sl@0
|
1 |
/*
|
sl@0
|
2 |
** 2005 December 14
|
sl@0
|
3 |
**
|
sl@0
|
4 |
** The author disclaims copyright to this source code. In place of
|
sl@0
|
5 |
** a legal notice, here is a blessing:
|
sl@0
|
6 |
**
|
sl@0
|
7 |
** May you do good and not evil.
|
sl@0
|
8 |
** May you find forgiveness for yourself and forgive others.
|
sl@0
|
9 |
** May you share freely, never taking more than you give.
|
sl@0
|
10 |
**
|
sl@0
|
11 |
*************************************************************************
|
sl@0
|
12 |
**
|
sl@0
|
13 |
** $Id: test_async.c,v 1.48 2008/09/26 20:02:50 drh Exp $
|
sl@0
|
14 |
**
|
sl@0
|
15 |
** This file contains an example implementation of an asynchronous IO
|
sl@0
|
16 |
** backend for SQLite.
|
sl@0
|
17 |
**
|
sl@0
|
18 |
** WHAT IS ASYNCHRONOUS I/O?
|
sl@0
|
19 |
**
|
sl@0
|
20 |
** With asynchronous I/O, write requests are handled by a separate thread
|
sl@0
|
21 |
** running in the background. This means that the thread that initiates
|
sl@0
|
22 |
** a database write does not have to wait for (sometimes slow) disk I/O
|
sl@0
|
23 |
** to occur. The write seems to happen very quickly, though in reality
|
sl@0
|
24 |
** it is happening at its usual slow pace in the background.
|
sl@0
|
25 |
**
|
sl@0
|
26 |
** Asynchronous I/O appears to give better responsiveness, but at a price.
|
sl@0
|
27 |
** You lose the Durable property. With the default I/O backend of SQLite,
|
sl@0
|
28 |
** once a write completes, you know that the information you wrote is
|
sl@0
|
29 |
** safely on disk. With the asynchronous I/O, this is not the case. If
|
sl@0
|
30 |
** your program crashes or if a power loss occurs after the database
|
sl@0
|
31 |
** write but before the asynchronous write thread has completed, then the
|
sl@0
|
32 |
** database change might never make it to disk and the next user of the
|
sl@0
|
33 |
** database might not see your change.
|
sl@0
|
34 |
**
|
sl@0
|
35 |
** You lose Durability with asynchronous I/O, but you still retain the
|
sl@0
|
36 |
** other parts of ACID: Atomic, Consistent, and Isolated. Many
|
sl@0
|
37 |
** appliations get along fine without the Durablity.
|
sl@0
|
38 |
**
|
sl@0
|
39 |
** HOW IT WORKS
|
sl@0
|
40 |
**
|
sl@0
|
41 |
** Asynchronous I/O works by creating a special SQLite "vfs" structure
|
sl@0
|
42 |
** and registering it with sqlite3_vfs_register(). When files opened via
|
sl@0
|
43 |
** this vfs are written to (using sqlite3OsWrite()), the data is not
|
sl@0
|
44 |
** written directly to disk, but is placed in the "write-queue" to be
|
sl@0
|
45 |
** handled by the background thread.
|
sl@0
|
46 |
**
|
sl@0
|
47 |
** When files opened with the asynchronous vfs are read from
|
sl@0
|
48 |
** (using sqlite3OsRead()), the data is read from the file on
|
sl@0
|
49 |
** disk and the write-queue, so that from the point of view of
|
sl@0
|
50 |
** the vfs reader the OsWrite() appears to have already completed.
|
sl@0
|
51 |
**
|
sl@0
|
52 |
** The special vfs is registered (and unregistered) by calls to
|
sl@0
|
53 |
** function asyncEnable() (see below).
|
sl@0
|
54 |
**
|
sl@0
|
55 |
** LIMITATIONS
|
sl@0
|
56 |
**
|
sl@0
|
57 |
** This demonstration code is deliberately kept simple in order to keep
|
sl@0
|
58 |
** the main ideas clear and easy to understand. Real applications that
|
sl@0
|
59 |
** want to do asynchronous I/O might want to add additional capabilities.
|
sl@0
|
60 |
** For example, in this demonstration if writes are happening at a steady
|
sl@0
|
61 |
** stream that exceeds the I/O capability of the background writer thread,
|
sl@0
|
62 |
** the queue of pending write operations will grow without bound until we
|
sl@0
|
63 |
** run out of memory. Users of this technique may want to keep track of
|
sl@0
|
64 |
** the quantity of pending writes and stop accepting new write requests
|
sl@0
|
65 |
** when the buffer gets to be too big.
|
sl@0
|
66 |
**
|
sl@0
|
67 |
** LOCKING + CONCURRENCY
|
sl@0
|
68 |
**
|
sl@0
|
69 |
** Multiple connections from within a single process that use this
|
sl@0
|
70 |
** implementation of asynchronous IO may access a single database
|
sl@0
|
71 |
** file concurrently. From the point of view of the user, if all
|
sl@0
|
72 |
** connections are from within a single process, there is no difference
|
sl@0
|
73 |
** between the concurrency offered by "normal" SQLite and SQLite
|
sl@0
|
74 |
** using the asynchronous backend.
|
sl@0
|
75 |
**
|
sl@0
|
76 |
** If connections from within multiple database files may access the
|
sl@0
|
77 |
** database file, the ENABLE_FILE_LOCKING symbol (see below) must be
|
sl@0
|
78 |
** defined. If it is not defined, then no locks are established on
|
sl@0
|
79 |
** the database file. In this case, if multiple processes access
|
sl@0
|
80 |
** the database file, corruption will quickly result.
|
sl@0
|
81 |
**
|
sl@0
|
82 |
** If ENABLE_FILE_LOCKING is defined (the default), then connections
|
sl@0
|
83 |
** from within multiple processes may access a single database file
|
sl@0
|
84 |
** without risking corruption. However concurrency is reduced as
|
sl@0
|
85 |
** follows:
|
sl@0
|
86 |
**
|
sl@0
|
87 |
** * When a connection using asynchronous IO begins a database
|
sl@0
|
88 |
** transaction, the database is locked immediately. However the
|
sl@0
|
89 |
** lock is not released until after all relevant operations
|
sl@0
|
90 |
** in the write-queue have been flushed to disk. This means
|
sl@0
|
91 |
** (for example) that the database may remain locked for some
|
sl@0
|
92 |
** time after a "COMMIT" or "ROLLBACK" is issued.
|
sl@0
|
93 |
**
|
sl@0
|
94 |
** * If an application using asynchronous IO executes transactions
|
sl@0
|
95 |
** in quick succession, other database users may be effectively
|
sl@0
|
96 |
** locked out of the database. This is because when a BEGIN
|
sl@0
|
97 |
** is executed, a database lock is established immediately. But
|
sl@0
|
98 |
** when the corresponding COMMIT or ROLLBACK occurs, the lock
|
sl@0
|
99 |
** is not released until the relevant part of the write-queue
|
sl@0
|
100 |
** has been flushed through. As a result, if a COMMIT is followed
|
sl@0
|
101 |
** by a BEGIN before the write-queue is flushed through, the database
|
sl@0
|
102 |
** is never unlocked,preventing other processes from accessing
|
sl@0
|
103 |
** the database.
|
sl@0
|
104 |
**
|
sl@0
|
105 |
** Defining ENABLE_FILE_LOCKING when using an NFS or other remote
|
sl@0
|
106 |
** file-system may slow things down, as synchronous round-trips to the
|
sl@0
|
107 |
** server may be required to establish database file locks.
|
sl@0
|
108 |
*/
|
sl@0
|
109 |
#define ENABLE_FILE_LOCKING
|
sl@0
|
110 |
|
sl@0
|
111 |
#ifndef SQLITE_AMALGAMATION
|
sl@0
|
112 |
# include "sqlite3.h"
|
sl@0
|
113 |
# include <assert.h>
|
sl@0
|
114 |
# include <string.h>
|
sl@0
|
115 |
#endif
|
sl@0
|
116 |
#include "tcl.h"
|
sl@0
|
117 |
|
sl@0
|
118 |
/*
|
sl@0
|
119 |
** This test uses pthreads and hence only works on unix and with
|
sl@0
|
120 |
** a threadsafe build of SQLite.
|
sl@0
|
121 |
*/
|
sl@0
|
122 |
#if SQLITE_OS_UNIX && SQLITE_THREADSAFE
|
sl@0
|
123 |
|
sl@0
|
124 |
/*
|
sl@0
|
125 |
** This demo uses pthreads. If you do not have a pthreads implementation
|
sl@0
|
126 |
** for your operating system, you will need to recode the threading
|
sl@0
|
127 |
** logic.
|
sl@0
|
128 |
*/
|
sl@0
|
129 |
#include <pthread.h>
|
sl@0
|
130 |
#include <sched.h>
|
sl@0
|
131 |
|
sl@0
|
132 |
/* Useful macros used in several places */
|
sl@0
|
133 |
#define MIN(x,y) ((x)<(y)?(x):(y))
|
sl@0
|
134 |
#define MAX(x,y) ((x)>(y)?(x):(y))
|
sl@0
|
135 |
|
sl@0
|
136 |
/* Forward references */
|
sl@0
|
137 |
typedef struct AsyncWrite AsyncWrite;
|
sl@0
|
138 |
typedef struct AsyncFile AsyncFile;
|
sl@0
|
139 |
typedef struct AsyncFileData AsyncFileData;
|
sl@0
|
140 |
typedef struct AsyncFileLock AsyncFileLock;
|
sl@0
|
141 |
typedef struct AsyncLock AsyncLock;
|
sl@0
|
142 |
|
sl@0
|
143 |
/* Enable for debugging */
|
sl@0
|
144 |
static int sqlite3async_trace = 0;
|
sl@0
|
145 |
# define ASYNC_TRACE(X) if( sqlite3async_trace ) asyncTrace X
|
sl@0
|
146 |
static void asyncTrace(const char *zFormat, ...){
|
sl@0
|
147 |
char *z;
|
sl@0
|
148 |
va_list ap;
|
sl@0
|
149 |
va_start(ap, zFormat);
|
sl@0
|
150 |
z = sqlite3_vmprintf(zFormat, ap);
|
sl@0
|
151 |
va_end(ap);
|
sl@0
|
152 |
fprintf(stderr, "[%d] %s", (int)pthread_self(), z);
|
sl@0
|
153 |
sqlite3_free(z);
