+ROUND8(sizeof(MemPage))];
  1.5110 +    assert( ((aCopy[i] - (u8*)apCell) & 7)==0 ); /* 8-byte alignment required */
  1.5111 +  }
  1.5112 +  aSpace1 = &aCopy[NB-1][pBt->pageSize+ROUND8(sizeof(MemPage))];
  1.5113 +  assert( ((aSpace1 - (u8*)apCell) & 7)==0 ); /* 8-byte alignment required */
  1.5114 +  if( ISAUTOVACUUM ){
  1.5115 +    aFrom = &aSpace1[pBt->pageSize];
  1.5116 +  }
  1.5117 +  aSpace2 = sqlite3PageMalloc(pBt->pageSize);
  1.5118 +  if( aSpace2==0 ){
  1.5119 +    rc = SQLITE_NOMEM;
  1.5120 +    goto balance_cleanup;
  1.5121 +  }
  1.5122 +  
  1.5123 +  /*
  1.5124 +  ** Make copies of the content of pPage and its siblings into aOld[].
  1.5125 +  ** The rest of this function will use data from the copies rather
  1.5126 +  ** that the original pages since the original pages will be in the
  1.5127 +  ** process of being overwritten.
  1.5128 +  */
  1.5129 +  for(i=0; i<nOld; i++){
  1.5130 +    MemPage *p = apCopy[i] = (MemPage*)aCopy[i];
  1.5131 +    memcpy(p, apOld[i], sizeof(MemPage));
  1.5132 +    p->aData = (void*)&p[1];
  1.5133 +    memcpy(p->aData, apOld[i]->aData, pBt->pageSize);
  1.5134 +  }
  1.5135 +
  1.5136 +  /*
  1.5137 +  ** Load pointers to all cells on sibling pages and the divider cells
  1.5138 +  ** into the local apCell[] array.  Make copies of the divider cells
  1.5139 +  ** into space obtained form aSpace1[] and remove the the divider Cells
  1.5140 +  ** from pParent.
  1.5141 +  **
  1.5142 +  ** If the siblings are on leaf pages, then the child pointers of the
  1.5143 +  ** divider cells are stripped from the cells before they are copied
  1.5144 +  ** into aSpace1[].  In this way, all cells in apCell[] are without
  1.5145 +  ** child pointers.  If siblings are not leaves, then all cell in
  1.5146 +  ** apCell[] include child pointers.  Either way, all cells in apCell[]
  1.5147 +  ** are alike.
  1.5148 +  **
  1.5149 +  ** leafCorrection:  4 if pPage is a leaf.  0 if pPage is not a leaf.
  1.5150 +  **       leafData:  1 if pPage holds key+data and pParent holds only keys.
  1.5151 +  */
  1.5152 +  nCell = 0;
  1.5153 +  leafCorrection = pPage->leaf*4;
  1.5154 +  leafData = pPage->hasData;
  1.5155 +  for(i=0; i<nOld; i++){
  1.5156 +    MemPage *pOld = apCopy[i];
  1.5157 +    int limit = pOld->nCell+pOld->nOverflow;
  1.5158 +    for(j=0; j<limit; j++){
  1.5159 +      assert( nCell<nMaxCells );
  1.5160 +      apCell[nCell] = findOverflowCell(pOld, j);
  1.5161 +      szCell[nCell] = cellSizePtr(pOld, apCell[nCell]);
  1.5162 +      if( ISAUTOVACUUM ){
  1.5163 +        int a;
  1.5164 +        aFrom[nCell] = i;
  1.5165 +        for(a=0; a<pOld->nOverflow; a++){
  1.5166 +          if( pOld->aOvfl[a].pCell==apCell[nCell] ){
  1.5167 +            aFrom[nCell] = 0xFF;
  1.5168 +            break;
  1.5169 +          }
  1.5170 +        }
  1.5171 +      }
  1.5172 +      nCell++;
  1.5173 +    }
  1.5174 +    if( i<nOld-1 ){
  1.5175 +      u16 sz = cellSizePtr(pParent, apDiv[i]);
  1.5176 +      if( leafData ){
  1.5177 +        /* With the LEAFDATA flag, pParent cells hold only INTKEYs that
  1.5178 +        ** are duplicates of keys on the child pages.  We need to remove
  1.5179 +        ** the divider cells from pParent, but the dividers cells are not
  1.5180 +        ** added to apCell[] because they are duplicates of child cells.
  1.5181 +        */
  1.5182 +        dropCell(pParent, nxDiv, sz);
  1.5183 +      }else{
  1.5184 +        u8 *pTemp;
  1.5185 +        assert( nCell<nMaxCells );
  1.5186 +        szCell[nCell] = sz;
  1.5187 +        pTemp = &aSpace1[iSpace1];
  1.5188 +        iSpace1 += sz;
  1.5189 +        assert( sz<=pBt->pageSize/4 );
  1.5190 +        assert( iSpace1<=pBt->pageSize );
  1.5191 +        memcpy(pTemp, apDiv[i], sz);
  1.5192 +        apCell[nCell] = pTemp+leafCorrection;
  1.5193 +        if( ISAUTOVACUUM ){
  1.5194 +          aFrom[nCell] = 0xFF;
  1.5195 +        }
  1.5196 +        dropCell(pParent, nxDiv, sz);
  1.5197 +        szCell[nCell] -= leafCorrection;
  1.5198 +        assert( get4byte(pTemp)==pgnoOld[i] );
  1.5199 +        if( !pOld->leaf ){
  1.5200 +          assert( leafCorrection==0 );
  1.5201 +          /* The right pointer of the child page pOld becomes the left
  1.5202 +          ** pointer of the divider cell */
  1.5203 +          memcpy(apCell[nCell], &pOld->aData[pOld->hdrOffset+8], 4);
  1.5204 +        }else{
  1.5205 +          assert( leafCorrection==4 );
  1.5206 +          if( szCell[nCell]<4 ){
  1.5207 +            /* Do not allow any cells smaller than 4 bytes. */
  1.5208 +            szCell[nCell] = 4;
  1.5209 +          }
  1.5210 +        }
  1.5211 +        nCell++;
  1.5212 +      }
  1.5213 +    }
  1.5214 +  }
  1.5215 +
  1.5216 +  /*
  1.5217 +  ** Figure out the number of pages needed to hold all nCell cells.
  1.5218 +  ** Store this number in "k".  Also compute szNew[] which is the total
  1.5219 +  ** size of all cells on the i-th page and cntNew[] which is the index
  1.5220 +  ** in apCell[] of the cell that divides page i from page i+1.  
  1.5221 +  ** cntNew[k] should equal nCell.
  1.5222 +  **
  1.5223 +  ** Values computed by this block:
  1.5224 +  **
  1.5225 +  **           k: The total number of sibling pages
  1.5226 +  **    szNew[i]: Spaced used on the i-th sibling page.
  1.5227 +  **   cntNew[i]: Index in apCell[] and szCell[] for the first cell to
  1.5228 +  **              the right of the i-th sibling page.
  1.5229 +  ** usableSpace: Number of bytes of space available on each sibling.
  1.5230 +  ** 
  1.5231 +  */
  1.5232 +  usableSpace = pBt->usableSize - 12 + leafCorrection;
  1.5233 +  for(subtotal=k=i=0; i<nCell; i++){
  1.5234 +    assert( i<nMaxCells );
  1.5235 +    subtotal += szCell[i] + 2;
  1.5236 +    if( subtotal > usableSpace ){
  1.5237 +      szNew[k] = subtotal - szCell[i];
  1.5238 +      cntNew[k] = i;
  1.5239 +      if( leafData ){ i--; }
  1.5240 +      subtotal = 0;
  1.5241 +      k++;
  1.5242 +    }
  1.5243 +  }
  1.5244 +  szNew[k] = subtotal;
  1.5245 +  cntNew[k] = nCell;
  1.5246 +  k++;
  1.5247 +
  1.5248 +  /*
  1.5249 +  ** The packing computed by the previous block is biased toward the siblings
  1.5250 +  ** on the left side.  The left siblings are always nearly full, while the
  1.5251 +  ** right-most sibling might be nearly empty.  This block of code attempts
  1.5252 +  ** to adjust the packing of siblings to get a better balance.
  1.5253 +  **
  1.5254 +  ** This adjustment is more than an optimization.  The packing above might
  1.5255 +  ** be so out of balance as to be illegal.  For example, the right-most
  1.5256 +  ** sibling might be completely empty.  This adjustment is not optional.
  1.5257 +  */
  1.5258 +  for(i=k-1; i>0; i--){
  1.5259 +    int szRight = szNew[i];  /* Size of sibling on the right */
  1.5260 +    int szLeft = szNew[i-1]; /* Size of sibling on the left */
  1.5261 +    int r;              /* Index of right-most cell in left sibling */
  1.5262 +    int d;              /* Index of first cell to the left of right sibling */
  1.5263 +
  1.5264 +    r = cntNew[i-1] - 1;
  1.5265 +    d = r + 1 - leafData;
  1.5266 +    assert( d<nMaxCells );
  1.5267 +    assert( r<nMaxCells );
  1.5268 +    while( szRight==0 || szRight+szCell[d]+2<=szLeft-(szCell[r]+2) ){
  1.5269 +      szRight += szCell[d] + 2;
  1.5270 +      szLeft -= szCell[r] + 2;
  1.5271 +      cntNew[i-1]--;
  1.5272 +      r = cntNew[i-1] - 1;
  1.5273 +      d = r + 1 - leafData;
  1.5274 +    }
  1.5275 +    szNew[i] = szRight;
  1.5276 +    szNew[i-1] = szLeft;
  1.5277 +  }
  1.5278 +
  1.5279 +  /* Either we found one or more cells (cntnew[0])>0) or we are the
  1.5280 +  ** a virtual root page.  A virtual root page is when the real root
  1.5281 +  ** page is page 1 and we are the only child of that page.
  1.5282 +  */
  1.5283 +  assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) );
  1.5284 +
  1.5285 +  /*
  1.5286 +  ** Allocate k new pages.  Reuse old pages where possible.
  1.5287 +  */
  1.5288 +  assert( pPage->pgno>1 );
  1.5289 +  pageFlags = pPage->aData[0];
  1.5290 +  for(i=0; i<k; i++){
  1.5291 +    MemPage *pNew;
  1.5292 +    if( i<nOld ){
  1.5293 +      pNew = apNew[i] = apOld[i];
  1.5294 +      pgnoNew[i] = pgnoOld[i];
  1.5295 +      apOld[i] = 0;
  1.5296 +      rc = sqlite3PagerWrite(pNew->pDbPage);
  1.5297 +      nNew++;
  1.5298 +      if( rc ) goto balance_cleanup;
  1.5299 +    }else{
  1.5300 +      assert( i>0 );
  1.5301 +      rc = allocateBtreePage(pBt, &pNew, &pgnoNew[i], pgnoNew[i-1], 0);
  1.5302 +      if( rc ) goto balance_cleanup;
  1.5303 +      apNew[i] = pNew;
  1.5304 +      nNew++;
  1.5305 +    }
  1.5306 +  }
  1.5307 +
  1.5308 +  /* Free any old pages that were not reused as new pages.
  1.5309 +  */
  1.5310 +  while( i<nOld ){
  1.5311 +    rc = freePage(apOld[i]);
  1.5312 +    if( rc ) goto balance_cleanup;
  1.5313 +    releasePage(apOld[i]);
  1.5314 +    apOld[i] = 0;
  1.5315 +    i++;
  1.5316 +  }
  1.5317 +
  1.5318 +  /*
  1.5319 +  ** Put the new pages in accending order.  This helps to
  1.5320 +  ** keep entries in the disk file in order so that a scan
  1.5321 +  ** of the table is a linear scan through the file.  That
  1.5322 +  ** in turn helps the operating system to deliver pages
  1.5323 +  ** from the disk more rapidly.
  1.5324 +  **
  1.5325 +  ** An O(n^2) insertion sort algorithm is used, but since
  1.5326 +  ** n is never more than NB (a small constant), that should
  1.5327 +  ** not be a problem.
  1.5328 +  **
  1.5329 +  ** When NB==3, this one optimization makes the database
  1.5330 +  ** about 25% faster for large insertions and deletions.
  1.5331 +  */
  1.5332 +  for(i=0; i<k-1; i++){
  1.5333 +    int minV = pgnoNew[i];
  1.5334 +    int minI = i;
  1.5335 +    for(j=i+1; j<k; j++){
  1.5336 +      if( pgnoNew[j]<(unsigned)minV ){
  1.5337 +        minI = j;
  1.5338 +        minV = pgnoNew[j];
  1.5339 +      }
  1.5340 +    }
  1.5341 +    if( minI>i ){
  1.5342 +      int t;
  1.5343 +      MemPage *pT;
  1.5344 +      t = pgnoNew[i];
  1.5345 +      pT = apNew[i];
  1.5346 +      pgnoNew[i] = pgnoNew[minI];
  1.5347 +      apNew[i] = apNew[minI];
  1.5348 +      pgnoNew[minI] = t;
  1.5349 +      apNew[minI] = pT;
  1.5350 +    }
  1.5351 +  }
  1.5352 +  TRACE(("BALANCE: old: %d %d %d  new: %d(%d) %d(%d) %d(%d) %d(%d) %d(%d)\n",
  1.5353 +    pgnoOld[0], 
  1.5354 +    nOld>=2 ? pgnoOld[1] : 0,
  1.5355 +    nOld>=3 ? pgnoOld[2] : 0,
  1.5356 +    pgnoNew[0], szNew[0],
  1.5357 +    nNew>=2 ? pgnoNew[1] : 0, nNew>=2 ? szNew[1] : 0,
  1.5358 +    nNew>=3 ? pgnoNew[2] : 0, nNew>=3 ? szNew[2] : 0,
  1.5359 +    nNew>=4 ? pgnoNew[3] : 0, nNew>=4 ? szNew[3] : 0,
  1.5360 +    nNew>=5 ? pgnoNew[4] : 0, nNew>=5 ? szNew[4] : 0));
  1.5361 +
  1.5362 +  /*
  1.5363 +  ** Evenly distribute the data in apCell[] across the new pages.
  1.5364 +  ** Insert divider cells into pParent as necessary.
  1.5365 +  */
  1.5366 +  j = 0;
  1.5367 +  for(i=0; i<nNew; i++){
  1.5368 +    /* Assemble the new sibling page. */
  1.5369 +    MemPage *pNew = apNew[i];
  1.5370 +    assert( j<nMaxCells );
  1.5371 +    assert( pNew->pgno==pgnoNew[i] );
  1.5372 +    zeroPage(pNew, pageFlags);
  1.5373 +    assemblePage(pNew, cntNew[i]-j, &apCell[j], &szCell[j]);
  1.5374 +    assert( pNew->nCell>0 || (nNew==1 && cntNew[0]==0) );
  1.5375 +    assert( pNew->nOverflow==0 );
  1.5376 +
  1.5377 +    /* If this is an auto-vacuum database, update the pointer map entries
  1.5378 +    ** that point to the siblings that were rearranged. These can be: left
  1.5379 +    ** children of cells, the right-child of the page, or overflow pages
  1.5380 +    ** pointed to by cells.
