Update contrib.
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
13 ** $Id: test_async.c,v 1.48 2008/09/26 20:02:50 drh Exp $
15 ** This file contains an example implementation of an asynchronous IO
16 ** backend for SQLite.
18 ** WHAT IS ASYNCHRONOUS I/O?
20 ** With asynchronous I/O, write requests are handled by a separate thread
21 ** running in the background. This means that the thread that initiates
22 ** a database write does not have to wait for (sometimes slow) disk I/O
23 ** to occur. The write seems to happen very quickly, though in reality
24 ** it is happening at its usual slow pace in the background.
26 ** Asynchronous I/O appears to give better responsiveness, but at a price.
27 ** You lose the Durable property. With the default I/O backend of SQLite,
28 ** once a write completes, you know that the information you wrote is
29 ** safely on disk. With the asynchronous I/O, this is not the case. If
30 ** your program crashes or if a power loss occurs after the database
31 ** write but before the asynchronous write thread has completed, then the
32 ** database change might never make it to disk and the next user of the
33 ** database might not see your change.
35 ** You lose Durability with asynchronous I/O, but you still retain the
36 ** other parts of ACID: Atomic, Consistent, and Isolated. Many
37 ** appliations get along fine without the Durablity.
41 ** Asynchronous I/O works by creating a special SQLite "vfs" structure
42 ** and registering it with sqlite3_vfs_register(). When files opened via
43 ** this vfs are written to (using sqlite3OsWrite()), the data is not
44 ** written directly to disk, but is placed in the "write-queue" to be
45 ** handled by the background thread.
47 ** When files opened with the asynchronous vfs are read from
48 ** (using sqlite3OsRead()), the data is read from the file on
49 ** disk and the write-queue, so that from the point of view of
50 ** the vfs reader the OsWrite() appears to have already completed.
52 ** The special vfs is registered (and unregistered) by calls to
53 ** function asyncEnable() (see below).
57 ** This demonstration code is deliberately kept simple in order to keep
58 ** the main ideas clear and easy to understand. Real applications that
59 ** want to do asynchronous I/O might want to add additional capabilities.
60 ** For example, in this demonstration if writes are happening at a steady
61 ** stream that exceeds the I/O capability of the background writer thread,
62 ** the queue of pending write operations will grow without bound until we
63 ** run out of memory. Users of this technique may want to keep track of
64 ** the quantity of pending writes and stop accepting new write requests
65 ** when the buffer gets to be too big.
67 ** LOCKING + CONCURRENCY
69 ** Multiple connections from within a single process that use this
70 ** implementation of asynchronous IO may access a single database
71 ** file concurrently. From the point of view of the user, if all
72 ** connections are from within a single process, there is no difference
73 ** between the concurrency offered by "normal" SQLite and SQLite
74 ** using the asynchronous backend.
76 ** If connections from within multiple database files may access the
77 ** database file, the ENABLE_FILE_LOCKING symbol (see below) must be
78 ** defined. If it is not defined, then no locks are established on
79 ** the database file. In this case, if multiple processes access
80 ** the database file, corruption will quickly result.
82 ** If ENABLE_FILE_LOCKING is defined (the default), then connections
83 ** from within multiple processes may access a single database file
84 ** without risking corruption. However concurrency is reduced as
87 ** * When a connection using asynchronous IO begins a database
88 ** transaction, the database is locked immediately. However the
89 ** lock is not released until after all relevant operations
90 ** in the write-queue have been flushed to disk. This means
91 ** (for example) that the database may remain locked for some
92 ** time after a "COMMIT" or "ROLLBACK" is issued.
94 ** * If an application using asynchronous IO executes transactions
95 ** in quick succession, other database users may be effectively
96 ** locked out of the database. This is because when a BEGIN
97 ** is executed, a database lock is established immediately. But
98 ** when the corresponding COMMIT or ROLLBACK occurs, the lock
99 ** is not released until the relevant part of the write-queue
100 ** has been flushed through. As a result, if a COMMIT is followed
101 ** by a BEGIN before the write-queue is flushed through, the database
102 ** is never unlocked,preventing other processes from accessing
105 ** Defining ENABLE_FILE_LOCKING when using an NFS or other remote
106 ** file-system may slow things down, as synchronous round-trips to the
107 ** server may be required to establish database file locks.
109 #define ENABLE_FILE_LOCKING
111 #ifndef SQLITE_AMALGAMATION
112 # include "sqlite3.h"
119 ** This test uses pthreads and hence only works on unix and with
120 ** a threadsafe build of SQLite.
122 #if SQLITE_OS_UNIX && SQLITE_THREADSAFE
125 ** This demo uses pthreads. If you do not have a pthreads implementation
126 ** for your operating system, you will need to recode the threading
132 /* Useful macros used in several places */
133 #define MIN(x,y) ((x)<(y)?(x):(y))
134 #define MAX(x,y) ((x)>(y)?(x):(y))
136 /* Forward references */
137 typedef struct AsyncWrite AsyncWrite;
138 typedef struct AsyncFile AsyncFile;
139 typedef struct AsyncFileData AsyncFileData;
140 typedef struct AsyncFileLock AsyncFileLock;
141 typedef struct AsyncLock AsyncLock;
143 /* Enable for debugging */
144 static int sqlite3async_trace = 0;
145 # define ASYNC_TRACE(X) if( sqlite3async_trace ) asyncTrace X
146 static void asyncTrace(const char *zFormat, ...){
149 va_start(ap, zFormat);
150 z = sqlite3_vmprintf(zFormat, ap);
152 fprintf(stderr, "[%d] %s", (int)pthread_self(), z);
157 ** THREAD SAFETY NOTES
161 ** * Both read and write access to the global write-op queue must be
162 ** protected by the async.queueMutex. As are the async.ioError and
163 ** async.nFile variables.
165 ** * The async.pLock list and all AsyncLock and AsyncFileLock
166 ** structures must be protected by the async.lockMutex mutex.
168 ** * The file handles from the underlying system are not assumed to
171 ** * See the last two paragraphs under "The Writer Thread" for
172 ** an assumption to do with file-handle synchronization by the Os.
174 ** Deadlock prevention:
176 ** There are three mutex used by the system: the "writer" mutex,
177 ** the "queue" mutex and the "lock" mutex. Rules are:
179 ** * It is illegal to block on the writer mutex when any other mutex
182 ** * It is illegal to block on the queue mutex when the lock mutex
185 ** i.e. mutex's must be grabbed in the order "writer", "queue", "lock".
187 ** File system operations (invoked by SQLite thread):
193 ** File handle operations (invoked by SQLite thread):
195 ** asyncWrite, asyncClose, asyncTruncate, asyncSync
197 ** The operations above add an entry to the global write-op list. They
198 ** prepare the entry, acquire the async.queueMutex momentarily while
199 ** list pointers are manipulated to insert the new entry, then release
200 ** the mutex and signal the writer thread to wake up in case it happens
204 ** asyncRead, asyncFileSize.
206 ** Read operations. Both of these read from both the underlying file
207 ** first then adjust their result based on pending writes in the
208 ** write-op queue. So async.queueMutex is held for the duration
209 ** of these operations to prevent other threads from changing the
210 ** queue in mid operation.