|
sl@0
|
154 |
}
|
sl@0
|
155 |
|
sl@0
|
156 |
/*
|
sl@0
|
157 |
** THREAD SAFETY NOTES
|
sl@0
|
158 |
**
|
sl@0
|
159 |
** Basic rules:
|
sl@0
|
160 |
**
|
sl@0
|
161 |
** * Both read and write access to the global write-op queue must be
|
sl@0
|
162 |
** protected by the async.queueMutex. As are the async.ioError and
|
sl@0
|
163 |
** async.nFile variables.
|
sl@0
|
164 |
**
|
sl@0
|
165 |
** * The async.pLock list and all AsyncLock and AsyncFileLock
|
sl@0
|
166 |
** structures must be protected by the async.lockMutex mutex.
|
sl@0
|
167 |
**
|
sl@0
|
168 |
** * The file handles from the underlying system are not assumed to
|
sl@0
|
169 |
** be thread safe.
|
sl@0
|
170 |
**
|
sl@0
|
171 |
** * See the last two paragraphs under "The Writer Thread" for
|
sl@0
|
172 |
** an assumption to do with file-handle synchronization by the Os.
|
sl@0
|
173 |
**
|
sl@0
|
174 |
** Deadlock prevention:
|
sl@0
|
175 |
**
|
sl@0
|
176 |
** There are three mutex used by the system: the "writer" mutex,
|
sl@0
|
177 |
** the "queue" mutex and the "lock" mutex. Rules are:
|
sl@0
|
178 |
**
|
sl@0
|
179 |
** * It is illegal to block on the writer mutex when any other mutex
|
sl@0
|
180 |
** are held, and
|
sl@0
|
181 |
**
|
sl@0
|
182 |
** * It is illegal to block on the queue mutex when the lock mutex
|
sl@0
|
183 |
** is held.
|
sl@0
|
184 |
**
|
sl@0
|
185 |
** i.e. mutex's must be grabbed in the order "writer", "queue", "lock".
|
sl@0
|
186 |
**
|
sl@0
|
187 |
** File system operations (invoked by SQLite thread):
|
sl@0
|
188 |
**
|
sl@0
|
189 |
** xOpen
|
sl@0
|
190 |
** xDelete
|
sl@0
|
191 |
** xFileExists
|
sl@0
|
192 |
**
|
sl@0
|
193 |
** File handle operations (invoked by SQLite thread):
|
sl@0
|
194 |
**
|
sl@0
|
195 |
** asyncWrite, asyncClose, asyncTruncate, asyncSync
|
sl@0
|
196 |
**
|
sl@0
|
197 |
** The operations above add an entry to the global write-op list. They
|
sl@0
|
198 |
** prepare the entry, acquire the async.queueMutex momentarily while
|
sl@0
|
199 |
** list pointers are manipulated to insert the new entry, then release
|
sl@0
|
200 |
** the mutex and signal the writer thread to wake up in case it happens
|
sl@0
|
201 |
** to be asleep.
|
sl@0
|
202 |
**
|
sl@0
|
203 |
**
|
sl@0
|
204 |
** asyncRead, asyncFileSize.
|
sl@0
|
205 |
**
|
sl@0
|
206 |
** Read operations. Both of these read from both the underlying file
|
sl@0
|
207 |
** first then adjust their result based on pending writes in the
|
sl@0
|
208 |
** write-op queue. So async.queueMutex is held for the duration
|
sl@0
|
209 |
** of these operations to prevent other threads from changing the
|
sl@0
|
210 |
** queue in mid operation.
|
sl@0
|
211 |
**
|
sl@0
|
212 |
**
|
sl@0
|
213 |
** asyncLock, asyncUnlock, asyncCheckReservedLock
|
sl@0
|
214 |
**
|
sl@0
|
215 |
** These primitives implement in-process locking using a hash table
|
sl@0
|
216 |
** on the file name. Files are locked correctly for connections coming
|
sl@0
|
217 |
** from the same process. But other processes cannot see these locks
|
sl@0
|
218 |
** and will therefore not honor them.
|
sl@0
|
219 |
**
|
sl@0
|
220 |
**
|
sl@0
|
221 |
** The writer thread:
|
sl@0
|
222 |
**
|
sl@0
|
223 |
** The async.writerMutex is used to make sure only there is only
|
sl@0
|
224 |
** a single writer thread running at a time.
|
sl@0
|
225 |
**
|
sl@0
|
226 |
** Inside the writer thread is a loop that works like this:
|
sl@0
|
227 |
**
|
sl@0
|
228 |
** WHILE (write-op list is not empty)
|
sl@0
|
229 |
** Do IO operation at head of write-op list
|
sl@0
|
230 |
** Remove entry from head of write-op list
|
sl@0
|
231 |
** END WHILE
|
sl@0
|
232 |
**
|
sl@0
|
233 |
** The async.queueMutex is always held during the <write-op list is
|
sl@0
|
234 |
** not empty> test, and when the entry is removed from the head
|
sl@0
|
235 |
** of the write-op list. Sometimes it is held for the interim
|
sl@0
|
236 |
** period (while the IO is performed), and sometimes it is
|
sl@0
|
237 |
** relinquished. It is relinquished if (a) the IO op is an
|
sl@0
|
238 |
** ASYNC_CLOSE or (b) when the file handle was opened, two of
|
sl@0
|
239 |
** the underlying systems handles were opened on the same
|
sl@0
|
240 |
** file-system entry.
|
sl@0
|
241 |
**
|
sl@0
|
242 |
** If condition (b) above is true, then one file-handle
|
sl@0
|
243 |
** (AsyncFile.pBaseRead) is used exclusively by sqlite threads to read the
|
sl@0
|
244 |
** file, the other (AsyncFile.pBaseWrite) by sqlite3_async_flush()
|
sl@0
|
245 |
** threads to perform write() operations. This means that read
|
sl@0
|
246 |
** operations are not blocked by asynchronous writes (although
|
sl@0
|
247 |
** asynchronous writes may still be blocked by reads).
|
sl@0
|
248 |
**
|
sl@0
|
249 |
** This assumes that the OS keeps two handles open on the same file
|
sl@0
|
250 |
** properly in sync. That is, any read operation that starts after a
|
sl@0
|
251 |
** write operation on the same file system entry has completed returns
|
sl@0
|
252 |
** data consistent with the write. We also assume that if one thread
|
sl@0
|
253 |
** reads a file while another is writing it all bytes other than the
|
sl@0
|
254 |
** ones actually being written contain valid data.
|
sl@0
|
255 |
**
|
sl@0
|
256 |
** If the above assumptions are not true, set the preprocessor symbol
|
sl@0
|
257 |
** SQLITE_ASYNC_TWO_FILEHANDLES to 0.
|
sl@0
|
258 |
*/
|
sl@0
|
259 |
|
sl@0
|
260 |
#ifndef SQLITE_ASYNC_TWO_FILEHANDLES
|
sl@0
|
261 |
/* #define SQLITE_ASYNC_TWO_FILEHANDLES 0 */
|
sl@0
|
262 |
#define SQLITE_ASYNC_TWO_FILEHANDLES 1
|
sl@0
|
263 |
#endif
|
sl@0
|
264 |
|
sl@0
|
265 |
/*
|
sl@0
|
266 |
** State information is held in the static variable "async" defined
|
sl@0
|
267 |
** as the following structure.
|
sl@0
|
268 |
**
|
sl@0
|
269 |
** Both async.ioError and async.nFile are protected by async.queueMutex.
|
sl@0
|
270 |
*/
|
sl@0
|
271 |
static struct TestAsyncStaticData {
|
sl@0
|
272 |
pthread_mutex_t lockMutex; /* For access to aLock hash table */
|
sl@0
|
273 |
pthread_mutex_t queueMutex; /* Mutex for access to write operation queue */
|
sl@0
|
274 |
pthread_mutex_t writerMutex; /* Prevents multiple writer threads */
|
sl@0
|
275 |
pthread_cond_t queueSignal; /* For waking up sleeping writer thread */
|
sl@0
|
276 |
pthread_cond_t emptySignal; /* Notify when the write queue is empty */
|
sl@0
|
277 |
AsyncWrite *pQueueFirst; /* Next write operation to be processed */
|
sl@0
|
278 |
AsyncWrite *pQueueLast; /* Last write operation on the list */
|
sl@0
|
279 |
AsyncLock *pLock; /* Linked list of all AsyncLock structures */
|
sl@0
|
280 |
volatile int ioDelay; /* Extra delay between write operations */
|
sl@0
|
281 |
volatile int writerHaltWhenIdle; /* Writer thread halts when queue empty */
|
sl@0
|
282 |
volatile int writerHaltNow; /* Writer thread halts after next op */
|
sl@0
|
283 |
int ioError; /* True if an IO error has occured */
|
sl@0
|
284 |
int nFile; /* Number of open files (from sqlite pov) */
|
sl@0
|
285 |
} async = {
|
sl@0
|
286 |
PTHREAD_MUTEX_INITIALIZER,
|
sl@0
|
287 |
PTHREAD_MUTEX_INITIALIZER,
|
sl@0
|
288 |
PTHREAD_MUTEX_INITIALIZER,
|
sl@0
|
289 |
PTHREAD_COND_INITIALIZER,
|
sl@0
|
290 |
PTHREAD_COND_INITIALIZER,
|
sl@0
|
291 |
};
|
sl@0
|
292 |
|
sl@0
|
293 |
/* Possible values of AsyncWrite.op */
|
sl@0
|
294 |
#define ASYNC_NOOP 0
|
sl@0
|
295 |
#define ASYNC_WRITE 1
|
sl@0
|
296 |
#define ASYNC_SYNC 2
|
sl@0
|
297 |
#define ASYNC_TRUNCATE 3
|
sl@0
|
298 |
#define ASYNC_CLOSE 4
|
sl@0
|
299 |
#define ASYNC_DELETE 5
|
sl@0
|
300 |
#define ASYNC_OPENEXCLUSIVE 6
|
sl@0
|
301 |
#define ASYNC_UNLOCK 7
|
sl@0
|
302 |
|
sl@0
|
303 |
/* Names of opcodes. Used for debugging only.
|
sl@0
|
304 |
** Make sure these stay in sync with the macros above!
|
sl@0
|
305 |
*/
|
sl@0
|
306 |
static const char *azOpcodeName[] = {
|
sl@0
|
307 |
"NOOP", "WRITE", "SYNC", "TRUNCATE", "CLOSE", "DELETE", "OPENEX", "UNLOCK"
|
sl@0
|
308 |
};
|
sl@0
|
309 |
|
sl@0
|
310 |
/*
|
sl@0
|
311 |
** Entries on the write-op queue are instances of the AsyncWrite
|
sl@0
|
312 |
** structure, defined here.
|
sl@0
|
313 |
**
|
sl@0
|
314 |
** The interpretation of the iOffset and nByte variables varies depending
|
sl@0
|
315 |
** on the value of AsyncWrite.op:
|
sl@0
|
316 |
**
|
sl@0
|
317 |
** ASYNC_NOOP:
|
sl@0
|
318 |
** No values used.
|
sl@0
|
319 |
**
|
sl@0
|
320 |
** ASYNC_WRITE:
|
sl@0
|
321 |
** iOffset -> Offset in file to write to.
|
sl@0
|
322 |
** nByte -> Number of bytes of data to write (pointed to by zBuf).
|
sl@0
|
323 |
**
|
sl@0
|
324 |
** ASYNC_SYNC:
|
sl@0
|
325 |
** nByte -> flags to pass to sqlite3OsSync().
|
sl@0
|
326 |
**
|
sl@0
|
327 |
** ASYNC_TRUNCATE:
|
sl@0
|
328 |
** iOffset -> Size to truncate file to.
|
sl@0
|
329 |
** nByte -> Unused.
|
sl@0
|
330 |
**
|
sl@0
|
331 |
** ASYNC_CLOSE:
|
sl@0
|
332 |
** iOffset -> Unused.
|
sl@0
|
333 |
** nByte -> Unused.
|
sl@0
|
334 |
**
|
sl@0
|
335 |
** ASYNC_DELETE:
|
sl@0
|
336 |
** iOffset -> Contains the "syncDir" flag.
|
sl@0
|
337 |
** nByte -> Number of bytes of zBuf points to (file name).
|
sl@0
|
338 |
**
|
sl@0
|
339 |
** ASYNC_OPENEXCLUSIVE:
|
sl@0
|
340 |
** iOffset -> Value of "delflag".
|
sl@0
|
341 |
** nByte -> Number of bytes of zBuf points to (file name).
|
sl@0
|
342 |
**
|
sl@0
|
343 |
** ASYNC_UNLOCK:
|
sl@0
|
344 |
** nByte -> Argument to sqlite3OsUnlock().
|
sl@0
|
345 |
**
|
sl@0
|
346 |
**
|
sl@0
|
347 |
** For an ASYNC_WRITE operation, zBuf points to the data to write to the file.
|
sl@0
|
348 |
** This space is sqlite3_malloc()d along with the AsyncWrite structure in a
|
sl@0
|
349 |
** single blob, so is deleted when sqlite3_free() is called on the parent
|
sl@0
|
350 |
** structure.
|
sl@0
|
351 |
*/
|
sl@0
|
352 |
struct AsyncWrite {
|
sl@0
|
353 |
AsyncFileData *pFileData; /* File to write data to or sync */
|
sl@0
|
354 |
int op; /* One of ASYNC_xxx etc. */
|
sl@0
|
355 |
sqlite_int64 iOffset; /* See above */
|
sl@0
|
356 |
int nByte; /* See above */
|
sl@0
|
357 |
char *zBuf; /* Data to write to file (or NULL if op!=ASYNC_WRITE) */
|
sl@0
|
358 |
AsyncWrite *pNext; /* Next write operation (to any file) */
|
sl@0
|
359 |
};
|
sl@0
|
360 |
|
sl@0
|
361 |
/*
|
sl@0
|
362 |
** An instance of this structure is created for each distinct open file
|
sl@0
|
363 |
** (i.e. if two handles are opened on the one file, only one of these
|
sl@0
|
364 |
** structures is allocated) and stored in the async.aLock hash table. The
|
sl@0
|
365 |
** keys for async.aLock are the full pathnames of the opened files.
|
sl@0
|
366 |
**
|
sl@0
|
367 |
** AsyncLock.pList points to the head of a linked list of AsyncFileLock
|
sl@0
|
368 |
** structures, one for each handle currently open on the file.
|
sl@0
|
369 |
**
|
sl@0
|
370 |
** If the opened file is not a main-database (the SQLITE_OPEN_MAIN_DB is
|
sl@0
|
371 |
** not passed to the sqlite3OsOpen() call), or if ENABLE_FILE_LOCKING is
|
sl@0
|
372 |
** not defined at compile time, variables AsyncLock.pFile and
|
sl@0
|
373 |
** AsyncLock.eLock are never used. Otherwise, pFile is a file handle
|
sl@0
|
374 |
** opened on the file in question and used to obtain the file-system
|
sl@0
|
375 |
** locks required by database connections within this process.
|
sl@0
|
376 |
**
|
sl@0
|
377 |
** See comments above the asyncLock() function for more details on
|
sl@0
|
378 |
** the implementation of database locking used by this backend.
|
sl@0
|
379 |
*/
|
sl@0
|
380 |
struct AsyncLock {
|
sl@0
|
381 |
char *zFile;
|
sl@0
|
382 |
int nFile;
|
sl@0
|
383 |
sqlite3_file *pFile;
|
sl@0
|
384 |
int eLock;
|
sl@0
|
385 |
AsyncFileLock *pList;
|
sl@0
|
386 |
AsyncLock *pNext; /* Next in linked list headed by async.pLock */
|
sl@0
|
387 |
};
|
sl@0
|
388 |
|
sl@0
|
389 |
/*
|
sl@0
|
390 |
** An instance of the following structure is allocated along with each
|
sl@0
|
391 |
** AsyncFileData structure (see AsyncFileData.lock), but is only used if the
|
sl@0
|
392 |
** file was opened with the SQLITE_OPEN_MAIN_DB.
|
sl@0
|
393 |
*/
|
sl@0
|
394 |
struct AsyncFileLock {
|
sl@0
|
395 |
int eLock; /* Internally visible lock state (sqlite pov) */
|
sl@0
|
396 |
int eAsyncLock; /* Lock-state with write-queue unlock */
|
sl@0
|
397 |
AsyncFileLock *pNext;
|
sl@0
|
398 |
};
|
sl@0
|
399 |
|
sl@0
|
400 |
/*
|
sl@0
|
401 |
** The AsyncFile structure is a subclass of sqlite3_file used for
|
sl@0
|
402 |
** asynchronous IO.
|
sl@0
|
403 |
**
|
sl@0
|
404 |
** All of the actual data for the structure is stored in the structure
|
sl@0
|
405 |
** pointed to by AsyncFile.pData, which is allocated as part of the
|
sl@0
|
406 |
** sqlite3OsOpen() using sqlite3_malloc(). The reason for this is that the
|
sl@0
|
407 |
** lifetime of the AsyncFile structure is ended by the caller after OsClose()
|
sl@0
|
408 |
** is called, but the data in AsyncFileData may be required by the
|
sl@0
|
409 |
** writer thread after that point.
|
sl@0
|
410 |
*/
|
sl@0
|
411 |
struct AsyncFile {
|
sl@0
|
412 |
sqlite3_io_methods *pMethod;
|
sl@0
|
413 |
AsyncFileData *pData;
|
sl@0
|
414 |
};
|
sl@0
|
415 |
struct AsyncFileData {
|
sl@0
|
416 |
char *zName; /* Underlying OS filename - used for debugging */
|
sl@0
|
417 |
int nName; /* Number of characters in zName */
|
sl@0
|
418 |
sqlite3_file *pBaseRead; /* Read handle to the underlying Os file */
|
sl@0
|
419 |
sqlite3_file *pBaseWrite; /* Write handle to the underlying Os file */
|
sl@0
|
420 |
AsyncFileLock lock; /* Lock state for this handle */
|
sl@0
|
421 |
AsyncLock *pLock; /* AsyncLock object for this file system entry */
|
sl@0
|
422 |
AsyncWrite close;
|
sl@0
|
423 |
};
|
sl@0
|
424 |
|
sl@0
|
425 |
/*
|
sl@0
|
426 |
** The following async_XXX functions are debugging wrappers around the
|
sl@0
|
427 |
** corresponding pthread_XXX functions:
|
sl@0
|
428 |
**
|
sl@0
|
429 |
** pthread_mutex_lock();
|
sl@0
|
430 |
** pthread_mutex_unlock();
|
sl@0
|
431 |
** pthread_mutex_trylock();
|
sl@0
|
432 |
** pthread_cond_wait();
|
sl@0
|
433 |
**
|
sl@0
|
434 |
** It is illegal to pass any mutex other than those stored in the
|
sl@0
|
435 |
** following global variables of these functions.
|
sl@0
|
436 |
**
|
sl@0
|
437 |
** async.queueMutex
|
sl@0
|
438 |
** async.writerMutex
|
sl@0
|
439 |
** async.lockMutex
|
sl@0
|
440 |
**
|
sl@0
|
441 |
** If NDEBUG is defined, these wrappers do nothing except call the
|
sl@0
|
442 |
** corresponding pthreads function. If NDEBUG is not defined, then the
|
sl@0
|
443 |
** following variables are used to store the thread-id (as returned
|
sl@0
|
444 |
** by pthread_self()) currently holding the mutex, or 0 otherwise:
|
sl@0
|
445 |
**
|
sl@0
|
446 |
** asyncdebug.queueMutexHolder
|
sl@0
|
447 |
** asyncdebug.writerMutexHolder
|
sl@0
|
448 |
** asyncdebug.lockMutexHolder
|
sl@0
|
449 |
**
|
sl@0
|
450 |
** These variables are used by some assert() statements that verify
|
sl@0
|
451 |
** the statements made in the "Deadlock Prevention" notes earlier
|
sl@0
|
452 |
** in this file.
|
sl@0
|
453 |
*/
|
sl@0
|
454 |
#ifndef NDEBUG
|
sl@0
|
455 |
|
sl@0
|
456 |
static struct TestAsyncDebugData {
|
sl@0
|
457 |
pthread_t lockMutexHolder;
|
sl@0
|
458 |
pthread_t queueMutexHolder;
|
sl@0
|
459 |
pthread_t writerMutexHolder;
|
sl@0
|
460 |
} asyncdebug = {0, 0, 0};
|
sl@0
|
461 |
|
sl@0
|
462 |
/*
|
sl@0
|
463 |
** Wrapper around pthread_mutex_lock(). Checks that we have not violated
|
sl@0
|
464 |
** the anti-deadlock rules (see "Deadlock prevention" above).
|
sl@0
|
465 |
*/
|
sl@0
|
466 |
static int async_mutex_lock(pthread_mutex_t *pMutex){
|
sl@0
|
467 |
int iIdx;
|
sl@0
|
468 |
int rc;
|
sl@0
|
469 |
pthread_mutex_t *aMutex = (pthread_mutex_t *)(&async);
|
sl@0
|
470 |
pthread_t *aHolder = (pthread_t *)(&asyncdebug);
|
sl@0
|
471 |
|
sl@0
|
472 |
/* The code in this 'ifndef NDEBUG' block depends on a certain alignment
|
sl@0
|
473 |
* of the variables in TestAsyncStaticData and TestAsyncDebugData. The
|
sl@0
|
474 |
* following assert() statements check that this has not been changed.
|
sl@0
|
475 |
*
|
sl@0
|
476 |
* Really, these only need to be run once at startup time.
|
sl@0
|
477 |
*/
|
sl@0
|
478 |
assert(&(aMutex[0])==&async.lockMutex);
|
sl@0
|
479 |
assert(&(aMutex[1])==&async.queueMutex);
|
sl@0
|
480 |
assert(&(aMutex[2])==&async.writerMutex);
|
sl@0
|
481 |
assert(&(aHolder[0])==&asyncdebug.lockMutexHolder);
|
sl@0
|
482 |
assert(&(aHolder[1])==&asyncdebug.queueMutexHolder);
|
sl@0
|
483 |
assert(&(aHolder[2])==&asyncdebug.writerMutexHolder);
|
sl@0
|
484 |
|
sl@0
|
485 |
assert( pthread_self()!=0 );
|
sl@0
|
486 |
|
sl@0
|
487 |
for(iIdx=0; iIdx<3; iIdx++){
|
sl@0
|
488 |
if( pMutex==&aMutex[iIdx] ) break;
|
sl@0
|
489 |
|
sl@0
|
490 |
/* This is the key assert(). Here we are checking that if the caller
|
sl@0
|
491 |
* is trying to block on async.writerMutex, neither of the other two
|
sl@0
|
492 |
* mutex are held. If the caller is trying to block on async.queueMutex,
|
sl@0
|
493 |
* lockMutex is not held.
|
sl@0
|
494 |
*/
|
sl@0
|
495 |
assert(!pthread_equal(aHolder[iIdx], pthread_self()));
|
sl@0
|
496 |
}
|
sl@0
|
497 |
assert(iIdx<3);
|
sl@0
|
498 |
|
sl@0
|
499 |
rc = pthread_mutex_lock(pMutex);
|
sl@0
|
500 |
if( rc==0 ){
|
sl@0
|
501 |
assert(aHolder[iIdx]==0);
|
sl@0
|
502 |
aHolder[iIdx] = pthread_self();
|
sl@0
|
503 |
}
|
sl@0
|
504 |
return rc;
|
sl@0
|
505 |
}
|
sl@0
|
506 |
|
sl@0
|
507 |
/*
|
sl@0
|
508 |
** Wrapper around pthread_mutex_unlock().
|
sl@0
|
509 |
*/
|
sl@0
|
510 |
static int async_mutex_unlock(pthread_mutex_t *pMutex){
|
sl@0
|
511 |
int iIdx;
|
sl@0
|
512 |
int rc;
|
sl@0
|
513 |
pthread_mutex_t *aMutex = (pthread_mutex_t *)(&async);
|
sl@0
|
514 |
pthread_t *aHolder = (pthread_t *)(&asyncdebug);
|
sl@0
|
515 |
|
sl@0
|
516 |
for(iIdx=0; iIdx<3; iIdx++){
|
sl@0
|
517 |
if( pMutex==&aMutex[iIdx] ) break;
|
sl@0
|
518 |
}
|
sl@0
|
519 |
assert(iIdx<3);
|
sl@0
|
520 |
|
sl@0
|
521 |
assert(pthread_equal(aHolder[iIdx], pthread_self()));
|
sl@0
|
522 |
aHolder[iIdx] = 0;
|
sl@0
|
523 |
rc = pthread_mutex_unlock(pMutex);
|
sl@0
|
524 |
assert(rc==0);
|
sl@0
|
525 |
|
sl@0
|
526 |
return 0;
|
sl@0
|
527 |
}
|
sl@0
|
528 |
|
sl@0
|
529 |
/*
|
sl@0
|
530 |
** Wrapper around pthread_mutex_trylock().
|
sl@0
|
531 |
*/
|
sl@0
|
532 |
static int async_mutex_trylock(pthread_mutex_t *pMutex){
|
sl@0
|
533 |
int iIdx;
|
sl@0
|
534 |
int rc;
|
sl@0
|
535 |
pthread_mutex_t *aMutex = (pthread_mutex_t *)(&async);
|
sl@0
|
536 |
pthread_t *aHolder = (pthread_t *)(&asyncdebug);
|
sl@0
|
537 |
|
sl@0
|
538 |
for(iIdx=0; iIdx<3; iIdx++){
|
sl@0
|
539 |
if( pMutex==&aMutex[iIdx] ) break;
|
sl@0
|
540 |
}
|
sl@0
|
541 |
assert(iIdx<3);
|
sl@0
|
542 |
|
sl@0
|
543 |
rc = pthread_mutex_trylock(pMutex);
|
sl@0
|
544 |
if( rc==0 ){
|
sl@0
|
545 |
assert(aHolder[iIdx]==0);
|
sl@0
|
546 |
aHolder[iIdx] = pthread_self();
|
sl@0
|
547 |
}
|
sl@0
|
548 |
return rc;
|
sl@0
|
549 |
}
|
sl@0
|
550 |
|
sl@0
|
551 |
/*
|
sl@0
|
552 |
** Wrapper around pthread_cond_wait().
|
sl@0
|
553 |
*/
|
sl@0
|
554 |
static int async_cond_wait(pthread_cond_t *pCond, pthread_mutex_t *pMutex){
|
sl@0
|
555 |
int iIdx;
|
sl@0
|
556 |
int rc;
|
sl@0
|
557 |
pthread_mutex_t *aMutex = (pthread_mutex_t *)(&async);
|
sl@0
|
558 |
pthread_t *aHolder = (pthread_t *)(&asyncdebug);
|
sl@0
|
559 |
|
sl@0
|
560 |
for(iIdx=0; iIdx<3; iIdx++){
|
sl@0
|
561 |
if( pMutex==&aMutex[iIdx] ) break;
|
sl@0
|
562 |
}
|
sl@0
|
563 |
assert(iIdx<3);
|
sl@0
|
564 |
|
sl@0
|
565 |
assert(pthread_equal(aHolder[iIdx],pthread_self()));
|
sl@0
|
566 |
aHolder[iIdx] = 0;
|
sl@0
|
567 |
rc = pthread_cond_wait(pCond, pMutex);
|
sl@0
|
568 |
if( rc==0 ){
|
sl@0
|
569 |
aHolder[iIdx] = pthread_self();
|
sl@0
|
570 |
}
|
sl@0
|
571 |
return rc;
|
sl@0
|
572 |
}
|
sl@0
|
573 |
|
sl@0
|
574 |
/*
|
sl@0
|
575 |
** Assert that the mutex is held by the current thread.
|
sl@0
|
576 |
*/
|
sl@0
|
577 |
static void assert_mutex_is_held(pthread_mutex_t *pMutex){
|
sl@0
|
578 |
int iIdx;
|
sl@0
|
579 |
pthread_mutex_t *aMutex = (pthread_mutex_t *)(&async);
|
sl@0
|
580 |
pthread_t *aHolder = (pthread_t *)(&asyncdebug);
|
sl@0
|
581 |
|
sl@0
|
582 |
for(iIdx=0; iIdx<3; iIdx++){
|
sl@0
|
583 |
if( pMutex==&aMutex[iIdx] ) break;
|
sl@0
|
584 |
}
|
sl@0
|
585 |
assert(iIdx<3);
|
sl@0
|
586 |
assert( aHolder[iIdx]==pthread_self() );
|
sl@0
|
587 |
}
|
sl@0
|
588 |
|
sl@0
|
589 |
/* Call our async_XX wrappers instead of selected pthread_XX functions */
|
sl@0
|
590 |
#define pthread_mutex_lock async_mutex_lock
|
sl@0
|
591 |
#define pthread_mutex_unlock async_mutex_unlock
|
sl@0
|
592 |
#define pthread_mutex_trylock async_mutex_trylock
|
sl@0
|
593 |
#define pthread_cond_wait async_cond_wait
|
sl@0
|
594 |
|
sl@0
|
595 |
#else /* if defined(NDEBUG) */
|
sl@0
|
596 |
|
sl@0
|
597 |
#define assert_mutex_is_held(X) /* A no-op when not debugging */
|
sl@0
|
598 |
|
sl@0
|
599 |
#endif /* !defined(NDEBUG) */
|
sl@0
|
600 |
|
sl@0
|
601 |
/*
|
sl@0
|
602 |
** Add an entry to the end of the global write-op list. pWrite should point
|
sl@0
|
603 |
** to an AsyncWrite structure allocated using sqlite3_malloc(). The writer
|
sl@0
|
604 |
** thread will call sqlite3_free() to free the structure after the specified
|
sl@0
|
605 |
** operation has been completed.
|
sl@0
|
606 |
**
|
sl@0
|
607 |
** Once an AsyncWrite structure has been added to the list, it becomes the
|
sl@0
|
608 |
** property of the writer thread and must not be read or modified by the
|
sl@0
|
609 |
** caller.
|
sl@0
|
610 |
*/
|
sl@0
|
611 |
static void addAsyncWrite(AsyncWrite *pWrite){
|
sl@0
|
612 |
/* We must hold the queue mutex in order to modify the queue pointers */
|
sl@0
|
613 |
pthread_mutex_lock(&async.queueMutex);
|
sl@0
|
614 |
|
sl@0
|
615 |
/* Add the record to the end of the write-op queue */
|
sl@0
|
616 |
assert( !pWrite->pNext );
|
sl@0
|
617 |
if( async.pQueueLast ){
|
sl@0
|
618 |
assert( async.pQueueFirst );
|
sl@0
|
619 |
async.pQueueLast->pNext = pWrite;
|
sl@0
|
620 |
}else{
|
sl@0
|
621 |
async.pQueueFirst = pWrite;
|
sl@0
|
622 |
}
|
sl@0
|
623 |
async.pQueueLast = pWrite;
|
sl@0
|
624 |
ASYNC_TRACE(("PUSH %p (%s %s %d)\n", pWrite, azOpcodeName[pWrite->op],
|
sl@0
|
625 |
pWrite->pFileData ? pWrite->pFileData->zName : "-", pWrite->iOffset));
|
sl@0
|
626 |
|
sl@0
|
627 |
if( pWrite->op==ASYNC_CLOSE ){
|
sl@0
|
628 |
async.nFile--;
|
sl@0
|
629 |
}
|
sl@0
|
630 |
|
sl@0
|
631 |
/* Drop the queue mutex */
|
sl@0
|
632 |
pthread_mutex_unlock(&async.queueMutex);
|
sl@0
|
633 |
|
sl@0
|
634 |
/* The writer thread might have been idle because there was nothing
|
sl@0
|
635 |
** on the write-op queue for it to do. So wake it up. */
|
sl@0
|
636 |
pthread_cond_signal(&async.queueSignal);
|
sl@0
|
637 |
}
|
sl@0
|
638 |
|
sl@0
|
639 |
/*
|
sl@0
|
640 |
** Increment async.nFile in a thread-safe manner.
|
sl@0
|
641 |
*/
|
sl@0
|
642 |
static void incrOpenFileCount(){
|
sl@0
|
643 |
/* We must hold the queue mutex in order to modify async.nFile */
|
sl@0
|
644 |
pthread_mutex_lock(&async.queueMutex);
|
sl@0
|
645 |
if( async.nFile==0 ){
|
sl@0
|
646 |
async.ioError = SQLITE_OK;
|
sl@0
|
647 |
}
|
sl@0
|
648 |
async.nFile++;
|
sl@0
|
649 |
pthread_mutex_unlock(&async.queueMutex);
|
sl@0
|
650 |
}
|
sl@0
|
651 |
|
sl@0
|
652 |
/*
|
sl@0
|
653 |
** This is a utility function to allocate and populate a new AsyncWrite
|
sl@0
|
654 |
** structure and insert it (via addAsyncWrite() ) into the global list.
|
sl@0
|
655 |
*/
|
sl@0
|
656 |
static int addNewAsyncWrite(
|
sl@0
|
657 |
AsyncFileData *pFileData,
|
sl@0
|
658 |
int op,
|
sl@0
|
659 |
sqlite3_int64 iOffset,
|
sl@0
|
660 |
int nByte,
|
sl@0
|
661 |
const char *zByte
|
sl@0
|
662 |
){
|
sl@0
|
663 |
AsyncWrite *p;
|
sl@0
|
664 |
if( op!=ASYNC_CLOSE && async.ioError ){
|
sl@0
|
665 |
return async.ioError;
|
sl@0
|
666 |
}
|
sl@0
|
667 |
p = sqlite3_malloc(sizeof(AsyncWrite) + (zByte?nByte:0));