  1.5381 +    */
  1.5382 +    if( ISAUTOVACUUM ){
  1.5383 +      for(k=j; k<cntNew[i]; k++){
  1.5384 +        assert( k<nMaxCells );
  1.5385 +        if( aFrom[k]==0xFF || apCopy[aFrom[k]]->pgno!=pNew->pgno ){
  1.5386 +          rc = ptrmapPutOvfl(pNew, k-j);
  1.5387 +          if( rc==SQLITE_OK && leafCorrection==0 ){
  1.5388 +            rc = ptrmapPut(pBt, get4byte(apCell[k]), PTRMAP_BTREE, pNew->pgno);
  1.5389 +          }
  1.5390 +          if( rc!=SQLITE_OK ){
  1.5391 +            goto balance_cleanup;
  1.5392 +          }
  1.5393 +        }
  1.5394 +      }
  1.5395 +    }
  1.5396 +
  1.5397 +    j = cntNew[i];
  1.5398 +
  1.5399 +    /* If the sibling page assembled above was not the right-most sibling,
  1.5400 +    ** insert a divider cell into the parent page.
  1.5401 +    */
  1.5402 +    if( i<nNew-1 && j<nCell ){
  1.5403 +      u8 *pCell;
  1.5404 +      u8 *pTemp;
  1.5405 +      int sz;
  1.5406 +
  1.5407 +      assert( j<nMaxCells );
  1.5408 +      pCell = apCell[j];
  1.5409 +      sz = szCell[j] + leafCorrection;
  1.5410 +      pTemp = &aSpace2[iSpace2];
  1.5411 +      if( !pNew->leaf ){
  1.5412 +        memcpy(&pNew->aData[8], pCell, 4);
  1.5413 +        if( ISAUTOVACUUM 
  1.5414 +         && (aFrom[j]==0xFF || apCopy[aFrom[j]]->pgno!=pNew->pgno)
  1.5415 +        ){
  1.5416 +          rc = ptrmapPut(pBt, get4byte(pCell), PTRMAP_BTREE, pNew->pgno);
  1.5417 +          if( rc!=SQLITE_OK ){
  1.5418 +            goto balance_cleanup;
  1.5419 +          }
  1.5420 +        }
  1.5421 +      }else if( leafData ){
  1.5422 +        /* If the tree is a leaf-data tree, and the siblings are leaves, 
  1.5423 +        ** then there is no divider cell in apCell[]. Instead, the divider 
  1.5424 +        ** cell consists of the integer key for the right-most cell of 
  1.5425 +        ** the sibling-page assembled above only.
  1.5426 +        */
  1.5427 +        CellInfo info;
  1.5428 +        j--;
  1.5429 +        sqlite3BtreeParseCellPtr(pNew, apCell[j], &info);
  1.5430 +        pCell = pTemp;
  1.5431 +        fillInCell(pParent, pCell, 0, info.nKey, 0, 0, 0, &sz);
  1.5432 +        pTemp = 0;
  1.5433 +      }else{
  1.5434 +        pCell -= 4;
  1.5435 +        /* Obscure case for non-leaf-data trees: If the cell at pCell was
  1.5436 +        ** previously stored on a leaf node, and its reported size was 4
  1.5437 +        ** bytes, then it may actually be smaller than this 
  1.5438 +        ** (see sqlite3BtreeParseCellPtr(), 4 bytes is the minimum size of
  1.5439 +        ** any cell). But it is important to pass the correct size to 
  1.5440 +        ** insertCell(), so reparse the cell now.
  1.5441 +        **
  1.5442 +        ** Note that this can never happen in an SQLite data file, as all
  1.5443 +        ** cells are at least 4 bytes. It only happens in b-trees used
  1.5444 +        ** to evaluate "IN (SELECT ...)" and similar clauses.
  1.5445 +        */
  1.5446 +        if( szCell[j]==4 ){
  1.5447 +          assert(leafCorrection==4);
  1.5448 +          sz = cellSizePtr(pParent, pCell);
  1.5449 +        }
  1.5450 +      }
  1.5451 +      iSpace2 += sz;
  1.5452 +      assert( sz<=pBt->pageSize/4 );
  1.5453 +      assert( iSpace2<=pBt->pageSize );
  1.5454 +      rc = insertCell(pParent, nxDiv, pCell, sz, pTemp, 4);
  1.5455 +      if( rc!=SQLITE_OK ) goto balance_cleanup;
  1.5456 +      put4byte(findOverflowCell(pParent,nxDiv), pNew->pgno);
  1.5457 +
  1.5458 +      /* If this is an auto-vacuum database, and not a leaf-data tree,
  1.5459 +      ** then update the pointer map with an entry for the overflow page
  1.5460 +      ** that the cell just inserted points to (if any).
  1.5461 +      */
  1.5462 +      if( ISAUTOVACUUM && !leafData ){
  1.5463 +        rc = ptrmapPutOvfl(pParent, nxDiv);
  1.5464 +        if( rc!=SQLITE_OK ){
  1.5465 +          goto balance_cleanup;
  1.5466 +        }
  1.5467 +      }
  1.5468 +      j++;
  1.5469 +      nxDiv++;
  1.5470 +    }
  1.5471 +
  1.5472 +    /* Set the pointer-map entry for the new sibling page. */
  1.5473 +    if( ISAUTOVACUUM ){
  1.5474 +      rc = ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno);
  1.5475 +      if( rc!=SQLITE_OK ){
  1.5476 +        goto balance_cleanup;
  1.5477 +      }
  1.5478 +    }
  1.5479 +  }
  1.5480 +  assert( j==nCell );
  1.5481 +  assert( nOld>0 );
  1.5482 +  assert( nNew>0 );
  1.5483 +  if( (pageFlags & PTF_LEAF)==0 ){
  1.5484 +    u8 *zChild = &apCopy[nOld-1]->aData[8];
  1.5485 +    memcpy(&apNew[nNew-1]->aData[8], zChild, 4);
  1.5486 +    if( ISAUTOVACUUM ){
  1.5487 +      rc = ptrmapPut(pBt, get4byte(zChild), PTRMAP_BTREE, apNew[nNew-1]->pgno);
  1.5488 +      if( rc!=SQLITE_OK ){
  1.5489 +        goto balance_cleanup;
  1.5490 +      }
  1.5491 +    }
  1.5492 +  }
  1.5493 +  if( nxDiv==pParent->nCell+pParent->nOverflow ){
  1.5494 +    /* Right-most sibling is the right-most child of pParent */
  1.5495 +    put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew[nNew-1]);
  1.5496 +  }else{
  1.5497 +    /* Right-most sibling is the left child of the first entry in pParent
  1.5498 +    ** past the right-most divider entry */
  1.5499 +    put4byte(findOverflowCell(pParent, nxDiv), pgnoNew[nNew-1]);
  1.5500 +  }
  1.5501 +
  1.5502 +  /*
  1.5503 +  ** Reparent children of all cells.
  1.5504 +  */
  1.5505 +  for(i=0; i<nNew; i++){
  1.5506 +    rc = reparentChildPages(apNew[i], 0);
  1.5507 +    if( rc!=SQLITE_OK ) goto balance_cleanup;
  1.5508 +  }
  1.5509 +  rc = reparentChildPages(pParent, 0);
  1.5510 +  if( rc!=SQLITE_OK ) goto balance_cleanup;
  1.5511 +
  1.5512 +  /*
  1.5513 +  ** Balance the parent page.  Note that the current page (pPage) might
  1.5514 +  ** have been added to the freelist so it might no longer be initialized.
  1.5515 +  ** But the parent page will always be initialized.
  1.5516 +  */
  1.5517 +  assert( pParent->isInit );
  1.5518 +  sqlite3ScratchFree(apCell);
  1.5519 +  apCell = 0;
  1.5520 +  rc = balance(pParent, 0);
  1.5521 +  
  1.5522 +  /*
  1.5523 +  ** Cleanup before returning.
  1.5524 +  */
  1.5525 +balance_cleanup:
  1.5526 +  sqlite3PageFree(aSpace2);
  1.5527 +  sqlite3ScratchFree(apCell);
  1.5528 +  for(i=0; i<nOld; i++){
  1.5529 +    releasePage(apOld[i]);
  1.5530 +  }
  1.5531 +  for(i=0; i<nNew; i++){
  1.5532 +    releasePage(apNew[i]);
  1.5533 +  }
  1.5534 +  releasePage(pParent);
  1.5535 +  TRACE(("BALANCE: finished with %d: old=%d new=%d cells=%d\n",
  1.5536 +          pPage->pgno, nOld, nNew, nCell));
  1.5537 +  return rc;
  1.5538 +}
  1.5539 +
  1.5540 +/*
  1.5541 +** This routine is called for the root page of a btree when the root
  1.5542 +** page contains no cells.  This is an opportunity to make the tree
  1.5543 +** shallower by one level.
  1.5544 +*/
  1.5545 +static int balance_shallower(MemPage *pPage){
  1.5546 +  MemPage *pChild;             /* The only child page of pPage */
  1.5547 +  Pgno pgnoChild;              /* Page number for pChild */
  1.5548 +  int rc = SQLITE_OK;          /* Return code from subprocedures */
  1.5549 +  BtShared *pBt;                  /* The main BTree structure */
  1.5550 +  int mxCellPerPage;           /* Maximum number of cells per page */
  1.5551 +  u8 **apCell;                 /* All cells from pages being balanced */
  1.5552 +  u16 *szCell;                 /* Local size of all cells */
  1.5553 +
  1.5554 +  assert( pPage->pParent==0 );
  1.5555 +  assert( pPage->nCell==0 );
  1.5556 +  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  1.5557 +  pBt = pPage->pBt;
  1.5558 +  mxCellPerPage = MX_CELL(pBt);
  1.5559 +  apCell = sqlite3Malloc( mxCellPerPage*(sizeof(u8*)+sizeof(u16)) );
  1.5560 +  if( apCell==0 ) return SQLITE_NOMEM;
  1.5561 +  szCell = (u16*)&apCell[mxCellPerPage];
  1.5562 +  if( pPage->leaf ){
  1.5563 +    /* The table is completely empty */
  1.5564 +    TRACE(("BALANCE: empty table %d\n", pPage->pgno));
  1.5565 +  }else{
  1.5566 +    /* The root page is empty but has one child.  Transfer the
  1.5567 +    ** information from that one child into the root page if it 
  1.5568 +    ** will fit.  This reduces the depth of the tree by one.
  1.5569 +    **
  1.5570 +    ** If the root page is page 1, it has less space available than
  1.5571 +    ** its child (due to the 100 byte header that occurs at the beginning
  1.5572 +    ** of the database fle), so it might not be able to hold all of the 
  1.5573 +    ** information currently contained in the child.  If this is the 
  1.5574 +    ** case, then do not do the transfer.  Leave page 1 empty except
  1.5575 +    ** for the right-pointer to the child page.  The child page becomes
  1.5576 +    ** the virtual root of the tree.
  1.5577 +    */
  1.5578 +    pgnoChild = get4byte(&pPage->aData[pPage->hdrOffset+8]);
  1.5579 +    assert( pgnoChild>0 );
  1.5580 +    assert( pgnoChild<=pagerPagecount(pPage->pBt->pPager) );
  1.5581 +    rc = sqlite3BtreeGetPage(pPage->pBt, pgnoChild, &pChild, 0);
  1.5582 +    if( rc ) goto end_shallow_balance;
  1.5583 +    if( pPage->pgno==1 ){
  1.5584 +      rc = sqlite3BtreeInitPage(pChild, pPage);
  1.5585 +      if( rc ) goto end_shallow_balance;
  1.5586 +      assert( pChild->nOverflow==0 );
  1.5587 +      if( pChild->nFree>=100 ){
  1.5588 +        /* The child information will fit on the root page, so do the
  1.5589 +        ** copy */
  1.5590 +        int i;
  1.5591 +        zeroPage(pPage, pChild->aData[0]);
  1.5592 +        for(i=0; i<pChild->nCell; i++){
  1.5593 +          apCell[i] = findCell(pChild,i);
  1.5594 +          szCell[i] = cellSizePtr(pChild, apCell[i]);
  1.5595 +        }
  1.5596 +        assemblePage(pPage, pChild->nCell, apCell, szCell);
  1.5597 +        /* Copy the right-pointer of the child to the parent. */
  1.5598 +        put4byte(&pPage->aData[pPage->hdrOffset+8], 
  1.5599 +            get4byte(&pChild->aData[pChild->hdrOffset+8]));
  1.5600 +        freePage(pChild);
  1.5601 +        TRACE(("BALANCE: child %d transfer to page 1\n", pChild->pgno));
  1.5602 +      }else{
  1.5603 +        /* The child has more information that will fit on the root.
  1.5604 +        ** The tree is already balanced.  Do nothing. */
  1.5605 +        TRACE(("BALANCE: child %d will not fit on page 1\n", pChild->pgno));
  1.5606 +      }
  1.5607 +    }else{
  1.5608 +      memcpy(pPage->aData, pChild->aData, pPage->pBt->usableSize);
  1.5609 +      pPage->isInit = 0;
  1.5610 +      pPage->pParent = 0;
  1.5611 +      rc = sqlite3BtreeInitPage(pPage, 0);
  1.5612 +      assert( rc==SQLITE_OK );
  1.5613 +      freePage(pChild);
  1.5614 +      TRACE(("BALANCE: transfer child %d into root %d\n",
  1.5615 +              pChild->pgno, pPage->pgno));
  1.5616 +    }
  1.5617 +    rc = reparentChildPages(pPage, 1);
  1.5618 +    assert( pPage->nOverflow==0 );
  1.5619 +    if( ISAUTOVACUUM ){
  1.5620 +      int i;
  1.5621 +      for(i=0; i<pPage->nCell; i++){ 
  1.5622 +        rc = ptrmapPutOvfl(pPage, i);
  1.5623 +        if( rc!=SQLITE_OK ){
  1.5624 +          goto end_shallow_balance;
  1.5625 +        }
  1.5626 +      }
  1.5627 +    }
  1.5628 +    releasePage(pChild);
  1.5629 +  }
  1.5630 +end_shallow_balance:
  1.5631 +  sqlite3_free(apCell);
  1.5632 +  return rc;
  1.5633 +}
  1.5634 +
  1.5635 +
  1.5636 +/*
  1.5637 +** The root page is overfull
  1.5638 +**
  1.5639 +** When this happens, Create a new child page and copy the
  1.5640 +** contents of the root into the child.  Then make the root
  1.5641 +** page an empty page with rightChild pointing to the new
  1.5642 +** child.   Finally, call balance_internal() on the new child
  1.5643 +** to cause it to split.