213 ** asyncLock, asyncUnlock, asyncCheckReservedLock
215 ** These primitives implement in-process locking using a hash table
216 ** on the file name. Files are locked correctly for connections coming
217 ** from the same process. But other processes cannot see these locks
218 ** and will therefore not honor them.
221 ** The writer thread:
223 ** The async.writerMutex is used to make sure only there is only
224 ** a single writer thread running at a time.
226 ** Inside the writer thread is a loop that works like this:
228 ** WHILE (write-op list is not empty)
229 ** Do IO operation at head of write-op list
230 ** Remove entry from head of write-op list
233 ** The async.queueMutex is always held during the <write-op list is
234 ** not empty> test, and when the entry is removed from the head
235 ** of the write-op list. Sometimes it is held for the interim
236 ** period (while the IO is performed), and sometimes it is
237 ** relinquished. It is relinquished if (a) the IO op is an
238 ** ASYNC_CLOSE or (b) when the file handle was opened, two of
239 ** the underlying systems handles were opened on the same
240 ** file-system entry.
242 ** If condition (b) above is true, then one file-handle
243 ** (AsyncFile.pBaseRead) is used exclusively by sqlite threads to read the
244 ** file, the other (AsyncFile.pBaseWrite) by sqlite3_async_flush()
245 ** threads to perform write() operations. This means that read
246 ** operations are not blocked by asynchronous writes (although
247 ** asynchronous writes may still be blocked by reads).
249 ** This assumes that the OS keeps two handles open on the same file
250 ** properly in sync. That is, any read operation that starts after a
251 ** write operation on the same file system entry has completed returns
252 ** data consistent with the write. We also assume that if one thread
253 ** reads a file while another is writing it all bytes other than the
254 ** ones actually being written contain valid data.
256 ** If the above assumptions are not true, set the preprocessor symbol
257 ** SQLITE_ASYNC_TWO_FILEHANDLES to 0.
260 #ifndef SQLITE_ASYNC_TWO_FILEHANDLES
261 /* #define SQLITE_ASYNC_TWO_FILEHANDLES 0 */
262 #define SQLITE_ASYNC_TWO_FILEHANDLES 1
266 ** State information is held in the static variable "async" defined
267 ** as the following structure.
269 ** Both async.ioError and async.nFile are protected by async.queueMutex.
271 static struct TestAsyncStaticData {
272 pthread_mutex_t lockMutex; /* For access to aLock hash table */
273 pthread_mutex_t queueMutex; /* Mutex for access to write operation queue */
274 pthread_mutex_t writerMutex; /* Prevents multiple writer threads */
275 pthread_cond_t queueSignal; /* For waking up sleeping writer thread */
276 pthread_cond_t emptySignal; /* Notify when the write queue is empty */
277 AsyncWrite *pQueueFirst; /* Next write operation to be processed */
278 AsyncWrite *pQueueLast; /* Last write operation on the list */
279 AsyncLock *pLock; /* Linked list of all AsyncLock structures */
280 volatile int ioDelay; /* Extra delay between write operations */
281 volatile int writerHaltWhenIdle; /* Writer thread halts when queue empty */
282 volatile int writerHaltNow; /* Writer thread halts after next op */
283 int ioError; /* True if an IO error has occured */
284 int nFile; /* Number of open files (from sqlite pov) */
286 PTHREAD_MUTEX_INITIALIZER,
287 PTHREAD_MUTEX_INITIALIZER,
288 PTHREAD_MUTEX_INITIALIZER,
289 PTHREAD_COND_INITIALIZER,
290 PTHREAD_COND_INITIALIZER,
293 /* Possible values of AsyncWrite.op */
295 #define ASYNC_WRITE 1
297 #define ASYNC_TRUNCATE 3
298 #define ASYNC_CLOSE 4
299 #define ASYNC_DELETE 5
300 #define ASYNC_OPENEXCLUSIVE 6
301 #define ASYNC_UNLOCK 7
303 /* Names of opcodes. Used for debugging only.
304 ** Make sure these stay in sync with the macros above!
306 static const char *azOpcodeName[] = {
307 "NOOP", "WRITE", "SYNC", "TRUNCATE", "CLOSE", "DELETE", "OPENEX", "UNLOCK"
311 ** Entries on the write-op queue are instances of the AsyncWrite
312 ** structure, defined here.
314 ** The interpretation of the iOffset and nByte variables varies depending
315 ** on the value of AsyncWrite.op:
321 ** iOffset -> Offset in file to write to.
322 ** nByte -> Number of bytes of data to write (pointed to by zBuf).
325 ** nByte -> flags to pass to sqlite3OsSync().
328 ** iOffset -> Size to truncate file to.
332 ** iOffset -> Unused.
336 ** iOffset -> Contains the "syncDir" flag.
337 ** nByte -> Number of bytes of zBuf points to (file name).
339 ** ASYNC_OPENEXCLUSIVE:
340 ** iOffset -> Value of "delflag".
341 ** nByte -> Number of bytes of zBuf points to (file name).
344 ** nByte -> Argument to sqlite3OsUnlock().
347 ** For an ASYNC_WRITE operation, zBuf points to the data to write to the file.
348 ** This space is sqlite3_malloc()d along with the AsyncWrite structure in a
349 ** single blob, so is deleted when sqlite3_free() is called on the parent
353 AsyncFileData *pFileData; /* File to write data to or sync */
354 int op; /* One of ASYNC_xxx etc. */
355 sqlite_int64 iOffset; /* See above */
356 int nByte; /* See above */
357 char *zBuf; /* Data to write to file (or NULL if op!=ASYNC_WRITE) */
358 AsyncWrite *pNext; /* Next write operation (to any file) */
362 ** An instance of this structure is created for each distinct open file
363 ** (i.e. if two handles are opened on the one file, only one of these
364 ** structures is allocated) and stored in the async.aLock hash table. The
365 ** keys for async.aLock are the full pathnames of the opened files.
367 ** AsyncLock.pList points to the head of a linked list of AsyncFileLock
368 ** structures, one for each handle currently open on the file.
370 ** If the opened file is not a main-database (the SQLITE_OPEN_MAIN_DB is
371 ** not passed to the sqlite3OsOpen() call), or if ENABLE_FILE_LOCKING is
372 ** not defined at compile time, variables AsyncLock.pFile and
373 ** AsyncLock.eLock are never used. Otherwise, pFile is a file handle
374 ** opened on the file in question and used to obtain the file-system
375 ** locks required by database connections within this process.
377 ** See comments above the asyncLock() function for more details on
378 ** the implementation of database locking used by this backend.
385 AsyncFileLock *pList;
386 AsyncLock *pNext; /* Next in linked list headed by async.pLock */
390 ** An instance of the following structure is allocated along with each
391 ** AsyncFileData structure (see AsyncFileData.lock), but is only used if the
392 ** file was opened with the SQLITE_OPEN_MAIN_DB.
394 struct AsyncFileLock {
395 int eLock; /* Internally visible lock state (sqlite pov) */
396 int eAsyncLock; /* Lock-state with write-queue unlock */
397 AsyncFileLock *pNext;
401 ** The AsyncFile structure is a subclass of sqlite3_file used for
404 ** All of the actual data for the structure is stored in the structure
405 ** pointed to by AsyncFile.pData, which is allocated as part of the
406 ** sqlite3OsOpen() using sqlite3_malloc(). The reason for this is that the
407 ** lifetime of the AsyncFile structure is ended by the caller after OsClose()
408 ** is called, but the data in AsyncFileData may be required by the
409 ** writer thread after that point.
