os/persistentdata/persistentstorage/sql/SQLite364/select.c
author sl
Tue, 10 Jun 2014 14:32:02 +0200
changeset 1 260cb5ec6c19
permissions -rw-r--r--
Update contrib.
     1 /*
     2 ** 2001 September 15
     3 **
     4 ** The author disclaims copyright to this source code.  In place of
     5 ** a legal notice, here is a blessing:
     6 **
     7 **    May you do good and not evil.
     8 **    May you find forgiveness for yourself and forgive others.
     9 **    May you share freely, never taking more than you give.
    10 **
    11 *************************************************************************
    12 ** This file contains C code routines that are called by the parser
    13 ** to handle SELECT statements in SQLite.
    14 **
    15 ** $Id: select.c,v 1.480 2008/10/07 19:53:14 drh Exp $
    16 */
    17 #include "sqliteInt.h"
    18 
    19 
    20 /*
    21 ** Delete all the content of a Select structure but do not deallocate
    22 ** the select structure itself.
    23 */
    24 static void clearSelect(sqlite3 *db, Select *p){
    25   sqlite3ExprListDelete(db, p->pEList);
    26   sqlite3SrcListDelete(db, p->pSrc);
    27   sqlite3ExprDelete(db, p->pWhere);
    28   sqlite3ExprListDelete(db, p->pGroupBy);
    29   sqlite3ExprDelete(db, p->pHaving);
    30   sqlite3ExprListDelete(db, p->pOrderBy);
    31   sqlite3SelectDelete(db, p->pPrior);
    32   sqlite3ExprDelete(db, p->pLimit);
    33   sqlite3ExprDelete(db, p->pOffset);
    34 }
    35 
    36 /*
    37 ** Initialize a SelectDest structure.
    38 */
    39 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){
    40   pDest->eDest = eDest;
    41   pDest->iParm = iParm;
    42   pDest->affinity = 0;
    43   pDest->iMem = 0;
    44   pDest->nMem = 0;
    45 }
    46 
    47 
    48 /*
    49 ** Allocate a new Select structure and return a pointer to that
    50 ** structure.
    51 */
    52 Select *sqlite3SelectNew(
    53   Parse *pParse,        /* Parsing context */
    54   ExprList *pEList,     /* which columns to include in the result */
    55   SrcList *pSrc,        /* the FROM clause -- which tables to scan */
    56   Expr *pWhere,         /* the WHERE clause */
    57   ExprList *pGroupBy,   /* the GROUP BY clause */
    58   Expr *pHaving,        /* the HAVING clause */
    59   ExprList *pOrderBy,   /* the ORDER BY clause */
    60   int isDistinct,       /* true if the DISTINCT keyword is present */
    61   Expr *pLimit,         /* LIMIT value.  NULL means not used */
    62   Expr *pOffset         /* OFFSET value.  NULL means no offset */
    63 ){
    64   Select *pNew;
    65   Select standin;
    66   sqlite3 *db = pParse->db;
    67   pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
    68   assert( !pOffset || pLimit );   /* Can't have OFFSET without LIMIT. */
    69   if( pNew==0 ){
    70     pNew = &standin;
    71     memset(pNew, 0, sizeof(*pNew));
    72   }
    73   if( pEList==0 ){
    74     pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db,TK_ALL,0,0,0), 0);
    75   }
    76   pNew->pEList = pEList;
    77   pNew->pSrc = pSrc;
    78   pNew->pWhere = pWhere;
    79   pNew->pGroupBy = pGroupBy;
    80   pNew->pHaving = pHaving;
    81   pNew->pOrderBy = pOrderBy;
    82   pNew->selFlags = isDistinct ? SF_Distinct : 0;
    83   pNew->op = TK_SELECT;
    84   pNew->pLimit = pLimit;
    85   pNew->pOffset = pOffset;
    86   pNew->addrOpenEphm[0] = -1;
    87   pNew->addrOpenEphm[1] = -1;
    88   pNew->addrOpenEphm[2] = -1;
    89   if( db->mallocFailed ) {
    90     clearSelect(db, pNew);
    91     if( pNew!=&standin ) sqlite3DbFree(db, pNew);
    92     pNew = 0;
    93   }
    94   return pNew;
    95 }
    96 
    97 /*
    98 ** Delete the given Select structure and all of its substructures.
    99 */
   100 void sqlite3SelectDelete(sqlite3 *db, Select *p){
   101   if( p ){
   102     clearSelect(db, p);
   103     sqlite3DbFree(db, p);
   104   }
   105 }
   106 
   107 /*
   108 ** Given 1 to 3 identifiers preceeding the JOIN keyword, determine the
   109 ** type of join.  Return an integer constant that expresses that type
   110 ** in terms of the following bit values:
   111 **
   112 **     JT_INNER
   113 **     JT_CROSS
   114 **     JT_OUTER
   115 **     JT_NATURAL
   116 **     JT_LEFT
   117 **     JT_RIGHT
   118 **
   119 ** A full outer join is the combination of JT_LEFT and JT_RIGHT.
   120 **
   121 ** If an illegal or unsupported join type is seen, then still return
   122 ** a join type, but put an error in the pParse structure.
   123 */
   124 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
   125   int jointype = 0;
   126   Token *apAll[3];
   127   Token *p;
   128   static const struct {
   129     const char zKeyword[8];
   130     u8 nChar;
   131     u8 code;
   132   } keywords[] = {
   133     { "natural", 7, JT_NATURAL },
   134     { "left",    4, JT_LEFT|JT_OUTER },
   135     { "right",   5, JT_RIGHT|JT_OUTER },
   136     { "full",    4, JT_LEFT|JT_RIGHT|JT_OUTER },
   137     { "outer",   5, JT_OUTER },
   138     { "inner",   5, JT_INNER },
   139     { "cross",   5, JT_INNER|JT_CROSS },
   140   };
   141   int i, j;
   142   apAll[0] = pA;
   143   apAll[1] = pB;
   144   apAll[2] = pC;
   145   for(i=0; i<3 && apAll[i]; i++){
   146     p = apAll[i];
   147     for(j=0; j<sizeof(keywords)/sizeof(keywords[0]); j++){
   148       if( p->n==keywords[j].nChar 
   149           && sqlite3StrNICmp((char*)p->z, keywords[j].zKeyword, p->n)==0 ){
   150         jointype |= keywords[j].code;
   151         break;
   152       }
   153     }
   154     if( j>=sizeof(keywords)/sizeof(keywords[0]) ){
   155       jointype |= JT_ERROR;
   156       break;
   157     }
   158   }
   159   if(
   160      (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
   161      (jointype & JT_ERROR)!=0
   162   ){
   163     const char *zSp = " ";
   164     assert( pB!=0 );
   165     if( pC==0 ){ zSp++; }
   166     sqlite3ErrorMsg(pParse, "unknown or unsupported join type: "
   167        "%T %T%s%T", pA, pB, zSp, pC);
   168     jointype = JT_INNER;
   169   }else if( jointype & JT_RIGHT ){
   170     sqlite3ErrorMsg(pParse, 
   171       "RIGHT and FULL OUTER JOINs are not currently supported");
   172     jointype = JT_INNER;
   173   }
   174   return jointype;
   175 }
   176 
   177 /*
   178 ** Return the index of a column in a table.  Return -1 if the column
   179 ** is not contained in the table.
   180 */
   181 static int columnIndex(Table *pTab, const char *zCol){
   182   int i;
   183   for(i=0; i<pTab->nCol; i++){
   184     if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i;
   185   }
   186   return -1;
   187 }
   188 
   189 /*
   190 ** Set the value of a token to a '\000'-terminated string.
   191 */
   192 static void setToken(Token *p, const char *z){
   193   p->z = (u8*)z;
   194   p->n = z ? strlen(z) : 0;
   195   p->dyn = 0;
   196 }
   197 
   198 /*
   199 ** Set the token to the double-quoted and escaped version of the string pointed
   200 ** to by z. For example;
   201 **
   202 **    {a"bc}  ->  {"a""bc"}
   203 */
   204 static void setQuotedToken(Parse *pParse, Token *p, const char *z){
   205 
   206   /* Check if the string appears to be quoted using "..." or `...`
   207   ** or [...] or '...' or if the string contains any " characters.  
   208   ** If it does, then record a version of the string with the special
   209   ** characters escaped.
   210   */
   211   const char *z2 = z;
   212   if( *z2!='[' && *z2!='`' && *z2!='\'' ){
   213     while( *z2 ){
   214       if( *z2=='"' ) break;
   215       z2++;
   216     }
   217   }
   218 
   219   if( *z2 ){
   220     /* String contains " characters - copy and quote the string. */
   221     p->z = (u8 *)sqlite3MPrintf(pParse->db, "\"%w\"", z);
   222     if( p->z ){
   223       p->n = strlen((char *)p->z);
   224       p->dyn = 1;
   225     }
   226   }else{
   227     /* String contains no " characters - copy the pointer. */
   228     p->z = (u8*)z;
   229     p->n = (z2 - z);
   230     p->dyn = 0;
   231   }
   232 }
   233 
   234 /*
   235 ** Create an expression node for an identifier with the name of zName
   236 */
   237 Expr *sqlite3CreateIdExpr(Parse *pParse, const char *zName){
   238   Token dummy;
   239   setToken(&dummy, zName);
   240   return sqlite3PExpr(pParse, TK_ID, 0, 0, &dummy);
   241 }
   242 
   243 /*
   244 ** Add a term to the WHERE expression in *ppExpr that requires the
   245 ** zCol column to be equal in the two tables pTab1 and pTab2.
   246 */
   247 static void addWhereTerm(
   248   Parse *pParse,           /* Parsing context */
   249   const char *zCol,        /* Name of the column */
   250   const Table *pTab1,      /* First table */
   251   const char *zAlias1,     /* Alias for first table.  May be NULL */
   252   const Table *pTab2,      /* Second table */
   253   const char *zAlias2,     /* Alias for second table.  May be NULL */
   254   int iRightJoinTable,     /* VDBE cursor for the right table */
   255   Expr **ppExpr,           /* Add the equality term to this expression */
   256   int isOuterJoin          /* True if dealing with an OUTER join */
   257 ){
   258   Expr *pE1a, *pE1b, *pE1c;
   259   Expr *pE2a, *pE2b, *pE2c;
   260   Expr *pE;
   261 
   262   pE1a = sqlite3CreateIdExpr(pParse, zCol);
   263   pE2a = sqlite3CreateIdExpr(pParse, zCol);
   264   if( zAlias1==0 ){
   265     zAlias1 = pTab1->zName;
   266   }
   267   pE1b = sqlite3CreateIdExpr(pParse, zAlias1);
   268   if( zAlias2==0 ){
   269     zAlias2 = pTab2->zName;
   270   }
   271   pE2b = sqlite3CreateIdExpr(pParse, zAlias2);
   272   pE1c = sqlite3PExpr(pParse, TK_DOT, pE1b, pE1a, 0);
   273   pE2c = sqlite3PExpr(pParse, TK_DOT, pE2b, pE2a, 0);
   274   pE = sqlite3PExpr(pParse, TK_EQ, pE1c, pE2c, 0);
   275   if( pE && isOuterJoin ){
   276     ExprSetProperty(pE, EP_FromJoin);
   277     pE->iRightJoinTable = iRightJoinTable;
   278   }
   279   *ppExpr = sqlite3ExprAnd(pParse->db,*ppExpr, pE);
   280 }
   281 
   282 /*
   283 ** Set the EP_FromJoin property on all terms of the given expression.
   284 ** And set the Expr.iRightJoinTable to iTable for every term in the
   285 ** expression.
   286 **
   287 ** The EP_FromJoin property is used on terms of an expression to tell
   288 ** the LEFT OUTER JOIN processing logic that this term is part of the
   289 ** join restriction specified in the ON or USING clause and not a part
   290 ** of the more general WHERE clause.  These terms are moved over to the
   291 ** WHERE clause during join processing but we need to remember that they
   292 ** originated in the ON or USING clause.
   293 **
   294 ** The Expr.iRightJoinTable tells the WHERE clause processing that the
   295 ** expression depends on table iRightJoinTable even if that table is not
   296 ** explicitly mentioned in the expression.  That information is needed
   297 ** for cases like this:
   298 **
   299 **    SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
   300 **
   301 ** The where clause needs to defer the handling of the t1.x=5
   302 ** term until after the t2 loop of the join.  In that way, a
   303 ** NULL t2 row will be inserted whenever t1.x!=5.  If we do not
   304 ** defer the handling of t1.x=5, it will be processed immediately
   305 ** after the t1 loop and rows with t1.x!=5 will never appear in
   306 ** the output, which is incorrect.
   307 */
   308 static void setJoinExpr(Expr *p, int iTable){
   309   while( p ){
   310     ExprSetProperty(p, EP_FromJoin);
   311     p->iRightJoinTable = iTable;
   312     setJoinExpr(p->pLeft, iTable);
   313     p = p->pRight;
   314   } 
   315 }
   316 
   317 /*
   318 ** This routine processes the join information for a SELECT statement.
   319 ** ON and USING clauses are converted into extra terms of the WHERE clause.
   320 ** NATURAL joins also create extra WHERE clause terms.
   321 **
   322 ** The terms of a FROM clause are contained in the Select.pSrc structure.
   323 ** The left most table is the first entry in Select.pSrc.  The right-most
   324 ** table is the last entry.  The join operator is held in the entry to
   325 ** the left.  Thus entry 0 contains the join operator for the join between
   326 ** entries 0 and 1.  Any ON or USING clauses associated with the join are
   327 ** also attached to the left entry.
   328 **
   329 ** This routine returns the number of errors encountered.
   330 */
   331 static int sqliteProcessJoin(Parse *pParse, Select *p){
   332   SrcList *pSrc;                  /* All tables in the FROM clause */
   333   int i, j;                       /* Loop counters */
   334   struct SrcList_item *pLeft;     /* Left table being joined */
   335   struct SrcList_item *pRight;    /* Right table being joined */
   336 
   337   pSrc = p->pSrc;
   338   pLeft = &pSrc->a[0];
   339   pRight = &pLeft[1];
   340   for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){
   341     Table *pLeftTab = pLeft->pTab;
   342     Table *pRightTab = pRight->pTab;
   343     int isOuter;
   344 
   345     if( pLeftTab==0 || pRightTab==0 ) continue;
   346     isOuter = (pRight->jointype & JT_OUTER)!=0;
   347 
   348     /* When the NATURAL keyword is present, add WHERE clause terms for
   349     ** every column that the two tables have in common.
   350     */
   351     if( pRight->jointype & JT_NATURAL ){
   352       if( pRight->pOn || pRight->pUsing ){
   353         sqlite3ErrorMsg(pParse, "a NATURAL join may not have "
   354            "an ON or USING clause", 0);
   355         return 1;
   356       }
   357       for(j=0; j<pLeftTab->nCol; j++){
   358         char *zName = pLeftTab->aCol[j].zName;
   359         if( columnIndex(pRightTab, zName)>=0 ){
   360           addWhereTerm(pParse, zName, pLeftTab, pLeft->zAlias, 
   361                               pRightTab, pRight->zAlias,
   362                               pRight->iCursor, &p->pWhere, isOuter);
   363           
   364         }
   365       }
   366     }
   367 
   368     /* Disallow both ON and USING clauses in the same join
   369     */
   370     if( pRight->pOn && pRight->pUsing ){
   371       sqlite3ErrorMsg(pParse, "cannot have both ON and USING "
   372         "clauses in the same join");
   373       return 1;
   374     }
   375 
   376     /* Add the ON clause to the end of the WHERE clause, connected by
   377     ** an AND operator.
   378     */
   379     if( pRight->pOn ){
   380       if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor);
   381       p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn);
   382       pRight->pOn = 0;
   383     }
   384 
   385     /* Create extra terms on the WHERE clause for each column named
   386     ** in the USING clause.  Example: If the two tables to be joined are 
   387     ** A and B and the USING clause names X, Y, and Z, then add this
   388     ** to the WHERE clause:    A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
   389     ** Report an error if any column mentioned in the USING clause is
   390     ** not contained in both tables to be joined.
   391     */
   392     if( pRight->pUsing ){
   393       IdList *pList = pRight->pUsing;
   394       for(j=0; j<pList->nId; j++){
   395         char *zName = pList->a[j].zName;
   396         if( columnIndex(pLeftTab, zName)<0 || columnIndex(pRightTab, zName)<0 ){
   397           sqlite3ErrorMsg(pParse, "cannot join using column %s - column "
   398             "not present in both tables", zName);
   399           return 1;
   400         }
   401         addWhereTerm(pParse, zName, pLeftTab, pLeft->zAlias, 
   402                             pRightTab, pRight->zAlias,
   403                             pRight->iCursor, &p->pWhere, isOuter);
   404       }
   405     }
   406   }
   407   return 0;
   408 }
   409 
   410 /*
   411 ** Insert code into "v" that will push the record on the top of the
   412 ** stack into the sorter.
   413 */
   414 static void pushOntoSorter(
   415   Parse *pParse,         /* Parser context */
   416   ExprList *pOrderBy,    /* The ORDER BY clause */
   417   Select *pSelect,       /* The whole SELECT statement */
   418   int regData            /* Register holding data to be sorted */
   419 ){
   420   Vdbe *v = pParse->pVdbe;
   421   int nExpr = pOrderBy->nExpr;
   422   int regBase = sqlite3GetTempRange(pParse, nExpr+2);
   423   int regRecord = sqlite3GetTempReg(pParse);
   424   sqlite3ExprCodeExprList(pParse, pOrderBy, regBase, 0);
   425   sqlite3VdbeAddOp2(v, OP_Sequence, pOrderBy->iECursor, regBase+nExpr);
   426   sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+1, 1);
   427   sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nExpr + 2, regRecord);
   428   sqlite3VdbeAddOp2(v, OP_IdxInsert, pOrderBy->iECursor, regRecord);
   429   sqlite3ReleaseTempReg(pParse, regRecord);
   430   sqlite3ReleaseTempRange(pParse, regBase, nExpr+2);
   431   if( pSelect->iLimit ){
   432     int addr1, addr2;
   433     int iLimit;
   434     if( pSelect->iOffset ){
   435       iLimit = pSelect->iOffset+1;
   436     }else{
   437       iLimit = pSelect->iLimit;
   438     }
   439     addr1 = sqlite3VdbeAddOp1(v, OP_IfZero, iLimit);
   440     sqlite3VdbeAddOp2(v, OP_AddImm, iLimit, -1);
   441     addr2 = sqlite3VdbeAddOp0(v, OP_Goto);
   442     sqlite3VdbeJumpHere(v, addr1);
   443     sqlite3VdbeAddOp1(v, OP_Last, pOrderBy->iECursor);
   444     sqlite3VdbeAddOp1(v, OP_Delete, pOrderBy->iECursor);
   445     sqlite3VdbeJumpHere(v, addr2);
   446     pSelect->iLimit = 0;
   447   }
   448 }
   449 
   450 /*
   451 ** Add code to implement the OFFSET
   452 */
   453 static void codeOffset(
   454   Vdbe *v,          /* Generate code into this VM */
   455   Select *p,        /* The SELECT statement being coded */
   456   int iContinue     /* Jump here to skip the current record */
   457 ){
   458   if( p->iOffset && iContinue!=0 ){
   459     int addr;
   460     sqlite3VdbeAddOp2(v, OP_AddImm, p->iOffset, -1);
   461     addr = sqlite3VdbeAddOp1(v, OP_IfNeg, p->iOffset);
   462     sqlite3VdbeAddOp2(v, OP_Goto, 0, iContinue);
   463     VdbeComment((v, "skip OFFSET records"));
   464     sqlite3VdbeJumpHere(v, addr);
   465   }
   466 }
   467 
   468 /*
   469 ** Add code that will check to make sure the N registers starting at iMem
   470 ** form a distinct entry.  iTab is a sorting index that holds previously
   471 ** seen combinations of the N values.  A new entry is made in iTab
   472 ** if the current N values are new.
   473 **
   474 ** A jump to addrRepeat is made and the N+1 values are popped from the
   475 ** stack if the top N elements are not distinct.
   476 */
   477 static void codeDistinct(
   478   Parse *pParse,     /* Parsing and code generating context */
   479   int iTab,          /* A sorting index used to test for distinctness */
   480   int addrRepeat,    /* Jump to here if not distinct */
   481   int N,             /* Number of elements */
   482   int iMem           /* First element */
   483 ){
   484   Vdbe *v;
   485   int r1;
   486 
   487   v = pParse->pVdbe;
   488   r1 = sqlite3GetTempReg(pParse);
   489   sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1);
   490   sqlite3VdbeAddOp3(v, OP_Found, iTab, addrRepeat, r1);
   491   sqlite3VdbeAddOp2(v, OP_IdxInsert, iTab, r1);
   492   sqlite3ReleaseTempReg(pParse, r1);
   493 }
   494 
   495 /*
   496 ** Generate an error message when a SELECT is used within a subexpression
   497 ** (example:  "a IN (SELECT * FROM table)") but it has more than 1 result
   498 ** column.  We do this in a subroutine because the error occurs in multiple
   499 ** places.
   500 */
   501 static int checkForMultiColumnSelectError(
   502   Parse *pParse,       /* Parse context. */
   503   SelectDest *pDest,   /* Destination of SELECT results */
   504   int nExpr            /* Number of result columns returned by SELECT */
   505 ){
   506   int eDest = pDest->eDest;
   507   if( nExpr>1 && (eDest==SRT_Mem || eDest==SRT_Set) ){
   508     sqlite3ErrorMsg(pParse, "only a single result allowed for "
   509        "a SELECT that is part of an expression");
   510     return 1;
   511   }else{
   512     return 0;
   513   }
   514 }
   515 
   516 /*
   517 ** This routine generates the code for the inside of the inner loop
   518 ** of a SELECT.
   519 **
   520 ** If srcTab and nColumn are both zero, then the pEList expressions
   521 ** are evaluated in order to get the data for this row.  If nColumn>0
   522 ** then data is pulled from srcTab and pEList is used only to get the
   523 ** datatypes for each column.