  1.5644 +*/
  1.5645 +static int balance_deeper(MemPage *pPage){
  1.5646 +  int rc;             /* Return value from subprocedures */
  1.5647 +  MemPage *pChild;    /* Pointer to a new child page */
  1.5648 +  Pgno pgnoChild;     /* Page number of the new child page */
  1.5649 +  BtShared *pBt;         /* The BTree */
  1.5650 +  int usableSize;     /* Total usable size of a page */
  1.5651 +  u8 *data;           /* Content of the parent page */
  1.5652 +  u8 *cdata;          /* Content of the child page */
  1.5653 +  int hdr;            /* Offset to page header in parent */
  1.5654 +  int brk;            /* Offset to content of first cell in parent */
  1.5655 +
  1.5656 +  assert( pPage->pParent==0 );
  1.5657 +  assert( pPage->nOverflow>0 );
  1.5658 +  pBt = pPage->pBt;
  1.5659 +  assert( sqlite3_mutex_held(pBt->mutex) );
  1.5660 +  rc = allocateBtreePage(pBt, &pChild, &pgnoChild, pPage->pgno, 0);
  1.5661 +  if( rc ) return rc;
  1.5662 +  assert( sqlite3PagerIswriteable(pChild->pDbPage) );
  1.5663 +  usableSize = pBt->usableSize;
  1.5664 +  data = pPage->aData;
  1.5665 +  hdr = pPage->hdrOffset;
  1.5666 +  brk = get2byte(&data[hdr+5]);
  1.5667 +  cdata = pChild->aData;
  1.5668 +  memcpy(cdata, &data[hdr], pPage->cellOffset+2*pPage->nCell-hdr);
  1.5669 +  memcpy(&cdata[brk], &data[brk], usableSize-brk);
  1.5670 +  if( pChild->isInit ) return SQLITE_CORRUPT;
  1.5671 +  rc = sqlite3BtreeInitPage(pChild, pPage);
  1.5672 +  if( rc ) goto balancedeeper_out;
  1.5673 +  memcpy(pChild->aOvfl, pPage->aOvfl, pPage->nOverflow*sizeof(pPage->aOvfl[0]));
  1.5674 +  pChild->nOverflow = pPage->nOverflow;
  1.5675 +  if( pChild->nOverflow ){
  1.5676 +    pChild->nFree = 0;
  1.5677 +  }
  1.5678 +  assert( pChild->nCell==pPage->nCell );
  1.5679 +  zeroPage(pPage, pChild->aData[0] & ~PTF_LEAF);
  1.5680 +  put4byte(&pPage->aData[pPage->hdrOffset+8], pgnoChild);
  1.5681 +  TRACE(("BALANCE: copy root %d into %d\n", pPage->pgno, pChild->pgno));
  1.5682 +  if( ISAUTOVACUUM ){
  1.5683 +    int i;
  1.5684 +    rc = ptrmapPut(pBt, pChild->pgno, PTRMAP_BTREE, pPage->pgno);
  1.5685 +    if( rc ) goto balancedeeper_out;
  1.5686 +    for(i=0; i<pChild->nCell; i++){
  1.5687 +      rc = ptrmapPutOvfl(pChild, i);
  1.5688 +      if( rc!=SQLITE_OK ){
  1.5689 +        goto balancedeeper_out;
  1.5690 +      }
  1.5691 +    }
  1.5692 +    rc = reparentChildPages(pChild, 1);
  1.5693 +  }
  1.5694 +  if( rc==SQLITE_OK ){
  1.5695 +    rc = balance_nonroot(pChild);
  1.5696 +  }
  1.5697 +
  1.5698 +balancedeeper_out:
  1.5699 +  releasePage(pChild);
  1.5700 +  return rc;
  1.5701 +}
  1.5702 +
  1.5703 +/*
  1.5704 +** Decide if the page pPage needs to be balanced.  If balancing is
  1.5705 +** required, call the appropriate balancing routine.
  1.5706 +*/
  1.5707 +static int balance(MemPage *pPage, int insert){
  1.5708 +  int rc = SQLITE_OK;
  1.5709 +  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  1.5710 +  if( pPage->pParent==0 ){
  1.5711 +    rc = sqlite3PagerWrite(pPage->pDbPage);
  1.5712 +    if( rc==SQLITE_OK && pPage->nOverflow>0 ){
  1.5713 +      rc = balance_deeper(pPage);
  1.5714 +    }
  1.5715 +    if( rc==SQLITE_OK && pPage->nCell==0 ){
  1.5716 +      rc = balance_shallower(pPage);
  1.5717 +    }
  1.5718 +  }else{
  1.5719 +    if( pPage->nOverflow>0 || 
  1.5720 +        (!insert && pPage->nFree>pPage->pBt->usableSize*2/3) ){
  1.5721 +      rc = balance_nonroot(pPage);
  1.5722 +    }
  1.5723 +  }
  1.5724 +  return rc;
  1.5725 +}
  1.5726 +
  1.5727 +/*
  1.5728 +** This routine checks all cursors that point to table pgnoRoot.
  1.5729 +** If any of those cursors were opened with wrFlag==0 in a different
  1.5730 +** database connection (a database connection that shares the pager
  1.5731 +** cache with the current connection) and that other connection 
  1.5732 +** is not in the ReadUncommmitted state, then this routine returns 
  1.5733 +** SQLITE_LOCKED.
  1.5734 +**
  1.5735 +** As well as cursors with wrFlag==0, cursors with wrFlag==1 and 
  1.5736 +** isIncrblobHandle==1 are also considered 'read' cursors. Incremental 
  1.5737 +** blob cursors are used for both reading and writing.
  1.5738 +**
  1.5739 +** When pgnoRoot is the root page of an intkey table, this function is also
  1.5740 +** responsible for invalidating incremental blob cursors when the table row
  1.5741 +** on which they are opened is deleted or modified. Cursors are invalidated
  1.5742 +** according to the following rules:
  1.5743 +**
  1.5744 +**   1) When BtreeClearTable() is called to completely delete the contents
  1.5745 +**      of a B-Tree table, pExclude is set to zero and parameter iRow is 
  1.5746 +**      set to non-zero. In this case all incremental blob cursors open
  1.5747 +**      on the table rooted at pgnoRoot are invalidated.
  1.5748 +**
  1.5749 +**   2) When BtreeInsert(), BtreeDelete() or BtreePutData() is called to 
  1.5750 +**      modify a table row via an SQL statement, pExclude is set to the 
  1.5751 +**      write cursor used to do the modification and parameter iRow is set
  1.5752 +**      to the integer row id of the B-Tree entry being modified. Unless
  1.5753 +**      pExclude is itself an incremental blob cursor, then all incremental
  1.5754 +**      blob cursors open on row iRow of the B-Tree are invalidated.
  1.5755 +**
  1.5756 +**   3) If both pExclude and iRow are set to zero, no incremental blob 
  1.5757 +**      cursors are invalidated.
  1.5758 +*/
  1.5759 +static int checkReadLocks(
  1.5760 +  Btree *pBtree, 
  1.5761 +  Pgno pgnoRoot, 
  1.5762 +  BtCursor *pExclude,
  1.5763 +  i64 iRow
  1.5764 +){
  1.5765 +  BtCursor *p;
  1.5766 +  BtShared *pBt = pBtree->pBt;
  1.5767 +  sqlite3 *db = pBtree->db;
  1.5768 +  assert( sqlite3BtreeHoldsMutex(pBtree) );
  1.5769 +  for(p=pBt->pCursor; p; p=p->pNext){
  1.5770 +    if( p==pExclude ) continue;
  1.5771 +    if( p->pgnoRoot!=pgnoRoot ) continue;
  1.5772 +#ifndef SQLITE_OMIT_INCRBLOB
  1.5773 +    if( p->isIncrblobHandle && ( 
  1.5774 +         (!pExclude && iRow)
  1.5775 +      || (pExclude && !pExclude->isIncrblobHandle && p->info.nKey==iRow)
  1.5776 +    )){
  1.5777 +      p->eState = CURSOR_INVALID;
  1.5778 +    }
  1.5779 +#endif
  1.5780 +    if( p->eState!=CURSOR_VALID ) continue;
  1.5781 +    if( p->wrFlag==0 
  1.5782 +#ifndef SQLITE_OMIT_INCRBLOB
  1.5783 +     || p->isIncrblobHandle
  1.5784 +#endif
  1.5785 +    ){
  1.5786 +      sqlite3 *dbOther = p->pBtree->db;
  1.5787 +      if( dbOther==0 ||
  1.5788 +         (dbOther!=db && (dbOther->flags & SQLITE_ReadUncommitted)==0) ){
  1.5789 +        return SQLITE_LOCKED;
  1.5790 +      }
  1.5791 +    }
  1.5792 +  }
  1.5793 +  return SQLITE_OK;
  1.5794 +}
  1.5795 +
  1.5796 +/*
  1.5797 +** Insert a new record into the BTree.  The key is given by (pKey,nKey)
  1.5798 +** and the data is given by (pData,nData).  The cursor is used only to
  1.5799 +** define what table the record should be inserted into.  The cursor
  1.5800 +** is left pointing at a random location.
  1.5801 +**
  1.5802 +** For an INTKEY table, only the nKey value of the key is used.  pKey is
  1.5803 +** ignored.  For a ZERODATA table, the pData and nData are both ignored.
  1.5804 +*/
  1.5805 +int sqlite3BtreeInsert(
  1.5806 +  BtCursor *pCur,                /* Insert data into the table of this cursor */
  1.5807 +  const void *pKey, i64 nKey,    /* The key of the new record */
  1.5808 +  const void *pData, int nData,  /* The data of the new record */
  1.5809 +  int nZero,                     /* Number of extra 0 bytes to append to data */
  1.5810 +  int appendBias                 /* True if this is likely an append */
  1.5811 +){
  1.5812 +  int rc;
  1.5813 +  int loc;
  1.5814 +  int szNew;
  1.5815 +  MemPage *pPage;
  1.5816 +  Btree *p = pCur->pBtree;
  1.5817 +  BtShared *pBt = p->pBt;
  1.5818 +  unsigned char *oldCell;
  1.5819 +  unsigned char *newCell = 0;
  1.5820 +
  1.5821 +  assert( cursorHoldsMutex(pCur) );
  1.5822 +  if( pBt->inTransaction!=TRANS_WRITE ){
  1.5823 +    /* Must start a transaction before doing an insert */
  1.5824 +    rc = pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
  1.5825 +    return rc;
  1.5826 +  }
  1.5827 +  assert( !pBt->readOnly );
  1.5828 +  if( !pCur->wrFlag ){
  1.5829 +    return SQLITE_PERM;   /* Cursor not open for writing */
  1.5830 +  }
  1.5831 +  if( checkReadLocks(pCur->pBtree, pCur->pgnoRoot, pCur, nKey) ){
  1.5832 +    return SQLITE_LOCKED; /* The table pCur points to has a read lock */
  1.5833 +  }
  1.5834 +  if( pCur->eState==CURSOR_FAULT ){
  1.5835 +    return pCur->skip;
  1.5836 +  }
  1.5837 +
  1.5838 +  /* Save the positions of any other cursors open on this table */
  1.5839 +  clearCursorPosition(pCur);
  1.5840 +  if( 
  1.5841 +    SQLITE_OK!=(rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur)) ||
  1.5842 +    SQLITE_OK!=(rc = sqlite3BtreeMoveto(pCur, pKey, 0, nKey, appendBias, &loc))
  1.5843 +  ){
  1.5844 +    return rc;
  1.5845 +  }
  1.5846 +
  1.5847 +  pPage = pCur->pPage;
  1.5848 +  assert( pPage->intKey || nKey>=0 );
  1.5849 +  assert( pPage->leaf || !pPage->intKey );
  1.5850 +  TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
  1.5851 +          pCur->pgnoRoot, nKey, nData, pPage->pgno,
  1.5852 +          loc==0 ? "overwrite" : "new entry"));
  1.5853 +  assert( pPage->isInit );
  1.5854 +  allocateTempSpace(pBt);
  1.5855 +  newCell = pBt->pTmpSpace;
  1.5856 +  if( newCell==0 ) return SQLITE_NOMEM;
  1.5857 +  rc = fillInCell(pPage, newCell, pKey, nKey, pData, nData, nZero, &szNew);
  1.5858 +  if( rc ) goto end_insert;
  1.5859 +  assert( szNew==cellSizePtr(pPage, newCell) );
  1.5860 +  assert( szNew<=MX_CELL_SIZE(pBt) );
  1.5861 +  if( loc==0 && CURSOR_VALID==pCur->eState ){
  1.5862 +    u16 szOld;
  1.5863 +    assert( pCur->idx>=0 && pCur->idx<pPage->nCell );
  1.5864 +    rc = sqlite3PagerWrite(pPage->pDbPage);
  1.5865 +    if( rc ){
  1.5866 +      goto end_insert;
  1.5867 +    }
  1.5868 +    oldCell = findCell(pPage, pCur->idx);
  1.5869 +    if( !pPage->leaf ){
  1.5870 +      memcpy(newCell, oldCell, 4);
  1.5871 +    }
  1.5872 +    szOld = cellSizePtr(pPage, oldCell);
  1.5873 +    rc = clearCell(pPage, oldCell);
  1.5874 +    if( rc ) goto end_insert;
  1.5875 +    dropCell(pPage, pCur->idx, szOld);
  1.5876 +  }else if( loc<0 && pPage->nCell>0 ){
  1.5877 +    assert( pPage->leaf );
  1.5878 +    pCur->idx++;
  1.5879 +    pCur->info.nSize = 0;
  1.5880 +    pCur->validNKey = 0;
  1.5881 +  }else{
  1.5882 +    assert( pPage->leaf );
  1.5883 +  }
  1.5884 +  rc = insertCell(pPage, pCur->idx, newCell, szNew, 0, 0);
  1.5885 +  if( rc!=SQLITE_OK ) goto end_insert;
  1.5886 +  rc = balance(pPage, 1);
  1.5887 +  if( rc==SQLITE_OK ){
  1.5888 +    moveToRoot(pCur);
  1.5889 +  }
  1.5890 +end_insert:
  1.5891 +  return rc;
  1.5892 +}
  1.5893 +
  1.5894 +/*
  1.5895 +** Delete the entry that the cursor is pointing to.  The cursor
  1.5896 +** is left pointing at a random location.