412 sqlite3_io_methods *pMethod;
413 AsyncFileData *pData;
415 struct AsyncFileData {
416 char *zName; /* Underlying OS filename - used for debugging */
417 int nName; /* Number of characters in zName */
418 sqlite3_file *pBaseRead; /* Read handle to the underlying Os file */
419 sqlite3_file *pBaseWrite; /* Write handle to the underlying Os file */
420 AsyncFileLock lock; /* Lock state for this handle */
421 AsyncLock *pLock; /* AsyncLock object for this file system entry */
426 ** The following async_XXX functions are debugging wrappers around the
427 ** corresponding pthread_XXX functions:
429 ** pthread_mutex_lock();
430 ** pthread_mutex_unlock();
431 ** pthread_mutex_trylock();
432 ** pthread_cond_wait();
434 ** It is illegal to pass any mutex other than those stored in the
435 ** following global variables of these functions.
441 ** If NDEBUG is defined, these wrappers do nothing except call the
442 ** corresponding pthreads function. If NDEBUG is not defined, then the
443 ** following variables are used to store the thread-id (as returned
444 ** by pthread_self()) currently holding the mutex, or 0 otherwise:
446 ** asyncdebug.queueMutexHolder
447 ** asyncdebug.writerMutexHolder
448 ** asyncdebug.lockMutexHolder
450 ** These variables are used by some assert() statements that verify
451 ** the statements made in the "Deadlock Prevention" notes earlier
456 static struct TestAsyncDebugData {
457 pthread_t lockMutexHolder;
458 pthread_t queueMutexHolder;
459 pthread_t writerMutexHolder;
460 } asyncdebug = {0, 0, 0};
463 ** Wrapper around pthread_mutex_lock(). Checks that we have not violated
464 ** the anti-deadlock rules (see "Deadlock prevention" above).
466 static int async_mutex_lock(pthread_mutex_t *pMutex){
469 pthread_mutex_t *aMutex = (pthread_mutex_t *)(&async);
470 pthread_t *aHolder = (pthread_t *)(&asyncdebug);
472 /* The code in this 'ifndef NDEBUG' block depends on a certain alignment
473 * of the variables in TestAsyncStaticData and TestAsyncDebugData. The
474 * following assert() statements check that this has not been changed.
476 * Really, these only need to be run once at startup time.
478 assert(&(aMutex[0])==&async.lockMutex);
479 assert(&(aMutex[1])==&async.queueMutex);
480 assert(&(aMutex[2])==&async.writerMutex);
481 assert(&(aHolder[0])==&asyncdebug.lockMutexHolder);
482 assert(&(aHolder[1])==&asyncdebug.queueMutexHolder);
483 assert(&(aHolder[2])==&asyncdebug.writerMutexHolder);
485 assert( pthread_self()!=0 );
487 for(iIdx=0; iIdx<3; iIdx++){
488 if( pMutex==&aMutex[iIdx] ) break;
490 /* This is the key assert(). Here we are checking that if the caller
491 * is trying to block on async.writerMutex, neither of the other two
492 * mutex are held. If the caller is trying to block on async.queueMutex,
493 * lockMutex is not held.
495 assert(!pthread_equal(aHolder[iIdx], pthread_self()));
499 rc = pthread_mutex_lock(pMutex);
501 assert(aHolder[iIdx]==0);
502 aHolder[iIdx] = pthread_self();
508 ** Wrapper around pthread_mutex_unlock().
510 static int async_mutex_unlock(pthread_mutex_t *pMutex){
513 pthread_mutex_t *aMutex = (pthread_mutex_t *)(&async);
514 pthread_t *aHolder = (pthread_t *)(&asyncdebug);
516 for(iIdx=0; iIdx<3; iIdx++){
517 if( pMutex==&aMutex[iIdx] ) break;
521 assert(pthread_equal(aHolder[iIdx], pthread_self()));
523 rc = pthread_mutex_unlock(pMutex);
530 ** Wrapper around pthread_mutex_trylock().
532 static int async_mutex_trylock(pthread_mutex_t *pMutex){
535 pthread_mutex_t *aMutex = (pthread_mutex_t *)(&async);
536 pthread_t *aHolder = (pthread_t *)(&asyncdebug);
538 for(iIdx=0; iIdx<3; iIdx++){
539 if( pMutex==&aMutex[iIdx] ) break;
543 rc = pthread_mutex_trylock(pMutex);
545 assert(aHolder[iIdx]==0);
546 aHolder[iIdx] = pthread_self();
552 ** Wrapper around pthread_cond_wait().
554 static int async_cond_wait(pthread_cond_t *pCond, pthread_mutex_t *pMutex){
557 pthread_mutex_t *aMutex = (pthread_mutex_t *)(&async);
558 pthread_t *aHolder = (pthread_t *)(&asyncdebug);
560 for(iIdx=0; iIdx<3; iIdx++){
561 if( pMutex==&aMutex[iIdx] ) break;
565 assert(pthread_equal(aHolder[iIdx],pthread_self()));
567 rc = pthread_cond_wait(pCond, pMutex);
569 aHolder[iIdx] = pthread_self();
575 ** Assert that the mutex is held by the current thread.
577 static void assert_mutex_is_held(pthread_mutex_t *pMutex){
579 pthread_mutex_t *aMutex = (pthread_mutex_t *)(&async);
580 pthread_t *aHolder = (pthread_t *)(&asyncdebug);
582 for(iIdx=0; iIdx<3; iIdx++){
583 if( pMutex==&aMutex[iIdx] ) break;
586 assert( aHolder[iIdx]==pthread_self() );
589 /* Call our async_XX wrappers instead of selected pthread_XX functions */
590 #define pthread_mutex_lock async_mutex_lock
591 #define pthread_mutex_unlock async_mutex_unlock
592 #define pthread_mutex_trylock async_mutex_trylock
593 #define pthread_cond_wait async_cond_wait
595 #else /* if defined(NDEBUG) */
597 #define assert_mutex_is_held(X) /* A no-op when not debugging */
599 #endif /* !defined(NDEBUG) */
602 ** Add an entry to the end of the global write-op list. pWrite should point
603 ** to an AsyncWrite structure allocated using sqlite3_malloc(). The writer
604 ** thread will call sqlite3_free() to free the structure after the specified
605 ** operation has been completed.
607 ** Once an AsyncWrite structure has been added to the list, it becomes the
608 ** property of the writer thread and must not be read or modified by the
611 static void addAsyncWrite(AsyncWrite *pWrite){
612 /* We must hold the queue mutex in order to modify the queue pointers */
613 pthread_mutex_lock(&async.queueMutex);
615 /* Add the record to the end of the write-op queue */
616 assert( !pWrite->pNext );
617 if( async.pQueueLast ){
618 assert( async.pQueueFirst );
619 async.pQueueLast->pNext = pWrite;
621 async.pQueueFirst = pWrite;
623 async.pQueueLast = pWrite;
624 ASYNC_TRACE(("PUSH %p (%s %s %d)\n", pWrite, azOpcodeName[pWrite->op],
625 pWrite->pFileData ? pWrite->pFileData->zName : "-", pWrite->iOffset));
627 if( pWrite->op==ASYNC_CLOSE ){
631 /* Drop the queue mutex */
632 pthread_mutex_unlock(&async.queueMutex);
634 /* The writer thread might have been idle because there was nothing
635 ** on the write-op queue for it to do. So wake it up. */
636 pthread_cond_signal(&async.queueSignal);
640 ** Increment async.nFile in a thread-safe manner.