|
sl@0
|
668 |
if( !p ){
|
sl@0
|
669 |
/* The upper layer does not expect operations like OsWrite() to
|
sl@0
|
670 |
** return SQLITE_NOMEM. This is partly because under normal conditions
|
sl@0
|
671 |
** SQLite is required to do rollback without calling malloc(). So
|
sl@0
|
672 |
** if malloc() fails here, treat it as an I/O error. The above
|
sl@0
|
673 |
** layer knows how to handle that.
|
sl@0
|
674 |
*/
|
sl@0
|
675 |
return SQLITE_IOERR;
|
sl@0
|
676 |
}
|
sl@0
|
677 |
p->op = op;
|
sl@0
|
678 |
p->iOffset = iOffset;
|
sl@0
|
679 |
p->nByte = nByte;
|
sl@0
|
680 |
p->pFileData = pFileData;
|
sl@0
|
681 |
p->pNext = 0;
|
sl@0
|
682 |
if( zByte ){
|
sl@0
|
683 |
p->zBuf = (char *)&p[1];
|
sl@0
|
684 |
memcpy(p->zBuf, zByte, nByte);
|
sl@0
|
685 |
}else{
|
sl@0
|
686 |
p->zBuf = 0;
|
sl@0
|
687 |
}
|
sl@0
|
688 |
addAsyncWrite(p);
|
sl@0
|
689 |
return SQLITE_OK;
|
sl@0
|
690 |
}
|
sl@0
|
691 |
|
sl@0
|
692 |
/*
|
sl@0
|
693 |
** Close the file. This just adds an entry to the write-op list, the file is
|
sl@0
|
694 |
** not actually closed.
|
sl@0
|
695 |
*/
|
sl@0
|
696 |
static int asyncClose(sqlite3_file *pFile){
|
sl@0
|
697 |
AsyncFileData *p = ((AsyncFile *)pFile)->pData;
|
sl@0
|
698 |
|
sl@0
|
699 |
/* Unlock the file, if it is locked */
|
sl@0
|
700 |
pthread_mutex_lock(&async.lockMutex);
|
sl@0
|
701 |
p->lock.eLock = 0;
|
sl@0
|
702 |
pthread_mutex_unlock(&async.lockMutex);
|
sl@0
|
703 |
|
sl@0
|
704 |
addAsyncWrite(&p->close);
|
sl@0
|
705 |
return SQLITE_OK;
|
sl@0
|
706 |
}
|
sl@0
|
707 |
|
sl@0
|
708 |
/*
|
sl@0
|
709 |
** Implementation of sqlite3OsWrite() for asynchronous files. Instead of
|
sl@0
|
710 |
** writing to the underlying file, this function adds an entry to the end of
|
sl@0
|
711 |
** the global AsyncWrite list. Either SQLITE_OK or SQLITE_NOMEM may be
|
sl@0
|
712 |
** returned.
|
sl@0
|
713 |
*/
|
sl@0
|
714 |
static int asyncWrite(
|
sl@0
|
715 |
sqlite3_file *pFile,
|
sl@0
|
716 |
const void *pBuf,
|
sl@0
|
717 |
int amt,
|
sl@0
|
718 |
sqlite3_int64 iOff
|
sl@0
|
719 |
){
|
sl@0
|
720 |
AsyncFileData *p = ((AsyncFile *)pFile)->pData;
|
sl@0
|
721 |
return addNewAsyncWrite(p, ASYNC_WRITE, iOff, amt, pBuf);
|
sl@0
|
722 |
}
|
sl@0
|
723 |
|
sl@0
|
724 |
/*
|
sl@0
|
725 |
** Read data from the file. First we read from the filesystem, then adjust
|
sl@0
|
726 |
** the contents of the buffer based on ASYNC_WRITE operations in the
|
sl@0
|
727 |
** write-op queue.
|
sl@0
|
728 |
**
|
sl@0
|
729 |
** This method holds the mutex from start to finish.
|
sl@0
|
730 |
*/
|
sl@0
|
731 |
static int asyncRead(
|
sl@0
|
732 |
sqlite3_file *pFile,
|
sl@0
|
733 |
void *zOut,
|
sl@0
|
734 |
int iAmt,
|
sl@0
|
735 |
sqlite3_int64 iOffset
|
sl@0
|
736 |
){
|
sl@0
|
737 |
AsyncFileData *p = ((AsyncFile *)pFile)->pData;
|
sl@0
|
738 |
int rc = SQLITE_OK;
|
sl@0
|
739 |
sqlite3_int64 filesize;
|
sl@0
|
740 |
int nRead;
|
sl@0
|
741 |
sqlite3_file *pBase = p->pBaseRead;
|
sl@0
|
742 |
|
sl@0
|
743 |
/* Grab the write queue mutex for the duration of the call */
|
sl@0
|
744 |
pthread_mutex_lock(&async.queueMutex);
|
sl@0
|
745 |
|
sl@0
|
746 |
/* If an I/O error has previously occurred in this virtual file
|
sl@0
|
747 |
** system, then all subsequent operations fail.
|
sl@0
|
748 |
*/
|
sl@0
|
749 |
if( async.ioError!=SQLITE_OK ){
|
sl@0
|
750 |
rc = async.ioError;
|
sl@0
|
751 |
goto asyncread_out;
|
sl@0
|
752 |
}
|
sl@0
|
753 |
|
sl@0
|
754 |
if( pBase->pMethods ){
|
sl@0
|
755 |
rc = pBase->pMethods->xFileSize(pBase, &filesize);
|
sl@0
|
756 |
if( rc!=SQLITE_OK ){
|
sl@0
|
757 |
goto asyncread_out;
|
sl@0
|
758 |
}
|
sl@0
|
759 |
nRead = MIN(filesize - iOffset, iAmt);
|
sl@0
|
760 |
if( nRead>0 ){
|
sl@0
|
761 |
rc = pBase->pMethods->xRead(pBase, zOut, nRead, iOffset);
|
sl@0
|
762 |
ASYNC_TRACE(("READ %s %d bytes at %d\n", p->zName, nRead, iOffset));
|
sl@0
|
763 |
}
|
sl@0
|
764 |
}
|
sl@0
|
765 |
|
sl@0
|
766 |
if( rc==SQLITE_OK ){
|
sl@0
|
767 |
AsyncWrite *pWrite;
|
sl@0
|
768 |
char *zName = p->zName;
|
sl@0
|
769 |
|
sl@0
|
770 |
for(pWrite=async.pQueueFirst; pWrite; pWrite = pWrite->pNext){
|
sl@0
|
771 |
if( pWrite->op==ASYNC_WRITE && (
|
sl@0
|
772 |
(pWrite->pFileData==p) ||
|
sl@0
|
773 |
(zName && pWrite->pFileData->zName==zName)
|
sl@0
|
774 |
)){
|
sl@0
|
775 |
int iBeginOut = (pWrite->iOffset-iOffset);
|
sl@0
|
776 |
int iBeginIn = -iBeginOut;
|
sl@0
|
777 |
int nCopy;
|
sl@0
|
778 |
|
sl@0
|
779 |
if( iBeginIn<0 ) iBeginIn = 0;
|
sl@0
|
780 |
if( iBeginOut<0 ) iBeginOut = 0;
|
sl@0
|
781 |
nCopy = MIN(pWrite->nByte-iBeginIn, iAmt-iBeginOut);
|
sl@0
|
782 |
|
sl@0
|
783 |
if( nCopy>0 ){
|
sl@0
|
784 |
memcpy(&((char *)zOut)[iBeginOut], &pWrite->zBuf[iBeginIn], nCopy);
|
sl@0
|
785 |
ASYNC_TRACE(("OVERREAD %d bytes at %d\n", nCopy, iBeginOut+iOffset));
|
sl@0
|
786 |
}
|
sl@0
|
787 |
}
|
sl@0
|
788 |
}
|
sl@0
|
789 |
}
|
sl@0
|
790 |
|
sl@0
|
791 |
asyncread_out:
|
sl@0
|
792 |
pthread_mutex_unlock(&async.queueMutex);
|
sl@0
|
793 |
return rc;
|
sl@0
|
794 |
}
|
sl@0
|
795 |
|
sl@0
|
796 |
/*
|
sl@0
|
797 |
** Truncate the file to nByte bytes in length. This just adds an entry to
|
sl@0
|
798 |
** the write-op list, no IO actually takes place.
|
sl@0
|
799 |
*/
|
sl@0
|
800 |
static int asyncTruncate(sqlite3_file *pFile, sqlite3_int64 nByte){
|
sl@0
|
801 |
AsyncFileData *p = ((AsyncFile *)pFile)->pData;
|
sl@0
|
802 |
return addNewAsyncWrite(p, ASYNC_TRUNCATE, nByte, 0, 0);
|
sl@0
|
803 |
}
|
sl@0
|
804 |
|
sl@0
|
805 |
/*
|
sl@0
|
806 |
** Sync the file. This just adds an entry to the write-op list, the
|
sl@0
|
807 |
** sync() is done later by sqlite3_async_flush().
|
sl@0
|
808 |
*/
|
sl@0
|
809 |
static int asyncSync(sqlite3_file *pFile, int flags){
|
sl@0
|
810 |
AsyncFileData *p = ((AsyncFile *)pFile)->pData;
|
sl@0
|
811 |
return addNewAsyncWrite(p, ASYNC_SYNC, 0, flags, 0);
|
sl@0
|
812 |
}
|
sl@0
|
813 |
|
sl@0
|
814 |
/*
|
sl@0
|
815 |
** Read the size of the file. First we read the size of the file system
|
sl@0
|
816 |
** entry, then adjust for any ASYNC_WRITE or ASYNC_TRUNCATE operations
|
sl@0
|
817 |
** currently in the write-op list.
|
sl@0
|
818 |
**
|
sl@0
|
819 |
** This method holds the mutex from start to finish.
|
sl@0
|
820 |
*/
|
sl@0
|
821 |
int asyncFileSize(sqlite3_file *pFile, sqlite3_int64 *piSize){
|
sl@0
|
822 |
AsyncFileData *p = ((AsyncFile *)pFile)->pData;
|
sl@0
|
823 |
int rc = SQLITE_OK;
|
sl@0
|
824 |
sqlite3_int64 s = 0;
|
sl@0
|
825 |
sqlite3_file *pBase;
|
sl@0
|
826 |
|
sl@0
|
827 |
pthread_mutex_lock(&async.queueMutex);
|
sl@0
|
828 |
|
sl@0
|
829 |
/* Read the filesystem size from the base file. If pBaseRead is NULL, this
|
sl@0
|
830 |
** means the file hasn't been opened yet. In this case all relevant data
|
sl@0
|
831 |
** must be in the write-op queue anyway, so we can omit reading from the
|
sl@0
|
832 |
** file-system.
|
sl@0
|
833 |
*/
|
sl@0
|
834 |
pBase = p->pBaseRead;
|
sl@0
|
835 |
if( pBase->pMethods ){
|
sl@0
|
836 |
rc = pBase->pMethods->xFileSize(pBase, &s);
|
sl@0
|
837 |
}
|
sl@0
|
838 |
|
sl@0
|
839 |
if( rc==SQLITE_OK ){
|
sl@0
|
840 |
AsyncWrite *pWrite;
|
sl@0
|
841 |
for(pWrite=async.pQueueFirst; pWrite; pWrite = pWrite->pNext){
|
sl@0
|
842 |
if( pWrite->op==ASYNC_DELETE
|
sl@0
|
843 |
&& p->zName
|
sl@0
|
844 |
&& strcmp(p->zName, pWrite->zBuf)==0
|
sl@0
|
845 |
){
|
sl@0
|
846 |
s = 0;
|
sl@0
|
847 |
}else if( pWrite->pFileData && (
|
sl@0
|
848 |
(pWrite->pFileData==p)
|
sl@0
|
849 |
|| (p->zName && pWrite->pFileData->zName==p->zName)
|
sl@0
|
850 |
)){
|
sl@0
|
851 |
switch( pWrite->op ){
|
sl@0
|
852 |
case ASYNC_WRITE:
|
sl@0
|
853 |
s = MAX(pWrite->iOffset + (sqlite3_int64)(pWrite->nByte), s);
|
sl@0
|
854 |
break;
|
sl@0
|
855 |
case ASYNC_TRUNCATE:
|
sl@0
|
856 |
s = MIN(s, pWrite->iOffset);
|
sl@0
|
857 |
break;
|
sl@0
|
858 |
}
|
sl@0
|
859 |
}
|
sl@0
|
860 |
}
|
sl@0
|
861 |
*piSize = s;
|
sl@0
|
862 |
}
|
sl@0
|
863 |
pthread_mutex_unlock(&async.queueMutex);
|
sl@0
|
864 |
return rc;
|
sl@0
|
865 |
}
|
sl@0
|
866 |
|
sl@0
|
867 |
/*
|
sl@0
|
868 |
** Lock or unlock the actual file-system entry.
|
sl@0
|
869 |
*/
|
sl@0
|
870 |
static int getFileLock(AsyncLock *pLock){
|
sl@0
|
871 |
int rc = SQLITE_OK;
|
sl@0
|
872 |
AsyncFileLock *pIter;
|
sl@0
|
873 |
int eRequired = 0;
|
sl@0
|
874 |
|
sl@0
|
875 |
if( pLock->pFile ){
|
sl@0
|
876 |
for(pIter=pLock->pList; pIter; pIter=pIter->pNext){
|
sl@0
|
877 |
assert(pIter->eAsyncLock>=pIter->eLock);
|
sl@0
|
878 |
if( pIter->eAsyncLock>eRequired ){
|
sl@0
|
879 |
eRequired = pIter->eAsyncLock;
|
sl@0
|
880 |
assert(eRequired>=0 && eRequired<=SQLITE_LOCK_EXCLUSIVE);
|
sl@0
|
881 |
}
|
sl@0
|
882 |
}
|
sl@0
|
883 |
|
sl@0
|
884 |
if( eRequired>pLock->eLock ){
|
sl@0
|
885 |
rc = pLock->pFile->pMethods->xLock(pLock->pFile, eRequired);
|
sl@0
|
886 |
if( rc==SQLITE_OK ){
|
sl@0
|
887 |
pLock->eLock = eRequired;
|
sl@0
|
888 |
}
|
sl@0
|
889 |
}
|
sl@0
|
890 |
else if( eRequired<pLock->eLock && eRequired<=SQLITE_LOCK_SHARED ){
|
sl@0
|
891 |
rc = pLock->pFile->pMethods->xUnlock(pLock->pFile, eRequired);
|
sl@0
|
892 |
if( rc==SQLITE_OK ){
|
sl@0
|
893 |
pLock->eLock = eRequired;
|
sl@0
|
894 |
}
|
sl@0
|
895 |
}
|
sl@0
|
896 |
}
|
sl@0
|
897 |
|
sl@0
|
898 |
return rc;
|
sl@0
|
899 |
}
|
sl@0
|
900 |
|
sl@0
|
901 |
/*
|
sl@0
|
902 |
** Return the AsyncLock structure from the global async.pLock list
|
sl@0
|
903 |
** associated with the file-system entry identified by path zName
|
sl@0
|
904 |
** (a string of nName bytes). If no such structure exists, return 0.
|
sl@0
|
905 |
*/
|
sl@0
|
906 |
static AsyncLock *findLock(const char *zName, int nName){
|
sl@0
|
907 |
AsyncLock *p = async.pLock;
|
sl@0
|
908 |
while( p && (p->nFile!=nName || memcmp(p->zFile, zName, nName)) ){
|
sl@0
|
909 |
p = p->pNext;
|
sl@0
|
910 |
}
|
sl@0
|
911 |
return p;
|
sl@0
|
912 |
}
|
sl@0
|
913 |
|
sl@0
|
914 |
/*
|
sl@0
|
915 |
** The following two methods - asyncLock() and asyncUnlock() - are used
|
sl@0
|
916 |
** to obtain and release locks on database files opened with the
|
sl@0
|
917 |
** asynchronous backend.
|
sl@0
|
918 |
*/
|
sl@0
|
919 |
static int asyncLock(sqlite3_file *pFile, int eLock){
|
sl@0
|
920 |
int rc = SQLITE_OK;
|
sl@0
|
921 |
AsyncFileData *p = ((AsyncFile *)pFile)->pData;
|
sl@0
|
922 |
|
sl@0
|
923 |
if( p->zName ){
|
sl@0
|
924 |
pthread_mutex_lock(&async.lockMutex);
|
sl@0
|
925 |
if( p->lock.eLock<eLock ){
|
sl@0
|
926 |
AsyncLock *pLock = p->pLock;
|
sl@0
|
927 |
AsyncFileLock *pIter;
|
sl@0
|
928 |
assert(pLock && pLock->pList);
|
sl@0
|
929 |
for(pIter=pLock->pList; pIter; pIter=pIter->pNext){
|
sl@0
|
930 |
if( pIter!=&p->lock && (
|
sl@0
|
931 |
(eLock==SQLITE_LOCK_EXCLUSIVE && pIter->eLock>=SQLITE_LOCK_SHARED) ||
|
sl@0
|
932 |
(eLock==SQLITE_LOCK_PENDING && pIter->eLock>=SQLITE_LOCK_RESERVED) ||
|
sl@0
|
933 |
(eLock==SQLITE_LOCK_RESERVED && pIter->eLock>=SQLITE_LOCK_RESERVED) ||
|
sl@0
|
934 |
(eLock==SQLITE_LOCK_SHARED && pIter->eLock>=SQLITE_LOCK_PENDING)
|
sl@0
|
935 |
)){
|
sl@0
|
936 |
rc = SQLITE_BUSY;
|
sl@0
|
937 |
}
|
sl@0
|
938 |
}
|
sl@0
|
939 |
if( rc==SQLITE_OK ){
|
sl@0
|
940 |
p->lock.eLock = eLock;
|
sl@0
|
941 |
p->lock.eAsyncLock = MAX(p->lock.eAsyncLock, eLock);
|
sl@0
|
942 |
}
|
sl@0
|
943 |
assert(p->lock.eAsyncLock>=p->lock.eLock);
|
sl@0
|
944 |
if( rc==SQLITE_OK ){
|
sl@0
|
945 |
rc = getFileLock(pLock);
|
sl@0
|
946 |
}
|
sl@0
|
947 |
}
|
sl@0
|
948 |
pthread_mutex_unlock(&async.lockMutex);
|
sl@0
|
949 |
}
|
sl@0
|
950 |
|
sl@0
|
951 |
ASYNC_TRACE(("LOCK %d (%s) rc=%d\n", eLock, p->zName, rc));
|
sl@0
|
952 |
return rc;
|
sl@0
|
953 |
}
|
sl@0
|
954 |
static int asyncUnlock(sqlite3_file *pFile, int eLock){
|
sl@0
|
955 |
int rc = SQLITE_OK;
|
sl@0
|
956 |
AsyncFileData *p = ((AsyncFile *)pFile)->pData;
|
sl@0
|
957 |
if( p->zName ){
|
sl@0
|
958 |
AsyncFileLock *pLock = &p->lock;
|
sl@0
|
959 |
pthread_mutex_lock(&async.lockMutex);
|
sl@0
|
960 |
pLock->eLock = MIN(pLock->eLock, eLock);
|
sl@0
|
961 |
pthread_mutex_unlock(&async.lockMutex);
|
sl@0
|
962 |
rc = addNewAsyncWrite(p, ASYNC_UNLOCK, 0, eLock, 0);
|
sl@0
|
963 |
}
|
sl@0
|
964 |
return rc;
|
sl@0
|
965 |
}
|
sl@0
|
966 |
|
sl@0
|
967 |
/*
|
sl@0
|
968 |
** This function is called when the pager layer first opens a database file
|
sl@0
|
969 |
** and is checking for a hot-journal.
|
sl@0
|
970 |
*/
|
sl@0
|
971 |
static int asyncCheckReservedLock(sqlite3_file *pFile, int *pResOut){
|
sl@0
|
972 |
int ret = 0;
|
sl@0
|
973 |
AsyncFileLock *pIter;
|
sl@0
|
974 |
AsyncFileData *p = ((AsyncFile *)pFile)->pData;
|
sl@0
|
975 |
|
sl@0
|
976 |
pthread_mutex_lock(&async.lockMutex);
|
sl@0
|
977 |
for(pIter=p->pLock->pList; pIter; pIter=pIter->pNext){
|
sl@0
|
978 |
if( pIter->eLock>=SQLITE_LOCK_RESERVED ){
|
sl@0
|
979 |
ret = 1;
|
sl@0
|
980 |
}
|
sl@0
|
981 |
}
|
sl@0
|
982 |
pthread_mutex_unlock(&async.lockMutex);
|
sl@0
|
983 |
|
sl@0
|
984 |
ASYNC_TRACE(("CHECK-LOCK %d (%s)\n", ret, p->zName));
|
sl@0
|
985 |
*pResOut = ret;
|
sl@0
|
986 |
return SQLITE_OK;
|
sl@0
|
987 |
}
|
sl@0
|
988 |
|
sl@0
|
989 |
/*
|
sl@0
|
990 |
** sqlite3_file_control() implementation.
|
sl@0
|
991 |
*/
|
sl@0
|
992 |
static int asyncFileControl(sqlite3_file *id, int op, void *pArg){
|
sl@0
|
993 |
switch( op ){
|
sl@0
|
994 |
case SQLITE_FCNTL_LOCKSTATE: {
|
sl@0
|
995 |
pthread_mutex_lock(&async.lockMutex);
|
sl@0
|
996 |
*(int*)pArg = ((AsyncFile*)id)->pData->lock.eLock;
|
sl@0
|
997 |
pthread_mutex_unlock(&async.lockMutex);
|
sl@0
|
998 |
return SQLITE_OK;
|
sl@0
|
999 |
}
|
sl@0
|
1000 |
}
|
sl@0
|
1001 |
return SQLITE_ERROR;
|
sl@0
|
1002 |
}
|
sl@0
|
1003 |
|
sl@0
|
1004 |
/*
|
sl@0
|
1005 |
** Return the device characteristics and sector-size of the device. It
|
sl@0
|
1006 |
** is not tricky to implement these correctly, as this backend might
|
sl@0
|
1007 |
** not have an open file handle at this point.
|
sl@0
|
1008 |
*/
|
sl@0
|
1009 |
static int asyncSectorSize(sqlite3_file *pFile){
|
sl@0
|
1010 |
return 512;
|
sl@0
|
1011 |
}
|
sl@0
|
1012 |
static int asyncDeviceCharacteristics(sqlite3_file *pFile){
|
sl@0
|
1013 |
return 0;
|
sl@0
|
1014 |
}
|
sl@0
|
1015 |
|
sl@0
|
1016 |
static int unlinkAsyncFile(AsyncFileData *pData){
|
sl@0
|
1017 |
AsyncFileLock **ppIter;
|
sl@0
|
1018 |
int rc = SQLITE_OK;
|
sl@0
|
1019 |
|
sl@0
|
1020 |
if( pData->zName ){
|
sl@0
|
1021 |
AsyncLock *pLock = pData->pLock;
|
sl@0
|
1022 |
for(ppIter=&pLock->pList; *ppIter; ppIter=&((*ppIter)->pNext)){
|
sl@0
|
1023 |
if( (*ppIter)==&pData->lock ){
|
sl@0
|
1024 |
*ppIter = pData->lock.pNext;
|
sl@0
|
1025 |
break;
|
sl@0
|
1026 |
}
|
sl@0
|
1027 |
}
|
sl@0
|
1028 |
if( !pLock->pList ){
|
sl@0
|
1029 |
AsyncLock **pp;
|
sl@0
|
1030 |
if( pLock->pFile ){
|
sl@0
|
1031 |
pLock->pFile->pMethods->xClose(pLock->pFile);
|
sl@0
|
1032 |
}
|
sl@0
|
1033 |
for(pp=&async.pLock; *pp!=pLock; pp=&((*pp)->pNext));
|
sl@0
|
1034 |
*pp = pLock->pNext;
|
sl@0
|
1035 |
sqlite3_free(pLock);
|
sl@0
|
1036 |
}else{
|
sl@0
|
1037 |
rc = getFileLock(pLock);
|
sl@0
|
1038 |
}
|
sl@0
|
1039 |
}
|
sl@0
|
1040 |
|
sl@0
|
1041 |
return rc;
|
sl@0
|
1042 |
}
|
sl@0
|
1043 |
|
sl@0
|
1044 |
/*
|
sl@0
|
1045 |
** Open a file.
|
sl@0
|
1046 |
*/
|
sl@0
|
1047 |
static int asyncOpen(
|
sl@0
|
1048 |
sqlite3_vfs *pAsyncVfs,
|
sl@0
|
1049 |
const char *zName,
|
sl@0
|
1050 |
sqlite3_file *pFile,
|
sl@0
|
1051 |
int flags,
|
sl@0
|
1052 |
int *pOutFlags
|
sl@0
|
1053 |
){
|
sl@0
|
1054 |
static sqlite3_io_methods async_methods = {
|
sl@0
|
1055 |
1, /* iVersion */
|
sl@0
|
1056 |
asyncClose, /* xClose */
|
sl@0
|
1057 |
asyncRead, /* xRead */
|
sl@0
|
1058 |
asyncWrite, /* xWrite */
|
sl@0
|
1059 |
asyncTruncate, /* xTruncate */
|
sl@0
|
1060 |
asyncSync, /* xSync */
|
sl@0
|
1061 |
asyncFileSize, /* xFileSize */
|
sl@0
|
1062 |
asyncLock, /* xLock */
|
sl@0
|
1063 |
asyncUnlock, /* xUnlock */
|
sl@0
|
1064 |
asyncCheckReservedLock, /* xCheckReservedLock */
|
sl@0
|
1065 |
asyncFileControl, /* xFileControl */
|
sl@0
|
1066 |
asyncSectorSize, /* xSectorSize */
|
sl@0
|
1067 |
asyncDeviceCharacteristics /* xDeviceCharacteristics */
|
sl@0
|
1068 |
};
|
sl@0
|
1069 |
|
sl@0
|
1070 |
sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData;
|
sl@0
|
1071 |
AsyncFile *p = (AsyncFile *)pFile;
|
sl@0
|
1072 |
int nName = 0;
|
sl@0
|
1073 |
int rc = SQLITE_OK;
|
sl@0
|
1074 |
int nByte;
|
sl@0
|
1075 |
AsyncFileData *pData;
|
sl@0
|
1076 |
AsyncLock *pLock = 0;
|
sl@0
|
1077 |
char *z;
|
sl@0
|
1078 |
int isExclusive = (flags&SQLITE_OPEN_EXCLUSIVE);
|
sl@0
|
1079 |
|
sl@0
|
1080 |
/* If zName is NULL, then the upper layer is requesting an anonymous file */
|
sl@0
|
1081 |
if( zName ){
|
sl@0
|
1082 |
nName = strlen(zName)+1;
|
sl@0
|
1083 |
}
|
sl@0
|
1084 |
|
sl@0
|
1085 |
nByte = (
|
sl@0
|
1086 |
sizeof(AsyncFileData) + /* AsyncFileData structure */
|
sl@0
|
1087 |
2 * pVfs->szOsFile + /* AsyncFileData.pBaseRead and pBaseWrite */
|
sl@0
|
1088 |
nName /* AsyncFileData.zName */
|
sl@0
|
1089 |
);
|
sl@0
|
1090 |
z = sqlite3_malloc(nByte);
|
sl@0
|
1091 |
if( !z ){
|
sl@0
|
1092 |
return SQLITE_NOMEM;
|
sl@0
|
1093 |
}
|
sl@0
|
1094 |
memset(z, 0, nByte);
|
sl@0
|
1095 |
pData = (AsyncFileData*)z;
|
sl@0
|
1096 |
z += sizeof(pData[0]);
|
sl@0
|
1097 |
pData->pBaseRead = (sqlite3_file*)z;
|
sl@0
|
1098 |
z += pVfs->szOsFile;
|
sl@0
|
1099 |
pData->pBaseWrite = (sqlite3_file*)z;
|
sl@0
|
1100 |
pData->close.pFileData = pData;
|
sl@0
|
1101 |
pData->close.op = ASYNC_CLOSE;
|
sl@0
|
1102 |
|
sl@0
|
1103 |
if( zName ){
|
sl@0
|
1104 |
z += pVfs->szOsFile;
|
sl@0
|
1105 |
pData->zName = z;
|
sl@0
|
1106 |
pData->nName = nName;
|
sl@0
|
1107 |
memcpy(pData->zName, zName, nName);
|
sl@0
|
1108 |
}
|
sl@0
|
1109 |
|
sl@0
|
1110 |
if( !isExclusive ){
|
sl@0
|
1111 |
rc = pVfs->xOpen(pVfs, zName, pData->pBaseRead, flags, pOutFlags);
|
sl@0
|
1112 |
if( rc==SQLITE_OK && ((*pOutFlags)&SQLITE_OPEN_READWRITE) ){
|
sl@0
|
1113 |
rc = pVfs->xOpen(pVfs, zName, pData->pBaseWrite, flags, 0);
|
sl@0
|
1114 |
}
|
sl@0
|
1115 |
}
|
sl@0
|
1116 |
|
sl@0
|
1117 |
pthread_mutex_lock(&async.lockMutex);
|
sl@0
|
1118 |
|
sl@0
|
1119 |
if( zName && rc==SQLITE_OK ){
|
sl@0
|
1120 |
pLock = findLock(pData->zName, pData->nName);
|
sl@0
|
1121 |
if( !pLock ){
|
sl@0
|
1122 |
int nByte = pVfs->szOsFile + sizeof(AsyncLock) + pData->nName + 1;
|
sl@0
|
1123 |
pLock = (AsyncLock *)sqlite3_malloc(nByte);
|
sl@0
|
1124 |
if( pLock ){
|
sl@0
|
1125 |
memset(pLock, 0, nByte);
|
sl@0
|
1126 |
#ifdef ENABLE_FILE_LOCKING
|
sl@0
|
1127 |
if( flags&SQLITE_OPEN_MAIN_DB ){
|
sl@0
|
1128 |
pLock->pFile = (sqlite3_file *)&pLock[1];
|
sl@0
|
1129 |
rc = pVfs->xOpen(pVfs, zName, pLock->pFile, flags, 0);
|
sl@0
|
1130 |
if( rc!=SQLITE_OK ){
|
sl@0
|
1131 |
sqlite3_free(pLock);
|
sl@0
|
1132 |
pLock = 0;
|
sl@0
|
1133 |
}
|
sl@0
|
1134 |
}
|
sl@0
|
1135 |
#endif
|
sl@0
|
1136 |
if( pLock ){
|
sl@0
|
1137 |
pLock->nFile = pData->nName;
|
sl@0
|
1138 |
pLock->zFile = &((char *)(&pLock[1]))[pVfs->szOsFile];
|
sl@0
|
1139 |
memcpy(pLock->zFile, pData->zName, pLock->nFile);
|
sl@0
|
1140 |
pLock->pNext = async.pLock;
|
sl@0
|
1141 |
async.pLock = pLock;
|
sl@0
|
1142 |
}
|
sl@0
|
1143 |
}else{
|
sl@0
|
1144 |
rc = SQLITE_NOMEM;
|
sl@0
|
1145 |
}
|
sl@0
|
1146 |
}
|
sl@0
|
1147 |
}
|
sl@0
|
1148 |
|
sl@0
|
1149 |
if( rc==SQLITE_OK ){
|
sl@0
|
1150 |
p->pMethod = &async_methods;
|
sl@0
|
1151 |
p->pData = pData;
|
sl@0
|
1152 |
|
sl@0
|
1153 |
/* Link AsyncFileData.lock into the linked list of
|
sl@0
|
1154 |
** AsyncFileLock structures for this file.
|
sl@0
|
1155 |
*/
|
sl@0
|
1156 |
if( zName ){
|
sl@0
|
1157 |
pData->lock.pNext = pLock->pList;
|
sl@0
|
1158 |
pLock->pList = &pData->lock;
|
sl@0
|
1159 |
pData->zName = pLock->zFile;
|
sl@0
|
1160 |
}
|
sl@0
|
1161 |
}else{
|
sl@0
|
1162 |
if( pData->pBaseRead->pMethods ){
|
sl@0
|
1163 |
pData->pBaseRead->pMethods->xClose(pData->pBaseRead);
|
sl@0
|
1164 |
}
|
sl@0
|
1165 |
if( pData->pBaseWrite->pMethods ){
|
sl@0
|
1166 |
pData->pBaseWrite->pMethods->xClose(pData->pBaseWrite);
|
sl@0
|
1167 |
}
|
sl@0
|
1168 |
sqlite3_free(pData);
|
sl@0
|
1169 |
}
|
sl@0
|
1170 |
|
sl@0
|
1171 |
pthread_mutex_unlock(&async.lockMutex);
|
sl@0
|
1172 |
|
sl@0
|
1173 |
if( rc==SQLITE_OK ){
|
sl@0
|
1174 |
incrOpenFileCount();
|
sl@0
|
1175 |
pData->pLock = pLock;
|
sl@0
|
1176 |
}
|
sl@0
|
1177 |
|
sl@0
|
1178 |
if( rc==SQLITE_OK && isExclusive ){
|
sl@0
|
1179 |
rc = addNewAsyncWrite(pData, ASYNC_OPENEXCLUSIVE, (sqlite3_int64)flags,0,0);
|
sl@0
|
1180 |
if( rc==SQLITE_OK ){
|
sl@0
|
1181 |
if( pOutFlags ) *pOutFlags = flags;
|
sl@0
|
1182 |
}else{
|
sl@0
|
1183 |
pthread_mutex_lock(&async.lockMutex);
|
sl@0
|
1184 |
unlinkAsyncFile(pData);
|
sl@0
|
1185 |
pthread_mutex_unlock(&async.lockMutex);
|
sl@0
|
1186 |
sqlite3_free(pData);
|
sl@0
|
1187 |
}
|
sl@0
|
1188 |
}
|
sl@0
|
1189 |
return rc;
|
sl@0
|
1190 |
}
|
sl@0
|
1191 |
|
sl@0
|
1192 |
/*
|
sl@0
|
1193 |
** Implementation of sqlite3OsDelete. Add an entry to the end of the
|
sl@0
|
1194 |
** write-op queue to perform the delete.
|
sl@0
|
1195 |
*/
|
sl@0
|
1196 |
static int asyncDelete(sqlite3_vfs *pAsyncVfs, const char *z, int syncDir){
|
sl@0
|
1197 |
return addNewAsyncWrite(0, ASYNC_DELETE, syncDir, strlen(z)+1, z);
|
sl@0
|
1198 |
}
|
sl@0
|
1199 |
|
sl@0
|
1200 |
/*
|
sl@0
|
1201 |
** Implementation of sqlite3OsAccess. This method holds the mutex from
|
sl@0
|
1202 |
** start to finish.
|
sl@0
|
1203 |
*/
|
sl@0
|
1204 |
static int asyncAccess(
|
sl@0
|
1205 |
sqlite3_vfs *pAsyncVfs,
|
sl@0
|
1206 |
const char *zName,
|
sl@0
|
1207 |
int flags,
|
sl@0
|
1208 |
int *pResOut
|
sl@0
|
1209 |
){
|
sl@0
|
1210 |
int rc;
|
sl@0
|
1211 |
int ret;
|
sl@0
|
1212 |
AsyncWrite *p;
|
sl@0
|
1213 |
sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData;
|
sl@0
|
1214 |
|
sl@0
|
1215 |
assert(flags==SQLITE_ACCESS_READWRITE
|
sl@0
|
1216 |
|| flags==SQLITE_ACCESS_READ
|
sl@0
|
1217 |
|| flags==SQLITE_ACCESS_EXISTS
|
sl@0
|
1218 |
);
|
sl@0
|
1219 |
|
sl@0
|
1220 |
pthread_mutex_lock(&async.queueMutex);
|
sl@0
|
1221 |
rc = pVfs->xAccess(pVfs, zName, flags, &ret);
|
sl@0
|
1222 |
if( rc==SQLITE_OK && flags==SQLITE_ACCESS_EXISTS ){
|
sl@0
|
1223 |
for(p=async.pQueueFirst; p; p = p->pNext){
|
sl@0
|
1224 |
if( p->op==ASYNC_DELETE && 0==strcmp(p->zBuf, zName) ){
|
sl@0
|
1225 |
ret = 0;
|
sl@0
|
1226 |
}else if( p->op==ASYNC_OPENEXCLUSIVE
|
sl@0
|
1227 |
&& p->pFileData->zName
|
sl@0
|
1228 |
&& 0==strcmp(p->pFileData->zName, zName)
|
sl@0
|
1229 |
){
|
sl@0
|
1230 |
ret = 1;
|
sl@0
|
1231 |
}
|
sl@0
|
1232 |
}
|
sl@0
|
1233 |
}
|
sl@0
|
1234 |
ASYNC_TRACE(("ACCESS(%s): %s = %d\n",
|
sl@0
|
1235 |
flags==SQLITE_ACCESS_READWRITE?"read-write":
|
sl@0
|
1236 |
flags==SQLITE_ACCESS_READ?"read":"exists"
|
sl@0
|
1237 |
, zName, ret)
|
sl@0
|
1238 |
);
|
sl@0
|
1239 |
pthread_mutex_unlock(&async.queueMutex);
|
sl@0
|
1240 |
*pResOut = ret;
|
sl@0
|
1241 |
return rc;
|
sl@0
|
1242 |
}
|
sl@0
|
1243 |
|
sl@0
|
1244 |
/*
|
sl@0
|
1245 |
** Fill in zPathOut with the full path to the file identified by zPath.
|
sl@0
|
1246 |
*/
|
sl@0
|
1247 |
static int asyncFullPathname(
|
sl@0
|
1248 |
sqlite3_vfs *pAsyncVfs,
|
sl@0
|
1249 |
const char *zPath,
|
sl@0
|
1250 |
int nPathOut,
|
sl@0
|
1251 |
char *zPathOut
|
sl@0
|
1252 |
){
|
sl@0
|
1253 |
int rc;
|
sl@0
|
1254 |
sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData;
|
sl@0
|
1255 |
rc = pVfs->xFullPathname(pVfs, zPath, nPathOut, zPathOut);
|
sl@0
|
1256 |
|
sl@0
|
1257 |
/* Because of the way intra-process file locking works, this backend
|
sl@0
|
1258 |
** needs to return a canonical path. The following block assumes the
|
sl@0
|
1259 |
** file-system uses unix style paths.
|
sl@0
|
1260 |
*/
|
sl@0
|
1261 |
if( rc==SQLITE_OK ){
|
sl@0
|
1262 |
int iIn;
|
sl@0
|
1263 |
int iOut = 0;
|
sl@0
|
1264 |
int nPathOut = strlen(zPathOut);
|
sl@0
|
1265 |
|
sl@0
|
1266 |
for(iIn=0; iIn<nPathOut; iIn++){
|
sl@0
|
1267 |
|
sl@0
|
1268 |
/* Replace any occurences of "//" with "/" */
|
sl@0
|
1269 |
if( iIn<=(nPathOut-2) && zPathOut[iIn]=='/' && zPathOut[iIn+1]=='/'
|
sl@0
|
1270 |
){
|
sl@0
|
1271 |
continue;
|
sl@0
|
1272 |
}
|
sl@0
|
1273 |
|
sl@0
|
1274 |
/* Replace any occurences of "/./" with "/" */
|
sl@0
|
1275 |
if( iIn<=(nPathOut-3)
|
sl@0
|
1276 |
&& zPathOut[iIn]=='/' && zPathOut[iIn+1]=='.' && zPathOut[iIn+2]=='/'
|
sl@0
|
1277 |
){
|
sl@0
|
1278 |
iIn++;
|
sl@0
|
1279 |
continue;
|
sl@0
|
1280 |
}
|
sl@0
|
1281 |
|
sl@0
|
1282 |
/* Replace any occurences of "<path-component>/../" with "" */
|
sl@0
|
1283 |
if( iOut>0 && iIn<=(nPathOut-4)
|
sl@0
|
1284 |
&& zPathOut[iIn]=='/' && zPathOut[iIn+1]=='.'
|
sl@0
|
1285 |
&& zPathOut[iIn+2]=='.' && zPathOut[iIn+3]=='/'
|
sl@0
|
1286 |
){
|
sl@0
|
1287 |
iIn += 3;
|
sl@0
|
1288 |
iOut--;
|
sl@0
|
1289 |
for( ; iOut>0 && zPathOut[iOut-1]!='/'; iOut--);
|
sl@0
|
1290 |
continue;
|
sl@0
|
1291 |
}
|
sl@0
|
1292 |
|
sl@0
|
1293 |
zPathOut[iOut++] = zPathOut[iIn];
|
sl@0
|
1294 |
}
|
sl@0
|
1295 |
zPathOut[iOut] = '\0';
|
sl@0
|
1296 |
}
|
sl@0
|
1297 |
|
sl@0
|
1298 |
return rc;
|
sl@0
|
1299 |
}
|
sl@0
|
1300 |
static void *asyncDlOpen(sqlite3_vfs *pAsyncVfs, const char *zPath){
|
sl@0
|
1301 |
sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData;
|
sl@0
|
1302 |
return pVfs->xDlOpen(pVfs, zPath);
|
sl@0
|
1303 |
}
|
sl@0
|
1304 |
static void asyncDlError(sqlite3_vfs *pAsyncVfs, int nByte, char *zErrMsg){
|
sl@0
|
1305 |
sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData;
|
sl@0
|
1306 |
pVfs->xDlError(pVfs, nByte, zErrMsg);
|
sl@0
|
1307 |
}
|
sl@0
|
1308 |
static void *asyncDlSym(
|
sl@0
|
1309 |
sqlite3_vfs *pAsyncVfs,
|
sl@0
|
1310 |
void *pHandle,
|
sl@0
|
1311 |
const char *zSymbol
|
sl@0
|
1312 |
){
|
sl@0
|
1313 |
sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData;
|
sl@0
|
1314 |
return pVfs->xDlSym(pVfs, pHandle, zSymbol);
|
sl@0
|
1315 |
}
|
sl@0
|
1316 |
static void asyncDlClose(sqlite3_vfs *pAsyncVfs, void *pHandle){
|
sl@0
|
1317 |
sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData;
|
sl@0
|
1318 |
pVfs->xDlClose(pVfs, pHandle);
|
sl@0
|
1319 |
}
|
sl@0
|
1320 |
static int asyncRandomness(sqlite3_vfs *pAsyncVfs, int nByte, char *zBufOut){
|
sl@0
|
1321 |
sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData;
|
sl@0
|
1322 |
return pVfs->xRandomness(pVfs, nByte, zBufOut);
|
sl@0
|
1323 |
}
|
sl@0
|
1324 |
static int asyncSleep(sqlite3_vfs *pAsyncVfs, int nMicro){
|
sl@0
|
1325 |
sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData;
|
sl@0
|
1326 |
return pVfs->xSleep(pVfs, nMicro);
|
sl@0
|
1327 |
}
|
sl@0
|
1328 |
static int asyncCurrentTime(sqlite3_vfs *pAsyncVfs, double *pTimeOut){
|
sl@0
|
1329 |
sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData;
|
sl@0
|
1330 |
return pVfs->xCurrentTime(pVfs, pTimeOut);
|
sl@0
|
1331 |
}
|
sl@0
|
1332 |
|
sl@0
|
1333 |
static sqlite3_vfs async_vfs = {
|
sl@0
|
1334 |
1, /* iVersion */
|
sl@0
|
1335 |
sizeof(AsyncFile), /* szOsFile */
|
sl@0
|
1336 |
0, /* mxPathname */
|
sl@0
|
1337 |
0, /* pNext */
|
sl@0
|
1338 |
"async", /* zName */
|
sl@0
|
1339 |
0, /* pAppData */
|
sl@0
|
1340 |
asyncOpen, /* xOpen */
|
sl@0
|
1341 |
asyncDelete, /* xDelete */
|
sl@0
|
1342 |
asyncAccess, /* xAccess */
|
sl@0
|
1343 |
asyncFullPathname, /* xFullPathname */
|
sl@0
|
1344 |
asyncDlOpen, /* xDlOpen */
|
sl@0
|
1345 |
asyncDlError, /* xDlError */
|
sl@0
|
1346 |
asyncDlSym, /* xDlSym */
|
sl@0
|
1347 |
asyncDlClose, /* xDlClose */
|
sl@0
|
1348 |
asyncRandomness, /* xDlError */
|
sl@0
|
1349 |
asyncSleep, /* xDlSym */
|
sl@0
|
1350 |
asyncCurrentTime /* xDlClose */
|
sl@0
|
1351 |
};
|
sl@0
|
1352 |
|
sl@0
|
1353 |
/*
|
sl@0
|
1354 |
** Call this routine to enable or disable the
|
sl@0
|
1355 |
** asynchronous IO features implemented in this file.
|
sl@0
|
1356 |
**
|
sl@0
|
1357 |
** This routine is not even remotely threadsafe. Do not call
|
sl@0
|
1358 |
** this routine while any SQLite database connections are open.
|
sl@0
|
1359 |
*/
|
sl@0
|
1360 |
static void asyncEnable(int enable){
|
sl@0
|
1361 |
if( enable ){
|
sl@0
|
1362 |
if( !async_vfs.pAppData ){
|
sl@0
|
1363 |
async_vfs.pAppData = (void *)sqlite3_vfs_find(0);
|
sl@0
|
1364 |
async_vfs.mxPathname = ((sqlite3_vfs *)async_vfs.pAppData)->mxPathname;
|
sl@0
|
1365 |
sqlite3_vfs_register(&async_vfs, 1);
|
sl@0
|
1366 |
}
|
sl@0
|
1367 |
}else{
|
sl@0
|
1368 |
if( async_vfs.pAppData ){
|
sl@0
|
1369 |
sqlite3_vfs_unregister(&async_vfs);
|
sl@0
|
1370 |
async_vfs.pAppData = 0;
|
sl@0
|
1371 |
}
|
sl@0
|
1372 |
}
|
sl@0
|
1373 |
}
|
sl@0
|
1374 |
|
sl@0
|
1375 |
/*
|
sl@0
|
1376 |
** This procedure runs in a separate thread, reading messages off of the
|
sl@0
|
1377 |
** write queue and processing them one by one.
|
sl@0
|
1378 |
**
|
sl@0
|
1379 |
** If async.writerHaltNow is true, then this procedure exits
|
sl@0
|
1380 |
** after processing a single message.
|
sl@0
|
1381 |
**
|
sl@0
|
1382 |
** If async.writerHaltWhenIdle is true, then this procedure exits when
|
sl@0
|
1383 |
** the write queue is empty.
|
sl@0
|
1384 |
**
|
sl@0
|
1385 |
** If both of the above variables are false, this procedure runs
|
sl@0
|
1386 |
** indefinately, waiting for operations to be added to the write queue
|
sl@0
|
1387 |
** and processing them in the order in which they arrive.
|
sl@0
|
1388 |
**
|
sl@0
|
1389 |
** An artifical delay of async.ioDelay milliseconds is inserted before
|
sl@0
|
1390 |
** each write operation in order to simulate the effect of a slow disk.
|
sl@0
|
1391 |
**
|
sl@0
|
1392 |
** Only one instance of this procedure may be running at a time.
|
sl@0
|
1393 |
*/
|
sl@0
|
1394 |
static void *asyncWriterThread(void *pIsStarted){
|
sl@0
|
1395 |
sqlite3_vfs *pVfs = (sqlite3_vfs *)(async_vfs.pAppData);
|
sl@0
|
1396 |
AsyncWrite *p = 0;
|
sl@0
|
1397 |
int rc = SQLITE_OK;
|
sl@0
|
1398 |
int holdingMutex = 0;
|
sl@0
|
1399 |
|
sl@0
|
1400 |
if( pthread_mutex_trylock(&async.writerMutex) ){
|
sl@0
|
1401 |
return 0;
|
sl@0
|
1402 |
}
|
sl@0
|
1403 |
(*(int *)pIsStarted) = 1;
|
sl@0
|
1404 |
while( async.writerHaltNow==0 ){
|
sl@0
|
1405 |
int doNotFree = 0;
|
sl@0
|
1406 |
sqlite3_file *pBase = 0;
|
sl@0
|
1407 |
|
sl@0
|
1408 |
if( !holdingMutex ){
|
sl@0
|
1409 |
pthread_mutex_lock(&async.queueMutex);
|
sl@0
|
1410 |
}
|
sl@0
|
1411 |
while( (p = async.pQueueFirst)==0 ){
|
sl@0
|
1412 |
pthread_cond_broadcast(&async.emptySignal);
|
sl@0
|
1413 |
if( async.writerHaltWhenIdle ){
|
sl@0
|
1414 |
pthread_mutex_unlock(&async.queueMutex);
|
sl@0
|
1415 |
break;
|
sl@0
|
1416 |
}else{
|
sl@0
|
1417 |
ASYNC_TRACE(("IDLE\n"));
|
sl@0
|
1418 |
pthread_cond_wait(&async.queueSignal, &async.queueMutex);
|
sl@0
|
1419 |
ASYNC_TRACE(("WAKEUP\n"));
|
sl@0
|
1420 |
}
|
sl@0
|
1421 |
}
|
sl@0
|
1422 |
if( p==0 ) break;
|
sl@0
|
1423 |
holdingMutex = 1;
|
sl@0
|
1424 |
|
sl@0
|
1425 |
/* Right now this thread is holding the mutex on the write-op queue.
|
sl@0
|
1426 |
** Variable 'p' points to the first entry in the write-op queue. In
|
sl@0
|
1427 |
** the general case, we hold on to the mutex for the entire body of
|
sl@0
|
1428 |
** the loop.
|
sl@0
|
1429 |
**
|
sl@0
|
1430 |
** However in the cases enumerated below, we relinquish the mutex,
|
sl@0
|
1431 |
** perform the IO, and then re-request the mutex before removing 'p' from
|
sl@0
|
1432 |
** the head of the write-op queue. The idea is to increase concurrency with
|
sl@0
|
1433 |
** sqlite threads.
|
sl@0
|
1434 |
**
|
sl@0
|
1435 |
** * An ASYNC_CLOSE operation.
|
sl@0
|
1436 |
** * An ASYNC_OPENEXCLUSIVE operation. For this one, we relinquish
|
sl@0
|
1437 |
** the mutex, call the underlying xOpenExclusive() function, then
|
sl@0
|
1438 |
** re-aquire the mutex before seting the AsyncFile.pBaseRead
|
sl@0
|
1439 |
** variable.
|
sl@0
|
1440 |
** * ASYNC_SYNC and ASYNC_WRITE operations, if
|
sl@0
|
1441 |
** SQLITE_ASYNC_TWO_FILEHANDLES was set at compile time and two
|
sl@0
|
1442 |
** file-handles are open for the particular file being "synced".
|
sl@0
|
1443 |
*/
|
sl@0
|
1444 |
if( async.ioError!=SQLITE_OK && p->op!=ASYNC_CLOSE ){
|
sl@0
|
1445 |
p->op = ASYNC_NOOP;
|
sl@0
|
1446 |
}
|
sl@0
|
1447 |
if( p->pFileData ){
|
sl@0
|
1448 |
pBase = p->pFileData->pBaseWrite;
|
sl@0
|
1449 |
if(
|
sl@0
|
1450 |
p->op==ASYNC_CLOSE ||
|
sl@0
|
1451 |
p->op==ASYNC_OPENEXCLUSIVE ||
|
sl@0
|
1452 |
(pBase->pMethods && (p->op==ASYNC_SYNC || p->op==ASYNC_WRITE) )
|
sl@0
|
1453 |
){
|
sl@0
|
1454 |
pthread_mutex_unlock(&async.queueMutex);
|
sl@0
|
1455 |
holdingMutex = 0;
|
sl@0
|
1456 |
}
|
sl@0
|
1457 |
if( !pBase->pMethods ){
|
sl@0
|
1458 |
pBase = p->pFileData->pBaseRead;
|
sl@0
|
1459 |
}
|
sl@0
|
1460 |
}
|
sl@0
|
1461 |
|
sl@0
|
1462 |
switch( p->op ){
|
sl@0
|
1463 |
case ASYNC_NOOP:
|
sl@0
|
1464 |
break;
|
sl@0
|
1465 |
|
sl@0
|
1466 |
case ASYNC_WRITE:
|
sl@0
|
1467 |
assert( pBase );
|
sl@0
|
1468 |
ASYNC_TRACE(("WRITE %s %d bytes at %d\n",
|
sl@0
|
1469 |
p->pFileData->zName, p->nByte, p->iOffset));
|
sl@0
|
1470 |
rc = pBase->pMethods->xWrite(pBase, (void *)(p->zBuf), p->nByte, p->iOffset);
|
sl@0
|
1471 |
break;
|
sl@0
|
1472 |
|
sl@0
|
1473 |
case ASYNC_SYNC:
|
sl@0
|
1474 |
assert( pBase );
|
sl@0
|
1475 |
ASYNC_TRACE(("SYNC %s\n", p->pFileData->zName));
|
sl@0
|
1476 |
rc = pBase->pMethods->xSync(pBase, p->nByte);
|
sl@0
|
1477 |
break;
|
sl@0
|
1478 |
|
sl@0
|
1479 |
case ASYNC_TRUNCATE:
|
sl@0
|
1480 |
assert( pBase );
|
sl@0
|
1481 |
ASYNC_TRACE(("TRUNCATE %s to %d bytes\n",
|
sl@0
|
1482 |
p->pFileData->zName, p->iOffset));
|
sl@0
|
1483 |
rc = pBase->pMethods->xTruncate(pBase, p->iOffset);
|
sl@0
|
1484 |
break;
|
sl@0
|
1485 |
|
sl@0
|
1486 |
case ASYNC_CLOSE: {
|
sl@0
|
1487 |
AsyncFileData *pData = p->pFileData;
|
sl@0
|
1488 |
ASYNC_TRACE(("CLOSE %s\n", p->pFileData->zName));
|
sl@0
|
1489 |
if( pData->pBaseWrite->pMethods ){
|
sl@0
|
1490 |
pData->pBaseWrite->pMethods->xClose(pData->pBaseWrite);
|
sl@0
|
1491 |
}
|
sl@0
|
1492 |
if( pData->pBaseRead->pMethods ){
|
sl@0
|
1493 |
pData->pBaseRead->pMethods->xClose(pData->pBaseRead);
|
sl@0
|
1494 |
}
|
sl@0
|
1495 |
|
sl@0
|
1496 |
/* Unlink AsyncFileData.lock from the linked list of AsyncFileLock
|
sl@0
|
1497 |
** structures for this file. Obtain the async.lockMutex mutex
|
sl@0
|
1498 |
** before doing so.
|
sl@0
|
1499 |
*/
|
sl@0
|
1500 |
pthread_mutex_lock(&async.lockMutex);
|
sl@0
|
1501 |
rc = unlinkAsyncFile(pData);
|
sl@0
|
1502 |
pthread_mutex_unlock(&async.lockMutex);
|
sl@0
|
1503 |
|
sl@0
|
1504 |
if( !holdingMutex ){
|
sl@0
|
1505 |
pthread_mutex_lock(&async.queueMutex);
|
sl@0
|
1506 |
holdingMutex = 1;
|
sl@0
|
1507 |
}
|
sl@0
|
1508 |
assert_mutex_is_held(&async.queueMutex);
|
sl@0
|
1509 |
async.pQueueFirst = p->pNext;
|
sl@0
|
1510 |
sqlite3_free(pData);
|
sl@0
|
1511 |
doNotFree = 1;
|
sl@0
|
1512 |
break;
|
sl@0
|
1513 |
}
|
sl@0
|
1514 |
|
sl@0
|
1515 |
case ASYNC_UNLOCK: {
|
sl@0
|
1516 |
AsyncFileData *pData = p->pFileData;
|
sl@0
|
1517 |
int eLock = p->nByte;
|
sl@0
|
1518 |
pthread_mutex_lock(&async.lockMutex);
|
sl@0
|
1519 |
pData->lock.eAsyncLock = MIN(
|
sl@0
|
1520 |
pData->lock.eAsyncLock, MAX(pData->lock.eLock, eLock)
|
sl@0
|
1521 |
);
|
sl@0
|
1522 |
assert(pData->lock.eAsyncLock>=pData->lock.eLock);
|
sl@0
|
1523 |
rc = getFileLock(pData->pLock);
|
sl@0
|
1524 |
pthread_mutex_unlock(&async.lockMutex);
|
sl@0
|
1525 |
break;
|
sl@0
|
1526 |
}
|
sl@0
|
1527 |
|
sl@0
|
1528 |
case ASYNC_DELETE:
|
sl@0
|
1529 |
ASYNC_TRACE(("DELETE %s\n", p->zBuf));
|
sl@0
|
1530 |
rc = pVfs->xDelete(pVfs, p->zBuf, (int)p->iOffset);
|
sl@0
|
1531 |
break;
|
sl@0
|
1532 |
|
sl@0
|
1533 |
case ASYNC_OPENEXCLUSIVE: {
|
sl@0
|
1534 |
int flags = (int)p->iOffset;
|
sl@0
|
1535 |
AsyncFileData *pData = p->pFileData;
|
sl@0
|
1536 |
ASYNC_TRACE(("OPEN %s flags=%d\n", p->zBuf, (int)p->iOffset));
|
sl@0
|
1537 |
assert(pData->pBaseRead->pMethods==0 && pData->pBaseWrite->pMethods==0);
|
sl@0
|
1538 |
rc = pVfs->xOpen(pVfs, pData->zName, pData->pBaseRead, flags, 0);
|
sl@0
|
1539 |
assert( holdingMutex==0 );
|
sl@0
|
1540 |
pthread_mutex_lock(&async.queueMutex);
|
sl@0
|
1541 |
holdingMutex = 1;
|
sl@0
|
1542 |
break;
|
sl@0
|
1543 |
}
|
sl@0
|
1544 |
|
sl@0
|
1545 |
default: assert(!"Illegal value for AsyncWrite.op");
|
sl@0
|
1546 |
}
|
sl@0
|
1547 |
|
sl@0
|
1548 |
/* If we didn't hang on to the mutex during the IO op, obtain it now
|
sl@0
|
1549 |
** so that the AsyncWrite structure can be safely removed from the
|
sl@0
|
1550 |
** global write-op queue.
|
sl@0
|
1551 |
*/
|
sl@0
|
1552 |
if( !holdingMutex ){
|
sl@0
|
1553 |
pthread_mutex_lock(&async.queueMutex);
|
sl@0
|
1554 |
holdingMutex = 1;
|
sl@0
|
1555 |
}
|
sl@0
|
1556 |
/* ASYNC_TRACE(("UNLINK %p\n", p)); */
|
sl@0
|
1557 |
if( p==async.pQueueLast ){
|
sl@0
|
1558 |
async.pQueueLast = 0;
|
sl@0
|
1559 |
}
|
sl@0
|
1560 |
if( !doNotFree ){
|
sl@0
|
1561 |
assert_mutex_is_held(&async.queueMutex);
|
sl@0
|
1562 |
async.pQueueFirst = p->pNext;
|
sl@0
|
1563 |
sqlite3_free(p);
|
sl@0
|
1564 |
}
|
sl@0
|
1565 |
assert( holdingMutex );
|
sl@0
|
1566 |
|
sl@0
|
1567 |
/* An IO error has occured. We cannot report the error back to the
|
sl@0
|
1568 |
** connection that requested the I/O since the error happened
|
sl@0
|
1569 |
** asynchronously. The connection has already moved on. There
|
sl@0
|
1570 |
** really is nobody to report the error to.
|
sl@0
|
1571 |
**
|
sl@0
|
1572 |
** The file for which the error occured may have been a database or
|
sl@0
|
1573 |
** journal file. Regardless, none of the currently queued operations
|
sl@0
|
1574 |
** associated with the same database should now be performed. Nor should
|
sl@0
|
1575 |
** any subsequently requested IO on either a database or journal file
|
sl@0
|
1576 |
** handle for the same database be accepted until the main database
|
sl@0
|
1577 |
** file handle has been closed and reopened.
|
sl@0
|
1578 |
**
|
sl@0
|
1579 |
** Furthermore, no further IO should be queued or performed on any file
|
sl@0
|
1580 |
** handle associated with a database that may have been part of a
|
sl@0
|
1581 |
** multi-file transaction that included the database associated with
|
sl@0
|
1582 |
** the IO error (i.e. a database ATTACHed to the same handle at some
|
sl@0
|
1583 |
** point in time).
|
sl@0
|
1584 |
*/
|
sl@0
|
1585 |
if( rc!=SQLITE_OK ){
|
sl@0
|
1586 |
async.ioError = rc;
|
sl@0
|
1587 |
}
|
sl@0
|
1588 |
|
sl@0
|
1589 |
if( async.ioError && !async.pQueueFirst ){
|
sl@0
|
1590 |
pthread_mutex_lock(&async.lockMutex);
|
sl@0
|
1591 |
if( 0==async.pLock ){
|
sl@0
|
1592 |
async.ioError = SQLITE_OK;
|
sl@0
|
1593 |
}
|
sl@0
|
1594 |
pthread_mutex_unlock(&async.lockMutex);
|
sl@0
|
1595 |
}
|
sl@0
|
1596 |
|
sl@0
|
1597 |
/* Drop the queue mutex before continuing to the next write operation
|
sl@0
|
1598 |
** in order to give other threads a chance to work with the write queue.
|
sl@0
|
1599 |
*/
|
sl@0
|
1600 |
if( !async.pQueueFirst || !async.ioError ){
|
sl@0
|
1601 |
pthread_mutex_unlock(&async.queueMutex);
|
sl@0
|
1602 |
holdingMutex = 0;
|
sl@0
|
1603 |
if( async.ioDelay>0 ){
|
sl@0
|
1604 |
pVfs->xSleep(pVfs, async.ioDelay);
|
sl@0
|
1605 |
}else{
|
sl@0
|
1606 |
sched_yield();
|
sl@0
|
1607 |
}
|
sl@0
|
1608 |
}
|
sl@0
|
1609 |
}
|
sl@0
|
1610 |
|
sl@0
|
1611 |
pthread_mutex_unlock(&async.writerMutex);
|
sl@0
|
1612 |
return 0;
|
sl@0
|
1613 |
}
|
sl@0
|
1614 |
|
sl@0
|
1615 |
/**************************************************************************
|
sl@0
|
1616 |
** The remaining code defines a Tcl interface for testing the asynchronous
|
sl@0
|
1617 |
** IO implementation in this file.
|
sl@0
|
1618 |
**
|
sl@0
|
1619 |
** To adapt the code to a non-TCL environment, delete or comment out
|
sl@0
|
1620 |
** the code that follows.
|
sl@0
|
1621 |
*/
|
sl@0
|
1622 |
|
sl@0
|
1623 |
/*
|
sl@0
|
1624 |
** sqlite3async_enable ?YES/NO?
|
sl@0
|
1625 |
**
|
sl@0
|
1626 |
** Enable or disable the asynchronous I/O backend. This command is
|
sl@0
|
1627 |
** not thread-safe. Do not call it while any database connections
|
sl@0
|
1628 |
** are open.
|
sl@0
|
1629 |
*/
|
sl@0
|
1630 |
static int testAsyncEnable(
|
sl@0
|
1631 |
void * clientData,
|
sl@0
|
1632 |
Tcl_Interp *interp,
|
sl@0
|
1633 |
int objc,
|
sl@0
|
1634 |
Tcl_Obj *CONST objv[]
|
sl@0
|
1635 |
){
|
sl@0
|
1636 |
if( objc!=1 && objc!=2 ){
|
sl@0
|
1637 |
Tcl_WrongNumArgs(interp, 1, objv, "?YES/NO?");
|
sl@0
|
1638 |
return TCL_ERROR;
|
sl@0
|
1639 |
}
|
sl@0
|
1640 |
if( objc==1 ){
|
sl@0
|
1641 |
Tcl_SetObjResult(interp, Tcl_NewBooleanObj(async_vfs.pAppData!=0));
|
sl@0
|
1642 |
}else{
|
sl@0
|
1643 |
int en;
|
sl@0
|
1644 |
if( Tcl_GetBooleanFromObj(interp, objv[1], &en) ) return TCL_ERROR;
|
sl@0
|
1645 |
asyncEnable(en);
|
sl@0
|
1646 |
}
|
sl@0
|
1647 |
return TCL_OK;
|
sl@0
|
1648 |
}
|
sl@0
|
1649 |
|
sl@0
|
1650 |
/*
|
sl@0
|
1651 |
** sqlite3async_halt "now"|"idle"|"never"
|
sl@0
|
1652 |
**
|
sl@0
|
1653 |
** Set the conditions at which the writer thread will halt.
|
sl@0
|
1654 |
*/
|
sl@0
|
1655 |
static int testAsyncHalt(
|
sl@0
|
1656 |
void * clientData,
|
sl@0
|
1657 |
Tcl_Interp *interp,
|
sl@0
|
1658 |
int objc,
|
sl@0
|
1659 |
Tcl_Obj *CONST objv[]
|
sl@0
|
1660 |
){
|
sl@0
|
1661 |
const char *zCond;
|
sl@0
|
1662 |
if( objc!=2 ){
|
sl@0
|
1663 |
Tcl_WrongNumArgs(interp, 1, objv, "\"now\"|\"idle\"|\"never\"");
|
sl@0
|
1664 |
return TCL_ERROR;
|
sl@0
|
1665 |
}
|
sl@0
|
1666 |
zCond = Tcl_GetString(objv[1]);
|
sl@0
|
1667 |
if( strcmp(zCond, "now")==0 ){
|
sl@0
|
1668 |
async.writerHaltNow = 1;
|
sl@0
|
1669 |
pthread_cond_broadcast(&async.queueSignal);
|
sl@0
|
1670 |
}else if( strcmp(zCond, "idle")==0 ){
|
sl@0
|
1671 |
async.writerHaltWhenIdle = 1;
|
sl@0
|
1672 |
async.writerHaltNow = 0;
|
sl@0
|
1673 |
pthread_cond_broadcast(&async.queueSignal);
|
sl@0
|
1674 |
}else if( strcmp(zCond, "never")==0 ){
|
sl@0
|
1675 |
async.writerHaltWhenIdle = 0;
|
sl@0
|
1676 |
async.writerHaltNow = 0;
|
sl@0
|
1677 |
}else{
|
sl@0
|
1678 |
Tcl_AppendResult(interp,
|
sl@0
|
1679 |
"should be one of: \"now\", \"idle\", or \"never\"", (char*)0);
|
sl@0
|
1680 |
return TCL_ERROR;
|
sl@0
|
1681 |
}
|
sl@0
|
1682 |
return TCL_OK;
|
sl@0
|
1683 |
}
|
sl@0
|
1684 |
|
sl@0
|
1685 |
/*
|
sl@0
|
1686 |
** sqlite3async_delay ?MS?
|
sl@0
|
1687 |
**
|
sl@0
|
1688 |
** Query or set the number of milliseconds of delay in the writer
|
sl@0
|
1689 |
** thread after each write operation. The default is 0. By increasing
|
sl@0
|
1690 |
** the memory delay we can simulate the effect of slow disk I/O.
|
sl@0
|
1691 |
*/
|
sl@0
|
1692 |
static int testAsyncDelay(
|
sl@0
|
1693 |
void * clientData,
|
sl@0
|
1694 |
Tcl_Interp *interp,
|
sl@0
|
1695 |
int objc,
|
sl@0
|
1696 |
Tcl_Obj *CONST objv[]
|
sl@0
|
1697 |
){
|
sl@0
|
1698 |
if( objc!=1 && objc!=2 ){
|
sl@0
|
1699 |
Tcl_WrongNumArgs(interp, 1, objv, "?MS?");
|
sl@0
|
1700 |
return TCL_ERROR;
|
sl@0
|
1701 |
}
|
sl@0
|
1702 |
if( objc==1 ){
|
sl@0
|
1703 |
Tcl_SetObjResult(interp, Tcl_NewIntObj(async.ioDelay));
|
sl@0
|
1704 |
}else{
|
sl@0
|
1705 |
int ioDelay;
|
sl@0
|
1706 |
if( Tcl_GetIntFromObj(interp, objv[1], &ioDelay) ) return TCL_ERROR;
|
sl@0
|
1707 |
async.ioDelay = ioDelay;
|
sl@0
|
1708 |
}
|
sl@0
|
1709 |
return TCL_OK;
|
sl@0
|
1710 |
}
|
sl@0
|
1711 |
|
sl@0
|
1712 |
/*
|
sl@0
|
1713 |
** sqlite3async_start
|
sl@0
|
1714 |
**
|
sl@0
|
1715 |
** Start a new writer thread.
|
sl@0
|
1716 |
*/
|
sl@0
|
1717 |
static int testAsyncStart(
|
sl@0
|
1718 |
void * clientData,
|
sl@0
|
1719 |
Tcl_Interp *interp,
|
sl@0
|
1720 |
int objc,
|
sl@0
|
1721 |
Tcl_Obj *CONST objv[]
|
sl@0
|
1722 |
){
|
sl@0
|
1723 |
pthread_t x;
|
sl@0
|
1724 |
int rc;
|
sl@0
|
1725 |
volatile int isStarted = 0;
|
sl@0
|
1726 |
rc = pthread_create(&x, 0, asyncWriterThread, (void *)&isStarted);
|
sl@0
|
1727 |
if( rc ){
|
sl@0
|
1728 |
Tcl_AppendResult(interp, "failed to create the thread", 0);
|
sl@0
|
1729 |
return TCL_ERROR;
|
sl@0
|
1730 |
}
|
sl@0
|
1731 |
pthread_detach(x);
|
sl@0
|
1732 |
while( isStarted==0 ){
|
sl@0
|
1733 |
sched_yield();
|
sl@0
|
1734 |
}
|
sl@0
|
1735 |
return TCL_OK;
|
sl@0
|
1736 |
}
|
sl@0
|
1737 |
|
sl@0
|
1738 |
/*
|
sl@0
|
1739 |
** sqlite3async_wait
|
sl@0
|
1740 |
**
|
sl@0
|
1741 |
** Wait for the current writer thread to terminate.
|
sl@0
|
1742 |
**
|
sl@0
|
1743 |
** If the current writer thread is set to run forever then this
|
sl@0
|
1744 |
** command would block forever. To prevent that, an error is returned.
|
sl@0
|
1745 |
*/
|
sl@0
|
1746 |
static int testAsyncWait(
|
sl@0
|
1747 |
void * clientData,
|
sl@0
|
1748 |
Tcl_Interp *interp,
|
sl@0
|
1749 |
int objc,
|
sl@0
|
1750 |
Tcl_Obj *CONST objv[]
|
sl@0
|
1751 |
){
|
sl@0
|
1752 |
int cnt = 10;
|
sl@0
|
1753 |
if( async.writerHaltNow==0 && async.writerHaltWhenIdle==0 ){
|
sl@0
|
1754 |
Tcl_AppendResult(interp, "would block forever", (char*)0);
|
sl@0
|
1755 |
return TCL_ERROR;
|
sl@0
|
1756 |
}
|
sl@0
|
1757 |
|
sl@0
|
1758 |
while( cnt-- && !pthread_mutex_trylock(&async.writerMutex) ){
|
sl@0
|
1759 |
pthread_mutex_unlock(&async.writerMutex);
|
sl@0
|
1760 |
sched_yield();
|
sl@0
|
1761 |
}
|
sl@0
|
1762 |
if( cnt>=0 ){
|
sl@0
|
1763 |
ASYNC_TRACE(("WAIT\n"));
|
sl@0
|
1764 |
pthread_mutex_lock(&async.queueMutex);
|
sl@0
|
1765 |
pthread_cond_broadcast(&async.queueSignal);
|
sl@0
|
1766 |
pthread_mutex_unlock(&async.queueMutex);
|
sl@0
|
1767 |
pthread_mutex_lock(&async.writerMutex);
|
sl@0
|
1768 |
pthread_mutex_unlock(&async.writerMutex);
|
sl@0
|
1769 |
}else{
|
sl@0
|
1770 |
ASYNC_TRACE(("NO-WAIT\n"));
|
sl@0
|
1771 |
}
|
sl@0
|
1772 |
return TCL_OK;
|
sl@0
|
1773 |
}
|
sl@0
|
1774 |
|
sl@0
|
1775 |
|
sl@0
|
1776 |
#endif /* SQLITE_OS_UNIX and SQLITE_THREADSAFE */
|
sl@0
|
1777 |
|
sl@0
|
1778 |
/*
|
sl@0
|
1779 |
** This routine registers the custom TCL commands defined in this
|
sl@0
|
1780 |
** module. This should be the only procedure visible from outside
|
sl@0
|
1781 |
** of this module.
|
sl@0
|
1782 |
*/
|
sl@0
|
1783 |
int Sqlitetestasync_Init(Tcl_Interp *interp){
|
sl@0
|
1784 |
#if SQLITE_OS_UNIX && SQLITE_THREADSAFE
|
sl@0
|
1785 |
Tcl_CreateObjCommand(interp,"sqlite3async_enable",testAsyncEnable,0,0);
|
sl@0
|
1786 |
Tcl_CreateObjCommand(interp,"sqlite3async_halt",testAsyncHalt,0,0);
|
sl@0
|
1787 |
Tcl_CreateObjCommand(interp,"sqlite3async_delay",testAsyncDelay,0,0);
|
sl@0
|
1788 |
Tcl_CreateObjCommand(interp,"sqlite3async_start",testAsyncStart,0,0);
|
sl@0
|
1789 |
Tcl_CreateObjCommand(interp,"sqlite3async_wait",testAsyncWait,0,0);
|
sl@0
|
1790 |
Tcl_LinkVar(interp, "sqlite3async_trace",
|
sl@0
|
1791 |
(char*)&sqlite3async_trace, TCL_LINK_INT);
|
sl@0
|
1792 |
#endif /* SQLITE_OS_UNIX and SQLITE_THREADSAFE */
|
sl@0
|
1793 |
return TCL_OK;
|
sl@0
|
1794 |
}
|