  1.5897 +*/
  1.5898 +int sqlite3BtreeDelete(BtCursor *pCur){
  1.5899 +  MemPage *pPage = pCur->pPage;
  1.5900 +  unsigned char *pCell;
  1.5901 +  int rc;
  1.5902 +  Pgno pgnoChild = 0;
  1.5903 +  Btree *p = pCur->pBtree;
  1.5904 +  BtShared *pBt = p->pBt;
  1.5905 +
  1.5906 +  assert( cursorHoldsMutex(pCur) );
  1.5907 +  assert( pPage->isInit );
  1.5908 +  if( pBt->inTransaction!=TRANS_WRITE ){
  1.5909 +    /* Must start a transaction before doing a delete */
  1.5910 +    rc = pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
  1.5911 +    return rc;
  1.5912 +  }
  1.5913 +  assert( !pBt->readOnly );
  1.5914 +  if( pCur->eState==CURSOR_FAULT ){
  1.5915 +    return pCur->skip;
  1.5916 +  }
  1.5917 +  if( pCur->idx >= pPage->nCell ){
  1.5918 +    return SQLITE_ERROR;  /* The cursor is not pointing to anything */
  1.5919 +  }
  1.5920 +  if( !pCur->wrFlag ){
  1.5921 +    return SQLITE_PERM;   /* Did not open this cursor for writing */
  1.5922 +  }
  1.5923 +  if( checkReadLocks(pCur->pBtree, pCur->pgnoRoot, pCur, pCur->info.nKey) ){
  1.5924 +    return SQLITE_LOCKED; /* The table pCur points to has a read lock */
  1.5925 +  }
  1.5926 +
  1.5927 +  /* Restore the current cursor position (a no-op if the cursor is not in 
  1.5928 +  ** CURSOR_REQUIRESEEK state) and save the positions of any other cursors 
  1.5929 +  ** open on the same table. Then call sqlite3PagerWrite() on the page
  1.5930 +  ** that the entry will be deleted from.
  1.5931 +  */
  1.5932 +  if( 
  1.5933 +    (rc = restoreCursorPosition(pCur))!=0 ||
  1.5934 +    (rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur))!=0 ||
  1.5935 +    (rc = sqlite3PagerWrite(pPage->pDbPage))!=0
  1.5936 +  ){
  1.5937 +    return rc;
  1.5938 +  }
  1.5939 +
  1.5940 +  /* Locate the cell within its page and leave pCell pointing to the
  1.5941 +  ** data. The clearCell() call frees any overflow pages associated with the
  1.5942 +  ** cell. The cell itself is still intact.
  1.5943 +  */
  1.5944 +  pCell = findCell(pPage, pCur->idx);
  1.5945 +  if( !pPage->leaf ){
  1.5946 +    pgnoChild = get4byte(pCell);
  1.5947 +  }
  1.5948 +  rc = clearCell(pPage, pCell);
  1.5949 +  if( rc ){
  1.5950 +    return rc;
  1.5951 +  }
  1.5952 +
  1.5953 +  if( !pPage->leaf ){
  1.5954 +    /*
  1.5955 +    ** The entry we are about to delete is not a leaf so if we do not
  1.5956 +    ** do something we will leave a hole on an internal page.
  1.5957 +    ** We have to fill the hole by moving in a cell from a leaf.  The
  1.5958 +    ** next Cell after the one to be deleted is guaranteed to exist and
  1.5959 +    ** to be a leaf so we can use it.
  1.5960 +    */
  1.5961 +    BtCursor leafCur;
  1.5962 +    unsigned char *pNext;
  1.5963 +    int notUsed;
  1.5964 +    unsigned char *tempCell = 0;
  1.5965 +    assert( !pPage->intKey );
  1.5966 +    sqlite3BtreeGetTempCursor(pCur, &leafCur);
  1.5967 +    rc = sqlite3BtreeNext(&leafCur, &notUsed);
  1.5968 +    if( rc==SQLITE_OK ){
  1.5969 +      rc = sqlite3PagerWrite(leafCur.pPage->pDbPage);
  1.5970 +    }
  1.5971 +    if( rc==SQLITE_OK ){
  1.5972 +      u16 szNext;
  1.5973 +      TRACE(("DELETE: table=%d delete internal from %d replace from leaf %d\n",
  1.5974 +         pCur->pgnoRoot, pPage->pgno, leafCur.pPage->pgno));
  1.5975 +      dropCell(pPage, pCur->idx, cellSizePtr(pPage, pCell));
  1.5976 +      pNext = findCell(leafCur.pPage, leafCur.idx);
  1.5977 +      szNext = cellSizePtr(leafCur.pPage, pNext);
  1.5978 +      assert( MX_CELL_SIZE(pBt)>=szNext+4 );
  1.5979 +      allocateTempSpace(pBt);
  1.5980 +      tempCell = pBt->pTmpSpace;
  1.5981 +      if( tempCell==0 ){
  1.5982 +        rc = SQLITE_NOMEM;
  1.5983 +      }
  1.5984 +      if( rc==SQLITE_OK ){
  1.5985 +        rc = insertCell(pPage, pCur->idx, pNext-4, szNext+4, tempCell, 0);
  1.5986 +      }
  1.5987 +      if( rc==SQLITE_OK ){
  1.5988 +        put4byte(findOverflowCell(pPage, pCur->idx), pgnoChild);
  1.5989 +        rc = balance(pPage, 0);
  1.5990 +      }
  1.5991 +      if( rc==SQLITE_OK ){
  1.5992 +        dropCell(leafCur.pPage, leafCur.idx, szNext);
  1.5993 +        rc = balance(leafCur.pPage, 0);
  1.5994 +      }
  1.5995 +    }
  1.5996 +    sqlite3BtreeReleaseTempCursor(&leafCur);
  1.5997 +  }else{
  1.5998 +    TRACE(("DELETE: table=%d delete from leaf %d\n",
  1.5999 +       pCur->pgnoRoot, pPage->pgno));
  1.6000 +    dropCell(pPage, pCur->idx, cellSizePtr(pPage, pCell));
  1.6001 +    rc = balance(pPage, 0);
  1.6002 +  }
  1.6003 +  if( rc==SQLITE_OK ){
  1.6004 +    moveToRoot(pCur);
  1.6005 +  }
  1.6006 +  return rc;
  1.6007 +}
  1.6008 +
  1.6009 +/*
  1.6010 +** Create a new BTree table.  Write into *piTable the page
  1.6011 +** number for the root page of the new table.
  1.6012 +**
  1.6013 +** The type of type is determined by the flags parameter.  Only the
  1.6014 +** following values of flags are currently in use.  Other values for
  1.6015 +** flags might not work:
  1.6016 +**
  1.6017 +**     BTREE_INTKEY|BTREE_LEAFDATA     Used for SQL tables with rowid keys
  1.6018 +**     BTREE_ZERODATA                  Used for SQL indices
  1.6019 +*/
  1.6020 +static int btreeCreateTable(Btree *p, int *piTable, int flags){
  1.6021 +  BtShared *pBt = p->pBt;
  1.6022 +  MemPage *pRoot;
  1.6023 +  Pgno pgnoRoot;
  1.6024 +  int rc;
  1.6025 +
  1.6026 +  assert( sqlite3BtreeHoldsMutex(p) );
  1.6027 +  if( pBt->inTransaction!=TRANS_WRITE ){
  1.6028 +    /* Must start a transaction first */
  1.6029 +    rc = pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
  1.6030 +    return rc;
  1.6031 +  }
  1.6032 +  assert( !pBt->readOnly );
  1.6033 +
  1.6034 +#ifdef SQLITE_OMIT_AUTOVACUUM
  1.6035 +  rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
  1.6036 +  if( rc ){
  1.6037 +    return rc;
  1.6038 +  }
  1.6039 +#else
  1.6040 +  if( pBt->autoVacuum ){
  1.6041 +    Pgno pgnoMove;      /* Move a page here to make room for the root-page */
  1.6042 +    MemPage *pPageMove; /* The page to move to. */
  1.6043 +
  1.6044 +    /* Creating a new table may probably require moving an existing database
  1.6045 +    ** to make room for the new tables root page. In case this page turns
  1.6046 +    ** out to be an overflow page, delete all overflow page-map caches
  1.6047 +    ** held by open cursors.
  1.6048 +    */
  1.6049 +    invalidateAllOverflowCache(pBt);
  1.6050 +
  1.6051 +    /* Read the value of meta[3] from the database to determine where the
  1.6052 +    ** root page of the new table should go. meta[3] is the largest root-page
  1.6053 +    ** created so far, so the new root-page is (meta[3]+1).
  1.6054 +    */
  1.6055 +    rc = sqlite3BtreeGetMeta(p, 4, &pgnoRoot);
  1.6056 +    if( rc!=SQLITE_OK ){
  1.6057 +      return rc;
  1.6058 +    }
  1.6059 +    pgnoRoot++;
  1.6060 +
  1.6061 +    /* The new root-page may not be allocated on a pointer-map page, or the
  1.6062 +    ** PENDING_BYTE page.
  1.6063 +    */
  1.6064 +    while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) ||
  1.6065 +        pgnoRoot==PENDING_BYTE_PAGE(pBt) ){
  1.6066 +      pgnoRoot++;
  1.6067 +    }
  1.6068 +    assert( pgnoRoot>=3 );
  1.6069 +
  1.6070 +    /* Allocate a page. The page that currently resides at pgnoRoot will
  1.6071 +    ** be moved to the allocated page (unless the allocated page happens
  1.6072 +    ** to reside at pgnoRoot).
  1.6073 +    */
  1.6074 +    rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, 1);
  1.6075 +    if( rc!=SQLITE_OK ){
  1.6076 +      return rc;
  1.6077 +    }
  1.6078 +
  1.6079 +    if( pgnoMove!=pgnoRoot ){
  1.6080 +      /* pgnoRoot is the page that will be used for the root-page of
  1.6081 +      ** the new table (assuming an error did not occur). But we were
  1.6082 +      ** allocated pgnoMove. If required (i.e. if it was not allocated
  1.6083 +      ** by extending the file), the current page at position pgnoMove
  1.6084 +      ** is already journaled.
  1.6085 +      */
  1.6086 +      u8 eType;
  1.6087 +      Pgno iPtrPage;
  1.6088 +
  1.6089 +      releasePage(pPageMove);
  1.6090 +
  1.6091 +      /* Move the page currently at pgnoRoot to pgnoMove. */
  1.6092 +      rc = sqlite3BtreeGetPage(pBt, pgnoRoot, &pRoot, 0);
  1.6093 +      if( rc!=SQLITE_OK ){
  1.6094 +        return rc;
  1.6095 +      }
  1.6096 +      rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
  1.6097 +      if( rc!=SQLITE_OK || eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
  1.6098 +        releasePage(pRoot);
  1.6099 +        return rc;
  1.6100 +      }
  1.6101 +      assert( eType!=PTRMAP_ROOTPAGE );
  1.6102 +      assert( eType!=PTRMAP_FREEPAGE );
  1.6103 +      rc = sqlite3PagerWrite(pRoot->pDbPage);
  1.6104 +      if( rc!=SQLITE_OK ){
  1.6105 +        releasePage(pRoot);
  1.6106 +        return rc;
  1.6107 +      }
  1.6108 +      rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0);
  1.6109 +      releasePage(pRoot);
  1.6110 +
  1.6111 +      /* Obtain the page at pgnoRoot */
  1.6112 +      if( rc!=SQLITE_OK ){
  1.6113 +        return rc;
  1.6114 +      }
  1.6115 +      rc = sqlite3BtreeGetPage(pBt, pgnoRoot, &pRoot, 0);
  1.6116 +      if( rc!=SQLITE_OK ){
  1.6117 +        return rc;
  1.6118 +      }
  1.6119 +      rc = sqlite3PagerWrite(pRoot->pDbPage);
  1.6120 +      if( rc!=SQLITE_OK ){
  1.6121 +        releasePage(pRoot);
  1.6122 +        return rc;
  1.6123 +      }
  1.6124 +    }else{
  1.6125 +      pRoot = pPageMove;
  1.6126 +    } 
  1.6127 +
  1.6128 +    /* Update the pointer-map and meta-data with the new root-page number. */
  1.6129 +    rc = ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0);
  1.6130 +    if( rc ){
  1.6131 +      releasePage(pRoot);
  1.6132 +      return rc;
  1.6133 +    }
  1.6134 +    rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot);
  1.6135 +    if( rc ){
  1.6136 +      releasePage(pRoot);
  1.6137 +      return rc;
  1.6138 +    }
  1.6139 +
  1.6140 +  }else{
  1.6141 +    rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
  1.6142 +    if( rc ) return rc;
  1.6143 +  }
  1.6144 +#endif
  1.6145 +  assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
  1.6146 +  zeroPage(pRoot, flags | PTF_LEAF);
  1.6147 +  sqlite3PagerUnref(pRoot->pDbPage);
  1.6148 +  *piTable = (int)pgnoRoot;
  1.6149 +  return SQLITE_OK;
  1.6150 +}
  1.6151 +int sqlite3BtreeCreateTable(Btree *p, int *piTable, int flags){
  1.6152 +  int rc;
  1.6153 +  sqlite3BtreeEnter(p);
  1.6154 +  p->pBt->db = p->db;
  1.6155 +  rc = btreeCreateTable(p, piTable, flags);
  1.6156 +  sqlite3BtreeLeave(p);
  1.6157 +  return rc;
  1.6158 +}
  1.6159 +
  1.6160 +/*
  1.6161 +** Erase the given database page and all its children.  Return
  1.6162 +** the page to the freelist.
  1.6163 +*/
  1.6164 +static int clearDatabasePage(
  1.6165 +  BtShared *pBt,           /* The BTree that contains the table */
  1.6166 +  Pgno pgno,            /* Page number to clear */
  1.6167 +  MemPage *pParent,     /* Parent page.  NULL for the root */
  1.6168 +  int freePageFlag      /* Deallocate page if true */
  1.6169 +){
  1.6170 +  MemPage *pPage = 0;
  1.6171 +  int rc;
  1.6172 +  unsigned char *pCell;
  1.6173 +  int i;
  1.6174 +
  1.6175 +  assert( sqlite3_mutex_held(pBt->mutex) );
  1.6176 +  if( pgno>pagerPagecount(pBt->pPager) ){
  1.6177 +    return SQLITE_CORRUPT_BKPT;
  1.6178 +  }
  1.6179 +
  1.6180 +  rc = getAndInitPage(pBt, pgno, &pPage, pParent);
  1.6181 +  if( rc ) goto cleardatabasepage_out;
  1.6182 +  for(i=0; i<pPage->nCell; i++){
  1.6183 +    pCell = findCell(pPage, i);
  1.6184 +    if( !pPage->leaf ){
  1.6185 +      rc = clearDatabasePage(pBt, get4byte(pCell), pPage->pParent, 1);
  1.6186 +      if( rc ) goto cleardatabasepage_out;
  1.6187 +    }
  1.6188 +    rc = clearCell(pPage, pCell);
  1.6189 +    if( rc ) goto cleardatabasepage_out;
  1.6190 +  }
  1.6191 +  if( !pPage->leaf ){
  1.6192 +    rc = clearDatabasePage(pBt, get4byte(&pPage->aData[8]), pPage->pParent, 1);
  1.6193 +    if( rc ) goto cleardatabasepage_out;
  1.6194 +  }
  1.6195 +  if( freePageFlag ){
  1.6196 +    rc = freePage(pPage);
  1.6197 +  }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){
  1.6198 +    zeroPage(pPage, pPage->aData[0] | PTF_LEAF);
  1.6199 +  }
  1.6200 +
  1.6201 +cleardatabasepage_out:
  1.6202 +  releasePage(pPage);
  1.6203 +  return rc;
  1.6204 +}
  1.6205 +
  1.6206 +/*
  1.6207 +** Delete all information from a single table in the database.  iTable is
  1.6208 +** the page number of the root of the table.  After this routine returns,
  1.6209 +** the root page is empty, but still exists.
