os/persistentdata/persistentstorage/sqlite3api/TEST/SRC/test_async.c
author sl
Tue, 10 Jun 2014 14:32:02 +0200
changeset 1 260cb5ec6c19
permissions -rw-r--r--
Update contrib.
     1 /*
     2 ** 2005 December 14
     3 **
     4 ** The author disclaims copyright to this source code.  In place of
     5 ** a legal notice, here is a blessing:
     6 **
     7 **    May you do good and not evil.
     8 **    May you find forgiveness for yourself and forgive others.
     9 **    May you share freely, never taking more than you give.
    10 **
    11 *************************************************************************
    12 **
    13 ** $Id: test_async.c,v 1.48 2008/09/26 20:02:50 drh Exp $
    14 **
    15 ** This file contains an example implementation of an asynchronous IO 
    16 ** backend for SQLite.
    17 **
    18 ** WHAT IS ASYNCHRONOUS I/O?
    19 **
    20 ** With asynchronous I/O, write requests are handled by a separate thread
    21 ** running in the background.  This means that the thread that initiates
    22 ** a database write does not have to wait for (sometimes slow) disk I/O
    23 ** to occur.  The write seems to happen very quickly, though in reality
    24 ** it is happening at its usual slow pace in the background.
    25 **
    26 ** Asynchronous I/O appears to give better responsiveness, but at a price.
    27 ** You lose the Durable property.  With the default I/O backend of SQLite,
    28 ** once a write completes, you know that the information you wrote is
    29 ** safely on disk.  With the asynchronous I/O, this is not the case.  If
    30 ** your program crashes or if a power loss occurs after the database
    31 ** write but before the asynchronous write thread has completed, then the
    32 ** database change might never make it to disk and the next user of the
    33 ** database might not see your change.
    34 **
    35 ** You lose Durability with asynchronous I/O, but you still retain the
    36 ** other parts of ACID:  Atomic,  Consistent, and Isolated.  Many
    37 ** appliations get along fine without the Durablity.
    38 **
    39 ** HOW IT WORKS
    40 **
    41 ** Asynchronous I/O works by creating a special SQLite "vfs" structure
    42 ** and registering it with sqlite3_vfs_register(). When files opened via 
    43 ** this vfs are written to (using sqlite3OsWrite()), the data is not 
    44 ** written directly to disk, but is placed in the "write-queue" to be
    45 ** handled by the background thread.
    46 **
    47 ** When files opened with the asynchronous vfs are read from 
    48 ** (using sqlite3OsRead()), the data is read from the file on 
    49 ** disk and the write-queue, so that from the point of view of
    50 ** the vfs reader the OsWrite() appears to have already completed.
    51 **
    52 ** The special vfs is registered (and unregistered) by calls to 
    53 ** function asyncEnable() (see below).
    54 **
    55 ** LIMITATIONS
    56 **
    57 ** This demonstration code is deliberately kept simple in order to keep
    58 ** the main ideas clear and easy to understand.  Real applications that
    59 ** want to do asynchronous I/O might want to add additional capabilities.
    60 ** For example, in this demonstration if writes are happening at a steady
    61 ** stream that exceeds the I/O capability of the background writer thread,
    62 ** the queue of pending write operations will grow without bound until we
    63 ** run out of memory.  Users of this technique may want to keep track of
    64 ** the quantity of pending writes and stop accepting new write requests
    65 ** when the buffer gets to be too big.
    66 **
    67 ** LOCKING + CONCURRENCY
    68 **
    69 ** Multiple connections from within a single process that use this
    70 ** implementation of asynchronous IO may access a single database
    71 ** file concurrently. From the point of view of the user, if all
    72 ** connections are from within a single process, there is no difference
    73 ** between the concurrency offered by "normal" SQLite and SQLite
    74 ** using the asynchronous backend.
    75 **
    76 ** If connections from within multiple database files may access the
    77 ** database file, the ENABLE_FILE_LOCKING symbol (see below) must be
    78 ** defined. If it is not defined, then no locks are established on 
    79 ** the database file. In this case, if multiple processes access 
    80 ** the database file, corruption will quickly result.
    81 **
    82 ** If ENABLE_FILE_LOCKING is defined (the default), then connections 
    83 ** from within multiple processes may access a single database file 
    84 ** without risking corruption. However concurrency is reduced as
    85 ** follows:
    86 **
    87 **   * When a connection using asynchronous IO begins a database
    88 **     transaction, the database is locked immediately. However the
    89 **     lock is not released until after all relevant operations
    90 **     in the write-queue have been flushed to disk. This means
    91 **     (for example) that the database may remain locked for some 
    92 **     time after a "COMMIT" or "ROLLBACK" is issued.
    93 **
    94 **   * If an application using asynchronous IO executes transactions
    95 **     in quick succession, other database users may be effectively
    96 **     locked out of the database. This is because when a BEGIN
    97 **     is executed, a database lock is established immediately. But
    98 **     when the corresponding COMMIT or ROLLBACK occurs, the lock
    99 **     is not released until the relevant part of the write-queue 
   100 **     has been flushed through. As a result, if a COMMIT is followed
   101 **     by a BEGIN before the write-queue is flushed through, the database 
   102 **     is never unlocked,preventing other processes from accessing 
   103 **     the database.
   104 **
   105 ** Defining ENABLE_FILE_LOCKING when using an NFS or other remote 
   106 ** file-system may slow things down, as synchronous round-trips to the 
   107 ** server may be required to establish database file locks.
   108 */
   109 #define ENABLE_FILE_LOCKING
   110 
   111 #ifndef SQLITE_AMALGAMATION
   112 # include "sqlite3.h"
   113 # include <assert.h>
   114 # include <string.h>
   115 #endif
   116 #include "tcl.h"
   117 
   118 /*
   119 ** This test uses pthreads and hence only works on unix and with
   120 ** a threadsafe build of SQLite.
   121 */
   122 #if SQLITE_OS_UNIX && SQLITE_THREADSAFE
   123 
   124 /*
   125 ** This demo uses pthreads.  If you do not have a pthreads implementation
   126 ** for your operating system, you will need to recode the threading 
   127 ** logic.
   128 */
   129 #include <pthread.h>
   130 #include <sched.h>
   131 
   132 /* Useful macros used in several places */
   133 #define MIN(x,y) ((x)<(y)?(x):(y))
   134 #define MAX(x,y) ((x)>(y)?(x):(y))
   135 
   136 /* Forward references */
   137 typedef struct AsyncWrite AsyncWrite;
   138 typedef struct AsyncFile AsyncFile;
   139 typedef struct AsyncFileData AsyncFileData;
   140 typedef struct AsyncFileLock AsyncFileLock;
   141 typedef struct AsyncLock AsyncLock;
   142 
   143 /* Enable for debugging */
   144 static int sqlite3async_trace = 0;
   145 # define ASYNC_TRACE(X) if( sqlite3async_trace ) asyncTrace X
   146 static void asyncTrace(const char *zFormat, ...){
   147   char *z;
   148   va_list ap;
   149   va_start(ap, zFormat);
   150   z = sqlite3_vmprintf(zFormat, ap);
   151   va_end(ap);
   152   fprintf(stderr, "[%d] %s", (int)pthread_self(), z);
   153   sqlite3_free(z);
   154 }
   155 
   156 /*
   157 ** THREAD SAFETY NOTES
   158 **
   159 ** Basic rules:
   160 **
   161 **     * Both read and write access to the global write-op queue must be 
   162 **       protected by the async.queueMutex. As are the async.ioError and
   163 **       async.nFile variables.
   164 **
   165 **     * The async.pLock list and all AsyncLock and AsyncFileLock
   166 **       structures must be protected by the async.lockMutex mutex.
   167 **
   168 **     * The file handles from the underlying system are not assumed to 
   169 **       be thread safe.
   170 **
   171 **     * See the last two paragraphs under "The Writer Thread" for
   172 **       an assumption to do with file-handle synchronization by the Os.
   173 **
   174 ** Deadlock prevention:
   175 **
   176 **     There are three mutex used by the system: the "writer" mutex, 
   177 **     the "queue" mutex and the "lock" mutex. Rules are:
   178 **
   179 **     * It is illegal to block on the writer mutex when any other mutex
   180 **       are held, and 
   181 **
   182 **     * It is illegal to block on the queue mutex when the lock mutex
   183 **       is held.
   184 **
   185 **     i.e. mutex's must be grabbed in the order "writer", "queue", "lock".
   186 **
   187 ** File system operations (invoked by SQLite thread):
   188 **
   189 **     xOpen
   190 **     xDelete
   191 **     xFileExists
   192 **
   193 ** File handle operations (invoked by SQLite thread):
   194 **
   195 **         asyncWrite, asyncClose, asyncTruncate, asyncSync 
   196 **    
   197 **     The operations above add an entry to the global write-op list. They
   198 **     prepare the entry, acquire the async.queueMutex momentarily while
   199 **     list pointers are  manipulated to insert the new entry, then release
   200 **     the mutex and signal the writer thread to wake up in case it happens
   201 **     to be asleep.
   202 **
   203 **    
   204 **         asyncRead, asyncFileSize.
   205 **
   206 **     Read operations. Both of these read from both the underlying file
   207 **     first then adjust their result based on pending writes in the 
   208 **     write-op queue.   So async.queueMutex is held for the duration
   209 **     of these operations to prevent other threads from changing the
   210 **     queue in mid operation.
   211 **    
   212 **
   213 **         asyncLock, asyncUnlock, asyncCheckReservedLock
   214 **    
   215 **     These primitives implement in-process locking using a hash table
   216 **     on the file name.  Files are locked correctly for connections coming
   217 **     from the same process.  But other processes cannot see these locks
   218 **     and will therefore not honor them.