   524 */
   525 static void selectInnerLoop(
   526   Parse *pParse,          /* The parser context */
   527   Select *p,              /* The complete select statement being coded */
   528   ExprList *pEList,       /* List of values being extracted */
   529   int srcTab,             /* Pull data from this table */
   530   int nColumn,            /* Number of columns in the source table */
   531   ExprList *pOrderBy,     /* If not NULL, sort results using this key */
   532   int distinct,           /* If >=0, make sure results are distinct */
   533   SelectDest *pDest,      /* How to dispose of the results */
   534   int iContinue,          /* Jump here to continue with next row */
   535   int iBreak              /* Jump here to break out of the inner loop */
   536 ){
   537   Vdbe *v = pParse->pVdbe;
   538   int i;
   539   int hasDistinct;        /* True if the DISTINCT keyword is present */
   540   int regResult;              /* Start of memory holding result set */
   541   int eDest = pDest->eDest;   /* How to dispose of results */
   542   int iParm = pDest->iParm;   /* First argument to disposal method */
   543   int nResultCol;             /* Number of result columns */
   544 
   545   if( v==0 ) return;
   546   assert( pEList!=0 );
   547   hasDistinct = distinct>=0;
   548   if( pOrderBy==0 && !hasDistinct ){
   549     codeOffset(v, p, iContinue);
   550   }
   551 
   552   /* Pull the requested columns.
   553   */
   554   if( nColumn>0 ){
   555     nResultCol = nColumn;
   556   }else{
   557     nResultCol = pEList->nExpr;
   558   }
   559   if( pDest->iMem==0 ){
   560     pDest->iMem = pParse->nMem+1;
   561     pDest->nMem = nResultCol;
   562     pParse->nMem += nResultCol;
   563   }else if( pDest->nMem!=nResultCol ){
   564     /* This happens when two SELECTs of a compound SELECT have differing
   565     ** numbers of result columns.  The error message will be generated by
   566     ** a higher-level routine. */
   567     return;
   568   }
   569   regResult = pDest->iMem;
   570   if( nColumn>0 ){
   571     for(i=0; i<nColumn; i++){
   572       sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i);
   573     }
   574   }else if( eDest!=SRT_Exists ){
   575     /* If the destination is an EXISTS(...) expression, the actual
   576     ** values returned by the SELECT are not required.
   577     */
   578     sqlite3ExprCodeExprList(pParse, pEList, regResult, eDest==SRT_Output);
   579   }
   580   nColumn = nResultCol;
   581 
   582   /* If the DISTINCT keyword was present on the SELECT statement
   583   ** and this row has been seen before, then do not make this row
   584   ** part of the result.
   585   */
   586   if( hasDistinct ){
   587     assert( pEList!=0 );
   588     assert( pEList->nExpr==nColumn );
   589     codeDistinct(pParse, distinct, iContinue, nColumn, regResult);
   590     if( pOrderBy==0 ){
   591       codeOffset(v, p, iContinue);
   592     }
   593   }
   594 
   595   if( checkForMultiColumnSelectError(pParse, pDest, pEList->nExpr) ){
   596     return;
   597   }
   598 
   599   switch( eDest ){
   600     /* In this mode, write each query result to the key of the temporary
   601     ** table iParm.
   602     */
   603 #ifndef SQLITE_OMIT_COMPOUND_SELECT
   604     case SRT_Union: {
   605       int r1;
   606       r1 = sqlite3GetTempReg(pParse);
   607       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1);
   608       sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
   609       sqlite3ReleaseTempReg(pParse, r1);
   610       break;
   611     }
   612 
   613     /* Construct a record from the query result, but instead of
   614     ** saving that record, use it as a key to delete elements from
   615     ** the temporary table iParm.
   616     */
   617     case SRT_Except: {
   618       sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nColumn);
   619       break;
   620     }
   621 #endif
   622 
   623     /* Store the result as data using a unique key.
   624     */
   625     case SRT_Table:
   626     case SRT_EphemTab: {
   627       int r1 = sqlite3GetTempReg(pParse);
   628       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1);
   629       if( pOrderBy ){
   630         pushOntoSorter(pParse, pOrderBy, p, r1);
   631       }else{
   632         int r2 = sqlite3GetTempReg(pParse);
   633         sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2);
   634         sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2);
   635         sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
   636         sqlite3ReleaseTempReg(pParse, r2);
   637       }
   638       sqlite3ReleaseTempReg(pParse, r1);
   639       break;
   640     }
   641 
   642 #ifndef SQLITE_OMIT_SUBQUERY
   643     /* If we are creating a set for an "expr IN (SELECT ...)" construct,
   644     ** then there should be a single item on the stack.  Write this
   645     ** item into the set table with bogus data.
   646     */
   647     case SRT_Set: {
   648       assert( nColumn==1 );
   649       p->affinity = sqlite3CompareAffinity(pEList->a[0].pExpr, pDest->affinity);
   650       if( pOrderBy ){
   651         /* At first glance you would think we could optimize out the
   652         ** ORDER BY in this case since the order of entries in the set
   653         ** does not matter.  But there might be a LIMIT clause, in which
   654         ** case the order does matter */
   655         pushOntoSorter(pParse, pOrderBy, p, regResult);
   656       }else{
   657         int r1 = sqlite3GetTempReg(pParse);
   658         sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, 1, r1, &p->affinity, 1);
   659         sqlite3ExprCacheAffinityChange(pParse, regResult, 1);
   660         sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
   661         sqlite3ReleaseTempReg(pParse, r1);
   662       }
   663       break;
   664     }
   665 
   666     /* If any row exist in the result set, record that fact and abort.
   667     */
   668     case SRT_Exists: {
   669       sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm);
   670       /* The LIMIT clause will terminate the loop for us */
   671       break;
   672     }
   673 
   674     /* If this is a scalar select that is part of an expression, then
   675     ** store the results in the appropriate memory cell and break out
   676     ** of the scan loop.
   677     */
   678     case SRT_Mem: {
   679       assert( nColumn==1 );
   680       if( pOrderBy ){
   681         pushOntoSorter(pParse, pOrderBy, p, regResult);
   682       }else{
   683         sqlite3ExprCodeMove(pParse, regResult, iParm, 1);
   684         /* The LIMIT clause will jump out of the loop for us */
   685       }
   686       break;
   687     }
   688 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
   689 
   690     /* Send the data to the callback function or to a subroutine.  In the
   691     ** case of a subroutine, the subroutine itself is responsible for
   692     ** popping the data from the stack.
   693     */
   694     case SRT_Coroutine:
   695     case SRT_Output: {
   696       if( pOrderBy ){
   697         int r1 = sqlite3GetTempReg(pParse);
   698         sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1);
   699         pushOntoSorter(pParse, pOrderBy, p, r1);
   700         sqlite3ReleaseTempReg(pParse, r1);
   701       }else if( eDest==SRT_Coroutine ){
   702         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm);
   703       }else{
   704         sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nColumn);
   705         sqlite3ExprCacheAffinityChange(pParse, regResult, nColumn);
   706       }
   707       break;
   708     }
   709 
   710 #if !defined(SQLITE_OMIT_TRIGGER)
   711     /* Discard the results.  This is used for SELECT statements inside
   712     ** the body of a TRIGGER.  The purpose of such selects is to call
   713     ** user-defined functions that have side effects.  We do not care
   714     ** about the actual results of the select.
   715     */
   716     default: {
   717       assert( eDest==SRT_Discard );
   718       break;
   719     }
   720 #endif
   721   }
   722 
   723   /* Jump to the end of the loop if the LIMIT is reached.
   724   */
   725   if( p->iLimit ){
   726     assert( pOrderBy==0 );  /* If there is an ORDER BY, the call to
   727                             ** pushOntoSorter() would have cleared p->iLimit */
   728     sqlite3VdbeAddOp2(v, OP_AddImm, p->iLimit, -1);
   729     sqlite3VdbeAddOp2(v, OP_IfZero, p->iLimit, iBreak);
   730   }
   731 }
   732 
   733 /*
   734 ** Given an expression list, generate a KeyInfo structure that records
   735 ** the collating sequence for each expression in that expression list.
   736 **
   737 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
   738 ** KeyInfo structure is appropriate for initializing a virtual index to
   739 ** implement that clause.  If the ExprList is the result set of a SELECT
   740 ** then the KeyInfo structure is appropriate for initializing a virtual
   741 ** index to implement a DISTINCT test.
   742 **
   743 ** Space to hold the KeyInfo structure is obtain from malloc.  The calling
   744 ** function is responsible for seeing that this structure is eventually
   745 ** freed.  Add the KeyInfo structure to the P4 field of an opcode using
   746 ** P4_KEYINFO_HANDOFF is the usual way of dealing with this.
   747 */
   748 static KeyInfo *keyInfoFromExprList(Parse *pParse, ExprList *pList){
   749   sqlite3 *db = pParse->db;
   750   int nExpr;
   751   KeyInfo *pInfo;
   752   struct ExprList_item *pItem;
   753   int i;
   754 
   755   nExpr = pList->nExpr;
   756   pInfo = sqlite3DbMallocZero(db, sizeof(*pInfo) + nExpr*(sizeof(CollSeq*)+1) );
   757   if( pInfo ){
   758     pInfo->aSortOrder = (u8*)&pInfo->aColl[nExpr];
   759     pInfo->nField = nExpr;
   760     pInfo->enc = ENC(db);
   761     for(i=0, pItem=pList->a; i<nExpr; i++, pItem++){
   762       CollSeq *pColl;
   763       pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
   764       if( !pColl ){
   765         pColl = db->pDfltColl;
   766       }
   767       pInfo->aColl[i] = pColl;
   768       pInfo->aSortOrder[i] = pItem->sortOrder;
   769     }
   770   }
   771   return pInfo;
   772 }
   773 
   774 
   775 /*
   776 ** If the inner loop was generated using a non-null pOrderBy argument,
   777 ** then the results were placed in a sorter.  After the loop is terminated
   778 ** we need to run the sorter and output the results.  The following
   779 ** routine generates the code needed to do that.
   780 */
   781 static void generateSortTail(
   782   Parse *pParse,    /* Parsing context */
   783   Select *p,        /* The SELECT statement */
   784   Vdbe *v,          /* Generate code into this VDBE */
   785   int nColumn,      /* Number of columns of data */
   786   SelectDest *pDest /* Write the sorted results here */
   787 ){
   788   int brk = sqlite3VdbeMakeLabel(v);
   789   int cont = sqlite3VdbeMakeLabel(v);
   790   int addr;
   791   int iTab;
   792   int pseudoTab = 0;
   793   ExprList *pOrderBy = p->pOrderBy;
   794 
   795   int eDest = pDest->eDest;
   796   int iParm = pDest->iParm;
   797 
   798   int regRow;
   799   int regRowid;
   800 
   801   iTab = pOrderBy->iECursor;
   802   if( eDest==SRT_Output || eDest==SRT_Coroutine ){
   803     pseudoTab = pParse->nTab++;
   804     sqlite3VdbeAddOp2(v, OP_SetNumColumns, 0, nColumn);
   805     sqlite3VdbeAddOp2(v, OP_OpenPseudo, pseudoTab, eDest==SRT_Output);
   806   }
   807   addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, brk);
   808   codeOffset(v, p, cont);
   809   regRow = sqlite3GetTempReg(pParse);
   810   regRowid = sqlite3GetTempReg(pParse);
   811   sqlite3VdbeAddOp3(v, OP_Column, iTab, pOrderBy->nExpr + 1, regRow);
   812   switch( eDest ){
   813     case SRT_Table:
   814     case SRT_EphemTab: {
   815       sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid);
   816       sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid);
   817       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
   818       break;
   819     }
   820 #ifndef SQLITE_OMIT_SUBQUERY
   821     case SRT_Set: {
   822       assert( nColumn==1 );
   823       sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, 1, regRowid, &p->affinity, 1);
   824       sqlite3ExprCacheAffinityChange(pParse, regRow, 1);
   825       sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, regRowid);
   826       break;
   827     }
   828     case SRT_Mem: {
   829       assert( nColumn==1 );
   830       sqlite3ExprCodeMove(pParse, regRow, iParm, 1);
   831       /* The LIMIT clause will terminate the loop for us */
   832       break;
   833     }
   834 #endif
   835     case SRT_Output:
   836     case SRT_Coroutine: {
   837       int i;
   838       sqlite3VdbeAddOp2(v, OP_Integer, 1, regRowid);
   839       sqlite3VdbeAddOp3(v, OP_Insert, pseudoTab, regRow, regRowid);
   840       for(i=0; i<nColumn; i++){
   841         assert( regRow!=pDest->iMem+i );
   842         sqlite3VdbeAddOp3(v, OP_Column, pseudoTab, i, pDest->iMem+i);
   843       }
   844       if( eDest==SRT_Output ){
   845         sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iMem, nColumn);
   846         sqlite3ExprCacheAffinityChange(pParse, pDest->iMem, nColumn);
   847       }else{
   848         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm);
   849       }
   850       break;
   851     }
   852     default: {
   853       /* Do nothing */
   854       break;
   855     }
   856   }
   857   sqlite3ReleaseTempReg(pParse, regRow);
   858   sqlite3ReleaseTempReg(pParse, regRowid);
   859 
   860   /* LIMIT has been implemented by the pushOntoSorter() routine.
   861   */
   862   assert( p->iLimit==0 );
   863 
   864   /* The bottom of the loop
   865   */
   866   sqlite3VdbeResolveLabel(v, cont);
   867   sqlite3VdbeAddOp2(v, OP_Next, iTab, addr);
   868   sqlite3VdbeResolveLabel(v, brk);
   869   if( eDest==SRT_Output || eDest==SRT_Coroutine ){
   870     sqlite3VdbeAddOp2(v, OP_Close, pseudoTab, 0);
   871   }
   872 
   873 }
   874 
   875 /*
   876 ** Return a pointer to a string containing the 'declaration type' of the
   877 ** expression pExpr. The string may be treated as static by the caller.
   878 **
   879 ** The declaration type is the exact datatype definition extracted from the
   880 ** original CREATE TABLE statement if the expression is a column. The
   881 ** declaration type for a ROWID field is INTEGER. Exactly when an expression
   882 ** is considered a column can be complex in the presence of subqueries. The
   883 ** result-set expression in all of the following SELECT statements is 
   884 ** considered a column by this function.
   885 **
   886 **   SELECT col FROM tbl;
   887 **   SELECT (SELECT col FROM tbl;
   888 **   SELECT (SELECT col FROM tbl);
   889 **   SELECT abc FROM (SELECT col AS abc FROM tbl);
   890 ** 
   891 ** The declaration type for any expression other than a column is NULL.
   892 */
   893 static const char *columnType(
   894   NameContext *pNC, 
   895   Expr *pExpr,
   896   const char **pzOriginDb,
   897   const char **pzOriginTab,
   898   const char **pzOriginCol
   899 ){
   900   char const *zType = 0;
   901   char const *zOriginDb = 0;
   902   char const *zOriginTab = 0;
   903   char const *zOriginCol = 0;
   904   int j;
   905   if( pExpr==0 || pNC->pSrcList==0 ) return 0;
   906 
   907   switch( pExpr->op ){
   908     case TK_AGG_COLUMN:
   909     case TK_COLUMN: {
   910       /* The expression is a column. Locate the table the column is being
   911       ** extracted from in NameContext.pSrcList. This table may be real
   912       ** database table or a subquery.
   913       */
   914       Table *pTab = 0;            /* Table structure column is extracted from */
   915       Select *pS = 0;             /* Select the column is extracted from */
   916       int iCol = pExpr->iColumn;  /* Index of column in pTab */
   917       while( pNC && !pTab ){
   918         SrcList *pTabList = pNC->pSrcList;
   919         for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++);
   920         if( j<pTabList->nSrc ){
   921           pTab = pTabList->a[j].pTab;
   922           pS = pTabList->a[j].pSelect;
   923         }else{
   924           pNC = pNC->pNext;
   925         }
   926       }
   927 
   928       if( pTab==0 ){
   929         /* FIX ME:
   930         ** This can occurs if you have something like "SELECT new.x;" inside
   931         ** a trigger.  In other words, if you reference the special "new"
   932         ** table in the result set of a select.  We do not have a good way
   933         ** to find the actual table type, so call it "TEXT".  This is really
   934         ** something of a bug, but I do not know how to fix it.
   935         **
   936         ** This code does not produce the correct answer - it just prevents
   937         ** a segfault.  See ticket #1229.
   938         */
   939         zType = "TEXT";
   940         break;
   941       }
   942 
   943       assert( pTab );
   944       if( pS ){
   945         /* The "table" is actually a sub-select or a view in the FROM clause
   946         ** of the SELECT statement. Return the declaration type and origin
   947         ** data for the result-set column of the sub-select.
   948         */
   949         if( iCol>=0 && iCol<pS->pEList->nExpr ){
   950           /* If iCol is less than zero, then the expression requests the
   951           ** rowid of the sub-select or view. This expression is legal (see 
   952           ** test case misc2.2.2) - it always evaluates to NULL.
   953           */
   954           NameContext sNC;
   955           Expr *p = pS->pEList->a[iCol].pExpr;
   956           sNC.pSrcList = pS->pSrc;
   957           sNC.pNext = 0;
   958           sNC.pParse = pNC->pParse;
   959           zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol); 
   960         }
   961       }else if( pTab->pSchema ){
   962         /* A real table */
   963         assert( !pS );
   964         if( iCol<0 ) iCol = pTab->iPKey;
   965         assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
   966         if( iCol<0 ){
   967           zType = "INTEGER";
   968           zOriginCol = "rowid";
   969         }else{
   970           zType = pTab->aCol[iCol].zType;
   971           zOriginCol = pTab->aCol[iCol].zName;
   972         }
   973         zOriginTab = pTab->zName;
   974         if( pNC->pParse ){
   975           int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema);
   976           zOriginDb = pNC->pParse->db->aDb[iDb].zName;
   977         }
   978       }
   979       break;
   980     }
   981 #ifndef SQLITE_OMIT_SUBQUERY
   982     case TK_SELECT: {
   983       /* The expression is a sub-select. Return the declaration type and
   984       ** origin info for the single column in the result set of the SELECT
   985       ** statement.
   986       */
   987       NameContext sNC;
   988       Select *pS = pExpr->pSelect;
   989       Expr *p = pS->pEList->a[0].pExpr;
   990       sNC.pSrcList = pS->pSrc;
   991       sNC.pNext = pNC;
   992       sNC.pParse = pNC->pParse;
   993       zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol); 
   994       break;
   995     }
   996 #endif
   997   }
   998   
   999   if( pzOriginDb ){
  1000     assert( pzOriginTab && pzOriginCol );
  1001     *pzOriginDb = zOriginDb;
  1002     *pzOriginTab = zOriginTab;
  1003     *pzOriginCol = zOriginCol;
  1004   }
  1005   return zType;
  1006 }
  1007 
  1008 /*
  1009 ** Generate code that will tell the VDBE the declaration types of columns
  1010 ** in the result set.
  1011 */
  1012 static void generateColumnTypes(
  1013   Parse *pParse,      /* Parser context */
  1014   SrcList *pTabList,  /* List of tables */
  1015   ExprList *pEList    /* Expressions defining the result set */
  1016 ){
  1017 #ifndef SQLITE_OMIT_DECLTYPE
  1018   Vdbe *v = pParse->pVdbe;
  1019   int i;
  1020   NameContext sNC;
  1021   sNC.pSrcList = pTabList;
  1022   sNC.pParse = pParse;
  1023   for(i=0; i<pEList->nExpr; i++){
  1024     Expr *p = pEList->a[i].pExpr;
  1025     const char *zType;
  1026 #ifdef SQLITE_ENABLE_COLUMN_METADATA
  1027     const char *zOrigDb = 0;
  1028     const char *zOrigTab = 0;
  1029     const char *zOrigCol = 0;
  1030     zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
  1031 
  1032     /* The vdbe must make its own copy of the column-type and other 
  1033     ** column specific strings, in case the schema is reset before this
  1034     ** virtual machine is deleted.
  1035     */
  1036     sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, P4_TRANSIENT);
  1037     sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, P4_TRANSIENT);
  1038     sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, P4_TRANSIENT);
  1039 #else
  1040     zType = columnType(&sNC, p, 0, 0, 0);
  1041 #endif
  1042     sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, P4_TRANSIENT);
  1043   }
  1044 #endif /* SQLITE_OMIT_DECLTYPE */
  1045 }
  1046 
  1047 /*
  1048 ** Generate code that will tell the VDBE the names of columns
  1049 ** in the result set.  This information is used to provide the
  1050 ** azCol[] values in the callback.
  1051 */
  1052 static void generateColumnNames(
  1053   Parse *pParse,      /* Parser context */
  1054   SrcList *pTabList,  /* List of tables */
  1055   ExprList *pEList    /* Expressions defining the result set */
  1056 ){
  1057   Vdbe *v = pParse->pVdbe;
  1058   int i, j;
  1059   sqlite3 *db = pParse->db;
  1060   int fullNames, shortNames;
  1061 
  1062 #ifndef SQLITE_OMIT_EXPLAIN
  1063   /* If this is an EXPLAIN, skip this step */
  1064   if( pParse->explain ){
  1065     return;
  1066   }
  1067 #endif
  1068 
  1069   assert( v!=0 );
  1070   if( pParse->colNamesSet || v==0 || db->mallocFailed ) return;
  1071   pParse->colNamesSet = 1;
  1072   fullNames = (db->flags & SQLITE_FullColNames)!=0;
  1073   shortNames = (db->flags & SQLITE_ShortColNames)!=0;
  1074   sqlite3VdbeSetNumCols(v, pEList->nExpr);
  1075   for(i=0; i<pEList->nExpr; i++){
  1076     Expr *p;
  1077     p = pEList->a[i].pExpr;
  1078     if( p==0 ) continue;
  1079     if( pEList->a[i].zName ){
  1080       char *zName = pEList->a[i].zName;
  1081       sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, strlen(zName));
  1082     }else if( (p->op==TK_COLUMN || p->op==TK_AGG_COLUMN) && pTabList ){
  1083       Table *pTab;
  1084       char *zCol;
  1085       int iCol = p->iColumn;
  1086       for(j=0; j<pTabList->nSrc && pTabList->a[j].iCursor!=p->iTable; j++){}
  1087       assert( j<pTabList->nSrc );
  1088       pTab = pTabList->a[j].pTab;
  1089       if( iCol<0 ) iCol = pTab->iPKey;
  1090       assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
  1091       if( iCol<0 ){
  1092         zCol = "rowid";
  1093       }else{
  1094         zCol = pTab->aCol[iCol].zName;
  1095       }
  1096       if( !shortNames && !fullNames ){
  1097         sqlite3VdbeSetColName(v, i, COLNAME_NAME, (char*)p->span.z, p->span.n);
  1098       }else if( fullNames || (!shortNames && pTabList->nSrc>1) ){
  1099         char *zName = 0;
  1100         char *zTab;
  1101  
  1102         zTab = pTabList->a[j].zAlias;
  1103         if( fullNames || zTab==0 ) zTab = pTab->zName;
  1104         zName = sqlite3MPrintf(db, "%s.%s", zTab, zCol);
  1105         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, P4_DYNAMIC);
  1106       }else{
  1107         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, strlen(zCol));
  1108       }
  1109     }else{
  1110       sqlite3VdbeSetColName(v, i, COLNAME_NAME, (char*)p->span.z, p->span.n);
  1111     }
  1112   }
  1113   generateColumnTypes(pParse, pTabList, pEList);
  1114 }
  1115 
  1116 #ifndef SQLITE_OMIT_COMPOUND_SELECT
  1117 /*
  1118 ** Name of the connection operator, used for error messages.