  1.6210 +**
  1.6211 +** This routine will fail with SQLITE_LOCKED if there are any open
  1.6212 +** read cursors on the table.  Open write cursors are moved to the
  1.6213 +** root of the table.
  1.6214 +*/
  1.6215 +int sqlite3BtreeClearTable(Btree *p, int iTable){
  1.6216 +  int rc;
  1.6217 +  BtShared *pBt = p->pBt;
  1.6218 +  sqlite3BtreeEnter(p);
  1.6219 +  pBt->db = p->db;
  1.6220 +  if( p->inTrans!=TRANS_WRITE ){
  1.6221 +    rc = pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
  1.6222 +  }else if( (rc = checkReadLocks(p, iTable, 0, 1))!=SQLITE_OK ){
  1.6223 +    /* nothing to do */
  1.6224 +  }else if( SQLITE_OK!=(rc = saveAllCursors(pBt, iTable, 0)) ){
  1.6225 +    /* nothing to do */
  1.6226 +  }else{
  1.6227 +    rc = clearDatabasePage(pBt, (Pgno)iTable, 0, 0);
  1.6228 +  }
  1.6229 +  sqlite3BtreeLeave(p);
  1.6230 +  return rc;
  1.6231 +}
  1.6232 +
  1.6233 +/*
  1.6234 +** Erase all information in a table and add the root of the table to
  1.6235 +** the freelist.  Except, the root of the principle table (the one on
  1.6236 +** page 1) is never added to the freelist.
  1.6237 +**
  1.6238 +** This routine will fail with SQLITE_LOCKED if there are any open
  1.6239 +** cursors on the table.
  1.6240 +**
  1.6241 +** If AUTOVACUUM is enabled and the page at iTable is not the last
  1.6242 +** root page in the database file, then the last root page 
  1.6243 +** in the database file is moved into the slot formerly occupied by
  1.6244 +** iTable and that last slot formerly occupied by the last root page
  1.6245 +** is added to the freelist instead of iTable.  In this say, all
  1.6246 +** root pages are kept at the beginning of the database file, which
  1.6247 +** is necessary for AUTOVACUUM to work right.  *piMoved is set to the 
  1.6248 +** page number that used to be the last root page in the file before
  1.6249 +** the move.  If no page gets moved, *piMoved is set to 0.
  1.6250 +** The last root page is recorded in meta[3] and the value of
  1.6251 +** meta[3] is updated by this procedure.
  1.6252 +*/
  1.6253 +static int btreeDropTable(Btree *p, int iTable, int *piMoved){
  1.6254 +  int rc;
  1.6255 +  MemPage *pPage = 0;
  1.6256 +  BtShared *pBt = p->pBt;
  1.6257 +
  1.6258 +  assert( sqlite3BtreeHoldsMutex(p) );
  1.6259 +  if( p->inTrans!=TRANS_WRITE ){
  1.6260 +    return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
  1.6261 +  }
  1.6262 +
  1.6263 +  /* It is illegal to drop a table if any cursors are open on the
  1.6264 +  ** database. This is because in auto-vacuum mode the backend may
  1.6265 +  ** need to move another root-page to fill a gap left by the deleted
  1.6266 +  ** root page. If an open cursor was using this page a problem would 
  1.6267 +  ** occur.
  1.6268 +  */
  1.6269 +  if( pBt->pCursor ){
  1.6270 +    return SQLITE_LOCKED;
  1.6271 +  }
  1.6272 +
  1.6273 +  rc = sqlite3BtreeGetPage(pBt, (Pgno)iTable, &pPage, 0);
  1.6274 +  if( rc ) return rc;
  1.6275 +  rc = sqlite3BtreeClearTable(p, iTable);
  1.6276 +  if( rc ){
  1.6277 +    releasePage(pPage);
  1.6278 +    return rc;
  1.6279 +  }
  1.6280 +
  1.6281 +  *piMoved = 0;
  1.6282 +
  1.6283 +  if( iTable>1 ){
  1.6284 +#ifdef SQLITE_OMIT_AUTOVACUUM
  1.6285 +    rc = freePage(pPage);
  1.6286 +    releasePage(pPage);
  1.6287 +#else
  1.6288 +    if( pBt->autoVacuum ){
  1.6289 +      Pgno maxRootPgno;
  1.6290 +      rc = sqlite3BtreeGetMeta(p, 4, &maxRootPgno);
  1.6291 +      if( rc!=SQLITE_OK ){
  1.6292 +        releasePage(pPage);
  1.6293 +        return rc;
  1.6294 +      }
  1.6295 +
  1.6296 +      if( iTable==maxRootPgno ){
  1.6297 +        /* If the table being dropped is the table with the largest root-page
  1.6298 +        ** number in the database, put the root page on the free list. 
  1.6299 +        */
  1.6300 +        rc = freePage(pPage);
  1.6301 +        releasePage(pPage);
  1.6302 +        if( rc!=SQLITE_OK ){
  1.6303 +          return rc;
  1.6304 +        }
  1.6305 +      }else{
  1.6306 +        /* The table being dropped does not have the largest root-page
  1.6307 +        ** number in the database. So move the page that does into the 
  1.6308 +        ** gap left by the deleted root-page.
  1.6309 +        */
  1.6310 +        MemPage *pMove;
  1.6311 +        releasePage(pPage);
  1.6312 +        rc = sqlite3BtreeGetPage(pBt, maxRootPgno, &pMove, 0);
  1.6313 +        if( rc!=SQLITE_OK ){
  1.6314 +          return rc;
  1.6315 +        }
  1.6316 +        rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0);
  1.6317 +        releasePage(pMove);
  1.6318 +        if( rc!=SQLITE_OK ){
  1.6319 +          return rc;
  1.6320 +        }
  1.6321 +        rc = sqlite3BtreeGetPage(pBt, maxRootPgno, &pMove, 0);
  1.6322 +        if( rc!=SQLITE_OK ){
  1.6323 +          return rc;
  1.6324 +        }
  1.6325 +        rc = freePage(pMove);
  1.6326 +        releasePage(pMove);
  1.6327 +        if( rc!=SQLITE_OK ){
  1.6328 +          return rc;
  1.6329 +        }
  1.6330 +        *piMoved = maxRootPgno;
  1.6331 +      }
  1.6332 +
  1.6333 +      /* Set the new 'max-root-page' value in the database header. This
  1.6334 +      ** is the old value less one, less one more if that happens to
  1.6335 +      ** be a root-page number, less one again if that is the
  1.6336 +      ** PENDING_BYTE_PAGE.
  1.6337 +      */
  1.6338 +      maxRootPgno--;
  1.6339 +      if( maxRootPgno==PENDING_BYTE_PAGE(pBt) ){
  1.6340 +        maxRootPgno--;
  1.6341 +      }
  1.6342 +      if( maxRootPgno==PTRMAP_PAGENO(pBt, maxRootPgno) ){
  1.6343 +        maxRootPgno--;
  1.6344 +      }
  1.6345 +      assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) );
  1.6346 +
  1.6347 +      rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno);
  1.6348 +    }else{
  1.6349 +      rc = freePage(pPage);
  1.6350 +      releasePage(pPage);
  1.6351 +    }
  1.6352 +#endif
  1.6353 +  }else{
  1.6354 +    /* If sqlite3BtreeDropTable was called on page 1. */
  1.6355 +    zeroPage(pPage, PTF_INTKEY|PTF_LEAF );
  1.6356 +    releasePage(pPage);
  1.6357 +  }
  1.6358 +  return rc;  
  1.6359 +}
  1.6360 +int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){
  1.6361 +  int rc;
  1.6362 +  sqlite3BtreeEnter(p);
  1.6363 +  p->pBt->db = p->db;
  1.6364 +  rc = btreeDropTable(p, iTable, piMoved);
  1.6365 +  sqlite3BtreeLeave(p);
  1.6366 +  return rc;
  1.6367 +}
  1.6368 +
  1.6369 +
  1.6370 +/*
  1.6371 +** Read the meta-information out of a database file.  Meta[0]
  1.6372 +** is the number of free pages currently in the database.  Meta[1]
  1.6373 +** through meta[15] are available for use by higher layers.  Meta[0]
  1.6374 +** is read-only, the others are read/write.
  1.6375 +** 
  1.6376 +** The schema layer numbers meta values differently.  At the schema
  1.6377 +** layer (and the SetCookie and ReadCookie opcodes) the number of
  1.6378 +** free pages is not visible.  So Cookie[0] is the same as Meta[1].
  1.6379 +*/
  1.6380 +int sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){
  1.6381 +  DbPage *pDbPage;
  1.6382 +  int rc;
  1.6383 +  unsigned char *pP1;
  1.6384 +  BtShared *pBt = p->pBt;
  1.6385 +
  1.6386 +  sqlite3BtreeEnter(p);
  1.6387 +  pBt->db = p->db;
  1.6388 +
  1.6389 +  /* Reading a meta-data value requires a read-lock on page 1 (and hence
  1.6390 +  ** the sqlite_master table. We grab this lock regardless of whether or
  1.6391 +  ** not the SQLITE_ReadUncommitted flag is set (the table rooted at page
  1.6392 +  ** 1 is treated as a special case by queryTableLock() and lockTable()).
  1.6393 +  */
  1.6394 +  rc = queryTableLock(p, 1, READ_LOCK);
  1.6395 +  if( rc!=SQLITE_OK ){
  1.6396 +    sqlite3BtreeLeave(p);
  1.6397 +    return rc;
  1.6398 +  }
  1.6399 +
  1.6400 +  assert( idx>=0 && idx<=15 );
  1.6401 +  rc = sqlite3PagerGet(pBt->pPager, 1, &pDbPage);
  1.6402 +  if( rc ){
  1.6403 +    sqlite3BtreeLeave(p);
  1.6404 +    return rc;
  1.6405 +  }
  1.6406 +  pP1 = (unsigned char *)sqlite3PagerGetData(pDbPage);
  1.6407 +  *pMeta = get4byte(&pP1[36 + idx*4]);
  1.6408 +  sqlite3PagerUnref(pDbPage);
  1.6409 +
  1.6410 +  /* If autovacuumed is disabled in this build but we are trying to 
  1.6411 +  ** access an autovacuumed database, then make the database readonly. 
  1.6412 +  */
  1.6413 +#ifdef SQLITE_OMIT_AUTOVACUUM
  1.6414 +  if( idx==4 && *pMeta>0 ) pBt->readOnly = 1;
  1.6415 +#endif
  1.6416 +
  1.6417 +  /* Grab the read-lock on page 1. */
  1.6418 +  rc = lockTable(p, 1, READ_LOCK);
  1.6419 +  sqlite3BtreeLeave(p);
  1.6420 +  return rc;
  1.6421 +}
  1.6422 +
  1.6423 +/*
  1.6424 +** Write meta-information back into the database.  Meta[0] is
  1.6425 +** read-only and may not be written.
  1.6426 +*/
  1.6427 +int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){
  1.6428 +  BtShared *pBt = p->pBt;
  1.6429 +  unsigned char *pP1;
  1.6430 +  int rc;
  1.6431 +  assert( idx>=1 && idx<=15 );
  1.6432 +  sqlite3BtreeEnter(p);
  1.6433 +  pBt->db = p->db;
  1.6434 +  if( p->inTrans!=TRANS_WRITE ){
  1.6435 +    rc = pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
  1.6436 +  }else{
  1.6437 +    assert( pBt->pPage1!=0 );
  1.6438 +    pP1 = pBt->pPage1->aData;
  1.6439 +    rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
  1.6440 +    if( rc==SQLITE_OK ){
  1.6441 +      put4byte(&pP1[36 + idx*4], iMeta);
  1.6442 +#ifndef SQLITE_OMIT_AUTOVACUUM
  1.6443 +      if( idx==7 ){
  1.6444 +        assert( pBt->autoVacuum || iMeta==0 );
  1.6445 +        assert( iMeta==0 || iMeta==1 );
  1.6446 +        pBt->incrVacuum = iMeta;
  1.6447 +      }
  1.6448 +#endif
  1.6449 +    }
  1.6450 +  }
  1.6451 +  sqlite3BtreeLeave(p);
  1.6452 +  return rc;
  1.6453 +}
  1.6454 +
  1.6455 +/*
  1.6456 +** Return the flag byte at the beginning of the page that the cursor
  1.6457 +** is currently pointing to.
  1.6458 +*/
  1.6459 +int sqlite3BtreeFlags(BtCursor *pCur){
  1.6460 +  /* TODO: What about CURSOR_REQUIRESEEK state? Probably need to call
  1.6461 +  ** restoreCursorPosition() here.
  1.6462 +  */
  1.6463 +  MemPage *pPage;
  1.6464 +  restoreCursorPosition(pCur);
  1.6465 +  pPage = pCur->pPage;
  1.6466 +  assert( cursorHoldsMutex(pCur) );
  1.6467 +  assert( pPage->pBt==pCur->pBt );
  1.6468 +  return pPage ? pPage->aData[pPage->hdrOffset] : 0;
  1.6469 +}
  1.6470 +
  1.6471 +
  1.6472 +/*
  1.6473 +** Return the pager associated with a BTree.  This routine is used for
  1.6474 +** testing and debugging only.
  1.6475 +*/
  1.6476 +Pager *sqlite3BtreePager(Btree *p){
  1.6477 +  return p->pBt->pPager;
  1.6478 +}
  1.6479 +
  1.6480 +#ifndef SQLITE_OMIT_INTEGRITY_CHECK
  1.6481 +/*
  1.6482 +** Append a message to the error message string.
  1.6483 +*/
  1.6484 +static void checkAppendMsg(
  1.6485 +  IntegrityCk *pCheck,
  1.6486 +  char *zMsg1,
  1.6487 +  const char *zFormat,
  1.6488 +  ...