642 static void incrOpenFileCount(){
643 /* We must hold the queue mutex in order to modify async.nFile */
644 pthread_mutex_lock(&async.queueMutex);
645 if( async.nFile==0 ){
646 async.ioError = SQLITE_OK;
649 pthread_mutex_unlock(&async.queueMutex);
653 ** This is a utility function to allocate and populate a new AsyncWrite
654 ** structure and insert it (via addAsyncWrite() ) into the global list.
656 static int addNewAsyncWrite(
657 AsyncFileData *pFileData,
659 sqlite3_int64 iOffset,
664 if( op!=ASYNC_CLOSE && async.ioError ){
665 return async.ioError;
667 p = sqlite3_malloc(sizeof(AsyncWrite) + (zByte?nByte:0));
669 /* The upper layer does not expect operations like OsWrite() to
670 ** return SQLITE_NOMEM. This is partly because under normal conditions
671 ** SQLite is required to do rollback without calling malloc(). So
672 ** if malloc() fails here, treat it as an I/O error. The above
673 ** layer knows how to handle that.
678 p->iOffset = iOffset;
680 p->pFileData = pFileData;
683 p->zBuf = (char *)&p[1];
684 memcpy(p->zBuf, zByte, nByte);
693 ** Close the file. This just adds an entry to the write-op list, the file is
694 ** not actually closed.
696 static int asyncClose(sqlite3_file *pFile){
697 AsyncFileData *p = ((AsyncFile *)pFile)->pData;
699 /* Unlock the file, if it is locked */
700 pthread_mutex_lock(&async.lockMutex);
702 pthread_mutex_unlock(&async.lockMutex);
704 addAsyncWrite(&p->close);
709 ** Implementation of sqlite3OsWrite() for asynchronous files. Instead of
710 ** writing to the underlying file, this function adds an entry to the end of
711 ** the global AsyncWrite list. Either SQLITE_OK or SQLITE_NOMEM may be
714 static int asyncWrite(
720 AsyncFileData *p = ((AsyncFile *)pFile)->pData;
721 return addNewAsyncWrite(p, ASYNC_WRITE, iOff, amt, pBuf);
725 ** Read data from the file. First we read from the filesystem, then adjust
726 ** the contents of the buffer based on ASYNC_WRITE operations in the
729 ** This method holds the mutex from start to finish.
731 static int asyncRead(
735 sqlite3_int64 iOffset
737 AsyncFileData *p = ((AsyncFile *)pFile)->pData;
739 sqlite3_int64 filesize;
741 sqlite3_file *pBase = p->pBaseRead;
743 /* Grab the write queue mutex for the duration of the call */
744 pthread_mutex_lock(&async.queueMutex);
746 /* If an I/O error has previously occurred in this virtual file
747 ** system, then all subsequent operations fail.
749 if( async.ioError!=SQLITE_OK ){
754 if( pBase->pMethods ){
755 rc = pBase->pMethods->xFileSize(pBase, &filesize);
759 nRead = MIN(filesize - iOffset, iAmt);
761 rc = pBase->pMethods->xRead(pBase, zOut, nRead, iOffset);
762 ASYNC_TRACE(("READ %s %d bytes at %d\n", p->zName, nRead, iOffset));
768 char *zName = p->zName;
770 for(pWrite=async.pQueueFirst; pWrite; pWrite = pWrite->pNext){
771 if( pWrite->op==ASYNC_WRITE && (
772 (pWrite->pFileData==p) ||
773 (zName && pWrite->pFileData->zName==zName)
775 int iBeginOut = (pWrite->iOffset-iOffset);
776 int iBeginIn = -iBeginOut;
779 if( iBeginIn<0 ) iBeginIn = 0;
780 if( iBeginOut<0 ) iBeginOut = 0;
781 nCopy = MIN(pWrite->nByte-iBeginIn, iAmt-iBeginOut);
784 memcpy(&((char *)zOut)[iBeginOut], &pWrite->zBuf[iBeginIn], nCopy);
785 ASYNC_TRACE(("OVERREAD %d bytes at %d\n", nCopy, iBeginOut+iOffset));
792 pthread_mutex_unlock(&async.queueMutex);
797 ** Truncate the file to nByte bytes in length. This just adds an entry to
798 ** the write-op list, no IO actually takes place.
800 static int asyncTruncate(sqlite3_file *pFile, sqlite3_int64 nByte){
801 AsyncFileData *p = ((AsyncFile *)pFile)->pData;
802 return addNewAsyncWrite(p, ASYNC_TRUNCATE, nByte, 0, 0);
806 ** Sync the file. This just adds an entry to the write-op list, the
807 ** sync() is done later by sqlite3_async_flush().
809 static int asyncSync(sqlite3_file *pFile, int flags){
810 AsyncFileData *p = ((AsyncFile *)pFile)->pData;
811 return addNewAsyncWrite(p, ASYNC_SYNC, 0, flags, 0);
815 ** Read the size of the file. First we read the size of the file system
816 ** entry, then adjust for any ASYNC_WRITE or ASYNC_TRUNCATE operations
817 ** currently in the write-op list.
819 ** This method holds the mutex from start to finish.
821 int asyncFileSize(sqlite3_file *pFile, sqlite3_int64 *piSize){
822 AsyncFileData *p = ((AsyncFile *)pFile)->pData;
827 pthread_mutex_lock(&async.queueMutex);
829 /* Read the filesystem size from the base file. If pBaseRead is NULL, this
830 ** means the file hasn't been opened yet. In this case all relevant data
831 ** must be in the write-op queue anyway, so we can omit reading from the
834 pBase = p->pBaseRead;
835 if( pBase->pMethods ){
836 rc = pBase->pMethods->xFileSize(pBase, &s);
841 for(pWrite=async.pQueueFirst; pWrite; pWrite = pWrite->pNext){
842 if( pWrite->op==ASYNC_DELETE
844 && strcmp(p->zName, pWrite->zBuf)==0
847 }else if( pWrite->pFileData && (
848 (pWrite->pFileData==p)
849 || (p->zName && pWrite->pFileData->zName==p->zName)
851 switch( pWrite->op ){
853 s = MAX(pWrite->iOffset + (sqlite3_int64)(pWrite->nByte), s);
856 s = MIN(s, pWrite->iOffset);
863 pthread_mutex_unlock(&async.queueMutex);
868 ** Lock or unlock the actual file-system entry.