  1119 */
  1120 static const char *selectOpName(int id){
  1121   char *z;
  1122   switch( id ){
  1123     case TK_ALL:       z = "UNION ALL";   break;
  1124     case TK_INTERSECT: z = "INTERSECT";   break;
  1125     case TK_EXCEPT:    z = "EXCEPT";      break;
  1126     default:           z = "UNION";       break;
  1127   }
  1128   return z;
  1129 }
  1130 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
  1131 
  1132 /*
  1133 ** Given a an expression list (which is really the list of expressions
  1134 ** that form the result set of a SELECT statement) compute appropriate
  1135 ** column names for a table that would hold the expression list.
  1136 **
  1137 ** All column names will be unique.
  1138 **
  1139 ** Only the column names are computed.  Column.zType, Column.zColl,
  1140 ** and other fields of Column are zeroed.
  1141 **
  1142 ** Return SQLITE_OK on success.  If a memory allocation error occurs,
  1143 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM.
  1144 */
  1145 static int selectColumnsFromExprList(
  1146   Parse *pParse,          /* Parsing context */
  1147   ExprList *pEList,       /* Expr list from which to derive column names */
  1148   int *pnCol,             /* Write the number of columns here */
  1149   Column **paCol          /* Write the new column list here */
  1150 ){
  1151   sqlite3 *db = pParse->db;
  1152   int i, j, cnt;
  1153   Column *aCol, *pCol;
  1154   int nCol;
  1155   Expr *p;
  1156   char *zName;
  1157   int nName;
  1158 
  1159   *pnCol = nCol = pEList->nExpr;
  1160   aCol = *paCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol);
  1161   if( aCol==0 ) return SQLITE_NOMEM;
  1162   for(i=0, pCol=aCol; i<nCol; i++, pCol++){
  1163     /* Get an appropriate name for the column
  1164     */
  1165     p = pEList->a[i].pExpr;
  1166     assert( p->pRight==0 || p->pRight->token.z==0 || p->pRight->token.z[0]!=0 );
  1167     if( (zName = pEList->a[i].zName)!=0 ){
  1168       /* If the column contains an "AS <name>" phrase, use <name> as the name */
  1169       zName = sqlite3DbStrDup(db, zName);
  1170     }else{
  1171       Expr *pCol = p;
  1172       Table *pTab;
  1173       while( pCol->op==TK_DOT ) pCol = pCol->pRight;
  1174       if( pCol->op==TK_COLUMN && (pTab = pCol->pTab)!=0 ){
  1175         /* For columns use the column name name */
  1176         int iCol = pCol->iColumn;
  1177         if( iCol<0 ) iCol = pTab->iPKey;
  1178         zName = sqlite3MPrintf(db, "%s",
  1179                  iCol>=0 ? pTab->aCol[iCol].zName : "rowid");
  1180       }else{
  1181         /* Use the original text of the column expression as its name */
  1182         Token *pToken = (pCol->span.z?&pCol->span:&pCol->token);
  1183         zName = sqlite3MPrintf(db, "%T", pToken);
  1184       }
  1185     }
  1186     if( db->mallocFailed ){
  1187       sqlite3DbFree(db, zName);
  1188       break;
  1189     }
  1190     sqlite3Dequote(zName);
  1191 
  1192     /* Make sure the column name is unique.  If the name is not unique,
  1193     ** append a integer to the name so that it becomes unique.
  1194     */
  1195     nName = strlen(zName);
  1196     for(j=cnt=0; j<i; j++){
  1197       if( sqlite3StrICmp(aCol[j].zName, zName)==0 ){
  1198         char *zNewName;
  1199         zName[nName] = 0;
  1200         zNewName = sqlite3MPrintf(db, "%s:%d", zName, ++cnt);
  1201         sqlite3DbFree(db, zName);
  1202         zName = zNewName;
  1203         j = -1;
  1204         if( zName==0 ) break;
  1205       }
  1206     }
  1207     pCol->zName = zName;
  1208   }
  1209   if( db->mallocFailed ){
  1210     int j;
  1211     for(j=0; j<i; j++){
  1212       sqlite3DbFree(db, aCol[j].zName);
  1213     }
  1214     sqlite3DbFree(db, aCol);
  1215     *paCol = 0;
  1216     *pnCol = 0;
  1217     return SQLITE_NOMEM;
  1218   }
  1219   return SQLITE_OK;
  1220 }
  1221 
  1222 /*
  1223 ** Add type and collation information to a column list based on
  1224 ** a SELECT statement.
  1225 ** 
  1226 ** The column list presumably came from selectColumnNamesFromExprList().
  1227 ** The column list has only names, not types or collations.  This
  1228 ** routine goes through and adds the types and collations.
  1229 **
  1230 ** This routine requires that all indentifiers in the SELECT
  1231 ** statement be resolved.
  1232 */
  1233 static void selectAddColumnTypeAndCollation(
  1234   Parse *pParse,        /* Parsing contexts */
  1235   int nCol,             /* Number of columns */
  1236   Column *aCol,         /* List of columns */
  1237   Select *pSelect       /* SELECT used to determine types and collations */
  1238 ){
  1239   sqlite3 *db = pParse->db;
  1240   NameContext sNC;
  1241   Column *pCol;
  1242   CollSeq *pColl;
  1243   int i;
  1244   Expr *p;
  1245   struct ExprList_item *a;
  1246 
  1247   assert( pSelect!=0 );
  1248   assert( (pSelect->selFlags & SF_Resolved)!=0 );
  1249   assert( nCol==pSelect->pEList->nExpr || db->mallocFailed );
  1250   if( db->mallocFailed ) return;
  1251   memset(&sNC, 0, sizeof(sNC));
  1252   sNC.pSrcList = pSelect->pSrc;
  1253   a = pSelect->pEList->a;
  1254   for(i=0, pCol=aCol; i<nCol; i++, pCol++){
  1255     p = a[i].pExpr;
  1256     pCol->zType = sqlite3DbStrDup(db, columnType(&sNC, p, 0, 0, 0));
  1257     pCol->affinity = sqlite3ExprAffinity(p);
  1258     pColl = sqlite3ExprCollSeq(pParse, p);
  1259     if( pColl ){
  1260       pCol->zColl = sqlite3DbStrDup(db, pColl->zName);
  1261     }
  1262   }
  1263 }
  1264 
  1265 /*
  1266 ** Given a SELECT statement, generate a Table structure that describes
  1267 ** the result set of that SELECT.
  1268 */
  1269 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){
  1270   Table *pTab;
  1271   sqlite3 *db = pParse->db;
  1272   int savedFlags;
  1273 
  1274   savedFlags = db->flags;
  1275   db->flags &= ~SQLITE_FullColNames;
  1276   db->flags |= SQLITE_ShortColNames;
  1277   sqlite3SelectPrep(pParse, pSelect, 0);
  1278   if( pParse->nErr ) return 0;
  1279   while( pSelect->pPrior ) pSelect = pSelect->pPrior;
  1280   db->flags = savedFlags;
  1281   pTab = sqlite3DbMallocZero(db, sizeof(Table) );
  1282   if( pTab==0 ){
  1283     return 0;
  1284   }
  1285   pTab->db = db;
  1286   pTab->nRef = 1;
  1287   pTab->zName = 0;
  1288   selectColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol);
  1289   selectAddColumnTypeAndCollation(pParse, pTab->nCol, pTab->aCol, pSelect);
  1290   pTab->iPKey = -1;
  1291   if( db->mallocFailed ){
  1292     sqlite3DeleteTable(pTab);
  1293     return 0;
  1294   }
  1295   return pTab;
  1296 }
  1297 
  1298 /*
  1299 ** Get a VDBE for the given parser context.  Create a new one if necessary.
  1300 ** If an error occurs, return NULL and leave a message in pParse.
  1301 */
  1302 Vdbe *sqlite3GetVdbe(Parse *pParse){
  1303   Vdbe *v = pParse->pVdbe;
  1304   if( v==0 ){
  1305     v = pParse->pVdbe = sqlite3VdbeCreate(pParse->db);
  1306 #ifndef SQLITE_OMIT_TRACE
  1307     if( v ){
  1308       sqlite3VdbeAddOp0(v, OP_Trace);
  1309     }
  1310 #endif
  1311   }
  1312   return v;
  1313 }
  1314 
  1315 
  1316 /*
  1317 ** Compute the iLimit and iOffset fields of the SELECT based on the
  1318 ** pLimit and pOffset expressions.  pLimit and pOffset hold the expressions
  1319 ** that appear in the original SQL statement after the LIMIT and OFFSET
  1320 ** keywords.  Or NULL if those keywords are omitted. iLimit and iOffset 
  1321 ** are the integer memory register numbers for counters used to compute 
  1322 ** the limit and offset.  If there is no limit and/or offset, then 
  1323 ** iLimit and iOffset are negative.
  1324 **
  1325 ** This routine changes the values of iLimit and iOffset only if
  1326 ** a limit or offset is defined by pLimit and pOffset.  iLimit and
  1327 ** iOffset should have been preset to appropriate default values
  1328 ** (usually but not always -1) prior to calling this routine.
  1329 ** Only if pLimit!=0 or pOffset!=0 do the limit registers get
  1330 ** redefined.  The UNION ALL operator uses this property to force
  1331 ** the reuse of the same limit and offset registers across multiple
  1332 ** SELECT statements.
  1333 */
  1334 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){
  1335   Vdbe *v = 0;
  1336   int iLimit = 0;
  1337   int iOffset;
  1338   int addr1;
  1339   if( p->iLimit ) return;
  1340 
  1341   /* 
  1342   ** "LIMIT -1" always shows all rows.  There is some
  1343   ** contraversy about what the correct behavior should be.
  1344   ** The current implementation interprets "LIMIT 0" to mean
  1345   ** no rows.
  1346   */
  1347   if( p->pLimit ){
  1348     p->iLimit = iLimit = ++pParse->nMem;
  1349     v = sqlite3GetVdbe(pParse);
  1350     if( v==0 ) return;
  1351     sqlite3ExprCode(pParse, p->pLimit, iLimit);
  1352     sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit);
  1353     VdbeComment((v, "LIMIT counter"));
  1354     sqlite3VdbeAddOp2(v, OP_IfZero, iLimit, iBreak);
  1355   }
  1356   if( p->pOffset ){
  1357     p->iOffset = iOffset = ++pParse->nMem;
  1358     if( p->pLimit ){
  1359       pParse->nMem++;   /* Allocate an extra register for limit+offset */
  1360     }
  1361     v = sqlite3GetVdbe(pParse);
  1362     if( v==0 ) return;
  1363     sqlite3ExprCode(pParse, p->pOffset, iOffset);
  1364     sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset);
  1365     VdbeComment((v, "OFFSET counter"));
  1366     addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iOffset);
  1367     sqlite3VdbeAddOp2(v, OP_Integer, 0, iOffset);
  1368     sqlite3VdbeJumpHere(v, addr1);
  1369     if( p->pLimit ){
  1370       sqlite3VdbeAddOp3(v, OP_Add, iLimit, iOffset, iOffset+1);
  1371       VdbeComment((v, "LIMIT+OFFSET"));
  1372       addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iLimit);
  1373       sqlite3VdbeAddOp2(v, OP_Integer, -1, iOffset+1);
  1374       sqlite3VdbeJumpHere(v, addr1);
  1375     }
  1376   }
  1377 }
  1378 
  1379 #ifndef SQLITE_OMIT_COMPOUND_SELECT
  1380 /*
  1381 ** Return the appropriate collating sequence for the iCol-th column of
  1382 ** the result set for the compound-select statement "p".  Return NULL if
  1383 ** the column has no default collating sequence.
  1384 **
  1385 ** The collating sequence for the compound select is taken from the
  1386 ** left-most term of the select that has a collating sequence.
  1387 */
  1388 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){
  1389   CollSeq *pRet;
  1390   if( p->pPrior ){
  1391     pRet = multiSelectCollSeq(pParse, p->pPrior, iCol);
  1392   }else{
  1393     pRet = 0;
  1394   }
  1395   if( pRet==0 ){
  1396     pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
  1397   }
  1398   return pRet;
  1399 }
  1400 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
  1401 
  1402 /* Forward reference */
  1403 static int multiSelectOrderBy(
  1404   Parse *pParse,        /* Parsing context */
  1405   Select *p,            /* The right-most of SELECTs to be coded */
  1406   SelectDest *pDest     /* What to do with query results */
  1407 );
  1408 
  1409 
  1410 #ifndef SQLITE_OMIT_COMPOUND_SELECT
  1411 /*
  1412 ** This routine is called to process a compound query form from
  1413 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or
  1414 ** INTERSECT
  1415 **
  1416 ** "p" points to the right-most of the two queries.  the query on the
  1417 ** left is p->pPrior.  The left query could also be a compound query
  1418 ** in which case this routine will be called recursively. 
  1419 **
  1420 ** The results of the total query are to be written into a destination
  1421 ** of type eDest with parameter iParm.
  1422 **
  1423 ** Example 1:  Consider a three-way compound SQL statement.
  1424 **
  1425 **     SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
  1426 **
  1427 ** This statement is parsed up as follows:
  1428 **
  1429 **     SELECT c FROM t3
  1430 **      |
  1431 **      `----->  SELECT b FROM t2
  1432 **                |
  1433 **                `------>  SELECT a FROM t1
  1434 **
  1435 ** The arrows in the diagram above represent the Select.pPrior pointer.
  1436 ** So if this routine is called with p equal to the t3 query, then
  1437 ** pPrior will be the t2 query.  p->op will be TK_UNION in this case.
  1438 **
  1439 ** Notice that because of the way SQLite parses compound SELECTs, the
  1440 ** individual selects always group from left to right.
  1441 */
  1442 static int multiSelect(
  1443   Parse *pParse,        /* Parsing context */
  1444   Select *p,            /* The right-most of SELECTs to be coded */
  1445   SelectDest *pDest     /* What to do with query results */
  1446 ){
  1447   int rc = SQLITE_OK;   /* Success code from a subroutine */
  1448   Select *pPrior;       /* Another SELECT immediately to our left */
  1449   Vdbe *v;              /* Generate code to this VDBE */
  1450   SelectDest dest;      /* Alternative data destination */
  1451   Select *pDelete = 0;  /* Chain of simple selects to delete */
  1452   sqlite3 *db;          /* Database connection */
  1453 
  1454   /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs.  Only
  1455   ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
  1456   */
  1457   assert( p && p->pPrior );  /* Calling function guarantees this much */
  1458   db = pParse->db;
  1459   pPrior = p->pPrior;
  1460   assert( pPrior->pRightmost!=pPrior );
  1461   assert( pPrior->pRightmost==p->pRightmost );
  1462   dest = *pDest;
  1463   if( pPrior->pOrderBy ){
  1464     sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before",
  1465       selectOpName(p->op));
  1466     rc = 1;
  1467     goto multi_select_end;
  1468   }
  1469   if( pPrior->pLimit ){
  1470     sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before",
  1471       selectOpName(p->op));
  1472     rc = 1;
  1473     goto multi_select_end;
  1474   }
  1475 
  1476   v = sqlite3GetVdbe(pParse);
  1477   assert( v!=0 );  /* The VDBE already created by calling function */
  1478 
  1479   /* Create the destination temporary table if necessary
  1480   */
  1481   if( dest.eDest==SRT_EphemTab ){
  1482     assert( p->pEList );
  1483     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iParm, p->pEList->nExpr);
  1484     dest.eDest = SRT_Table;
  1485   }
  1486 
  1487   /* Make sure all SELECTs in the statement have the same number of elements
  1488   ** in their result sets.
  1489   */
  1490   assert( p->pEList && pPrior->pEList );
  1491   if( p->pEList->nExpr!=pPrior->pEList->nExpr ){
  1492     sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
  1493       " do not have the same number of result columns", selectOpName(p->op));
  1494     rc = 1;
  1495     goto multi_select_end;
  1496   }
  1497 
  1498   /* Compound SELECTs that have an ORDER BY clause are handled separately.
  1499   */
  1500   if( p->pOrderBy ){
  1501     return multiSelectOrderBy(pParse, p, pDest);
  1502   }
  1503 
  1504   /* Generate code for the left and right SELECT statements.
  1505   */
  1506   switch( p->op ){
  1507     case TK_ALL: {
  1508       int addr = 0;
  1509       assert( !pPrior->pLimit );
  1510       pPrior->pLimit = p->pLimit;
  1511       pPrior->pOffset = p->pOffset;
  1512       rc = sqlite3Select(pParse, pPrior, &dest);
  1513       p->pLimit = 0;
  1514       p->pOffset = 0;
  1515       if( rc ){
  1516         goto multi_select_end;
  1517       }
  1518       p->pPrior = 0;
  1519       p->iLimit = pPrior->iLimit;
  1520       p->iOffset = pPrior->iOffset;
  1521       if( p->iLimit ){
  1522         addr = sqlite3VdbeAddOp1(v, OP_IfZero, p->iLimit);
  1523         VdbeComment((v, "Jump ahead if LIMIT reached"));
  1524       }
  1525       rc = sqlite3Select(pParse, p, &dest);
  1526       pDelete = p->pPrior;
  1527       p->pPrior = pPrior;
  1528       if( rc ){
  1529         goto multi_select_end;
  1530       }
  1531       if( addr ){
  1532         sqlite3VdbeJumpHere(v, addr);
  1533       }
  1534       break;
  1535     }
  1536     case TK_EXCEPT:
  1537     case TK_UNION: {
  1538       int unionTab;    /* Cursor number of the temporary table holding result */
  1539       int op = 0;      /* One of the SRT_ operations to apply to self */
  1540       int priorOp;     /* The SRT_ operation to apply to prior selects */
  1541       Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */
  1542       int addr;
  1543       SelectDest uniondest;
  1544 
  1545       priorOp = SRT_Union;
  1546       if( dest.eDest==priorOp && !p->pLimit && !p->pOffset ){
  1547         /* We can reuse a temporary table generated by a SELECT to our
  1548         ** right.
  1549         */
  1550         unionTab = dest.iParm;
  1551       }else{
  1552         /* We will need to create our own temporary table to hold the
  1553         ** intermediate results.
  1554         */
  1555         unionTab = pParse->nTab++;
  1556         assert( p->pOrderBy==0 );
  1557         addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0);
  1558         assert( p->addrOpenEphm[0] == -1 );
  1559         p->addrOpenEphm[0] = addr;
  1560         p->pRightmost->selFlags |= SF_UsesEphemeral;
  1561         assert( p->pEList );
  1562       }
  1563 
  1564       /* Code the SELECT statements to our left
  1565       */
  1566       assert( !pPrior->pOrderBy );
  1567       sqlite3SelectDestInit(&uniondest, priorOp, unionTab);
  1568       rc = sqlite3Select(pParse, pPrior, &uniondest);
  1569       if( rc ){
  1570         goto multi_select_end;
  1571       }
  1572 
  1573       /* Code the current SELECT statement
  1574       */
  1575       if( p->op==TK_EXCEPT ){
  1576         op = SRT_Except;
  1577       }else{
  1578         assert( p->op==TK_UNION );
  1579         op = SRT_Union;
  1580       }
  1581       p->pPrior = 0;
  1582       pLimit = p->pLimit;
  1583       p->pLimit = 0;
  1584       pOffset = p->pOffset;
  1585       p->pOffset = 0;
  1586       uniondest.eDest = op;
  1587       rc = sqlite3Select(pParse, p, &uniondest);
  1588       /* Query flattening in sqlite3Select() might refill p->pOrderBy.
  1589       ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */
  1590       sqlite3ExprListDelete(db, p->pOrderBy);
  1591       pDelete = p->pPrior;
  1592       p->pPrior = pPrior;
  1593       p->pOrderBy = 0;
  1594       sqlite3ExprDelete(db, p->pLimit);
  1595       p->pLimit = pLimit;
  1596       p->pOffset = pOffset;
  1597       p->iLimit = 0;
  1598       p->iOffset = 0;
  1599       if( rc ){
  1600         goto multi_select_end;
  1601       }
  1602 
  1603 
  1604       /* Convert the data in the temporary table into whatever form
  1605       ** it is that we currently need.
  1606       */      
  1607       if( dest.eDest!=priorOp || unionTab!=dest.iParm ){
  1608         int iCont, iBreak, iStart;
  1609         assert( p->pEList );
  1610         if( dest.eDest==SRT_Output ){
  1611           Select *pFirst = p;
  1612           while( pFirst->pPrior ) pFirst = pFirst->pPrior;
  1613           generateColumnNames(pParse, 0, pFirst->pEList);
  1614         }
  1615         iBreak = sqlite3VdbeMakeLabel(v);
  1616         iCont = sqlite3VdbeMakeLabel(v);
  1617         computeLimitRegisters(pParse, p, iBreak);
  1618         sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak);
  1619         iStart = sqlite3VdbeCurrentAddr(v);
  1620         selectInnerLoop(pParse, p, p->pEList, unionTab, p->pEList->nExpr,
  1621                         0, -1, &dest, iCont, iBreak);
  1622         sqlite3VdbeResolveLabel(v, iCont);
  1623         sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart);
  1624         sqlite3VdbeResolveLabel(v, iBreak);
  1625         sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0);
  1626       }
  1627       break;
  1628     }
  1629     case TK_INTERSECT: {
  1630       int tab1, tab2;
  1631       int iCont, iBreak, iStart;
  1632       Expr *pLimit, *pOffset;
  1633       int addr;
  1634       SelectDest intersectdest;
  1635       int r1;
  1636 
  1637       /* INTERSECT is different from the others since it requires
  1638       ** two temporary tables.  Hence it has its own case.  Begin
  1639       ** by allocating the tables we will need.