  1.6489 +){
  1.6490 +  va_list ap;
  1.6491 +  if( !pCheck->mxErr ) return;
  1.6492 +  pCheck->mxErr--;
  1.6493 +  pCheck->nErr++;
  1.6494 +  va_start(ap, zFormat);
  1.6495 +  if( pCheck->errMsg.nChar ){
  1.6496 +    sqlite3StrAccumAppend(&pCheck->errMsg, "\n", 1);
  1.6497 +  }
  1.6498 +  if( zMsg1 ){
  1.6499 +    sqlite3StrAccumAppend(&pCheck->errMsg, zMsg1, -1);
  1.6500 +  }
  1.6501 +  sqlite3VXPrintf(&pCheck->errMsg, 1, zFormat, ap);
  1.6502 +  va_end(ap);
  1.6503 +  if( pCheck->errMsg.mallocFailed ){
  1.6504 +    pCheck->mallocFailed = 1;
  1.6505 +  }
  1.6506 +}
  1.6507 +#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
  1.6508 +
  1.6509 +#ifndef SQLITE_OMIT_INTEGRITY_CHECK
  1.6510 +/*
  1.6511 +** Add 1 to the reference count for page iPage.  If this is the second
  1.6512 +** reference to the page, add an error message to pCheck->zErrMsg.
  1.6513 +** Return 1 if there are 2 ore more references to the page and 0 if
  1.6514 +** if this is the first reference to the page.
  1.6515 +**
  1.6516 +** Also check that the page number is in bounds.
  1.6517 +*/
  1.6518 +static int checkRef(IntegrityCk *pCheck, int iPage, char *zContext){
  1.6519 +  if( iPage==0 ) return 1;
  1.6520 +  if( iPage>pCheck->nPage || iPage<0 ){
  1.6521 +    checkAppendMsg(pCheck, zContext, "invalid page number %d", iPage);
  1.6522 +    return 1;
  1.6523 +  }
  1.6524 +  if( pCheck->anRef[iPage]==1 ){
  1.6525 +    checkAppendMsg(pCheck, zContext, "2nd reference to page %d", iPage);
  1.6526 +    return 1;
  1.6527 +  }
  1.6528 +  return  (pCheck->anRef[iPage]++)>1;
  1.6529 +}
  1.6530 +
  1.6531 +#ifndef SQLITE_OMIT_AUTOVACUUM
  1.6532 +/*
  1.6533 +** Check that the entry in the pointer-map for page iChild maps to 
  1.6534 +** page iParent, pointer type ptrType. If not, append an error message
  1.6535 +** to pCheck.
  1.6536 +*/
  1.6537 +static void checkPtrmap(
  1.6538 +  IntegrityCk *pCheck,   /* Integrity check context */
  1.6539 +  Pgno iChild,           /* Child page number */
  1.6540 +  u8 eType,              /* Expected pointer map type */
  1.6541 +  Pgno iParent,          /* Expected pointer map parent page number */
  1.6542 +  char *zContext         /* Context description (used for error msg) */
  1.6543 +){
  1.6544 +  int rc;
  1.6545 +  u8 ePtrmapType;
  1.6546 +  Pgno iPtrmapParent;
  1.6547 +
  1.6548 +  rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent);
  1.6549 +  if( rc!=SQLITE_OK ){
  1.6550 +    checkAppendMsg(pCheck, zContext, "Failed to read ptrmap key=%d", iChild);
  1.6551 +    return;
  1.6552 +  }
  1.6553 +
  1.6554 +  if( ePtrmapType!=eType || iPtrmapParent!=iParent ){
  1.6555 +    checkAppendMsg(pCheck, zContext, 
  1.6556 +      "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)", 
  1.6557 +      iChild, eType, iParent, ePtrmapType, iPtrmapParent);
  1.6558 +  }
  1.6559 +}
  1.6560 +#endif
  1.6561 +
  1.6562 +/*
  1.6563 +** Check the integrity of the freelist or of an overflow page list.
  1.6564 +** Verify that the number of pages on the list is N.
  1.6565 +*/
  1.6566 +static void checkList(
  1.6567 +  IntegrityCk *pCheck,  /* Integrity checking context */
  1.6568 +  int isFreeList,       /* True for a freelist.  False for overflow page list */
  1.6569 +  int iPage,            /* Page number for first page in the list */
  1.6570 +  int N,                /* Expected number of pages in the list */
  1.6571 +  char *zContext        /* Context for error messages */
  1.6572 +){
  1.6573 +  int i;
  1.6574 +  int expected = N;
  1.6575 +  int iFirst = iPage;
  1.6576 +  while( N-- > 0 && pCheck->mxErr ){
  1.6577 +    DbPage *pOvflPage;
  1.6578 +    unsigned char *pOvflData;
  1.6579 +    if( iPage<1 ){
  1.6580 +      checkAppendMsg(pCheck, zContext,
  1.6581 +         "%d of %d pages missing from overflow list starting at %d",
  1.6582 +          N+1, expected, iFirst);
  1.6583 +      break;
  1.6584 +    }
  1.6585 +    if( checkRef(pCheck, iPage, zContext) ) break;
  1.6586 +    if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage) ){
  1.6587 +      checkAppendMsg(pCheck, zContext, "failed to get page %d", iPage);
  1.6588 +      break;
  1.6589 +    }
  1.6590 +    pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage);
  1.6591 +    if( isFreeList ){
  1.6592 +      int n = get4byte(&pOvflData[4]);
  1.6593 +#ifndef SQLITE_OMIT_AUTOVACUUM
  1.6594 +      if( pCheck->pBt->autoVacuum ){
  1.6595 +        checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0, zContext);
  1.6596 +      }
  1.6597 +#endif
  1.6598 +      if( n>pCheck->pBt->usableSize/4-2 ){
  1.6599 +        checkAppendMsg(pCheck, zContext,
  1.6600 +           "freelist leaf count too big on page %d", iPage);
  1.6601 +        N--;
  1.6602 +      }else{
  1.6603 +        for(i=0; i<n; i++){
  1.6604 +          Pgno iFreePage = get4byte(&pOvflData[8+i*4]);
  1.6605 +#ifndef SQLITE_OMIT_AUTOVACUUM
  1.6606 +          if( pCheck->pBt->autoVacuum ){
  1.6607 +            checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0, zContext);
  1.6608 +          }
  1.6609 +#endif
  1.6610 +          checkRef(pCheck, iFreePage, zContext);
  1.6611 +        }
  1.6612 +        N -= n;
  1.6613 +      }
  1.6614 +    }
  1.6615 +#ifndef SQLITE_OMIT_AUTOVACUUM
  1.6616 +    else{
  1.6617 +      /* If this database supports auto-vacuum and iPage is not the last
  1.6618 +      ** page in this overflow list, check that the pointer-map entry for
  1.6619 +      ** the following page matches iPage.
  1.6620 +      */
  1.6621 +      if( pCheck->pBt->autoVacuum && N>0 ){
  1.6622 +        i = get4byte(pOvflData);
  1.6623 +        checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage, zContext);
  1.6624 +      }
  1.6625 +    }
  1.6626 +#endif
  1.6627 +    iPage = get4byte(pOvflData);
  1.6628 +    sqlite3PagerUnref(pOvflPage);
  1.6629 +  }
  1.6630 +}
  1.6631 +#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
  1.6632 +
  1.6633 +#ifndef SQLITE_OMIT_INTEGRITY_CHECK
  1.6634 +/*
  1.6635 +** Do various sanity checks on a single page of a tree.  Return
  1.6636 +** the tree depth.  Root pages return 0.  Parents of root pages
  1.6637 +** return 1, and so forth.
  1.6638 +** 
  1.6639 +** These checks are done:
  1.6640 +**
  1.6641 +**      1.  Make sure that cells and freeblocks do not overlap
  1.6642 +**          but combine to completely cover the page.
  1.6643 +**  NO  2.  Make sure cell keys are in order.
  1.6644 +**  NO  3.  Make sure no key is less than or equal to zLowerBound.
  1.6645 +**  NO  4.  Make sure no key is greater than or equal to zUpperBound.
  1.6646 +**      5.  Check the integrity of overflow pages.
  1.6647 +**      6.  Recursively call checkTreePage on all children.
  1.6648 +**      7.  Verify that the depth of all children is the same.
  1.6649 +**      8.  Make sure this page is at least 33% full or else it is
  1.6650 +**          the root of the tree.
  1.6651 +*/
  1.6652 +static int checkTreePage(
  1.6653 +  IntegrityCk *pCheck,  /* Context for the sanity check */
  1.6654 +  int iPage,            /* Page number of the page to check */
  1.6655 +  MemPage *pParent,     /* Parent page */
  1.6656 +  char *zParentContext  /* Parent context */
  1.6657 +){
  1.6658 +  MemPage *pPage;
  1.6659 +  int i, rc, depth, d2, pgno, cnt;
  1.6660 +  int hdr, cellStart;
  1.6661 +  int nCell;
  1.6662 +  u8 *data;
  1.6663 +  BtShared *pBt;
  1.6664 +  int usableSize;
  1.6665 +  char zContext[100];
  1.6666 +  char *hit;
  1.6667 +
  1.6668 +  sqlite3_snprintf(sizeof(zContext), zContext, "Page %d: ", iPage);
  1.6669 +
  1.6670 +  /* Check that the page exists
  1.6671 +  */
  1.6672 +  pBt = pCheck->pBt;
  1.6673 +  usableSize = pBt->usableSize;
  1.6674 +  if( iPage==0 ) return 0;
  1.6675 +  if( checkRef(pCheck, iPage, zParentContext) ) return 0;
  1.6676 +  if( (rc = sqlite3BtreeGetPage(pBt, (Pgno)iPage, &pPage, 0))!=0 ){
  1.6677 +    checkAppendMsg(pCheck, zContext,
  1.6678 +       "unable to get the page. error code=%d", rc);
  1.6679 +    return 0;
  1.6680 +  }
  1.6681 +  if( (rc = sqlite3BtreeInitPage(pPage, pParent))!=0 ){
  1.6682 +    checkAppendMsg(pCheck, zContext, 
  1.6683 +                   "sqlite3BtreeInitPage() returns error code %d", rc);
  1.6684 +    releasePage(pPage);
  1.6685 +    return 0;
  1.6686 +  }
  1.6687 +
  1.6688 +  /* Check out all the cells.
  1.6689 +  */
  1.6690 +  depth = 0;
  1.6691 +  for(i=0; i<pPage->nCell && pCheck->mxErr; i++){
  1.6692 +    u8 *pCell;
  1.6693 +    int sz;
  1.6694 +    CellInfo info;
  1.6695 +
  1.6696 +    /* Check payload overflow pages
  1.6697 +    */
  1.6698 +    sqlite3_snprintf(sizeof(zContext), zContext,
  1.6699 +             "On tree page %d cell %d: ", iPage, i);
  1.6700 +    pCell = findCell(pPage,i);
  1.6701 +    sqlite3BtreeParseCellPtr(pPage, pCell, &info);
  1.6702 +    sz = info.nData;
  1.6703 +    if( !pPage->intKey ) sz += info.nKey;
  1.6704 +    assert( sz==info.nPayload );
  1.6705 +    if( sz>info.nLocal ){
  1.6706 +      int nPage = (sz - info.nLocal + usableSize - 5)/(usableSize - 4);
  1.6707 +      Pgno pgnoOvfl = get4byte(&pCell[info.iOverflow]);
  1.6708 +#ifndef SQLITE_OMIT_AUTOVACUUM
  1.6709 +      if( pBt->autoVacuum ){
  1.6710 +        checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage, zContext);
  1.6711 +      }
  1.6712 +#endif
  1.6713 +      checkList(pCheck, 0, pgnoOvfl, nPage, zContext);
  1.6714 +    }
  1.6715 +
  1.6716 +    /* Check sanity of left child page.
  1.6717 +    */
  1.6718 +    if( !pPage->leaf ){
  1.6719 +      pgno = get4byte(pCell);
  1.6720 +#ifndef SQLITE_OMIT_AUTOVACUUM
  1.6721 +      if( pBt->autoVacuum ){
  1.6722 +        checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, zContext);
  1.6723 +      }
  1.6724 +#endif
  1.6725 +      d2 = checkTreePage(pCheck,pgno,pPage,zContext);
  1.6726 +      if( i>0 && d2!=depth ){
  1.6727 +        checkAppendMsg(pCheck, zContext, "Child page depth differs");
  1.6728 +      }
  1.6729 +      depth = d2;
  1.6730 +    }
  1.6731 +  }
  1.6732 +  if( !pPage->leaf ){
  1.6733 +    pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
  1.6734 +    sqlite3_snprintf(sizeof(zContext), zContext, 
  1.6735 +                     "On page %d at right child: ", iPage);
  1.6736 +#ifndef SQLITE_OMIT_AUTOVACUUM
  1.6737 +    if( pBt->autoVacuum ){
  1.6738 +      checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, 0);
  1.6739 +    }
  1.6740 +#endif
  1.6741 +    checkTreePage(pCheck, pgno, pPage, zContext);
  1.6742 +  }
  1.6743 + 
  1.6744 +  /* Check for complete coverage of the page
  1.6745 +  */
  1.6746 +  data = pPage->aData;
  1.6747 +  hdr = pPage->hdrOffset;
  1.6748 +  hit = sqlite3PageMalloc( pBt->pageSize );
  1.6749 +  if( hit==0 ){
  1.6750 +    pCheck->mallocFailed = 1;
  1.6751 +  }else{
  1.6752 +    memset(hit, 0, usableSize );
  1.6753 +    memset(hit, 1, get2byte(&data[hdr+5]));
  1.6754 +    nCell = get2byte(&data[hdr+3]);
  1.6755 +    cellStart = hdr + 12 - 4*pPage->leaf;
  1.6756 +    for(i=0; i<nCell; i++){
  1.6757 +      int pc = get2byte(&data[cellStart+i*2]);
  1.6758 +      u16 size = cellSizePtr(pPage, &data[pc]);
  1.6759 +      int j;
  1.6760 +      if( (pc+size-1)>=usableSize || pc<0 ){
  1.6761 +        checkAppendMsg(pCheck, 0, 
  1.6762 +            "Corruption detected in cell %d on page %d",i,iPage,0);
  1.6763 +      }else{
  1.6764 +        for(j=pc+size-1; j>=pc; j--) hit[j]++;
  1.6765 +      }
  1.6766 +    }
  1.6767 +    for(cnt=0, i=get2byte(&data[hdr+1]); i>0 && i<usableSize && cnt<10000; 
  1.6768 +           cnt++){
  1.6769 +      int size = get2byte(&data[i+2]);
  1.6770 +      int j;
  1.6771 +      if( (i+size-1)>=usableSize || i<0 ){
  1.6772 +        checkAppendMsg(pCheck, 0,  
  1.6773 +            "Corruption detected in cell %d on page %d",i,iPage,0);
  1.6774 +      }else{
  1.6775 +        for(j=i+size-1; j>=i; j--) hit[j]++;
  1.6776 +      }
  1.6777 +      i = get2byte(&data[i]);
  1.6778 +    }
  1.6779 +    for(i=cnt=0; i<usableSize; i++){
  1.6780 +      if( hit[i]==0 ){
  1.6781 +        cnt++;
  1.6782 +      }else if( hit[i]>1 ){
  1.6783 +        checkAppendMsg(pCheck, 0,
  1.6784 +          "Multiple uses for byte %d of page %d", i, iPage);
  1.6785 +        break;
  1.6786 +      }
  1.6787 +    }
  1.6788 +    if( cnt!=data[hdr+7] ){
  1.6789 +      checkAppendMsg(pCheck, 0, 
  1.6790 +          "Fragmented space is %d byte reported as %d on page %d",
  1.6791 +          cnt, data[hdr+7], iPage);
  1.6792 +    }
  1.6793 +  }
  1.6794 +  sqlite3PageFree(hit);
  1.6795 +
  1.6796 +  releasePage(pPage);
  1.6797 +  return depth+1;
  1.6798 +}
  1.6799 +#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
  1.6800 +
  1.6801 +#ifndef SQLITE_OMIT_INTEGRITY_CHECK
  1.6802 +/*
  1.6803 +** This routine does a complete check of the given BTree file.  aRoot[] is
  1.6804 +** an array of pages numbers were each page number is the root page of
  1.6805 +** a table.  nRoot is the number of entries in aRoot.