   219 **
   220 **
   221 ** The writer thread:
   222 **
   223 **     The async.writerMutex is used to make sure only there is only
   224 **     a single writer thread running at a time.
   225 **
   226 **     Inside the writer thread is a loop that works like this:
   227 **
   228 **         WHILE (write-op list is not empty)
   229 **             Do IO operation at head of write-op list
   230 **             Remove entry from head of write-op list
   231 **         END WHILE
   232 **
   233 **     The async.queueMutex is always held during the <write-op list is 
   234 **     not empty> test, and when the entry is removed from the head
   235 **     of the write-op list. Sometimes it is held for the interim
   236 **     period (while the IO is performed), and sometimes it is
   237 **     relinquished. It is relinquished if (a) the IO op is an
   238 **     ASYNC_CLOSE or (b) when the file handle was opened, two of
   239 **     the underlying systems handles were opened on the same
   240 **     file-system entry.
   241 **
   242 **     If condition (b) above is true, then one file-handle 
   243 **     (AsyncFile.pBaseRead) is used exclusively by sqlite threads to read the
   244 **     file, the other (AsyncFile.pBaseWrite) by sqlite3_async_flush() 
   245 **     threads to perform write() operations. This means that read 
   246 **     operations are not blocked by asynchronous writes (although 
   247 **     asynchronous writes may still be blocked by reads).
   248 **
   249 **     This assumes that the OS keeps two handles open on the same file
   250 **     properly in sync. That is, any read operation that starts after a
   251 **     write operation on the same file system entry has completed returns
   252 **     data consistent with the write. We also assume that if one thread 
   253 **     reads a file while another is writing it all bytes other than the
   254 **     ones actually being written contain valid data.
   255 **
   256 **     If the above assumptions are not true, set the preprocessor symbol
   257 **     SQLITE_ASYNC_TWO_FILEHANDLES to 0.
   258 */
   259 
   260 #ifndef SQLITE_ASYNC_TWO_FILEHANDLES
   261 /* #define SQLITE_ASYNC_TWO_FILEHANDLES 0 */
   262 #define SQLITE_ASYNC_TWO_FILEHANDLES 1
   263 #endif
   264 
   265 /*
   266 ** State information is held in the static variable "async" defined
   267 ** as the following structure.
   268 **
   269 ** Both async.ioError and async.nFile are protected by async.queueMutex.
   270 */
   271 static struct TestAsyncStaticData {
   272   pthread_mutex_t lockMutex;   /* For access to aLock hash table */
   273   pthread_mutex_t queueMutex;  /* Mutex for access to write operation queue */
   274   pthread_mutex_t writerMutex; /* Prevents multiple writer threads */
   275   pthread_cond_t queueSignal;  /* For waking up sleeping writer thread */
   276   pthread_cond_t emptySignal;  /* Notify when the write queue is empty */
   277   AsyncWrite *pQueueFirst;     /* Next write operation to be processed */
   278   AsyncWrite *pQueueLast;      /* Last write operation on the list */
   279   AsyncLock *pLock;            /* Linked list of all AsyncLock structures */
   280   volatile int ioDelay;             /* Extra delay between write operations */
   281   volatile int writerHaltWhenIdle;  /* Writer thread halts when queue empty */
   282   volatile int writerHaltNow;       /* Writer thread halts after next op */
   283   int ioError;                 /* True if an IO error has occured */
   284   int nFile;                   /* Number of open files (from sqlite pov) */
   285 } async = {
   286   PTHREAD_MUTEX_INITIALIZER,
   287   PTHREAD_MUTEX_INITIALIZER,
   288   PTHREAD_MUTEX_INITIALIZER,
   289   PTHREAD_COND_INITIALIZER,
   290   PTHREAD_COND_INITIALIZER,
   291 };
   292 
   293 /* Possible values of AsyncWrite.op */
   294 #define ASYNC_NOOP          0
   295 #define ASYNC_WRITE         1
   296 #define ASYNC_SYNC          2
   297 #define ASYNC_TRUNCATE      3
   298 #define ASYNC_CLOSE         4
   299 #define ASYNC_DELETE        5
   300 #define ASYNC_OPENEXCLUSIVE 6
   301 #define ASYNC_UNLOCK        7
   302 
   303 /* Names of opcodes.  Used for debugging only.
   304 ** Make sure these stay in sync with the macros above!
   305 */
   306 static const char *azOpcodeName[] = {
   307   "NOOP", "WRITE", "SYNC", "TRUNCATE", "CLOSE", "DELETE", "OPENEX", "UNLOCK"
   308 };
   309 
   310 /*
   311 ** Entries on the write-op queue are instances of the AsyncWrite
   312 ** structure, defined here.
   313 **
   314 ** The interpretation of the iOffset and nByte variables varies depending 
   315 ** on the value of AsyncWrite.op:
   316 **
   317 ** ASYNC_NOOP:
   318 **     No values used.
   319 **
   320 ** ASYNC_WRITE:
   321 **     iOffset -> Offset in file to write to.
   322 **     nByte   -> Number of bytes of data to write (pointed to by zBuf).
   323 **
   324 ** ASYNC_SYNC:
   325 **     nByte   -> flags to pass to sqlite3OsSync().
   326 **
   327 ** ASYNC_TRUNCATE:
   328 **     iOffset -> Size to truncate file to.
   329 **     nByte   -> Unused.
   330 **
   331 ** ASYNC_CLOSE:
   332 **     iOffset -> Unused.
   333 **     nByte   -> Unused.
   334 **
   335 ** ASYNC_DELETE:
   336 **     iOffset -> Contains the "syncDir" flag.
   337 **     nByte   -> Number of bytes of zBuf points to (file name).
   338 **
   339 ** ASYNC_OPENEXCLUSIVE:
   340 **     iOffset -> Value of "delflag".
   341 **     nByte   -> Number of bytes of zBuf points to (file name).
   342 **
   343 ** ASYNC_UNLOCK:
   344 **     nByte   -> Argument to sqlite3OsUnlock().
   345 **
   346 **
   347 ** For an ASYNC_WRITE operation, zBuf points to the data to write to the file. 
   348 ** This space is sqlite3_malloc()d along with the AsyncWrite structure in a
   349 ** single blob, so is deleted when sqlite3_free() is called on the parent 
   350 ** structure.
   351 */
   352 struct AsyncWrite {
   353   AsyncFileData *pFileData;    /* File to write data to or sync */
   354   int op;                      /* One of ASYNC_xxx etc. */
   355   sqlite_int64 iOffset;        /* See above */
   356   int nByte;          /* See above */
   357   char *zBuf;         /* Data to write to file (or NULL if op!=ASYNC_WRITE) */
   358   AsyncWrite *pNext;  /* Next write operation (to any file) */
   359 };
   360 
   361 /*
   362 ** An instance of this structure is created for each distinct open file 
   363 ** (i.e. if two handles are opened on the one file, only one of these
   364 ** structures is allocated) and stored in the async.aLock hash table. The
   365 ** keys for async.aLock are the full pathnames of the opened files.
   366 **
   367 ** AsyncLock.pList points to the head of a linked list of AsyncFileLock
   368 ** structures, one for each handle currently open on the file.
   369 **
   370 ** If the opened file is not a main-database (the SQLITE_OPEN_MAIN_DB is
   371 ** not passed to the sqlite3OsOpen() call), or if ENABLE_FILE_LOCKING is 
   372 ** not defined at compile time, variables AsyncLock.pFile and 
   373 ** AsyncLock.eLock are never used. Otherwise, pFile is a file handle
   374 ** opened on the file in question and used to obtain the file-system 
   375 ** locks required by database connections within this process.
   376 **
   377 ** See comments above the asyncLock() function for more details on 
   378 ** the implementation of database locking used by this backend.
   379 */
   380 struct AsyncLock {
   381   char *zFile;
   382   int nFile;
   383   sqlite3_file *pFile;
   384   int eLock;
   385   AsyncFileLock *pList;
   386   AsyncLock *pNext;           /* Next in linked list headed by async.pLock */
   387 };
   388 
   389 /*
   390 ** An instance of the following structure is allocated along with each
   391 ** AsyncFileData structure (see AsyncFileData.lock), but is only used if the
   392 ** file was opened with the SQLITE_OPEN_MAIN_DB.
   393 */
   394 struct AsyncFileLock {
   395   int eLock;                /* Internally visible lock state (sqlite pov) */
   396   int eAsyncLock;           /* Lock-state with write-queue unlock */
   397   AsyncFileLock *pNext;
   398 };
   399 
   400 /* 
   401 ** The AsyncFile structure is a subclass of sqlite3_file used for 
   402 ** asynchronous IO. 
   403 **
   404 ** All of the actual data for the structure is stored in the structure
   405 ** pointed to by AsyncFile.pData, which is allocated as part of the
   406 ** sqlite3OsOpen() using sqlite3_malloc(). The reason for this is that the
   407 ** lifetime of the AsyncFile structure is ended by the caller after OsClose()
   408 ** is called, but the data in AsyncFileData may be required by the
   409 ** writer thread after that point.
   410 */
   411 struct AsyncFile {
   412   sqlite3_io_methods *pMethod;
   413   AsyncFileData *pData;
   414 };
   415 struct AsyncFileData {
   416   char *zName;               /* Underlying OS filename - used for debugging */
   417   int nName;                 /* Number of characters in zName */
   418   sqlite3_file *pBaseRead;   /* Read handle to the underlying Os file */
   419   sqlite3_file *pBaseWrite;  /* Write handle to the underlying Os file */
   420   AsyncFileLock lock;        /* Lock state for this handle */
   421   AsyncLock *pLock;          /* AsyncLock object for this file system entry */
   422   AsyncWrite close;
   423 };
   424 
   425 /*
   426 ** The following async_XXX functions are debugging wrappers around the
   427 ** corresponding pthread_XXX functions:
   428 **
   429 **     pthread_mutex_lock();
   430 **     pthread_mutex_unlock();
   431 **     pthread_mutex_trylock();
   432 **     pthread_cond_wait();
   433 **
   434 ** It is illegal to pass any mutex other than those stored in the
   435 ** following global variables of these functions.
   436 **
   437 **     async.queueMutex
   438 **     async.writerMutex
   439 **     async.lockMutex
   440 **
   441 ** If NDEBUG is defined, these wrappers do nothing except call the 
   442 ** corresponding pthreads function. If NDEBUG is not defined, then the
   443 ** following variables are used to store the thread-id (as returned
   444 ** by pthread_self()) currently holding the mutex, or 0 otherwise:
   445 **
   446 **     asyncdebug.queueMutexHolder
   447 **     asyncdebug.writerMutexHolder
   448 **     asyncdebug.lockMutexHolder
   449 **
   450 ** These variables are used by some assert() statements that verify
   451 ** the statements made in the "Deadlock Prevention" notes earlier
   452 ** in this file.
   453 */
   454 #ifndef NDEBUG
   455 
   456 static struct TestAsyncDebugData {
   457   pthread_t lockMutexHolder;
   458   pthread_t queueMutexHolder;
   459   pthread_t writerMutexHolder;
   460 } asyncdebug = {0, 0, 0};
   461 
   462 /*
   463 ** Wrapper around pthread_mutex_lock(). Checks that we have not violated
   464 ** the anti-deadlock rules (see "Deadlock prevention" above).
   465 */
   466 static int async_mutex_lock(pthread_mutex_t *pMutex){
   467   int iIdx;
   468   int rc;
   469   pthread_mutex_t *aMutex = (pthread_mutex_t *)(&async);
   470   pthread_t *aHolder = (pthread_t *)(&asyncdebug);
   471 
   472   /* The code in this 'ifndef NDEBUG' block depends on a certain alignment
   473    * of the variables in TestAsyncStaticData and TestAsyncDebugData. The
   474    * following assert() statements check that this has not been changed.
   475    *
   476    * Really, these only need to be run once at startup time.
   477    */
   478   assert(&(aMutex[0])==&async.lockMutex);
   479   assert(&(aMutex[1])==&async.queueMutex);
   480   assert(&(aMutex[2])==&async.writerMutex);
   481   assert(&(aHolder[0])==&asyncdebug.lockMutexHolder);
   482   assert(&(aHolder[1])==&asyncdebug.queueMutexHolder);
   483   assert(&(aHolder[2])==&asyncdebug.writerMutexHolder);
   484 
   485   assert( pthread_self()!=0 );
   486 
   487   for(iIdx=0; iIdx<3; iIdx++){
   488     if( pMutex==&aMutex[iIdx] ) break;
   489 
   490     /* This is the key assert(). Here we are checking that if the caller
   491      * is trying to block on async.writerMutex, neither of the other two
   492      * mutex are held. If the caller is trying to block on async.queueMutex,
   493      * lockMutex is not held.
   494      */
   495     assert(!pthread_equal(aHolder[iIdx], pthread_self()));
   496   }
   497   assert(iIdx<3);
   498 
   499   rc = pthread_mutex_lock(pMutex);
   500   if( rc==0 ){
   501     assert(aHolder[iIdx]==0);
   502     aHolder[iIdx] = pthread_self();
   503   }
   504   return rc;
   505 }
   506 
   507 /*
   508 ** Wrapper around pthread_mutex_unlock().
   509 */
   510 static int async_mutex_unlock(pthread_mutex_t *pMutex){
   511   int iIdx;
   512   int rc;
   513   pthread_mutex_t *aMutex = (pthread_mutex_t *)(&async);
   514   pthread_t *aHolder = (pthread_t *)(&asyncdebug);
   515 
   516   for(iIdx=0; iIdx<3; iIdx++){
   517     if( pMutex==&aMutex[iIdx] ) break;
   518   }
   519   assert(iIdx<3);
   520 
   521   assert(pthread_equal(aHolder[iIdx], pthread_self()));
   522   aHolder[iIdx] = 0;
   523   rc = pthread_mutex_unlock(pMutex);
   524   assert(rc==0);
   525 
   526   return 0;
   527 }
   528 
   529 /*
   530 ** Wrapper around pthread_mutex_trylock().
   531 */
   532 static int async_mutex_trylock(pthread_mutex_t *pMutex){
   533   int iIdx;
   534   int rc;
   535   pthread_mutex_t *aMutex = (pthread_mutex_t *)(&async);
   536   pthread_t *aHolder = (pthread_t *)(&asyncdebug);
   537 
   538   for(iIdx=0; iIdx<3; iIdx++){
   539     if( pMutex==&aMutex[iIdx] ) break;
   540   }
   541   assert(iIdx<3);
   542 
   543   rc = pthread_mutex_trylock(pMutex);
   544   if( rc==0 ){
   545     assert(aHolder[iIdx]==0);
   546     aHolder[iIdx] = pthread_self();
   547   }
   548   return rc;
   549 }
   550 
   551 /*
   552 ** Wrapper around pthread_cond_wait().
   553 */
   554 static int async_cond_wait(pthread_cond_t *pCond, pthread_mutex_t *pMutex){
   555   int iIdx;
   556   int rc;
   557   pthread_mutex_t *aMutex = (pthread_mutex_t *)(&async);
   558   pthread_t *aHolder = (pthread_t *)(&asyncdebug);
   559 
   560   for(iIdx=0; iIdx<3; iIdx++){
   561     if( pMutex==&aMutex[iIdx] ) break;
   562   }
   563   assert(iIdx<3);
   564 
   565   assert(pthread_equal(aHolder[iIdx],pthread_self()));
   566   aHolder[iIdx] = 0;
   567   rc = pthread_cond_wait(pCond, pMutex);
   568   if( rc==0 ){
   569     aHolder[iIdx] = pthread_self();
   570   }
   571   return rc;
   572 }
   573 
   574 /*
   575 ** Assert that the mutex is held by the current thread.
   576 */
   577 static void assert_mutex_is_held(pthread_mutex_t *pMutex){
   578   int iIdx;
   579   pthread_mutex_t *aMutex = (pthread_mutex_t *)(&async);
   580   pthread_t *aHolder = (pthread_t *)(&asyncdebug);
   581 
   582   for(iIdx=0; iIdx<3; iIdx++){
   583     if( pMutex==&aMutex[iIdx] ) break;
   584   }
   585   assert(iIdx<3);
   586   assert( aHolder[iIdx]==pthread_self() );
   587 }
   588 
   589 /* Call our async_XX wrappers instead of selected pthread_XX functions */
   590 #define pthread_mutex_lock    async_mutex_lock
   591 #define pthread_mutex_unlock  async_mutex_unlock
   592 #define pthread_mutex_trylock async_mutex_trylock
   593 #define pthread_cond_wait     async_cond_wait
   594 
   595 #else    /* if defined(NDEBUG) */
   596 
   597 #define assert_mutex_is_held(X)    /* A no-op when not debugging */
   598 
   599 #endif   /* !defined(NDEBUG) */
   600 
   601 /*
   602 ** Add an entry to the end of the global write-op list. pWrite should point 
   603 ** to an AsyncWrite structure allocated using sqlite3_malloc().  The writer
   604 ** thread will call sqlite3_free() to free the structure after the specified
   605 ** operation has been completed.
   606 **
   607 ** Once an AsyncWrite structure has been added to the list, it becomes the
   608 ** property of the writer thread and must not be read or modified by the
   609 ** caller.  
   610 */
   611 static void addAsyncWrite(AsyncWrite *pWrite){
   612   /* We must hold the queue mutex in order to modify the queue pointers */
   613   pthread_mutex_lock(&async.queueMutex);
   614 
   615   /* Add the record to the end of the write-op queue */
   616   assert( !pWrite->pNext );
   617   if( async.pQueueLast ){
   618     assert( async.pQueueFirst );
   619     async.pQueueLast->pNext = pWrite;
   620   }else{
   621     async.pQueueFirst = pWrite;
   622   }
   623   async.pQueueLast = pWrite;
   624   ASYNC_TRACE(("PUSH %p (%s %s %d)\n", pWrite, azOpcodeName[pWrite->op],
   625          pWrite->pFileData ? pWrite->pFileData->zName : "-", pWrite->iOffset));
   626 
   627   if( pWrite->op==ASYNC_CLOSE ){
   628     async.nFile--;
   629   }
   630 
   631   /* Drop the queue mutex */
   632   pthread_mutex_unlock(&async.queueMutex);
   633 
   634   /* The writer thread might have been idle because there was nothing
   635   ** on the write-op queue for it to do.  So wake it up. */
   636   pthread_cond_signal(&async.queueSignal);
   637 }
   638 
   639 /*
   640 ** Increment async.nFile in a thread-safe manner.
   641 */
   642 static void incrOpenFileCount(){
   643   /* We must hold the queue mutex in order to modify async.nFile */
   644   pthread_mutex_lock(&async.queueMutex);
   645   if( async.nFile==0 ){
   646     async.ioError = SQLITE_OK;
   647   }
   648   async.nFile++;
   649   pthread_mutex_unlock(&async.queueMutex);
   650 }
   651 
   652 /*
   653 ** This is a utility function to allocate and populate a new AsyncWrite
   654 ** structure and insert it (via addAsyncWrite() ) into the global list.
   655 */
   656 static int addNewAsyncWrite(
   657   AsyncFileData *pFileData, 
   658   int op, 
   659   sqlite3_int64 iOffset, 
   660   int nByte,
   661   const char *zByte
   662 ){
   663   AsyncWrite *p;
   664   if( op!=ASYNC_CLOSE && async.ioError ){
   665     return async.ioError;
   666   }
   667   p = sqlite3_malloc(sizeof(AsyncWrite) + (zByte?nByte:0));
   668   if( !p ){
   669     /* The upper layer does not expect operations like OsWrite() to
   670     ** return SQLITE_NOMEM. This is partly because under normal conditions
   671     ** SQLite is required to do rollback without calling malloc(). So
   672     ** if malloc() fails here, treat it as an I/O error. The above
   673     ** layer knows how to handle that.
   674     */
   675     return SQLITE_IOERR;
   676   }
   677   p->op = op;
   678   p->iOffset = iOffset;
   679   p->nByte = nByte;
   680   p->pFileData = pFileData;
   681   p->pNext = 0;
   682   if( zByte ){
   683     p->zBuf = (char *)&p[1];
   684     memcpy(p->zBuf, zByte, nByte);
   685   }else{
   686     p->zBuf = 0;
   687   }
   688   addAsyncWrite(p);
   689   return SQLITE_OK;
   690 }
   691 
   692 /*
   693 ** Close the file. This just adds an entry to the write-op list, the file is
   694 ** not actually closed.
   695 */
   696 static int asyncClose(sqlite3_file *pFile){
   697   AsyncFileData *p = ((AsyncFile *)pFile)->pData;
   698 
   699   /* Unlock the file, if it is locked */
   700   pthread_mutex_lock(&async.lockMutex);
   701   p->lock.eLock = 0;
   702   pthread_mutex_unlock(&async.lockMutex);
   703 
   704   addAsyncWrite(&p->close);
   705   return SQLITE_OK;
   706 }
   707 
   708 /*
   709 ** Implementation of sqlite3OsWrite() for asynchronous files. Instead of 
   710 ** writing to the underlying file, this function adds an entry to the end of
   711 ** the global AsyncWrite list. Either SQLITE_OK or SQLITE_NOMEM may be
   712 ** returned.
   713 */
   714 static int asyncWrite(
   715   sqlite3_file *pFile, 
   716   const void *pBuf, 
   717   int amt, 
   718   sqlite3_int64 iOff
   719 ){
   720   AsyncFileData *p = ((AsyncFile *)pFile)->pData;
   721   return addNewAsyncWrite(p, ASYNC_WRITE, iOff, amt, pBuf);
   722 }
   723 
   724 /*
   725 ** Read data from the file. First we read from the filesystem, then adjust 
   726 ** the contents of the buffer based on ASYNC_WRITE operations in the 
   727 ** write-op queue.
   728 **
   729 ** This method holds the mutex from start to finish.
   730 */
   731 static int asyncRead(
   732   sqlite3_file *pFile, 
   733   void *zOut, 
   734   int iAmt, 
   735   sqlite3_int64 iOffset
   736 ){
   737   AsyncFileData *p = ((AsyncFile *)pFile)->pData;
   738   int rc = SQLITE_OK;
   739   sqlite3_int64 filesize;
   740   int nRead;
   741   sqlite3_file *pBase = p->pBaseRead;
   742 
   743   /* Grab the write queue mutex for the duration of the call */
   744   pthread_mutex_lock(&async.queueMutex);
   745 
   746   /* If an I/O error has previously occurred in this virtual file 
   747   ** system, then all subsequent operations fail.
   748   */
   749   if( async.ioError!=SQLITE_OK ){
   750     rc = async.ioError;
   751     goto asyncread_out;
   752   }
   753 
   754   if( pBase->pMethods ){
   755     rc = pBase->pMethods->xFileSize(pBase, &filesize);
   756     if( rc!=SQLITE_OK ){
   757       goto asyncread_out;
   758     }
   759     nRead = MIN(filesize - iOffset, iAmt);
   760     if( nRead>0 ){
   761       rc = pBase->pMethods->xRead(pBase, zOut, nRead, iOffset);
   762       ASYNC_TRACE(("READ %s %d bytes at %d\n", p->zName, nRead, iOffset));
   763     }
   764   }
   765 
   766   if( rc==SQLITE_OK ){
   767     AsyncWrite *pWrite;
   768     char *zName = p->zName;
   769 
   770     for(pWrite=async.pQueueFirst; pWrite; pWrite = pWrite->pNext){
   771       if( pWrite->op==ASYNC_WRITE && (
   772         (pWrite->pFileData==p) ||
   773         (zName && pWrite->pFileData->zName==zName)
   774       )){
   775         int iBeginOut = (pWrite->iOffset-iOffset);
   776         int iBeginIn = -iBeginOut;
   777         int nCopy;
   778 
   779         if( iBeginIn<0 ) iBeginIn = 0;
   780         if( iBeginOut<0 ) iBeginOut = 0;
   781         nCopy = MIN(pWrite->nByte-iBeginIn, iAmt-iBeginOut);
   782 
   783         if( nCopy>0 ){
   784           memcpy(&((char *)zOut)[iBeginOut], &pWrite->zBuf[iBeginIn], nCopy);
   785           ASYNC_TRACE(("OVERREAD %d bytes at %d\n", nCopy, iBeginOut+iOffset));
   786         }
   787       }
   788     }
   789   }
   790 
   791 asyncread_out:
   792   pthread_mutex_unlock(&async.queueMutex);
   793   return rc;
   794 }
   795 
   796 /*
   797 ** Truncate the file to nByte bytes in length. This just adds an entry to 
   798 ** the write-op list, no IO actually takes place.
   799 */
   800 static int asyncTruncate(sqlite3_file *pFile, sqlite3_int64 nByte){
   801   AsyncFileData *p = ((AsyncFile *)pFile)->pData;
   802   return addNewAsyncWrite(p, ASYNC_TRUNCATE, nByte, 0, 0);
   803 }
   804 
   805 /*
   806 ** Sync the file. This just adds an entry to the write-op list, the 
   807 ** sync() is done later by sqlite3_async_flush().
   808 */
   809 static int asyncSync(sqlite3_file *pFile, int flags){
   810   AsyncFileData *p = ((AsyncFile *)pFile)->pData;
   811   return addNewAsyncWrite(p, ASYNC_SYNC, 0, flags, 0);
   812 }
   813 
   814 /*
   815 ** Read the size of the file. First we read the size of the file system 
   816 ** entry, then adjust for any ASYNC_WRITE or ASYNC_TRUNCATE operations 
   817 ** currently in the write-op list. 
   818 **
   819 ** This method holds the mutex from start to finish.
   820 */
   821 int asyncFileSize(sqlite3_file *pFile, sqlite3_int64 *piSize){
   822   AsyncFileData *p = ((AsyncFile *)pFile)->pData;
   823   int rc = SQLITE_OK;
   824   sqlite3_int64 s = 0;
   825   sqlite3_file *pBase;
   826 
   827   pthread_mutex_lock(&async.queueMutex);
   828 
   829   /* Read the filesystem size from the base file. If pBaseRead is NULL, this
   830   ** means the file hasn't been opened yet. In this case all relevant data 
   831   ** must be in the write-op queue anyway, so we can omit reading from the
   832   ** file-system.
   833   */
   834   pBase = p->pBaseRead;
   835   if( pBase->pMethods ){
   836     rc = pBase->pMethods->xFileSize(pBase, &s);
   837   }
   838 
   839   if( rc==SQLITE_OK ){
   840     AsyncWrite *pWrite;
   841     for(pWrite=async.pQueueFirst; pWrite; pWrite = pWrite->pNext){
   842       if( pWrite->op==ASYNC_DELETE 
   843        && p->zName 
   844        && strcmp(p->zName, pWrite->zBuf)==0 
   845       ){
   846         s = 0;
   847       }else if( pWrite->pFileData && (
   848           (pWrite->pFileData==p) 
   849        || (p->zName && pWrite->pFileData->zName==p->zName) 
   850       )){
   851         switch( pWrite->op ){
   852           case ASYNC_WRITE:
   853             s = MAX(pWrite->iOffset + (sqlite3_int64)(pWrite->nByte), s);
   854             break;
   855           case ASYNC_TRUNCATE:
   856             s = MIN(s, pWrite->iOffset);
   857             break;
   858         }
   859       }
   860     }
   861     *piSize = s;
   862   }
   863   pthread_mutex_unlock(&async.queueMutex);
   864   return rc;
   865 }
   866 
   867 /*
   868 ** Lock or unlock the actual file-system entry.
   869 */
   870 static int getFileLock(AsyncLock *pLock){
   871   int rc = SQLITE_OK;
   872   AsyncFileLock *pIter;
   873   int eRequired = 0;
   874 
   875   if( pLock->pFile ){
   876     for(pIter=pLock->pList; pIter; pIter=pIter->pNext){
   877       assert(pIter->eAsyncLock>=pIter->eLock);
   878       if( pIter->eAsyncLock>eRequired ){
   879         eRequired = pIter->eAsyncLock;
   880         assert(eRequired>=0 && eRequired<=SQLITE_LOCK_EXCLUSIVE);
   881       }
   882     }
   883 
   884     if( eRequired>pLock->eLock ){
   885       rc = pLock->pFile->pMethods->xLock(pLock->pFile, eRequired);
   886       if( rc==SQLITE_OK ){
   887         pLock->eLock = eRequired;
   888       }
   889     }
   890     else if( eRequired<pLock->eLock && eRequired<=SQLITE_LOCK_SHARED ){
   891       rc = pLock->pFile->pMethods->xUnlock(pLock->pFile, eRequired);
   892       if( rc==SQLITE_OK ){
   893         pLock->eLock = eRequired;
   894       }
   895     }
   896   }
   897 
   898   return rc;
   899 }
   900 
   901 /*
   902 ** Return the AsyncLock structure from the global async.pLock list 
   903 ** associated with the file-system entry identified by path zName 
   904 ** (a string of nName bytes). If no such structure exists, return 0.
   905 */
   906 static AsyncLock *findLock(const char *zName, int nName){
   907   AsyncLock *p = async.pLock;
   908   while( p && (p->nFile!=nName || memcmp(p->zFile, zName, nName)) ){
   909     p = p->pNext;
   910   }
   911   return p;
   912 }
   913 
   914 /*
   915 ** The following two methods - asyncLock() and asyncUnlock() - are used
   916 ** to obtain and release locks on database files opened with the
   917 ** asynchronous backend.
   918 */
   919 static int asyncLock(sqlite3_file *pFile, int eLock){
   920   int rc = SQLITE_OK;
   921   AsyncFileData *p = ((AsyncFile *)pFile)->pData;
   922 
   923   if( p->zName ){
   924     pthread_mutex_lock(&async.lockMutex);
   925     if( p->lock.eLock<eLock ){
   926       AsyncLock *pLock = p->pLock;
   927       AsyncFileLock *pIter;
   928       assert(pLock && pLock->pList);
   929       for(pIter=pLock->pList; pIter; pIter=pIter->pNext){
   930         if( pIter!=&p->lock && (
   931           (eLock==SQLITE_LOCK_EXCLUSIVE && pIter->eLock>=SQLITE_LOCK_SHARED) ||
   932           (eLock==SQLITE_LOCK_PENDING && pIter->eLock>=SQLITE_LOCK_RESERVED) ||
   933           (eLock==SQLITE_LOCK_RESERVED && pIter->eLock>=SQLITE_LOCK_RESERVED) ||
   934           (eLock==SQLITE_LOCK_SHARED && pIter->eLock>=SQLITE_LOCK_PENDING)
   935         )){
   936           rc = SQLITE_BUSY;
   937         }
   938       }
   939       if( rc==SQLITE_OK ){
   940         p->lock.eLock = eLock;
   941         p->lock.eAsyncLock = MAX(p->lock.eAsyncLock, eLock);
   942       }
   943       assert(p->lock.eAsyncLock>=p->lock.eLock);
   944       if( rc==SQLITE_OK ){
   945         rc = getFileLock(pLock);
   946       }
   947     }
   948     pthread_mutex_unlock(&async.lockMutex);
   949   }
   950 
   951   ASYNC_TRACE(("LOCK %d (%s) rc=%d\n", eLock, p->zName, rc));
   952   return rc;
   953 }
   954 static int asyncUnlock(sqlite3_file *pFile, int eLock){
   955   int rc = SQLITE_OK;
   956   AsyncFileData *p = ((AsyncFile *)pFile)->pData;
   957   if( p->zName ){
   958     AsyncFileLock *pLock = &p->lock;
   959     pthread_mutex_lock(&async.lockMutex);
   960     pLock->eLock = MIN(pLock->eLock, eLock);
   961     pthread_mutex_unlock(&async.lockMutex);
   962     rc = addNewAsyncWrite(p, ASYNC_UNLOCK, 0, eLock, 0);
   963   }
   964   return rc;
   965 }
   966 
   967 /*
   968 ** This function is called when the pager layer first opens a database file
   969 ** and is checking for a hot-journal.
   970 */
   971 static int asyncCheckReservedLock(sqlite3_file *pFile, int *pResOut){
   972   int ret = 0;
   973   AsyncFileLock *pIter;
   974   AsyncFileData *p = ((AsyncFile *)pFile)->pData;
   975 
   976   pthread_mutex_lock(&async.lockMutex);
   977   for(pIter=p->pLock->pList; pIter; pIter=pIter->pNext){
   978     if( pIter->eLock>=SQLITE_LOCK_RESERVED ){
   979       ret = 1;
   980     }
   981   }
   982   pthread_mutex_unlock(&async.lockMutex);
   983 
   984   ASYNC_TRACE(("CHECK-LOCK %d (%s)\n", ret, p->zName));
   985   *pResOut = ret;
   986   return SQLITE_OK;
   987 }
   988 
   989 /* 
   990 ** sqlite3_file_control() implementation.
   991 */
   992 static int asyncFileControl(sqlite3_file *id, int op, void *pArg){
   993   switch( op ){
   994     case SQLITE_FCNTL_LOCKSTATE: {
   995       pthread_mutex_lock(&async.lockMutex);
   996       *(int*)pArg = ((AsyncFile*)id)->pData->lock.eLock;
   997       pthread_mutex_unlock(&async.lockMutex);
   998       return SQLITE_OK;
   999     }
  1000   }
  1001   return SQLITE_ERROR;
  1002 }
  1003 
  1004 /* 
  1005 ** Return the device characteristics and sector-size of the device. It
  1006 ** is not tricky to implement these correctly, as this backend might 
  1007 ** not have an open file handle at this point.
  1008 */
  1009 static int asyncSectorSize(sqlite3_file *pFile){
  1010   return 512;
  1011 }
  1012 static int asyncDeviceCharacteristics(sqlite3_file *pFile){
  1013   return 0;
  1014 }
  1015 
  1016 static int unlinkAsyncFile(AsyncFileData *pData){
  1017   AsyncFileLock **ppIter;
  1018   int rc = SQLITE_OK;
  1019 
  1020   if( pData->zName ){
  1021     AsyncLock *pLock = pData->pLock;
  1022     for(ppIter=&pLock->pList; *ppIter; ppIter=&((*ppIter)->pNext)){
  1023       if( (*ppIter)==&pData->lock ){
  1024         *ppIter = pData->lock.pNext;
  1025         break;
  1026       }
  1027     }
  1028     if( !pLock->pList ){
  1029       AsyncLock **pp;
  1030       if( pLock->pFile ){
  1031         pLock->pFile->pMethods->xClose(pLock->pFile);
  1032       }
  1033       for(pp=&async.pLock; *pp!=pLock; pp=&((*pp)->pNext));
  1034       *pp = pLock->pNext;
  1035       sqlite3_free(pLock);
  1036     }else{
  1037       rc = getFileLock(pLock);
  1038     }
  1039   }
  1040 
  1041   return rc;
  1042 }
  1043 
  1044 /*
  1045 ** Open a file.
  1046 */
  1047 static int asyncOpen(
  1048   sqlite3_vfs *pAsyncVfs,
  1049   const char *zName,
  1050   sqlite3_file *pFile,
  1051   int flags,
  1052   int *pOutFlags
  1053 ){
  1054   static sqlite3_io_methods async_methods = {
  1055     1,                               /* iVersion */
  1056     asyncClose,                      /* xClose */
  1057     asyncRead,                       /* xRead */
  1058     asyncWrite,                      /* xWrite */
  1059     asyncTruncate,                   /* xTruncate */
  1060     asyncSync,                       /* xSync */
  1061     asyncFileSize,                   /* xFileSize */
  1062     asyncLock,                       /* xLock */
  1063     asyncUnlock,                     /* xUnlock */
  1064     asyncCheckReservedLock,          /* xCheckReservedLock */
  1065     asyncFileControl,                /* xFileControl */
  1066     asyncSectorSize,                 /* xSectorSize */
  1067     asyncDeviceCharacteristics       /* xDeviceCharacteristics */
  1068   };
  1069 
  1070   sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData;
  1071   AsyncFile *p = (AsyncFile *)pFile;
  1072   int nName = 0;
  1073   int rc = SQLITE_OK;
  1074   int nByte;
  1075   AsyncFileData *pData;
  1076   AsyncLock *pLock = 0;
  1077   char *z;
  1078   int isExclusive = (flags&SQLITE_OPEN_EXCLUSIVE);
  1079 
  1080   /* If zName is NULL, then the upper layer is requesting an anonymous file */
  1081   if( zName ){
  1082     nName = strlen(zName)+1;
  1083   }
  1084 
  1085   nByte = (
  1086     sizeof(AsyncFileData) +        /* AsyncFileData structure */
  1087     2 * pVfs->szOsFile +           /* AsyncFileData.pBaseRead and pBaseWrite */
  1088     nName                          /* AsyncFileData.zName */
  1089   ); 
  1090   z = sqlite3_malloc(nByte);
  1091   if( !z ){
  1092     return SQLITE_NOMEM;
  1093   }
  1094   memset(z, 0, nByte);
  1095   pData = (AsyncFileData*)z;
  1096   z += sizeof(pData[0]);
  1097   pData->pBaseRead = (sqlite3_file*)z;
  1098   z += pVfs->szOsFile;
  1099   pData->pBaseWrite = (sqlite3_file*)z;
  1100   pData->close.pFileData = pData;
  1101   pData->close.op = ASYNC_CLOSE;
  1102 
  1103   if( zName ){
  1104     z += pVfs->szOsFile;
  1105     pData->zName = z;
  1106     pData->nName = nName;
  1107     memcpy(pData->zName, zName, nName);
  1108   }
  1109 
  1110   if( !isExclusive ){
  1111     rc = pVfs->xOpen(pVfs, zName, pData->pBaseRead, flags, pOutFlags);
  1112     if( rc==SQLITE_OK && ((*pOutFlags)&SQLITE_OPEN_READWRITE) ){
  1113       rc = pVfs->xOpen(pVfs, zName, pData->pBaseWrite, flags, 0);
  1114     }
  1115   }
  1116 
  1117   pthread_mutex_lock(&async.lockMutex);
  1118 
  1119   if( zName && rc==SQLITE_OK ){
  1120     pLock = findLock(pData->zName, pData->nName);
  1121     if( !pLock ){
  1122       int nByte = pVfs->szOsFile + sizeof(AsyncLock) + pData->nName + 1; 
  1123       pLock = (AsyncLock *)sqlite3_malloc(nByte);
  1124       if( pLock ){
  1125         memset(pLock, 0, nByte);
  1126 #ifdef ENABLE_FILE_LOCKING
  1127         if( flags&SQLITE_OPEN_MAIN_DB ){
  1128           pLock->pFile = (sqlite3_file *)&pLock[1];
  1129           rc = pVfs->xOpen(pVfs, zName, pLock->pFile, flags, 0);
  1130           if( rc!=SQLITE_OK ){
  1131             sqlite3_free(pLock);
  1132             pLock = 0;
  1133           }
  1134         }
  1135 #endif
  1136         if( pLock ){
  1137           pLock->nFile = pData->nName;
  1138           pLock->zFile = &((char *)(&pLock[1]))[pVfs->szOsFile];
  1139           memcpy(pLock->zFile, pData->zName, pLock->nFile);
  1140           pLock->pNext = async.pLock;
  1141           async.pLock = pLock;
  1142         }
  1143       }else{
  1144         rc = SQLITE_NOMEM;
  1145       }
  1146     }
  1147   }
  1148 
  1149   if( rc==SQLITE_OK ){
  1150     p->pMethod = &async_methods;
  1151     p->pData = pData;
  1152 
  1153     /* Link AsyncFileData.lock into the linked list of 
  1154     ** AsyncFileLock structures for this file.
  1155     */
  1156     if( zName ){
  1157       pData->lock.pNext = pLock->pList;
  1158       pLock->pList = &pData->lock;
  1159       pData->zName = pLock->zFile;
  1160     }
  1161   }else{
  1162     if( pData->pBaseRead->pMethods ){
  1163       pData->pBaseRead->pMethods->xClose(pData->pBaseRead);
  1164     }
  1165     if( pData->pBaseWrite->pMethods ){
  1166       pData->pBaseWrite->pMethods->xClose(pData->pBaseWrite);
  1167     }
  1168     sqlite3_free(pData);
  1169   }
  1170 
  1171   pthread_mutex_unlock(&async.lockMutex);
  1172 
  1173   if( rc==SQLITE_OK ){
  1174     incrOpenFileCount();
  1175     pData->pLock = pLock;
  1176   }
  1177 
  1178   if( rc==SQLITE_OK && isExclusive ){
  1179     rc = addNewAsyncWrite(pData, ASYNC_OPENEXCLUSIVE, (sqlite3_int64)flags,0,0);
  1180     if( rc==SQLITE_OK ){
  1181       if( pOutFlags ) *pOutFlags = flags;
  1182     }else{
  1183       pthread_mutex_lock(&async.lockMutex);
  1184       unlinkAsyncFile(pData);
  1185       pthread_mutex_unlock(&async.lockMutex);
  1186       sqlite3_free(pData);
  1187     }
  1188   }
  1189   return rc;
  1190 }
  1191 
  1192 /*
  1193 ** Implementation of sqlite3OsDelete. Add an entry to the end of the 
  1194 ** write-op queue to perform the delete.
  1195 */
  1196 static int asyncDelete(sqlite3_vfs *pAsyncVfs, const char *z, int syncDir){
  1197   return addNewAsyncWrite(0, ASYNC_DELETE, syncDir, strlen(z)+1, z);
  1198 }
  1199 
  1200 /*
  1201 ** Implementation of sqlite3OsAccess. This method holds the mutex from
  1202 ** start to finish.
  1203 */
  1204 static int asyncAccess(
  1205   sqlite3_vfs *pAsyncVfs, 
  1206   const char *zName, 
  1207   int flags,
  1208   int *pResOut
  1209 ){
  1210   int rc;
  1211   int ret;
  1212   AsyncWrite *p;
  1213   sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData;
  1214 
  1215   assert(flags==SQLITE_ACCESS_READWRITE 
  1216       || flags==SQLITE_ACCESS_READ 
  1217       || flags==SQLITE_ACCESS_EXISTS 
  1218   );
  1219 
  1220   pthread_mutex_lock(&async.queueMutex);
  1221   rc = pVfs->xAccess(pVfs, zName, flags, &ret);
  1222   if( rc==SQLITE_OK && flags==SQLITE_ACCESS_EXISTS ){
  1223     for(p=async.pQueueFirst; p; p = p->pNext){
  1224       if( p->op==ASYNC_DELETE && 0==strcmp(p->zBuf, zName) ){
  1225         ret = 0;
  1226       }else if( p->op==ASYNC_OPENEXCLUSIVE 
  1227              && p->pFileData->zName
  1228              && 0==strcmp(p->pFileData->zName, zName) 
  1229       ){
  1230         ret = 1;
  1231       }
  1232     }
  1233   }
  1234   ASYNC_TRACE(("ACCESS(%s): %s = %d\n", 
  1235     flags==SQLITE_ACCESS_READWRITE?"read-write":
  1236     flags==SQLITE_ACCESS_READ?"read":"exists"
  1237     , zName, ret)
  1238   );
  1239   pthread_mutex_unlock(&async.queueMutex);
  1240   *pResOut = ret;
  1241   return rc;
  1242 }
  1243 
  1244 /*
  1245 ** Fill in zPathOut with the full path to the file identified by zPath.
  1246 */
  1247 static int asyncFullPathname(
  1248   sqlite3_vfs *pAsyncVfs, 
  1249   const char *zPath, 
  1250   int nPathOut,
  1251   char *zPathOut
  1252 ){
  1253   int rc;
  1254   sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData;
  1255   rc = pVfs->xFullPathname(pVfs, zPath, nPathOut, zPathOut);
  1256 
  1257   /* Because of the way intra-process file locking works, this backend
  1258   ** needs to return a canonical path. The following block assumes the
  1259   ** file-system uses unix style paths. 
  1260   */
  1261   if( rc==SQLITE_OK ){
  1262     int iIn;
  1263     int iOut = 0;
  1264     int nPathOut = strlen(zPathOut);
  1265 
  1266     for(iIn=0; iIn<nPathOut; iIn++){
  1267 
  1268       /* Replace any occurences of "//" with "/" */
  1269       if( iIn<=(nPathOut-2) && zPathOut[iIn]=='/' && zPathOut[iIn+1]=='/'
  1270       ){
  1271         continue;
  1272       }
  1273 
  1274       /* Replace any occurences of "/./" with "/" */
  1275       if( iIn<=(nPathOut-3) 
  1276        && zPathOut[iIn]=='/' && zPathOut[iIn+1]=='.' && zPathOut[iIn+2]=='/'
  1277       ){
  1278         iIn++;
  1279         continue;
  1280       }
  1281 
  1282       /* Replace any occurences of "<path-component>/../" with "" */
  1283       if( iOut>0 && iIn<=(nPathOut-4) 
  1284        && zPathOut[iIn]=='/' && zPathOut[iIn+1]=='.' 
  1285        && zPathOut[iIn+2]=='.' && zPathOut[iIn+3]=='/'
  1286       ){
  1287         iIn += 3;
  1288         iOut--;
  1289         for( ; iOut>0 && zPathOut[iOut-1]!='/'; iOut--);
  1290         continue;
  1291       }
  1292 
  1293       zPathOut[iOut++] = zPathOut[iIn];
  1294     }
  1295     zPathOut[iOut] = '\0';
  1296   }
  1297 
  1298   return rc;
  1299 }
  1300 static void *asyncDlOpen(sqlite3_vfs *pAsyncVfs, const char *zPath){
  1301   sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData;
  1302   return pVfs->xDlOpen(pVfs, zPath);
  1303 }
  1304 static void asyncDlError(sqlite3_vfs *pAsyncVfs, int nByte, char *zErrMsg){
  1305   sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData;
  1306   pVfs->xDlError(pVfs, nByte, zErrMsg);
  1307 }
  1308 static void *asyncDlSym(
  1309   sqlite3_vfs *pAsyncVfs, 
  1310   void *pHandle, 
  1311   const char *zSymbol
  1312 ){
  1313   sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData;
  1314   return pVfs->xDlSym(pVfs, pHandle, zSymbol);
  1315 }
  1316 static void asyncDlClose(sqlite3_vfs *pAsyncVfs, void *pHandle){
  1317   sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData;
  1318   pVfs->xDlClose(pVfs, pHandle);
  1319 }
  1320 static int asyncRandomness(sqlite3_vfs *pAsyncVfs, int nByte, char *zBufOut){
  1321   sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData;
  1322   return pVfs->xRandomness(pVfs, nByte, zBufOut);
  1323 }
  1324 static int asyncSleep(sqlite3_vfs *pAsyncVfs, int nMicro){
  1325   sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData;
  1326   return pVfs->xSleep(pVfs, nMicro);
  1327 }
  1328 static int asyncCurrentTime(sqlite3_vfs *pAsyncVfs, double *pTimeOut){
  1329   sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData;
  1330   return pVfs->xCurrentTime(pVfs, pTimeOut);
  1331 }
  1332 
  1333 static sqlite3_vfs async_vfs = {
  1334   1,                    /* iVersion */
  1335   sizeof(AsyncFile),    /* szOsFile */
  1336   0,                    /* mxPathname */
  1337   0,                    /* pNext */
  1338   "async",              /* zName */
  1339   0,                    /* pAppData */
  1340   asyncOpen,            /* xOpen */
  1341   asyncDelete,          /* xDelete */
  1342   asyncAccess,          /* xAccess */
  1343   asyncFullPathname,    /* xFullPathname */
  1344   asyncDlOpen,          /* xDlOpen */
  1345   asyncDlError,         /* xDlError */
  1346   asyncDlSym,           /* xDlSym */
  1347   asyncDlClose,         /* xDlClose */
  1348   asyncRandomness,      /* xDlError */
  1349   asyncSleep,           /* xDlSym */
  1350   asyncCurrentTime      /* xDlClose */
  1351 };
  1352 
  1353 /*
  1354 ** Call this routine to enable or disable the
  1355 ** asynchronous IO features implemented in this file. 
  1356 **
  1357 ** This routine is not even remotely threadsafe.  Do not call
  1358 ** this routine while any SQLite database connections are open.
  1359 */
  1360 static void asyncEnable(int enable){
  1361   if( enable ){
  1362     if( !async_vfs.pAppData ){
  1363       async_vfs.pAppData = (void *)sqlite3_vfs_find(0);
  1364       async_vfs.mxPathname = ((sqlite3_vfs *)async_vfs.pAppData)->mxPathname;
  1365       sqlite3_vfs_register(&async_vfs, 1);
  1366     }
  1367   }else{
  1368     if( async_vfs.pAppData ){
  1369       sqlite3_vfs_unregister(&async_vfs);
  1370       async_vfs.pAppData = 0;
  1371     }
  1372   }
  1373 }
  1374 
  1375 /* 
  1376 ** This procedure runs in a separate thread, reading messages off of the
  1377 ** write queue and processing them one by one.  
  1378 **
  1379 ** If async.writerHaltNow is true, then this procedure exits
  1380 ** after processing a single message.
  1381 **
  1382 ** If async.writerHaltWhenIdle is true, then this procedure exits when
  1383 ** the write queue is empty.
  1384 **
  1385 ** If both of the above variables are false, this procedure runs
  1386 ** indefinately, waiting for operations to be added to the write queue
  1387 ** and processing them in the order in which they arrive.
  1388 **
  1389 ** An artifical delay of async.ioDelay milliseconds is inserted before
  1390 ** each write operation in order to simulate the effect of a slow disk.
  1391 **
  1392 ** Only one instance of this procedure may be running at a time.
  1393 */
  1394 static void *asyncWriterThread(void *pIsStarted){
  1395   sqlite3_vfs *pVfs = (sqlite3_vfs *)(async_vfs.pAppData);
  1396   AsyncWrite *p = 0;
  1397   int rc = SQLITE_OK;
  1398   int holdingMutex = 0;
  1399 
  1400   if( pthread_mutex_trylock(&async.writerMutex) ){
  1401     return 0;
  1402   }
  1403   (*(int *)pIsStarted) = 1;
  1404   while( async.writerHaltNow==0 ){
  1405     int doNotFree = 0;
  1406     sqlite3_file *pBase = 0;
  1407 
  1408     if( !holdingMutex ){
  1409       pthread_mutex_lock(&async.queueMutex);
  1410     }
  1411     while( (p = async.pQueueFirst)==0 ){
  1412       pthread_cond_broadcast(&async.emptySignal);
  1413       if( async.writerHaltWhenIdle ){
  1414         pthread_mutex_unlock(&async.queueMutex);
  1415         break;
  1416       }else{
  1417         ASYNC_TRACE(("IDLE\n"));
  1418         pthread_cond_wait(&async.queueSignal, &async.queueMutex);
  1419         ASYNC_TRACE(("WAKEUP\n"));
  1420       }
  1421     }
  1422     if( p==0 ) break;
  1423     holdingMutex = 1;
  1424 
  1425     /* Right now this thread is holding the mutex on the write-op queue.
  1426     ** Variable 'p' points to the first entry in the write-op queue. In
  1427     ** the general case, we hold on to the mutex for the entire body of
  1428     ** the loop. 
  1429     **
  1430     ** However in the cases enumerated below, we relinquish the mutex,
  1431     ** perform the IO, and then re-request the mutex before removing 'p' from
  1432     ** the head of the write-op queue. The idea is to increase concurrency with
  1433     ** sqlite threads.
  1434     **
  1435     **     * An ASYNC_CLOSE operation.
  1436     **     * An ASYNC_OPENEXCLUSIVE operation. For this one, we relinquish 
  1437     **       the mutex, call the underlying xOpenExclusive() function, then
  1438     **       re-aquire the mutex before seting the AsyncFile.pBaseRead 
  1439     **       variable.
  1440     **     * ASYNC_SYNC and ASYNC_WRITE operations, if 
  1441     **       SQLITE_ASYNC_TWO_FILEHANDLES was set at compile time and two
  1442     **       file-handles are open for the particular file being "synced".
  1443     */
  1444     if( async.ioError!=SQLITE_OK && p->op!=ASYNC_CLOSE ){
  1445       p->op = ASYNC_NOOP;
  1446     }
  1447     if( p->pFileData ){
  1448       pBase = p->pFileData->pBaseWrite;
  1449       if( 
  1450         p->op==ASYNC_CLOSE || 
  1451         p->op==ASYNC_OPENEXCLUSIVE ||
  1452         (pBase->pMethods && (p->op==ASYNC_SYNC || p->op==ASYNC_WRITE) ) 
  1453       ){
  1454         pthread_mutex_unlock(&async.queueMutex);
  1455         holdingMutex = 0;
  1456       }
  1457       if( !pBase->pMethods ){
  1458         pBase = p->pFileData->pBaseRead;
  1459       }
  1460     }
  1461 
  1462     switch( p->op ){
  1463       case ASYNC_NOOP:
  1464         break;
  1465 
  1466       case ASYNC_WRITE:
  1467         assert( pBase );
  1468         ASYNC_TRACE(("WRITE %s %d bytes at %d\n",
  1469                 p->pFileData->zName, p->nByte, p->iOffset));
  1470         rc = pBase->pMethods->xWrite(pBase, (void *)(p->zBuf), p->nByte, p->iOffset);
  1471         break;
  1472 
  1473       case ASYNC_SYNC:
  1474         assert( pBase );
  1475         ASYNC_TRACE(("SYNC %s\n", p->pFileData->zName));
  1476         rc = pBase->pMethods->xSync(pBase, p->nByte);
  1477         break;
  1478 
  1479       case ASYNC_TRUNCATE:
  1480         assert( pBase );
  1481         ASYNC_TRACE(("TRUNCATE %s to %d bytes\n", 
  1482                 p->pFileData->zName, p->iOffset));
  1483         rc = pBase->pMethods->xTruncate(pBase, p->iOffset);
  1484         break;
  1485 
  1486       case ASYNC_CLOSE: {
  1487         AsyncFileData *pData = p->pFileData;
  1488         ASYNC_TRACE(("CLOSE %s\n", p->pFileData->zName));
  1489         if( pData->pBaseWrite->pMethods ){
  1490           pData->pBaseWrite->pMethods->xClose(pData->pBaseWrite);
  1491         }
  1492         if( pData->pBaseRead->pMethods ){
  1493           pData->pBaseRead->pMethods->xClose(pData->pBaseRead);
  1494         }
  1495 
  1496         /* Unlink AsyncFileData.lock from the linked list of AsyncFileLock 
  1497         ** structures for this file. Obtain the async.lockMutex mutex 
  1498         ** before doing so.
  1499         */
  1500         pthread_mutex_lock(&async.lockMutex);
  1501         rc = unlinkAsyncFile(pData);
  1502         pthread_mutex_unlock(&async.lockMutex);
  1503 
  1504         if( !holdingMutex ){
  1505           pthread_mutex_lock(&async.queueMutex);
  1506           holdingMutex = 1;
  1507         }
  1508         assert_mutex_is_held(&async.queueMutex);
  1509         async.pQueueFirst = p->pNext;
  1510         sqlite3_free(pData);
  1511         doNotFree = 1;
  1512         break;
  1513       }
  1514 
  1515       case ASYNC_UNLOCK: {
  1516         AsyncFileData *pData = p->pFileData;
  1517         int eLock = p->nByte;
  1518         pthread_mutex_lock(&async.lockMutex);
  1519         pData->lock.eAsyncLock = MIN(
  1520             pData->lock.eAsyncLock, MAX(pData->lock.eLock, eLock)
  1521         );
  1522         assert(pData->lock.eAsyncLock>=pData->lock.eLock);
  1523         rc = getFileLock(pData->pLock);
  1524         pthread_mutex_unlock(&async.lockMutex);
  1525         break;
  1526       }
  1527 
  1528       case ASYNC_DELETE:
  1529         ASYNC_TRACE(("DELETE %s\n", p->zBuf));
  1530         rc = pVfs->xDelete(pVfs, p->zBuf, (int)p->iOffset);
  1531         break;
  1532 
  1533       case ASYNC_OPENEXCLUSIVE: {
  1534         int flags = (int)p->iOffset;
  1535         AsyncFileData *pData = p->pFileData;
  1536         ASYNC_TRACE(("OPEN %s flags=%d\n", p->zBuf, (int)p->iOffset));
  1537         assert(pData->pBaseRead->pMethods==0 && pData->pBaseWrite->pMethods==0);
  1538         rc = pVfs->xOpen(pVfs, pData->zName, pData->pBaseRead, flags, 0);
  1539         assert( holdingMutex==0 );
  1540         pthread_mutex_lock(&async.queueMutex);
  1541         holdingMutex = 1;
  1542         break;
  1543       }
  1544 
  1545       default: assert(!"Illegal value for AsyncWrite.op");
  1546     }
  1547 
  1548     /* If we didn't hang on to the mutex during the IO op, obtain it now
  1549     ** so that the AsyncWrite structure can be safely removed from the 
  1550     ** global write-op queue.
  1551     */
  1552     if( !holdingMutex ){
  1553       pthread_mutex_lock(&async.queueMutex);
  1554       holdingMutex = 1;
  1555     }
  1556     /* ASYNC_TRACE(("UNLINK %p\n", p)); */
  1557     if( p==async.pQueueLast ){
  1558       async.pQueueLast = 0;
  1559     }
  1560     if( !doNotFree ){
  1561       assert_mutex_is_held(&async.queueMutex);
  1562       async.pQueueFirst = p->pNext;
  1563       sqlite3_free(p);
  1564     }
  1565     assert( holdingMutex );
  1566 
  1567     /* An IO error has occured. We cannot report the error back to the
  1568     ** connection that requested the I/O since the error happened 
  1569     ** asynchronously.  The connection has already moved on.  There 
  1570     ** really is nobody to report the error to.
  1571     **
  1572     ** The file for which the error occured may have been a database or
  1573     ** journal file. Regardless, none of the currently queued operations
  1574     ** associated with the same database should now be performed. Nor should
  1575     ** any subsequently requested IO on either a database or journal file 
  1576     ** handle for the same database be accepted until the main database
  1577     ** file handle has been closed and reopened.
  1578     **
  1579     ** Furthermore, no further IO should be queued or performed on any file
  1580     ** handle associated with a database that may have been part of a 
  1581     ** multi-file transaction that included the database associated with 
  1582     ** the IO error (i.e. a database ATTACHed to the same handle at some 
  1583     ** point in time).
  1584     */
  1585     if( rc!=SQLITE_OK ){
  1586       async.ioError = rc;
  1587     }
  1588 
  1589     if( async.ioError && !async.pQueueFirst ){
  1590       pthread_mutex_lock(&async.lockMutex);
  1591       if( 0==async.pLock ){
  1592         async.ioError = SQLITE_OK;
  1593       }
  1594       pthread_mutex_unlock(&async.lockMutex);
  1595     }
  1596 
  1597     /* Drop the queue mutex before continuing to the next write operation
  1598     ** in order to give other threads a chance to work with the write queue.
  1599     */
  1600     if( !async.pQueueFirst || !async.ioError ){
  1601       pthread_mutex_unlock(&async.queueMutex);
  1602       holdingMutex = 0;
  1603       if( async.ioDelay>0 ){
  1604         pVfs->xSleep(pVfs, async.ioDelay);
  1605       }else{
  1606         sched_yield();
  1607       }
  1608     }
  1609   }
  1610   
  1611   pthread_mutex_unlock(&async.writerMutex);
  1612   return 0;
  1613 }
  1614 
  1615 /**************************************************************************
  1616 ** The remaining code defines a Tcl interface for testing the asynchronous
  1617 ** IO implementation in this file.
  1618 **
  1619 ** To adapt the code to a non-TCL environment, delete or comment out
  1620 ** the code that follows.
  1621 */
  1622 
  1623 /*
  1624 ** sqlite3async_enable ?YES/NO?
  1625 **
  1626 ** Enable or disable the asynchronous I/O backend.  This command is
  1627 ** not thread-safe.  Do not call it while any database connections
  1628 ** are open.
  1629 */
  1630 static int testAsyncEnable(
  1631   void * clientData,
  1632   Tcl_Interp *interp,
  1633   int objc,
  1634   Tcl_Obj *CONST objv[]
  1635 ){
  1636   if( objc!=1 && objc!=2 ){
  1637     Tcl_WrongNumArgs(interp, 1, objv, "?YES/NO?");
  1638     return TCL_ERROR;
  1639   }
  1640   if( objc==1 ){
  1641     Tcl_SetObjResult(interp, Tcl_NewBooleanObj(async_vfs.pAppData!=0));
  1642   }else{
  1643     int en;
  1644     if( Tcl_GetBooleanFromObj(interp, objv[1], &en) ) return TCL_ERROR;
  1645     asyncEnable(en);
  1646   }
  1647   return TCL_OK;
  1648 }
  1649 
  1650 /*
  1651 ** sqlite3async_halt  "now"|"idle"|"never"
  1652 **
  1653 ** Set the conditions at which the writer thread will halt.
  1654 */
  1655 static int testAsyncHalt(
  1656   void * clientData,
  1657   Tcl_Interp *interp,
  1658   int objc,
  1659   Tcl_Obj *CONST objv[]
  1660 ){
  1661   const char *zCond;
  1662   if( objc!=2 ){
  1663     Tcl_WrongNumArgs(interp, 1, objv, "\"now\"|\"idle\"|\"never\"");
  1664     return TCL_ERROR;
  1665   }
  1666   zCond = Tcl_GetString(objv[1]);
  1667   if( strcmp(zCond, "now")==0 ){
  1668     async.writerHaltNow = 1;
  1669     pthread_cond_broadcast(&async.queueSignal);
  1670   }else if( strcmp(zCond, "idle")==0 ){
  1671     async.writerHaltWhenIdle = 1;
  1672     async.writerHaltNow = 0;
  1673     pthread_cond_broadcast(&async.queueSignal);
  1674   }else if( strcmp(zCond, "never")==0 ){
  1675     async.writerHaltWhenIdle = 0;
  1676     async.writerHaltNow = 0;
  1677   }else{
  1678     Tcl_AppendResult(interp, 
  1679       "should be one of: \"now\", \"idle\", or \"never\"", (char*)0);
  1680     return TCL_ERROR;
  1681   }
  1682   return TCL_OK;
  1683 }
  1684 
  1685 /*
  1686 ** sqlite3async_delay ?MS?
  1687 **
  1688 ** Query or set the number of milliseconds of delay in the writer
  1689 ** thread after each write operation.  The default is 0.  By increasing
  1690 ** the memory delay we can simulate the effect of slow disk I/O.
  1691 */
  1692 static int testAsyncDelay(
  1693   void * clientData,
  1694   Tcl_Interp *interp,
  1695   int objc,
  1696   Tcl_Obj *CONST objv[]
  1697 ){
  1698   if( objc!=1 && objc!=2 ){
  1699     Tcl_WrongNumArgs(interp, 1, objv, "?MS?");
  1700     return TCL_ERROR;
  1701   }
  1702   if( objc==1 ){
  1703     Tcl_SetObjResult(interp, Tcl_NewIntObj(async.ioDelay));
  1704   }else{
  1705     int ioDelay;
  1706     if( Tcl_GetIntFromObj(interp, objv[1], &ioDelay) ) return TCL_ERROR;
  1707     async.ioDelay = ioDelay;
  1708   }
  1709   return TCL_OK;
  1710 }
  1711 
  1712 /*
  1713 ** sqlite3async_start
  1714 **
  1715 ** Start a new writer thread.
  1716 */
  1717 static int testAsyncStart(
  1718   void * clientData,
  1719   Tcl_Interp *interp,
  1720   int objc,
  1721   Tcl_Obj *CONST objv[]
  1722 ){
  1723   pthread_t x;
  1724   int rc;
  1725   volatile int isStarted = 0;
  1726   rc = pthread_create(&x, 0, asyncWriterThread, (void *)&isStarted);
  1727   if( rc ){
  1728     Tcl_AppendResult(interp, "failed to create the thread", 0);
  1729     return TCL_ERROR;
  1730   }
  1731   pthread_detach(x);
  1732   while( isStarted==0 ){
  1733     sched_yield();
  1734   }
  1735   return TCL_OK;
  1736 }
  1737 
  1738 /*
  1739 ** sqlite3async_wait
  1740 **
  1741 ** Wait for the current writer thread to terminate.
  1742 **
  1743 ** If the current writer thread is set to run forever then this
  1744 ** command would block forever.  To prevent that, an error is returned. 
  1745 */
  1746 static int testAsyncWait(
  1747   void * clientData,
  1748   Tcl_Interp *interp,
  1749   int objc,
  1750   Tcl_Obj *CONST objv[]
  1751 ){
  1752   int cnt = 10;
  1753   if( async.writerHaltNow==0 && async.writerHaltWhenIdle==0 ){
  1754     Tcl_AppendResult(interp, "would block forever", (char*)0);
  1755     return TCL_ERROR;
  1756   }
  1757 
  1758   while( cnt-- && !pthread_mutex_trylock(&async.writerMutex) ){
  1759     pthread_mutex_unlock(&async.writerMutex);
  1760     sched_yield();
  1761   }
  1762   if( cnt>=0 ){
  1763     ASYNC_TRACE(("WAIT\n"));
  1764     pthread_mutex_lock(&async.queueMutex);
  1765     pthread_cond_broadcast(&async.queueSignal);
  1766     pthread_mutex_unlock(&async.queueMutex);
  1767     pthread_mutex_lock(&async.writerMutex);
  1768     pthread_mutex_unlock(&async.writerMutex);
  1769   }else{
  1770     ASYNC_TRACE(("NO-WAIT\n"));
  1771   }
  1772   return TCL_OK;
  1773 }
  1774 
  1775 
  1776 #endif  /* SQLITE_OS_UNIX and SQLITE_THREADSAFE */
  1777 
  1778 /*
  1779 ** This routine registers the custom TCL commands defined in this
  1780 ** module.  This should be the only procedure visible from outside
  1781 ** of this module.
  1782 */
  1783 int Sqlitetestasync_Init(Tcl_Interp *interp){
  1784 #if SQLITE_OS_UNIX && SQLITE_THREADSAFE
  1785   Tcl_CreateObjCommand(interp,"sqlite3async_enable",testAsyncEnable,0,0);
  1786   Tcl_CreateObjCommand(interp,"sqlite3async_halt",testAsyncHalt,0,0);
  1787   Tcl_CreateObjCommand(interp,"sqlite3async_delay",testAsyncDelay,0,0);
  1788   Tcl_CreateObjCommand(interp,"sqlite3async_start",testAsyncStart,0,0);
  1789   Tcl_CreateObjCommand(interp,"sqlite3async_wait",testAsyncWait,0,0);
  1790   Tcl_LinkVar(interp, "sqlite3async_trace",
  1791       (char*)&sqlite3async_trace, TCL_LINK_INT);
  1792 #endif  /* SQLITE_OS_UNIX and SQLITE_THREADSAFE */
  1793   return TCL_OK;
  1794 }