  1640       */
  1641       tab1 = pParse->nTab++;
  1642       tab2 = pParse->nTab++;
  1643       assert( p->pOrderBy==0 );
  1644 
  1645       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0);
  1646       assert( p->addrOpenEphm[0] == -1 );
  1647       p->addrOpenEphm[0] = addr;
  1648       p->pRightmost->selFlags |= SF_UsesEphemeral;
  1649       assert( p->pEList );
  1650 
  1651       /* Code the SELECTs to our left into temporary table "tab1".
  1652       */
  1653       sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1);
  1654       rc = sqlite3Select(pParse, pPrior, &intersectdest);
  1655       if( rc ){
  1656         goto multi_select_end;
  1657       }
  1658 
  1659       /* Code the current SELECT into temporary table "tab2"
  1660       */
  1661       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0);
  1662       assert( p->addrOpenEphm[1] == -1 );
  1663       p->addrOpenEphm[1] = addr;
  1664       p->pPrior = 0;
  1665       pLimit = p->pLimit;
  1666       p->pLimit = 0;
  1667       pOffset = p->pOffset;
  1668       p->pOffset = 0;
  1669       intersectdest.iParm = tab2;
  1670       rc = sqlite3Select(pParse, p, &intersectdest);
  1671       pDelete = p->pPrior;
  1672       p->pPrior = pPrior;
  1673       sqlite3ExprDelete(db, p->pLimit);
  1674       p->pLimit = pLimit;
  1675       p->pOffset = pOffset;
  1676       if( rc ){
  1677         goto multi_select_end;
  1678       }
  1679 
  1680       /* Generate code to take the intersection of the two temporary
  1681       ** tables.
  1682       */
  1683       assert( p->pEList );
  1684       if( dest.eDest==SRT_Output ){
  1685         Select *pFirst = p;
  1686         while( pFirst->pPrior ) pFirst = pFirst->pPrior;
  1687         generateColumnNames(pParse, 0, pFirst->pEList);
  1688       }
  1689       iBreak = sqlite3VdbeMakeLabel(v);
  1690       iCont = sqlite3VdbeMakeLabel(v);
  1691       computeLimitRegisters(pParse, p, iBreak);
  1692       sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak);
  1693       r1 = sqlite3GetTempReg(pParse);
  1694       iStart = sqlite3VdbeAddOp2(v, OP_RowKey, tab1, r1);
  1695       sqlite3VdbeAddOp3(v, OP_NotFound, tab2, iCont, r1);
  1696       sqlite3ReleaseTempReg(pParse, r1);
  1697       selectInnerLoop(pParse, p, p->pEList, tab1, p->pEList->nExpr,
  1698                       0, -1, &dest, iCont, iBreak);
  1699       sqlite3VdbeResolveLabel(v, iCont);
  1700       sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart);
  1701       sqlite3VdbeResolveLabel(v, iBreak);
  1702       sqlite3VdbeAddOp2(v, OP_Close, tab2, 0);
  1703       sqlite3VdbeAddOp2(v, OP_Close, tab1, 0);
  1704       break;
  1705     }
  1706   }
  1707 
  1708   /* Compute collating sequences used by 
  1709   ** temporary tables needed to implement the compound select.
  1710   ** Attach the KeyInfo structure to all temporary tables.
  1711   **
  1712   ** This section is run by the right-most SELECT statement only.
  1713   ** SELECT statements to the left always skip this part.  The right-most
  1714   ** SELECT might also skip this part if it has no ORDER BY clause and
  1715   ** no temp tables are required.
  1716   */
  1717   if( p->selFlags & SF_UsesEphemeral ){
  1718     int i;                        /* Loop counter */
  1719     KeyInfo *pKeyInfo;            /* Collating sequence for the result set */
  1720     Select *pLoop;                /* For looping through SELECT statements */
  1721     CollSeq **apColl;             /* For looping through pKeyInfo->aColl[] */
  1722     int nCol;                     /* Number of columns in result set */
  1723 
  1724     assert( p->pRightmost==p );
  1725     nCol = p->pEList->nExpr;
  1726     pKeyInfo = sqlite3DbMallocZero(db,
  1727                        sizeof(*pKeyInfo)+nCol*(sizeof(CollSeq*) + 1));
  1728     if( !pKeyInfo ){
  1729       rc = SQLITE_NOMEM;
  1730       goto multi_select_end;
  1731     }
  1732 
  1733     pKeyInfo->enc = ENC(db);
  1734     pKeyInfo->nField = nCol;
  1735 
  1736     for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
  1737       *apColl = multiSelectCollSeq(pParse, p, i);
  1738       if( 0==*apColl ){
  1739         *apColl = db->pDfltColl;
  1740       }
  1741     }
  1742 
  1743     for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
  1744       for(i=0; i<2; i++){
  1745         int addr = pLoop->addrOpenEphm[i];
  1746         if( addr<0 ){
  1747           /* If [0] is unused then [1] is also unused.  So we can
  1748           ** always safely abort as soon as the first unused slot is found */
  1749           assert( pLoop->addrOpenEphm[1]<0 );
  1750           break;
  1751         }
  1752         sqlite3VdbeChangeP2(v, addr, nCol);
  1753         sqlite3VdbeChangeP4(v, addr, (char*)pKeyInfo, P4_KEYINFO);
  1754         pLoop->addrOpenEphm[i] = -1;
  1755       }
  1756     }
  1757     sqlite3DbFree(db, pKeyInfo);
  1758   }
  1759 
  1760 multi_select_end:
  1761   pDest->iMem = dest.iMem;
  1762   pDest->nMem = dest.nMem;
  1763   sqlite3SelectDelete(db, pDelete);
  1764   return rc;
  1765 }
  1766 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
  1767 
  1768 /*
  1769 ** Code an output subroutine for a coroutine implementation of a
  1770 ** SELECT statment.
  1771 **
  1772 ** The data to be output is contained in pIn->iMem.  There are
  1773 ** pIn->nMem columns to be output.  pDest is where the output should
  1774 ** be sent.
  1775 **
  1776 ** regReturn is the number of the register holding the subroutine
  1777 ** return address.
  1778 **
  1779 ** If regPrev>0 then it is a the first register in a vector that
  1780 ** records the previous output.  mem[regPrev] is a flag that is false
  1781 ** if there has been no previous output.  If regPrev>0 then code is
  1782 ** generated to suppress duplicates.  pKeyInfo is used for comparing
  1783 ** keys.
  1784 **
  1785 ** If the LIMIT found in p->iLimit is reached, jump immediately to
  1786 ** iBreak.
  1787 */
  1788 static int generateOutputSubroutine(
  1789   Parse *pParse,          /* Parsing context */
  1790   Select *p,              /* The SELECT statement */
  1791   SelectDest *pIn,        /* Coroutine supplying data */
  1792   SelectDest *pDest,      /* Where to send the data */
  1793   int regReturn,          /* The return address register */
  1794   int regPrev,            /* Previous result register.  No uniqueness if 0 */
  1795   KeyInfo *pKeyInfo,      /* For comparing with previous entry */
  1796   int p4type,             /* The p4 type for pKeyInfo */
  1797   int iBreak              /* Jump here if we hit the LIMIT */
  1798 ){
  1799   Vdbe *v = pParse->pVdbe;
  1800   int iContinue;
  1801   int addr;
  1802 
  1803   addr = sqlite3VdbeCurrentAddr(v);
  1804   iContinue = sqlite3VdbeMakeLabel(v);
  1805 
  1806   /* Suppress duplicates for UNION, EXCEPT, and INTERSECT 
  1807   */
  1808   if( regPrev ){
  1809     int j1, j2;
  1810     j1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev);
  1811     j2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iMem, regPrev+1, pIn->nMem,
  1812                               (char*)pKeyInfo, p4type);
  1813     sqlite3VdbeAddOp3(v, OP_Jump, j2+2, iContinue, j2+2);
  1814     sqlite3VdbeJumpHere(v, j1);
  1815     sqlite3ExprCodeCopy(pParse, pIn->iMem, regPrev+1, pIn->nMem);
  1816     sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev);
  1817   }
  1818   if( pParse->db->mallocFailed ) return 0;
  1819 
  1820   /* Suppress the the first OFFSET entries if there is an OFFSET clause
  1821   */
  1822   codeOffset(v, p, iContinue);
  1823 
  1824   switch( pDest->eDest ){
  1825     /* Store the result as data using a unique key.
  1826     */
  1827     case SRT_Table:
  1828     case SRT_EphemTab: {
  1829       int r1 = sqlite3GetTempReg(pParse);
  1830       int r2 = sqlite3GetTempReg(pParse);
  1831       sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iMem, pIn->nMem, r1);
  1832       sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iParm, r2);
  1833       sqlite3VdbeAddOp3(v, OP_Insert, pDest->iParm, r1, r2);
  1834       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
  1835       sqlite3ReleaseTempReg(pParse, r2);
  1836       sqlite3ReleaseTempReg(pParse, r1);
  1837       break;
  1838     }
  1839 
  1840 #ifndef SQLITE_OMIT_SUBQUERY
  1841     /* If we are creating a set for an "expr IN (SELECT ...)" construct,
  1842     ** then there should be a single item on the stack.  Write this
  1843     ** item into the set table with bogus data.
  1844     */
  1845     case SRT_Set: {
  1846       int r1;
  1847       assert( pIn->nMem==1 );
  1848       p->affinity = 
  1849          sqlite3CompareAffinity(p->pEList->a[0].pExpr, pDest->affinity);
  1850       r1 = sqlite3GetTempReg(pParse);
  1851       sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iMem, 1, r1, &p->affinity, 1);
  1852       sqlite3ExprCacheAffinityChange(pParse, pIn->iMem, 1);
  1853       sqlite3VdbeAddOp2(v, OP_IdxInsert, pDest->iParm, r1);
  1854       sqlite3ReleaseTempReg(pParse, r1);
  1855       break;
  1856     }
  1857 
  1858 #if 0  /* Never occurs on an ORDER BY query */
  1859     /* If any row exist in the result set, record that fact and abort.
  1860     */
  1861     case SRT_Exists: {
  1862       sqlite3VdbeAddOp2(v, OP_Integer, 1, pDest->iParm);
  1863       /* The LIMIT clause will terminate the loop for us */
  1864       break;
  1865     }
  1866 #endif
  1867 
  1868     /* If this is a scalar select that is part of an expression, then
  1869     ** store the results in the appropriate memory cell and break out
  1870     ** of the scan loop.
  1871     */
  1872     case SRT_Mem: {
  1873       assert( pIn->nMem==1 );
  1874       sqlite3ExprCodeMove(pParse, pIn->iMem, pDest->iParm, 1);
  1875       /* The LIMIT clause will jump out of the loop for us */
  1876       break;
  1877     }
  1878 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
  1879 
  1880     /* The results are stored in a sequence of registers
  1881     ** starting at pDest->iMem.  Then the co-routine yields.
  1882     */
  1883     case SRT_Coroutine: {
  1884       if( pDest->iMem==0 ){
  1885         pDest->iMem = sqlite3GetTempRange(pParse, pIn->nMem);
  1886         pDest->nMem = pIn->nMem;
  1887       }
  1888       sqlite3ExprCodeMove(pParse, pIn->iMem, pDest->iMem, pDest->nMem);
  1889       sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm);
  1890       break;
  1891     }
  1892 
  1893     /* Results are stored in a sequence of registers.  Then the
  1894     ** OP_ResultRow opcode is used to cause sqlite3_step() to return
  1895     ** the next row of result.
  1896     */
  1897     case SRT_Output: {
  1898       sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iMem, pIn->nMem);
  1899       sqlite3ExprCacheAffinityChange(pParse, pIn->iMem, pIn->nMem);
  1900       break;
  1901     }
  1902 
  1903 #if !defined(SQLITE_OMIT_TRIGGER)
  1904     /* Discard the results.  This is used for SELECT statements inside
  1905     ** the body of a TRIGGER.  The purpose of such selects is to call
  1906     ** user-defined functions that have side effects.  We do not care
  1907     ** about the actual results of the select.
  1908     */
  1909     default: {
  1910       break;
  1911     }
  1912 #endif
  1913   }
  1914 
  1915   /* Jump to the end of the loop if the LIMIT is reached.
  1916   */
  1917   if( p->iLimit ){
  1918     sqlite3VdbeAddOp2(v, OP_AddImm, p->iLimit, -1);
  1919     sqlite3VdbeAddOp2(v, OP_IfZero, p->iLimit, iBreak);
  1920   }
  1921 
  1922   /* Generate the subroutine return
  1923   */
  1924   sqlite3VdbeResolveLabel(v, iContinue);
  1925   sqlite3VdbeAddOp1(v, OP_Return, regReturn);
  1926 
  1927   return addr;
  1928 }
  1929 
  1930 /*
  1931 ** Alternative compound select code generator for cases when there
  1932 ** is an ORDER BY clause.
  1933 **
  1934 ** We assume a query of the following form:
  1935 **
  1936 **      <selectA>  <operator>  <selectB>  ORDER BY <orderbylist>
  1937 **
  1938 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT.  The idea
  1939 ** is to code both <selectA> and <selectB> with the ORDER BY clause as
  1940 ** co-routines.  Then run the co-routines in parallel and merge the results
  1941 ** into the output.  In addition to the two coroutines (called selectA and
  1942 ** selectB) there are 7 subroutines:
  1943 **
  1944 **    outA:    Move the output of the selectA coroutine into the output
  1945 **             of the compound query.
  1946 **
  1947 **    outB:    Move the output of the selectB coroutine into the output
  1948 **             of the compound query.  (Only generated for UNION and
  1949 **             UNION ALL.  EXCEPT and INSERTSECT never output a row that
  1950 **             appears only in B.)
  1951 **
  1952 **    AltB:    Called when there is data from both coroutines and A<B.
  1953 **
  1954 **    AeqB:    Called when there is data from both coroutines and A==B.
  1955 **
  1956 **    AgtB:    Called when there is data from both coroutines and A>B.
  1957 **
  1958 **    EofA:    Called when data is exhausted from selectA.
  1959 **
  1960 **    EofB:    Called when data is exhausted from selectB.
  1961 **
  1962 ** The implementation of the latter five subroutines depend on which 
  1963 ** <operator> is used:
  1964 **
  1965 **
  1966 **             UNION ALL         UNION            EXCEPT          INTERSECT
  1967 **          -------------  -----------------  --------------  -----------------
  1968 **   AltB:   outA, nextA      outA, nextA       outA, nextA         nextA
  1969 **
  1970 **   AeqB:   outA, nextA         nextA             nextA         outA, nextA
  1971 **
  1972 **   AgtB:   outB, nextB      outB, nextB          nextB            nextB
  1973 **
  1974 **   EofA:   outB, nextB      outB, nextB          halt             halt
  1975 **
  1976 **   EofB:   outA, nextA      outA, nextA       outA, nextA         halt
  1977 **
  1978 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA
  1979 ** causes an immediate jump to EofA and an EOF on B following nextB causes
  1980 ** an immediate jump to EofB.  Within EofA and EofB, and EOF on entry or
  1981 ** following nextX causes a jump to the end of the select processing.
  1982 **
  1983 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled
  1984 ** within the output subroutine.  The regPrev register set holds the previously
  1985 ** output value.  A comparison is made against this value and the output
  1986 ** is skipped if the next results would be the same as the previous.
  1987 **
  1988 ** The implementation plan is to implement the two coroutines and seven
  1989 ** subroutines first, then put the control logic at the bottom.  Like this:
  1990 **
  1991 **          goto Init
  1992 **     coA: coroutine for left query (A)
  1993 **     coB: coroutine for right query (B)
  1994 **    outA: output one row of A
  1995 **    outB: output one row of B (UNION and UNION ALL only)
  1996 **    EofA: ...
  1997 **    EofB: ...
  1998 **    AltB: ...
  1999 **    AeqB: ...
  2000 **    AgtB: ...
  2001 **    Init: initialize coroutine registers
  2002 **          yield coA
  2003 **          if eof(A) goto EofA
  2004 **          yield coB
  2005 **          if eof(B) goto EofB
  2006 **    Cmpr: Compare A, B
  2007 **          Jump AltB, AeqB, AgtB
  2008 **     End: ...
  2009 **
  2010 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not
  2011 ** actually called using Gosub and they do not Return.  EofA and EofB loop
  2012 ** until all data is exhausted then jump to the "end" labe.  AltB, AeqB,
  2013 ** and AgtB jump to either L2 or to one of EofA or EofB.
  2014 */
  2015 #ifndef SQLITE_OMIT_COMPOUND_SELECT
  2016 static int multiSelectOrderBy(
  2017   Parse *pParse,        /* Parsing context */
  2018   Select *p,            /* The right-most of SELECTs to be coded */
  2019   SelectDest *pDest     /* What to do with query results */
  2020 ){
  2021   int i, j;             /* Loop counters */
  2022   Select *pPrior;       /* Another SELECT immediately to our left */
  2023   Vdbe *v;              /* Generate code to this VDBE */
  2024   SelectDest destA;     /* Destination for coroutine A */
  2025   SelectDest destB;     /* Destination for coroutine B */
  2026   int regAddrA;         /* Address register for select-A coroutine */
  2027   int regEofA;          /* Flag to indicate when select-A is complete */
  2028   int regAddrB;         /* Address register for select-B coroutine */
  2029   int regEofB;          /* Flag to indicate when select-B is complete */
  2030   int addrSelectA;      /* Address of the select-A coroutine */
  2031   int addrSelectB;      /* Address of the select-B coroutine */
  2032   int regOutA;          /* Address register for the output-A subroutine */
  2033   int regOutB;          /* Address register for the output-B subroutine */
  2034   int addrOutA;         /* Address of the output-A subroutine */
  2035   int addrOutB;         /* Address of the output-B subroutine */
  2036   int addrEofA;         /* Address of the select-A-exhausted subroutine */
  2037   int addrEofB;         /* Address of the select-B-exhausted subroutine */
  2038   int addrAltB;         /* Address of the A<B subroutine */
  2039   int addrAeqB;         /* Address of the A==B subroutine */
  2040   int addrAgtB;         /* Address of the A>B subroutine */
  2041   int regLimitA;        /* Limit register for select-A */
  2042   int regLimitB;        /* Limit register for select-A */
  2043   int regPrev;          /* A range of registers to hold previous output */
  2044   int savedLimit;       /* Saved value of p->iLimit */
  2045   int savedOffset;      /* Saved value of p->iOffset */
  2046   int labelCmpr;        /* Label for the start of the merge algorithm */
  2047   int labelEnd;         /* Label for the end of the overall SELECT stmt */
  2048   int j1;               /* Jump instructions that get retargetted */
  2049   int op;               /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */
  2050   KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */
  2051   KeyInfo *pKeyMerge;   /* Comparison information for merging rows */
  2052   sqlite3 *db;          /* Database connection */
  2053   ExprList *pOrderBy;   /* The ORDER BY clause */
  2054   int nOrderBy;         /* Number of terms in the ORDER BY clause */
  2055   int *aPermute;        /* Mapping from ORDER BY terms to result set columns */
  2056 
  2057   assert( p->pOrderBy!=0 );
  2058   assert( pKeyDup==0 ); /* "Managed" code needs this.  Ticket #3382. */
  2059   db = pParse->db;
  2060   v = pParse->pVdbe;
  2061   if( v==0 ) return SQLITE_NOMEM;
  2062   labelEnd = sqlite3VdbeMakeLabel(v);
  2063   labelCmpr = sqlite3VdbeMakeLabel(v);
  2064 
  2065 
  2066   /* Patch up the ORDER BY clause
  2067   */
  2068   op = p->op;  
  2069   pPrior = p->pPrior;
  2070   assert( pPrior->pOrderBy==0 );
  2071   pOrderBy = p->pOrderBy;
  2072   assert( pOrderBy );
  2073   nOrderBy = pOrderBy->nExpr;
  2074 
  2075   /* For operators other than UNION ALL we have to make sure that
  2076   ** the ORDER BY clause covers every term of the result set.  Add
  2077   ** terms to the ORDER BY clause as necessary.
  2078   */
  2079   if( op!=TK_ALL ){
  2080     for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){
  2081       struct ExprList_item *pItem;
  2082       for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){
  2083         assert( pItem->iCol>0 );
  2084         if( pItem->iCol==i ) break;
  2085       }
  2086       if( j==nOrderBy ){
  2087         Expr *pNew = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, 0);
  2088         if( pNew==0 ) return SQLITE_NOMEM;
  2089         pNew->flags |= EP_IntValue;
  2090         pNew->iTable = i;
  2091         pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew, 0);
  2092         pOrderBy->a[nOrderBy++].iCol = i;
  2093       }
  2094     }
  2095   }
  2096 
  2097   /* Compute the comparison permutation and keyinfo that is used with
  2098   ** the permutation in order to comparisons to determine if the next
  2099   ** row of results comes from selectA or selectB.  Also add explicit
  2100   ** collations to the ORDER BY clause terms so that when the subqueries
  2101   ** to the right and the left are evaluated, they use the correct
  2102   ** collation.