870 static int getFileLock(AsyncLock *pLock){
872 AsyncFileLock *pIter;
876 for(pIter=pLock->pList; pIter; pIter=pIter->pNext){
877 assert(pIter->eAsyncLock>=pIter->eLock);
878 if( pIter->eAsyncLock>eRequired ){
879 eRequired = pIter->eAsyncLock;
880 assert(eRequired>=0 && eRequired<=SQLITE_LOCK_EXCLUSIVE);
884 if( eRequired>pLock->eLock ){
885 rc = pLock->pFile->pMethods->xLock(pLock->pFile, eRequired);
887 pLock->eLock = eRequired;
890 else if( eRequired<pLock->eLock && eRequired<=SQLITE_LOCK_SHARED ){
891 rc = pLock->pFile->pMethods->xUnlock(pLock->pFile, eRequired);
893 pLock->eLock = eRequired;
902 ** Return the AsyncLock structure from the global async.pLock list
903 ** associated with the file-system entry identified by path zName
904 ** (a string of nName bytes). If no such structure exists, return 0.
906 static AsyncLock *findLock(const char *zName, int nName){
907 AsyncLock *p = async.pLock;
908 while( p && (p->nFile!=nName || memcmp(p->zFile, zName, nName)) ){
915 ** The following two methods - asyncLock() and asyncUnlock() - are used
916 ** to obtain and release locks on database files opened with the
917 ** asynchronous backend.
919 static int asyncLock(sqlite3_file *pFile, int eLock){
921 AsyncFileData *p = ((AsyncFile *)pFile)->pData;
924 pthread_mutex_lock(&async.lockMutex);
925 if( p->lock.eLock<eLock ){
926 AsyncLock *pLock = p->pLock;
927 AsyncFileLock *pIter;
928 assert(pLock && pLock->pList);
929 for(pIter=pLock->pList; pIter; pIter=pIter->pNext){
930 if( pIter!=&p->lock && (
931 (eLock==SQLITE_LOCK_EXCLUSIVE && pIter->eLock>=SQLITE_LOCK_SHARED) ||
932 (eLock==SQLITE_LOCK_PENDING && pIter->eLock>=SQLITE_LOCK_RESERVED) ||
933 (eLock==SQLITE_LOCK_RESERVED && pIter->eLock>=SQLITE_LOCK_RESERVED) ||
934 (eLock==SQLITE_LOCK_SHARED && pIter->eLock>=SQLITE_LOCK_PENDING)
940 p->lock.eLock = eLock;
941 p->lock.eAsyncLock = MAX(p->lock.eAsyncLock, eLock);
943 assert(p->lock.eAsyncLock>=p->lock.eLock);
945 rc = getFileLock(pLock);
948 pthread_mutex_unlock(&async.lockMutex);
951 ASYNC_TRACE(("LOCK %d (%s) rc=%d\n", eLock, p->zName, rc));
954 static int asyncUnlock(sqlite3_file *pFile, int eLock){
956 AsyncFileData *p = ((AsyncFile *)pFile)->pData;
958 AsyncFileLock *pLock = &p->lock;
959 pthread_mutex_lock(&async.lockMutex);
960 pLock->eLock = MIN(pLock->eLock, eLock);
961 pthread_mutex_unlock(&async.lockMutex);
962 rc = addNewAsyncWrite(p, ASYNC_UNLOCK, 0, eLock, 0);
968 ** This function is called when the pager layer first opens a database file
969 ** and is checking for a hot-journal.
971 static int asyncCheckReservedLock(sqlite3_file *pFile, int *pResOut){
973 AsyncFileLock *pIter;
974 AsyncFileData *p = ((AsyncFile *)pFile)->pData;
976 pthread_mutex_lock(&async.lockMutex);
977 for(pIter=p->pLock->pList; pIter; pIter=pIter->pNext){
978 if( pIter->eLock>=SQLITE_LOCK_RESERVED ){
982 pthread_mutex_unlock(&async.lockMutex);
984 ASYNC_TRACE(("CHECK-LOCK %d (%s)\n", ret, p->zName));
990 ** sqlite3_file_control() implementation.
992 static int asyncFileControl(sqlite3_file *id, int op, void *pArg){
994 case SQLITE_FCNTL_LOCKSTATE: {
995 pthread_mutex_lock(&async.lockMutex);
996 *(int*)pArg = ((AsyncFile*)id)->pData->lock.eLock;
997 pthread_mutex_unlock(&async.lockMutex);
1001 return SQLITE_ERROR;
1005 ** Return the device characteristics and sector-size of the device. It
1006 ** is not tricky to implement these correctly, as this backend might
1007 ** not have an open file handle at this point.
1009 static int asyncSectorSize(sqlite3_file *pFile){
1012 static int asyncDeviceCharacteristics(sqlite3_file *pFile){
1016 static int unlinkAsyncFile(AsyncFileData *pData){
1017 AsyncFileLock **ppIter;
1021 AsyncLock *pLock = pData->pLock;
1022 for(ppIter=&pLock->pList; *ppIter; ppIter=&((*ppIter)->pNext)){
1023 if( (*ppIter)==&pData->lock ){
1024 *ppIter = pData->lock.pNext;
1028 if( !pLock->pList ){
1031 pLock->pFile->pMethods->xClose(pLock->pFile);
1033 for(pp=&async.pLock; *pp!=pLock; pp=&((*pp)->pNext));
1035 sqlite3_free(pLock);
1037 rc = getFileLock(pLock);
1047 static int asyncOpen(
1048 sqlite3_vfs *pAsyncVfs,
1050 sqlite3_file *pFile,
1054 static sqlite3_io_methods async_methods = {
1056 asyncClose, /* xClose */
1057 asyncRead, /* xRead */
1058 asyncWrite, /* xWrite */
1059 asyncTruncate, /* xTruncate */
1060 asyncSync, /* xSync */
1061 asyncFileSize, /* xFileSize */
1062 asyncLock, /* xLock */
1063 asyncUnlock, /* xUnlock */
1064 asyncCheckReservedLock, /* xCheckReservedLock */
1065 asyncFileControl, /* xFileControl */
1066 asyncSectorSize, /* xSectorSize */
1067 asyncDeviceCharacteristics /* xDeviceCharacteristics */
1070 sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData;
1071 AsyncFile *p = (AsyncFile *)pFile;
1075 AsyncFileData *pData;
1076 AsyncLock *pLock = 0;
1078 int isExclusive = (flags&SQLITE_OPEN_EXCLUSIVE);
1080 /* If zName is NULL, then the upper layer is requesting an anonymous file */
1082 nName = strlen(zName)+1;
1086 sizeof(AsyncFileData) + /* AsyncFileData structure */
1087 2 * pVfs->szOsFile + /* AsyncFileData.pBaseRead and pBaseWrite */
1088 nName /* AsyncFileData.zName */
1090 z = sqlite3_malloc(nByte);
1092 return SQLITE_NOMEM;
1094 memset(z, 0, nByte);
1095 pData = (AsyncFileData*)z;
1096 z += sizeof(pData[0]);
1097 pData->pBaseRead = (sqlite3_file*)z;
1098 z += pVfs->szOsFile;
1099 pData->pBaseWrite = (sqlite3_file*)z;
1100 pData->close.pFileData = pData;
1101 pData->close.op = ASYNC_CLOSE;
1104 z += pVfs->szOsFile;
1106 pData->nName = nName;
1107 memcpy(pData->zName, zName, nName);
1111 rc = pVfs->xOpen(pVfs, zName, pData->pBaseRead, flags, pOutFlags);
1112 if( rc==SQLITE_OK && ((*pOutFlags)&SQLITE_OPEN_READWRITE) ){
1113 rc = pVfs->xOpen(pVfs, zName, pData->pBaseWrite, flags, 0);
1117 pthread_mutex_lock(&async.lockMutex);
1119 if( zName && rc==SQLITE_OK ){
1120 pLock = findLock(pData->zName, pData->nName);
1122 int nByte = pVfs->szOsFile + sizeof(AsyncLock) + pData->nName + 1;
1123 pLock = (AsyncLock *)sqlite3_malloc(nByte);
1125 memset(pLock, 0, nByte);
1126 #ifdef ENABLE_FILE_LOCKING
1127 if( flags&SQLITE_OPEN_MAIN_DB ){
1128 pLock->pFile = (sqlite3_file *)&pLock[1];
1129 rc = pVfs->xOpen(pVfs, zName, pLock->pFile, flags, 0);
1130 if( rc!=SQLITE_OK ){
1131 sqlite3_free(pLock);
1137 pLock->nFile = pData->nName;
1138 pLock->zFile = &((char *)(&pLock[1]))[pVfs->szOsFile];
1139 memcpy(pLock->zFile, pData->zName, pLock->nFile);
1140 pLock->pNext = async.pLock;
1141 async.pLock = pLock;
1149 if( rc==SQLITE_OK ){
1150 p->pMethod = &async_methods;
1153 /* Link AsyncFileData.lock into the linked list of
1154 ** AsyncFileLock structures for this file.