  1.6806 +**
  1.6807 +** Write the number of error seen in *pnErr.  Except for some memory
  1.6808 +** allocation errors,  nn error message is held in memory obtained from
  1.6809 +** malloc is returned if *pnErr is non-zero.  If *pnErr==0 then NULL is
  1.6810 +** returned.
  1.6811 +*/
  1.6812 +char *sqlite3BtreeIntegrityCheck(
  1.6813 +  Btree *p,     /* The btree to be checked */
  1.6814 +  int *aRoot,   /* An array of root pages numbers for individual trees */
  1.6815 +  int nRoot,    /* Number of entries in aRoot[] */
  1.6816 +  int mxErr,    /* Stop reporting errors after this many */
  1.6817 +  int *pnErr    /* Write number of errors seen to this variable */
  1.6818 +){
  1.6819 +  int i;
  1.6820 +  int nRef;
  1.6821 +  IntegrityCk sCheck;
  1.6822 +  BtShared *pBt = p->pBt;
  1.6823 +  char zErr[100];
  1.6824 +
  1.6825 +  sqlite3BtreeEnter(p);
  1.6826 +  pBt->db = p->db;
  1.6827 +  nRef = sqlite3PagerRefcount(pBt->pPager);
  1.6828 +  if( lockBtreeWithRetry(p)!=SQLITE_OK ){
  1.6829 +    *pnErr = 1;
  1.6830 +    sqlite3BtreeLeave(p);
  1.6831 +    return sqlite3DbStrDup(0, "cannot acquire a read lock on the database");
  1.6832 +  }
  1.6833 +  sCheck.pBt = pBt;
  1.6834 +  sCheck.pPager = pBt->pPager;
  1.6835 +  sCheck.nPage = pagerPagecount(sCheck.pPager);
  1.6836 +  sCheck.mxErr = mxErr;
  1.6837 +  sCheck.nErr = 0;
  1.6838 +  sCheck.mallocFailed = 0;
  1.6839 +  *pnErr = 0;
  1.6840 +#ifndef SQLITE_OMIT_AUTOVACUUM
  1.6841 +  if( pBt->nTrunc!=0 ){
  1.6842 +    sCheck.nPage = pBt->nTrunc;
  1.6843 +  }
  1.6844 +#endif
  1.6845 +  if( sCheck.nPage==0 ){
  1.6846 +    unlockBtreeIfUnused(pBt);
  1.6847 +    sqlite3BtreeLeave(p);
  1.6848 +    return 0;
  1.6849 +  }
  1.6850 +  sCheck.anRef = sqlite3Malloc( (sCheck.nPage+1)*sizeof(sCheck.anRef[0]) );
  1.6851 +  if( !sCheck.anRef ){
  1.6852 +    unlockBtreeIfUnused(pBt);
  1.6853 +    *pnErr = 1;
  1.6854 +    sqlite3BtreeLeave(p);
  1.6855 +    return 0;
  1.6856 +  }
  1.6857 +  for(i=0; i<=sCheck.nPage; i++){ sCheck.anRef[i] = 0; }
  1.6858 +  i = PENDING_BYTE_PAGE(pBt);
  1.6859 +  if( i<=sCheck.nPage ){
  1.6860 +    sCheck.anRef[i] = 1;
  1.6861 +  }
  1.6862 +  sqlite3StrAccumInit(&sCheck.errMsg, zErr, sizeof(zErr), 20000);
  1.6863 +
  1.6864 +  /* Check the integrity of the freelist
  1.6865 +  */
  1.6866 +  checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
  1.6867 +            get4byte(&pBt->pPage1->aData[36]), "Main freelist: ");
  1.6868 +
  1.6869 +  /* Check all the tables.
  1.6870 +  */
  1.6871 +  for(i=0; i<nRoot && sCheck.mxErr; i++){
  1.6872 +    if( aRoot[i]==0 ) continue;
  1.6873 +#ifndef SQLITE_OMIT_AUTOVACUUM
  1.6874 +    if( pBt->autoVacuum && aRoot[i]>1 ){
  1.6875 +      checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0, 0);
  1.6876 +    }
  1.6877 +#endif
  1.6878 +    checkTreePage(&sCheck, aRoot[i], 0, "List of tree roots: ");
  1.6879 +  }
  1.6880 +
  1.6881 +  /* Make sure every page in the file is referenced
  1.6882 +  */
  1.6883 +  for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){
  1.6884 +#ifdef SQLITE_OMIT_AUTOVACUUM
  1.6885 +    if( sCheck.anRef[i]==0 ){
  1.6886 +      checkAppendMsg(&sCheck, 0, "Page %d is never used", i);
  1.6887 +    }
  1.6888 +#else
  1.6889 +    /* If the database supports auto-vacuum, make sure no tables contain
  1.6890 +    ** references to pointer-map pages.
  1.6891 +    */
  1.6892 +    if( sCheck.anRef[i]==0 && 
  1.6893 +       (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){
  1.6894 +      checkAppendMsg(&sCheck, 0, "Page %d is never used", i);
  1.6895 +    }
  1.6896 +    if( sCheck.anRef[i]!=0 && 
  1.6897 +       (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
  1.6898 +      checkAppendMsg(&sCheck, 0, "Pointer map page %d is referenced", i);
  1.6899 +    }
  1.6900 +#endif
  1.6901 +  }
  1.6902 +
  1.6903 +  /* Make sure this analysis did not leave any unref() pages
  1.6904 +  */
  1.6905 +  unlockBtreeIfUnused(pBt);
  1.6906 +  if( nRef != sqlite3PagerRefcount(pBt->pPager) ){
  1.6907 +    checkAppendMsg(&sCheck, 0, 
  1.6908 +      "Outstanding page count goes from %d to %d during this analysis",
  1.6909 +      nRef, sqlite3PagerRefcount(pBt->pPager)
  1.6910 +    );
  1.6911 +  }
  1.6912 +
  1.6913 +  /* Clean  up and report errors.
  1.6914 +  */
  1.6915 +  sqlite3BtreeLeave(p);
  1.6916 +  sqlite3_free(sCheck.anRef);
  1.6917 +  if( sCheck.mallocFailed ){
  1.6918 +    sqlite3StrAccumReset(&sCheck.errMsg);
  1.6919 +    *pnErr = sCheck.nErr+1;
  1.6920 +    return 0;
  1.6921 +  }
  1.6922 +  *pnErr = sCheck.nErr;
  1.6923 +  if( sCheck.nErr==0 ) sqlite3StrAccumReset(&sCheck.errMsg);
  1.6924 +  return sqlite3StrAccumFinish(&sCheck.errMsg);
  1.6925 +}
  1.6926 +#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
  1.6927 +
  1.6928 +/*
  1.6929 +** Return the full pathname of the underlying database file.
  1.6930 +**
  1.6931 +** The pager filename is invariant as long as the pager is
  1.6932 +** open so it is safe to access without the BtShared mutex.
  1.6933 +*/
  1.6934 +const char *sqlite3BtreeGetFilename(Btree *p){
  1.6935 +  assert( p->pBt->pPager!=0 );
  1.6936 +  return sqlite3PagerFilename(p->pBt->pPager);
  1.6937 +}
  1.6938 +
  1.6939 +/*
  1.6940 +** Return the pathname of the directory that contains the database file.
  1.6941 +**
  1.6942 +** The pager directory name is invariant as long as the pager is
  1.6943 +** open so it is safe to access without the BtShared mutex.
  1.6944 +*/
  1.6945 +const char *sqlite3BtreeGetDirname(Btree *p){
  1.6946 +  assert( p->pBt->pPager!=0 );
  1.6947 +  return sqlite3PagerDirname(p->pBt->pPager);
  1.6948 +}
  1.6949 +
  1.6950 +/*
  1.6951 +** Return the pathname of the journal file for this database. The return
  1.6952 +** value of this routine is the same regardless of whether the journal file
  1.6953 +** has been created or not.
  1.6954 +**
  1.6955 +** The pager journal filename is invariant as long as the pager is
  1.6956 +** open so it is safe to access without the BtShared mutex.
  1.6957 +*/
  1.6958 +const char *sqlite3BtreeGetJournalname(Btree *p){
  1.6959 +  assert( p->pBt->pPager!=0 );
  1.6960 +  return sqlite3PagerJournalname(p->pBt->pPager);
  1.6961 +}
  1.6962 +
  1.6963 +#ifndef SQLITE_OMIT_VACUUM
  1.6964 +/*
  1.6965 +** Copy the complete content of pBtFrom into pBtTo.  A transaction
  1.6966 +** must be active for both files.
  1.6967 +**
  1.6968 +** The size of file pTo may be reduced by this operation.
  1.6969 +** If anything goes wrong, the transaction on pTo is rolled back. 
  1.6970 +**
  1.6971 +** If successful, CommitPhaseOne() may be called on pTo before returning. 
  1.6972 +** The caller should finish committing the transaction on pTo by calling
  1.6973 +** sqlite3BtreeCommit().
  1.6974 +*/
  1.6975 +static int btreeCopyFile(Btree *pTo, Btree *pFrom){
  1.6976 +  int rc = SQLITE_OK;
  1.6977 +  Pgno i;
  1.6978 +
  1.6979 +  Pgno nFromPage;     /* Number of pages in pFrom */
  1.6980 +  Pgno nToPage;       /* Number of pages in pTo */
  1.6981 +  Pgno nNewPage;      /* Number of pages in pTo after the copy */
  1.6982 +
  1.6983 +  Pgno iSkip;         /* Pending byte page in pTo */
  1.6984 +  int nToPageSize;    /* Page size of pTo in bytes */
  1.6985 +  int nFromPageSize;  /* Page size of pFrom in bytes */
  1.6986 +
  1.6987 +  BtShared *pBtTo = pTo->pBt;
  1.6988 +  BtShared *pBtFrom = pFrom->pBt;
  1.6989 +  pBtTo->db = pTo->db;
  1.6990 +  pBtFrom->db = pFrom->db;
  1.6991 +
  1.6992 +  nToPageSize = pBtTo->pageSize;
  1.6993 +  nFromPageSize = pBtFrom->pageSize;
  1.6994 +
  1.6995 +  if( pTo->inTrans!=TRANS_WRITE || pFrom->inTrans!=TRANS_WRITE ){
  1.6996 +    return SQLITE_ERROR;
  1.6997 +  }
  1.6998 +  if( pBtTo->pCursor ){
  1.6999 +    return SQLITE_BUSY;
  1.7000 +  }
  1.7001 +
  1.7002 +  nToPage = pagerPagecount(pBtTo->pPager);
  1.7003 +  nFromPage = pagerPagecount(pBtFrom->pPager);
  1.7004 +  iSkip = PENDING_BYTE_PAGE(pBtTo);
  1.7005 +
  1.7006 +  /* Variable nNewPage is the number of pages required to store the
  1.7007 +  ** contents of pFrom using the current page-size of pTo.
  1.7008 +  */
  1.7009 +  nNewPage = ((i64)nFromPage * (i64)nFromPageSize + (i64)nToPageSize - 1) / 
  1.7010 +      (i64)nToPageSize;
  1.7011 +
  1.7012 +  for(i=1; rc==SQLITE_OK && (i<=nToPage || i<=nNewPage); i++){
  1.7013 +
  1.7014 +    /* Journal the original page.
  1.7015 +    **
  1.7016 +    ** iSkip is the page number of the locking page (PENDING_BYTE_PAGE)
  1.7017 +    ** in database *pTo (before the copy). This page is never written 
  1.7018 +    ** into the journal file. Unless i==iSkip or the page was not
  1.7019 +    ** present in pTo before the copy operation, journal page i from pTo.
  1.7020 +    */
  1.7021 +    if( i!=iSkip && i<=nToPage ){
  1.7022 +      DbPage *pDbPage = 0;
  1.7023 +      rc = sqlite3PagerGet(pBtTo->pPager, i, &pDbPage);
  1.7024 +      if( rc==SQLITE_OK ){
  1.7025 +        rc = sqlite3PagerWrite(pDbPage);
  1.7026 +        if( rc==SQLITE_OK && i>nFromPage ){
  1.7027 +          /* Yeah.  It seems wierd to call DontWrite() right after Write(). But
  1.7028 +          ** that is because the names of those procedures do not exactly 
  1.7029 +          ** represent what they do.  Write() really means "put this page in the
  1.7030 +          ** rollback journal and mark it as dirty so that it will be written
  1.7031 +          ** to the database file later."  DontWrite() undoes the second part of
  1.7032 +          ** that and prevents the page from being written to the database. The
  1.7033 +          ** page is still on the rollback journal, though.  And that is the 
  1.7034 +          ** whole point of this block: to put pages on the rollback journal. 