  2103   */
  2104   aPermute = sqlite3DbMallocRaw(db, sizeof(int)*nOrderBy);
  2105   if( aPermute ){
  2106     struct ExprList_item *pItem;
  2107     for(i=0, pItem=pOrderBy->a; i<nOrderBy; i++, pItem++){
  2108       assert( pItem->iCol>0  && pItem->iCol<=p->pEList->nExpr );
  2109       aPermute[i] = pItem->iCol - 1;
  2110     }
  2111     pKeyMerge =
  2112       sqlite3DbMallocRaw(db, sizeof(*pKeyMerge)+nOrderBy*(sizeof(CollSeq*)+1));
  2113     if( pKeyMerge ){
  2114       pKeyMerge->aSortOrder = (u8*)&pKeyMerge->aColl[nOrderBy];
  2115       pKeyMerge->nField = nOrderBy;
  2116       pKeyMerge->enc = ENC(db);
  2117       for(i=0; i<nOrderBy; i++){
  2118         CollSeq *pColl;
  2119         Expr *pTerm = pOrderBy->a[i].pExpr;
  2120         if( pTerm->flags & EP_ExpCollate ){
  2121           pColl = pTerm->pColl;
  2122         }else{
  2123           pColl = multiSelectCollSeq(pParse, p, aPermute[i]);
  2124           pTerm->flags |= EP_ExpCollate;
  2125           pTerm->pColl = pColl;
  2126         }
  2127         pKeyMerge->aColl[i] = pColl;
  2128         pKeyMerge->aSortOrder[i] = pOrderBy->a[i].sortOrder;
  2129       }
  2130     }
  2131   }else{
  2132     pKeyMerge = 0;
  2133   }
  2134 
  2135   /* Reattach the ORDER BY clause to the query.
  2136   */
  2137   p->pOrderBy = pOrderBy;
  2138   pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy);
  2139 
  2140   /* Allocate a range of temporary registers and the KeyInfo needed
  2141   ** for the logic that removes duplicate result rows when the
  2142   ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL).
  2143   */
  2144   if( op==TK_ALL ){
  2145     regPrev = 0;
  2146   }else{
  2147     int nExpr = p->pEList->nExpr;
  2148     assert( nOrderBy>=nExpr );
  2149     regPrev = sqlite3GetTempRange(pParse, nExpr+1);
  2150     sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev);
  2151     pKeyDup = sqlite3DbMallocZero(db,
  2152                   sizeof(*pKeyDup) + nExpr*(sizeof(CollSeq*)+1) );
  2153     if( pKeyDup ){
  2154       pKeyDup->aSortOrder = (u8*)&pKeyDup->aColl[nExpr];
  2155       pKeyDup->nField = nExpr;
  2156       pKeyDup->enc = ENC(db);
  2157       for(i=0; i<nExpr; i++){
  2158         pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i);
  2159         pKeyDup->aSortOrder[i] = 0;
  2160       }
  2161     }
  2162   }
  2163  
  2164   /* Separate the left and the right query from one another
  2165   */
  2166   p->pPrior = 0;
  2167   pPrior->pRightmost = 0;
  2168   sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER");
  2169   if( pPrior->pPrior==0 ){
  2170     sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER");
  2171   }
  2172 
  2173   /* Compute the limit registers */
  2174   computeLimitRegisters(pParse, p, labelEnd);
  2175   if( p->iLimit && op==TK_ALL ){
  2176     regLimitA = ++pParse->nMem;
  2177     regLimitB = ++pParse->nMem;
  2178     sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit,
  2179                                   regLimitA);
  2180     sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB);
  2181   }else{
  2182     regLimitA = regLimitB = 0;
  2183   }
  2184   sqlite3ExprDelete(db, p->pLimit);
  2185   p->pLimit = 0;
  2186   sqlite3ExprDelete(db, p->pOffset);
  2187   p->pOffset = 0;
  2188 
  2189   regAddrA = ++pParse->nMem;
  2190   regEofA = ++pParse->nMem;
  2191   regAddrB = ++pParse->nMem;
  2192   regEofB = ++pParse->nMem;
  2193   regOutA = ++pParse->nMem;
  2194   regOutB = ++pParse->nMem;
  2195   sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA);
  2196   sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB);
  2197 
  2198   /* Jump past the various subroutines and coroutines to the main
  2199   ** merge loop
  2200   */
  2201   j1 = sqlite3VdbeAddOp0(v, OP_Goto);
  2202   addrSelectA = sqlite3VdbeCurrentAddr(v);
  2203 
  2204 
  2205   /* Generate a coroutine to evaluate the SELECT statement to the
  2206   ** left of the compound operator - the "A" select.
  2207   */
  2208   VdbeNoopComment((v, "Begin coroutine for left SELECT"));
  2209   pPrior->iLimit = regLimitA;
  2210   sqlite3Select(pParse, pPrior, &destA);
  2211   sqlite3VdbeAddOp2(v, OP_Integer, 1, regEofA);
  2212   sqlite3VdbeAddOp1(v, OP_Yield, regAddrA);
  2213   VdbeNoopComment((v, "End coroutine for left SELECT"));
  2214 
  2215   /* Generate a coroutine to evaluate the SELECT statement on 
  2216   ** the right - the "B" select
  2217   */
  2218   addrSelectB = sqlite3VdbeCurrentAddr(v);
  2219   VdbeNoopComment((v, "Begin coroutine for right SELECT"));
  2220   savedLimit = p->iLimit;
  2221   savedOffset = p->iOffset;
  2222   p->iLimit = regLimitB;
  2223   p->iOffset = 0;  
  2224   sqlite3Select(pParse, p, &destB);
  2225   p->iLimit = savedLimit;
  2226   p->iOffset = savedOffset;
  2227   sqlite3VdbeAddOp2(v, OP_Integer, 1, regEofB);
  2228   sqlite3VdbeAddOp1(v, OP_Yield, regAddrB);
  2229   VdbeNoopComment((v, "End coroutine for right SELECT"));
  2230 
  2231   /* Generate a subroutine that outputs the current row of the A
  2232   ** select as the next output row of the compound select.
  2233   */
  2234   VdbeNoopComment((v, "Output routine for A"));
  2235   addrOutA = generateOutputSubroutine(pParse,
  2236                  p, &destA, pDest, regOutA,
  2237                  regPrev, pKeyDup, P4_KEYINFO_HANDOFF, labelEnd);
  2238   
  2239   /* Generate a subroutine that outputs the current row of the B
  2240   ** select as the next output row of the compound select.
  2241   */
  2242   if( op==TK_ALL || op==TK_UNION ){
  2243     VdbeNoopComment((v, "Output routine for B"));
  2244     addrOutB = generateOutputSubroutine(pParse,
  2245                  p, &destB, pDest, regOutB,
  2246                  regPrev, pKeyDup, P4_KEYINFO_STATIC, labelEnd);
  2247   }
  2248 
  2249   /* Generate a subroutine to run when the results from select A
  2250   ** are exhausted and only data in select B remains.
  2251   */
  2252   VdbeNoopComment((v, "eof-A subroutine"));
  2253   if( op==TK_EXCEPT || op==TK_INTERSECT ){
  2254     addrEofA = sqlite3VdbeAddOp2(v, OP_Goto, 0, labelEnd);
  2255   }else{  
  2256     addrEofA = sqlite3VdbeAddOp2(v, OP_If, regEofB, labelEnd);
  2257     sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
  2258     sqlite3VdbeAddOp1(v, OP_Yield, regAddrB);
  2259     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofA);
  2260   }
  2261 
  2262   /* Generate a subroutine to run when the results from select B
  2263   ** are exhausted and only data in select A remains.
  2264   */
  2265   if( op==TK_INTERSECT ){
  2266     addrEofB = addrEofA;
  2267   }else{  
  2268     VdbeNoopComment((v, "eof-B subroutine"));
  2269     addrEofB = sqlite3VdbeAddOp2(v, OP_If, regEofA, labelEnd);
  2270     sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
  2271     sqlite3VdbeAddOp1(v, OP_Yield, regAddrA);
  2272     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofB);
  2273   }
  2274 
  2275   /* Generate code to handle the case of A<B
  2276   */
  2277   VdbeNoopComment((v, "A-lt-B subroutine"));
  2278   addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
  2279   sqlite3VdbeAddOp1(v, OP_Yield, regAddrA);
  2280   sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA);
  2281   sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
  2282 
  2283   /* Generate code to handle the case of A==B
  2284   */
  2285   if( op==TK_ALL ){
  2286     addrAeqB = addrAltB;
  2287   }else if( op==TK_INTERSECT ){
  2288     addrAeqB = addrAltB;
  2289     addrAltB++;
  2290   }else{
  2291     VdbeNoopComment((v, "A-eq-B subroutine"));
  2292     addrAeqB =
  2293     sqlite3VdbeAddOp1(v, OP_Yield, regAddrA);
  2294     sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA);
  2295     sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
  2296   }
  2297 
  2298   /* Generate code to handle the case of A>B
  2299   */
  2300   VdbeNoopComment((v, "A-gt-B subroutine"));
  2301   addrAgtB = sqlite3VdbeCurrentAddr(v);
  2302   if( op==TK_ALL || op==TK_UNION ){
  2303     sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
  2304   }
  2305   sqlite3VdbeAddOp1(v, OP_Yield, regAddrB);
  2306   sqlite3VdbeAddOp2(v, OP_If, regEofB, addrEofB);
  2307   sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
  2308 
  2309   /* This code runs once to initialize everything.
  2310   */
  2311   sqlite3VdbeJumpHere(v, j1);
  2312   sqlite3VdbeAddOp2(v, OP_Integer, 0, regEofA);
  2313   sqlite3VdbeAddOp2(v, OP_Integer, 0, regEofB);
  2314   sqlite3VdbeAddOp2(v, OP_Gosub, regAddrA, addrSelectA);
  2315   sqlite3VdbeAddOp2(v, OP_Gosub, regAddrB, addrSelectB);
  2316   sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA);
  2317   sqlite3VdbeAddOp2(v, OP_If, regEofB, addrEofB);
  2318 
  2319   /* Implement the main merge loop
  2320   */
  2321   sqlite3VdbeResolveLabel(v, labelCmpr);
  2322   sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY);
  2323   sqlite3VdbeAddOp4(v, OP_Compare, destA.iMem, destB.iMem, nOrderBy,
  2324                          (char*)pKeyMerge, P4_KEYINFO_HANDOFF);
  2325   sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB);
  2326 
  2327   /* Release temporary registers
  2328   */
  2329   if( regPrev ){
  2330     sqlite3ReleaseTempRange(pParse, regPrev, nOrderBy+1);
  2331   }
  2332 
  2333   /* Jump to the this point in order to terminate the query.
  2334   */
  2335   sqlite3VdbeResolveLabel(v, labelEnd);
  2336 
  2337   /* Set the number of output columns
  2338   */
  2339   if( pDest->eDest==SRT_Output ){
  2340     Select *pFirst = pPrior;
  2341     while( pFirst->pPrior ) pFirst = pFirst->pPrior;
  2342     generateColumnNames(pParse, 0, pFirst->pEList);
  2343   }
  2344 
  2345   /* Reassembly the compound query so that it will be freed correctly
  2346   ** by the calling function */
  2347   if( p->pPrior ){
  2348     sqlite3SelectDelete(db, p->pPrior);
  2349   }
  2350   p->pPrior = pPrior;
  2351 
  2352   /*** TBD:  Insert subroutine calls to close cursors on incomplete
  2353   **** subqueries ****/
  2354   return SQLITE_OK;
  2355 }
  2356 #endif
  2357 
  2358 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
  2359 /* Forward Declarations */
  2360 static void substExprList(sqlite3*, ExprList*, int, ExprList*);
  2361 static void substSelect(sqlite3*, Select *, int, ExprList *);
  2362 
  2363 /*
  2364 ** Scan through the expression pExpr.  Replace every reference to
  2365 ** a column in table number iTable with a copy of the iColumn-th
  2366 ** entry in pEList.  (But leave references to the ROWID column 
  2367 ** unchanged.)
  2368 **
  2369 ** This routine is part of the flattening procedure.  A subquery
  2370 ** whose result set is defined by pEList appears as entry in the
  2371 ** FROM clause of a SELECT such that the VDBE cursor assigned to that
  2372 ** FORM clause entry is iTable.  This routine make the necessary 
  2373 ** changes to pExpr so that it refers directly to the source table
  2374 ** of the subquery rather the result set of the subquery.
  2375 */
  2376 static void substExpr(
  2377   sqlite3 *db,        /* Report malloc errors to this connection */
  2378   Expr *pExpr,        /* Expr in which substitution occurs */
  2379   int iTable,         /* Table to be substituted */
  2380   ExprList *pEList    /* Substitute expressions */
  2381 ){
  2382   if( pExpr==0 ) return;
  2383   if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){
  2384     if( pExpr->iColumn<0 ){
  2385       pExpr->op = TK_NULL;
  2386     }else{
  2387       Expr *pNew;
  2388       assert( pEList!=0 && pExpr->iColumn<pEList->nExpr );
  2389       assert( pExpr->pLeft==0 && pExpr->pRight==0 && pExpr->pList==0 );
  2390       pNew = pEList->a[pExpr->iColumn].pExpr;
  2391       assert( pNew!=0 );
  2392       pExpr->op = pNew->op;
  2393       assert( pExpr->pLeft==0 );
  2394       pExpr->pLeft = sqlite3ExprDup(db, pNew->pLeft);
  2395       assert( pExpr->pRight==0 );
  2396       pExpr->pRight = sqlite3ExprDup(db, pNew->pRight);
  2397       assert( pExpr->pList==0 );
  2398       pExpr->pList = sqlite3ExprListDup(db, pNew->pList);
  2399       pExpr->iTable = pNew->iTable;
  2400       pExpr->pTab = pNew->pTab;
  2401       pExpr->iColumn = pNew->iColumn;
  2402       pExpr->iAgg = pNew->iAgg;
  2403       sqlite3TokenCopy(db, &pExpr->token, &pNew->token);
  2404       sqlite3TokenCopy(db, &pExpr->span, &pNew->span);
  2405       pExpr->pSelect = sqlite3SelectDup(db, pNew->pSelect);
  2406       pExpr->flags = pNew->flags;
  2407     }
  2408   }else{
  2409     substExpr(db, pExpr->pLeft, iTable, pEList);
  2410     substExpr(db, pExpr->pRight, iTable, pEList);
  2411     substSelect(db, pExpr->pSelect, iTable, pEList);
  2412     substExprList(db, pExpr->pList, iTable, pEList);
  2413   }
  2414 }
  2415 static void substExprList(
  2416   sqlite3 *db,         /* Report malloc errors here */
  2417   ExprList *pList,     /* List to scan and in which to make substitutes */
  2418   int iTable,          /* Table to be substituted */
  2419   ExprList *pEList     /* Substitute values */
  2420 ){
  2421   int i;
  2422   if( pList==0 ) return;
  2423   for(i=0; i<pList->nExpr; i++){
  2424     substExpr(db, pList->a[i].pExpr, iTable, pEList);
  2425   }
  2426 }
  2427 static void substSelect(
  2428   sqlite3 *db,         /* Report malloc errors here */
  2429   Select *p,           /* SELECT statement in which to make substitutions */
  2430   int iTable,          /* Table to be replaced */
  2431   ExprList *pEList     /* Substitute values */
  2432 ){
  2433   SrcList *pSrc;
  2434   struct SrcList_item *pItem;
  2435   int i;
  2436   if( !p ) return;
  2437   substExprList(db, p->pEList, iTable, pEList);
  2438   substExprList(db, p->pGroupBy, iTable, pEList);
  2439   substExprList(db, p->pOrderBy, iTable, pEList);
  2440   substExpr(db, p->pHaving, iTable, pEList);
  2441   substExpr(db, p->pWhere, iTable, pEList);
  2442   substSelect(db, p->pPrior, iTable, pEList);
  2443   pSrc = p->pSrc;
  2444   if( pSrc ){
  2445     for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){
  2446       substSelect(db, pItem->pSelect, iTable, pEList);
  2447     }
  2448   }
  2449 }
  2450 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
  2451 
  2452 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
  2453 /*
  2454 ** This routine attempts to flatten subqueries in order to speed
  2455 ** execution.  It returns 1 if it makes changes and 0 if no flattening
  2456 ** occurs.
  2457 **
  2458 ** To understand the concept of flattening, consider the following
  2459 ** query:
  2460 **
  2461 **     SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
  2462 **
  2463 ** The default way of implementing this query is to execute the
  2464 ** subquery first and store the results in a temporary table, then
  2465 ** run the outer query on that temporary table.  This requires two
  2466 ** passes over the data.  Furthermore, because the temporary table
  2467 ** has no indices, the WHERE clause on the outer query cannot be
  2468 ** optimized.
  2469 **
  2470 ** This routine attempts to rewrite queries such as the above into
  2471 ** a single flat select, like this:
  2472 **
  2473 **     SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
  2474 **
  2475 ** The code generated for this simpification gives the same result
  2476 ** but only has to scan the data once.  And because indices might 
  2477 ** exist on the table t1, a complete scan of the data might be
  2478 ** avoided.
  2479 **
  2480 ** Flattening is only attempted if all of the following are true:
  2481 **
  2482 **   (1)  The subquery and the outer query do not both use aggregates.
  2483 **
  2484 **   (2)  The subquery is not an aggregate or the outer query is not a join.
  2485 **
  2486 **   (3)  The subquery is not the right operand of a left outer join
  2487 **        (Originally ticket #306.  Strenghtened by ticket #3300)
  2488 **
  2489 **   (4)  The subquery is not DISTINCT or the outer query is not a join.
  2490 **
  2491 **   (5)  The subquery is not DISTINCT or the outer query does not use
  2492 **        aggregates.
  2493 **
  2494 **   (6)  The subquery does not use aggregates or the outer query is not
  2495 **        DISTINCT.
  2496 **
  2497 **   (7)  The subquery has a FROM clause.
  2498 **
  2499 **   (8)  The subquery does not use LIMIT or the outer query is not a join.
  2500 **
  2501 **   (9)  The subquery does not use LIMIT or the outer query does not use
  2502 **        aggregates.
  2503 **
  2504 **  (10)  The subquery does not use aggregates or the outer query does not
  2505 **        use LIMIT.
  2506 **
  2507 **  (11)  The subquery and the outer query do not both have ORDER BY clauses.
  2508 **
  2509 **  (12)  Not implemented.  Subsumed into restriction (3).  Was previously
  2510 **        a separate restriction deriving from ticket #350.
  2511 **
  2512 **  (13)  The subquery and outer query do not both use LIMIT
  2513 **
  2514 **  (14)  The subquery does not use OFFSET
  2515 **
  2516 **  (15)  The outer query is not part of a compound select or the
  2517 **        subquery does not have both an ORDER BY and a LIMIT clause.
  2518 **        (See ticket #2339)
  2519 **
  2520 **  (16)  The outer query is not an aggregate or the subquery does
  2521 **        not contain ORDER BY.  (Ticket #2942)  This used to not matter
  2522 **        until we introduced the group_concat() function.  
  2523 **
  2524 **  (17)  The sub-query is not a compound select, or it is a UNION ALL 
  2525 **        compound clause made up entirely of non-aggregate queries, and 
  2526 **        the parent query:
  2527 **
  2528 **          * is not itself part of a compound select,
  2529 **          * is not an aggregate or DISTINCT query, and
  2530 **          * has no other tables or sub-selects in the FROM clause.
  2531 **
  2532 **        The parent and sub-query may contain WHERE clauses. Subject to
  2533 **        rules (11), (13) and (14), they may also contain ORDER BY,
  2534 **        LIMIT and OFFSET clauses.
  2535 **
  2536 **  (18)  If the sub-query is a compound select, then all terms of the
  2537 **        ORDER by clause of the parent must be simple references to 
  2538 **        columns of the sub-query.
  2539 **
  2540 **  (19)  The subquery does not use LIMIT or the outer query does not
  2541 **        have a WHERE clause.
  2542 **
  2543 ** In this routine, the "p" parameter is a pointer to the outer query.
  2544 ** The subquery is p->pSrc->a[iFrom].  isAgg is true if the outer query
  2545 ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates.
  2546 **
  2547 ** If flattening is not attempted, this routine is a no-op and returns 0.
  2548 ** If flattening is attempted this routine returns 1.
  2549 **
  2550 ** All of the expression analysis must occur on both the outer query and
  2551 ** the subquery before this routine runs.
  2552 */
  2553 static int flattenSubquery(
  2554   Parse *pParse,       /* Parsing context */
  2555   Select *p,           /* The parent or outer SELECT statement */
  2556   int iFrom,           /* Index in p->pSrc->a[] of the inner subquery */
  2557   int isAgg,           /* True if outer SELECT uses aggregate functions */
  2558   int subqueryIsAgg    /* True if the subquery uses aggregate functions */
  2559 ){
  2560   const char *zSavedAuthContext = pParse->zAuthContext;
  2561   Select *pParent;
  2562   Select *pSub;       /* The inner query or "subquery" */
  2563   Select *pSub1;      /* Pointer to the rightmost select in sub-query */
  2564   SrcList *pSrc;      /* The FROM clause of the outer query */
  2565   SrcList *pSubSrc;   /* The FROM clause of the subquery */
  2566   ExprList *pList;    /* The result set of the outer query */
  2567   int iParent;        /* VDBE cursor number of the pSub result set temp table */
  2568   int i;              /* Loop counter */
  2569   Expr *pWhere;                    /* The WHERE clause */
  2570   struct SrcList_item *pSubitem;   /* The subquery */
  2571   sqlite3 *db = pParse->db;
  2572 
  2573   /* Check to see if flattening is permitted.  Return 0 if not.
  2574   */
  2575   if( p==0 ) return 0;
  2576   pSrc = p->pSrc;
  2577   assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
  2578   pSubitem = &pSrc->a[iFrom];
  2579   iParent = pSubitem->iCursor;
  2580   pSub = pSubitem->pSelect;
  2581   assert( pSub!=0 );
  2582   if( isAgg && subqueryIsAgg ) return 0;                 /* Restriction (1)  */
  2583   if( subqueryIsAgg && pSrc->nSrc>1 ) return 0;          /* Restriction (2)  */
  2584   pSubSrc = pSub->pSrc;
  2585   assert( pSubSrc );
  2586   /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
  2587   ** not arbitrary expresssions, we allowed some combining of LIMIT and OFFSET
  2588   ** because they could be computed at compile-time.  But when LIMIT and OFFSET
  2589   ** became arbitrary expressions, we were forced to add restrictions (13)
  2590   ** and (14). */
  2591   if( pSub->pLimit && p->pLimit ) return 0;              /* Restriction (13) */
  2592   if( pSub->pOffset ) return 0;                          /* Restriction (14) */
  2593   if( p->pRightmost && pSub->pLimit && pSub->pOrderBy ){
  2594     return 0;                                            /* Restriction (15) */
  2595   }
  2596   if( pSubSrc->nSrc==0 ) return 0;                       /* Restriction (7)  */
  2597   if( ((pSub->selFlags & SF_Distinct)!=0 || pSub->pLimit) 
  2598          && (pSrc->nSrc>1 || isAgg) ){          /* Restrictions (4)(5)(8)(9) */
  2599      return 0;       
  2600   }
  2601   if( (p->selFlags & SF_Distinct)!=0 && subqueryIsAgg ){
  2602      return 0;         /* Restriction (6)  */
  2603   }
  2604   if( p->pOrderBy && pSub->pOrderBy ){
  2605      return 0;                                           /* Restriction (11) */
  2606   }
  2607   if( isAgg && pSub->pOrderBy ) return 0;                /* Restriction (16) */
  2608   if( pSub->pLimit && p->pWhere ) return 0;              /* Restriction (19) */
  2609 
  2610   /* OBSOLETE COMMENT 1:
  2611   ** Restriction 3:  If the subquery is a join, make sure the subquery is 
  2612   ** not used as the right operand of an outer join.  Examples of why this
  2613   ** is not allowed:
  2614   **
  2615   **         t1 LEFT OUTER JOIN (t2 JOIN t3)
  2616   **
  2617   ** If we flatten the above, we would get
  2618   **
  2619   **         (t1 LEFT OUTER JOIN t2) JOIN t3
  2620   **
  2621   ** which is not at all the same thing.