1157 pData->lock.pNext = pLock->pList;
1158 pLock->pList = &pData->lock;
1159 pData->zName = pLock->zFile;
1162 if( pData->pBaseRead->pMethods ){
1163 pData->pBaseRead->pMethods->xClose(pData->pBaseRead);
1165 if( pData->pBaseWrite->pMethods ){
1166 pData->pBaseWrite->pMethods->xClose(pData->pBaseWrite);
1168 sqlite3_free(pData);
1171 pthread_mutex_unlock(&async.lockMutex);
1173 if( rc==SQLITE_OK ){
1174 incrOpenFileCount();
1175 pData->pLock = pLock;
1178 if( rc==SQLITE_OK && isExclusive ){
1179 rc = addNewAsyncWrite(pData, ASYNC_OPENEXCLUSIVE, (sqlite3_int64)flags,0,0);
1180 if( rc==SQLITE_OK ){
1181 if( pOutFlags ) *pOutFlags = flags;
1183 pthread_mutex_lock(&async.lockMutex);
1184 unlinkAsyncFile(pData);
1185 pthread_mutex_unlock(&async.lockMutex);
1186 sqlite3_free(pData);
1193 ** Implementation of sqlite3OsDelete. Add an entry to the end of the
1194 ** write-op queue to perform the delete.
1196 static int asyncDelete(sqlite3_vfs *pAsyncVfs, const char *z, int syncDir){
1197 return addNewAsyncWrite(0, ASYNC_DELETE, syncDir, strlen(z)+1, z);
1201 ** Implementation of sqlite3OsAccess. This method holds the mutex from
1204 static int asyncAccess(
1205 sqlite3_vfs *pAsyncVfs,
1213 sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData;
1215 assert(flags==SQLITE_ACCESS_READWRITE
1216 || flags==SQLITE_ACCESS_READ
1217 || flags==SQLITE_ACCESS_EXISTS
1220 pthread_mutex_lock(&async.queueMutex);
1221 rc = pVfs->xAccess(pVfs, zName, flags, &ret);
1222 if( rc==SQLITE_OK && flags==SQLITE_ACCESS_EXISTS ){
1223 for(p=async.pQueueFirst; p; p = p->pNext){
1224 if( p->op==ASYNC_DELETE && 0==strcmp(p->zBuf, zName) ){
1226 }else if( p->op==ASYNC_OPENEXCLUSIVE
1227 && p->pFileData->zName
1228 && 0==strcmp(p->pFileData->zName, zName)
1234 ASYNC_TRACE(("ACCESS(%s): %s = %d\n",
1235 flags==SQLITE_ACCESS_READWRITE?"read-write":
1236 flags==SQLITE_ACCESS_READ?"read":"exists"
1239 pthread_mutex_unlock(&async.queueMutex);
1245 ** Fill in zPathOut with the full path to the file identified by zPath.
1247 static int asyncFullPathname(
1248 sqlite3_vfs *pAsyncVfs,
1254 sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData;
1255 rc = pVfs->xFullPathname(pVfs, zPath, nPathOut, zPathOut);
1257 /* Because of the way intra-process file locking works, this backend
1258 ** needs to return a canonical path. The following block assumes the
1259 ** file-system uses unix style paths.
1261 if( rc==SQLITE_OK ){
1264 int nPathOut = strlen(zPathOut);
1266 for(iIn=0; iIn<nPathOut; iIn++){
1268 /* Replace any occurences of "//" with "/" */
1269 if( iIn<=(nPathOut-2) && zPathOut[iIn]=='/' && zPathOut[iIn+1]=='/'
1274 /* Replace any occurences of "/./" with "/" */
1275 if( iIn<=(nPathOut-3)
1276 && zPathOut[iIn]=='/' && zPathOut[iIn+1]=='.' && zPathOut[iIn+2]=='/'
1282 /* Replace any occurences of "<path-component>/../" with "" */
1283 if( iOut>0 && iIn<=(nPathOut-4)
1284 && zPathOut[iIn]=='/' && zPathOut[iIn+1]=='.'
1285 && zPathOut[iIn+2]=='.' && zPathOut[iIn+3]=='/'
1289 for( ; iOut>0 && zPathOut[iOut-1]!='/'; iOut--);
1293 zPathOut[iOut++] = zPathOut[iIn];
1295 zPathOut[iOut] = '\0';
1300 static void *asyncDlOpen(sqlite3_vfs *pAsyncVfs, const char *zPath){
1301 sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData;
1302 return pVfs->xDlOpen(pVfs, zPath);
1304 static void asyncDlError(sqlite3_vfs *pAsyncVfs, int nByte, char *zErrMsg){
1305 sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData;
1306 pVfs->xDlError(pVfs, nByte, zErrMsg);
1308 static void *asyncDlSym(
1309 sqlite3_vfs *pAsyncVfs,
1313 sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData;
1314 return pVfs->xDlSym(pVfs, pHandle, zSymbol);
1316 static void asyncDlClose(sqlite3_vfs *pAsyncVfs, void *pHandle){
1317 sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData;
1318 pVfs->xDlClose(pVfs, pHandle);
1320 static int asyncRandomness(sqlite3_vfs *pAsyncVfs, int nByte, char *zBufOut){
1321 sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData;
1322 return pVfs->xRandomness(pVfs, nByte, zBufOut);
1324 static int asyncSleep(sqlite3_vfs *pAsyncVfs, int nMicro){
1325 sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData;
1326 return pVfs->xSleep(pVfs, nMicro);
1328 static int asyncCurrentTime(sqlite3_vfs *pAsyncVfs, double *pTimeOut){
1329 sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData;
1330 return pVfs->xCurrentTime(pVfs, pTimeOut);
1333 static sqlite3_vfs async_vfs = {
1335 sizeof(AsyncFile), /* szOsFile */
1338 "async", /* zName */
1340 asyncOpen, /* xOpen */
1341 asyncDelete, /* xDelete */
1342 asyncAccess, /* xAccess */
1343 asyncFullPathname, /* xFullPathname */
1344 asyncDlOpen, /* xDlOpen */
1345 asyncDlError, /* xDlError */
1346 asyncDlSym, /* xDlSym */
1347 asyncDlClose, /* xDlClose */
1348 asyncRandomness, /* xDlError */
1349 asyncSleep, /* xDlSym */
1350 asyncCurrentTime /* xDlClose */
1354 ** Call this routine to enable or disable the
1355 ** asynchronous IO features implemented in this file.
1357 ** This routine is not even remotely threadsafe. Do not call
1358 ** this routine while any SQLite database connections are open.
1360 static void asyncEnable(int enable){
1362 if( !async_vfs.pAppData ){
1363 async_vfs.pAppData = (void *)sqlite3_vfs_find(0);
1364 async_vfs.mxPathname = ((sqlite3_vfs *)async_vfs.pAppData)->mxPathname;
1365 sqlite3_vfs_register(&async_vfs, 1);
1368 if( async_vfs.pAppData ){
1369 sqlite3_vfs_unregister(&async_vfs);
1370 async_vfs.pAppData = 0;
1376 ** This procedure runs in a separate thread, reading messages off of the
1377 ** write queue and processing them one by one.
1379 ** If async.writerHaltNow is true, then this procedure exits
1380 ** after processing a single message.
1382 ** If async.writerHaltWhenIdle is true, then this procedure exits when
1383 ** the write queue is empty.
1385 ** If both of the above variables are false, this procedure runs
1386 ** indefinately, waiting for operations to be added to the write queue
1387 ** and processing them in the order in which they arrive.
1389 ** An artifical delay of async.ioDelay milliseconds is inserted before
1390 ** each write operation in order to simulate the effect of a slow disk.
1392 ** Only one instance of this procedure may be running at a time.
1394 static void *asyncWriterThread(void *pIsStarted){
1395 sqlite3_vfs *pVfs = (sqlite3_vfs *)(async_vfs.pAppData);
1398 int holdingMutex = 0;
1400 if( pthread_mutex_trylock(&async.writerMutex) ){
1403 (*(int *)pIsStarted) = 1;
1404 while( async.writerHaltNow==0 ){
1406 sqlite3_file *pBase = 0;
1408 if( !holdingMutex ){
1409 pthread_mutex_lock(&async.queueMutex);
1411 while( (p = async.pQueueFirst)==0 ){
1412 pthread_cond_broadcast(&async.emptySignal);
1413 if( async.writerHaltWhenIdle ){
1414 pthread_mutex_unlock(&async.queueMutex);
1417 ASYNC_TRACE(("IDLE\n"));
1418 pthread_cond_wait(&async.queueSignal, &async.queueMutex);
1419 ASYNC_TRACE(("WAKEUP\n"));
1425 /* Right now this thread is holding the mutex on the write-op queue.
1426 ** Variable 'p' points to the first entry in the write-op queue. In
1427 ** the general case, we hold on to the mutex for the entire body of
1430 ** However in the cases enumerated below, we relinquish the mutex,
1431 ** perform the IO, and then re-request the mutex before removing 'p' from
1432 ** the head of the write-op queue. The idea is to increase concurrency with
1435 ** * An ASYNC_CLOSE operation.
1436 ** * An ASYNC_OPENEXCLUSIVE operation. For this one, we relinquish
1437 ** the mutex, call the underlying xOpenExclusive() function, then
1438 ** re-aquire the mutex before seting the AsyncFile.pBaseRead
1440 ** * ASYNC_SYNC and ASYNC_WRITE operations, if
1441 ** SQLITE_ASYNC_TWO_FILEHANDLES was set at compile time and two
1442 ** file-handles are open for the particular file being "synced".
1444 if( async.ioError!=SQLITE_OK && p->op!=ASYNC_CLOSE ){
1448 pBase = p->pFileData->pBaseWrite;
1450 p->op==ASYNC_CLOSE ||
1451 p->op==ASYNC_OPENEXCLUSIVE ||
1452 (pBase->pMethods && (p->op==ASYNC_SYNC || p->op==ASYNC_WRITE) )
1454 pthread_mutex_unlock(&async.queueMutex);
1457 if( !pBase->pMethods ){
1458 pBase = p->pFileData->pBaseRead;
1468 ASYNC_TRACE(("WRITE %s %d bytes at %d\n",
1469 p->pFileData->zName, p->nByte, p->iOffset));
1470 rc = pBase->pMethods->xWrite(pBase, (void *)(p->zBuf), p->nByte, p->iOffset);
1475 ASYNC_TRACE(("SYNC %s\n", p->pFileData->zName));
1476 rc = pBase->pMethods->xSync(pBase, p->nByte);
1479 case ASYNC_TRUNCATE:
1481 ASYNC_TRACE(("TRUNCATE %s to %d bytes\n",
1482 p->pFileData->zName, p->iOffset));
1483 rc = pBase->pMethods->xTruncate(pBase, p->iOffset);
1487 AsyncFileData *pData = p->pFileData;
1488 ASYNC_TRACE(("CLOSE %s\n", p->pFileData->zName));
1489 if( pData->pBaseWrite->pMethods ){
1490 pData->pBaseWrite->pMethods->xClose(pData->pBaseWrite);
1492 if( pData->pBaseRead->pMethods ){
1493 pData->pBaseRead->pMethods->xClose(pData->pBaseRead);
1496 /* Unlink AsyncFileData.lock from the linked list of AsyncFileLock
1497 ** structures for this file. Obtain the async.lockMutex mutex
1500 pthread_mutex_lock(&async.lockMutex);
1501 rc = unlinkAsyncFile(pData);
1502 pthread_mutex_unlock(&async.lockMutex);
1504 if( !holdingMutex ){
1505 pthread_mutex_lock(&async.queueMutex);
1508 assert_mutex_is_held(&async.queueMutex);
1509 async.pQueueFirst = p->pNext;
1510 sqlite3_free(pData);
1515 case ASYNC_UNLOCK: {
1516 AsyncFileData *pData = p->pFileData;
1517 int eLock = p->nByte;
1518 pthread_mutex_lock(&async.lockMutex);
1519 pData->lock.eAsyncLock = MIN(
1520 pData->lock.eAsyncLock, MAX(pData->lock.eLock, eLock)
1522 assert(pData->lock.eAsyncLock>=pData->lock.eLock);
1523 rc = getFileLock(pData->pLock);
1524 pthread_mutex_unlock(&async.lockMutex);
1529 ASYNC_TRACE(("DELETE %s\n", p->zBuf));
1530 rc = pVfs->xDelete(pVfs, p->zBuf, (int)p->iOffset);
1533 case ASYNC_OPENEXCLUSIVE: {
1534 int flags = (int)p->iOffset;
1535 AsyncFileData *pData = p->pFileData;
1536 ASYNC_TRACE(("OPEN %s flags=%d\n", p->zBuf, (int)p->iOffset));
1537 assert(pData->pBaseRead->pMethods==0 && pData->pBaseWrite->pMethods==0);
1538 rc = pVfs->xOpen(pVfs, pData->zName, pData->pBaseRead, flags, 0);
1539 assert( holdingMutex==0 );
1540 pthread_mutex_lock(&async.queueMutex);
1545 default: assert(!"Illegal value for AsyncWrite.op");
1548 /* If we didn't hang on to the mutex during the IO op, obtain it now
1549 ** so that the AsyncWrite structure can be safely removed from the
1550 ** global write-op queue.
1552 if( !holdingMutex ){
1553 pthread_mutex_lock(&async.queueMutex);
1556 /* ASYNC_TRACE(("UNLINK %p\n", p)); */
1557 if( p==async.pQueueLast ){
1558 async.pQueueLast = 0;
1561 assert_mutex_is_held(&async.queueMutex);
1562 async.pQueueFirst = p->pNext;
1565 assert( holdingMutex );
1567 /* An IO error has occured. We cannot report the error back to the
1568 ** connection that requested the I/O since the error happened
1569 ** asynchronously. The connection has already moved on. There
1570 ** really is nobody to report the error to.
1572 ** The file for which the error occured may have been a database or
1573 ** journal file. Regardless, none of the currently queued operations
1574 ** associated with the same database should now be performed. Nor should
1575 ** any subsequently requested IO on either a database or journal file
1576 ** handle for the same database be accepted until the main database
1577 ** file handle has been closed and reopened.
1579 ** Furthermore, no further IO should be queued or performed on any file
1580 ** handle associated with a database that may have been part of a
1581 ** multi-file transaction that included the database associated with
1582 ** the IO error (i.e. a database ATTACHed to the same handle at some
1585 if( rc!=SQLITE_OK ){
1589 if( async.ioError && !async.pQueueFirst ){
1590 pthread_mutex_lock(&async.lockMutex);
1591 if( 0==async.pLock ){
1592 async.ioError = SQLITE_OK;
1594 pthread_mutex_unlock(&async.lockMutex);
1597 /* Drop the queue mutex before continuing to the next write operation
1598 ** in order to give other threads a chance to work with the write queue.
1600 if( !async.pQueueFirst || !async.ioError ){
1601 pthread_mutex_unlock(&async.queueMutex);
1603 if( async.ioDelay>0 ){
1604 pVfs->xSleep(pVfs, async.ioDelay);
1611 pthread_mutex_unlock(&async.writerMutex);
1615 /**************************************************************************
1616 ** The remaining code defines a Tcl interface for testing the asynchronous
1617 ** IO implementation in this file.
1619 ** To adapt the code to a non-TCL environment, delete or comment out
1620 ** the code that follows.
1624 ** sqlite3async_enable ?YES/NO?
1626 ** Enable or disable the asynchronous I/O backend. This command is
1627 ** not thread-safe. Do not call it while any database connections
1630 static int testAsyncEnable(
1634 Tcl_Obj *CONST objv[]
1636 if( objc!=1 && objc!=2 ){
1637 Tcl_WrongNumArgs(interp, 1, objv, "?YES/NO?");
1641 Tcl_SetObjResult(interp, Tcl_NewBooleanObj(async_vfs.pAppData!=0));
1644 if( Tcl_GetBooleanFromObj(interp, objv[1], &en) ) return TCL_ERROR;
1651 ** sqlite3async_halt "now"|"idle"|"never"
1653 ** Set the conditions at which the writer thread will halt.
1655 static int testAsyncHalt(
1659 Tcl_Obj *CONST objv[]
1663 Tcl_WrongNumArgs(interp, 1, objv, "\"now\"|\"idle\"|\"never\"");
1666 zCond = Tcl_GetString(objv[1]);
1667 if( strcmp(zCond, "now")==0 ){
1668 async.writerHaltNow = 1;
1669 pthread_cond_broadcast(&async.queueSignal);
1670 }else if( strcmp(zCond, "idle")==0 ){
1671 async.writerHaltWhenIdle = 1;
1672 async.writerHaltNow = 0;
1673 pthread_cond_broadcast(&async.queueSignal);
1674 }else if( strcmp(zCond, "never")==0 ){
1675 async.writerHaltWhenIdle = 0;
1676 async.writerHaltNow = 0;
1678 Tcl_AppendResult(interp,
1679 "should be one of: \"now\", \"idle\", or \"never\"", (char*)0);
1686 ** sqlite3async_delay ?MS?
1688 ** Query or set the number of milliseconds of delay in the writer
1689 ** thread after each write operation. The default is 0. By increasing
1690 ** the memory delay we can simulate the effect of slow disk I/O.
1692 static int testAsyncDelay(
1696 Tcl_Obj *CONST objv[]
1698 if( objc!=1 && objc!=2 ){
1699 Tcl_WrongNumArgs(interp, 1, objv, "?MS?");
1703 Tcl_SetObjResult(interp, Tcl_NewIntObj(async.ioDelay));
1706 if( Tcl_GetIntFromObj(interp, objv[1], &ioDelay) ) return TCL_ERROR;
1707 async.ioDelay = ioDelay;
1713 ** sqlite3async_start
1715 ** Start a new writer thread.
1717 static int testAsyncStart(
1721 Tcl_Obj *CONST objv[]
1725 volatile int isStarted = 0;
1726 rc = pthread_create(&x, 0, asyncWriterThread, (void *)&isStarted);
1728 Tcl_AppendResult(interp, "failed to create the thread", 0);
1732 while( isStarted==0 ){
1739 ** sqlite3async_wait
1741 ** Wait for the current writer thread to terminate.
1743 ** If the current writer thread is set to run forever then this
1744 ** command would block forever. To prevent that, an error is returned.
1746 static int testAsyncWait(
1750 Tcl_Obj *CONST objv[]
1753 if( async.writerHaltNow==0 && async.writerHaltWhenIdle==0 ){
1754 Tcl_AppendResult(interp, "would block forever", (char*)0);
1758 while( cnt-- && !pthread_mutex_trylock(&async.writerMutex) ){
1759 pthread_mutex_unlock(&async.writerMutex);
1763 ASYNC_TRACE(("WAIT\n"));
1764 pthread_mutex_lock(&async.queueMutex);
1765 pthread_cond_broadcast(&async.queueSignal);
1766 pthread_mutex_unlock(&async.queueMutex);
1767 pthread_mutex_lock(&async.writerMutex);
1768 pthread_mutex_unlock(&async.writerMutex);
1770 ASYNC_TRACE(("NO-WAIT\n"));
1776 #endif /* SQLITE_OS_UNIX and SQLITE_THREADSAFE */
1779 ** This routine registers the custom TCL commands defined in this
1780 ** module. This should be the only procedure visible from outside
1783 int Sqlitetestasync_Init(Tcl_Interp *interp){
1784 #if SQLITE_OS_UNIX && SQLITE_THREADSAFE
1785 Tcl_CreateObjCommand(interp,"sqlite3async_enable",testAsyncEnable,0,0);
1786 Tcl_CreateObjCommand(interp,"sqlite3async_halt",testAsyncHalt,0,0);
1787 Tcl_CreateObjCommand(interp,"sqlite3async_delay",testAsyncDelay,0,0);
1788 Tcl_CreateObjCommand(interp,"sqlite3async_start",testAsyncStart,0,0);
1789 Tcl_CreateObjCommand(interp,"sqlite3async_wait",testAsyncWait,0,0);
1790 Tcl_LinkVar(interp, "sqlite3async_trace",
1791 (char*)&sqlite3async_trace, TCL_LINK_INT);
1792 #endif /* SQLITE_OS_UNIX and SQLITE_THREADSAFE */