  1.7035 +          */
  1.7036 +          sqlite3PagerDontWrite(pDbPage);
  1.7037 +        }
  1.7038 +        sqlite3PagerUnref(pDbPage);
  1.7039 +      }
  1.7040 +    }
  1.7041 +
  1.7042 +    /* Overwrite the data in page i of the target database */
  1.7043 +    if( rc==SQLITE_OK && i!=iSkip && i<=nNewPage ){
  1.7044 +
  1.7045 +      DbPage *pToPage = 0;
  1.7046 +      sqlite3_int64 iOff;
  1.7047 +
  1.7048 +      rc = sqlite3PagerGet(pBtTo->pPager, i, &pToPage);
  1.7049 +      if( rc==SQLITE_OK ){
  1.7050 +        rc = sqlite3PagerWrite(pToPage);
  1.7051 +      }
  1.7052 +
  1.7053 +      for(
  1.7054 +        iOff=(i-1)*nToPageSize; 
  1.7055 +        rc==SQLITE_OK && iOff<i*nToPageSize; 
  1.7056 +        iOff += nFromPageSize
  1.7057 +      ){
  1.7058 +        DbPage *pFromPage = 0;
  1.7059 +        Pgno iFrom = (iOff/nFromPageSize)+1;
  1.7060 +
  1.7061 +        if( iFrom==PENDING_BYTE_PAGE(pBtFrom) ){
  1.7062 +          continue;
  1.7063 +        }
  1.7064 +
  1.7065 +        rc = sqlite3PagerGet(pBtFrom->pPager, iFrom, &pFromPage);
  1.7066 +        if( rc==SQLITE_OK ){
  1.7067 +          char *zTo = sqlite3PagerGetData(pToPage);
  1.7068 +          char *zFrom = sqlite3PagerGetData(pFromPage);
  1.7069 +          int nCopy;
  1.7070 +
  1.7071 +          if( nFromPageSize>=nToPageSize ){
  1.7072 +            zFrom += ((i-1)*nToPageSize - ((iFrom-1)*nFromPageSize));
  1.7073 +            nCopy = nToPageSize;
  1.7074 +          }else{
  1.7075 +            zTo += (((iFrom-1)*nFromPageSize) - (i-1)*nToPageSize);
  1.7076 +            nCopy = nFromPageSize;
  1.7077 +          }
  1.7078 +
  1.7079 +          memcpy(zTo, zFrom, nCopy);
  1.7080 +	  sqlite3PagerUnref(pFromPage);
  1.7081 +        }
  1.7082 +      }
  1.7083 +
  1.7084 +      if( pToPage ) sqlite3PagerUnref(pToPage);
  1.7085 +    }
  1.7086 +  }
  1.7087 +
  1.7088 +  /* If things have worked so far, the database file may need to be 
  1.7089 +  ** truncated. The complex part is that it may need to be truncated to
  1.7090 +  ** a size that is not an integer multiple of nToPageSize - the current
  1.7091 +  ** page size used by the pager associated with B-Tree pTo.
  1.7092 +  **
  1.7093 +  ** For example, say the page-size of pTo is 2048 bytes and the original 
  1.7094 +  ** number of pages is 5 (10 KB file). If pFrom has a page size of 1024 
  1.7095 +  ** bytes and 9 pages, then the file needs to be truncated to 9KB.
  1.7096 +  */
  1.7097 +  if( rc==SQLITE_OK ){
  1.7098 +    if( nFromPageSize!=nToPageSize ){
  1.7099 +      sqlite3_file *pFile = sqlite3PagerFile(pBtTo->pPager);
  1.7100 +      i64 iSize = (i64)nFromPageSize * (i64)nFromPage;
  1.7101 +      i64 iNow = (i64)((nToPage>nNewPage)?nToPage:nNewPage) * (i64)nToPageSize; 
  1.7102 +      i64 iPending = ((i64)PENDING_BYTE_PAGE(pBtTo)-1) *(i64)nToPageSize;
  1.7103 +  
  1.7104 +      assert( iSize<=iNow );
  1.7105 +  
  1.7106 +      /* Commit phase one syncs the journal file associated with pTo 
  1.7107 +      ** containing the original data. It does not sync the database file
  1.7108 +      ** itself. After doing this it is safe to use OsTruncate() and other
  1.7109 +      ** file APIs on the database file directly.
  1.7110 +      */
  1.7111 +      pBtTo->db = pTo->db;
  1.7112 +      rc = sqlite3PagerCommitPhaseOne(pBtTo->pPager, 0, 0, 1);
  1.7113 +      if( iSize<iNow && rc==SQLITE_OK ){
  1.7114 +        rc = sqlite3OsTruncate(pFile, iSize);
  1.7115 +      }
  1.7116 +  
  1.7117 +      /* The loop that copied data from database pFrom to pTo did not
  1.7118 +      ** populate the locking page of database pTo. If the page-size of
  1.7119 +      ** pFrom is smaller than that of pTo, this means some data will
  1.7120 +      ** not have been copied. 
  1.7121 +      **
  1.7122 +      ** This block copies the missing data from database pFrom to pTo 
  1.7123 +      ** using file APIs. This is safe because at this point we know that
  1.7124 +      ** all of the original data from pTo has been synced into the 
  1.7125 +      ** journal file. At this point it would be safe to do anything at
  1.7126 +      ** all to the database file except truncate it to zero bytes.
  1.7127 +      */
  1.7128 +      if( rc==SQLITE_OK && nFromPageSize<nToPageSize && iSize>iPending){
  1.7129 +        i64 iOff;
  1.7130 +        for(
  1.7131 +          iOff=iPending; 
  1.7132 +          rc==SQLITE_OK && iOff<(iPending+nToPageSize); 
  1.7133 +          iOff += nFromPageSize
  1.7134 +        ){
  1.7135 +          DbPage *pFromPage = 0;
  1.7136 +          Pgno iFrom = (iOff/nFromPageSize)+1;
  1.7137 +  
  1.7138 +          if( iFrom==PENDING_BYTE_PAGE(pBtFrom) || iFrom>nFromPage ){
  1.7139 +            continue;
  1.7140 +          }
  1.7141 +  
  1.7142 +          rc = sqlite3PagerGet(pBtFrom->pPager, iFrom, &pFromPage);
  1.7143 +          if( rc==SQLITE_OK ){
  1.7144 +            char *zFrom = sqlite3PagerGetData(pFromPage);
  1.7145 +  	  rc = sqlite3OsWrite(pFile, zFrom, nFromPageSize, iOff);
  1.7146 +            sqlite3PagerUnref(pFromPage);
  1.7147 +          }
  1.7148 +        }
  1.7149 +      }
  1.7150 +  
  1.7151 +      /* Sync the database file */
  1.7152 +      if( rc==SQLITE_OK ){
  1.7153 +        rc = sqlite3PagerSync(pBtTo->pPager);
  1.7154 +      }
  1.7155 +    }else{
  1.7156 +      rc = sqlite3PagerTruncate(pBtTo->pPager, nNewPage);
  1.7157 +    }
  1.7158 +    if( rc==SQLITE_OK ){
  1.7159 +      pBtTo->pageSizeFixed = 0;
  1.7160 +    }
  1.7161 +  }
  1.7162 +
  1.7163 +  if( rc ){
  1.7164 +    sqlite3BtreeRollback(pTo);
  1.7165 +  }
  1.7166 +
  1.7167 +  return rc;  
  1.7168 +}
  1.7169 +int sqlite3BtreeCopyFile(Btree *pTo, Btree *pFrom){
  1.7170 +  int rc;
  1.7171 +  sqlite3BtreeEnter(pTo);
  1.7172 +  sqlite3BtreeEnter(pFrom);
  1.7173 +  rc = btreeCopyFile(pTo, pFrom);
  1.7174 +  sqlite3BtreeLeave(pFrom);
  1.7175 +  sqlite3BtreeLeave(pTo);
  1.7176 +  return rc;
  1.7177 +}
  1.7178 +
  1.7179 +#endif /* SQLITE_OMIT_VACUUM */
  1.7180 +
  1.7181 +/*
  1.7182 +** Return non-zero if a transaction is active.
  1.7183 +*/
  1.7184 +int sqlite3BtreeIsInTrans(Btree *p){
  1.7185 +  assert( p==0 || sqlite3_mutex_held(p->db->mutex) );
  1.7186 +  return (p && (p->inTrans==TRANS_WRITE));
  1.7187 +}
  1.7188 +
  1.7189 +/*
  1.7190 +** Return non-zero if a statement transaction is active.
  1.7191 +*/
  1.7192 +int sqlite3BtreeIsInStmt(Btree *p){
  1.7193 +  assert( sqlite3BtreeHoldsMutex(p) );
  1.7194 +  return (p->pBt && p->pBt->inStmt);
  1.7195 +}
  1.7196 +
  1.7197 +/*
  1.7198 +** Return non-zero if a read (or write) transaction is active.
  1.7199 +*/
  1.7200 +int sqlite3BtreeIsInReadTrans(Btree *p){
  1.7201 +  assert( sqlite3_mutex_held(p->db->mutex) );
  1.7202 +  return (p && (p->inTrans!=TRANS_NONE));
  1.7203 +}
  1.7204 +
  1.7205 +/*
  1.7206 +** This function returns a pointer to a blob of memory associated with
  1.7207 +** a single shared-btree. The memory is used by client code for its own
  1.7208 +** purposes (for example, to store a high-level schema associated with 
  1.7209 +** the shared-btree). The btree layer manages reference counting issues.
  1.7210 +**
  1.7211 +** The first time this is called on a shared-btree, nBytes bytes of memory
  1.7212 +** are allocated, zeroed, and returned to the caller. For each subsequent 
  1.7213 +** call the nBytes parameter is ignored and a pointer to the same blob
  1.7214 +** of memory returned. 
  1.7215 +**
  1.7216 +** If the nBytes parameter is 0 and the blob of memory has not yet been
  1.7217 +** allocated, a null pointer is returned. If the blob has already been
  1.7218 +** allocated, it is returned as normal.
  1.7219 +**
  1.7220 +** Just before the shared-btree is closed, the function passed as the 
  1.7221 +** xFree argument when the memory allocation was made is invoked on the 
  1.7222 +** blob of allocated memory. This function should not call sqlite3_free()
  1.7223 +** on the memory, the btree layer does that.
  1.7224 +*/
  1.7225 +void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){
  1.7226 +  BtShared *pBt = p->pBt;
  1.7227 +  sqlite3BtreeEnter(p);
  1.7228 +  if( !pBt->pSchema && nBytes ){
  1.7229 +    pBt->pSchema = sqlite3MallocZero(nBytes);
  1.7230 +    pBt->xFreeSchema = xFree;
  1.7231 +  }
  1.7232 +  sqlite3BtreeLeave(p);
  1.7233 +  return pBt->pSchema;
  1.7234 +}
  1.7235 +
  1.7236 +/*
  1.7237 +** Return true if another user of the same shared btree as the argument
  1.7238 +** handle holds an exclusive lock on the sqlite_master table.
  1.7239 +*/
  1.7240 +int sqlite3BtreeSchemaLocked(Btree *p){
  1.7241 +  int rc;
  1.7242 +  assert( sqlite3_mutex_held(p->db->mutex) );
  1.7243 +  sqlite3BtreeEnter(p);
  1.7244 +  rc = (queryTableLock(p, MASTER_ROOT, READ_LOCK)!=SQLITE_OK);
  1.7245 +  sqlite3BtreeLeave(p);
  1.7246 +  return rc;
  1.7247 +}
  1.7248 +
  1.7249 +
  1.7250 +#ifndef SQLITE_OMIT_SHARED_CACHE
  1.7251 +/*
  1.7252 +** Obtain a lock on the table whose root page is iTab.  The
  1.7253 +** lock is a write lock if isWritelock is true or a read lock
  1.7254 +** if it is false.
  1.7255 +*/
  1.7256 +int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){
  1.7257 +  int rc = SQLITE_OK;
  1.7258 +  if( p->sharable ){
  1.7259 +    u8 lockType = READ_LOCK + isWriteLock;
  1.7260 +    assert( READ_LOCK+1==WRITE_LOCK );
  1.7261 +    assert( isWriteLock==0 || isWriteLock==1 );
  1.7262 +    sqlite3BtreeEnter(p);
  1.7263 +    rc = queryTableLock(p, iTab, lockType);
  1.7264 +    if( rc==SQLITE_OK ){
  1.7265 +      rc = lockTable(p, iTab, lockType);
  1.7266 +    }
  1.7267 +    sqlite3BtreeLeave(p);
  1.7268 +  }
  1.7269 +  return rc;
  1.7270 +}
  1.7271 +#endif
  1.7272 +
  1.7273 +#ifndef SQLITE_OMIT_INCRBLOB
  1.7274 +/*
  1.7275 +** Argument pCsr must be a cursor opened for writing on an 
  1.7276 +** INTKEY table currently pointing at a valid table entry. 
  1.7277 +** This function modifies the data stored as part of that entry.
  1.7278 +** Only the data content may only be modified, it is not possible
  1.7279 +** to change the length of the data stored.
  1.7280 +*/
  1.7281 +int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){
  1.7282 +  assert( cursorHoldsMutex(pCsr) );
  1.7283 +  assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) );
  1.7284 +  assert(pCsr->isIncrblobHandle);
  1.7285 +
  1.7286 +  restoreCursorPosition(pCsr);
  1.7287 +  assert( pCsr->eState!=CURSOR_REQUIRESEEK );
  1.7288 +  if( pCsr->eState!=CURSOR_VALID ){
  1.7289 +    return SQLITE_ABORT;
  1.7290 +  }
  1.7291 +
  1.7292 +  /* Check some preconditions: 
  1.7293 +  **   (a) the cursor is open for writing,
  1.7294 +  **   (b) there is no read-lock on the table being modified and
  1.7295 +  **   (c) the cursor points at a valid row of an intKey table.
  1.7296 +  */
  1.7297 +  if( !pCsr->wrFlag ){
  1.7298 +    return SQLITE_READONLY;
  1.7299 +  }
  1.7300 +  assert( !pCsr->pBt->readOnly 
  1.7301 +          && pCsr->pBt->inTransaction==TRANS_WRITE );
  1.7302 +  if( checkReadLocks(pCsr->pBtree, pCsr->pgnoRoot, pCsr, 0) ){
  1.7303 +    return SQLITE_LOCKED; /* The table pCur points to has a read lock */
  1.7304 +  }
  1.7305 +  if( pCsr->eState==CURSOR_INVALID || !pCsr->pPage->intKey ){
  1.7306 +    return SQLITE_ERROR;
  1.7307 +  }
  1.7308 +
  1.7309 +  return accessPayload(pCsr, offset, amt, (unsigned char *)z, 0, 1);
  1.7310 +}
  1.7311 +
  1.7312 +/* 
  1.7313 +** Set a flag on this cursor to cache the locations of pages from the 
  1.7314 +** overflow list for the current row. This is used by cursors opened
  1.7315 +** for incremental blob IO only.
  1.7316 +**
  1.7317 +** This function sets a flag only. The actual page location cache
  1.7318 +** (stored in BtCursor.aOverflow[]) is allocated and used by function
  1.7319 +** accessPayload() (the worker function for sqlite3BtreeData() and
  1.7320 +** sqlite3BtreePutData()).
  1.7321 +*/
  1.7322 +void sqlite3BtreeCacheOverflow(BtCursor *pCur){
  1.7323 +  assert( cursorHoldsMutex(pCur) );
  1.7324 +  assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
  1.7325 +  assert(!pCur->isIncrblobHandle);
  1.7326 +  assert(!pCur->aOverflow);
  1.7327 +  pCur->isIncrblobHandle = 1;
  1.7328 +}
  1.7329 +#endif