  2622   **
  2623   ** OBSOLETE COMMENT 2:
  2624   ** Restriction 12:  If the subquery is the right operand of a left outer
  2625   ** join, make sure the subquery has no WHERE clause.
  2626   ** An examples of why this is not allowed:
  2627   **
  2628   **         t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0)
  2629   **
  2630   ** If we flatten the above, we would get
  2631   **
  2632   **         (t1 LEFT OUTER JOIN t2) WHERE t2.x>0
  2633   **
  2634   ** But the t2.x>0 test will always fail on a NULL row of t2, which
  2635   ** effectively converts the OUTER JOIN into an INNER JOIN.
  2636   **
  2637   ** THIS OVERRIDES OBSOLETE COMMENTS 1 AND 2 ABOVE:
  2638   ** Ticket #3300 shows that flattening the right term of a LEFT JOIN
  2639   ** is fraught with danger.  Best to avoid the whole thing.  If the
  2640   ** subquery is the right term of a LEFT JOIN, then do not flatten.
  2641   */
  2642   if( (pSubitem->jointype & JT_OUTER)!=0 ){
  2643     return 0;
  2644   }
  2645 
  2646   /* Restriction 17: If the sub-query is a compound SELECT, then it must
  2647   ** use only the UNION ALL operator. And none of the simple select queries
  2648   ** that make up the compound SELECT are allowed to be aggregate or distinct
  2649   ** queries.
  2650   */
  2651   if( pSub->pPrior ){
  2652     if( p->pPrior || isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){
  2653       return 0;
  2654     }
  2655     for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){
  2656       if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0
  2657        || (pSub1->pPrior && pSub1->op!=TK_ALL) 
  2658        || !pSub1->pSrc || pSub1->pSrc->nSrc!=1
  2659       ){
  2660         return 0;
  2661       }
  2662     }
  2663 
  2664     /* Restriction 18. */
  2665     if( p->pOrderBy ){
  2666       int ii;
  2667       for(ii=0; ii<p->pOrderBy->nExpr; ii++){
  2668         if( p->pOrderBy->a[ii].iCol==0 ) return 0;
  2669       }
  2670     }
  2671   }
  2672 
  2673   /***** If we reach this point, flattening is permitted. *****/
  2674 
  2675   /* Authorize the subquery */
  2676   pParse->zAuthContext = pSubitem->zName;
  2677   sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0);
  2678   pParse->zAuthContext = zSavedAuthContext;
  2679 
  2680   /* If the sub-query is a compound SELECT statement, then (by restrictions
  2681   ** 17 and 18 above) it must be a UNION ALL and the parent query must 
  2682   ** be of the form:
  2683   **
  2684   **     SELECT <expr-list> FROM (<sub-query>) <where-clause> 
  2685   **
  2686   ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block
  2687   ** creates N copies of the parent query without any ORDER BY, LIMIT or 
  2688   ** OFFSET clauses and joins them to the left-hand-side of the original
  2689   ** using UNION ALL operators. In this case N is the number of simple
  2690   ** select statements in the compound sub-query.
  2691   */
  2692   for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){
  2693     Select *pNew;
  2694     ExprList *pOrderBy = p->pOrderBy;
  2695     Expr *pLimit = p->pLimit;
  2696     Expr *pOffset = p->pOffset;
  2697     Select *pPrior = p->pPrior;
  2698     p->pOrderBy = 0;
  2699     p->pSrc = 0;
  2700     p->pPrior = 0;
  2701     p->pLimit = 0;
  2702     pNew = sqlite3SelectDup(db, p);
  2703     pNew->pPrior = pPrior;
  2704     p->pPrior = pNew;
  2705     p->pOrderBy = pOrderBy;
  2706     p->op = TK_ALL;
  2707     p->pSrc = pSrc;
  2708     p->pLimit = pLimit;
  2709     p->pOffset = pOffset;
  2710     p->pRightmost = 0;
  2711     pNew->pRightmost = 0;
  2712   }
  2713 
  2714   /* Begin flattening the iFrom-th entry of the FROM clause 
  2715   ** in the outer query.
  2716   */
  2717   pSub = pSub1 = pSubitem->pSelect;
  2718   for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){
  2719     int nSubSrc = pSubSrc->nSrc;
  2720     int jointype = 0;
  2721     pSubSrc = pSub->pSrc;
  2722     pSrc = pParent->pSrc;
  2723 
  2724     /* Move all of the FROM elements of the subquery into the
  2725     ** the FROM clause of the outer query.  Before doing this, remember
  2726     ** the cursor number for the original outer query FROM element in
  2727     ** iParent.  The iParent cursor will never be used.  Subsequent code
  2728     ** will scan expressions looking for iParent references and replace
  2729     ** those references with expressions that resolve to the subquery FROM
  2730     ** elements we are now copying in.
  2731     */
  2732     if( pSrc ){
  2733       Table *pTabToDel;
  2734       pSubitem = &pSrc->a[iFrom];
  2735       nSubSrc = pSubSrc->nSrc;
  2736       jointype = pSubitem->jointype;
  2737       sqlite3DbFree(db, pSubitem->zDatabase);
  2738       sqlite3DbFree(db, pSubitem->zName);
  2739       sqlite3DbFree(db, pSubitem->zAlias);
  2740       pSubitem->zDatabase = 0;
  2741       pSubitem->zName = 0;
  2742       pSubitem->zAlias = 0;
  2743 
  2744       /* If the FROM element is a subquery, defer deleting the Table
  2745       ** object associated with that subquery until code generation is
  2746       ** complete, since there may still exist Expr.pTab entires that
  2747       ** refer to the subquery even after flattening.  Ticket #3346.
  2748       */
  2749       if( (pTabToDel = pSubitem->pTab)!=0 ){
  2750         if( pTabToDel->nRef==1 ){
  2751           pTabToDel->pNextZombie = pParse->pZombieTab;
  2752           pParse->pZombieTab = pTabToDel;
  2753         }else{
  2754           pTabToDel->nRef--;
  2755         }
  2756       }
  2757       pSubitem->pTab = 0;
  2758     }
  2759     if( nSubSrc!=1 || !pSrc ){
  2760       int extra = nSubSrc - 1;
  2761       for(i=(pSrc?1:0); i<nSubSrc; i++){
  2762         pSrc = sqlite3SrcListAppend(db, pSrc, 0, 0);
  2763         if( pSrc==0 ){
  2764           pParent->pSrc = 0;
  2765           return 1;
  2766         }
  2767       }
  2768       pParent->pSrc = pSrc;
  2769       for(i=pSrc->nSrc-1; i-extra>=iFrom; i--){
  2770         pSrc->a[i] = pSrc->a[i-extra];
  2771       }
  2772     }
  2773     for(i=0; i<nSubSrc; i++){
  2774       pSrc->a[i+iFrom] = pSubSrc->a[i];
  2775       memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
  2776     }
  2777     pSrc->a[iFrom].jointype = jointype;
  2778   
  2779     /* Now begin substituting subquery result set expressions for 
  2780     ** references to the iParent in the outer query.
  2781     ** 
  2782     ** Example:
  2783     **
  2784     **   SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
  2785     **   \                     \_____________ subquery __________/          /
  2786     **    \_____________________ outer query ______________________________/
  2787     **
  2788     ** We look at every expression in the outer query and every place we see
  2789     ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
  2790     */
  2791     pList = pParent->pEList;
  2792     for(i=0; i<pList->nExpr; i++){
  2793       Expr *pExpr;
  2794       if( pList->a[i].zName==0 && (pExpr = pList->a[i].pExpr)->span.z!=0 ){
  2795         pList->a[i].zName = 
  2796                sqlite3DbStrNDup(db, (char*)pExpr->span.z, pExpr->span.n);
  2797       }
  2798     }
  2799     substExprList(db, pParent->pEList, iParent, pSub->pEList);
  2800     if( isAgg ){
  2801       substExprList(db, pParent->pGroupBy, iParent, pSub->pEList);
  2802       substExpr(db, pParent->pHaving, iParent, pSub->pEList);
  2803     }
  2804     if( pSub->pOrderBy ){
  2805       assert( pParent->pOrderBy==0 );
  2806       pParent->pOrderBy = pSub->pOrderBy;
  2807       pSub->pOrderBy = 0;
  2808     }else if( pParent->pOrderBy ){
  2809       substExprList(db, pParent->pOrderBy, iParent, pSub->pEList);
  2810     }
  2811     if( pSub->pWhere ){
  2812       pWhere = sqlite3ExprDup(db, pSub->pWhere);
  2813     }else{
  2814       pWhere = 0;
  2815     }
  2816     if( subqueryIsAgg ){
  2817       assert( pParent->pHaving==0 );
  2818       pParent->pHaving = pParent->pWhere;
  2819       pParent->pWhere = pWhere;
  2820       substExpr(db, pParent->pHaving, iParent, pSub->pEList);
  2821       pParent->pHaving = sqlite3ExprAnd(db, pParent->pHaving, 
  2822                                   sqlite3ExprDup(db, pSub->pHaving));
  2823       assert( pParent->pGroupBy==0 );
  2824       pParent->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy);
  2825     }else{
  2826       substExpr(db, pParent->pWhere, iParent, pSub->pEList);
  2827       pParent->pWhere = sqlite3ExprAnd(db, pParent->pWhere, pWhere);
  2828     }
  2829   
  2830     /* The flattened query is distinct if either the inner or the
  2831     ** outer query is distinct. 
  2832     */
  2833     pParent->selFlags |= pSub->selFlags & SF_Distinct;
  2834   
  2835     /*
  2836     ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
  2837     **
  2838     ** One is tempted to try to add a and b to combine the limits.  But this
  2839     ** does not work if either limit is negative.
  2840     */
  2841     if( pSub->pLimit ){
  2842       pParent->pLimit = pSub->pLimit;
  2843       pSub->pLimit = 0;
  2844     }
  2845   }
  2846 
  2847   /* Finially, delete what is left of the subquery and return
  2848   ** success.
  2849   */
  2850   sqlite3SelectDelete(db, pSub1);
  2851 
  2852   return 1;
  2853 }
  2854 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
  2855 
  2856 /*
  2857 ** Analyze the SELECT statement passed as an argument to see if it
  2858 ** is a min() or max() query. Return WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX if 
  2859 ** it is, or 0 otherwise. At present, a query is considered to be
  2860 ** a min()/max() query if:
  2861 **
  2862 **   1. There is a single object in the FROM clause.
  2863 **
  2864 **   2. There is a single expression in the result set, and it is
  2865 **      either min(x) or max(x), where x is a column reference.
  2866 */
  2867 static int minMaxQuery(Parse *pParse, Select *p){
  2868   Expr *pExpr;
  2869   ExprList *pEList = p->pEList;
  2870 
  2871   if( pEList->nExpr!=1 ) return WHERE_ORDERBY_NORMAL;
  2872   pExpr = pEList->a[0].pExpr;
  2873   pEList = pExpr->pList;
  2874   if( pExpr->op!=TK_AGG_FUNCTION || pEList==0 || pEList->nExpr!=1 ) return 0;
  2875   if( pEList->a[0].pExpr->op!=TK_AGG_COLUMN ) return WHERE_ORDERBY_NORMAL;
  2876   if( pExpr->token.n!=3 ) return WHERE_ORDERBY_NORMAL;
  2877   if( sqlite3StrNICmp((char*)pExpr->token.z,"min",3)==0 ){
  2878     return WHERE_ORDERBY_MIN;
  2879   }else if( sqlite3StrNICmp((char*)pExpr->token.z,"max",3)==0 ){
  2880     return WHERE_ORDERBY_MAX;
  2881   }
  2882   return WHERE_ORDERBY_NORMAL;
  2883 }
  2884 
  2885 /*
  2886 ** If the source-list item passed as an argument was augmented with an
  2887 ** INDEXED BY clause, then try to locate the specified index. If there
  2888 ** was such a clause and the named index cannot be found, return 
  2889 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate 
  2890 ** pFrom->pIndex and return SQLITE_OK.
  2891 */
  2892 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){
  2893   if( pFrom->pTab && pFrom->zIndex ){
  2894     Table *pTab = pFrom->pTab;
  2895     char *zIndex = pFrom->zIndex;
  2896     Index *pIdx;
  2897     for(pIdx=pTab->pIndex; 
  2898         pIdx && sqlite3StrICmp(pIdx->zName, zIndex); 
  2899         pIdx=pIdx->pNext
  2900     );
  2901     if( !pIdx ){
  2902       sqlite3ErrorMsg(pParse, "no such index: %s", zIndex, 0);
  2903       return SQLITE_ERROR;
  2904     }
  2905     pFrom->pIndex = pIdx;
  2906   }
  2907   return SQLITE_OK;
  2908 }
  2909 
  2910 /*
  2911 ** This routine is a Walker callback for "expanding" a SELECT statement.
  2912 ** "Expanding" means to do the following:
  2913 **
  2914 **    (1)  Make sure VDBE cursor numbers have been assigned to every
  2915 **         element of the FROM clause.
  2916 **
  2917 **    (2)  Fill in the pTabList->a[].pTab fields in the SrcList that 
  2918 **         defines FROM clause.  When views appear in the FROM clause,
  2919 **         fill pTabList->a[].pSelect with a copy of the SELECT statement
  2920 **         that implements the view.  A copy is made of the view's SELECT
  2921 **         statement so that we can freely modify or delete that statement
  2922 **         without worrying about messing up the presistent representation
  2923 **         of the view.
  2924 **
  2925 **    (3)  Add terms to the WHERE clause to accomodate the NATURAL keyword
  2926 **         on joins and the ON and USING clause of joins.
  2927 **
  2928 **    (4)  Scan the list of columns in the result set (pEList) looking
  2929 **         for instances of the "*" operator or the TABLE.* operator.
  2930 **         If found, expand each "*" to be every column in every table
  2931 **         and TABLE.* to be every column in TABLE.
  2932 **
  2933 */
  2934 static int selectExpander(Walker *pWalker, Select *p){
  2935   Parse *pParse = pWalker->pParse;
  2936   int i, j, k;
  2937   SrcList *pTabList;
  2938   ExprList *pEList;
  2939   struct SrcList_item *pFrom;
  2940   sqlite3 *db = pParse->db;
  2941 
  2942   if( db->mallocFailed  ){
  2943     return WRC_Abort;
  2944   }
  2945   if( p->pSrc==0 || (p->selFlags & SF_Expanded)!=0 ){
  2946     return WRC_Prune;
  2947   }
  2948   p->selFlags |= SF_Expanded;
  2949   pTabList = p->pSrc;
  2950   pEList = p->pEList;
  2951 
  2952   /* Make sure cursor numbers have been assigned to all entries in
  2953   ** the FROM clause of the SELECT statement.
  2954   */
  2955   sqlite3SrcListAssignCursors(pParse, pTabList);
  2956 
  2957   /* Look up every table named in the FROM clause of the select.  If
  2958   ** an entry of the FROM clause is a subquery instead of a table or view,
  2959   ** then create a transient table structure to describe the subquery.
  2960   */
  2961   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
  2962     Table *pTab;
  2963     if( pFrom->pTab!=0 ){
  2964       /* This statement has already been prepared.  There is no need
  2965       ** to go further. */
  2966       assert( i==0 );
  2967       return WRC_Prune;
  2968     }
  2969     if( pFrom->zName==0 ){
  2970 #ifndef SQLITE_OMIT_SUBQUERY
  2971       Select *pSel = pFrom->pSelect;
  2972       /* A sub-query in the FROM clause of a SELECT */
  2973       assert( pSel!=0 );
  2974       assert( pFrom->pTab==0 );
  2975       sqlite3WalkSelect(pWalker, pSel);
  2976       pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));
  2977       if( pTab==0 ) return WRC_Abort;
  2978       pTab->db = db;
  2979       pTab->nRef = 1;
  2980       pTab->zName = sqlite3MPrintf(db, "sqlite_subquery_%p_", (void*)pTab);
  2981       while( pSel->pPrior ){ pSel = pSel->pPrior; }
  2982       selectColumnsFromExprList(pParse, pSel->pEList, &pTab->nCol, &pTab->aCol);
  2983       pTab->iPKey = -1;
  2984       pTab->tabFlags |= TF_Ephemeral;
  2985 #endif
  2986     }else{
  2987       /* An ordinary table or view name in the FROM clause */
  2988       assert( pFrom->pTab==0 );
  2989       pFrom->pTab = pTab = 
  2990         sqlite3LocateTable(pParse,0,pFrom->zName,pFrom->zDatabase);
  2991       if( pTab==0 ) return WRC_Abort;
  2992       pTab->nRef++;
  2993 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE)
  2994       if( pTab->pSelect || IsVirtual(pTab) ){
  2995         /* We reach here if the named table is a really a view */
  2996         if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort;
  2997 
  2998         /* If pFrom->pSelect!=0 it means we are dealing with a
  2999         ** view within a view.  The SELECT structure has already been
  3000         ** copied by the outer view so we can skip the copy step here
  3001         ** in the inner view.
  3002         */
  3003         if( pFrom->pSelect==0 ){
  3004           pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect);
  3005           sqlite3WalkSelect(pWalker, pFrom->pSelect);
  3006         }
  3007       }
  3008 #endif
  3009     }
  3010 
  3011     /* Locate the index named by the INDEXED BY clause, if any. */
  3012     if( sqlite3IndexedByLookup(pParse, pFrom) ){
  3013       return WRC_Abort;
  3014     }
  3015   }
  3016 
  3017   /* Process NATURAL keywords, and ON and USING clauses of joins.
  3018   */
  3019   if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){
  3020     return WRC_Abort;
  3021   }
  3022 
  3023   /* For every "*" that occurs in the column list, insert the names of
  3024   ** all columns in all tables.  And for every TABLE.* insert the names
  3025   ** of all columns in TABLE.  The parser inserted a special expression
  3026   ** with the TK_ALL operator for each "*" that it found in the column list.
  3027   ** The following code just has to locate the TK_ALL expressions and expand
  3028   ** each one to the list of all columns in all tables.
  3029   **
  3030   ** The first loop just checks to see if there are any "*" operators
  3031   ** that need expanding.
  3032   */
  3033   for(k=0; k<pEList->nExpr; k++){
  3034     Expr *pE = pEList->a[k].pExpr;
  3035     if( pE->op==TK_ALL ) break;
  3036     if( pE->op==TK_DOT && pE->pRight && pE->pRight->op==TK_ALL
  3037          && pE->pLeft && pE->pLeft->op==TK_ID ) break;
  3038   }
  3039   if( k<pEList->nExpr ){
  3040     /*
  3041     ** If we get here it means the result set contains one or more "*"
  3042     ** operators that need to be expanded.  Loop through each expression
  3043     ** in the result set and expand them one by one.
  3044     */
  3045     struct ExprList_item *a = pEList->a;
  3046     ExprList *pNew = 0;
  3047     int flags = pParse->db->flags;
  3048     int longNames = (flags & SQLITE_FullColNames)!=0
  3049                       && (flags & SQLITE_ShortColNames)==0;
  3050 
  3051     for(k=0; k<pEList->nExpr; k++){
  3052       Expr *pE = a[k].pExpr;
  3053       if( pE->op!=TK_ALL &&
  3054            (pE->op!=TK_DOT || pE->pRight==0 || pE->pRight->op!=TK_ALL) ){
  3055         /* This particular expression does not need to be expanded.
  3056         */
  3057         pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr, 0);
  3058         if( pNew ){
  3059           pNew->a[pNew->nExpr-1].zName = a[k].zName;
  3060         }
  3061         a[k].pExpr = 0;
  3062         a[k].zName = 0;
  3063       }else{
  3064         /* This expression is a "*" or a "TABLE.*" and needs to be
  3065         ** expanded. */
  3066         int tableSeen = 0;      /* Set to 1 when TABLE matches */
  3067         char *zTName;            /* text of name of TABLE */
  3068         if( pE->op==TK_DOT && pE->pLeft ){
  3069           zTName = sqlite3NameFromToken(db, &pE->pLeft->token);
  3070         }else{
  3071           zTName = 0;
  3072         }
  3073         for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
  3074           Table *pTab = pFrom->pTab;
  3075           char *zTabName = pFrom->zAlias;
  3076           if( zTabName==0 || zTabName[0]==0 ){ 
  3077             zTabName = pTab->zName;
  3078           }
  3079           if( db->mallocFailed ) break;
  3080           if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){
  3081             continue;
  3082           }
  3083           tableSeen = 1;
  3084           for(j=0; j<pTab->nCol; j++){
  3085             Expr *pExpr, *pRight;
  3086             char *zName = pTab->aCol[j].zName;
  3087 
  3088             /* If a column is marked as 'hidden' (currently only possible
  3089             ** for virtual tables), do not include it in the expanded
  3090             ** result-set list.
  3091             */
  3092             if( IsHiddenColumn(&pTab->aCol[j]) ){
  3093               assert(IsVirtual(pTab));
  3094               continue;
  3095             }
  3096 
  3097             if( i>0 ){
  3098               struct SrcList_item *pLeft = &pTabList->a[i-1];
  3099               if( (pLeft[1].jointype & JT_NATURAL)!=0 &&
  3100                         columnIndex(pLeft->pTab, zName)>=0 ){
  3101                 /* In a NATURAL join, omit the join columns from the 
  3102                 ** table on the right */
  3103                 continue;
  3104               }
  3105               if( sqlite3IdListIndex(pLeft[1].pUsing, zName)>=0 ){
  3106                 /* In a join with a USING clause, omit columns in the
  3107                 ** using clause from the table on the right. */
  3108                 continue;
  3109               }
  3110             }
  3111             pRight = sqlite3PExpr(pParse, TK_ID, 0, 0, 0);
  3112             if( pRight==0 ) break;
  3113             setQuotedToken(pParse, &pRight->token, zName);
  3114             if( longNames || pTabList->nSrc>1 ){
  3115               Expr *pLeft = sqlite3PExpr(pParse, TK_ID, 0, 0, 0);
  3116               pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0);
  3117               if( pExpr==0 ) break;
  3118               setQuotedToken(pParse, &pLeft->token, zTabName);
  3119               setToken(&pExpr->span, 
  3120                   sqlite3MPrintf(db, "%s.%s", zTabName, zName));
  3121               pExpr->span.dyn = 1;
  3122               pExpr->token.z = 0;
  3123               pExpr->token.n = 0;
  3124               pExpr->token.dyn = 0;
  3125             }else{
  3126               pExpr = pRight;
  3127               pExpr->span = pExpr->token;
  3128               pExpr->span.dyn = 0;
  3129             }
  3130             if( longNames ){
  3131               pNew = sqlite3ExprListAppend(pParse, pNew, pExpr, &pExpr->span);
  3132             }else{
  3133               pNew = sqlite3ExprListAppend(pParse, pNew, pExpr, &pRight->token);
  3134             }
  3135           }
  3136         }
  3137         if( !tableSeen ){
  3138           if( zTName ){
  3139             sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
  3140           }else{
  3141             sqlite3ErrorMsg(pParse, "no tables specified");
  3142           }
  3143         }
  3144         sqlite3DbFree(db, zTName);
  3145       }
  3146     }
  3147     sqlite3ExprListDelete(db, pEList);
  3148     p->pEList = pNew;
  3149   }
  3150 #if SQLITE_MAX_COLUMN
  3151   if( p->pEList && p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
  3152     sqlite3ErrorMsg(pParse, "too many columns in result set");
  3153   }
  3154 #endif
  3155   return WRC_Continue;
  3156 }
  3157 
  3158 /*
  3159 ** No-op routine for the parse-tree walker.
  3160 **
  3161 ** When this routine is the Walker.xExprCallback then expression trees
  3162 ** are walked without any actions being taken at each node.  Presumably,
  3163 ** when this routine is used for Walker.xExprCallback then 
  3164 ** Walker.xSelectCallback is set to do something useful for every 
  3165 ** subquery in the parser tree.
  3166 */
  3167 static int exprWalkNoop(Walker *pWalker, Expr *pExpr){
  3168   return WRC_Continue;
  3169 }
  3170 
  3171 /*
  3172 ** This routine "expands" a SELECT statement and all of its subqueries.
  3173 ** For additional information on what it means to "expand" a SELECT
  3174 ** statement, see the comment on the selectExpand worker callback above.
  3175 **
  3176 ** Expanding a SELECT statement is the first step in processing a
  3177 ** SELECT statement.  The SELECT statement must be expanded before
  3178 ** name resolution is performed.
  3179 **
  3180 ** If anything goes wrong, an error message is written into pParse.
  3181 ** The calling function can detect the problem by looking at pParse->nErr
  3182 ** and/or pParse->db->mallocFailed.
  3183 */
  3184 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){
  3185   Walker w;
  3186   w.xSelectCallback = selectExpander;
  3187   w.xExprCallback = exprWalkNoop;
  3188   w.pParse = pParse;
  3189   sqlite3WalkSelect(&w, pSelect);
  3190 }
  3191 
  3192 
  3193 #ifndef SQLITE_OMIT_SUBQUERY
  3194 /*
  3195 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo()
  3196 ** interface.
  3197 **
  3198 ** For each FROM-clause subquery, add Column.zType and Column.zColl
  3199 ** information to the Table structure that represents the result set
  3200 ** of that subquery.
  3201 **
  3202 ** The Table structure that represents the result set was constructed
  3203 ** by selectExpander() but the type and collation information was omitted
  3204 ** at that point because identifiers had not yet been resolved.  This
  3205 ** routine is called after identifier resolution.
  3206 */
  3207 static int selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){
  3208   Parse *pParse;
  3209   int i;
  3210   SrcList *pTabList;
  3211   struct SrcList_item *pFrom;
  3212 
  3213   assert( p->selFlags & SF_Resolved );
  3214   if( (p->selFlags & SF_HasTypeInfo)==0 ){
  3215     p->selFlags |= SF_HasTypeInfo;
  3216     pParse = pWalker->pParse;
  3217     pTabList = p->pSrc;
  3218     for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
  3219       Table *pTab = pFrom->pTab;
  3220       if( pTab && (pTab->tabFlags & TF_Ephemeral)!=0 ){
  3221         /* A sub-query in the FROM clause of a SELECT */
  3222         Select *pSel = pFrom->pSelect;
  3223         assert( pSel );
  3224         while( pSel->pPrior ) pSel = pSel->pPrior;
  3225         selectAddColumnTypeAndCollation(pParse, pTab->nCol, pTab->aCol, pSel);
  3226       }
  3227     }
  3228   }
  3229   return WRC_Continue;
  3230 }
  3231 #endif
  3232 
  3233 
  3234 /*
  3235 ** This routine adds datatype and collating sequence information to
  3236 ** the Table structures of all FROM-clause subqueries in a
  3237 ** SELECT statement.
  3238 **
  3239 ** Use this routine after name resolution.
  3240 */
  3241 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){
  3242 #ifndef SQLITE_OMIT_SUBQUERY
  3243   Walker w;
  3244   w.xSelectCallback = selectAddSubqueryTypeInfo;
  3245   w.xExprCallback = exprWalkNoop;
  3246   w.pParse = pParse;
  3247   sqlite3WalkSelect(&w, pSelect);
  3248 #endif
  3249 }
  3250 
  3251 
  3252 /*
  3253 ** This routine sets of a SELECT statement for processing.  The
  3254 ** following is accomplished:
  3255 **
  3256 **     *  VDBE Cursor numbers are assigned to all FROM-clause terms.
  3257 **     *  Ephemeral Table objects are created for all FROM-clause subqueries.
  3258 **     *  ON and USING clauses are shifted into WHERE statements
  3259 **     *  Wildcards "*" and "TABLE.*" in result sets are expanded.
  3260 **     *  Identifiers in expression are matched to tables.
  3261 **
  3262 ** This routine acts recursively on all subqueries within the SELECT.
  3263 */
  3264 void sqlite3SelectPrep(
  3265   Parse *pParse,         /* The parser context */
  3266   Select *p,             /* The SELECT statement being coded. */
  3267   NameContext *pOuterNC  /* Name context for container */
  3268 ){
  3269   sqlite3 *db;
  3270   if( p==0 ) return;
  3271   db = pParse->db;
  3272   if( p->selFlags & SF_HasTypeInfo ) return;
  3273   if( pParse->nErr || db->mallocFailed ) return;
  3274   sqlite3SelectExpand(pParse, p);
  3275   if( pParse->nErr || db->mallocFailed ) return;
  3276   sqlite3ResolveSelectNames(pParse, p, pOuterNC);
  3277   if( pParse->nErr || db->mallocFailed ) return;
  3278   sqlite3SelectAddTypeInfo(pParse, p);
  3279 }
  3280 
  3281 /*
  3282 ** Reset the aggregate accumulator.
  3283 **
  3284 ** The aggregate accumulator is a set of memory cells that hold
  3285 ** intermediate results while calculating an aggregate.  This
  3286 ** routine simply stores NULLs in all of those memory cells.
  3287 */
  3288 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
  3289   Vdbe *v = pParse->pVdbe;
  3290   int i;
  3291   struct AggInfo_func *pFunc;
  3292   if( pAggInfo->nFunc+pAggInfo->nColumn==0 ){
  3293     return;
  3294   }
  3295   for(i=0; i<pAggInfo->nColumn; i++){
  3296     sqlite3VdbeAddOp2(v, OP_Null, 0, pAggInfo->aCol[i].iMem);
  3297   }
  3298   for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){
  3299     sqlite3VdbeAddOp2(v, OP_Null, 0, pFunc->iMem);
  3300     if( pFunc->iDistinct>=0 ){
  3301       Expr *pE = pFunc->pExpr;
  3302       if( pE->pList==0 || pE->pList->nExpr!=1 ){
  3303         sqlite3ErrorMsg(pParse, "DISTINCT in aggregate must be followed "
  3304            "by an expression");
  3305         pFunc->iDistinct = -1;
  3306       }else{
  3307         KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->pList);
  3308         sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0,
  3309                           (char*)pKeyInfo, P4_KEYINFO_HANDOFF);
  3310       }
  3311     }
  3312   }
  3313 }
  3314 
  3315 /*
  3316 ** Invoke the OP_AggFinalize opcode for every aggregate function
  3317 ** in the AggInfo structure.
  3318 */
  3319 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
  3320   Vdbe *v = pParse->pVdbe;
  3321   int i;
  3322   struct AggInfo_func *pF;
  3323   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
  3324     ExprList *pList = pF->pExpr->pList;
  3325     sqlite3VdbeAddOp4(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0, 0,
  3326                       (void*)pF->pFunc, P4_FUNCDEF);
  3327   }
  3328 }
  3329 
  3330 /*
  3331 ** Update the accumulator memory cells for an aggregate based on
  3332 ** the current cursor position.
  3333 */
  3334 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){
  3335   Vdbe *v = pParse->pVdbe;
  3336   int i;
  3337   struct AggInfo_func *pF;
  3338   struct AggInfo_col *pC;
  3339 
  3340   pAggInfo->directMode = 1;
  3341   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
  3342     int nArg;
  3343     int addrNext = 0;
  3344     int regAgg;
  3345     ExprList *pList = pF->pExpr->pList;
  3346     if( pList ){
  3347       nArg = pList->nExpr;
  3348       regAgg = sqlite3GetTempRange(pParse, nArg);
  3349       sqlite3ExprCodeExprList(pParse, pList, regAgg, 0);
  3350     }else{
  3351       nArg = 0;
  3352       regAgg = 0;
  3353     }
  3354     if( pF->iDistinct>=0 ){
  3355       addrNext = sqlite3VdbeMakeLabel(v);
  3356       assert( nArg==1 );
  3357       codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg);
  3358     }
  3359     if( pF->pFunc->flags & SQLITE_FUNC_NEEDCOLL ){
  3360       CollSeq *pColl = 0;
  3361       struct ExprList_item *pItem;
  3362       int j;
  3363       assert( pList!=0 );  /* pList!=0 if pF->pFunc has NEEDCOLL */
  3364       for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
  3365         pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
  3366       }
  3367       if( !pColl ){
  3368         pColl = pParse->db->pDfltColl;
  3369       }
  3370       sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
  3371     }
  3372     sqlite3VdbeAddOp4(v, OP_AggStep, 0, regAgg, pF->iMem,
  3373                       (void*)pF->pFunc, P4_FUNCDEF);
  3374     sqlite3VdbeChangeP5(v, nArg);
  3375     sqlite3ReleaseTempRange(pParse, regAgg, nArg);
  3376     sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg);
  3377     if( addrNext ){
  3378       sqlite3VdbeResolveLabel(v, addrNext);
  3379     }
  3380   }
  3381   for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
  3382     sqlite3ExprCode(pParse, pC->pExpr, pC->iMem);
  3383   }
  3384   pAggInfo->directMode = 0;
  3385 }
  3386 
  3387 /*
  3388 ** Generate code for the SELECT statement given in the p argument.  
  3389 **
  3390 ** The results are distributed in various ways depending on the
  3391 ** contents of the SelectDest structure pointed to by argument pDest
  3392 ** as follows:
  3393 **
  3394 **     pDest->eDest    Result
  3395 **     ------------    -------------------------------------------
  3396 **     SRT_Output      Generate a row of output (using the OP_ResultRow
  3397 **                     opcode) for each row in the result set.
  3398 **
  3399 **     SRT_Mem         Only valid if the result is a single column.
  3400 **                     Store the first column of the first result row
  3401 **                     in register pDest->iParm then abandon the rest
  3402 **                     of the query.  This destination implies "LIMIT 1".
  3403 **
  3404 **     SRT_Set         The result must be a single column.  Store each
  3405 **                     row of result as the key in table pDest->iParm. 
  3406 **                     Apply the affinity pDest->affinity before storing
  3407 **                     results.  Used to implement "IN (SELECT ...)".
  3408 **
  3409 **     SRT_Union       Store results as a key in a temporary table pDest->iParm.
  3410 **
  3411 **     SRT_Except      Remove results from the temporary table pDest->iParm.
  3412 **
  3413 **     SRT_Table       Store results in temporary table pDest->iParm.
  3414 **                     This is like SRT_EphemTab except that the table
  3415 **                     is assumed to already be open.
  3416 **
  3417 **     SRT_EphemTab    Create an temporary table pDest->iParm and store
  3418 **                     the result there. The cursor is left open after
  3419 **                     returning.  This is like SRT_Table except that
  3420 **                     this destination uses OP_OpenEphemeral to create
  3421 **                     the table first.
  3422 **
  3423 **     SRT_Coroutine   Generate a co-routine that returns a new row of
  3424 **                     results each time it is invoked.  The entry point
  3425 **                     of the co-routine is stored in register pDest->iParm.
  3426 **
  3427 **     SRT_Exists      Store a 1 in memory cell pDest->iParm if the result
  3428 **                     set is not empty.
  3429 **
  3430 **     SRT_Discard     Throw the results away.  This is used by SELECT
  3431 **                     statements within triggers whose only purpose is
  3432 **                     the side-effects of functions.
  3433 **
  3434 ** This routine returns the number of errors.  If any errors are
  3435 ** encountered, then an appropriate error message is left in
  3436 ** pParse->zErrMsg.
  3437 **
  3438 ** This routine does NOT free the Select structure passed in.  The
  3439 ** calling function needs to do that.
  3440 */
  3441 int sqlite3Select(
  3442   Parse *pParse,         /* The parser context */
  3443   Select *p,             /* The SELECT statement being coded. */
  3444   SelectDest *pDest      /* What to do with the query results */
  3445 ){
  3446   int i, j;              /* Loop counters */
  3447   WhereInfo *pWInfo;     /* Return from sqlite3WhereBegin() */
  3448   Vdbe *v;               /* The virtual machine under construction */
  3449   int isAgg;             /* True for select lists like "count(*)" */
  3450   ExprList *pEList;      /* List of columns to extract. */
  3451   SrcList *pTabList;     /* List of tables to select from */
  3452   Expr *pWhere;          /* The WHERE clause.  May be NULL */
  3453   ExprList *pOrderBy;    /* The ORDER BY clause.  May be NULL */
  3454   ExprList *pGroupBy;    /* The GROUP BY clause.  May be NULL */
  3455   Expr *pHaving;         /* The HAVING clause.  May be NULL */
  3456   int isDistinct;        /* True if the DISTINCT keyword is present */
  3457   int distinct;          /* Table to use for the distinct set */
  3458   int rc = 1;            /* Value to return from this function */
  3459   int addrSortIndex;     /* Address of an OP_OpenEphemeral instruction */
  3460   AggInfo sAggInfo;      /* Information used by aggregate queries */
  3461   int iEnd;              /* Address of the end of the query */
  3462   sqlite3 *db;           /* The database connection */
  3463 
  3464   db = pParse->db;
  3465   if( p==0 || db->mallocFailed || pParse->nErr ){
  3466     return 1;
  3467   }
  3468   if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
  3469   memset(&sAggInfo, 0, sizeof(sAggInfo));
  3470 
  3471   pOrderBy = p->pOrderBy;
  3472   if( IgnorableOrderby(pDest) ){
  3473     p->pOrderBy = 0;
  3474 
  3475     /* In these cases the DISTINCT operator makes no difference to the
  3476     ** results, so remove it if it were specified.
  3477     */
  3478     assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union || 
  3479            pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard);
  3480     p->selFlags &= ~SF_Distinct;
  3481   }
  3482   sqlite3SelectPrep(pParse, p, 0);
  3483   if( pParse->nErr ){
  3484     goto select_end;
  3485   }
  3486   p->pOrderBy = pOrderBy;
  3487 
  3488 
  3489   /* Make local copies of the parameters for this query.
  3490   */
  3491   pTabList = p->pSrc;
  3492   isAgg = (p->selFlags & SF_Aggregate)!=0;
  3493   pEList = p->pEList;
  3494   if( pEList==0 ) goto select_end;
  3495 
  3496   /* 
  3497   ** Do not even attempt to generate any code if we have already seen
  3498   ** errors before this routine starts.
  3499   */
  3500   if( pParse->nErr>0 ) goto select_end;
  3501 
  3502   /* ORDER BY is ignored for some destinations.
  3503   */
  3504   if( IgnorableOrderby(pDest) ){
  3505     pOrderBy = 0;
  3506   }
  3507 
  3508   /* Begin generating code.
  3509   */
  3510   v = sqlite3GetVdbe(pParse);
  3511   if( v==0 ) goto select_end;
  3512 
  3513   /* Generate code for all sub-queries in the FROM clause
  3514   */
  3515 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
  3516   for(i=0; !p->pPrior && i<pTabList->nSrc; i++){
  3517     struct SrcList_item *pItem = &pTabList->a[i];
  3518     SelectDest dest;
  3519     Select *pSub = pItem->pSelect;
  3520     int isAggSub;
  3521 
  3522     if( pSub==0 || pItem->isPopulated ) continue;
  3523 
  3524     /* Increment Parse.nHeight by the height of the largest expression
  3525     ** tree refered to by this, the parent select. The child select
  3526     ** may contain expression trees of at most
  3527     ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
  3528     ** more conservative than necessary, but much easier than enforcing
  3529     ** an exact limit.
  3530     */
  3531     pParse->nHeight += sqlite3SelectExprHeight(p);
  3532 
  3533     /* Check to see if the subquery can be absorbed into the parent. */
  3534     isAggSub = (pSub->selFlags & SF_Aggregate)!=0;
  3535     if( flattenSubquery(pParse, p, i, isAgg, isAggSub) ){
  3536       if( isAggSub ){
  3537         isAgg = 1;
  3538         p->selFlags |= SF_Aggregate;
  3539       }
  3540       i = -1;
  3541     }else{
  3542       sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor);
  3543       assert( pItem->isPopulated==0 );
  3544       sqlite3Select(pParse, pSub, &dest);
  3545       pItem->isPopulated = 1;
  3546     }
  3547     if( pParse->nErr || db->mallocFailed ){
  3548       goto select_end;
  3549     }
  3550     pParse->nHeight -= sqlite3SelectExprHeight(p);
  3551     pTabList = p->pSrc;
  3552     if( !IgnorableOrderby(pDest) ){
  3553       pOrderBy = p->pOrderBy;
  3554     }
  3555   }
  3556   pEList = p->pEList;
  3557 #endif
  3558   pWhere = p->pWhere;
  3559   pGroupBy = p->pGroupBy;
  3560   pHaving = p->pHaving;
  3561   isDistinct = (p->selFlags & SF_Distinct)!=0;
  3562 
  3563 #ifndef SQLITE_OMIT_COMPOUND_SELECT
  3564   /* If there is are a sequence of queries, do the earlier ones first.
  3565   */
  3566   if( p->pPrior ){
  3567     if( p->pRightmost==0 ){
  3568       Select *pLoop, *pRight = 0;
  3569       int cnt = 0;
  3570       int mxSelect;
  3571       for(pLoop=p; pLoop; pLoop=pLoop->pPrior, cnt++){
  3572         pLoop->pRightmost = p;
  3573         pLoop->pNext = pRight;
  3574         pRight = pLoop;
  3575       }
  3576       mxSelect = db->aLimit[SQLITE_LIMIT_COMPOUND_SELECT];
  3577       if( mxSelect && cnt>mxSelect ){
  3578         sqlite3ErrorMsg(pParse, "too many terms in compound SELECT");
  3579         return 1;
  3580       }
  3581     }
  3582     return multiSelect(pParse, p, pDest);
  3583   }
  3584 #endif
  3585 
  3586   /* If writing to memory or generating a set
  3587   ** only a single column may be output.
  3588   */
  3589 #ifndef SQLITE_OMIT_SUBQUERY
  3590   if( checkForMultiColumnSelectError(pParse, pDest, pEList->nExpr) ){
  3591     goto select_end;
  3592   }
  3593 #endif
  3594 
  3595   /* If possible, rewrite the query to use GROUP BY instead of DISTINCT.
  3596   ** GROUP BY might use an index, DISTINCT never does.
  3597   */
  3598   if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct && !p->pGroupBy ){
  3599     p->pGroupBy = sqlite3ExprListDup(db, p->pEList);
  3600     pGroupBy = p->pGroupBy;
  3601     p->selFlags &= ~SF_Distinct;
  3602     isDistinct = 0;
  3603   }
  3604 
  3605   /* If there is an ORDER BY clause, then this sorting
  3606   ** index might end up being unused if the data can be 
  3607   ** extracted in pre-sorted order.  If that is the case, then the
  3608   ** OP_OpenEphemeral instruction will be changed to an OP_Noop once
  3609   ** we figure out that the sorting index is not needed.  The addrSortIndex
  3610   ** variable is used to facilitate that change.
  3611   */
  3612   if( pOrderBy ){
  3613     KeyInfo *pKeyInfo;
  3614     pKeyInfo = keyInfoFromExprList(pParse, pOrderBy);
  3615     pOrderBy->iECursor = pParse->nTab++;
  3616     p->addrOpenEphm[2] = addrSortIndex =
  3617       sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
  3618                            pOrderBy->iECursor, pOrderBy->nExpr+2, 0,
  3619                            (char*)pKeyInfo, P4_KEYINFO_HANDOFF);
  3620   }else{
  3621     addrSortIndex = -1;
  3622   }
  3623 
  3624   /* If the output is destined for a temporary table, open that table.
  3625   */
  3626   if( pDest->eDest==SRT_EphemTab ){
  3627     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iParm, pEList->nExpr);
  3628   }
  3629 
  3630   /* Set the limiter.
  3631   */
  3632   iEnd = sqlite3VdbeMakeLabel(v);
  3633   computeLimitRegisters(pParse, p, iEnd);
  3634 
  3635   /* Open a virtual index to use for the distinct set.
  3636   */
  3637   if( isDistinct ){
  3638     KeyInfo *pKeyInfo;
  3639     assert( isAgg || pGroupBy );
  3640     distinct = pParse->nTab++;
  3641     pKeyInfo = keyInfoFromExprList(pParse, p->pEList);
  3642     sqlite3VdbeAddOp4(v, OP_OpenEphemeral, distinct, 0, 0,
  3643                         (char*)pKeyInfo, P4_KEYINFO_HANDOFF);
  3644   }else{
  3645     distinct = -1;
  3646   }
  3647 
  3648   /* Aggregate and non-aggregate queries are handled differently */
  3649   if( !isAgg && pGroupBy==0 ){
  3650     /* This case is for non-aggregate queries
  3651     ** Begin the database scan
  3652     */
  3653     pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pOrderBy, 0);
  3654     if( pWInfo==0 ) goto select_end;
  3655 
  3656     /* If sorting index that was created by a prior OP_OpenEphemeral 
  3657     ** instruction ended up not being needed, then change the OP_OpenEphemeral
  3658     ** into an OP_Noop.
  3659     */
  3660     if( addrSortIndex>=0 && pOrderBy==0 ){
  3661       sqlite3VdbeChangeToNoop(v, addrSortIndex, 1);
  3662       p->addrOpenEphm[2] = -1;
  3663     }
  3664 
  3665     /* Use the standard inner loop
  3666     */
  3667     assert(!isDistinct);
  3668     selectInnerLoop(pParse, p, pEList, 0, 0, pOrderBy, -1, pDest,
  3669                     pWInfo->iContinue, pWInfo->iBreak);
  3670 
  3671     /* End the database scan loop.
  3672     */
  3673     sqlite3WhereEnd(pWInfo);
  3674   }else{
  3675     /* This is the processing for aggregate queries */
  3676     NameContext sNC;    /* Name context for processing aggregate information */
  3677     int iAMem;          /* First Mem address for storing current GROUP BY */
  3678     int iBMem;          /* First Mem address for previous GROUP BY */
  3679     int iUseFlag;       /* Mem address holding flag indicating that at least
  3680                         ** one row of the input to the aggregator has been
  3681                         ** processed */
  3682     int iAbortFlag;     /* Mem address which causes query abort if positive */
  3683     int groupBySort;    /* Rows come from source in GROUP BY order */
  3684     int addrEnd;        /* End of processing for this SELECT */
  3685 
  3686     /* Remove any and all aliases between the result set and the
  3687     ** GROUP BY clause.
  3688     */
  3689     if( pGroupBy ){
  3690       int i;                        /* Loop counter */
  3691       struct ExprList_item *pItem;  /* For looping over expression in a list */
  3692 
  3693       for(i=p->pEList->nExpr, pItem=p->pEList->a; i>0; i--, pItem++){
  3694         pItem->iAlias = 0;
  3695       }
  3696       for(i=pGroupBy->nExpr, pItem=pGroupBy->a; i>0; i--, pItem++){
  3697         pItem->iAlias = 0;
  3698       }
  3699     }
  3700 
  3701  
  3702     /* Create a label to jump to when we want to abort the query */
  3703     addrEnd = sqlite3VdbeMakeLabel(v);
  3704 
  3705     /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
  3706     ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
  3707     ** SELECT statement.
  3708     */
  3709     memset(&sNC, 0, sizeof(sNC));
  3710     sNC.pParse = pParse;
  3711     sNC.pSrcList = pTabList;
  3712     sNC.pAggInfo = &sAggInfo;
  3713     sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr+1 : 0;
  3714     sAggInfo.pGroupBy = pGroupBy;
  3715     sqlite3ExprAnalyzeAggList(&sNC, pEList);
  3716     sqlite3ExprAnalyzeAggList(&sNC, pOrderBy);
  3717     if( pHaving ){
  3718       sqlite3ExprAnalyzeAggregates(&sNC, pHaving);
  3719     }
  3720     sAggInfo.nAccumulator = sAggInfo.nColumn;
  3721     for(i=0; i<sAggInfo.nFunc; i++){
  3722       sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->pList);
  3723     }
  3724     if( db->mallocFailed ) goto select_end;
  3725 
  3726     /* Processing for aggregates with GROUP BY is very different and
  3727     ** much more complex than aggregates without a GROUP BY.
  3728     */
  3729     if( pGroupBy ){
  3730       KeyInfo *pKeyInfo;  /* Keying information for the group by clause */
  3731       int j1;             /* A-vs-B comparision jump */
  3732       int addrOutputRow;  /* Start of subroutine that outputs a result row */
  3733       int regOutputRow;   /* Return address register for output subroutine */
  3734       int addrSetAbort;   /* Set the abort flag and return */
  3735       int addrTopOfLoop;  /* Top of the input loop */
  3736       int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */
  3737       int addrReset;      /* Subroutine for resetting the accumulator */
  3738       int regReset;       /* Return address register for reset subroutine */
  3739 
  3740       /* If there is a GROUP BY clause we might need a sorting index to
  3741       ** implement it.  Allocate that sorting index now.  If it turns out
  3742       ** that we do not need it after all, the OpenEphemeral instruction
  3743       ** will be converted into a Noop.  
  3744       */
  3745       sAggInfo.sortingIdx = pParse->nTab++;
  3746       pKeyInfo = keyInfoFromExprList(pParse, pGroupBy);
  3747       addrSortingIdx = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 
  3748           sAggInfo.sortingIdx, sAggInfo.nSortingColumn, 
  3749           0, (char*)pKeyInfo, P4_KEYINFO_HANDOFF);
  3750 
  3751       /* Initialize memory locations used by GROUP BY aggregate processing
  3752       */
  3753       iUseFlag = ++pParse->nMem;
  3754       iAbortFlag = ++pParse->nMem;
  3755       regOutputRow = ++pParse->nMem;
  3756       addrOutputRow = sqlite3VdbeMakeLabel(v);
  3757       regReset = ++pParse->nMem;
  3758       addrReset = sqlite3VdbeMakeLabel(v);
  3759       iAMem = pParse->nMem + 1;
  3760       pParse->nMem += pGroupBy->nExpr;
  3761       iBMem = pParse->nMem + 1;
  3762       pParse->nMem += pGroupBy->nExpr;
  3763       sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag);
  3764       VdbeComment((v, "clear abort flag"));
  3765       sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag);
  3766       VdbeComment((v, "indicate accumulator empty"));
  3767 
  3768       /* Begin a loop that will extract all source rows in GROUP BY order.
  3769       ** This might involve two separate loops with an OP_Sort in between, or
  3770       ** it might be a single loop that uses an index to extract information
  3771       ** in the right order to begin with.
  3772       */
  3773       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
  3774       pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pGroupBy, 0);
  3775       if( pWInfo==0 ) goto select_end;
  3776       if( pGroupBy==0 ){
  3777         /* The optimizer is able to deliver rows in group by order so
  3778         ** we do not have to sort.  The OP_OpenEphemeral table will be
  3779         ** cancelled later because we still need to use the pKeyInfo
  3780         */
  3781         pGroupBy = p->pGroupBy;
  3782         groupBySort = 0;
  3783       }else{
  3784         /* Rows are coming out in undetermined order.  We have to push
  3785         ** each row into a sorting index, terminate the first loop,
  3786         ** then loop over the sorting index in order to get the output
  3787         ** in sorted order
  3788         */
  3789         int regBase;
  3790         int regRecord;
  3791         int nCol;
  3792         int nGroupBy;
  3793 
  3794         groupBySort = 1;
  3795         nGroupBy = pGroupBy->nExpr;
  3796         nCol = nGroupBy + 1;
  3797         j = nGroupBy+1;
  3798         for(i=0; i<sAggInfo.nColumn; i++){
  3799           if( sAggInfo.aCol[i].iSorterColumn>=j ){
  3800             nCol++;
  3801             j++;
  3802           }
  3803         }
  3804         regBase = sqlite3GetTempRange(pParse, nCol);
  3805         sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0);
  3806         sqlite3VdbeAddOp2(v, OP_Sequence, sAggInfo.sortingIdx,regBase+nGroupBy);
  3807         j = nGroupBy+1;
  3808         for(i=0; i<sAggInfo.nColumn; i++){
  3809           struct AggInfo_col *pCol = &sAggInfo.aCol[i];
  3810           if( pCol->iSorterColumn>=j ){
  3811             int r1 = j + regBase;
  3812             int r2;
  3813 
  3814             r2 = sqlite3ExprCodeGetColumn(pParse, 
  3815                                pCol->pTab, pCol->iColumn, pCol->iTable, r1, 0);
  3816             if( r1!=r2 ){
  3817               sqlite3VdbeAddOp2(v, OP_SCopy, r2, r1);
  3818             }
  3819             j++;
  3820           }
  3821         }
  3822         regRecord = sqlite3GetTempReg(pParse);
  3823         sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord);
  3824         sqlite3VdbeAddOp2(v, OP_IdxInsert, sAggInfo.sortingIdx, regRecord);
  3825         sqlite3ReleaseTempReg(pParse, regRecord);
  3826         sqlite3ReleaseTempRange(pParse, regBase, nCol);
  3827         sqlite3WhereEnd(pWInfo);
  3828         sqlite3VdbeAddOp2(v, OP_Sort, sAggInfo.sortingIdx, addrEnd);
  3829         VdbeComment((v, "GROUP BY sort"));
  3830         sAggInfo.useSortingIdx = 1;
  3831       }
  3832 
  3833       /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
  3834       ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
  3835       ** Then compare the current GROUP BY terms against the GROUP BY terms
  3836       ** from the previous row currently stored in a0, a1, a2...
  3837       */
  3838       addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
  3839       for(j=0; j<pGroupBy->nExpr; j++){
  3840         if( groupBySort ){
  3841           sqlite3VdbeAddOp3(v, OP_Column, sAggInfo.sortingIdx, j, iBMem+j);
  3842         }else{
  3843           sAggInfo.directMode = 1;
  3844           sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j);
  3845         }
  3846       }
  3847       sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr,
  3848                           (char*)pKeyInfo, P4_KEYINFO);
  3849       j1 = sqlite3VdbeCurrentAddr(v);
  3850       sqlite3VdbeAddOp3(v, OP_Jump, j1+1, 0, j1+1);
  3851 
  3852       /* Generate code that runs whenever the GROUP BY changes.
  3853       ** Changes in the GROUP BY are detected by the previous code
  3854       ** block.  If there were no changes, this block is skipped.
  3855       **
  3856       ** This code copies current group by terms in b0,b1,b2,...
  3857       ** over to a0,a1,a2.  It then calls the output subroutine
  3858       ** and resets the aggregate accumulator registers in preparation
  3859       ** for the next GROUP BY batch.
  3860       */
  3861       sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr);
  3862       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
  3863       VdbeComment((v, "output one row"));
  3864       sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd);
  3865       VdbeComment((v, "check abort flag"));
  3866       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
  3867       VdbeComment((v, "reset accumulator"));
  3868 
  3869       /* Update the aggregate accumulators based on the content of
  3870       ** the current row
  3871       */
  3872       sqlite3VdbeJumpHere(v, j1);
  3873       updateAccumulator(pParse, &sAggInfo);
  3874       sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag);
  3875       VdbeComment((v, "indicate data in accumulator"));
  3876 
  3877       /* End of the loop
  3878       */
  3879       if( groupBySort ){
  3880         sqlite3VdbeAddOp2(v, OP_Next, sAggInfo.sortingIdx, addrTopOfLoop);
  3881       }else{
  3882         sqlite3WhereEnd(pWInfo);
  3883         sqlite3VdbeChangeToNoop(v, addrSortingIdx, 1);
  3884       }
  3885 
  3886       /* Output the final row of result
  3887       */
  3888       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
  3889       VdbeComment((v, "output final row"));
  3890 
  3891       /* Jump over the subroutines
  3892       */
  3893       sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEnd);
  3894 
  3895       /* Generate a subroutine that outputs a single row of the result
  3896       ** set.  This subroutine first looks at the iUseFlag.  If iUseFlag
  3897       ** is less than or equal to zero, the subroutine is a no-op.  If
  3898       ** the processing calls for the query to abort, this subroutine
  3899       ** increments the iAbortFlag memory location before returning in
  3900       ** order to signal the caller to abort.
  3901       */
  3902       addrSetAbort = sqlite3VdbeCurrentAddr(v);
  3903       sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag);
  3904       VdbeComment((v, "set abort flag"));
  3905       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
  3906       sqlite3VdbeResolveLabel(v, addrOutputRow);
  3907       addrOutputRow = sqlite3VdbeCurrentAddr(v);
  3908       sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2);
  3909       VdbeComment((v, "Groupby result generator entry point"));
  3910       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
  3911       finalizeAggFunctions(pParse, &sAggInfo);
  3912       if( pHaving ){
  3913         sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL);
  3914       }
  3915       selectInnerLoop(pParse, p, p->pEList, 0, 0, pOrderBy,
  3916                       distinct, pDest,
  3917                       addrOutputRow+1, addrSetAbort);
  3918       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
  3919       VdbeComment((v, "end groupby result generator"));
  3920 
  3921       /* Generate a subroutine that will reset the group-by accumulator
  3922       */
  3923       sqlite3VdbeResolveLabel(v, addrReset);
  3924       resetAccumulator(pParse, &sAggInfo);
  3925       sqlite3VdbeAddOp1(v, OP_Return, regReset);
  3926      
  3927     } /* endif pGroupBy */
  3928     else {
  3929       ExprList *pMinMax = 0;
  3930       ExprList *pDel = 0;
  3931       u8 flag;
  3932 
  3933       /* Check if the query is of one of the following forms:
  3934       **
  3935       **   SELECT min(x) FROM ...
  3936       **   SELECT max(x) FROM ...
  3937       **
  3938       ** If it is, then ask the code in where.c to attempt to sort results
  3939       ** as if there was an "ORDER ON x" or "ORDER ON x DESC" clause. 
  3940       ** If where.c is able to produce results sorted in this order, then
  3941       ** add vdbe code to break out of the processing loop after the 
  3942       ** first iteration (since the first iteration of the loop is 
  3943       ** guaranteed to operate on the row with the minimum or maximum 
  3944       ** value of x, the only row required).
  3945       **
  3946       ** A special flag must be passed to sqlite3WhereBegin() to slightly
  3947       ** modify behaviour as follows:
  3948       **
  3949       **   + If the query is a "SELECT min(x)", then the loop coded by
  3950       **     where.c should not iterate over any values with a NULL value
  3951       **     for x.
  3952       **
  3953       **   + The optimizer code in where.c (the thing that decides which
  3954       **     index or indices to use) should place a different priority on 
  3955       **     satisfying the 'ORDER BY' clause than it does in other cases.
  3956       **     Refer to code and comments in where.c for details.
  3957       */
  3958       flag = minMaxQuery(pParse, p);
  3959       if( flag ){
  3960         pDel = pMinMax = sqlite3ExprListDup(db, p->pEList->a[0].pExpr->pList);
  3961         if( pMinMax && !db->mallocFailed ){
  3962           pMinMax->a[0].sortOrder = flag!=WHERE_ORDERBY_MIN;
  3963           pMinMax->a[0].pExpr->op = TK_COLUMN;
  3964         }
  3965       }
  3966 
  3967       /* This case runs if the aggregate has no GROUP BY clause.  The
  3968       ** processing is much simpler since there is only a single row
  3969       ** of output.
  3970       */
  3971       resetAccumulator(pParse, &sAggInfo);
  3972       pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pMinMax, flag);
  3973       if( pWInfo==0 ){
  3974         sqlite3ExprListDelete(db, pDel);
  3975         goto select_end;
  3976       }
  3977       updateAccumulator(pParse, &sAggInfo);
  3978       if( !pMinMax && flag ){
  3979         sqlite3VdbeAddOp2(v, OP_Goto, 0, pWInfo->iBreak);
  3980         VdbeComment((v, "%s() by index",(flag==WHERE_ORDERBY_MIN?"min":"max")));
  3981       }
  3982       sqlite3WhereEnd(pWInfo);
  3983       finalizeAggFunctions(pParse, &sAggInfo);
  3984       pOrderBy = 0;
  3985       if( pHaving ){
  3986         sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL);
  3987       }
  3988       selectInnerLoop(pParse, p, p->pEList, 0, 0, 0, -1, 
  3989                       pDest, addrEnd, addrEnd);
  3990 
  3991       sqlite3ExprListDelete(db, pDel);
  3992     }
  3993     sqlite3VdbeResolveLabel(v, addrEnd);
  3994     
  3995   } /* endif aggregate query */
  3996 
  3997   /* If there is an ORDER BY clause, then we need to sort the results
  3998   ** and send them to the callback one by one.
  3999   */
  4000   if( pOrderBy ){
  4001     generateSortTail(pParse, p, v, pEList->nExpr, pDest);
  4002   }
  4003 
  4004   /* Jump here to skip this query
  4005   */
  4006   sqlite3VdbeResolveLabel(v, iEnd);
  4007 
  4008   /* The SELECT was successfully coded.   Set the return code to 0
  4009   ** to indicate no errors.
  4010   */
  4011   rc = 0;
  4012 
  4013   /* Control jumps to here if an error is encountered above, or upon
  4014   ** successful coding of the SELECT.
  4015   */
  4016 select_end:
  4017 
  4018   /* Identify column names if results of the SELECT are to be output.
  4019   */
  4020   if( rc==SQLITE_OK && pDest->eDest==SRT_Output ){
  4021     generateColumnNames(pParse, pTabList, pEList);
  4022   }
  4023 
  4024   sqlite3DbFree(db, sAggInfo.aCol);
  4025   sqlite3DbFree(db, sAggInfo.aFunc);
  4026   return rc;
  4027 }
  4028 
  4029 #if defined(SQLITE_DEBUG)
  4030 /*
  4031 *******************************************************************************
  4032 ** The following code is used for testing and debugging only.  The code
  4033 ** that follows does not appear in normal builds.
  4034 **
  4035 ** These routines are used to print out the content of all or part of a 
  4036 ** parse structures such as Select or Expr.  Such printouts are useful
  4037 ** for helping to understand what is happening inside the code generator
  4038 ** during the execution of complex SELECT statements.
  4039 **
  4040 ** These routine are not called anywhere from within the normal
  4041 ** code base.  Then are intended to be called from within the debugger
  4042 ** or from temporary "printf" statements inserted for debugging.
  4043 */
  4044 void sqlite3PrintExpr(Expr *p){
  4045   if( p->token.z && p->token.n>0 ){
  4046     sqlite3DebugPrintf("(%.*s", p->token.n, p->token.z);
  4047   }else{
  4048     sqlite3DebugPrintf("(%d", p->op);
  4049   }
  4050   if( p->pLeft ){
  4051     sqlite3DebugPrintf(" ");
  4052     sqlite3PrintExpr(p->pLeft);
  4053   }
  4054   if( p->pRight ){
  4055     sqlite3DebugPrintf(" ");
  4056     sqlite3PrintExpr(p->pRight);
  4057   }
  4058   sqlite3DebugPrintf(")");
  4059 }
  4060 void sqlite3PrintExprList(ExprList *pList){
  4061   int i;
  4062   for(i=0; i<pList->nExpr; i++){
  4063     sqlite3PrintExpr(pList->a[i].pExpr);
  4064     if( i<pList->nExpr-1 ){
  4065       sqlite3DebugPrintf(", ");
  4066     }
  4067   }
  4068 }
  4069 void sqlite3PrintSelect(Select *p, int indent){
  4070   sqlite3DebugPrintf("%*sSELECT(%p) ", indent, "", p);
  4071   sqlite3PrintExprList(p->pEList);
  4072   sqlite3DebugPrintf("\n");
  4073   if( p->pSrc ){
  4074     char *zPrefix;
  4075     int i;
  4076     zPrefix = "FROM";
  4077     for(i=0; i<p->pSrc->nSrc; i++){
  4078       struct SrcList_item *pItem = &p->pSrc->a[i];
  4079       sqlite3DebugPrintf("%*s ", indent+6, zPrefix);
  4080       zPrefix = "";
  4081       if( pItem->pSelect ){
  4082         sqlite3DebugPrintf("(\n");
  4083         sqlite3PrintSelect(pItem->pSelect, indent+10);
  4084         sqlite3DebugPrintf("%*s)", indent+8, "");
  4085       }else if( pItem->zName ){
  4086         sqlite3DebugPrintf("%s", pItem->zName);
  4087       }
  4088       if( pItem->pTab ){
  4089         sqlite3DebugPrintf("(table: %s)", pItem->pTab->zName);
  4090       }
  4091       if( pItem->zAlias ){
  4092         sqlite3DebugPrintf(" AS %s", pItem->zAlias);
  4093       }
  4094       if( i<p->pSrc->nSrc-1 ){
  4095         sqlite3DebugPrintf(",");
  4096       }
  4097       sqlite3DebugPrintf("\n");
  4098     }
  4099   }
  4100   if( p->pWhere ){
  4101     sqlite3DebugPrintf("%*s WHERE ", indent, "");
  4102     sqlite3PrintExpr(p->pWhere);
  4103     sqlite3DebugPrintf("\n");
  4104   }
  4105   if( p->pGroupBy ){
  4106     sqlite3DebugPrintf("%*s GROUP BY ", indent, "");
  4107     sqlite3PrintExprList(p->pGroupBy);
  4108     sqlite3DebugPrintf("\n");
  4109   }
  4110   if( p->pHaving ){
  4111     sqlite3DebugPrintf("%*s HAVING ", indent, "");
  4112     sqlite3PrintExpr(p->pHaving);
  4113     sqlite3DebugPrintf("\n");
  4114   }
  4115   if( p->pOrderBy ){
  4116     sqlite3DebugPrintf("%*s ORDER BY ", indent, "");
  4117     sqlite3PrintExprList(p->pOrderBy);
  4118     sqlite3DebugPrintf("\n");
  4119   }
  4120 }
  4121 /* End of the structure debug printing code
  4122 *****************************************************************************/
  4123 #endif /* defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */