sl@0
|
1 |
/*
|
sl@0
|
2 |
** 2001 September 15
|
sl@0
|
3 |
**
|
sl@0
|
4 |
** The author disclaims copyright to this source code. In place of
|
sl@0
|
5 |
** a legal notice, here is a blessing:
|
sl@0
|
6 |
**
|
sl@0
|
7 |
** May you do good and not evil.
|
sl@0
|
8 |
** May you find forgiveness for yourself and forgive others.
|
sl@0
|
9 |
** May you share freely, never taking more than you give.
|
sl@0
|
10 |
**
|
sl@0
|
11 |
*************************************************************************
|
sl@0
|
12 |
** This file contains C code routines that are called by the parser
|
sl@0
|
13 |
** to handle SELECT statements in SQLite.
|
sl@0
|
14 |
**
|
sl@0
|
15 |
** $Id: select.c,v 1.480 2008/10/07 19:53:14 drh Exp $
|
sl@0
|
16 |
*/
|
sl@0
|
17 |
#include "sqliteInt.h"
|
sl@0
|
18 |
|
sl@0
|
19 |
|
sl@0
|
20 |
/*
|
sl@0
|
21 |
** Delete all the content of a Select structure but do not deallocate
|
sl@0
|
22 |
** the select structure itself.
|
sl@0
|
23 |
*/
|
sl@0
|
24 |
static void clearSelect(sqlite3 *db, Select *p){
|
sl@0
|
25 |
sqlite3ExprListDelete(db, p->pEList);
|
sl@0
|
26 |
sqlite3SrcListDelete(db, p->pSrc);
|
sl@0
|
27 |
sqlite3ExprDelete(db, p->pWhere);
|
sl@0
|
28 |
sqlite3ExprListDelete(db, p->pGroupBy);
|
sl@0
|
29 |
sqlite3ExprDelete(db, p->pHaving);
|
sl@0
|
30 |
sqlite3ExprListDelete(db, p->pOrderBy);
|
sl@0
|
31 |
sqlite3SelectDelete(db, p->pPrior);
|
sl@0
|
32 |
sqlite3ExprDelete(db, p->pLimit);
|
sl@0
|
33 |
sqlite3ExprDelete(db, p->pOffset);
|
sl@0
|
34 |
}
|
sl@0
|
35 |
|
sl@0
|
36 |
/*
|
sl@0
|
37 |
** Initialize a SelectDest structure.
|
sl@0
|
38 |
*/
|
sl@0
|
39 |
void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){
|
sl@0
|
40 |
pDest->eDest = eDest;
|
sl@0
|
41 |
pDest->iParm = iParm;
|
sl@0
|
42 |
pDest->affinity = 0;
|
sl@0
|
43 |
pDest->iMem = 0;
|
sl@0
|
44 |
pDest->nMem = 0;
|
sl@0
|
45 |
}
|
sl@0
|
46 |
|
sl@0
|
47 |
|
sl@0
|
48 |
/*
|
sl@0
|
49 |
** Allocate a new Select structure and return a pointer to that
|
sl@0
|
50 |
** structure.
|
sl@0
|
51 |
*/
|
sl@0
|
52 |
Select *sqlite3SelectNew(
|
sl@0
|
53 |
Parse *pParse, /* Parsing context */
|
sl@0
|
54 |
ExprList *pEList, /* which columns to include in the result */
|
sl@0
|
55 |
SrcList *pSrc, /* the FROM clause -- which tables to scan */
|
sl@0
|
56 |
Expr *pWhere, /* the WHERE clause */
|
sl@0
|
57 |
ExprList *pGroupBy, /* the GROUP BY clause */
|
sl@0
|
58 |
Expr *pHaving, /* the HAVING clause */
|
sl@0
|
59 |
ExprList *pOrderBy, /* the ORDER BY clause */
|
sl@0
|
60 |
int isDistinct, /* true if the DISTINCT keyword is present */
|
sl@0
|
61 |
Expr *pLimit, /* LIMIT value. NULL means not used */
|
sl@0
|
62 |
Expr *pOffset /* OFFSET value. NULL means no offset */
|
sl@0
|
63 |
){
|
sl@0
|
64 |
Select *pNew;
|
sl@0
|
65 |
Select standin;
|
sl@0
|
66 |
sqlite3 *db = pParse->db;
|
sl@0
|
67 |
pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
|
sl@0
|
68 |
assert( !pOffset || pLimit ); /* Can't have OFFSET without LIMIT. */
|
sl@0
|
69 |
if( pNew==0 ){
|
sl@0
|
70 |
pNew = &standin;
|
sl@0
|
71 |
memset(pNew, 0, sizeof(*pNew));
|
sl@0
|
72 |
}
|
sl@0
|
73 |
if( pEList==0 ){
|
sl@0
|
74 |
pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db,TK_ALL,0,0,0), 0);
|
sl@0
|
75 |
}
|
sl@0
|
76 |
pNew->pEList = pEList;
|
sl@0
|
77 |
pNew->pSrc = pSrc;
|
sl@0
|
78 |
pNew->pWhere = pWhere;
|
sl@0
|
79 |
pNew->pGroupBy = pGroupBy;
|
sl@0
|
80 |
pNew->pHaving = pHaving;
|
sl@0
|
81 |
pNew->pOrderBy = pOrderBy;
|
sl@0
|
82 |
pNew->selFlags = isDistinct ? SF_Distinct : 0;
|
sl@0
|
83 |
pNew->op = TK_SELECT;
|
sl@0
|
84 |
pNew->pLimit = pLimit;
|
sl@0
|
85 |
pNew->pOffset = pOffset;
|
sl@0
|
86 |
pNew->addrOpenEphm[0] = -1;
|
sl@0
|
87 |
pNew->addrOpenEphm[1] = -1;
|
sl@0
|
88 |
pNew->addrOpenEphm[2] = -1;
|
sl@0
|
89 |
if( db->mallocFailed ) {
|
sl@0
|
90 |
clearSelect(db, pNew);
|
sl@0
|
91 |
if( pNew!=&standin ) sqlite3DbFree(db, pNew);
|
sl@0
|
92 |
pNew = 0;
|
sl@0
|
93 |
}
|
sl@0
|
94 |
return pNew;
|
sl@0
|
95 |
}
|
sl@0
|
96 |
|
sl@0
|
97 |
/*
|
sl@0
|
98 |
** Delete the given Select structure and all of its substructures.
|
sl@0
|
99 |
*/
|
sl@0
|
100 |
void sqlite3SelectDelete(sqlite3 *db, Select *p){
|
sl@0
|
101 |
if( p ){
|
sl@0
|
102 |
clearSelect(db, p);
|
sl@0
|
103 |
sqlite3DbFree(db, p);
|
sl@0
|
104 |
}
|
sl@0
|
105 |
}
|
sl@0
|
106 |
|
sl@0
|
107 |
/*
|
sl@0
|
108 |
** Given 1 to 3 identifiers preceeding the JOIN keyword, determine the
|
sl@0
|
109 |
** type of join. Return an integer constant that expresses that type
|
sl@0
|
110 |
** in terms of the following bit values:
|
sl@0
|
111 |
**
|
sl@0
|
112 |
** JT_INNER
|
sl@0
|
113 |
** JT_CROSS
|
sl@0
|
114 |
** JT_OUTER
|
sl@0
|
115 |
** JT_NATURAL
|
sl@0
|
116 |
** JT_LEFT
|
sl@0
|
117 |
** JT_RIGHT
|
sl@0
|
118 |
**
|
sl@0
|
119 |
** A full outer join is the combination of JT_LEFT and JT_RIGHT.
|
sl@0
|
120 |
**
|
sl@0
|
121 |
** If an illegal or unsupported join type is seen, then still return
|
sl@0
|
122 |
** a join type, but put an error in the pParse structure.
|
sl@0
|
123 |
*/
|
sl@0
|
124 |
int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
|
sl@0
|
125 |
int jointype = 0;
|
sl@0
|
126 |
Token *apAll[3];
|
sl@0
|
127 |
Token *p;
|
sl@0
|
128 |
static const struct {
|
sl@0
|
129 |
const char zKeyword[8];
|
sl@0
|
130 |
u8 nChar;
|
sl@0
|
131 |
u8 code;
|
sl@0
|
132 |
} keywords[] = {
|
sl@0
|
133 |
{ "natural", 7, JT_NATURAL },
|
sl@0
|
134 |
{ "left", 4, JT_LEFT|JT_OUTER },
|
sl@0
|
135 |
{ "right", 5, JT_RIGHT|JT_OUTER },
|
sl@0
|
136 |
{ "full", 4, JT_LEFT|JT_RIGHT|JT_OUTER },
|
sl@0
|
137 |
{ "outer", 5, JT_OUTER },
|
sl@0
|
138 |
{ "inner", 5, JT_INNER },
|
sl@0
|
139 |
{ "cross", 5, JT_INNER|JT_CROSS },
|
sl@0
|
140 |
};
|
sl@0
|
141 |
int i, j;
|
sl@0
|
142 |
apAll[0] = pA;
|
sl@0
|
143 |
apAll[1] = pB;
|
sl@0
|
144 |
apAll[2] = pC;
|
sl@0
|
145 |
for(i=0; i<3 && apAll[i]; i++){
|
sl@0
|
146 |
p = apAll[i];
|
sl@0
|
147 |
for(j=0; j<sizeof(keywords)/sizeof(keywords[0]); j++){
|
sl@0
|
148 |
if( p->n==keywords[j].nChar
|
sl@0
|
149 |
&& sqlite3StrNICmp((char*)p->z, keywords[j].zKeyword, p->n)==0 ){
|
sl@0
|
150 |
jointype |= keywords[j].code;
|
sl@0
|
151 |
break;
|
sl@0
|
152 |
}
|
sl@0
|
153 |
}
|
sl@0
|
154 |
if( j>=sizeof(keywords)/sizeof(keywords[0]) ){
|
sl@0
|
155 |
jointype |= JT_ERROR;
|
sl@0
|
156 |
break;
|
sl@0
|
157 |
}
|
sl@0
|
158 |
}
|
sl@0
|
159 |
if(
|
sl@0
|
160 |
(jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
|
sl@0
|
161 |
(jointype & JT_ERROR)!=0
|
sl@0
|
162 |
){
|
sl@0
|
163 |
const char *zSp = " ";
|
sl@0
|
164 |
assert( pB!=0 );
|
sl@0
|
165 |
if( pC==0 ){ zSp++; }
|
sl@0
|
166 |
sqlite3ErrorMsg(pParse, "unknown or unsupported join type: "
|
sl@0
|
167 |
"%T %T%s%T", pA, pB, zSp, pC);
|
sl@0
|
168 |
jointype = JT_INNER;
|
sl@0
|
169 |
}else if( jointype & JT_RIGHT ){
|
sl@0
|
170 |
sqlite3ErrorMsg(pParse,
|
sl@0
|
171 |
"RIGHT and FULL OUTER JOINs are not currently supported");
|
sl@0
|
172 |
jointype = JT_INNER;
|
sl@0
|
173 |
}
|
sl@0
|
174 |
return jointype;
|
sl@0
|
175 |
}
|
sl@0
|
176 |
|
sl@0
|
177 |
/*
|
sl@0
|
178 |
** Return the index of a column in a table. Return -1 if the column
|
sl@0
|
179 |
** is not contained in the table.
|
sl@0
|
180 |
*/
|
sl@0
|
181 |
static int columnIndex(Table *pTab, const char *zCol){
|
sl@0
|
182 |
int i;
|
sl@0
|
183 |
for(i=0; i<pTab->nCol; i++){
|
sl@0
|
184 |
if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i;
|
sl@0
|
185 |
}
|
sl@0
|
186 |
return -1;
|
sl@0
|
187 |
}
|
sl@0
|
188 |
|
sl@0
|
189 |
/*
|
sl@0
|
190 |
** Set the value of a token to a '\000'-terminated string.
|
sl@0
|
191 |
*/
|
sl@0
|
192 |
static void setToken(Token *p, const char *z){
|
sl@0
|
193 |
p->z = (u8*)z;
|
sl@0
|
194 |
p->n = z ? strlen(z) : 0;
|
sl@0
|
195 |
p->dyn = 0;
|
sl@0
|
196 |
}
|
sl@0
|
197 |
|
sl@0
|
198 |
/*
|
sl@0
|
199 |
** Set the token to the double-quoted and escaped version of the string pointed
|
sl@0
|
200 |
** to by z. For example;
|
sl@0
|
201 |
**
|
sl@0
|
202 |
** {a"bc} -> {"a""bc"}
|
sl@0
|
203 |
*/
|
sl@0
|
204 |
static void setQuotedToken(Parse *pParse, Token *p, const char *z){
|
sl@0
|
205 |
|
sl@0
|
206 |
/* Check if the string appears to be quoted using "..." or `...`
|
sl@0
|
207 |
** or [...] or '...' or if the string contains any " characters.
|
sl@0
|
208 |
** If it does, then record a version of the string with the special
|
sl@0
|
209 |
** characters escaped.
|
sl@0
|
210 |
*/
|
sl@0
|
211 |
const char *z2 = z;
|
sl@0
|
212 |
if( *z2!='[' && *z2!='`' && *z2!='\'' ){
|
sl@0
|
213 |
while( *z2 ){
|
sl@0
|
214 |
if( *z2=='"' ) break;
|
sl@0
|
215 |
z2++;
|
sl@0
|
216 |
}
|
sl@0
|
217 |
}
|
sl@0
|
218 |
|
sl@0
|
219 |
if( *z2 ){
|
sl@0
|
220 |
/* String contains " characters - copy and quote the string. */
|
sl@0
|
221 |
p->z = (u8 *)sqlite3MPrintf(pParse->db, "\"%w\"", z);
|
sl@0
|
222 |
if( p->z ){
|
sl@0
|
223 |
p->n = strlen((char *)p->z);
|
sl@0
|
224 |
p->dyn = 1;
|
sl@0
|
225 |
}
|
sl@0
|
226 |
}else{
|
sl@0
|
227 |
/* String contains no " characters - copy the pointer. */
|
sl@0
|
228 |
p->z = (u8*)z;
|
sl@0
|
229 |
p->n = (z2 - z);
|
sl@0
|
230 |
p->dyn = 0;
|
sl@0
|
231 |
}
|
sl@0
|
232 |
}
|
sl@0
|
233 |
|
sl@0
|
234 |
/*
|
sl@0
|
235 |
** Create an expression node for an identifier with the name of zName
|
sl@0
|
236 |
*/
|
sl@0
|
237 |
Expr *sqlite3CreateIdExpr(Parse *pParse, const char *zName){
|
sl@0
|
238 |
Token dummy;
|
sl@0
|
239 |
setToken(&dummy, zName);
|
sl@0
|
240 |
return sqlite3PExpr(pParse, TK_ID, 0, 0, &dummy);
|
sl@0
|
241 |
}
|
sl@0
|
242 |
|
sl@0
|
243 |
/*
|
sl@0
|
244 |
** Add a term to the WHERE expression in *ppExpr that requires the
|
sl@0
|
245 |
** zCol column to be equal in the two tables pTab1 and pTab2.
|
sl@0
|
246 |
*/
|
sl@0
|
247 |
static void addWhereTerm(
|
sl@0
|
248 |
Parse *pParse, /* Parsing context */
|
sl@0
|
249 |
const char *zCol, /* Name of the column */
|
sl@0
|
250 |
const Table *pTab1, /* First table */
|
sl@0
|
251 |
const char *zAlias1, /* Alias for first table. May be NULL */
|
sl@0
|
252 |
const Table *pTab2, /* Second table */
|
sl@0
|
253 |
const char *zAlias2, /* Alias for second table. May be NULL */
|
sl@0
|
254 |
int iRightJoinTable, /* VDBE cursor for the right table */
|
sl@0
|
255 |
Expr **ppExpr, /* Add the equality term to this expression */
|
sl@0
|
256 |
int isOuterJoin /* True if dealing with an OUTER join */
|
sl@0
|
257 |
){
|
sl@0
|
258 |
Expr *pE1a, *pE1b, *pE1c;
|
sl@0
|
259 |
Expr *pE2a, *pE2b, *pE2c;
|
sl@0
|
260 |
Expr *pE;
|
sl@0
|
261 |
|
sl@0
|
262 |
pE1a = sqlite3CreateIdExpr(pParse, zCol);
|
sl@0
|
263 |
pE2a = sqlite3CreateIdExpr(pParse, zCol);
|
sl@0
|
264 |
if( zAlias1==0 ){
|
sl@0
|
265 |
zAlias1 = pTab1->zName;
|
sl@0
|
266 |
}
|
sl@0
|
267 |
pE1b = sqlite3CreateIdExpr(pParse, zAlias1);
|
sl@0
|
268 |
if( zAlias2==0 ){
|
sl@0
|
269 |
zAlias2 = pTab2->zName;
|
sl@0
|
270 |
}
|
sl@0
|
271 |
pE2b = sqlite3CreateIdExpr(pParse, zAlias2);
|
sl@0
|
272 |
pE1c = sqlite3PExpr(pParse, TK_DOT, pE1b, pE1a, 0);
|
sl@0
|
273 |
pE2c = sqlite3PExpr(pParse, TK_DOT, pE2b, pE2a, 0);
|
sl@0
|
274 |
pE = sqlite3PExpr(pParse, TK_EQ, pE1c, pE2c, 0);
|
sl@0
|
275 |
if( pE && isOuterJoin ){
|
sl@0
|
276 |
ExprSetProperty(pE, EP_FromJoin);
|
sl@0
|
277 |
pE->iRightJoinTable = iRightJoinTable;
|
sl@0
|
278 |
}
|
sl@0
|
279 |
*ppExpr = sqlite3ExprAnd(pParse->db,*ppExpr, pE);
|
sl@0
|
280 |
}
|
sl@0
|
281 |
|
sl@0
|
282 |
/*
|
sl@0
|
283 |
** Set the EP_FromJoin property on all terms of the given expression.
|
sl@0
|
284 |
** And set the Expr.iRightJoinTable to iTable for every term in the
|
sl@0
|
285 |
** expression.
|
sl@0
|
286 |
**
|
sl@0
|
287 |
** The EP_FromJoin property is used on terms of an expression to tell
|
sl@0
|
288 |
** the LEFT OUTER JOIN processing logic that this term is part of the
|
sl@0
|
289 |
** join restriction specified in the ON or USING clause and not a part
|
sl@0
|
290 |
** of the more general WHERE clause. These terms are moved over to the
|
sl@0
|
291 |
** WHERE clause during join processing but we need to remember that they
|
sl@0
|
292 |
** originated in the ON or USING clause.
|
sl@0
|
293 |
**
|
sl@0
|
294 |
** The Expr.iRightJoinTable tells the WHERE clause processing that the
|
sl@0
|
295 |
** expression depends on table iRightJoinTable even if that table is not
|
sl@0
|
296 |
** explicitly mentioned in the expression. That information is needed
|
sl@0
|
297 |
** for cases like this:
|
sl@0
|
298 |
**
|
sl@0
|
299 |
** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
|
sl@0
|
300 |
**
|
sl@0
|
301 |
** The where clause needs to defer the handling of the t1.x=5
|
sl@0
|
302 |
** term until after the t2 loop of the join. In that way, a
|
sl@0
|
303 |
** NULL t2 row will be inserted whenever t1.x!=5. If we do not
|
sl@0
|
304 |
** defer the handling of t1.x=5, it will be processed immediately
|
sl@0
|
305 |
** after the t1 loop and rows with t1.x!=5 will never appear in
|
sl@0
|
306 |
** the output, which is incorrect.
|
sl@0
|
307 |
*/
|
sl@0
|
308 |
static void setJoinExpr(Expr *p, int iTable){
|
sl@0
|
309 |
while( p ){
|
sl@0
|
310 |
ExprSetProperty(p, EP_FromJoin);
|
sl@0
|
311 |
p->iRightJoinTable = iTable;
|
sl@0
|
312 |
setJoinExpr(p->pLeft, iTable);
|
sl@0
|
313 |
p = p->pRight;
|
sl@0
|
314 |
}
|
sl@0
|
315 |
}
|
sl@0
|
316 |
|
sl@0
|
317 |
/*
|
sl@0
|
318 |
** This routine processes the join information for a SELECT statement.
|
sl@0
|
319 |
** ON and USING clauses are converted into extra terms of the WHERE clause.
|
sl@0
|
320 |
** NATURAL joins also create extra WHERE clause terms.
|
sl@0
|
321 |
**
|
sl@0
|
322 |
** The terms of a FROM clause are contained in the Select.pSrc structure.
|
sl@0
|
323 |
** The left most table is the first entry in Select.pSrc. The right-most
|
sl@0
|
324 |
** table is the last entry. The join operator is held in the entry to
|
sl@0
|
325 |
** the left. Thus entry 0 contains the join operator for the join between
|
sl@0
|
326 |
** entries 0 and 1. Any ON or USING clauses associated with the join are
|
sl@0
|
327 |
** also attached to the left entry.
|
sl@0
|
328 |
**
|
sl@0
|
329 |
** This routine returns the number of errors encountered.
|
sl@0
|
330 |
*/
|
sl@0
|
331 |
static int sqliteProcessJoin(Parse *pParse, Select *p){
|
sl@0
|
332 |
SrcList *pSrc; /* All tables in the FROM clause */
|
sl@0
|
333 |
int i, j; /* Loop counters */
|
sl@0
|
334 |
struct SrcList_item *pLeft; /* Left table being joined */
|
sl@0
|
335 |
struct SrcList_item *pRight; /* Right table being joined */
|
sl@0
|
336 |
|
sl@0
|
337 |
pSrc = p->pSrc;
|
sl@0
|
338 |
pLeft = &pSrc->a[0];
|
sl@0
|
339 |
pRight = &pLeft[1];
|
sl@0
|
340 |
for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){
|
sl@0
|
341 |
Table *pLeftTab = pLeft->pTab;
|
sl@0
|
342 |
Table *pRightTab = pRight->pTab;
|
sl@0
|
343 |
int isOuter;
|
sl@0
|
344 |
|
sl@0
|
345 |
if( pLeftTab==0 || pRightTab==0 ) continue;
|
sl@0
|
346 |
isOuter = (pRight->jointype & JT_OUTER)!=0;
|
sl@0
|
347 |
|
sl@0
|
348 |
/* When the NATURAL keyword is present, add WHERE clause terms for
|
sl@0
|
349 |
** every column that the two tables have in common.
|
sl@0
|
350 |
*/
|
sl@0
|
351 |
if( pRight->jointype & JT_NATURAL ){
|
sl@0
|
352 |
if( pRight->pOn || pRight->pUsing ){
|
sl@0
|
353 |
sqlite3ErrorMsg(pParse, "a NATURAL join may not have "
|
sl@0
|
354 |
"an ON or USING clause", 0);
|
sl@0
|
355 |
return 1;
|
sl@0
|
356 |
}
|
sl@0
|
357 |
for(j=0; j<pLeftTab->nCol; j++){
|
sl@0
|
358 |
char *zName = pLeftTab->aCol[j].zName;
|
sl@0
|
359 |
if( columnIndex(pRightTab, zName)>=0 ){
|
sl@0
|
360 |
addWhereTerm(pParse, zName, pLeftTab, pLeft->zAlias,
|
sl@0
|
361 |
pRightTab, pRight->zAlias,
|
sl@0
|
362 |
pRight->iCursor, &p->pWhere, isOuter);
|
sl@0
|
363 |
|
sl@0
|
364 |
}
|
sl@0
|
365 |
}
|
sl@0
|
366 |
}
|
sl@0
|
367 |
|
sl@0
|
368 |
/* Disallow both ON and USING clauses in the same join
|
sl@0
|
369 |
*/
|
sl@0
|
370 |
if( pRight->pOn && pRight->pUsing ){
|
sl@0
|
371 |
sqlite3ErrorMsg(pParse, "cannot have both ON and USING "
|
sl@0
|
372 |
"clauses in the same join");
|
sl@0
|
373 |
return 1;
|
sl@0
|
374 |
}
|
sl@0
|
375 |
|
sl@0
|
376 |
/* Add the ON clause to the end of the WHERE clause, connected by
|
sl@0
|
377 |
** an AND operator.
|
sl@0
|
378 |
*/
|
sl@0
|
379 |
if( pRight->pOn ){
|
sl@0
|
380 |
if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor);
|
sl@0
|
381 |
p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn);
|
sl@0
|
382 |
pRight->pOn = 0;
|
sl@0
|
383 |
}
|
sl@0
|
384 |
|
sl@0
|
385 |
/* Create extra terms on the WHERE clause for each column named
|
sl@0
|
386 |
** in the USING clause. Example: If the two tables to be joined are
|
sl@0
|
387 |
** A and B and the USING clause names X, Y, and Z, then add this
|
sl@0
|
388 |
** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
|
sl@0
|
389 |
** Report an error if any column mentioned in the USING clause is
|
sl@0
|
390 |
** not contained in both tables to be joined.
|
sl@0
|
391 |
*/
|
sl@0
|
392 |
if( pRight->pUsing ){
|
sl@0
|
393 |
IdList *pList = pRight->pUsing;
|
sl@0
|
394 |
for(j=0; j<pList->nId; j++){
|
sl@0
|
395 |
char *zName = pList->a[j].zName;
|
sl@0
|
396 |
if( columnIndex(pLeftTab, zName)<0 || columnIndex(pRightTab, zName)<0 ){
|
sl@0
|
397 |
sqlite3ErrorMsg(pParse, "cannot join using column %s - column "
|
sl@0
|
398 |
"not present in both tables", zName);
|
sl@0
|
399 |
return 1;
|
sl@0
|
400 |
}
|
sl@0
|
401 |
addWhereTerm(pParse, zName, pLeftTab, pLeft->zAlias,
|
sl@0
|
402 |
pRightTab, pRight->zAlias,
|
sl@0
|
403 |
pRight->iCursor, &p->pWhere, isOuter);
|
sl@0
|
404 |
}
|
sl@0
|
405 |
}
|
sl@0
|
406 |
}
|
sl@0
|
407 |
return 0;
|
sl@0
|
408 |
}
|
sl@0
|
409 |
|
sl@0
|
410 |
/*
|
sl@0
|
411 |
** Insert code into "v" that will push the record on the top of the
|
sl@0
|
412 |
** stack into the sorter.
|
sl@0
|
413 |
*/
|
sl@0
|
414 |
static void pushOntoSorter(
|
sl@0
|
415 |
Parse *pParse, /* Parser context */
|
sl@0
|
416 |
ExprList *pOrderBy, /* The ORDER BY clause */
|
sl@0
|
417 |
Select *pSelect, /* The whole SELECT statement */
|
sl@0
|
418 |
int regData /* Register holding data to be sorted */
|
sl@0
|
419 |
){
|
sl@0
|
420 |
Vdbe *v = pParse->pVdbe;
|
sl@0
|
421 |
int nExpr = pOrderBy->nExpr;
|
sl@0
|
422 |
int regBase = sqlite3GetTempRange(pParse, nExpr+2);
|
sl@0
|
423 |
int regRecord = sqlite3GetTempReg(pParse);
|
sl@0
|
424 |
sqlite3ExprCodeExprList(pParse, pOrderBy, regBase, 0);
|
sl@0
|
425 |
sqlite3VdbeAddOp2(v, OP_Sequence, pOrderBy->iECursor, regBase+nExpr);
|
sl@0
|
426 |
sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+1, 1);
|
sl@0
|
427 |
sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nExpr + 2, regRecord);
|
sl@0
|
428 |
sqlite3VdbeAddOp2(v, OP_IdxInsert, pOrderBy->iECursor, regRecord);
|
sl@0
|
429 |
sqlite3ReleaseTempReg(pParse, regRecord);
|
sl@0
|
430 |
sqlite3ReleaseTempRange(pParse, regBase, nExpr+2);
|
sl@0
|
431 |
if( pSelect->iLimit ){
|
sl@0
|
432 |
int addr1, addr2;
|
sl@0
|
433 |
int iLimit;
|
sl@0
|
434 |
if( pSelect->iOffset ){
|
sl@0
|
435 |
iLimit = pSelect->iOffset+1;
|
sl@0
|
436 |
}else{
|
sl@0
|
437 |
iLimit = pSelect->iLimit;
|
sl@0
|
438 |
}
|
sl@0
|
439 |
addr1 = sqlite3VdbeAddOp1(v, OP_IfZero, iLimit);
|
sl@0
|
440 |
sqlite3VdbeAddOp2(v, OP_AddImm, iLimit, -1);
|
sl@0
|
441 |
addr2 = sqlite3VdbeAddOp0(v, OP_Goto);
|
sl@0
|
442 |
sqlite3VdbeJumpHere(v, addr1);
|
sl@0
|
443 |
sqlite3VdbeAddOp1(v, OP_Last, pOrderBy->iECursor);
|
sl@0
|
444 |
sqlite3VdbeAddOp1(v, OP_Delete, pOrderBy->iECursor);
|
sl@0
|
445 |
sqlite3VdbeJumpHere(v, addr2);
|
sl@0
|
446 |
pSelect->iLimit = 0;
|
sl@0
|
447 |
}
|
sl@0
|
448 |
}
|
sl@0
|
449 |
|
sl@0
|
450 |
/*
|
sl@0
|
451 |
** Add code to implement the OFFSET
|
sl@0
|
452 |
*/
|
sl@0
|
453 |
static void codeOffset(
|
sl@0
|
454 |
Vdbe *v, /* Generate code into this VM */
|
sl@0
|
455 |
Select *p, /* The SELECT statement being coded */
|
sl@0
|
456 |
int iContinue /* Jump here to skip the current record */
|
sl@0
|
457 |
){
|
sl@0
|
458 |
if( p->iOffset && iContinue!=0 ){
|
sl@0
|
459 |
int addr;
|
sl@0
|
460 |
sqlite3VdbeAddOp2(v, OP_AddImm, p->iOffset, -1);
|
sl@0
|
461 |
addr = sqlite3VdbeAddOp1(v, OP_IfNeg, p->iOffset);
|
sl@0
|
462 |
sqlite3VdbeAddOp2(v, OP_Goto, 0, iContinue);
|
sl@0
|
463 |
VdbeComment((v, "skip OFFSET records"));
|
sl@0
|
464 |
sqlite3VdbeJumpHere(v, addr);
|
sl@0
|
465 |
}
|
sl@0
|
466 |
}
|
sl@0
|
467 |
|
sl@0
|
468 |
/*
|
sl@0
|
469 |
** Add code that will check to make sure the N registers starting at iMem
|
sl@0
|
470 |
** form a distinct entry. iTab is a sorting index that holds previously
|
sl@0
|
471 |
** seen combinations of the N values. A new entry is made in iTab
|
sl@0
|
472 |
** if the current N values are new.
|
sl@0
|
473 |
**
|
sl@0
|
474 |
** A jump to addrRepeat is made and the N+1 values are popped from the
|
sl@0
|
475 |
** stack if the top N elements are not distinct.
|
sl@0
|
476 |
*/
|
sl@0
|
477 |
static void codeDistinct(
|
sl@0
|
478 |
Parse *pParse, /* Parsing and code generating context */
|
sl@0
|
479 |
int iTab, /* A sorting index used to test for distinctness */
|
sl@0
|
480 |
int addrRepeat, /* Jump to here if not distinct */
|
sl@0
|
481 |
int N, /* Number of elements */
|
sl@0
|
482 |
int iMem /* First element */
|
sl@0
|
483 |
){
|
sl@0
|
484 |
Vdbe *v;
|
sl@0
|
485 |
int r1;
|
sl@0
|
486 |
|
sl@0
|
487 |
v = pParse->pVdbe;
|
sl@0
|
488 |
r1 = sqlite3GetTempReg(pParse);
|
sl@0
|
489 |
sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1);
|
sl@0
|
490 |
sqlite3VdbeAddOp3(v, OP_Found, iTab, addrRepeat, r1);
|
sl@0
|
491 |
sqlite3VdbeAddOp2(v, OP_IdxInsert, iTab, r1);
|
sl@0
|
492 |
sqlite3ReleaseTempReg(pParse, r1);
|
sl@0
|
493 |
}
|
sl@0
|
494 |
|
sl@0
|
495 |
/*
|
sl@0
|
496 |
** Generate an error message when a SELECT is used within a subexpression
|
sl@0
|
497 |
** (example: "a IN (SELECT * FROM table)") but it has more than 1 result
|
sl@0
|
498 |
** column. We do this in a subroutine because the error occurs in multiple
|
sl@0
|
499 |
** places.
|
sl@0
|
500 |
*/
|
sl@0
|
501 |
static int checkForMultiColumnSelectError(
|
sl@0
|
502 |
Parse *pParse, /* Parse context. */
|
sl@0
|
503 |
SelectDest *pDest, /* Destination of SELECT results */
|
sl@0
|
504 |
int nExpr /* Number of result columns returned by SELECT */
|
sl@0
|
505 |
){
|
sl@0
|
506 |
int eDest = pDest->eDest;
|
sl@0
|
507 |
if( nExpr>1 && (eDest==SRT_Mem || eDest==SRT_Set) ){
|
sl@0
|
508 |
sqlite3ErrorMsg(pParse, "only a single result allowed for "
|
sl@0
|
509 |
"a SELECT that is part of an expression");
|
sl@0
|
510 |
return 1;
|
sl@0
|
511 |
}else{
|
sl@0
|
512 |
return 0;
|
sl@0
|
513 |
}
|
sl@0
|
514 |
}
|
sl@0
|
515 |
|
sl@0
|
516 |
/*
|
sl@0
|
517 |
** This routine generates the code for the inside of the inner loop
|
sl@0
|
518 |
** of a SELECT.
|
sl@0
|
519 |
**
|
sl@0
|
520 |
** If srcTab and nColumn are both zero, then the pEList expressions
|
sl@0
|
521 |
** are evaluated in order to get the data for this row. If nColumn>0
|
sl@0
|
522 |
** then data is pulled from srcTab and pEList is used only to get the
|
sl@0
|
523 |
** datatypes for each column.
|
sl@0
|
524 |
*/
|
sl@0
|
525 |
static void selectInnerLoop(
|
sl@0
|
526 |
Parse *pParse, /* The parser context */
|
sl@0
|
527 |
Select *p, /* The complete select statement being coded */
|
sl@0
|
528 |
ExprList *pEList, /* List of values being extracted */
|
sl@0
|
529 |
int srcTab, /* Pull data from this table */
|
sl@0
|
530 |
int nColumn, /* Number of columns in the source table */
|
sl@0
|
531 |
ExprList *pOrderBy, /* If not NULL, sort results using this key */
|
sl@0
|
532 |
int distinct, /* If >=0, make sure results are distinct */
|
sl@0
|
533 |
SelectDest *pDest, /* How to dispose of the results */
|
sl@0
|
534 |
int iContinue, /* Jump here to continue with next row */
|
sl@0
|
535 |
int iBreak /* Jump here to break out of the inner loop */
|
sl@0
|
536 |
){
|
sl@0
|
537 |
Vdbe *v = pParse->pVdbe;
|
sl@0
|
538 |
int i;
|
sl@0
|
539 |
int hasDistinct; /* True if the DISTINCT keyword is present */
|
sl@0
|
540 |
int regResult; /* Start of memory holding result set */
|
sl@0
|
541 |
int eDest = pDest->eDest; /* How to dispose of results */
|
sl@0
|
542 |
int iParm = pDest->iParm; /* First argument to disposal method */
|
sl@0
|
543 |
int nResultCol; /* Number of result columns */
|
sl@0
|
544 |
|
sl@0
|
545 |
if( v==0 ) return;
|
sl@0
|
546 |
assert( pEList!=0 );
|
sl@0
|
547 |
hasDistinct = distinct>=0;
|
sl@0
|
548 |
if( pOrderBy==0 && !hasDistinct ){
|
sl@0
|
549 |
codeOffset(v, p, iContinue);
|
sl@0
|
550 |
}
|
sl@0
|
551 |
|
sl@0
|
552 |
/* Pull the requested columns.
|
sl@0
|
553 |
*/
|
sl@0
|
554 |
if( nColumn>0 ){
|
sl@0
|
555 |
nResultCol = nColumn;
|
sl@0
|
556 |
}else{
|
sl@0
|
557 |
nResultCol = pEList->nExpr;
|
sl@0
|
558 |
}
|
sl@0
|
559 |
if( pDest->iMem==0 ){
|
sl@0
|
560 |
pDest->iMem = pParse->nMem+1;
|
sl@0
|
561 |
pDest->nMem = nResultCol;
|
sl@0
|
562 |
pParse->nMem += nResultCol;
|
sl@0
|
563 |
}else if( pDest->nMem!=nResultCol ){
|
sl@0
|
564 |
/* This happens when two SELECTs of a compound SELECT have differing
|
sl@0
|
565 |
** numbers of result columns. The error message will be generated by
|
sl@0
|
566 |
** a higher-level routine. */
|
sl@0
|
567 |
return;
|
sl@0
|
568 |
}
|
sl@0
|
569 |
regResult = pDest->iMem;
|
sl@0
|
570 |
if( nColumn>0 ){
|
sl@0
|
571 |
for(i=0; i<nColumn; i++){
|
sl@0
|
572 |
sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i);
|
sl@0
|
573 |
}
|
sl@0
|
574 |
}else if( eDest!=SRT_Exists ){
|
sl@0
|
575 |
/* If the destination is an EXISTS(...) expression, the actual
|
sl@0
|
576 |
** values returned by the SELECT are not required.
|
sl@0
|
577 |
*/
|
sl@0
|
578 |
sqlite3ExprCodeExprList(pParse, pEList, regResult, eDest==SRT_Output);
|
sl@0
|
579 |
}
|
sl@0
|
580 |
nColumn = nResultCol;
|
sl@0
|
581 |
|
sl@0
|
582 |
/* If the DISTINCT keyword was present on the SELECT statement
|
sl@0
|
583 |
** and this row has been seen before, then do not make this row
|
sl@0
|
584 |
** part of the result.
|
sl@0
|
585 |
*/
|
sl@0
|
586 |
if( hasDistinct ){
|
sl@0
|
587 |
assert( pEList!=0 );
|
sl@0
|
588 |
assert( pEList->nExpr==nColumn );
|
sl@0
|
589 |
codeDistinct(pParse, distinct, iContinue, nColumn, regResult);
|
sl@0
|
590 |
if( pOrderBy==0 ){
|
sl@0
|
591 |
codeOffset(v, p, iContinue);
|
sl@0
|
592 |
}
|
sl@0
|
593 |
}
|
sl@0
|
594 |
|
sl@0
|
595 |
if( checkForMultiColumnSelectError(pParse, pDest, pEList->nExpr) ){
|
sl@0
|
596 |
return;
|
sl@0
|
597 |
}
|
sl@0
|
598 |
|
sl@0
|
599 |
switch( eDest ){
|
sl@0
|
600 |
/* In this mode, write each query result to the key of the temporary
|
sl@0
|
601 |
** table iParm.
|
sl@0
|
602 |
*/
|
sl@0
|
603 |
#ifndef SQLITE_OMIT_COMPOUND_SELECT
|
sl@0
|
604 |
case SRT_Union: {
|
sl@0
|
605 |
int r1;
|
sl@0
|
606 |
r1 = sqlite3GetTempReg(pParse);
|
sl@0
|
607 |
sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1);
|
sl@0
|
608 |
sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
|
sl@0
|
609 |
sqlite3ReleaseTempReg(pParse, r1);
|
sl@0
|
610 |
break;
|
sl@0
|
611 |
}
|
sl@0
|
612 |
|
sl@0
|
613 |
/* Construct a record from the query result, but instead of
|
sl@0
|
614 |
** saving that record, use it as a key to delete elements from
|
sl@0
|
615 |
** the temporary table iParm.
|
sl@0
|
616 |
*/
|
sl@0
|
617 |
case SRT_Except: {
|
sl@0
|
618 |
sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nColumn);
|
sl@0
|
619 |
break;
|
sl@0
|
620 |
}
|
sl@0
|
621 |
#endif
|
sl@0
|
622 |
|
sl@0
|
623 |
/* Store the result as data using a unique key.
|
sl@0
|
624 |
*/
|
sl@0
|
625 |
case SRT_Table:
|
sl@0
|
626 |
case SRT_EphemTab: {
|
sl@0
|
627 |
int r1 = sqlite3GetTempReg(pParse);
|
sl@0
|
628 |
sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1);
|
sl@0
|
629 |
if( pOrderBy ){
|
sl@0
|
630 |
pushOntoSorter(pParse, pOrderBy, p, r1);
|
sl@0
|
631 |
}else{
|
sl@0
|
632 |
int r2 = sqlite3GetTempReg(pParse);
|
sl@0
|
633 |
sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2);
|
sl@0
|
634 |
sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2);
|
sl@0
|
635 |
sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
|
sl@0
|
636 |
sqlite3ReleaseTempReg(pParse, r2);
|
sl@0
|
637 |
}
|
sl@0
|
638 |
sqlite3ReleaseTempReg(pParse, r1);
|
sl@0
|
639 |
break;
|
sl@0
|
640 |
}
|
sl@0
|
641 |
|
sl@0
|
642 |
#ifndef SQLITE_OMIT_SUBQUERY
|
sl@0
|
643 |
/* If we are creating a set for an "expr IN (SELECT ...)" construct,
|
sl@0
|
644 |
** then there should be a single item on the stack. Write this
|
sl@0
|
645 |
** item into the set table with bogus data.
|
sl@0
|
646 |
*/
|
sl@0
|
647 |
case SRT_Set: {
|
sl@0
|
648 |
assert( nColumn==1 );
|
sl@0
|
649 |
p->affinity = sqlite3CompareAffinity(pEList->a[0].pExpr, pDest->affinity);
|
sl@0
|
650 |
if( pOrderBy ){
|
sl@0
|
651 |
/* At first glance you would think we could optimize out the
|
sl@0
|
652 |
** ORDER BY in this case since the order of entries in the set
|
sl@0
|
653 |
** does not matter. But there might be a LIMIT clause, in which
|
sl@0
|
654 |
** case the order does matter */
|
sl@0
|
655 |
pushOntoSorter(pParse, pOrderBy, p, regResult);
|
sl@0
|
656 |
}else{
|
sl@0
|
657 |
int r1 = sqlite3GetTempReg(pParse);
|
sl@0
|
658 |
sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, 1, r1, &p->affinity, 1);
|
sl@0
|
659 |
sqlite3ExprCacheAffinityChange(pParse, regResult, 1);
|
sl@0
|
660 |
sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
|
sl@0
|
661 |
sqlite3ReleaseTempReg(pParse, r1);
|
sl@0
|
662 |
}
|
sl@0
|
663 |
break;
|
sl@0
|
664 |
}
|
sl@0
|
665 |
|
sl@0
|
666 |
/* If any row exist in the result set, record that fact and abort.
|
sl@0
|
667 |
*/
|
sl@0
|
668 |
case SRT_Exists: {
|
sl@0
|
669 |
sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm);
|
sl@0
|
670 |
/* The LIMIT clause will terminate the loop for us */
|
sl@0
|
671 |
break;
|
sl@0
|
672 |
}
|
sl@0
|
673 |
|
sl@0
|
674 |
/* If this is a scalar select that is part of an expression, then
|
sl@0
|
675 |
** store the results in the appropriate memory cell and break out
|
sl@0
|
676 |
** of the scan loop.
|
sl@0
|
677 |
*/
|
sl@0
|
678 |
case SRT_Mem: {
|
sl@0
|
679 |
assert( nColumn==1 );
|
sl@0
|
680 |
if( pOrderBy ){
|
sl@0
|
681 |
pushOntoSorter(pParse, pOrderBy, p, regResult);
|
sl@0
|
682 |
}else{
|
sl@0
|
683 |
sqlite3ExprCodeMove(pParse, regResult, iParm, 1);
|
sl@0
|
684 |
/* The LIMIT clause will jump out of the loop for us */
|
sl@0
|
685 |
}
|
sl@0
|
686 |
break;
|
sl@0
|
687 |
}
|
sl@0
|
688 |
#endif /* #ifndef SQLITE_OMIT_SUBQUERY */
|
sl@0
|
689 |
|
sl@0
|
690 |
/* Send the data to the callback function or to a subroutine. In the
|
sl@0
|
691 |
** case of a subroutine, the subroutine itself is responsible for
|
sl@0
|
692 |
** popping the data from the stack.
|
sl@0
|
693 |
*/
|
sl@0
|
694 |
case SRT_Coroutine:
|
sl@0
|
695 |
case SRT_Output: {
|
sl@0
|
696 |
if( pOrderBy ){
|
sl@0
|
697 |
int r1 = sqlite3GetTempReg(pParse);
|
sl@0
|
698 |
sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1);
|
sl@0
|
699 |
pushOntoSorter(pParse, pOrderBy, p, r1);
|
sl@0
|
700 |
sqlite3ReleaseTempReg(pParse, r1);
|
sl@0
|
701 |
}else if( eDest==SRT_Coroutine ){
|
sl@0
|
702 |
sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm);
|
sl@0
|
703 |
}else{
|
sl@0
|
704 |
sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nColumn);
|
sl@0
|
705 |
sqlite3ExprCacheAffinityChange(pParse, regResult, nColumn);
|
sl@0
|
706 |
}
|
sl@0
|
707 |
break;
|
sl@0
|
708 |
}
|
sl@0
|
709 |
|
sl@0
|
710 |
#if !defined(SQLITE_OMIT_TRIGGER)
|
sl@0
|
711 |
/* Discard the results. This is used for SELECT statements inside
|
sl@0
|
712 |
** the body of a TRIGGER. The purpose of such selects is to call
|
sl@0
|
713 |
** user-defined functions that have side effects. We do not care
|
sl@0
|
714 |
** about the actual results of the select.
|
sl@0
|
715 |
*/
|
sl@0
|
716 |
default: {
|
sl@0
|
717 |
assert( eDest==SRT_Discard );
|
sl@0
|
718 |
break;
|
sl@0
|
719 |
}
|
sl@0
|
720 |
#endif
|
sl@0
|
721 |
}
|
sl@0
|
722 |
|
sl@0
|
723 |
/* Jump to the end of the loop if the LIMIT is reached.
|
sl@0
|
724 |
*/
|
sl@0
|
725 |
if( p->iLimit ){
|
sl@0
|
726 |
assert( pOrderBy==0 ); /* If there is an ORDER BY, the call to
|
sl@0
|
727 |
** pushOntoSorter() would have cleared p->iLimit */
|
sl@0
|
728 |
sqlite3VdbeAddOp2(v, OP_AddImm, p->iLimit, -1);
|
sl@0
|
729 |
sqlite3VdbeAddOp2(v, OP_IfZero, p->iLimit, iBreak);
|
sl@0
|
730 |
}
|
sl@0
|
731 |
}
|
sl@0
|
732 |
|
sl@0
|
733 |
/*
|
sl@0
|
734 |
** Given an expression list, generate a KeyInfo structure that records
|
sl@0
|
735 |
** the collating sequence for each expression in that expression list.
|
sl@0
|
736 |
**
|
sl@0
|
737 |
** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
|
sl@0
|
738 |
** KeyInfo structure is appropriate for initializing a virtual index to
|
sl@0
|
739 |
** implement that clause. If the ExprList is the result set of a SELECT
|
sl@0
|
740 |
** then the KeyInfo structure is appropriate for initializing a virtual
|
sl@0
|
741 |
** index to implement a DISTINCT test.
|
sl@0
|
742 |
**
|
sl@0
|
743 |
** Space to hold the KeyInfo structure is obtain from malloc. The calling
|
sl@0
|
744 |
** function is responsible for seeing that this structure is eventually
|
sl@0
|
745 |
** freed. Add the KeyInfo structure to the P4 field of an opcode using
|
sl@0
|
746 |
** P4_KEYINFO_HANDOFF is the usual way of dealing with this.
|
sl@0
|
747 |
*/
|
sl@0
|
748 |
static KeyInfo *keyInfoFromExprList(Parse *pParse, ExprList *pList){
|
sl@0
|
749 |
sqlite3 *db = pParse->db;
|
sl@0
|
750 |
int nExpr;
|
sl@0
|
751 |
KeyInfo *pInfo;
|
sl@0
|
752 |
struct ExprList_item *pItem;
|
sl@0
|
753 |
int i;
|
sl@0
|
754 |
|
sl@0
|
755 |
nExpr = pList->nExpr;
|
sl@0
|
756 |
pInfo = sqlite3DbMallocZero(db, sizeof(*pInfo) + nExpr*(sizeof(CollSeq*)+1) );
|
sl@0
|
757 |
if( pInfo ){
|
sl@0
|
758 |
pInfo->aSortOrder = (u8*)&pInfo->aColl[nExpr];
|
sl@0
|
759 |
pInfo->nField = nExpr;
|
sl@0
|
760 |
pInfo->enc = ENC(db);
|
sl@0
|
761 |
for(i=0, pItem=pList->a; i<nExpr; i++, pItem++){
|
sl@0
|
762 |
CollSeq *pColl;
|
sl@0
|
763 |
pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
|
sl@0
|
764 |
if( !pColl ){
|
sl@0
|
765 |
pColl = db->pDfltColl;
|
sl@0
|
766 |
}
|
sl@0
|
767 |
pInfo->aColl[i] = pColl;
|
sl@0
|
768 |
pInfo->aSortOrder[i] = pItem->sortOrder;
|
sl@0
|
769 |
}
|
sl@0
|
770 |
}
|
sl@0
|
771 |
return pInfo;
|
sl@0
|
772 |
}
|
sl@0
|
773 |
|
sl@0
|
774 |
|
sl@0
|
775 |
/*
|
sl@0
|
776 |
** If the inner loop was generated using a non-null pOrderBy argument,
|
sl@0
|
777 |
** then the results were placed in a sorter. After the loop is terminated
|
sl@0
|
778 |
** we need to run the sorter and output the results. The following
|
sl@0
|
779 |
** routine generates the code needed to do that.
|
sl@0
|
780 |
*/
|
sl@0
|
781 |
static void generateSortTail(
|
sl@0
|
782 |
Parse *pParse, /* Parsing context */
|
sl@0
|
783 |
Select *p, /* The SELECT statement */
|
sl@0
|
784 |
Vdbe *v, /* Generate code into this VDBE */
|
sl@0
|
785 |
int nColumn, /* Number of columns of data */
|
sl@0
|
786 |
SelectDest *pDest /* Write the sorted results here */
|
sl@0
|
787 |
){
|
sl@0
|
788 |
int brk = sqlite3VdbeMakeLabel(v);
|
sl@0
|
789 |
int cont = sqlite3VdbeMakeLabel(v);
|
sl@0
|
790 |
int addr;
|
sl@0
|
791 |
int iTab;
|
sl@0
|
792 |
int pseudoTab = 0;
|
sl@0
|
793 |
ExprList *pOrderBy = p->pOrderBy;
|
sl@0
|
794 |
|
sl@0
|
795 |
int eDest = pDest->eDest;
|
sl@0
|
796 |
int iParm = pDest->iParm;
|
sl@0
|
797 |
|
sl@0
|
798 |
int regRow;
|
sl@0
|
799 |
int regRowid;
|
sl@0
|
800 |
|
sl@0
|
801 |
iTab = pOrderBy->iECursor;
|
sl@0
|
802 |
if( eDest==SRT_Output || eDest==SRT_Coroutine ){
|
sl@0
|
803 |
pseudoTab = pParse->nTab++;
|
sl@0
|
804 |
sqlite3VdbeAddOp2(v, OP_SetNumColumns, 0, nColumn);
|
sl@0
|
805 |
sqlite3VdbeAddOp2(v, OP_OpenPseudo, pseudoTab, eDest==SRT_Output);
|
sl@0
|
806 |
}
|
sl@0
|
807 |
addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, brk);
|
sl@0
|
808 |
codeOffset(v, p, cont);
|
sl@0
|
809 |
regRow = sqlite3GetTempReg(pParse);
|
sl@0
|
810 |
regRowid = sqlite3GetTempReg(pParse);
|
sl@0
|
811 |
sqlite3VdbeAddOp3(v, OP_Column, iTab, pOrderBy->nExpr + 1, regRow);
|
sl@0
|
812 |
switch( eDest ){
|
sl@0
|
813 |
case SRT_Table:
|
sl@0
|
814 |
case SRT_EphemTab: {
|
sl@0
|
815 |
sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid);
|
sl@0
|
816 |
sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid);
|
sl@0
|
817 |
sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
|
sl@0
|
818 |
break;
|
sl@0
|
819 |
}
|
sl@0
|
820 |
#ifndef SQLITE_OMIT_SUBQUERY
|
sl@0
|
821 |
case SRT_Set: {
|
sl@0
|
822 |
assert( nColumn==1 );
|
sl@0
|
823 |
sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, 1, regRowid, &p->affinity, 1);
|
sl@0
|
824 |
sqlite3ExprCacheAffinityChange(pParse, regRow, 1);
|
sl@0
|
825 |
sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, regRowid);
|
sl@0
|
826 |
break;
|
sl@0
|
827 |
}
|
sl@0
|
828 |
case SRT_Mem: {
|
sl@0
|
829 |
assert( nColumn==1 );
|
sl@0
|
830 |
sqlite3ExprCodeMove(pParse, regRow, iParm, 1);
|
sl@0
|
831 |
/* The LIMIT clause will terminate the loop for us */
|
sl@0
|
832 |
break;
|
sl@0
|
833 |
}
|
sl@0
|
834 |
#endif
|
sl@0
|
835 |
case SRT_Output:
|
sl@0
|
836 |
case SRT_Coroutine: {
|
sl@0
|
837 |
int i;
|
sl@0
|
838 |
sqlite3VdbeAddOp2(v, OP_Integer, 1, regRowid);
|
sl@0
|
839 |
sqlite3VdbeAddOp3(v, OP_Insert, pseudoTab, regRow, regRowid);
|
sl@0
|
840 |
for(i=0; i<nColumn; i++){
|
sl@0
|
841 |
assert( regRow!=pDest->iMem+i );
|
sl@0
|
842 |
sqlite3VdbeAddOp3(v, OP_Column, pseudoTab, i, pDest->iMem+i);
|
sl@0
|
843 |
}
|
sl@0
|
844 |
if( eDest==SRT_Output ){
|
sl@0
|
845 |
sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iMem, nColumn);
|
sl@0
|
846 |
sqlite3ExprCacheAffinityChange(pParse, pDest->iMem, nColumn);
|
sl@0
|
847 |
}else{
|
sl@0
|
848 |
sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm);
|
sl@0
|
849 |
}
|
sl@0
|
850 |
break;
|
sl@0
|
851 |
}
|
sl@0
|
852 |
default: {
|
sl@0
|
853 |
/* Do nothing */
|
sl@0
|
854 |
break;
|
sl@0
|
855 |
}
|
sl@0
|
856 |
}
|
sl@0
|
857 |
sqlite3ReleaseTempReg(pParse, regRow);
|
sl@0
|
858 |
sqlite3ReleaseTempReg(pParse, regRowid);
|
sl@0
|
859 |
|
sl@0
|
860 |
/* LIMIT has been implemented by the pushOntoSorter() routine.
|
sl@0
|
861 |
*/
|
sl@0
|
862 |
assert( p->iLimit==0 );
|
sl@0
|
863 |
|
sl@0
|
864 |
/* The bottom of the loop
|
sl@0
|
865 |
*/
|
sl@0
|
866 |
sqlite3VdbeResolveLabel(v, cont);
|
sl@0
|
867 |
sqlite3VdbeAddOp2(v, OP_Next, iTab, addr);
|
sl@0
|
868 |
sqlite3VdbeResolveLabel(v, brk);
|
sl@0
|
869 |
if( eDest==SRT_Output || eDest==SRT_Coroutine ){
|
sl@0
|
870 |
sqlite3VdbeAddOp2(v, OP_Close, pseudoTab, 0);
|
sl@0
|
871 |
}
|
sl@0
|
872 |
|
sl@0
|
873 |
}
|
sl@0
|
874 |
|
sl@0
|
875 |
/*
|
sl@0
|
876 |
** Return a pointer to a string containing the 'declaration type' of the
|
sl@0
|
877 |
** expression pExpr. The string may be treated as static by the caller.
|
sl@0
|
878 |
**
|
sl@0
|
879 |
** The declaration type is the exact datatype definition extracted from the
|
sl@0
|
880 |
** original CREATE TABLE statement if the expression is a column. The
|
sl@0
|
881 |
** declaration type for a ROWID field is INTEGER. Exactly when an expression
|
sl@0
|
882 |
** is considered a column can be complex in the presence of subqueries. The
|
sl@0
|
883 |
** result-set expression in all of the following SELECT statements is
|
sl@0
|
884 |
** considered a column by this function.
|
sl@0
|
885 |
**
|
sl@0
|
886 |
** SELECT col FROM tbl;
|
sl@0
|
887 |
** SELECT (SELECT col FROM tbl;
|
sl@0
|
888 |
** SELECT (SELECT col FROM tbl);
|
sl@0
|
889 |
** SELECT abc FROM (SELECT col AS abc FROM tbl);
|
sl@0
|
890 |
**
|
sl@0
|
891 |
** The declaration type for any expression other than a column is NULL.
|
sl@0
|
892 |
*/
|
sl@0
|
893 |
static const char *columnType(
|
sl@0
|
894 |
NameContext *pNC,
|
sl@0
|
895 |
Expr *pExpr,
|
sl@0
|
896 |
const char **pzOriginDb,
|
sl@0
|
897 |
const char **pzOriginTab,
|
sl@0
|
898 |
const char **pzOriginCol
|
sl@0
|
899 |
){
|
sl@0
|
900 |
char const *zType = 0;
|
sl@0
|
901 |
char const *zOriginDb = 0;
|
sl@0
|
902 |
char const *zOriginTab = 0;
|
sl@0
|
903 |
char const *zOriginCol = 0;
|
sl@0
|
904 |
int j;
|
sl@0
|
905 |
if( pExpr==0 || pNC->pSrcList==0 ) return 0;
|
sl@0
|
906 |
|
sl@0
|
907 |
switch( pExpr->op ){
|
sl@0
|
908 |
case TK_AGG_COLUMN:
|
sl@0
|
909 |
case TK_COLUMN: {
|
sl@0
|
910 |
/* The expression is a column. Locate the table the column is being
|
sl@0
|
911 |
** extracted from in NameContext.pSrcList. This table may be real
|
sl@0
|
912 |
** database table or a subquery.
|
sl@0
|
913 |
*/
|
sl@0
|
914 |
Table *pTab = 0; /* Table structure column is extracted from */
|
sl@0
|
915 |
Select *pS = 0; /* Select the column is extracted from */
|
sl@0
|
916 |
int iCol = pExpr->iColumn; /* Index of column in pTab */
|
sl@0
|
917 |
while( pNC && !pTab ){
|
sl@0
|
918 |
SrcList *pTabList = pNC->pSrcList;
|
sl@0
|
919 |
for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++);
|
sl@0
|
920 |
if( j<pTabList->nSrc ){
|
sl@0
|
921 |
pTab = pTabList->a[j].pTab;
|
sl@0
|
922 |
pS = pTabList->a[j].pSelect;
|
sl@0
|
923 |
}else{
|
sl@0
|
924 |
pNC = pNC->pNext;
|
sl@0
|
925 |
}
|
sl@0
|
926 |
}
|
sl@0
|
927 |
|
sl@0
|
928 |
if( pTab==0 ){
|
sl@0
|
929 |
/* FIX ME:
|
sl@0
|
930 |
** This can occurs if you have something like "SELECT new.x;" inside
|
sl@0
|
931 |
** a trigger. In other words, if you reference the special "new"
|
sl@0
|
932 |
** table in the result set of a select. We do not have a good way
|
sl@0
|
933 |
** to find the actual table type, so call it "TEXT". This is really
|
sl@0
|
934 |
** something of a bug, but I do not know how to fix it.
|
sl@0
|
935 |
**
|
sl@0
|
936 |
** This code does not produce the correct answer - it just prevents
|
sl@0
|
937 |
** a segfault. See ticket #1229.
|
sl@0
|
938 |
*/
|
sl@0
|
939 |
zType = "TEXT";
|
sl@0
|
940 |
break;
|
sl@0
|
941 |
}
|
sl@0
|
942 |
|
sl@0
|
943 |
assert( pTab );
|
sl@0
|
944 |
if( pS ){
|
sl@0
|
945 |
/* The "table" is actually a sub-select or a view in the FROM clause
|
sl@0
|
946 |
** of the SELECT statement. Return the declaration type and origin
|
sl@0
|
947 |
** data for the result-set column of the sub-select.
|
sl@0
|
948 |
*/
|
sl@0
|
949 |
if( iCol>=0 && iCol<pS->pEList->nExpr ){
|
sl@0
|
950 |
/* If iCol is less than zero, then the expression requests the
|
sl@0
|
951 |
** rowid of the sub-select or view. This expression is legal (see
|
sl@0
|
952 |
** test case misc2.2.2) - it always evaluates to NULL.
|
sl@0
|
953 |
*/
|
sl@0
|
954 |
NameContext sNC;
|
sl@0
|
955 |
Expr *p = pS->pEList->a[iCol].pExpr;
|
sl@0
|
956 |
sNC.pSrcList = pS->pSrc;
|
sl@0
|
957 |
sNC.pNext = 0;
|
sl@0
|
958 |
sNC.pParse = pNC->pParse;
|
sl@0
|
959 |
zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol);
|
sl@0
|
960 |
}
|
sl@0
|
961 |
}else if( pTab->pSchema ){
|
sl@0
|
962 |
/* A real table */
|
sl@0
|
963 |
assert( !pS );
|
sl@0
|
964 |
if( iCol<0 ) iCol = pTab->iPKey;
|
sl@0
|
965 |
assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
|
sl@0
|
966 |
if( iCol<0 ){
|
sl@0
|
967 |
zType = "INTEGER";
|
sl@0
|
968 |
zOriginCol = "rowid";
|
sl@0
|
969 |
}else{
|
sl@0
|
970 |
zType = pTab->aCol[iCol].zType;
|
sl@0
|
971 |
zOriginCol = pTab->aCol[iCol].zName;
|
sl@0
|
972 |
}
|
sl@0
|
973 |
zOriginTab = pTab->zName;
|
sl@0
|
974 |
if( pNC->pParse ){
|
sl@0
|
975 |
int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema);
|
sl@0
|
976 |
zOriginDb = pNC->pParse->db->aDb[iDb].zName;
|
sl@0
|
977 |
}
|
sl@0
|
978 |
}
|
sl@0
|
979 |
break;
|
sl@0
|
980 |
}
|
sl@0
|
981 |
#ifndef SQLITE_OMIT_SUBQUERY
|
sl@0
|
982 |
case TK_SELECT: {
|
sl@0
|
983 |
/* The expression is a sub-select. Return the declaration type and
|
sl@0
|
984 |
** origin info for the single column in the result set of the SELECT
|
sl@0
|
985 |
** statement.
|
sl@0
|
986 |
*/
|
sl@0
|
987 |
NameContext sNC;
|
sl@0
|
988 |
Select *pS = pExpr->pSelect;
|
sl@0
|
989 |
Expr *p = pS->pEList->a[0].pExpr;
|
sl@0
|
990 |
sNC.pSrcList = pS->pSrc;
|
sl@0
|
991 |
sNC.pNext = pNC;
|
sl@0
|
992 |
sNC.pParse = pNC->pParse;
|
sl@0
|
993 |
zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol);
|
sl@0
|
994 |
break;
|
sl@0
|
995 |
}
|
sl@0
|
996 |
#endif
|
sl@0
|
997 |
}
|
sl@0
|
998 |
|
sl@0
|
999 |
if( pzOriginDb ){
|
sl@0
|
1000 |
assert( pzOriginTab && pzOriginCol );
|
sl@0
|
1001 |
*pzOriginDb = zOriginDb;
|
sl@0
|
1002 |
*pzOriginTab = zOriginTab;
|
sl@0
|
1003 |
*pzOriginCol = zOriginCol;
|
sl@0
|
1004 |
}
|
sl@0
|
1005 |
return zType;
|
sl@0
|
1006 |
}
|
sl@0
|
1007 |
|
sl@0
|
1008 |
/*
|
sl@0
|
1009 |
** Generate code that will tell the VDBE the declaration types of columns
|
sl@0
|
1010 |
** in the result set.
|
sl@0
|
1011 |
*/
|
sl@0
|
1012 |
static void generateColumnTypes(
|
sl@0
|
1013 |
Parse *pParse, /* Parser context */
|
sl@0
|
1014 |
SrcList *pTabList, /* List of tables */
|
sl@0
|
1015 |
ExprList *pEList /* Expressions defining the result set */
|
sl@0
|
1016 |
){
|
sl@0
|
1017 |
#ifndef SQLITE_OMIT_DECLTYPE
|
sl@0
|
1018 |
Vdbe *v = pParse->pVdbe;
|
sl@0
|
1019 |
int i;
|
sl@0
|
1020 |
NameContext sNC;
|
sl@0
|
1021 |
sNC.pSrcList = pTabList;
|
sl@0
|
1022 |
sNC.pParse = pParse;
|
sl@0
|
1023 |
for(i=0; i<pEList->nExpr; i++){
|
sl@0
|
1024 |
Expr *p = pEList->a[i].pExpr;
|
sl@0
|
1025 |
const char *zType;
|
sl@0
|
1026 |
#ifdef SQLITE_ENABLE_COLUMN_METADATA
|
sl@0
|
1027 |
const char *zOrigDb = 0;
|
sl@0
|
1028 |
const char *zOrigTab = 0;
|
sl@0
|
1029 |
const char *zOrigCol = 0;
|
sl@0
|
1030 |
zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
|
sl@0
|
1031 |
|
sl@0
|
1032 |
/* The vdbe must make its own copy of the column-type and other
|
sl@0
|
1033 |
** column specific strings, in case the schema is reset before this
|
sl@0
|
1034 |
** virtual machine is deleted.
|
sl@0
|
1035 |
*/
|
sl@0
|
1036 |
sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, P4_TRANSIENT);
|
sl@0
|
1037 |
sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, P4_TRANSIENT);
|
sl@0
|
1038 |
sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, P4_TRANSIENT);
|
sl@0
|
1039 |
#else
|
sl@0
|
1040 |
zType = columnType(&sNC, p, 0, 0, 0);
|
sl@0
|
1041 |
#endif
|
sl@0
|
1042 |
sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, P4_TRANSIENT);
|
sl@0
|
1043 |
}
|
sl@0
|
1044 |
#endif /* SQLITE_OMIT_DECLTYPE */
|
sl@0
|
1045 |
}
|
sl@0
|
1046 |
|
sl@0
|
1047 |
/*
|
sl@0
|
1048 |
** Generate code that will tell the VDBE the names of columns
|
sl@0
|
1049 |
** in the result set. This information is used to provide the
|
sl@0
|
1050 |
** azCol[] values in the callback.
|
sl@0
|
1051 |
*/
|
sl@0
|
1052 |
static void generateColumnNames(
|
sl@0
|
1053 |
Parse *pParse, /* Parser context */
|
sl@0
|
1054 |
SrcList *pTabList, /* List of tables */
|
sl@0
|
1055 |
ExprList *pEList /* Expressions defining the result set */
|
sl@0
|
1056 |
){
|
sl@0
|
1057 |
Vdbe *v = pParse->pVdbe;
|
sl@0
|
1058 |
int i, j;
|
sl@0
|
1059 |
sqlite3 *db = pParse->db;
|
sl@0
|
1060 |
int fullNames, shortNames;
|
sl@0
|
1061 |
|
sl@0
|
1062 |
#ifndef SQLITE_OMIT_EXPLAIN
|
sl@0
|
1063 |
/* If this is an EXPLAIN, skip this step */
|
sl@0
|
1064 |
if( pParse->explain ){
|
sl@0
|
1065 |
return;
|
sl@0
|
1066 |
}
|
sl@0
|
1067 |
#endif
|
sl@0
|
1068 |
|
sl@0
|
1069 |
assert( v!=0 );
|
sl@0
|
1070 |
if( pParse->colNamesSet || v==0 || db->mallocFailed ) return;
|
sl@0
|
1071 |
pParse->colNamesSet = 1;
|
sl@0
|
1072 |
fullNames = (db->flags & SQLITE_FullColNames)!=0;
|
sl@0
|
1073 |
shortNames = (db->flags & SQLITE_ShortColNames)!=0;
|
sl@0
|
1074 |
sqlite3VdbeSetNumCols(v, pEList->nExpr);
|
sl@0
|
1075 |
for(i=0; i<pEList->nExpr; i++){
|
sl@0
|
1076 |
Expr *p;
|
sl@0
|
1077 |
p = pEList->a[i].pExpr;
|
sl@0
|
1078 |
if( p==0 ) continue;
|
sl@0
|
1079 |
if( pEList->a[i].zName ){
|
sl@0
|
1080 |
char *zName = pEList->a[i].zName;
|
sl@0
|
1081 |
sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, strlen(zName));
|
sl@0
|
1082 |
}else if( (p->op==TK_COLUMN || p->op==TK_AGG_COLUMN) && pTabList ){
|
sl@0
|
1083 |
Table *pTab;
|
sl@0
|
1084 |
char *zCol;
|
sl@0
|
1085 |
int iCol = p->iColumn;
|
sl@0
|
1086 |
for(j=0; j<pTabList->nSrc && pTabList->a[j].iCursor!=p->iTable; j++){}
|
sl@0
|
1087 |
assert( j<pTabList->nSrc );
|
sl@0
|
1088 |
pTab = pTabList->a[j].pTab;
|
sl@0
|
1089 |
if( iCol<0 ) iCol = pTab->iPKey;
|
sl@0
|
1090 |
assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
|
sl@0
|
1091 |
if( iCol<0 ){
|
sl@0
|
1092 |
zCol = "rowid";
|
sl@0
|
1093 |
}else{
|
sl@0
|
1094 |
zCol = pTab->aCol[iCol].zName;
|
sl@0
|
1095 |
}
|
sl@0
|
1096 |
if( !shortNames && !fullNames ){
|
sl@0
|
1097 |
sqlite3VdbeSetColName(v, i, COLNAME_NAME, (char*)p->span.z, p->span.n);
|
sl@0
|
1098 |
}else if( fullNames || (!shortNames && pTabList->nSrc>1) ){
|
sl@0
|
1099 |
char *zName = 0;
|
sl@0
|
1100 |
char *zTab;
|
sl@0
|
1101 |
|
sl@0
|
1102 |
zTab = pTabList->a[j].zAlias;
|
sl@0
|
1103 |
if( fullNames || zTab==0 ) zTab = pTab->zName;
|
sl@0
|
1104 |
zName = sqlite3MPrintf(db, "%s.%s", zTab, zCol);
|
sl@0
|
1105 |
sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, P4_DYNAMIC);
|
sl@0
|
1106 |
}else{
|
sl@0
|
1107 |
sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, strlen(zCol));
|
sl@0
|
1108 |
}
|
sl@0
|
1109 |
}else{
|
sl@0
|
1110 |
sqlite3VdbeSetColName(v, i, COLNAME_NAME, (char*)p->span.z, p->span.n);
|
sl@0
|
1111 |
}
|
sl@0
|
1112 |
}
|
sl@0
|
1113 |
generateColumnTypes(pParse, pTabList, pEList);
|
sl@0
|
1114 |
}
|
sl@0
|
1115 |
|
sl@0
|
1116 |
#ifndef SQLITE_OMIT_COMPOUND_SELECT
|
sl@0
|
1117 |
/*
|
sl@0
|
1118 |
** Name of the connection operator, used for error messages.
|
sl@0
|
1119 |
*/
|
sl@0
|
1120 |
static const char *selectOpName(int id){
|
sl@0
|
1121 |
char *z;
|
sl@0
|
1122 |
switch( id ){
|
sl@0
|
1123 |
case TK_ALL: z = "UNION ALL"; break;
|
sl@0
|
1124 |
case TK_INTERSECT: z = "INTERSECT"; break;
|
sl@0
|
1125 |
case TK_EXCEPT: z = "EXCEPT"; break;
|
sl@0
|
1126 |
default: z = "UNION"; break;
|
sl@0
|
1127 |
}
|
sl@0
|
1128 |
return z;
|
sl@0
|
1129 |
}
|
sl@0
|
1130 |
#endif /* SQLITE_OMIT_COMPOUND_SELECT */
|
sl@0
|
1131 |
|
sl@0
|
1132 |
/*
|
sl@0
|
1133 |
** Given a an expression list (which is really the list of expressions
|
sl@0
|
1134 |
** that form the result set of a SELECT statement) compute appropriate
|
sl@0
|
1135 |
** column names for a table that would hold the expression list.
|
sl@0
|
1136 |
**
|
sl@0
|
1137 |
** All column names will be unique.
|
sl@0
|
1138 |
**
|
sl@0
|
1139 |
** Only the column names are computed. Column.zType, Column.zColl,
|
sl@0
|
1140 |
** and other fields of Column are zeroed.
|
sl@0
|
1141 |
**
|
sl@0
|
1142 |
** Return SQLITE_OK on success. If a memory allocation error occurs,
|
sl@0
|
1143 |
** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM.
|
sl@0
|
1144 |
*/
|
sl@0
|
1145 |
static int selectColumnsFromExprList(
|
sl@0
|
1146 |
Parse *pParse, /* Parsing context */
|
sl@0
|
1147 |
ExprList *pEList, /* Expr list from which to derive column names */
|
sl@0
|
1148 |
int *pnCol, /* Write the number of columns here */
|
sl@0
|
1149 |
Column **paCol /* Write the new column list here */
|
sl@0
|
1150 |
){
|
sl@0
|
1151 |
sqlite3 *db = pParse->db;
|
sl@0
|
1152 |
int i, j, cnt;
|
sl@0
|
1153 |
Column *aCol, *pCol;
|
sl@0
|
1154 |
int nCol;
|
sl@0
|
1155 |
Expr *p;
|
sl@0
|
1156 |
char *zName;
|
sl@0
|
1157 |
int nName;
|
sl@0
|
1158 |
|
sl@0
|
1159 |
*pnCol = nCol = pEList->nExpr;
|
sl@0
|
1160 |
aCol = *paCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol);
|
sl@0
|
1161 |
if( aCol==0 ) return SQLITE_NOMEM;
|
sl@0
|
1162 |
for(i=0, pCol=aCol; i<nCol; i++, pCol++){
|
sl@0
|
1163 |
/* Get an appropriate name for the column
|
sl@0
|
1164 |
*/
|
sl@0
|
1165 |
p = pEList->a[i].pExpr;
|
sl@0
|
1166 |
assert( p->pRight==0 || p->pRight->token.z==0 || p->pRight->token.z[0]!=0 );
|
sl@0
|
1167 |
if( (zName = pEList->a[i].zName)!=0 ){
|
sl@0
|
1168 |
/* If the column contains an "AS <name>" phrase, use <name> as the name */
|
sl@0
|
1169 |
zName = sqlite3DbStrDup(db, zName);
|
sl@0
|
1170 |
}else{
|
sl@0
|
1171 |
Expr *pCol = p;
|
sl@0
|
1172 |
Table *pTab;
|
sl@0
|
1173 |
while( pCol->op==TK_DOT ) pCol = pCol->pRight;
|
sl@0
|
1174 |
if( pCol->op==TK_COLUMN && (pTab = pCol->pTab)!=0 ){
|
sl@0
|
1175 |
/* For columns use the column name name */
|
sl@0
|
1176 |
int iCol = pCol->iColumn;
|
sl@0
|
1177 |
if( iCol<0 ) iCol = pTab->iPKey;
|
sl@0
|
1178 |
zName = sqlite3MPrintf(db, "%s",
|
sl@0
|
1179 |
iCol>=0 ? pTab->aCol[iCol].zName : "rowid");
|
sl@0
|
1180 |
}else{
|
sl@0
|
1181 |
/* Use the original text of the column expression as its name */
|
sl@0
|
1182 |
Token *pToken = (pCol->span.z?&pCol->span:&pCol->token);
|
sl@0
|
1183 |
zName = sqlite3MPrintf(db, "%T", pToken);
|
sl@0
|
1184 |
}
|
sl@0
|
1185 |
}
|
sl@0
|
1186 |
if( db->mallocFailed ){
|
sl@0
|
1187 |
sqlite3DbFree(db, zName);
|
sl@0
|
1188 |
break;
|
sl@0
|
1189 |
}
|
sl@0
|
1190 |
sqlite3Dequote(zName);
|
sl@0
|
1191 |
|
sl@0
|
1192 |
/* Make sure the column name is unique. If the name is not unique,
|
sl@0
|
1193 |
** append a integer to the name so that it becomes unique.
|
sl@0
|
1194 |
*/
|
sl@0
|
1195 |
nName = strlen(zName);
|
sl@0
|
1196 |
for(j=cnt=0; j<i; j++){
|
sl@0
|
1197 |
if( sqlite3StrICmp(aCol[j].zName, zName)==0 ){
|
sl@0
|
1198 |
char *zNewName;
|
sl@0
|
1199 |
zName[nName] = 0;
|
sl@0
|
1200 |
zNewName = sqlite3MPrintf(db, "%s:%d", zName, ++cnt);
|
sl@0
|
1201 |
sqlite3DbFree(db, zName);
|
sl@0
|
1202 |
zName = zNewName;
|
sl@0
|
1203 |
j = -1;
|
sl@0
|
1204 |
if( zName==0 ) break;
|
sl@0
|
1205 |
}
|
sl@0
|
1206 |
}
|
sl@0
|
1207 |
pCol->zName = zName;
|
sl@0
|
1208 |
}
|
sl@0
|
1209 |
if( db->mallocFailed ){
|
sl@0
|
1210 |
int j;
|
sl@0
|
1211 |
for(j=0; j<i; j++){
|
sl@0
|
1212 |
sqlite3DbFree(db, aCol[j].zName);
|
sl@0
|
1213 |
}
|
sl@0
|
1214 |
sqlite3DbFree(db, aCol);
|
sl@0
|
1215 |
*paCol = 0;
|
sl@0
|
1216 |
*pnCol = 0;
|
sl@0
|
1217 |
return SQLITE_NOMEM;
|
sl@0
|
1218 |
}
|
sl@0
|
1219 |
return SQLITE_OK;
|
sl@0
|
1220 |
}
|
sl@0
|
1221 |
|
sl@0
|
1222 |
/*
|
sl@0
|
1223 |
** Add type and collation information to a column list based on
|
sl@0
|
1224 |
** a SELECT statement.
|
sl@0
|
1225 |
**
|
sl@0
|
1226 |
** The column list presumably came from selectColumnNamesFromExprList().
|
sl@0
|
1227 |
** The column list has only names, not types or collations. This
|
sl@0
|
1228 |
** routine goes through and adds the types and collations.
|
sl@0
|
1229 |
**
|
sl@0
|
1230 |
** This routine requires that all indentifiers in the SELECT
|
sl@0
|
1231 |
** statement be resolved.
|
sl@0
|
1232 |
*/
|
sl@0
|
1233 |
static void selectAddColumnTypeAndCollation(
|
sl@0
|
1234 |
Parse *pParse, /* Parsing contexts */
|
sl@0
|
1235 |
int nCol, /* Number of columns */
|
sl@0
|
1236 |
Column *aCol, /* List of columns */
|
sl@0
|
1237 |
Select *pSelect /* SELECT used to determine types and collations */
|
sl@0
|
1238 |
){
|
sl@0
|
1239 |
sqlite3 *db = pParse->db;
|
sl@0
|
1240 |
NameContext sNC;
|
sl@0
|
1241 |
Column *pCol;
|
sl@0
|
1242 |
CollSeq *pColl;
|
sl@0
|
1243 |
int i;
|
sl@0
|
1244 |
Expr *p;
|
sl@0
|
1245 |
struct ExprList_item *a;
|
sl@0
|
1246 |
|
sl@0
|
1247 |
assert( pSelect!=0 );
|
sl@0
|
1248 |
assert( (pSelect->selFlags & SF_Resolved)!=0 );
|
sl@0
|
1249 |
assert( nCol==pSelect->pEList->nExpr || db->mallocFailed );
|
sl@0
|
1250 |
if( db->mallocFailed ) return;
|
sl@0
|
1251 |
memset(&sNC, 0, sizeof(sNC));
|
sl@0
|
1252 |
sNC.pSrcList = pSelect->pSrc;
|
sl@0
|
1253 |
a = pSelect->pEList->a;
|
sl@0
|
1254 |
for(i=0, pCol=aCol; i<nCol; i++, pCol++){
|
sl@0
|
1255 |
p = a[i].pExpr;
|
sl@0
|
1256 |
pCol->zType = sqlite3DbStrDup(db, columnType(&sNC, p, 0, 0, 0));
|
sl@0
|
1257 |
pCol->affinity = sqlite3ExprAffinity(p);
|
sl@0
|
1258 |
pColl = sqlite3ExprCollSeq(pParse, p);
|
sl@0
|
1259 |
if( pColl ){
|
sl@0
|
1260 |
pCol->zColl = sqlite3DbStrDup(db, pColl->zName);
|
sl@0
|
1261 |
}
|
sl@0
|
1262 |
}
|
sl@0
|
1263 |
}
|
sl@0
|
1264 |
|
sl@0
|
1265 |
/*
|
sl@0
|
1266 |
** Given a SELECT statement, generate a Table structure that describes
|
sl@0
|
1267 |
** the result set of that SELECT.
|
sl@0
|
1268 |
*/
|
sl@0
|
1269 |
Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){
|
sl@0
|
1270 |
Table *pTab;
|
sl@0
|
1271 |
sqlite3 *db = pParse->db;
|
sl@0
|
1272 |
int savedFlags;
|
sl@0
|
1273 |
|
sl@0
|
1274 |
savedFlags = db->flags;
|
sl@0
|
1275 |
db->flags &= ~SQLITE_FullColNames;
|
sl@0
|
1276 |
db->flags |= SQLITE_ShortColNames;
|
sl@0
|
1277 |
sqlite3SelectPrep(pParse, pSelect, 0);
|
sl@0
|
1278 |
if( pParse->nErr ) return 0;
|
sl@0
|
1279 |
while( pSelect->pPrior ) pSelect = pSelect->pPrior;
|
sl@0
|
1280 |
db->flags = savedFlags;
|
sl@0
|
1281 |
pTab = sqlite3DbMallocZero(db, sizeof(Table) );
|
sl@0
|
1282 |
if( pTab==0 ){
|
sl@0
|
1283 |
return 0;
|
sl@0
|
1284 |
}
|
sl@0
|
1285 |
pTab->db = db;
|
sl@0
|
1286 |
pTab->nRef = 1;
|
sl@0
|
1287 |
pTab->zName = 0;
|
sl@0
|
1288 |
selectColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol);
|
sl@0
|
1289 |
selectAddColumnTypeAndCollation(pParse, pTab->nCol, pTab->aCol, pSelect);
|
sl@0
|
1290 |
pTab->iPKey = -1;
|
sl@0
|
1291 |
if( db->mallocFailed ){
|
sl@0
|
1292 |
sqlite3DeleteTable(pTab);
|
sl@0
|
1293 |
return 0;
|
sl@0
|
1294 |
}
|
sl@0
|
1295 |
return pTab;
|
sl@0
|
1296 |
}
|
sl@0
|
1297 |
|
sl@0
|
1298 |
/*
|
sl@0
|
1299 |
** Get a VDBE for the given parser context. Create a new one if necessary.
|
sl@0
|
1300 |
** If an error occurs, return NULL and leave a message in pParse.
|
sl@0
|
1301 |
*/
|
sl@0
|
1302 |
Vdbe *sqlite3GetVdbe(Parse *pParse){
|
sl@0
|
1303 |
Vdbe *v = pParse->pVdbe;
|
sl@0
|
1304 |
if( v==0 ){
|
sl@0
|
1305 |
v = pParse->pVdbe = sqlite3VdbeCreate(pParse->db);
|
sl@0
|
1306 |
#ifndef SQLITE_OMIT_TRACE
|
sl@0
|
1307 |
if( v ){
|
sl@0
|
1308 |
sqlite3VdbeAddOp0(v, OP_Trace);
|
sl@0
|
1309 |
}
|
sl@0
|
1310 |
#endif
|
sl@0
|
1311 |
}
|
sl@0
|
1312 |
return v;
|
sl@0
|
1313 |
}
|
sl@0
|
1314 |
|
sl@0
|
1315 |
|
sl@0
|
1316 |
/*
|
sl@0
|
1317 |
** Compute the iLimit and iOffset fields of the SELECT based on the
|
sl@0
|
1318 |
** pLimit and pOffset expressions. pLimit and pOffset hold the expressions
|
sl@0
|
1319 |
** that appear in the original SQL statement after the LIMIT and OFFSET
|
sl@0
|
1320 |
** keywords. Or NULL if those keywords are omitted. iLimit and iOffset
|
sl@0
|
1321 |
** are the integer memory register numbers for counters used to compute
|
sl@0
|
1322 |
** the limit and offset. If there is no limit and/or offset, then
|
sl@0
|
1323 |
** iLimit and iOffset are negative.
|
sl@0
|
1324 |
**
|
sl@0
|
1325 |
** This routine changes the values of iLimit and iOffset only if
|
sl@0
|
1326 |
** a limit or offset is defined by pLimit and pOffset. iLimit and
|
sl@0
|
1327 |
** iOffset should have been preset to appropriate default values
|
sl@0
|
1328 |
** (usually but not always -1) prior to calling this routine.
|
sl@0
|
1329 |
** Only if pLimit!=0 or pOffset!=0 do the limit registers get
|
sl@0
|
1330 |
** redefined. The UNION ALL operator uses this property to force
|
sl@0
|
1331 |
** the reuse of the same limit and offset registers across multiple
|
sl@0
|
1332 |
** SELECT statements.
|
sl@0
|
1333 |
*/
|
sl@0
|
1334 |
static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){
|
sl@0
|
1335 |
Vdbe *v = 0;
|
sl@0
|
1336 |
int iLimit = 0;
|
sl@0
|
1337 |
int iOffset;
|
sl@0
|
1338 |
int addr1;
|
sl@0
|
1339 |
if( p->iLimit ) return;
|
sl@0
|
1340 |
|
sl@0
|
1341 |
/*
|
sl@0
|
1342 |
** "LIMIT -1" always shows all rows. There is some
|
sl@0
|
1343 |
** contraversy about what the correct behavior should be.
|
sl@0
|
1344 |
** The current implementation interprets "LIMIT 0" to mean
|
sl@0
|
1345 |
** no rows.
|
sl@0
|
1346 |
*/
|
sl@0
|
1347 |
if( p->pLimit ){
|
sl@0
|
1348 |
p->iLimit = iLimit = ++pParse->nMem;
|
sl@0
|
1349 |
v = sqlite3GetVdbe(pParse);
|
sl@0
|
1350 |
if( v==0 ) return;
|
sl@0
|
1351 |
sqlite3ExprCode(pParse, p->pLimit, iLimit);
|
sl@0
|
1352 |
sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit);
|
sl@0
|
1353 |
VdbeComment((v, "LIMIT counter"));
|
sl@0
|
1354 |
sqlite3VdbeAddOp2(v, OP_IfZero, iLimit, iBreak);
|
sl@0
|
1355 |
}
|
sl@0
|
1356 |
if( p->pOffset ){
|
sl@0
|
1357 |
p->iOffset = iOffset = ++pParse->nMem;
|
sl@0
|
1358 |
if( p->pLimit ){
|
sl@0
|
1359 |
pParse->nMem++; /* Allocate an extra register for limit+offset */
|
sl@0
|
1360 |
}
|
sl@0
|
1361 |
v = sqlite3GetVdbe(pParse);
|
sl@0
|
1362 |
if( v==0 ) return;
|
sl@0
|
1363 |
sqlite3ExprCode(pParse, p->pOffset, iOffset);
|
sl@0
|
1364 |
sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset);
|
sl@0
|
1365 |
VdbeComment((v, "OFFSET counter"));
|
sl@0
|
1366 |
addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iOffset);
|
sl@0
|
1367 |
sqlite3VdbeAddOp2(v, OP_Integer, 0, iOffset);
|
sl@0
|
1368 |
sqlite3VdbeJumpHere(v, addr1);
|
sl@0
|
1369 |
if( p->pLimit ){
|
sl@0
|
1370 |
sqlite3VdbeAddOp3(v, OP_Add, iLimit, iOffset, iOffset+1);
|
sl@0
|
1371 |
VdbeComment((v, "LIMIT+OFFSET"));
|
sl@0
|
1372 |
addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iLimit);
|
sl@0
|
1373 |
sqlite3VdbeAddOp2(v, OP_Integer, -1, iOffset+1);
|
sl@0
|
1374 |
sqlite3VdbeJumpHere(v, addr1);
|
sl@0
|
1375 |
}
|
sl@0
|
1376 |
}
|
sl@0
|
1377 |
}
|
sl@0
|
1378 |
|
sl@0
|
1379 |
#ifndef SQLITE_OMIT_COMPOUND_SELECT
|
sl@0
|
1380 |
/*
|
sl@0
|
1381 |
** Return the appropriate collating sequence for the iCol-th column of
|
sl@0
|
1382 |
** the result set for the compound-select statement "p". Return NULL if
|
sl@0
|
1383 |
** the column has no default collating sequence.
|
sl@0
|
1384 |
**
|
sl@0
|
1385 |
** The collating sequence for the compound select is taken from the
|
sl@0
|
1386 |
** left-most term of the select that has a collating sequence.
|
sl@0
|
1387 |
*/
|
sl@0
|
1388 |
static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){
|
sl@0
|
1389 |
CollSeq *pRet;
|
sl@0
|
1390 |
if( p->pPrior ){
|
sl@0
|
1391 |
pRet = multiSelectCollSeq(pParse, p->pPrior, iCol);
|
sl@0
|
1392 |
}else{
|
sl@0
|
1393 |
pRet = 0;
|
sl@0
|
1394 |
}
|
sl@0
|
1395 |
if( pRet==0 ){
|
sl@0
|
1396 |
pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
|
sl@0
|
1397 |
}
|
sl@0
|
1398 |
return pRet;
|
sl@0
|
1399 |
}
|
sl@0
|
1400 |
#endif /* SQLITE_OMIT_COMPOUND_SELECT */
|
sl@0
|
1401 |
|
sl@0
|
1402 |
/* Forward reference */
|
sl@0
|
1403 |
static int multiSelectOrderBy(
|
sl@0
|
1404 |
Parse *pParse, /* Parsing context */
|
sl@0
|
1405 |
Select *p, /* The right-most of SELECTs to be coded */
|
sl@0
|
1406 |
SelectDest *pDest /* What to do with query results */
|
sl@0
|
1407 |
);
|
sl@0
|
1408 |
|
sl@0
|
1409 |
|
sl@0
|
1410 |
#ifndef SQLITE_OMIT_COMPOUND_SELECT
|
sl@0
|
1411 |
/*
|
sl@0
|
1412 |
** This routine is called to process a compound query form from
|
sl@0
|
1413 |
** two or more separate queries using UNION, UNION ALL, EXCEPT, or
|
sl@0
|
1414 |
** INTERSECT
|
sl@0
|
1415 |
**
|
sl@0
|
1416 |
** "p" points to the right-most of the two queries. the query on the
|
sl@0
|
1417 |
** left is p->pPrior. The left query could also be a compound query
|
sl@0
|
1418 |
** in which case this routine will be called recursively.
|
sl@0
|
1419 |
**
|
sl@0
|
1420 |
** The results of the total query are to be written into a destination
|
sl@0
|
1421 |
** of type eDest with parameter iParm.
|
sl@0
|
1422 |
**
|
sl@0
|
1423 |
** Example 1: Consider a three-way compound SQL statement.
|
sl@0
|
1424 |
**
|
sl@0
|
1425 |
** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
|
sl@0
|
1426 |
**
|
sl@0
|
1427 |
** This statement is parsed up as follows:
|
sl@0
|
1428 |
**
|
sl@0
|
1429 |
** SELECT c FROM t3
|
sl@0
|
1430 |
** |
|
sl@0
|
1431 |
** `-----> SELECT b FROM t2
|
sl@0
|
1432 |
** |
|
sl@0
|
1433 |
** `------> SELECT a FROM t1
|
sl@0
|
1434 |
**
|
sl@0
|
1435 |
** The arrows in the diagram above represent the Select.pPrior pointer.
|
sl@0
|
1436 |
** So if this routine is called with p equal to the t3 query, then
|
sl@0
|
1437 |
** pPrior will be the t2 query. p->op will be TK_UNION in this case.
|
sl@0
|
1438 |
**
|
sl@0
|
1439 |
** Notice that because of the way SQLite parses compound SELECTs, the
|
sl@0
|
1440 |
** individual selects always group from left to right.
|
sl@0
|
1441 |
*/
|
sl@0
|
1442 |
static int multiSelect(
|
sl@0
|
1443 |
Parse *pParse, /* Parsing context */
|
sl@0
|
1444 |
Select *p, /* The right-most of SELECTs to be coded */
|
sl@0
|
1445 |
SelectDest *pDest /* What to do with query results */
|
sl@0
|
1446 |
){
|
sl@0
|
1447 |
int rc = SQLITE_OK; /* Success code from a subroutine */
|
sl@0
|
1448 |
Select *pPrior; /* Another SELECT immediately to our left */
|
sl@0
|
1449 |
Vdbe *v; /* Generate code to this VDBE */
|
sl@0
|
1450 |
SelectDest dest; /* Alternative data destination */
|
sl@0
|
1451 |
Select *pDelete = 0; /* Chain of simple selects to delete */
|
sl@0
|
1452 |
sqlite3 *db; /* Database connection */
|
sl@0
|
1453 |
|
sl@0
|
1454 |
/* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only
|
sl@0
|
1455 |
** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
|
sl@0
|
1456 |
*/
|
sl@0
|
1457 |
assert( p && p->pPrior ); /* Calling function guarantees this much */
|
sl@0
|
1458 |
db = pParse->db;
|
sl@0
|
1459 |
pPrior = p->pPrior;
|
sl@0
|
1460 |
assert( pPrior->pRightmost!=pPrior );
|
sl@0
|
1461 |
assert( pPrior->pRightmost==p->pRightmost );
|
sl@0
|
1462 |
dest = *pDest;
|
sl@0
|
1463 |
if( pPrior->pOrderBy ){
|
sl@0
|
1464 |
sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before",
|
sl@0
|
1465 |
selectOpName(p->op));
|
sl@0
|
1466 |
rc = 1;
|
sl@0
|
1467 |
goto multi_select_end;
|
sl@0
|
1468 |
}
|
sl@0
|
1469 |
if( pPrior->pLimit ){
|
sl@0
|
1470 |
sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before",
|
sl@0
|
1471 |
selectOpName(p->op));
|
sl@0
|
1472 |
rc = 1;
|
sl@0
|
1473 |
goto multi_select_end;
|
sl@0
|
1474 |
}
|
sl@0
|
1475 |
|
sl@0
|
1476 |
v = sqlite3GetVdbe(pParse);
|
sl@0
|
1477 |
assert( v!=0 ); /* The VDBE already created by calling function */
|
sl@0
|
1478 |
|
sl@0
|
1479 |
/* Create the destination temporary table if necessary
|
sl@0
|
1480 |
*/
|
sl@0
|
1481 |
if( dest.eDest==SRT_EphemTab ){
|
sl@0
|
1482 |
assert( p->pEList );
|
sl@0
|
1483 |
sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iParm, p->pEList->nExpr);
|
sl@0
|
1484 |
dest.eDest = SRT_Table;
|
sl@0
|
1485 |
}
|
sl@0
|
1486 |
|
sl@0
|
1487 |
/* Make sure all SELECTs in the statement have the same number of elements
|
sl@0
|
1488 |
** in their result sets.
|
sl@0
|
1489 |
*/
|
sl@0
|
1490 |
assert( p->pEList && pPrior->pEList );
|
sl@0
|
1491 |
if( p->pEList->nExpr!=pPrior->pEList->nExpr ){
|
sl@0
|
1492 |
sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
|
sl@0
|
1493 |
" do not have the same number of result columns", selectOpName(p->op));
|
sl@0
|
1494 |
rc = 1;
|
sl@0
|
1495 |
goto multi_select_end;
|
sl@0
|
1496 |
}
|
sl@0
|
1497 |
|
sl@0
|
1498 |
/* Compound SELECTs that have an ORDER BY clause are handled separately.
|
sl@0
|
1499 |
*/
|
sl@0
|
1500 |
if( p->pOrderBy ){
|
sl@0
|
1501 |
return multiSelectOrderBy(pParse, p, pDest);
|
sl@0
|
1502 |
}
|
sl@0
|
1503 |
|
sl@0
|
1504 |
/* Generate code for the left and right SELECT statements.
|
sl@0
|
1505 |
*/
|
sl@0
|
1506 |
switch( p->op ){
|
sl@0
|
1507 |
case TK_ALL: {
|
sl@0
|
1508 |
int addr = 0;
|
sl@0
|
1509 |
assert( !pPrior->pLimit );
|
sl@0
|
1510 |
pPrior->pLimit = p->pLimit;
|
sl@0
|
1511 |
pPrior->pOffset = p->pOffset;
|
sl@0
|
1512 |
rc = sqlite3Select(pParse, pPrior, &dest);
|
sl@0
|
1513 |
p->pLimit = 0;
|
sl@0
|
1514 |
p->pOffset = 0;
|
sl@0
|
1515 |
if( rc ){
|
sl@0
|
1516 |
goto multi_select_end;
|
sl@0
|
1517 |
}
|
sl@0
|
1518 |
p->pPrior = 0;
|
sl@0
|
1519 |
p->iLimit = pPrior->iLimit;
|
sl@0
|
1520 |
p->iOffset = pPrior->iOffset;
|
sl@0
|
1521 |
if( p->iLimit ){
|
sl@0
|
1522 |
addr = sqlite3VdbeAddOp1(v, OP_IfZero, p->iLimit);
|
sl@0
|
1523 |
VdbeComment((v, "Jump ahead if LIMIT reached"));
|
sl@0
|
1524 |
}
|
sl@0
|
1525 |
rc = sqlite3Select(pParse, p, &dest);
|
sl@0
|
1526 |
pDelete = p->pPrior;
|
sl@0
|
1527 |
p->pPrior = pPrior;
|
sl@0
|
1528 |
if( rc ){
|
sl@0
|
1529 |
goto multi_select_end;
|
sl@0
|
1530 |
}
|
sl@0
|
1531 |
if( addr ){
|
sl@0
|
1532 |
sqlite3VdbeJumpHere(v, addr);
|
sl@0
|
1533 |
}
|
sl@0
|
1534 |
break;
|
sl@0
|
1535 |
}
|
sl@0
|
1536 |
case TK_EXCEPT:
|
sl@0
|
1537 |
case TK_UNION: {
|
sl@0
|
1538 |
int unionTab; /* Cursor number of the temporary table holding result */
|
sl@0
|
1539 |
int op = 0; /* One of the SRT_ operations to apply to self */
|
sl@0
|
1540 |
int priorOp; /* The SRT_ operation to apply to prior selects */
|
sl@0
|
1541 |
Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */
|
sl@0
|
1542 |
int addr;
|
sl@0
|
1543 |
SelectDest uniondest;
|
sl@0
|
1544 |
|
sl@0
|
1545 |
priorOp = SRT_Union;
|
sl@0
|
1546 |
if( dest.eDest==priorOp && !p->pLimit && !p->pOffset ){
|
sl@0
|
1547 |
/* We can reuse a temporary table generated by a SELECT to our
|
sl@0
|
1548 |
** right.
|
sl@0
|
1549 |
*/
|
sl@0
|
1550 |
unionTab = dest.iParm;
|
sl@0
|
1551 |
}else{
|
sl@0
|
1552 |
/* We will need to create our own temporary table to hold the
|
sl@0
|
1553 |
** intermediate results.
|
sl@0
|
1554 |
*/
|
sl@0
|
1555 |
unionTab = pParse->nTab++;
|
sl@0
|
1556 |
assert( p->pOrderBy==0 );
|
sl@0
|
1557 |
addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0);
|
sl@0
|
1558 |
assert( p->addrOpenEphm[0] == -1 );
|
sl@0
|
1559 |
p->addrOpenEphm[0] = addr;
|
sl@0
|
1560 |
p->pRightmost->selFlags |= SF_UsesEphemeral;
|
sl@0
|
1561 |
assert( p->pEList );
|
sl@0
|
1562 |
}
|
sl@0
|
1563 |
|
sl@0
|
1564 |
/* Code the SELECT statements to our left
|
sl@0
|
1565 |
*/
|
sl@0
|
1566 |
assert( !pPrior->pOrderBy );
|
sl@0
|
1567 |
sqlite3SelectDestInit(&uniondest, priorOp, unionTab);
|
sl@0
|
1568 |
rc = sqlite3Select(pParse, pPrior, &uniondest);
|
sl@0
|
1569 |
if( rc ){
|
sl@0
|
1570 |
goto multi_select_end;
|
sl@0
|
1571 |
}
|
sl@0
|
1572 |
|
sl@0
|
1573 |
/* Code the current SELECT statement
|
sl@0
|
1574 |
*/
|
sl@0
|
1575 |
if( p->op==TK_EXCEPT ){
|
sl@0
|
1576 |
op = SRT_Except;
|
sl@0
|
1577 |
}else{
|
sl@0
|
1578 |
assert( p->op==TK_UNION );
|
sl@0
|
1579 |
op = SRT_Union;
|
sl@0
|
1580 |
}
|
sl@0
|
1581 |
p->pPrior = 0;
|
sl@0
|
1582 |
pLimit = p->pLimit;
|
sl@0
|
1583 |
p->pLimit = 0;
|
sl@0
|
1584 |
pOffset = p->pOffset;
|
sl@0
|
1585 |
p->pOffset = 0;
|
sl@0
|
1586 |
uniondest.eDest = op;
|
sl@0
|
1587 |
rc = sqlite3Select(pParse, p, &uniondest);
|
sl@0
|
1588 |
/* Query flattening in sqlite3Select() might refill p->pOrderBy.
|
sl@0
|
1589 |
** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */
|
sl@0
|
1590 |
sqlite3ExprListDelete(db, p->pOrderBy);
|
sl@0
|
1591 |
pDelete = p->pPrior;
|
sl@0
|
1592 |
p->pPrior = pPrior;
|
sl@0
|
1593 |
p->pOrderBy = 0;
|
sl@0
|
1594 |
sqlite3ExprDelete(db, p->pLimit);
|
sl@0
|
1595 |
p->pLimit = pLimit;
|
sl@0
|
1596 |
p->pOffset = pOffset;
|
sl@0
|
1597 |
p->iLimit = 0;
|
sl@0
|
1598 |
p->iOffset = 0;
|
sl@0
|
1599 |
if( rc ){
|
sl@0
|
1600 |
goto multi_select_end;
|
sl@0
|
1601 |
}
|
sl@0
|
1602 |
|
sl@0
|
1603 |
|
sl@0
|
1604 |
/* Convert the data in the temporary table into whatever form
|
sl@0
|
1605 |
** it is that we currently need.
|
sl@0
|
1606 |
*/
|
sl@0
|
1607 |
if( dest.eDest!=priorOp || unionTab!=dest.iParm ){
|
sl@0
|
1608 |
int iCont, iBreak, iStart;
|
sl@0
|
1609 |
assert( p->pEList );
|
sl@0
|
1610 |
if( dest.eDest==SRT_Output ){
|
sl@0
|
1611 |
Select *pFirst = p;
|
sl@0
|
1612 |
while( pFirst->pPrior ) pFirst = pFirst->pPrior;
|
sl@0
|
1613 |
generateColumnNames(pParse, 0, pFirst->pEList);
|
sl@0
|
1614 |
}
|
sl@0
|
1615 |
iBreak = sqlite3VdbeMakeLabel(v);
|
sl@0
|
1616 |
iCont = sqlite3VdbeMakeLabel(v);
|
sl@0
|
1617 |
computeLimitRegisters(pParse, p, iBreak);
|
sl@0
|
1618 |
sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak);
|
sl@0
|
1619 |
iStart = sqlite3VdbeCurrentAddr(v);
|
sl@0
|
1620 |
selectInnerLoop(pParse, p, p->pEList, unionTab, p->pEList->nExpr,
|
sl@0
|
1621 |
0, -1, &dest, iCont, iBreak);
|
sl@0
|
1622 |
sqlite3VdbeResolveLabel(v, iCont);
|
sl@0
|
1623 |
sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart);
|
sl@0
|
1624 |
sqlite3VdbeResolveLabel(v, iBreak);
|
sl@0
|
1625 |
sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0);
|
sl@0
|
1626 |
}
|
sl@0
|
1627 |
break;
|
sl@0
|
1628 |
}
|
sl@0
|
1629 |
case TK_INTERSECT: {
|
sl@0
|
1630 |
int tab1, tab2;
|
sl@0
|
1631 |
int iCont, iBreak, iStart;
|
sl@0
|
1632 |
Expr *pLimit, *pOffset;
|
sl@0
|
1633 |
int addr;
|
sl@0
|
1634 |
SelectDest intersectdest;
|
sl@0
|
1635 |
int r1;
|
sl@0
|
1636 |
|
sl@0
|
1637 |
/* INTERSECT is different from the others since it requires
|
sl@0
|
1638 |
** two temporary tables. Hence it has its own case. Begin
|
sl@0
|
1639 |
** by allocating the tables we will need.
|
sl@0
|
1640 |
*/
|
sl@0
|
1641 |
tab1 = pParse->nTab++;
|
sl@0
|
1642 |
tab2 = pParse->nTab++;
|
sl@0
|
1643 |
assert( p->pOrderBy==0 );
|
sl@0
|
1644 |
|
sl@0
|
1645 |
addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0);
|
sl@0
|
1646 |
assert( p->addrOpenEphm[0] == -1 );
|
sl@0
|
1647 |
p->addrOpenEphm[0] = addr;
|
sl@0
|
1648 |
p->pRightmost->selFlags |= SF_UsesEphemeral;
|
sl@0
|
1649 |
assert( p->pEList );
|
sl@0
|
1650 |
|
sl@0
|
1651 |
/* Code the SELECTs to our left into temporary table "tab1".
|
sl@0
|
1652 |
*/
|
sl@0
|
1653 |
sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1);
|
sl@0
|
1654 |
rc = sqlite3Select(pParse, pPrior, &intersectdest);
|
sl@0
|
1655 |
if( rc ){
|
sl@0
|
1656 |
goto multi_select_end;
|
sl@0
|
1657 |
}
|
sl@0
|
1658 |
|
sl@0
|
1659 |
/* Code the current SELECT into temporary table "tab2"
|
sl@0
|
1660 |
*/
|
sl@0
|
1661 |
addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0);
|
sl@0
|
1662 |
assert( p->addrOpenEphm[1] == -1 );
|
sl@0
|
1663 |
p->addrOpenEphm[1] = addr;
|
sl@0
|
1664 |
p->pPrior = 0;
|
sl@0
|
1665 |
pLimit = p->pLimit;
|
sl@0
|
1666 |
p->pLimit = 0;
|
sl@0
|
1667 |
pOffset = p->pOffset;
|
sl@0
|
1668 |
p->pOffset = 0;
|
sl@0
|
1669 |
intersectdest.iParm = tab2;
|
sl@0
|
1670 |
rc = sqlite3Select(pParse, p, &intersectdest);
|
sl@0
|
1671 |
pDelete = p->pPrior;
|
sl@0
|
1672 |
p->pPrior = pPrior;
|
sl@0
|
1673 |
sqlite3ExprDelete(db, p->pLimit);
|
sl@0
|
1674 |
p->pLimit = pLimit;
|
sl@0
|
1675 |
p->pOffset = pOffset;
|
sl@0
|
1676 |
if( rc ){
|
sl@0
|
1677 |
goto multi_select_end;
|
sl@0
|
1678 |
}
|
sl@0
|
1679 |
|
sl@0
|
1680 |
/* Generate code to take the intersection of the two temporary
|
sl@0
|
1681 |
** tables.
|
sl@0
|
1682 |
*/
|
sl@0
|
1683 |
assert( p->pEList );
|
sl@0
|
1684 |
if( dest.eDest==SRT_Output ){
|
sl@0
|
1685 |
Select *pFirst = p;
|
sl@0
|
1686 |
while( pFirst->pPrior ) pFirst = pFirst->pPrior;
|
sl@0
|
1687 |
generateColumnNames(pParse, 0, pFirst->pEList);
|
sl@0
|
1688 |
}
|
sl@0
|
1689 |
iBreak = sqlite3VdbeMakeLabel(v);
|
sl@0
|
1690 |
iCont = sqlite3VdbeMakeLabel(v);
|
sl@0
|
1691 |
computeLimitRegisters(pParse, p, iBreak);
|
sl@0
|
1692 |
sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak);
|
sl@0
|
1693 |
r1 = sqlite3GetTempReg(pParse);
|
sl@0
|
1694 |
iStart = sqlite3VdbeAddOp2(v, OP_RowKey, tab1, r1);
|
sl@0
|
1695 |
sqlite3VdbeAddOp3(v, OP_NotFound, tab2, iCont, r1);
|
sl@0
|
1696 |
sqlite3ReleaseTempReg(pParse, r1);
|
sl@0
|
1697 |
selectInnerLoop(pParse, p, p->pEList, tab1, p->pEList->nExpr,
|
sl@0
|
1698 |
0, -1, &dest, iCont, iBreak);
|
sl@0
|
1699 |
sqlite3VdbeResolveLabel(v, iCont);
|
sl@0
|
1700 |
sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart);
|
sl@0
|
1701 |
sqlite3VdbeResolveLabel(v, iBreak);
|
sl@0
|
1702 |
sqlite3VdbeAddOp2(v, OP_Close, tab2, 0);
|
sl@0
|
1703 |
sqlite3VdbeAddOp2(v, OP_Close, tab1, 0);
|
sl@0
|
1704 |
break;
|
sl@0
|
1705 |
}
|
sl@0
|
1706 |
}
|
sl@0
|
1707 |
|
sl@0
|
1708 |
/* Compute collating sequences used by
|
sl@0
|
1709 |
** temporary tables needed to implement the compound select.
|
sl@0
|
1710 |
** Attach the KeyInfo structure to all temporary tables.
|
sl@0
|
1711 |
**
|
sl@0
|
1712 |
** This section is run by the right-most SELECT statement only.
|
sl@0
|
1713 |
** SELECT statements to the left always skip this part. The right-most
|
sl@0
|
1714 |
** SELECT might also skip this part if it has no ORDER BY clause and
|
sl@0
|
1715 |
** no temp tables are required.
|
sl@0
|
1716 |
*/
|
sl@0
|
1717 |
if( p->selFlags & SF_UsesEphemeral ){
|
sl@0
|
1718 |
int i; /* Loop counter */
|
sl@0
|
1719 |
KeyInfo *pKeyInfo; /* Collating sequence for the result set */
|
sl@0
|
1720 |
Select *pLoop; /* For looping through SELECT statements */
|
sl@0
|
1721 |
CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */
|
sl@0
|
1722 |
int nCol; /* Number of columns in result set */
|
sl@0
|
1723 |
|
sl@0
|
1724 |
assert( p->pRightmost==p );
|
sl@0
|
1725 |
nCol = p->pEList->nExpr;
|
sl@0
|
1726 |
pKeyInfo = sqlite3DbMallocZero(db,
|
sl@0
|
1727 |
sizeof(*pKeyInfo)+nCol*(sizeof(CollSeq*) + 1));
|
sl@0
|
1728 |
if( !pKeyInfo ){
|
sl@0
|
1729 |
rc = SQLITE_NOMEM;
|
sl@0
|
1730 |
goto multi_select_end;
|
sl@0
|
1731 |
}
|
sl@0
|
1732 |
|
sl@0
|
1733 |
pKeyInfo->enc = ENC(db);
|
sl@0
|
1734 |
pKeyInfo->nField = nCol;
|
sl@0
|
1735 |
|
sl@0
|
1736 |
for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
|
sl@0
|
1737 |
*apColl = multiSelectCollSeq(pParse, p, i);
|
sl@0
|
1738 |
if( 0==*apColl ){
|
sl@0
|
1739 |
*apColl = db->pDfltColl;
|
sl@0
|
1740 |
}
|
sl@0
|
1741 |
}
|
sl@0
|
1742 |
|
sl@0
|
1743 |
for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
|
sl@0
|
1744 |
for(i=0; i<2; i++){
|
sl@0
|
1745 |
int addr = pLoop->addrOpenEphm[i];
|
sl@0
|
1746 |
if( addr<0 ){
|
sl@0
|
1747 |
/* If [0] is unused then [1] is also unused. So we can
|
sl@0
|
1748 |
** always safely abort as soon as the first unused slot is found */
|
sl@0
|
1749 |
assert( pLoop->addrOpenEphm[1]<0 );
|
sl@0
|
1750 |
break;
|
sl@0
|
1751 |
}
|
sl@0
|
1752 |
sqlite3VdbeChangeP2(v, addr, nCol);
|
sl@0
|
1753 |
sqlite3VdbeChangeP4(v, addr, (char*)pKeyInfo, P4_KEYINFO);
|
sl@0
|
1754 |
pLoop->addrOpenEphm[i] = -1;
|
sl@0
|
1755 |
}
|
sl@0
|
1756 |
}
|
sl@0
|
1757 |
sqlite3DbFree(db, pKeyInfo);
|
sl@0
|
1758 |
}
|
sl@0
|
1759 |
|
sl@0
|
1760 |
multi_select_end:
|
sl@0
|
1761 |
pDest->iMem = dest.iMem;
|
sl@0
|
1762 |
pDest->nMem = dest.nMem;
|
sl@0
|
1763 |
sqlite3SelectDelete(db, pDelete);
|
sl@0
|
1764 |
return rc;
|
sl@0
|
1765 |
}
|
sl@0
|
1766 |
#endif /* SQLITE_OMIT_COMPOUND_SELECT */
|
sl@0
|
1767 |
|
sl@0
|
1768 |
/*
|
sl@0
|
1769 |
** Code an output subroutine for a coroutine implementation of a
|
sl@0
|
1770 |
** SELECT statment.
|
sl@0
|
1771 |
**
|
sl@0
|
1772 |
** The data to be output is contained in pIn->iMem. There are
|
sl@0
|
1773 |
** pIn->nMem columns to be output. pDest is where the output should
|
sl@0
|
1774 |
** be sent.
|
sl@0
|
1775 |
**
|
sl@0
|
1776 |
** regReturn is the number of the register holding the subroutine
|
sl@0
|
1777 |
** return address.
|
sl@0
|
1778 |
**
|
sl@0
|
1779 |
** If regPrev>0 then it is a the first register in a vector that
|
sl@0
|
1780 |
** records the previous output. mem[regPrev] is a flag that is false
|
sl@0
|
1781 |
** if there has been no previous output. If regPrev>0 then code is
|
sl@0
|
1782 |
** generated to suppress duplicates. pKeyInfo is used for comparing
|
sl@0
|
1783 |
** keys.
|
sl@0
|
1784 |
**
|
sl@0
|
1785 |
** If the LIMIT found in p->iLimit is reached, jump immediately to
|
sl@0
|
1786 |
** iBreak.
|
sl@0
|
1787 |
*/
|
sl@0
|
1788 |
static int generateOutputSubroutine(
|
sl@0
|
1789 |
Parse *pParse, /* Parsing context */
|
sl@0
|
1790 |
Select *p, /* The SELECT statement */
|
sl@0
|
1791 |
SelectDest *pIn, /* Coroutine supplying data */
|
sl@0
|
1792 |
SelectDest *pDest, /* Where to send the data */
|
sl@0
|
1793 |
int regReturn, /* The return address register */
|
sl@0
|
1794 |
int regPrev, /* Previous result register. No uniqueness if 0 */
|
sl@0
|
1795 |
KeyInfo *pKeyInfo, /* For comparing with previous entry */
|
sl@0
|
1796 |
int p4type, /* The p4 type for pKeyInfo */
|
sl@0
|
1797 |
int iBreak /* Jump here if we hit the LIMIT */
|
sl@0
|
1798 |
){
|
sl@0
|
1799 |
Vdbe *v = pParse->pVdbe;
|
sl@0
|
1800 |
int iContinue;
|
sl@0
|
1801 |
int addr;
|
sl@0
|
1802 |
|
sl@0
|
1803 |
addr = sqlite3VdbeCurrentAddr(v);
|
sl@0
|
1804 |
iContinue = sqlite3VdbeMakeLabel(v);
|
sl@0
|
1805 |
|
sl@0
|
1806 |
/* Suppress duplicates for UNION, EXCEPT, and INTERSECT
|
sl@0
|
1807 |
*/
|
sl@0
|
1808 |
if( regPrev ){
|
sl@0
|
1809 |
int j1, j2;
|
sl@0
|
1810 |
j1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev);
|
sl@0
|
1811 |
j2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iMem, regPrev+1, pIn->nMem,
|
sl@0
|
1812 |
(char*)pKeyInfo, p4type);
|
sl@0
|
1813 |
sqlite3VdbeAddOp3(v, OP_Jump, j2+2, iContinue, j2+2);
|
sl@0
|
1814 |
sqlite3VdbeJumpHere(v, j1);
|
sl@0
|
1815 |
sqlite3ExprCodeCopy(pParse, pIn->iMem, regPrev+1, pIn->nMem);
|
sl@0
|
1816 |
sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev);
|
sl@0
|
1817 |
}
|
sl@0
|
1818 |
if( pParse->db->mallocFailed ) return 0;
|
sl@0
|
1819 |
|
sl@0
|
1820 |
/* Suppress the the first OFFSET entries if there is an OFFSET clause
|
sl@0
|
1821 |
*/
|
sl@0
|
1822 |
codeOffset(v, p, iContinue);
|
sl@0
|
1823 |
|
sl@0
|
1824 |
switch( pDest->eDest ){
|
sl@0
|
1825 |
/* Store the result as data using a unique key.
|
sl@0
|
1826 |
*/
|
sl@0
|
1827 |
case SRT_Table:
|
sl@0
|
1828 |
case SRT_EphemTab: {
|
sl@0
|
1829 |
int r1 = sqlite3GetTempReg(pParse);
|
sl@0
|
1830 |
int r2 = sqlite3GetTempReg(pParse);
|
sl@0
|
1831 |
sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iMem, pIn->nMem, r1);
|
sl@0
|
1832 |
sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iParm, r2);
|
sl@0
|
1833 |
sqlite3VdbeAddOp3(v, OP_Insert, pDest->iParm, r1, r2);
|
sl@0
|
1834 |
sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
|
sl@0
|
1835 |
sqlite3ReleaseTempReg(pParse, r2);
|
sl@0
|
1836 |
sqlite3ReleaseTempReg(pParse, r1);
|
sl@0
|
1837 |
break;
|
sl@0
|
1838 |
}
|
sl@0
|
1839 |
|
sl@0
|
1840 |
#ifndef SQLITE_OMIT_SUBQUERY
|
sl@0
|
1841 |
/* If we are creating a set for an "expr IN (SELECT ...)" construct,
|
sl@0
|
1842 |
** then there should be a single item on the stack. Write this
|
sl@0
|
1843 |
** item into the set table with bogus data.
|
sl@0
|
1844 |
*/
|
sl@0
|
1845 |
case SRT_Set: {
|
sl@0
|
1846 |
int r1;
|
sl@0
|
1847 |
assert( pIn->nMem==1 );
|
sl@0
|
1848 |
p->affinity =
|
sl@0
|
1849 |
sqlite3CompareAffinity(p->pEList->a[0].pExpr, pDest->affinity);
|
sl@0
|
1850 |
r1 = sqlite3GetTempReg(pParse);
|
sl@0
|
1851 |
sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iMem, 1, r1, &p->affinity, 1);
|
sl@0
|
1852 |
sqlite3ExprCacheAffinityChange(pParse, pIn->iMem, 1);
|
sl@0
|
1853 |
sqlite3VdbeAddOp2(v, OP_IdxInsert, pDest->iParm, r1);
|
sl@0
|
1854 |
sqlite3ReleaseTempReg(pParse, r1);
|
sl@0
|
1855 |
break;
|
sl@0
|
1856 |
}
|
sl@0
|
1857 |
|
sl@0
|
1858 |
#if 0 /* Never occurs on an ORDER BY query */
|
sl@0
|
1859 |
/* If any row exist in the result set, record that fact and abort.
|
sl@0
|
1860 |
*/
|
sl@0
|
1861 |
case SRT_Exists: {
|
sl@0
|
1862 |
sqlite3VdbeAddOp2(v, OP_Integer, 1, pDest->iParm);
|
sl@0
|
1863 |
/* The LIMIT clause will terminate the loop for us */
|
sl@0
|
1864 |
break;
|
sl@0
|
1865 |
}
|
sl@0
|
1866 |
#endif
|
sl@0
|
1867 |
|
sl@0
|
1868 |
/* If this is a scalar select that is part of an expression, then
|
sl@0
|
1869 |
** store the results in the appropriate memory cell and break out
|
sl@0
|
1870 |
** of the scan loop.
|
sl@0
|
1871 |
*/
|
sl@0
|
1872 |
case SRT_Mem: {
|
sl@0
|
1873 |
assert( pIn->nMem==1 );
|
sl@0
|
1874 |
sqlite3ExprCodeMove(pParse, pIn->iMem, pDest->iParm, 1);
|
sl@0
|
1875 |
/* The LIMIT clause will jump out of the loop for us */
|
sl@0
|
1876 |
break;
|
sl@0
|
1877 |
}
|
sl@0
|
1878 |
#endif /* #ifndef SQLITE_OMIT_SUBQUERY */
|
sl@0
|
1879 |
|
sl@0
|
1880 |
/* The results are stored in a sequence of registers
|
sl@0
|
1881 |
** starting at pDest->iMem. Then the co-routine yields.
|
sl@0
|
1882 |
*/
|
sl@0
|
1883 |
case SRT_Coroutine: {
|
sl@0
|
1884 |
if( pDest->iMem==0 ){
|
sl@0
|
1885 |
pDest->iMem = sqlite3GetTempRange(pParse, pIn->nMem);
|
sl@0
|
1886 |
pDest->nMem = pIn->nMem;
|
sl@0
|
1887 |
}
|
sl@0
|
1888 |
sqlite3ExprCodeMove(pParse, pIn->iMem, pDest->iMem, pDest->nMem);
|
sl@0
|
1889 |
sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm);
|
sl@0
|
1890 |
break;
|
sl@0
|
1891 |
}
|
sl@0
|
1892 |
|
sl@0
|
1893 |
/* Results are stored in a sequence of registers. Then the
|
sl@0
|
1894 |
** OP_ResultRow opcode is used to cause sqlite3_step() to return
|
sl@0
|
1895 |
** the next row of result.
|
sl@0
|
1896 |
*/
|
sl@0
|
1897 |
case SRT_Output: {
|
sl@0
|
1898 |
sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iMem, pIn->nMem);
|
sl@0
|
1899 |
sqlite3ExprCacheAffinityChange(pParse, pIn->iMem, pIn->nMem);
|
sl@0
|
1900 |
break;
|
sl@0
|
1901 |
}
|
sl@0
|
1902 |
|
sl@0
|
1903 |
#if !defined(SQLITE_OMIT_TRIGGER)
|
sl@0
|
1904 |
/* Discard the results. This is used for SELECT statements inside
|
sl@0
|
1905 |
** the body of a TRIGGER. The purpose of such selects is to call
|
sl@0
|
1906 |
** user-defined functions that have side effects. We do not care
|
sl@0
|
1907 |
** about the actual results of the select.
|
sl@0
|
1908 |
*/
|
sl@0
|
1909 |
default: {
|
sl@0
|
1910 |
break;
|
sl@0
|
1911 |
}
|
sl@0
|
1912 |
#endif
|
sl@0
|
1913 |
}
|
sl@0
|
1914 |
|
sl@0
|
1915 |
/* Jump to the end of the loop if the LIMIT is reached.
|
sl@0
|
1916 |
*/
|
sl@0
|
1917 |
if( p->iLimit ){
|
sl@0
|
1918 |
sqlite3VdbeAddOp2(v, OP_AddImm, p->iLimit, -1);
|
sl@0
|
1919 |
sqlite3VdbeAddOp2(v, OP_IfZero, p->iLimit, iBreak);
|
sl@0
|
1920 |
}
|
sl@0
|
1921 |
|
sl@0
|
1922 |
/* Generate the subroutine return
|
sl@0
|
1923 |
*/
|
sl@0
|
1924 |
sqlite3VdbeResolveLabel(v, iContinue);
|
sl@0
|
1925 |
sqlite3VdbeAddOp1(v, OP_Return, regReturn);
|
sl@0
|
1926 |
|
sl@0
|
1927 |
return addr;
|
sl@0
|
1928 |
}
|
sl@0
|
1929 |
|
sl@0
|
1930 |
/*
|
sl@0
|
1931 |
** Alternative compound select code generator for cases when there
|
sl@0
|
1932 |
** is an ORDER BY clause.
|
sl@0
|
1933 |
**
|
sl@0
|
1934 |
** We assume a query of the following form:
|
sl@0
|
1935 |
**
|
sl@0
|
1936 |
** <selectA> <operator> <selectB> ORDER BY <orderbylist>
|
sl@0
|
1937 |
**
|
sl@0
|
1938 |
** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea
|
sl@0
|
1939 |
** is to code both <selectA> and <selectB> with the ORDER BY clause as
|
sl@0
|
1940 |
** co-routines. Then run the co-routines in parallel and merge the results
|
sl@0
|
1941 |
** into the output. In addition to the two coroutines (called selectA and
|
sl@0
|
1942 |
** selectB) there are 7 subroutines:
|
sl@0
|
1943 |
**
|
sl@0
|
1944 |
** outA: Move the output of the selectA coroutine into the output
|
sl@0
|
1945 |
** of the compound query.
|
sl@0
|
1946 |
**
|
sl@0
|
1947 |
** outB: Move the output of the selectB coroutine into the output
|
sl@0
|
1948 |
** of the compound query. (Only generated for UNION and
|
sl@0
|
1949 |
** UNION ALL. EXCEPT and INSERTSECT never output a row that
|
sl@0
|
1950 |
** appears only in B.)
|
sl@0
|
1951 |
**
|
sl@0
|
1952 |
** AltB: Called when there is data from both coroutines and A<B.
|
sl@0
|
1953 |
**
|
sl@0
|
1954 |
** AeqB: Called when there is data from both coroutines and A==B.
|
sl@0
|
1955 |
**
|
sl@0
|
1956 |
** AgtB: Called when there is data from both coroutines and A>B.
|
sl@0
|
1957 |
**
|
sl@0
|
1958 |
** EofA: Called when data is exhausted from selectA.
|
sl@0
|
1959 |
**
|
sl@0
|
1960 |
** EofB: Called when data is exhausted from selectB.
|
sl@0
|
1961 |
**
|
sl@0
|
1962 |
** The implementation of the latter five subroutines depend on which
|
sl@0
|
1963 |
** <operator> is used:
|
sl@0
|
1964 |
**
|
sl@0
|
1965 |
**
|
sl@0
|
1966 |
** UNION ALL UNION EXCEPT INTERSECT
|
sl@0
|
1967 |
** ------------- ----------------- -------------- -----------------
|
sl@0
|
1968 |
** AltB: outA, nextA outA, nextA outA, nextA nextA
|
sl@0
|
1969 |
**
|
sl@0
|
1970 |
** AeqB: outA, nextA nextA nextA outA, nextA
|
sl@0
|
1971 |
**
|
sl@0
|
1972 |
** AgtB: outB, nextB outB, nextB nextB nextB
|
sl@0
|
1973 |
**
|
sl@0
|
1974 |
** EofA: outB, nextB outB, nextB halt halt
|
sl@0
|
1975 |
**
|
sl@0
|
1976 |
** EofB: outA, nextA outA, nextA outA, nextA halt
|
sl@0
|
1977 |
**
|
sl@0
|
1978 |
** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA
|
sl@0
|
1979 |
** causes an immediate jump to EofA and an EOF on B following nextB causes
|
sl@0
|
1980 |
** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or
|
sl@0
|
1981 |
** following nextX causes a jump to the end of the select processing.
|
sl@0
|
1982 |
**
|
sl@0
|
1983 |
** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled
|
sl@0
|
1984 |
** within the output subroutine. The regPrev register set holds the previously
|
sl@0
|
1985 |
** output value. A comparison is made against this value and the output
|
sl@0
|
1986 |
** is skipped if the next results would be the same as the previous.
|
sl@0
|
1987 |
**
|
sl@0
|
1988 |
** The implementation plan is to implement the two coroutines and seven
|
sl@0
|
1989 |
** subroutines first, then put the control logic at the bottom. Like this:
|
sl@0
|
1990 |
**
|
sl@0
|
1991 |
** goto Init
|
sl@0
|
1992 |
** coA: coroutine for left query (A)
|
sl@0
|
1993 |
** coB: coroutine for right query (B)
|
sl@0
|
1994 |
** outA: output one row of A
|
sl@0
|
1995 |
** outB: output one row of B (UNION and UNION ALL only)
|
sl@0
|
1996 |
** EofA: ...
|
sl@0
|
1997 |
** EofB: ...
|
sl@0
|
1998 |
** AltB: ...
|
sl@0
|
1999 |
** AeqB: ...
|
sl@0
|
2000 |
** AgtB: ...
|
sl@0
|
2001 |
** Init: initialize coroutine registers
|
sl@0
|
2002 |
** yield coA
|
sl@0
|
2003 |
** if eof(A) goto EofA
|
sl@0
|
2004 |
** yield coB
|
sl@0
|
2005 |
** if eof(B) goto EofB
|
sl@0
|
2006 |
** Cmpr: Compare A, B
|
sl@0
|
2007 |
** Jump AltB, AeqB, AgtB
|
sl@0
|
2008 |
** End: ...
|
sl@0
|
2009 |
**
|
sl@0
|
2010 |
** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not
|
sl@0
|
2011 |
** actually called using Gosub and they do not Return. EofA and EofB loop
|
sl@0
|
2012 |
** until all data is exhausted then jump to the "end" labe. AltB, AeqB,
|
sl@0
|
2013 |
** and AgtB jump to either L2 or to one of EofA or EofB.
|
sl@0
|
2014 |
*/
|
sl@0
|
2015 |
#ifndef SQLITE_OMIT_COMPOUND_SELECT
|
sl@0
|
2016 |
static int multiSelectOrderBy(
|
sl@0
|
2017 |
Parse *pParse, /* Parsing context */
|
sl@0
|
2018 |
Select *p, /* The right-most of SELECTs to be coded */
|
sl@0
|
2019 |
SelectDest *pDest /* What to do with query results */
|
sl@0
|
2020 |
){
|
sl@0
|
2021 |
int i, j; /* Loop counters */
|
sl@0
|
2022 |
Select *pPrior; /* Another SELECT immediately to our left */
|
sl@0
|
2023 |
Vdbe *v; /* Generate code to this VDBE */
|
sl@0
|
2024 |
SelectDest destA; /* Destination for coroutine A */
|
sl@0
|
2025 |
SelectDest destB; /* Destination for coroutine B */
|
sl@0
|
2026 |
int regAddrA; /* Address register for select-A coroutine */
|
sl@0
|
2027 |
int regEofA; /* Flag to indicate when select-A is complete */
|
sl@0
|
2028 |
int regAddrB; /* Address register for select-B coroutine */
|
sl@0
|
2029 |
int regEofB; /* Flag to indicate when select-B is complete */
|
sl@0
|
2030 |
int addrSelectA; /* Address of the select-A coroutine */
|
sl@0
|
2031 |
int addrSelectB; /* Address of the select-B coroutine */
|
sl@0
|
2032 |
int regOutA; /* Address register for the output-A subroutine */
|
sl@0
|
2033 |
int regOutB; /* Address register for the output-B subroutine */
|
sl@0
|
2034 |
int addrOutA; /* Address of the output-A subroutine */
|
sl@0
|
2035 |
int addrOutB; /* Address of the output-B subroutine */
|
sl@0
|
2036 |
int addrEofA; /* Address of the select-A-exhausted subroutine */
|
sl@0
|
2037 |
int addrEofB; /* Address of the select-B-exhausted subroutine */
|
sl@0
|
2038 |
int addrAltB; /* Address of the A<B subroutine */
|
sl@0
|
2039 |
int addrAeqB; /* Address of the A==B subroutine */
|
sl@0
|
2040 |
int addrAgtB; /* Address of the A>B subroutine */
|
sl@0
|
2041 |
int regLimitA; /* Limit register for select-A */
|
sl@0
|
2042 |
int regLimitB; /* Limit register for select-A */
|
sl@0
|
2043 |
int regPrev; /* A range of registers to hold previous output */
|
sl@0
|
2044 |
int savedLimit; /* Saved value of p->iLimit */
|
sl@0
|
2045 |
int savedOffset; /* Saved value of p->iOffset */
|
sl@0
|
2046 |
int labelCmpr; /* Label for the start of the merge algorithm */
|
sl@0
|
2047 |
int labelEnd; /* Label for the end of the overall SELECT stmt */
|
sl@0
|
2048 |
int j1; /* Jump instructions that get retargetted */
|
sl@0
|
2049 |
int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */
|
sl@0
|
2050 |
KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */
|
sl@0
|
2051 |
KeyInfo *pKeyMerge; /* Comparison information for merging rows */
|
sl@0
|
2052 |
sqlite3 *db; /* Database connection */
|
sl@0
|
2053 |
ExprList *pOrderBy; /* The ORDER BY clause */
|
sl@0
|
2054 |
int nOrderBy; /* Number of terms in the ORDER BY clause */
|
sl@0
|
2055 |
int *aPermute; /* Mapping from ORDER BY terms to result set columns */
|
sl@0
|
2056 |
|
sl@0
|
2057 |
assert( p->pOrderBy!=0 );
|
sl@0
|
2058 |
assert( pKeyDup==0 ); /* "Managed" code needs this. Ticket #3382. */
|
sl@0
|
2059 |
db = pParse->db;
|
sl@0
|
2060 |
v = pParse->pVdbe;
|
sl@0
|
2061 |
if( v==0 ) return SQLITE_NOMEM;
|
sl@0
|
2062 |
labelEnd = sqlite3VdbeMakeLabel(v);
|
sl@0
|
2063 |
labelCmpr = sqlite3VdbeMakeLabel(v);
|
sl@0
|
2064 |
|
sl@0
|
2065 |
|
sl@0
|
2066 |
/* Patch up the ORDER BY clause
|
sl@0
|
2067 |
*/
|
sl@0
|
2068 |
op = p->op;
|
sl@0
|
2069 |
pPrior = p->pPrior;
|
sl@0
|
2070 |
assert( pPrior->pOrderBy==0 );
|
sl@0
|
2071 |
pOrderBy = p->pOrderBy;
|
sl@0
|
2072 |
assert( pOrderBy );
|
sl@0
|
2073 |
nOrderBy = pOrderBy->nExpr;
|
sl@0
|
2074 |
|
sl@0
|
2075 |
/* For operators other than UNION ALL we have to make sure that
|
sl@0
|
2076 |
** the ORDER BY clause covers every term of the result set. Add
|
sl@0
|
2077 |
** terms to the ORDER BY clause as necessary.
|
sl@0
|
2078 |
*/
|
sl@0
|
2079 |
if( op!=TK_ALL ){
|
sl@0
|
2080 |
for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){
|
sl@0
|
2081 |
struct ExprList_item *pItem;
|
sl@0
|
2082 |
for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){
|
sl@0
|
2083 |
assert( pItem->iCol>0 );
|
sl@0
|
2084 |
if( pItem->iCol==i ) break;
|
sl@0
|
2085 |
}
|
sl@0
|
2086 |
if( j==nOrderBy ){
|
sl@0
|
2087 |
Expr *pNew = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, 0);
|
sl@0
|
2088 |
if( pNew==0 ) return SQLITE_NOMEM;
|
sl@0
|
2089 |
pNew->flags |= EP_IntValue;
|
sl@0
|
2090 |
pNew->iTable = i;
|
sl@0
|
2091 |
pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew, 0);
|
sl@0
|
2092 |
pOrderBy->a[nOrderBy++].iCol = i;
|
sl@0
|
2093 |
}
|
sl@0
|
2094 |
}
|
sl@0
|
2095 |
}
|
sl@0
|
2096 |
|
sl@0
|
2097 |
/* Compute the comparison permutation and keyinfo that is used with
|
sl@0
|
2098 |
** the permutation in order to comparisons to determine if the next
|
sl@0
|
2099 |
** row of results comes from selectA or selectB. Also add explicit
|
sl@0
|
2100 |
** collations to the ORDER BY clause terms so that when the subqueries
|
sl@0
|
2101 |
** to the right and the left are evaluated, they use the correct
|
sl@0
|
2102 |
** collation.
|
sl@0
|
2103 |
*/
|
sl@0
|
2104 |
aPermute = sqlite3DbMallocRaw(db, sizeof(int)*nOrderBy);
|
sl@0
|
2105 |
if( aPermute ){
|
sl@0
|
2106 |
struct ExprList_item *pItem;
|
sl@0
|
2107 |
for(i=0, pItem=pOrderBy->a; i<nOrderBy; i++, pItem++){
|
sl@0
|
2108 |
assert( pItem->iCol>0 && pItem->iCol<=p->pEList->nExpr );
|
sl@0
|
2109 |
aPermute[i] = pItem->iCol - 1;
|
sl@0
|
2110 |
}
|
sl@0
|
2111 |
pKeyMerge =
|
sl@0
|
2112 |
sqlite3DbMallocRaw(db, sizeof(*pKeyMerge)+nOrderBy*(sizeof(CollSeq*)+1));
|
sl@0
|
2113 |
if( pKeyMerge ){
|
sl@0
|
2114 |
pKeyMerge->aSortOrder = (u8*)&pKeyMerge->aColl[nOrderBy];
|
sl@0
|
2115 |
pKeyMerge->nField = nOrderBy;
|
sl@0
|
2116 |
pKeyMerge->enc = ENC(db);
|
sl@0
|
2117 |
for(i=0; i<nOrderBy; i++){
|
sl@0
|
2118 |
CollSeq *pColl;
|
sl@0
|
2119 |
Expr *pTerm = pOrderBy->a[i].pExpr;
|
sl@0
|
2120 |
if( pTerm->flags & EP_ExpCollate ){
|
sl@0
|
2121 |
pColl = pTerm->pColl;
|
sl@0
|
2122 |
}else{
|
sl@0
|
2123 |
pColl = multiSelectCollSeq(pParse, p, aPermute[i]);
|
sl@0
|
2124 |
pTerm->flags |= EP_ExpCollate;
|
sl@0
|
2125 |
pTerm->pColl = pColl;
|
sl@0
|
2126 |
}
|
sl@0
|
2127 |
pKeyMerge->aColl[i] = pColl;
|
sl@0
|
2128 |
pKeyMerge->aSortOrder[i] = pOrderBy->a[i].sortOrder;
|
sl@0
|
2129 |
}
|
sl@0
|
2130 |
}
|
sl@0
|
2131 |
}else{
|
sl@0
|
2132 |
pKeyMerge = 0;
|
sl@0
|
2133 |
}
|
sl@0
|
2134 |
|
sl@0
|
2135 |
/* Reattach the ORDER BY clause to the query.
|
sl@0
|
2136 |
*/
|
sl@0
|
2137 |
p->pOrderBy = pOrderBy;
|
sl@0
|
2138 |
pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy);
|
sl@0
|
2139 |
|
sl@0
|
2140 |
/* Allocate a range of temporary registers and the KeyInfo needed
|
sl@0
|
2141 |
** for the logic that removes duplicate result rows when the
|
sl@0
|
2142 |
** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL).
|
sl@0
|
2143 |
*/
|
sl@0
|
2144 |
if( op==TK_ALL ){
|
sl@0
|
2145 |
regPrev = 0;
|
sl@0
|
2146 |
}else{
|
sl@0
|
2147 |
int nExpr = p->pEList->nExpr;
|
sl@0
|
2148 |
assert( nOrderBy>=nExpr );
|
sl@0
|
2149 |
regPrev = sqlite3GetTempRange(pParse, nExpr+1);
|
sl@0
|
2150 |
sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev);
|
sl@0
|
2151 |
pKeyDup = sqlite3DbMallocZero(db,
|
sl@0
|
2152 |
sizeof(*pKeyDup) + nExpr*(sizeof(CollSeq*)+1) );
|
sl@0
|
2153 |
if( pKeyDup ){
|
sl@0
|
2154 |
pKeyDup->aSortOrder = (u8*)&pKeyDup->aColl[nExpr];
|
sl@0
|
2155 |
pKeyDup->nField = nExpr;
|
sl@0
|
2156 |
pKeyDup->enc = ENC(db);
|
sl@0
|
2157 |
for(i=0; i<nExpr; i++){
|
sl@0
|
2158 |
pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i);
|
sl@0
|
2159 |
pKeyDup->aSortOrder[i] = 0;
|
sl@0
|
2160 |
}
|
sl@0
|
2161 |
}
|
sl@0
|
2162 |
}
|
sl@0
|
2163 |
|
sl@0
|
2164 |
/* Separate the left and the right query from one another
|
sl@0
|
2165 |
*/
|
sl@0
|
2166 |
p->pPrior = 0;
|
sl@0
|
2167 |
pPrior->pRightmost = 0;
|
sl@0
|
2168 |
sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER");
|
sl@0
|
2169 |
if( pPrior->pPrior==0 ){
|
sl@0
|
2170 |
sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER");
|
sl@0
|
2171 |
}
|
sl@0
|
2172 |
|
sl@0
|
2173 |
/* Compute the limit registers */
|
sl@0
|
2174 |
computeLimitRegisters(pParse, p, labelEnd);
|
sl@0
|
2175 |
if( p->iLimit && op==TK_ALL ){
|
sl@0
|
2176 |
regLimitA = ++pParse->nMem;
|
sl@0
|
2177 |
regLimitB = ++pParse->nMem;
|
sl@0
|
2178 |
sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit,
|
sl@0
|
2179 |
regLimitA);
|
sl@0
|
2180 |
sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB);
|
sl@0
|
2181 |
}else{
|
sl@0
|
2182 |
regLimitA = regLimitB = 0;
|
sl@0
|
2183 |
}
|
sl@0
|
2184 |
sqlite3ExprDelete(db, p->pLimit);
|
sl@0
|
2185 |
p->pLimit = 0;
|
sl@0
|
2186 |
sqlite3ExprDelete(db, p->pOffset);
|
sl@0
|
2187 |
p->pOffset = 0;
|
sl@0
|
2188 |
|
sl@0
|
2189 |
regAddrA = ++pParse->nMem;
|
sl@0
|
2190 |
regEofA = ++pParse->nMem;
|
sl@0
|
2191 |
regAddrB = ++pParse->nMem;
|
sl@0
|
2192 |
regEofB = ++pParse->nMem;
|
sl@0
|
2193 |
regOutA = ++pParse->nMem;
|
sl@0
|
2194 |
regOutB = ++pParse->nMem;
|
sl@0
|
2195 |
sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA);
|
sl@0
|
2196 |
sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB);
|
sl@0
|
2197 |
|
sl@0
|
2198 |
/* Jump past the various subroutines and coroutines to the main
|
sl@0
|
2199 |
** merge loop
|
sl@0
|
2200 |
*/
|
sl@0
|
2201 |
j1 = sqlite3VdbeAddOp0(v, OP_Goto);
|
sl@0
|
2202 |
addrSelectA = sqlite3VdbeCurrentAddr(v);
|
sl@0
|
2203 |
|
sl@0
|
2204 |
|
sl@0
|
2205 |
/* Generate a coroutine to evaluate the SELECT statement to the
|
sl@0
|
2206 |
** left of the compound operator - the "A" select.
|
sl@0
|
2207 |
*/
|
sl@0
|
2208 |
VdbeNoopComment((v, "Begin coroutine for left SELECT"));
|
sl@0
|
2209 |
pPrior->iLimit = regLimitA;
|
sl@0
|
2210 |
sqlite3Select(pParse, pPrior, &destA);
|
sl@0
|
2211 |
sqlite3VdbeAddOp2(v, OP_Integer, 1, regEofA);
|
sl@0
|
2212 |
sqlite3VdbeAddOp1(v, OP_Yield, regAddrA);
|
sl@0
|
2213 |
VdbeNoopComment((v, "End coroutine for left SELECT"));
|
sl@0
|
2214 |
|
sl@0
|
2215 |
/* Generate a coroutine to evaluate the SELECT statement on
|
sl@0
|
2216 |
** the right - the "B" select
|
sl@0
|
2217 |
*/
|
sl@0
|
2218 |
addrSelectB = sqlite3VdbeCurrentAddr(v);
|
sl@0
|
2219 |
VdbeNoopComment((v, "Begin coroutine for right SELECT"));
|
sl@0
|
2220 |
savedLimit = p->iLimit;
|
sl@0
|
2221 |
savedOffset = p->iOffset;
|
sl@0
|
2222 |
p->iLimit = regLimitB;
|
sl@0
|
2223 |
p->iOffset = 0;
|
sl@0
|
2224 |
sqlite3Select(pParse, p, &destB);
|
sl@0
|
2225 |
p->iLimit = savedLimit;
|
sl@0
|
2226 |
p->iOffset = savedOffset;
|
sl@0
|
2227 |
sqlite3VdbeAddOp2(v, OP_Integer, 1, regEofB);
|
sl@0
|
2228 |
sqlite3VdbeAddOp1(v, OP_Yield, regAddrB);
|
sl@0
|
2229 |
VdbeNoopComment((v, "End coroutine for right SELECT"));
|
sl@0
|
2230 |
|
sl@0
|
2231 |
/* Generate a subroutine that outputs the current row of the A
|
sl@0
|
2232 |
** select as the next output row of the compound select.
|
sl@0
|
2233 |
*/
|
sl@0
|
2234 |
VdbeNoopComment((v, "Output routine for A"));
|
sl@0
|
2235 |
addrOutA = generateOutputSubroutine(pParse,
|
sl@0
|
2236 |
p, &destA, pDest, regOutA,
|
sl@0
|
2237 |
regPrev, pKeyDup, P4_KEYINFO_HANDOFF, labelEnd);
|
sl@0
|
2238 |
|
sl@0
|
2239 |
/* Generate a subroutine that outputs the current row of the B
|
sl@0
|
2240 |
** select as the next output row of the compound select.
|
sl@0
|
2241 |
*/
|
sl@0
|
2242 |
if( op==TK_ALL || op==TK_UNION ){
|
sl@0
|
2243 |
VdbeNoopComment((v, "Output routine for B"));
|
sl@0
|
2244 |
addrOutB = generateOutputSubroutine(pParse,
|
sl@0
|
2245 |
p, &destB, pDest, regOutB,
|
sl@0
|
2246 |
regPrev, pKeyDup, P4_KEYINFO_STATIC, labelEnd);
|
sl@0
|
2247 |
}
|
sl@0
|
2248 |
|
sl@0
|
2249 |
/* Generate a subroutine to run when the results from select A
|
sl@0
|
2250 |
** are exhausted and only data in select B remains.
|
sl@0
|
2251 |
*/
|
sl@0
|
2252 |
VdbeNoopComment((v, "eof-A subroutine"));
|
sl@0
|
2253 |
if( op==TK_EXCEPT || op==TK_INTERSECT ){
|
sl@0
|
2254 |
addrEofA = sqlite3VdbeAddOp2(v, OP_Goto, 0, labelEnd);
|
sl@0
|
2255 |
}else{
|
sl@0
|
2256 |
addrEofA = sqlite3VdbeAddOp2(v, OP_If, regEofB, labelEnd);
|
sl@0
|
2257 |
sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
|
sl@0
|
2258 |
sqlite3VdbeAddOp1(v, OP_Yield, regAddrB);
|
sl@0
|
2259 |
sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofA);
|
sl@0
|
2260 |
}
|
sl@0
|
2261 |
|
sl@0
|
2262 |
/* Generate a subroutine to run when the results from select B
|
sl@0
|
2263 |
** are exhausted and only data in select A remains.
|
sl@0
|
2264 |
*/
|
sl@0
|
2265 |
if( op==TK_INTERSECT ){
|
sl@0
|
2266 |
addrEofB = addrEofA;
|
sl@0
|
2267 |
}else{
|
sl@0
|
2268 |
VdbeNoopComment((v, "eof-B subroutine"));
|
sl@0
|
2269 |
addrEofB = sqlite3VdbeAddOp2(v, OP_If, regEofA, labelEnd);
|
sl@0
|
2270 |
sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
|
sl@0
|
2271 |
sqlite3VdbeAddOp1(v, OP_Yield, regAddrA);
|
sl@0
|
2272 |
sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofB);
|
sl@0
|
2273 |
}
|
sl@0
|
2274 |
|
sl@0
|
2275 |
/* Generate code to handle the case of A<B
|
sl@0
|
2276 |
*/
|
sl@0
|
2277 |
VdbeNoopComment((v, "A-lt-B subroutine"));
|
sl@0
|
2278 |
addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
|
sl@0
|
2279 |
sqlite3VdbeAddOp1(v, OP_Yield, regAddrA);
|
sl@0
|
2280 |
sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA);
|
sl@0
|
2281 |
sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
|
sl@0
|
2282 |
|
sl@0
|
2283 |
/* Generate code to handle the case of A==B
|
sl@0
|
2284 |
*/
|
sl@0
|
2285 |
if( op==TK_ALL ){
|
sl@0
|
2286 |
addrAeqB = addrAltB;
|
sl@0
|
2287 |
}else if( op==TK_INTERSECT ){
|
sl@0
|
2288 |
addrAeqB = addrAltB;
|
sl@0
|
2289 |
addrAltB++;
|
sl@0
|
2290 |
}else{
|
sl@0
|
2291 |
VdbeNoopComment((v, "A-eq-B subroutine"));
|
sl@0
|
2292 |
addrAeqB =
|
sl@0
|
2293 |
sqlite3VdbeAddOp1(v, OP_Yield, regAddrA);
|
sl@0
|
2294 |
sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA);
|
sl@0
|
2295 |
sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
|
sl@0
|
2296 |
}
|
sl@0
|
2297 |
|
sl@0
|
2298 |
/* Generate code to handle the case of A>B
|
sl@0
|
2299 |
*/
|
sl@0
|
2300 |
VdbeNoopComment((v, "A-gt-B subroutine"));
|
sl@0
|
2301 |
addrAgtB = sqlite3VdbeCurrentAddr(v);
|
sl@0
|
2302 |
if( op==TK_ALL || op==TK_UNION ){
|
sl@0
|
2303 |
sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
|
sl@0
|
2304 |
}
|
sl@0
|
2305 |
sqlite3VdbeAddOp1(v, OP_Yield, regAddrB);
|
sl@0
|
2306 |
sqlite3VdbeAddOp2(v, OP_If, regEofB, addrEofB);
|
sl@0
|
2307 |
sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
|
sl@0
|
2308 |
|
sl@0
|
2309 |
/* This code runs once to initialize everything.
|
sl@0
|
2310 |
*/
|
sl@0
|
2311 |
sqlite3VdbeJumpHere(v, j1);
|
sl@0
|
2312 |
sqlite3VdbeAddOp2(v, OP_Integer, 0, regEofA);
|
sl@0
|
2313 |
sqlite3VdbeAddOp2(v, OP_Integer, 0, regEofB);
|
sl@0
|
2314 |
sqlite3VdbeAddOp2(v, OP_Gosub, regAddrA, addrSelectA);
|
sl@0
|
2315 |
sqlite3VdbeAddOp2(v, OP_Gosub, regAddrB, addrSelectB);
|
sl@0
|
2316 |
sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA);
|
sl@0
|
2317 |
sqlite3VdbeAddOp2(v, OP_If, regEofB, addrEofB);
|
sl@0
|
2318 |
|
sl@0
|
2319 |
/* Implement the main merge loop
|
sl@0
|
2320 |
*/
|
sl@0
|
2321 |
sqlite3VdbeResolveLabel(v, labelCmpr);
|
sl@0
|
2322 |
sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY);
|
sl@0
|
2323 |
sqlite3VdbeAddOp4(v, OP_Compare, destA.iMem, destB.iMem, nOrderBy,
|
sl@0
|
2324 |
(char*)pKeyMerge, P4_KEYINFO_HANDOFF);
|
sl@0
|
2325 |
sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB);
|
sl@0
|
2326 |
|
sl@0
|
2327 |
/* Release temporary registers
|
sl@0
|
2328 |
*/
|
sl@0
|
2329 |
if( regPrev ){
|
sl@0
|
2330 |
sqlite3ReleaseTempRange(pParse, regPrev, nOrderBy+1);
|
sl@0
|
2331 |
}
|
sl@0
|
2332 |
|
sl@0
|
2333 |
/* Jump to the this point in order to terminate the query.
|
sl@0
|
2334 |
*/
|
sl@0
|
2335 |
sqlite3VdbeResolveLabel(v, labelEnd);
|
sl@0
|
2336 |
|
sl@0
|
2337 |
/* Set the number of output columns
|
sl@0
|
2338 |
*/
|
sl@0
|
2339 |
if( pDest->eDest==SRT_Output ){
|
sl@0
|
2340 |
Select *pFirst = pPrior;
|
sl@0
|
2341 |
while( pFirst->pPrior ) pFirst = pFirst->pPrior;
|
sl@0
|
2342 |
generateColumnNames(pParse, 0, pFirst->pEList);
|
sl@0
|
2343 |
}
|
sl@0
|
2344 |
|
sl@0
|
2345 |
/* Reassembly the compound query so that it will be freed correctly
|
sl@0
|
2346 |
** by the calling function */
|
sl@0
|
2347 |
if( p->pPrior ){
|
sl@0
|
2348 |
sqlite3SelectDelete(db, p->pPrior);
|
sl@0
|
2349 |
}
|
sl@0
|
2350 |
p->pPrior = pPrior;
|
sl@0
|
2351 |
|
sl@0
|
2352 |
/*** TBD: Insert subroutine calls to close cursors on incomplete
|
sl@0
|
2353 |
**** subqueries ****/
|
sl@0
|
2354 |
return SQLITE_OK;
|
sl@0
|
2355 |
}
|
sl@0
|
2356 |
#endif
|
sl@0
|
2357 |
|
sl@0
|
2358 |
#if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
|
sl@0
|
2359 |
/* Forward Declarations */
|
sl@0
|
2360 |
static void substExprList(sqlite3*, ExprList*, int, ExprList*);
|
sl@0
|
2361 |
static void substSelect(sqlite3*, Select *, int, ExprList *);
|
sl@0
|
2362 |
|
sl@0
|
2363 |
/*
|
sl@0
|
2364 |
** Scan through the expression pExpr. Replace every reference to
|
sl@0
|
2365 |
** a column in table number iTable with a copy of the iColumn-th
|
sl@0
|
2366 |
** entry in pEList. (But leave references to the ROWID column
|
sl@0
|
2367 |
** unchanged.)
|
sl@0
|
2368 |
**
|
sl@0
|
2369 |
** This routine is part of the flattening procedure. A subquery
|
sl@0
|
2370 |
** whose result set is defined by pEList appears as entry in the
|
sl@0
|
2371 |
** FROM clause of a SELECT such that the VDBE cursor assigned to that
|
sl@0
|
2372 |
** FORM clause entry is iTable. This routine make the necessary
|
sl@0
|
2373 |
** changes to pExpr so that it refers directly to the source table
|
sl@0
|
2374 |
** of the subquery rather the result set of the subquery.
|
sl@0
|
2375 |
*/
|
sl@0
|
2376 |
static void substExpr(
|
sl@0
|
2377 |
sqlite3 *db, /* Report malloc errors to this connection */
|
sl@0
|
2378 |
Expr *pExpr, /* Expr in which substitution occurs */
|
sl@0
|
2379 |
int iTable, /* Table to be substituted */
|
sl@0
|
2380 |
ExprList *pEList /* Substitute expressions */
|
sl@0
|
2381 |
){
|
sl@0
|
2382 |
if( pExpr==0 ) return;
|
sl@0
|
2383 |
if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){
|
sl@0
|
2384 |
if( pExpr->iColumn<0 ){
|
sl@0
|
2385 |
pExpr->op = TK_NULL;
|
sl@0
|
2386 |
}else{
|
sl@0
|
2387 |
Expr *pNew;
|
sl@0
|
2388 |
assert( pEList!=0 && pExpr->iColumn<pEList->nExpr );
|
sl@0
|
2389 |
assert( pExpr->pLeft==0 && pExpr->pRight==0 && pExpr->pList==0 );
|
sl@0
|
2390 |
pNew = pEList->a[pExpr->iColumn].pExpr;
|
sl@0
|
2391 |
assert( pNew!=0 );
|
sl@0
|
2392 |
pExpr->op = pNew->op;
|
sl@0
|
2393 |
assert( pExpr->pLeft==0 );
|
sl@0
|
2394 |
pExpr->pLeft = sqlite3ExprDup(db, pNew->pLeft);
|
sl@0
|
2395 |
assert( pExpr->pRight==0 );
|
sl@0
|
2396 |
pExpr->pRight = sqlite3ExprDup(db, pNew->pRight);
|
sl@0
|
2397 |
assert( pExpr->pList==0 );
|
sl@0
|
2398 |
pExpr->pList = sqlite3ExprListDup(db, pNew->pList);
|
sl@0
|
2399 |
pExpr->iTable = pNew->iTable;
|
sl@0
|
2400 |
pExpr->pTab = pNew->pTab;
|
sl@0
|
2401 |
pExpr->iColumn = pNew->iColumn;
|
sl@0
|
2402 |
pExpr->iAgg = pNew->iAgg;
|
sl@0
|
2403 |
sqlite3TokenCopy(db, &pExpr->token, &pNew->token);
|
sl@0
|
2404 |
sqlite3TokenCopy(db, &pExpr->span, &pNew->span);
|
sl@0
|
2405 |
pExpr->pSelect = sqlite3SelectDup(db, pNew->pSelect);
|
sl@0
|
2406 |
pExpr->flags = pNew->flags;
|
sl@0
|
2407 |
}
|
sl@0
|
2408 |
}else{
|
sl@0
|
2409 |
substExpr(db, pExpr->pLeft, iTable, pEList);
|
sl@0
|
2410 |
substExpr(db, pExpr->pRight, iTable, pEList);
|
sl@0
|
2411 |
substSelect(db, pExpr->pSelect, iTable, pEList);
|
sl@0
|
2412 |
substExprList(db, pExpr->pList, iTable, pEList);
|
sl@0
|
2413 |
}
|
sl@0
|
2414 |
}
|
sl@0
|
2415 |
static void substExprList(
|
sl@0
|
2416 |
sqlite3 *db, /* Report malloc errors here */
|
sl@0
|
2417 |
ExprList *pList, /* List to scan and in which to make substitutes */
|
sl@0
|
2418 |
int iTable, /* Table to be substituted */
|
sl@0
|
2419 |
ExprList *pEList /* Substitute values */
|
sl@0
|
2420 |
){
|
sl@0
|
2421 |
int i;
|
sl@0
|
2422 |
if( pList==0 ) return;
|
sl@0
|
2423 |
for(i=0; i<pList->nExpr; i++){
|
sl@0
|
2424 |
substExpr(db, pList->a[i].pExpr, iTable, pEList);
|
sl@0
|
2425 |
}
|
sl@0
|
2426 |
}
|
sl@0
|
2427 |
static void substSelect(
|
sl@0
|
2428 |
sqlite3 *db, /* Report malloc errors here */
|
sl@0
|
2429 |
Select *p, /* SELECT statement in which to make substitutions */
|
sl@0
|
2430 |
int iTable, /* Table to be replaced */
|
sl@0
|
2431 |
ExprList *pEList /* Substitute values */
|
sl@0
|
2432 |
){
|
sl@0
|
2433 |
SrcList *pSrc;
|
sl@0
|
2434 |
struct SrcList_item *pItem;
|
sl@0
|
2435 |
int i;
|
sl@0
|
2436 |
if( !p ) return;
|
sl@0
|
2437 |
substExprList(db, p->pEList, iTable, pEList);
|
sl@0
|
2438 |
substExprList(db, p->pGroupBy, iTable, pEList);
|
sl@0
|
2439 |
substExprList(db, p->pOrderBy, iTable, pEList);
|
sl@0
|
2440 |
substExpr(db, p->pHaving, iTable, pEList);
|
sl@0
|
2441 |
substExpr(db, p->pWhere, iTable, pEList);
|
sl@0
|
2442 |
substSelect(db, p->pPrior, iTable, pEList);
|
sl@0
|
2443 |
pSrc = p->pSrc;
|
sl@0
|
2444 |
if( pSrc ){
|
sl@0
|
2445 |
for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){
|
sl@0
|
2446 |
substSelect(db, pItem->pSelect, iTable, pEList);
|
sl@0
|
2447 |
}
|
sl@0
|
2448 |
}
|
sl@0
|
2449 |
}
|
sl@0
|
2450 |
#endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
|
sl@0
|
2451 |
|
sl@0
|
2452 |
#if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
|
sl@0
|
2453 |
/*
|
sl@0
|
2454 |
** This routine attempts to flatten subqueries in order to speed
|
sl@0
|
2455 |
** execution. It returns 1 if it makes changes and 0 if no flattening
|
sl@0
|
2456 |
** occurs.
|
sl@0
|
2457 |
**
|
sl@0
|
2458 |
** To understand the concept of flattening, consider the following
|
sl@0
|
2459 |
** query:
|
sl@0
|
2460 |
**
|
sl@0
|
2461 |
** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
|
sl@0
|
2462 |
**
|
sl@0
|
2463 |
** The default way of implementing this query is to execute the
|
sl@0
|
2464 |
** subquery first and store the results in a temporary table, then
|
sl@0
|
2465 |
** run the outer query on that temporary table. This requires two
|
sl@0
|
2466 |
** passes over the data. Furthermore, because the temporary table
|
sl@0
|
2467 |
** has no indices, the WHERE clause on the outer query cannot be
|
sl@0
|
2468 |
** optimized.
|
sl@0
|
2469 |
**
|
sl@0
|
2470 |
** This routine attempts to rewrite queries such as the above into
|
sl@0
|
2471 |
** a single flat select, like this:
|
sl@0
|
2472 |
**
|
sl@0
|
2473 |
** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
|
sl@0
|
2474 |
**
|
sl@0
|
2475 |
** The code generated for this simpification gives the same result
|
sl@0
|
2476 |
** but only has to scan the data once. And because indices might
|
sl@0
|
2477 |
** exist on the table t1, a complete scan of the data might be
|
sl@0
|
2478 |
** avoided.
|
sl@0
|
2479 |
**
|
sl@0
|
2480 |
** Flattening is only attempted if all of the following are true:
|
sl@0
|
2481 |
**
|
sl@0
|
2482 |
** (1) The subquery and the outer query do not both use aggregates.
|
sl@0
|
2483 |
**
|
sl@0
|
2484 |
** (2) The subquery is not an aggregate or the outer query is not a join.
|
sl@0
|
2485 |
**
|
sl@0
|
2486 |
** (3) The subquery is not the right operand of a left outer join
|
sl@0
|
2487 |
** (Originally ticket #306. Strenghtened by ticket #3300)
|
sl@0
|
2488 |
**
|
sl@0
|
2489 |
** (4) The subquery is not DISTINCT or the outer query is not a join.
|
sl@0
|
2490 |
**
|
sl@0
|
2491 |
** (5) The subquery is not DISTINCT or the outer query does not use
|
sl@0
|
2492 |
** aggregates.
|
sl@0
|
2493 |
**
|
sl@0
|
2494 |
** (6) The subquery does not use aggregates or the outer query is not
|
sl@0
|
2495 |
** DISTINCT.
|
sl@0
|
2496 |
**
|
sl@0
|
2497 |
** (7) The subquery has a FROM clause.
|
sl@0
|
2498 |
**
|
sl@0
|
2499 |
** (8) The subquery does not use LIMIT or the outer query is not a join.
|
sl@0
|
2500 |
**
|
sl@0
|
2501 |
** (9) The subquery does not use LIMIT or the outer query does not use
|
sl@0
|
2502 |
** aggregates.
|
sl@0
|
2503 |
**
|
sl@0
|
2504 |
** (10) The subquery does not use aggregates or the outer query does not
|
sl@0
|
2505 |
** use LIMIT.
|
sl@0
|
2506 |
**
|
sl@0
|
2507 |
** (11) The subquery and the outer query do not both have ORDER BY clauses.
|
sl@0
|
2508 |
**
|
sl@0
|
2509 |
** (12) Not implemented. Subsumed into restriction (3). Was previously
|
sl@0
|
2510 |
** a separate restriction deriving from ticket #350.
|
sl@0
|
2511 |
**
|
sl@0
|
2512 |
** (13) The subquery and outer query do not both use LIMIT
|
sl@0
|
2513 |
**
|
sl@0
|
2514 |
** (14) The subquery does not use OFFSET
|
sl@0
|
2515 |
**
|
sl@0
|
2516 |
** (15) The outer query is not part of a compound select or the
|
sl@0
|
2517 |
** subquery does not have both an ORDER BY and a LIMIT clause.
|
sl@0
|
2518 |
** (See ticket #2339)
|
sl@0
|
2519 |
**
|
sl@0
|
2520 |
** (16) The outer query is not an aggregate or the subquery does
|
sl@0
|
2521 |
** not contain ORDER BY. (Ticket #2942) This used to not matter
|
sl@0
|
2522 |
** until we introduced the group_concat() function.
|
sl@0
|
2523 |
**
|
sl@0
|
2524 |
** (17) The sub-query is not a compound select, or it is a UNION ALL
|
sl@0
|
2525 |
** compound clause made up entirely of non-aggregate queries, and
|
sl@0
|
2526 |
** the parent query:
|
sl@0
|
2527 |
**
|
sl@0
|
2528 |
** * is not itself part of a compound select,
|
sl@0
|
2529 |
** * is not an aggregate or DISTINCT query, and
|
sl@0
|
2530 |
** * has no other tables or sub-selects in the FROM clause.
|
sl@0
|
2531 |
**
|
sl@0
|
2532 |
** The parent and sub-query may contain WHERE clauses. Subject to
|
sl@0
|
2533 |
** rules (11), (13) and (14), they may also contain ORDER BY,
|
sl@0
|
2534 |
** LIMIT and OFFSET clauses.
|
sl@0
|
2535 |
**
|
sl@0
|
2536 |
** (18) If the sub-query is a compound select, then all terms of the
|
sl@0
|
2537 |
** ORDER by clause of the parent must be simple references to
|
sl@0
|
2538 |
** columns of the sub-query.
|
sl@0
|
2539 |
**
|
sl@0
|
2540 |
** (19) The subquery does not use LIMIT or the outer query does not
|
sl@0
|
2541 |
** have a WHERE clause.
|
sl@0
|
2542 |
**
|
sl@0
|
2543 |
** In this routine, the "p" parameter is a pointer to the outer query.
|
sl@0
|
2544 |
** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query
|
sl@0
|
2545 |
** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates.
|
sl@0
|
2546 |
**
|
sl@0
|
2547 |
** If flattening is not attempted, this routine is a no-op and returns 0.
|
sl@0
|
2548 |
** If flattening is attempted this routine returns 1.
|
sl@0
|
2549 |
**
|
sl@0
|
2550 |
** All of the expression analysis must occur on both the outer query and
|
sl@0
|
2551 |
** the subquery before this routine runs.
|
sl@0
|
2552 |
*/
|
sl@0
|
2553 |
static int flattenSubquery(
|
sl@0
|
2554 |
Parse *pParse, /* Parsing context */
|
sl@0
|
2555 |
Select *p, /* The parent or outer SELECT statement */
|
sl@0
|
2556 |
int iFrom, /* Index in p->pSrc->a[] of the inner subquery */
|
sl@0
|
2557 |
int isAgg, /* True if outer SELECT uses aggregate functions */
|
sl@0
|
2558 |
int subqueryIsAgg /* True if the subquery uses aggregate functions */
|
sl@0
|
2559 |
){
|
sl@0
|
2560 |
const char *zSavedAuthContext = pParse->zAuthContext;
|
sl@0
|
2561 |
Select *pParent;
|
sl@0
|
2562 |
Select *pSub; /* The inner query or "subquery" */
|
sl@0
|
2563 |
Select *pSub1; /* Pointer to the rightmost select in sub-query */
|
sl@0
|
2564 |
SrcList *pSrc; /* The FROM clause of the outer query */
|
sl@0
|
2565 |
SrcList *pSubSrc; /* The FROM clause of the subquery */
|
sl@0
|
2566 |
ExprList *pList; /* The result set of the outer query */
|
sl@0
|
2567 |
int iParent; /* VDBE cursor number of the pSub result set temp table */
|
sl@0
|
2568 |
int i; /* Loop counter */
|
sl@0
|
2569 |
Expr *pWhere; /* The WHERE clause */
|
sl@0
|
2570 |
struct SrcList_item *pSubitem; /* The subquery */
|
sl@0
|
2571 |
sqlite3 *db = pParse->db;
|
sl@0
|
2572 |
|
sl@0
|
2573 |
/* Check to see if flattening is permitted. Return 0 if not.
|
sl@0
|
2574 |
*/
|
sl@0
|
2575 |
if( p==0 ) return 0;
|
sl@0
|
2576 |
pSrc = p->pSrc;
|
sl@0
|
2577 |
assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
|
sl@0
|
2578 |
pSubitem = &pSrc->a[iFrom];
|
sl@0
|
2579 |
iParent = pSubitem->iCursor;
|
sl@0
|
2580 |
pSub = pSubitem->pSelect;
|
sl@0
|
2581 |
assert( pSub!=0 );
|
sl@0
|
2582 |
if( isAgg && subqueryIsAgg ) return 0; /* Restriction (1) */
|
sl@0
|
2583 |
if( subqueryIsAgg && pSrc->nSrc>1 ) return 0; /* Restriction (2) */
|
sl@0
|
2584 |
pSubSrc = pSub->pSrc;
|
sl@0
|
2585 |
assert( pSubSrc );
|
sl@0
|
2586 |
/* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
|
sl@0
|
2587 |
** not arbitrary expresssions, we allowed some combining of LIMIT and OFFSET
|
sl@0
|
2588 |
** because they could be computed at compile-time. But when LIMIT and OFFSET
|
sl@0
|
2589 |
** became arbitrary expressions, we were forced to add restrictions (13)
|
sl@0
|
2590 |
** and (14). */
|
sl@0
|
2591 |
if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */
|
sl@0
|
2592 |
if( pSub->pOffset ) return 0; /* Restriction (14) */
|
sl@0
|
2593 |
if( p->pRightmost && pSub->pLimit && pSub->pOrderBy ){
|
sl@0
|
2594 |
return 0; /* Restriction (15) */
|
sl@0
|
2595 |
}
|
sl@0
|
2596 |
if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */
|
sl@0
|
2597 |
if( ((pSub->selFlags & SF_Distinct)!=0 || pSub->pLimit)
|
sl@0
|
2598 |
&& (pSrc->nSrc>1 || isAgg) ){ /* Restrictions (4)(5)(8)(9) */
|
sl@0
|
2599 |
return 0;
|
sl@0
|
2600 |
}
|
sl@0
|
2601 |
if( (p->selFlags & SF_Distinct)!=0 && subqueryIsAgg ){
|
sl@0
|
2602 |
return 0; /* Restriction (6) */
|
sl@0
|
2603 |
}
|
sl@0
|
2604 |
if( p->pOrderBy && pSub->pOrderBy ){
|
sl@0
|
2605 |
return 0; /* Restriction (11) */
|
sl@0
|
2606 |
}
|
sl@0
|
2607 |
if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */
|
sl@0
|
2608 |
if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */
|
sl@0
|
2609 |
|
sl@0
|
2610 |
/* OBSOLETE COMMENT 1:
|
sl@0
|
2611 |
** Restriction 3: If the subquery is a join, make sure the subquery is
|
sl@0
|
2612 |
** not used as the right operand of an outer join. Examples of why this
|
sl@0
|
2613 |
** is not allowed:
|
sl@0
|
2614 |
**
|
sl@0
|
2615 |
** t1 LEFT OUTER JOIN (t2 JOIN t3)
|
sl@0
|
2616 |
**
|
sl@0
|
2617 |
** If we flatten the above, we would get
|
sl@0
|
2618 |
**
|
sl@0
|
2619 |
** (t1 LEFT OUTER JOIN t2) JOIN t3
|
sl@0
|
2620 |
**
|
sl@0
|
2621 |
** which is not at all the same thing.
|
sl@0
|
2622 |
**
|
sl@0
|
2623 |
** OBSOLETE COMMENT 2:
|
sl@0
|
2624 |
** Restriction 12: If the subquery is the right operand of a left outer
|
sl@0
|
2625 |
** join, make sure the subquery has no WHERE clause.
|
sl@0
|
2626 |
** An examples of why this is not allowed:
|
sl@0
|
2627 |
**
|
sl@0
|
2628 |
** t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0)
|
sl@0
|
2629 |
**
|
sl@0
|
2630 |
** If we flatten the above, we would get
|
sl@0
|
2631 |
**
|
sl@0
|
2632 |
** (t1 LEFT OUTER JOIN t2) WHERE t2.x>0
|
sl@0
|
2633 |
**
|
sl@0
|
2634 |
** But the t2.x>0 test will always fail on a NULL row of t2, which
|
sl@0
|
2635 |
** effectively converts the OUTER JOIN into an INNER JOIN.
|
sl@0
|
2636 |
**
|
sl@0
|
2637 |
** THIS OVERRIDES OBSOLETE COMMENTS 1 AND 2 ABOVE:
|
sl@0
|
2638 |
** Ticket #3300 shows that flattening the right term of a LEFT JOIN
|
sl@0
|
2639 |
** is fraught with danger. Best to avoid the whole thing. If the
|
sl@0
|
2640 |
** subquery is the right term of a LEFT JOIN, then do not flatten.
|
sl@0
|
2641 |
*/
|
sl@0
|
2642 |
if( (pSubitem->jointype & JT_OUTER)!=0 ){
|
sl@0
|
2643 |
return 0;
|
sl@0
|
2644 |
}
|
sl@0
|
2645 |
|
sl@0
|
2646 |
/* Restriction 17: If the sub-query is a compound SELECT, then it must
|
sl@0
|
2647 |
** use only the UNION ALL operator. And none of the simple select queries
|
sl@0
|
2648 |
** that make up the compound SELECT are allowed to be aggregate or distinct
|
sl@0
|
2649 |
** queries.
|
sl@0
|
2650 |
*/
|
sl@0
|
2651 |
if( pSub->pPrior ){
|
sl@0
|
2652 |
if( p->pPrior || isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){
|
sl@0
|
2653 |
return 0;
|
sl@0
|
2654 |
}
|
sl@0
|
2655 |
for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){
|
sl@0
|
2656 |
if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0
|
sl@0
|
2657 |
|| (pSub1->pPrior && pSub1->op!=TK_ALL)
|
sl@0
|
2658 |
|| !pSub1->pSrc || pSub1->pSrc->nSrc!=1
|
sl@0
|
2659 |
){
|
sl@0
|
2660 |
return 0;
|
sl@0
|
2661 |
}
|
sl@0
|
2662 |
}
|
sl@0
|
2663 |
|
sl@0
|
2664 |
/* Restriction 18. */
|
sl@0
|
2665 |
if( p->pOrderBy ){
|
sl@0
|
2666 |
int ii;
|
sl@0
|
2667 |
for(ii=0; ii<p->pOrderBy->nExpr; ii++){
|
sl@0
|
2668 |
if( p->pOrderBy->a[ii].iCol==0 ) return 0;
|
sl@0
|
2669 |
}
|
sl@0
|
2670 |
}
|
sl@0
|
2671 |
}
|
sl@0
|
2672 |
|
sl@0
|
2673 |
/***** If we reach this point, flattening is permitted. *****/
|
sl@0
|
2674 |
|
sl@0
|
2675 |
/* Authorize the subquery */
|
sl@0
|
2676 |
pParse->zAuthContext = pSubitem->zName;
|
sl@0
|
2677 |
sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0);
|
sl@0
|
2678 |
pParse->zAuthContext = zSavedAuthContext;
|
sl@0
|
2679 |
|
sl@0
|
2680 |
/* If the sub-query is a compound SELECT statement, then (by restrictions
|
sl@0
|
2681 |
** 17 and 18 above) it must be a UNION ALL and the parent query must
|
sl@0
|
2682 |
** be of the form:
|
sl@0
|
2683 |
**
|
sl@0
|
2684 |
** SELECT <expr-list> FROM (<sub-query>) <where-clause>
|
sl@0
|
2685 |
**
|
sl@0
|
2686 |
** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block
|
sl@0
|
2687 |
** creates N copies of the parent query without any ORDER BY, LIMIT or
|
sl@0
|
2688 |
** OFFSET clauses and joins them to the left-hand-side of the original
|
sl@0
|
2689 |
** using UNION ALL operators. In this case N is the number of simple
|
sl@0
|
2690 |
** select statements in the compound sub-query.
|
sl@0
|
2691 |
*/
|
sl@0
|
2692 |
for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){
|
sl@0
|
2693 |
Select *pNew;
|
sl@0
|
2694 |
ExprList *pOrderBy = p->pOrderBy;
|
sl@0
|
2695 |
Expr *pLimit = p->pLimit;
|
sl@0
|
2696 |
Expr *pOffset = p->pOffset;
|
sl@0
|
2697 |
Select *pPrior = p->pPrior;
|
sl@0
|
2698 |
p->pOrderBy = 0;
|
sl@0
|
2699 |
p->pSrc = 0;
|
sl@0
|
2700 |
p->pPrior = 0;
|
sl@0
|
2701 |
p->pLimit = 0;
|
sl@0
|
2702 |
pNew = sqlite3SelectDup(db, p);
|
sl@0
|
2703 |
pNew->pPrior = pPrior;
|
sl@0
|
2704 |
p->pPrior = pNew;
|
sl@0
|
2705 |
p->pOrderBy = pOrderBy;
|
sl@0
|
2706 |
p->op = TK_ALL;
|
sl@0
|
2707 |
p->pSrc = pSrc;
|
sl@0
|
2708 |
p->pLimit = pLimit;
|
sl@0
|
2709 |
p->pOffset = pOffset;
|
sl@0
|
2710 |
p->pRightmost = 0;
|
sl@0
|
2711 |
pNew->pRightmost = 0;
|
sl@0
|
2712 |
}
|
sl@0
|
2713 |
|
sl@0
|
2714 |
/* Begin flattening the iFrom-th entry of the FROM clause
|
sl@0
|
2715 |
** in the outer query.
|
sl@0
|
2716 |
*/
|
sl@0
|
2717 |
pSub = pSub1 = pSubitem->pSelect;
|
sl@0
|
2718 |
for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){
|
sl@0
|
2719 |
int nSubSrc = pSubSrc->nSrc;
|
sl@0
|
2720 |
int jointype = 0;
|
sl@0
|
2721 |
pSubSrc = pSub->pSrc;
|
sl@0
|
2722 |
pSrc = pParent->pSrc;
|
sl@0
|
2723 |
|
sl@0
|
2724 |
/* Move all of the FROM elements of the subquery into the
|
sl@0
|
2725 |
** the FROM clause of the outer query. Before doing this, remember
|
sl@0
|
2726 |
** the cursor number for the original outer query FROM element in
|
sl@0
|
2727 |
** iParent. The iParent cursor will never be used. Subsequent code
|
sl@0
|
2728 |
** will scan expressions looking for iParent references and replace
|
sl@0
|
2729 |
** those references with expressions that resolve to the subquery FROM
|
sl@0
|
2730 |
** elements we are now copying in.
|
sl@0
|
2731 |
*/
|
sl@0
|
2732 |
if( pSrc ){
|
sl@0
|
2733 |
Table *pTabToDel;
|
sl@0
|
2734 |
pSubitem = &pSrc->a[iFrom];
|
sl@0
|
2735 |
nSubSrc = pSubSrc->nSrc;
|
sl@0
|
2736 |
jointype = pSubitem->jointype;
|
sl@0
|
2737 |
sqlite3DbFree(db, pSubitem->zDatabase);
|
sl@0
|
2738 |
sqlite3DbFree(db, pSubitem->zName);
|
sl@0
|
2739 |
sqlite3DbFree(db, pSubitem->zAlias);
|
sl@0
|
2740 |
pSubitem->zDatabase = 0;
|
sl@0
|
2741 |
pSubitem->zName = 0;
|
sl@0
|
2742 |
pSubitem->zAlias = 0;
|
sl@0
|
2743 |
|
sl@0
|
2744 |
/* If the FROM element is a subquery, defer deleting the Table
|
sl@0
|
2745 |
** object associated with that subquery until code generation is
|
sl@0
|
2746 |
** complete, since there may still exist Expr.pTab entires that
|
sl@0
|
2747 |
** refer to the subquery even after flattening. Ticket #3346.
|
sl@0
|
2748 |
*/
|
sl@0
|
2749 |
if( (pTabToDel = pSubitem->pTab)!=0 ){
|
sl@0
|
2750 |
if( pTabToDel->nRef==1 ){
|
sl@0
|
2751 |
pTabToDel->pNextZombie = pParse->pZombieTab;
|
sl@0
|
2752 |
pParse->pZombieTab = pTabToDel;
|
sl@0
|
2753 |
}else{
|
sl@0
|
2754 |
pTabToDel->nRef--;
|
sl@0
|
2755 |
}
|
sl@0
|
2756 |
}
|
sl@0
|
2757 |
pSubitem->pTab = 0;
|
sl@0
|
2758 |
}
|
sl@0
|
2759 |
if( nSubSrc!=1 || !pSrc ){
|
sl@0
|
2760 |
int extra = nSubSrc - 1;
|
sl@0
|
2761 |
for(i=(pSrc?1:0); i<nSubSrc; i++){
|
sl@0
|
2762 |
pSrc = sqlite3SrcListAppend(db, pSrc, 0, 0);
|
sl@0
|
2763 |
if( pSrc==0 ){
|
sl@0
|
2764 |
pParent->pSrc = 0;
|
sl@0
|
2765 |
return 1;
|
sl@0
|
2766 |
}
|
sl@0
|
2767 |
}
|
sl@0
|
2768 |
pParent->pSrc = pSrc;
|
sl@0
|
2769 |
for(i=pSrc->nSrc-1; i-extra>=iFrom; i--){
|
sl@0
|
2770 |
pSrc->a[i] = pSrc->a[i-extra];
|
sl@0
|
2771 |
}
|
sl@0
|
2772 |
}
|
sl@0
|
2773 |
for(i=0; i<nSubSrc; i++){
|
sl@0
|
2774 |
pSrc->a[i+iFrom] = pSubSrc->a[i];
|
sl@0
|
2775 |
memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
|
sl@0
|
2776 |
}
|
sl@0
|
2777 |
pSrc->a[iFrom].jointype = jointype;
|
sl@0
|
2778 |
|
sl@0
|
2779 |
/* Now begin substituting subquery result set expressions for
|
sl@0
|
2780 |
** references to the iParent in the outer query.
|
sl@0
|
2781 |
**
|
sl@0
|
2782 |
** Example:
|
sl@0
|
2783 |
**
|
sl@0
|
2784 |
** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
|
sl@0
|
2785 |
** \ \_____________ subquery __________/ /
|
sl@0
|
2786 |
** \_____________________ outer query ______________________________/
|
sl@0
|
2787 |
**
|
sl@0
|
2788 |
** We look at every expression in the outer query and every place we see
|
sl@0
|
2789 |
** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
|
sl@0
|
2790 |
*/
|
sl@0
|
2791 |
pList = pParent->pEList;
|
sl@0
|
2792 |
for(i=0; i<pList->nExpr; i++){
|
sl@0
|
2793 |
Expr *pExpr;
|
sl@0
|
2794 |
if( pList->a[i].zName==0 && (pExpr = pList->a[i].pExpr)->span.z!=0 ){
|
sl@0
|
2795 |
pList->a[i].zName =
|
sl@0
|
2796 |
sqlite3DbStrNDup(db, (char*)pExpr->span.z, pExpr->span.n);
|
sl@0
|
2797 |
}
|
sl@0
|
2798 |
}
|
sl@0
|
2799 |
substExprList(db, pParent->pEList, iParent, pSub->pEList);
|
sl@0
|
2800 |
if( isAgg ){
|
sl@0
|
2801 |
substExprList(db, pParent->pGroupBy, iParent, pSub->pEList);
|
sl@0
|
2802 |
substExpr(db, pParent->pHaving, iParent, pSub->pEList);
|
sl@0
|
2803 |
}
|
sl@0
|
2804 |
if( pSub->pOrderBy ){
|
sl@0
|
2805 |
assert( pParent->pOrderBy==0 );
|
sl@0
|
2806 |
pParent->pOrderBy = pSub->pOrderBy;
|
sl@0
|
2807 |
pSub->pOrderBy = 0;
|
sl@0
|
2808 |
}else if( pParent->pOrderBy ){
|
sl@0
|
2809 |
substExprList(db, pParent->pOrderBy, iParent, pSub->pEList);
|
sl@0
|
2810 |
}
|
sl@0
|
2811 |
if( pSub->pWhere ){
|
sl@0
|
2812 |
pWhere = sqlite3ExprDup(db, pSub->pWhere);
|
sl@0
|
2813 |
}else{
|
sl@0
|
2814 |
pWhere = 0;
|
sl@0
|
2815 |
}
|
sl@0
|
2816 |
if( subqueryIsAgg ){
|
sl@0
|
2817 |
assert( pParent->pHaving==0 );
|
sl@0
|
2818 |
pParent->pHaving = pParent->pWhere;
|
sl@0
|
2819 |
pParent->pWhere = pWhere;
|
sl@0
|
2820 |
substExpr(db, pParent->pHaving, iParent, pSub->pEList);
|
sl@0
|
2821 |
pParent->pHaving = sqlite3ExprAnd(db, pParent->pHaving,
|
sl@0
|
2822 |
sqlite3ExprDup(db, pSub->pHaving));
|
sl@0
|
2823 |
assert( pParent->pGroupBy==0 );
|
sl@0
|
2824 |
pParent->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy);
|
sl@0
|
2825 |
}else{
|
sl@0
|
2826 |
substExpr(db, pParent->pWhere, iParent, pSub->pEList);
|
sl@0
|
2827 |
pParent->pWhere = sqlite3ExprAnd(db, pParent->pWhere, pWhere);
|
sl@0
|
2828 |
}
|
sl@0
|
2829 |
|
sl@0
|
2830 |
/* The flattened query is distinct if either the inner or the
|
sl@0
|
2831 |
** outer query is distinct.
|
sl@0
|
2832 |
*/
|
sl@0
|
2833 |
pParent->selFlags |= pSub->selFlags & SF_Distinct;
|
sl@0
|
2834 |
|
sl@0
|
2835 |
/*
|
sl@0
|
2836 |
** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
|
sl@0
|
2837 |
**
|
sl@0
|
2838 |
** One is tempted to try to add a and b to combine the limits. But this
|
sl@0
|
2839 |
** does not work if either limit is negative.
|
sl@0
|
2840 |
*/
|
sl@0
|
2841 |
if( pSub->pLimit ){
|
sl@0
|
2842 |
pParent->pLimit = pSub->pLimit;
|
sl@0
|
2843 |
pSub->pLimit = 0;
|
sl@0
|
2844 |
}
|
sl@0
|
2845 |
}
|
sl@0
|
2846 |
|
sl@0
|
2847 |
/* Finially, delete what is left of the subquery and return
|
sl@0
|
2848 |
** success.
|
sl@0
|
2849 |
*/
|
sl@0
|
2850 |
sqlite3SelectDelete(db, pSub1);
|
sl@0
|
2851 |
|
sl@0
|
2852 |
return 1;
|
sl@0
|
2853 |
}
|
sl@0
|
2854 |
#endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
|
sl@0
|
2855 |
|
sl@0
|
2856 |
/*
|
sl@0
|
2857 |
** Analyze the SELECT statement passed as an argument to see if it
|
sl@0
|
2858 |
** is a min() or max() query. Return WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX if
|
sl@0
|
2859 |
** it is, or 0 otherwise. At present, a query is considered to be
|
sl@0
|
2860 |
** a min()/max() query if:
|
sl@0
|
2861 |
**
|
sl@0
|
2862 |
** 1. There is a single object in the FROM clause.
|
sl@0
|
2863 |
**
|
sl@0
|
2864 |
** 2. There is a single expression in the result set, and it is
|
sl@0
|
2865 |
** either min(x) or max(x), where x is a column reference.
|
sl@0
|
2866 |
*/
|
sl@0
|
2867 |
static int minMaxQuery(Parse *pParse, Select *p){
|
sl@0
|
2868 |
Expr *pExpr;
|
sl@0
|
2869 |
ExprList *pEList = p->pEList;
|
sl@0
|
2870 |
|
sl@0
|
2871 |
if( pEList->nExpr!=1 ) return WHERE_ORDERBY_NORMAL;
|
sl@0
|
2872 |
pExpr = pEList->a[0].pExpr;
|
sl@0
|
2873 |
pEList = pExpr->pList;
|
sl@0
|
2874 |
if( pExpr->op!=TK_AGG_FUNCTION || pEList==0 || pEList->nExpr!=1 ) return 0;
|
sl@0
|
2875 |
if( pEList->a[0].pExpr->op!=TK_AGG_COLUMN ) return WHERE_ORDERBY_NORMAL;
|
sl@0
|
2876 |
if( pExpr->token.n!=3 ) return WHERE_ORDERBY_NORMAL;
|
sl@0
|
2877 |
if( sqlite3StrNICmp((char*)pExpr->token.z,"min",3)==0 ){
|
sl@0
|
2878 |
return WHERE_ORDERBY_MIN;
|
sl@0
|
2879 |
}else if( sqlite3StrNICmp((char*)pExpr->token.z,"max",3)==0 ){
|
sl@0
|
2880 |
return WHERE_ORDERBY_MAX;
|
sl@0
|
2881 |
}
|
sl@0
|
2882 |
return WHERE_ORDERBY_NORMAL;
|
sl@0
|
2883 |
}
|
sl@0
|
2884 |
|
sl@0
|
2885 |
/*
|
sl@0
|
2886 |
** If the source-list item passed as an argument was augmented with an
|
sl@0
|
2887 |
** INDEXED BY clause, then try to locate the specified index. If there
|
sl@0
|
2888 |
** was such a clause and the named index cannot be found, return
|
sl@0
|
2889 |
** SQLITE_ERROR and leave an error in pParse. Otherwise, populate
|
sl@0
|
2890 |
** pFrom->pIndex and return SQLITE_OK.
|
sl@0
|
2891 |
*/
|
sl@0
|
2892 |
int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){
|
sl@0
|
2893 |
if( pFrom->pTab && pFrom->zIndex ){
|
sl@0
|
2894 |
Table *pTab = pFrom->pTab;
|
sl@0
|
2895 |
char *zIndex = pFrom->zIndex;
|
sl@0
|
2896 |
Index *pIdx;
|
sl@0
|
2897 |
for(pIdx=pTab->pIndex;
|
sl@0
|
2898 |
pIdx && sqlite3StrICmp(pIdx->zName, zIndex);
|
sl@0
|
2899 |
pIdx=pIdx->pNext
|
sl@0
|
2900 |
);
|
sl@0
|
2901 |
if( !pIdx ){
|
sl@0
|
2902 |
sqlite3ErrorMsg(pParse, "no such index: %s", zIndex, 0);
|
sl@0
|
2903 |
return SQLITE_ERROR;
|
sl@0
|
2904 |
}
|
sl@0
|
2905 |
pFrom->pIndex = pIdx;
|
sl@0
|
2906 |
}
|
sl@0
|
2907 |
return SQLITE_OK;
|
sl@0
|
2908 |
}
|
sl@0
|
2909 |
|
sl@0
|
2910 |
/*
|
sl@0
|
2911 |
** This routine is a Walker callback for "expanding" a SELECT statement.
|
sl@0
|
2912 |
** "Expanding" means to do the following:
|
sl@0
|
2913 |
**
|
sl@0
|
2914 |
** (1) Make sure VDBE cursor numbers have been assigned to every
|
sl@0
|
2915 |
** element of the FROM clause.
|
sl@0
|
2916 |
**
|
sl@0
|
2917 |
** (2) Fill in the pTabList->a[].pTab fields in the SrcList that
|
sl@0
|
2918 |
** defines FROM clause. When views appear in the FROM clause,
|
sl@0
|
2919 |
** fill pTabList->a[].pSelect with a copy of the SELECT statement
|
sl@0
|
2920 |
** that implements the view. A copy is made of the view's SELECT
|
sl@0
|
2921 |
** statement so that we can freely modify or delete that statement
|
sl@0
|
2922 |
** without worrying about messing up the presistent representation
|
sl@0
|
2923 |
** of the view.
|
sl@0
|
2924 |
**
|
sl@0
|
2925 |
** (3) Add terms to the WHERE clause to accomodate the NATURAL keyword
|
sl@0
|
2926 |
** on joins and the ON and USING clause of joins.
|
sl@0
|
2927 |
**
|
sl@0
|
2928 |
** (4) Scan the list of columns in the result set (pEList) looking
|
sl@0
|
2929 |
** for instances of the "*" operator or the TABLE.* operator.
|
sl@0
|
2930 |
** If found, expand each "*" to be every column in every table
|
sl@0
|
2931 |
** and TABLE.* to be every column in TABLE.
|
sl@0
|
2932 |
**
|
sl@0
|
2933 |
*/
|
sl@0
|
2934 |
static int selectExpander(Walker *pWalker, Select *p){
|
sl@0
|
2935 |
Parse *pParse = pWalker->pParse;
|
sl@0
|
2936 |
int i, j, k;
|
sl@0
|
2937 |
SrcList *pTabList;
|
sl@0
|
2938 |
ExprList *pEList;
|
sl@0
|
2939 |
struct SrcList_item *pFrom;
|
sl@0
|
2940 |
sqlite3 *db = pParse->db;
|
sl@0
|
2941 |
|
sl@0
|
2942 |
if( db->mallocFailed ){
|
sl@0
|
2943 |
return WRC_Abort;
|
sl@0
|
2944 |
}
|
sl@0
|
2945 |
if( p->pSrc==0 || (p->selFlags & SF_Expanded)!=0 ){
|
sl@0
|
2946 |
return WRC_Prune;
|
sl@0
|
2947 |
}
|
sl@0
|
2948 |
p->selFlags |= SF_Expanded;
|
sl@0
|
2949 |
pTabList = p->pSrc;
|
sl@0
|
2950 |
pEList = p->pEList;
|
sl@0
|
2951 |
|
sl@0
|
2952 |
/* Make sure cursor numbers have been assigned to all entries in
|
sl@0
|
2953 |
** the FROM clause of the SELECT statement.
|
sl@0
|
2954 |
*/
|
sl@0
|
2955 |
sqlite3SrcListAssignCursors(pParse, pTabList);
|
sl@0
|
2956 |
|
sl@0
|
2957 |
/* Look up every table named in the FROM clause of the select. If
|
sl@0
|
2958 |
** an entry of the FROM clause is a subquery instead of a table or view,
|
sl@0
|
2959 |
** then create a transient table structure to describe the subquery.
|
sl@0
|
2960 |
*/
|
sl@0
|
2961 |
for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
|
sl@0
|
2962 |
Table *pTab;
|
sl@0
|
2963 |
if( pFrom->pTab!=0 ){
|
sl@0
|
2964 |
/* This statement has already been prepared. There is no need
|
sl@0
|
2965 |
** to go further. */
|
sl@0
|
2966 |
assert( i==0 );
|
sl@0
|
2967 |
return WRC_Prune;
|
sl@0
|
2968 |
}
|
sl@0
|
2969 |
if( pFrom->zName==0 ){
|
sl@0
|
2970 |
#ifndef SQLITE_OMIT_SUBQUERY
|
sl@0
|
2971 |
Select *pSel = pFrom->pSelect;
|
sl@0
|
2972 |
/* A sub-query in the FROM clause of a SELECT */
|
sl@0
|
2973 |
assert( pSel!=0 );
|
sl@0
|
2974 |
assert( pFrom->pTab==0 );
|
sl@0
|
2975 |
sqlite3WalkSelect(pWalker, pSel);
|
sl@0
|
2976 |
pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));
|
sl@0
|
2977 |
if( pTab==0 ) return WRC_Abort;
|
sl@0
|
2978 |
pTab->db = db;
|
sl@0
|
2979 |
pTab->nRef = 1;
|
sl@0
|
2980 |
pTab->zName = sqlite3MPrintf(db, "sqlite_subquery_%p_", (void*)pTab);
|
sl@0
|
2981 |
while( pSel->pPrior ){ pSel = pSel->pPrior; }
|
sl@0
|
2982 |
selectColumnsFromExprList(pParse, pSel->pEList, &pTab->nCol, &pTab->aCol);
|
sl@0
|
2983 |
pTab->iPKey = -1;
|
sl@0
|
2984 |
pTab->tabFlags |= TF_Ephemeral;
|
sl@0
|
2985 |
#endif
|
sl@0
|
2986 |
}else{
|
sl@0
|
2987 |
/* An ordinary table or view name in the FROM clause */
|
sl@0
|
2988 |
assert( pFrom->pTab==0 );
|
sl@0
|
2989 |
pFrom->pTab = pTab =
|
sl@0
|
2990 |
sqlite3LocateTable(pParse,0,pFrom->zName,pFrom->zDatabase);
|
sl@0
|
2991 |
if( pTab==0 ) return WRC_Abort;
|
sl@0
|
2992 |
pTab->nRef++;
|
sl@0
|
2993 |
#if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE)
|
sl@0
|
2994 |
if( pTab->pSelect || IsVirtual(pTab) ){
|
sl@0
|
2995 |
/* We reach here if the named table is a really a view */
|
sl@0
|
2996 |
if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort;
|
sl@0
|
2997 |
|
sl@0
|
2998 |
/* If pFrom->pSelect!=0 it means we are dealing with a
|
sl@0
|
2999 |
** view within a view. The SELECT structure has already been
|
sl@0
|
3000 |
** copied by the outer view so we can skip the copy step here
|
sl@0
|
3001 |
** in the inner view.
|
sl@0
|
3002 |
*/
|
sl@0
|
3003 |
if( pFrom->pSelect==0 ){
|
sl@0
|
3004 |
pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect);
|
sl@0
|
3005 |
sqlite3WalkSelect(pWalker, pFrom->pSelect);
|
sl@0
|
3006 |
}
|
sl@0
|
3007 |
}
|
sl@0
|
3008 |
#endif
|
sl@0
|
3009 |
}
|
sl@0
|
3010 |
|
sl@0
|
3011 |
/* Locate the index named by the INDEXED BY clause, if any. */
|
sl@0
|
3012 |
if( sqlite3IndexedByLookup(pParse, pFrom) ){
|
sl@0
|
3013 |
return WRC_Abort;
|
sl@0
|
3014 |
}
|
sl@0
|
3015 |
}
|
sl@0
|
3016 |
|
sl@0
|
3017 |
/* Process NATURAL keywords, and ON and USING clauses of joins.
|
sl@0
|
3018 |
*/
|
sl@0
|
3019 |
if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){
|
sl@0
|
3020 |
return WRC_Abort;
|
sl@0
|
3021 |
}
|
sl@0
|
3022 |
|
sl@0
|
3023 |
/* For every "*" that occurs in the column list, insert the names of
|
sl@0
|
3024 |
** all columns in all tables. And for every TABLE.* insert the names
|
sl@0
|
3025 |
** of all columns in TABLE. The parser inserted a special expression
|
sl@0
|
3026 |
** with the TK_ALL operator for each "*" that it found in the column list.
|
sl@0
|
3027 |
** The following code just has to locate the TK_ALL expressions and expand
|
sl@0
|
3028 |
** each one to the list of all columns in all tables.
|
sl@0
|
3029 |
**
|
sl@0
|
3030 |
** The first loop just checks to see if there are any "*" operators
|
sl@0
|
3031 |
** that need expanding.
|
sl@0
|
3032 |
*/
|
sl@0
|
3033 |
for(k=0; k<pEList->nExpr; k++){
|
sl@0
|
3034 |
Expr *pE = pEList->a[k].pExpr;
|
sl@0
|
3035 |
if( pE->op==TK_ALL ) break;
|
sl@0
|
3036 |
if( pE->op==TK_DOT && pE->pRight && pE->pRight->op==TK_ALL
|
sl@0
|
3037 |
&& pE->pLeft && pE->pLeft->op==TK_ID ) break;
|
sl@0
|
3038 |
}
|
sl@0
|
3039 |
if( k<pEList->nExpr ){
|
sl@0
|
3040 |
/*
|
sl@0
|
3041 |
** If we get here it means the result set contains one or more "*"
|
sl@0
|
3042 |
** operators that need to be expanded. Loop through each expression
|
sl@0
|
3043 |
** in the result set and expand them one by one.
|
sl@0
|
3044 |
*/
|
sl@0
|
3045 |
struct ExprList_item *a = pEList->a;
|
sl@0
|
3046 |
ExprList *pNew = 0;
|
sl@0
|
3047 |
int flags = pParse->db->flags;
|
sl@0
|
3048 |
int longNames = (flags & SQLITE_FullColNames)!=0
|
sl@0
|
3049 |
&& (flags & SQLITE_ShortColNames)==0;
|
sl@0
|
3050 |
|
sl@0
|
3051 |
for(k=0; k<pEList->nExpr; k++){
|
sl@0
|
3052 |
Expr *pE = a[k].pExpr;
|
sl@0
|
3053 |
if( pE->op!=TK_ALL &&
|
sl@0
|
3054 |
(pE->op!=TK_DOT || pE->pRight==0 || pE->pRight->op!=TK_ALL) ){
|
sl@0
|
3055 |
/* This particular expression does not need to be expanded.
|
sl@0
|
3056 |
*/
|
sl@0
|
3057 |
pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr, 0);
|
sl@0
|
3058 |
if( pNew ){
|
sl@0
|
3059 |
pNew->a[pNew->nExpr-1].zName = a[k].zName;
|
sl@0
|
3060 |
}
|
sl@0
|
3061 |
a[k].pExpr = 0;
|
sl@0
|
3062 |
a[k].zName = 0;
|
sl@0
|
3063 |
}else{
|
sl@0
|
3064 |
/* This expression is a "*" or a "TABLE.*" and needs to be
|
sl@0
|
3065 |
** expanded. */
|
sl@0
|
3066 |
int tableSeen = 0; /* Set to 1 when TABLE matches */
|
sl@0
|
3067 |
char *zTName; /* text of name of TABLE */
|
sl@0
|
3068 |
if( pE->op==TK_DOT && pE->pLeft ){
|
sl@0
|
3069 |
zTName = sqlite3NameFromToken(db, &pE->pLeft->token);
|
sl@0
|
3070 |
}else{
|
sl@0
|
3071 |
zTName = 0;
|
sl@0
|
3072 |
}
|
sl@0
|
3073 |
for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
|
sl@0
|
3074 |
Table *pTab = pFrom->pTab;
|
sl@0
|
3075 |
char *zTabName = pFrom->zAlias;
|
sl@0
|
3076 |
if( zTabName==0 || zTabName[0]==0 ){
|
sl@0
|
3077 |
zTabName = pTab->zName;
|
sl@0
|
3078 |
}
|
sl@0
|
3079 |
if( db->mallocFailed ) break;
|
sl@0
|
3080 |
if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){
|
sl@0
|
3081 |
continue;
|
sl@0
|
3082 |
}
|
sl@0
|
3083 |
tableSeen = 1;
|
sl@0
|
3084 |
for(j=0; j<pTab->nCol; j++){
|
sl@0
|
3085 |
Expr *pExpr, *pRight;
|
sl@0
|
3086 |
char *zName = pTab->aCol[j].zName;
|
sl@0
|
3087 |
|
sl@0
|
3088 |
/* If a column is marked as 'hidden' (currently only possible
|
sl@0
|
3089 |
** for virtual tables), do not include it in the expanded
|
sl@0
|
3090 |
** result-set list.
|
sl@0
|
3091 |
*/
|
sl@0
|
3092 |
if( IsHiddenColumn(&pTab->aCol[j]) ){
|
sl@0
|
3093 |
assert(IsVirtual(pTab));
|
sl@0
|
3094 |
continue;
|
sl@0
|
3095 |
}
|
sl@0
|
3096 |
|
sl@0
|
3097 |
if( i>0 ){
|
sl@0
|
3098 |
struct SrcList_item *pLeft = &pTabList->a[i-1];
|
sl@0
|
3099 |
if( (pLeft[1].jointype & JT_NATURAL)!=0 &&
|
sl@0
|
3100 |
columnIndex(pLeft->pTab, zName)>=0 ){
|
sl@0
|
3101 |
/* In a NATURAL join, omit the join columns from the
|
sl@0
|
3102 |
** table on the right */
|
sl@0
|
3103 |
continue;
|
sl@0
|
3104 |
}
|
sl@0
|
3105 |
if( sqlite3IdListIndex(pLeft[1].pUsing, zName)>=0 ){
|
sl@0
|
3106 |
/* In a join with a USING clause, omit columns in the
|
sl@0
|
3107 |
** using clause from the table on the right. */
|
sl@0
|
3108 |
continue;
|
sl@0
|
3109 |
}
|
sl@0
|
3110 |
}
|
sl@0
|
3111 |
pRight = sqlite3PExpr(pParse, TK_ID, 0, 0, 0);
|
sl@0
|
3112 |
if( pRight==0 ) break;
|
sl@0
|
3113 |
setQuotedToken(pParse, &pRight->token, zName);
|
sl@0
|
3114 |
if( longNames || pTabList->nSrc>1 ){
|
sl@0
|
3115 |
Expr *pLeft = sqlite3PExpr(pParse, TK_ID, 0, 0, 0);
|
sl@0
|
3116 |
pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0);
|
sl@0
|
3117 |
if( pExpr==0 ) break;
|
sl@0
|
3118 |
setQuotedToken(pParse, &pLeft->token, zTabName);
|
sl@0
|
3119 |
setToken(&pExpr->span,
|
sl@0
|
3120 |
sqlite3MPrintf(db, "%s.%s", zTabName, zName));
|
sl@0
|
3121 |
pExpr->span.dyn = 1;
|
sl@0
|
3122 |
pExpr->token.z = 0;
|
sl@0
|
3123 |
pExpr->token.n = 0;
|
sl@0
|
3124 |
pExpr->token.dyn = 0;
|
sl@0
|
3125 |
}else{
|
sl@0
|
3126 |
pExpr = pRight;
|
sl@0
|
3127 |
pExpr->span = pExpr->token;
|
sl@0
|
3128 |
pExpr->span.dyn = 0;
|
sl@0
|
3129 |
}
|
sl@0
|
3130 |
if( longNames ){
|
sl@0
|
3131 |
pNew = sqlite3ExprListAppend(pParse, pNew, pExpr, &pExpr->span);
|
sl@0
|
3132 |
}else{
|
sl@0
|
3133 |
pNew = sqlite3ExprListAppend(pParse, pNew, pExpr, &pRight->token);
|
sl@0
|
3134 |
}
|
sl@0
|
3135 |
}
|
sl@0
|
3136 |
}
|
sl@0
|
3137 |
if( !tableSeen ){
|
sl@0
|
3138 |
if( zTName ){
|
sl@0
|
3139 |
sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
|
sl@0
|
3140 |
}else{
|
sl@0
|
3141 |
sqlite3ErrorMsg(pParse, "no tables specified");
|
sl@0
|
3142 |
}
|
sl@0
|
3143 |
}
|
sl@0
|
3144 |
sqlite3DbFree(db, zTName);
|
sl@0
|
3145 |
}
|
sl@0
|
3146 |
}
|
sl@0
|
3147 |
sqlite3ExprListDelete(db, pEList);
|
sl@0
|
3148 |
p->pEList = pNew;
|
sl@0
|
3149 |
}
|
sl@0
|
3150 |
#if SQLITE_MAX_COLUMN
|
sl@0
|
3151 |
if( p->pEList && p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
|
sl@0
|
3152 |
sqlite3ErrorMsg(pParse, "too many columns in result set");
|
sl@0
|
3153 |
}
|
sl@0
|
3154 |
#endif
|
sl@0
|
3155 |
return WRC_Continue;
|
sl@0
|
3156 |
}
|
sl@0
|
3157 |
|
sl@0
|
3158 |
/*
|
sl@0
|
3159 |
** No-op routine for the parse-tree walker.
|
sl@0
|
3160 |
**
|
sl@0
|
3161 |
** When this routine is the Walker.xExprCallback then expression trees
|
sl@0
|
3162 |
** are walked without any actions being taken at each node. Presumably,
|
sl@0
|
3163 |
** when this routine is used for Walker.xExprCallback then
|
sl@0
|
3164 |
** Walker.xSelectCallback is set to do something useful for every
|
sl@0
|
3165 |
** subquery in the parser tree.
|
sl@0
|
3166 |
*/
|
sl@0
|
3167 |
static int exprWalkNoop(Walker *pWalker, Expr *pExpr){
|
sl@0
|
3168 |
return WRC_Continue;
|
sl@0
|
3169 |
}
|
sl@0
|
3170 |
|
sl@0
|
3171 |
/*
|
sl@0
|
3172 |
** This routine "expands" a SELECT statement and all of its subqueries.
|
sl@0
|
3173 |
** For additional information on what it means to "expand" a SELECT
|
sl@0
|
3174 |
** statement, see the comment on the selectExpand worker callback above.
|
sl@0
|
3175 |
**
|
sl@0
|
3176 |
** Expanding a SELECT statement is the first step in processing a
|
sl@0
|
3177 |
** SELECT statement. The SELECT statement must be expanded before
|
sl@0
|
3178 |
** name resolution is performed.
|
sl@0
|
3179 |
**
|
sl@0
|
3180 |
** If anything goes wrong, an error message is written into pParse.
|
sl@0
|
3181 |
** The calling function can detect the problem by looking at pParse->nErr
|
sl@0
|
3182 |
** and/or pParse->db->mallocFailed.
|
sl@0
|
3183 |
*/
|
sl@0
|
3184 |
static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){
|
sl@0
|
3185 |
Walker w;
|
sl@0
|
3186 |
w.xSelectCallback = selectExpander;
|
sl@0
|
3187 |
w.xExprCallback = exprWalkNoop;
|
sl@0
|
3188 |
w.pParse = pParse;
|
sl@0
|
3189 |
sqlite3WalkSelect(&w, pSelect);
|
sl@0
|
3190 |
}
|
sl@0
|
3191 |
|
sl@0
|
3192 |
|
sl@0
|
3193 |
#ifndef SQLITE_OMIT_SUBQUERY
|
sl@0
|
3194 |
/*
|
sl@0
|
3195 |
** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo()
|
sl@0
|
3196 |
** interface.
|
sl@0
|
3197 |
**
|
sl@0
|
3198 |
** For each FROM-clause subquery, add Column.zType and Column.zColl
|
sl@0
|
3199 |
** information to the Table structure that represents the result set
|
sl@0
|
3200 |
** of that subquery.
|
sl@0
|
3201 |
**
|
sl@0
|
3202 |
** The Table structure that represents the result set was constructed
|
sl@0
|
3203 |
** by selectExpander() but the type and collation information was omitted
|
sl@0
|
3204 |
** at that point because identifiers had not yet been resolved. This
|
sl@0
|
3205 |
** routine is called after identifier resolution.
|
sl@0
|
3206 |
*/
|
sl@0
|
3207 |
static int selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){
|
sl@0
|
3208 |
Parse *pParse;
|
sl@0
|
3209 |
int i;
|
sl@0
|
3210 |
SrcList *pTabList;
|
sl@0
|
3211 |
struct SrcList_item *pFrom;
|
sl@0
|
3212 |
|
sl@0
|
3213 |
assert( p->selFlags & SF_Resolved );
|
sl@0
|
3214 |
if( (p->selFlags & SF_HasTypeInfo)==0 ){
|
sl@0
|
3215 |
p->selFlags |= SF_HasTypeInfo;
|
sl@0
|
3216 |
pParse = pWalker->pParse;
|
sl@0
|
3217 |
pTabList = p->pSrc;
|
sl@0
|
3218 |
for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
|
sl@0
|
3219 |
Table *pTab = pFrom->pTab;
|
sl@0
|
3220 |
if( pTab && (pTab->tabFlags & TF_Ephemeral)!=0 ){
|
sl@0
|
3221 |
/* A sub-query in the FROM clause of a SELECT */
|
sl@0
|
3222 |
Select *pSel = pFrom->pSelect;
|
sl@0
|
3223 |
assert( pSel );
|
sl@0
|
3224 |
while( pSel->pPrior ) pSel = pSel->pPrior;
|
sl@0
|
3225 |
selectAddColumnTypeAndCollation(pParse, pTab->nCol, pTab->aCol, pSel);
|
sl@0
|
3226 |
}
|
sl@0
|
3227 |
}
|
sl@0
|
3228 |
}
|
sl@0
|
3229 |
return WRC_Continue;
|
sl@0
|
3230 |
}
|
sl@0
|
3231 |
#endif
|
sl@0
|
3232 |
|
sl@0
|
3233 |
|
sl@0
|
3234 |
/*
|
sl@0
|
3235 |
** This routine adds datatype and collating sequence information to
|
sl@0
|
3236 |
** the Table structures of all FROM-clause subqueries in a
|
sl@0
|
3237 |
** SELECT statement.
|
sl@0
|
3238 |
**
|
sl@0
|
3239 |
** Use this routine after name resolution.
|
sl@0
|
3240 |
*/
|
sl@0
|
3241 |
static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){
|
sl@0
|
3242 |
#ifndef SQLITE_OMIT_SUBQUERY
|
sl@0
|
3243 |
Walker w;
|
sl@0
|
3244 |
w.xSelectCallback = selectAddSubqueryTypeInfo;
|
sl@0
|
3245 |
w.xExprCallback = exprWalkNoop;
|
sl@0
|
3246 |
w.pParse = pParse;
|
sl@0
|
3247 |
sqlite3WalkSelect(&w, pSelect);
|
sl@0
|
3248 |
#endif
|
sl@0
|
3249 |
}
|
sl@0
|
3250 |
|
sl@0
|
3251 |
|
sl@0
|
3252 |
/*
|
sl@0
|
3253 |
** This routine sets of a SELECT statement for processing. The
|
sl@0
|
3254 |
** following is accomplished:
|
sl@0
|
3255 |
**
|
sl@0
|
3256 |
** * VDBE Cursor numbers are assigned to all FROM-clause terms.
|
sl@0
|
3257 |
** * Ephemeral Table objects are created for all FROM-clause subqueries.
|
sl@0
|
3258 |
** * ON and USING clauses are shifted into WHERE statements
|
sl@0
|
3259 |
** * Wildcards "*" and "TABLE.*" in result sets are expanded.
|
sl@0
|
3260 |
** * Identifiers in expression are matched to tables.
|
sl@0
|
3261 |
**
|
sl@0
|
3262 |
** This routine acts recursively on all subqueries within the SELECT.
|
sl@0
|
3263 |
*/
|
sl@0
|
3264 |
void sqlite3SelectPrep(
|
sl@0
|
3265 |
Parse *pParse, /* The parser context */
|
sl@0
|
3266 |
Select *p, /* The SELECT statement being coded. */
|
sl@0
|
3267 |
NameContext *pOuterNC /* Name context for container */
|
sl@0
|
3268 |
){
|
sl@0
|
3269 |
sqlite3 *db;
|
sl@0
|
3270 |
if( p==0 ) return;
|
sl@0
|
3271 |
db = pParse->db;
|
sl@0
|
3272 |
if( p->selFlags & SF_HasTypeInfo ) return;
|
sl@0
|
3273 |
if( pParse->nErr || db->mallocFailed ) return;
|
sl@0
|
3274 |
sqlite3SelectExpand(pParse, p);
|
sl@0
|
3275 |
if( pParse->nErr || db->mallocFailed ) return;
|
sl@0
|
3276 |
sqlite3ResolveSelectNames(pParse, p, pOuterNC);
|
sl@0
|
3277 |
if( pParse->nErr || db->mallocFailed ) return;
|
sl@0
|
3278 |
sqlite3SelectAddTypeInfo(pParse, p);
|
sl@0
|
3279 |
}
|
sl@0
|
3280 |
|
sl@0
|
3281 |
/*
|
sl@0
|
3282 |
** Reset the aggregate accumulator.
|
sl@0
|
3283 |
**
|
sl@0
|
3284 |
** The aggregate accumulator is a set of memory cells that hold
|
sl@0
|
3285 |
** intermediate results while calculating an aggregate. This
|
sl@0
|
3286 |
** routine simply stores NULLs in all of those memory cells.
|
sl@0
|
3287 |
*/
|
sl@0
|
3288 |
static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
|
sl@0
|
3289 |
Vdbe *v = pParse->pVdbe;
|
sl@0
|
3290 |
int i;
|
sl@0
|
3291 |
struct AggInfo_func *pFunc;
|
sl@0
|
3292 |
if( pAggInfo->nFunc+pAggInfo->nColumn==0 ){
|
sl@0
|
3293 |
return;
|
sl@0
|
3294 |
}
|
sl@0
|
3295 |
for(i=0; i<pAggInfo->nColumn; i++){
|
sl@0
|
3296 |
sqlite3VdbeAddOp2(v, OP_Null, 0, pAggInfo->aCol[i].iMem);
|
sl@0
|
3297 |
}
|
sl@0
|
3298 |
for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){
|
sl@0
|
3299 |
sqlite3VdbeAddOp2(v, OP_Null, 0, pFunc->iMem);
|
sl@0
|
3300 |
if( pFunc->iDistinct>=0 ){
|
sl@0
|
3301 |
Expr *pE = pFunc->pExpr;
|
sl@0
|
3302 |
if( pE->pList==0 || pE->pList->nExpr!=1 ){
|
sl@0
|
3303 |
sqlite3ErrorMsg(pParse, "DISTINCT in aggregate must be followed "
|
sl@0
|
3304 |
"by an expression");
|
sl@0
|
3305 |
pFunc->iDistinct = -1;
|
sl@0
|
3306 |
}else{
|
sl@0
|
3307 |
KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->pList);
|
sl@0
|
3308 |
sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0,
|
sl@0
|
3309 |
(char*)pKeyInfo, P4_KEYINFO_HANDOFF);
|
sl@0
|
3310 |
}
|
sl@0
|
3311 |
}
|
sl@0
|
3312 |
}
|
sl@0
|
3313 |
}
|
sl@0
|
3314 |
|
sl@0
|
3315 |
/*
|
sl@0
|
3316 |
** Invoke the OP_AggFinalize opcode for every aggregate function
|
sl@0
|
3317 |
** in the AggInfo structure.
|
sl@0
|
3318 |
*/
|
sl@0
|
3319 |
static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
|
sl@0
|
3320 |
Vdbe *v = pParse->pVdbe;
|
sl@0
|
3321 |
int i;
|
sl@0
|
3322 |
struct AggInfo_func *pF;
|
sl@0
|
3323 |
for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
|
sl@0
|
3324 |
ExprList *pList = pF->pExpr->pList;
|
sl@0
|
3325 |
sqlite3VdbeAddOp4(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0, 0,
|
sl@0
|
3326 |
(void*)pF->pFunc, P4_FUNCDEF);
|
sl@0
|
3327 |
}
|
sl@0
|
3328 |
}
|
sl@0
|
3329 |
|
sl@0
|
3330 |
/*
|
sl@0
|
3331 |
** Update the accumulator memory cells for an aggregate based on
|
sl@0
|
3332 |
** the current cursor position.
|
sl@0
|
3333 |
*/
|
sl@0
|
3334 |
static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){
|
sl@0
|
3335 |
Vdbe *v = pParse->pVdbe;
|
sl@0
|
3336 |
int i;
|
sl@0
|
3337 |
struct AggInfo_func *pF;
|
sl@0
|
3338 |
struct AggInfo_col *pC;
|
sl@0
|
3339 |
|
sl@0
|
3340 |
pAggInfo->directMode = 1;
|
sl@0
|
3341 |
for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
|
sl@0
|
3342 |
int nArg;
|
sl@0
|
3343 |
int addrNext = 0;
|
sl@0
|
3344 |
int regAgg;
|
sl@0
|
3345 |
ExprList *pList = pF->pExpr->pList;
|
sl@0
|
3346 |
if( pList ){
|
sl@0
|
3347 |
nArg = pList->nExpr;
|
sl@0
|
3348 |
regAgg = sqlite3GetTempRange(pParse, nArg);
|
sl@0
|
3349 |
sqlite3ExprCodeExprList(pParse, pList, regAgg, 0);
|
sl@0
|
3350 |
}else{
|
sl@0
|
3351 |
nArg = 0;
|
sl@0
|
3352 |
regAgg = 0;
|
sl@0
|
3353 |
}
|
sl@0
|
3354 |
if( pF->iDistinct>=0 ){
|
sl@0
|
3355 |
addrNext = sqlite3VdbeMakeLabel(v);
|
sl@0
|
3356 |
assert( nArg==1 );
|
sl@0
|
3357 |
codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg);
|
sl@0
|
3358 |
}
|
sl@0
|
3359 |
if( pF->pFunc->flags & SQLITE_FUNC_NEEDCOLL ){
|
sl@0
|
3360 |
CollSeq *pColl = 0;
|
sl@0
|
3361 |
struct ExprList_item *pItem;
|
sl@0
|
3362 |
int j;
|
sl@0
|
3363 |
assert( pList!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */
|
sl@0
|
3364 |
for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
|
sl@0
|
3365 |
pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
|
sl@0
|
3366 |
}
|
sl@0
|
3367 |
if( !pColl ){
|
sl@0
|
3368 |
pColl = pParse->db->pDfltColl;
|
sl@0
|
3369 |
}
|
sl@0
|
3370 |
sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
|
sl@0
|
3371 |
}
|
sl@0
|
3372 |
sqlite3VdbeAddOp4(v, OP_AggStep, 0, regAgg, pF->iMem,
|
sl@0
|
3373 |
(void*)pF->pFunc, P4_FUNCDEF);
|
sl@0
|
3374 |
sqlite3VdbeChangeP5(v, nArg);
|
sl@0
|
3375 |
sqlite3ReleaseTempRange(pParse, regAgg, nArg);
|
sl@0
|
3376 |
sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg);
|
sl@0
|
3377 |
if( addrNext ){
|
sl@0
|
3378 |
sqlite3VdbeResolveLabel(v, addrNext);
|
sl@0
|
3379 |
}
|
sl@0
|
3380 |
}
|
sl@0
|
3381 |
for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
|
sl@0
|
3382 |
sqlite3ExprCode(pParse, pC->pExpr, pC->iMem);
|
sl@0
|
3383 |
}
|
sl@0
|
3384 |
pAggInfo->directMode = 0;
|
sl@0
|
3385 |
}
|
sl@0
|
3386 |
|
sl@0
|
3387 |
/*
|
sl@0
|
3388 |
** Generate code for the SELECT statement given in the p argument.
|
sl@0
|
3389 |
**
|
sl@0
|
3390 |
** The results are distributed in various ways depending on the
|
sl@0
|
3391 |
** contents of the SelectDest structure pointed to by argument pDest
|
sl@0
|
3392 |
** as follows:
|
sl@0
|
3393 |
**
|
sl@0
|
3394 |
** pDest->eDest Result
|
sl@0
|
3395 |
** ------------ -------------------------------------------
|
sl@0
|
3396 |
** SRT_Output Generate a row of output (using the OP_ResultRow
|
sl@0
|
3397 |
** opcode) for each row in the result set.
|
sl@0
|
3398 |
**
|
sl@0
|
3399 |
** SRT_Mem Only valid if the result is a single column.
|
sl@0
|
3400 |
** Store the first column of the first result row
|
sl@0
|
3401 |
** in register pDest->iParm then abandon the rest
|
sl@0
|
3402 |
** of the query. This destination implies "LIMIT 1".
|
sl@0
|
3403 |
**
|
sl@0
|
3404 |
** SRT_Set The result must be a single column. Store each
|
sl@0
|
3405 |
** row of result as the key in table pDest->iParm.
|
sl@0
|
3406 |
** Apply the affinity pDest->affinity before storing
|
sl@0
|
3407 |
** results. Used to implement "IN (SELECT ...)".
|
sl@0
|
3408 |
**
|
sl@0
|
3409 |
** SRT_Union Store results as a key in a temporary table pDest->iParm.
|
sl@0
|
3410 |
**
|
sl@0
|
3411 |
** SRT_Except Remove results from the temporary table pDest->iParm.
|
sl@0
|
3412 |
**
|
sl@0
|
3413 |
** SRT_Table Store results in temporary table pDest->iParm.
|
sl@0
|
3414 |
** This is like SRT_EphemTab except that the table
|
sl@0
|
3415 |
** is assumed to already be open.
|
sl@0
|
3416 |
**
|
sl@0
|
3417 |
** SRT_EphemTab Create an temporary table pDest->iParm and store
|
sl@0
|
3418 |
** the result there. The cursor is left open after
|
sl@0
|
3419 |
** returning. This is like SRT_Table except that
|
sl@0
|
3420 |
** this destination uses OP_OpenEphemeral to create
|
sl@0
|
3421 |
** the table first.
|
sl@0
|
3422 |
**
|
sl@0
|
3423 |
** SRT_Coroutine Generate a co-routine that returns a new row of
|
sl@0
|
3424 |
** results each time it is invoked. The entry point
|
sl@0
|
3425 |
** of the co-routine is stored in register pDest->iParm.
|
sl@0
|
3426 |
**
|
sl@0
|
3427 |
** SRT_Exists Store a 1 in memory cell pDest->iParm if the result
|
sl@0
|
3428 |
** set is not empty.
|
sl@0
|
3429 |
**
|
sl@0
|
3430 |
** SRT_Discard Throw the results away. This is used by SELECT
|
sl@0
|
3431 |
** statements within triggers whose only purpose is
|
sl@0
|
3432 |
** the side-effects of functions.
|
sl@0
|
3433 |
**
|
sl@0
|
3434 |
** This routine returns the number of errors. If any errors are
|
sl@0
|
3435 |
** encountered, then an appropriate error message is left in
|
sl@0
|
3436 |
** pParse->zErrMsg.
|
sl@0
|
3437 |
**
|
sl@0
|
3438 |
** This routine does NOT free the Select structure passed in. The
|
sl@0
|
3439 |
** calling function needs to do that.
|
sl@0
|
3440 |
*/
|
sl@0
|
3441 |
int sqlite3Select(
|
sl@0
|
3442 |
Parse *pParse, /* The parser context */
|
sl@0
|
3443 |
Select *p, /* The SELECT statement being coded. */
|
sl@0
|
3444 |
SelectDest *pDest /* What to do with the query results */
|
sl@0
|
3445 |
){
|
sl@0
|
3446 |
int i, j; /* Loop counters */
|
sl@0
|
3447 |
WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */
|
sl@0
|
3448 |
Vdbe *v; /* The virtual machine under construction */
|
sl@0
|
3449 |
int isAgg; /* True for select lists like "count(*)" */
|
sl@0
|
3450 |
ExprList *pEList; /* List of columns to extract. */
|
sl@0
|
3451 |
SrcList *pTabList; /* List of tables to select from */
|
sl@0
|
3452 |
Expr *pWhere; /* The WHERE clause. May be NULL */
|
sl@0
|
3453 |
ExprList *pOrderBy; /* The ORDER BY clause. May be NULL */
|
sl@0
|
3454 |
ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */
|
sl@0
|
3455 |
Expr *pHaving; /* The HAVING clause. May be NULL */
|
sl@0
|
3456 |
int isDistinct; /* True if the DISTINCT keyword is present */
|
sl@0
|
3457 |
int distinct; /* Table to use for the distinct set */
|
sl@0
|
3458 |
int rc = 1; /* Value to return from this function */
|
sl@0
|
3459 |
int addrSortIndex; /* Address of an OP_OpenEphemeral instruction */
|
sl@0
|
3460 |
AggInfo sAggInfo; /* Information used by aggregate queries */
|
sl@0
|
3461 |
int iEnd; /* Address of the end of the query */
|
sl@0
|
3462 |
sqlite3 *db; /* The database connection */
|
sl@0
|
3463 |
|
sl@0
|
3464 |
db = pParse->db;
|
sl@0
|
3465 |
if( p==0 || db->mallocFailed || pParse->nErr ){
|
sl@0
|
3466 |
return 1;
|
sl@0
|
3467 |
}
|
sl@0
|
3468 |
if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
|
sl@0
|
3469 |
memset(&sAggInfo, 0, sizeof(sAggInfo));
|
sl@0
|
3470 |
|
sl@0
|
3471 |
pOrderBy = p->pOrderBy;
|
sl@0
|
3472 |
if( IgnorableOrderby(pDest) ){
|
sl@0
|
3473 |
p->pOrderBy = 0;
|
sl@0
|
3474 |
|
sl@0
|
3475 |
/* In these cases the DISTINCT operator makes no difference to the
|
sl@0
|
3476 |
** results, so remove it if it were specified.
|
sl@0
|
3477 |
*/
|
sl@0
|
3478 |
assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union ||
|
sl@0
|
3479 |
pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard);
|
sl@0
|
3480 |
p->selFlags &= ~SF_Distinct;
|
sl@0
|
3481 |
}
|
sl@0
|
3482 |
sqlite3SelectPrep(pParse, p, 0);
|
sl@0
|
3483 |
if( pParse->nErr ){
|
sl@0
|
3484 |
goto select_end;
|
sl@0
|
3485 |
}
|
sl@0
|
3486 |
p->pOrderBy = pOrderBy;
|
sl@0
|
3487 |
|
sl@0
|
3488 |
|
sl@0
|
3489 |
/* Make local copies of the parameters for this query.
|
sl@0
|
3490 |
*/
|
sl@0
|
3491 |
pTabList = p->pSrc;
|
sl@0
|
3492 |
isAgg = (p->selFlags & SF_Aggregate)!=0;
|
sl@0
|
3493 |
pEList = p->pEList;
|
sl@0
|
3494 |
if( pEList==0 ) goto select_end;
|
sl@0
|
3495 |
|
sl@0
|
3496 |
/*
|
sl@0
|
3497 |
** Do not even attempt to generate any code if we have already seen
|
sl@0
|
3498 |
** errors before this routine starts.
|
sl@0
|
3499 |
*/
|
sl@0
|
3500 |
if( pParse->nErr>0 ) goto select_end;
|
sl@0
|
3501 |
|
sl@0
|
3502 |
/* ORDER BY is ignored for some destinations.
|
sl@0
|
3503 |
*/
|
sl@0
|
3504 |
if( IgnorableOrderby(pDest) ){
|
sl@0
|
3505 |
pOrderBy = 0;
|
sl@0
|
3506 |
}
|
sl@0
|
3507 |
|
sl@0
|
3508 |
/* Begin generating code.
|
sl@0
|
3509 |
*/
|
sl@0
|
3510 |
v = sqlite3GetVdbe(pParse);
|
sl@0
|
3511 |
if( v==0 ) goto select_end;
|
sl@0
|
3512 |
|
sl@0
|
3513 |
/* Generate code for all sub-queries in the FROM clause
|
sl@0
|
3514 |
*/
|
sl@0
|
3515 |
#if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
|
sl@0
|
3516 |
for(i=0; !p->pPrior && i<pTabList->nSrc; i++){
|
sl@0
|
3517 |
struct SrcList_item *pItem = &pTabList->a[i];
|
sl@0
|
3518 |
SelectDest dest;
|
sl@0
|
3519 |
Select *pSub = pItem->pSelect;
|
sl@0
|
3520 |
int isAggSub;
|
sl@0
|
3521 |
|
sl@0
|
3522 |
if( pSub==0 || pItem->isPopulated ) continue;
|
sl@0
|
3523 |
|
sl@0
|
3524 |
/* Increment Parse.nHeight by the height of the largest expression
|
sl@0
|
3525 |
** tree refered to by this, the parent select. The child select
|
sl@0
|
3526 |
** may contain expression trees of at most
|
sl@0
|
3527 |
** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
|
sl@0
|
3528 |
** more conservative than necessary, but much easier than enforcing
|
sl@0
|
3529 |
** an exact limit.
|
sl@0
|
3530 |
*/
|
sl@0
|
3531 |
pParse->nHeight += sqlite3SelectExprHeight(p);
|
sl@0
|
3532 |
|
sl@0
|
3533 |
/* Check to see if the subquery can be absorbed into the parent. */
|
sl@0
|
3534 |
isAggSub = (pSub->selFlags & SF_Aggregate)!=0;
|
sl@0
|
3535 |
if( flattenSubquery(pParse, p, i, isAgg, isAggSub) ){
|
sl@0
|
3536 |
if( isAggSub ){
|
sl@0
|
3537 |
isAgg = 1;
|
sl@0
|
3538 |
p->selFlags |= SF_Aggregate;
|
sl@0
|
3539 |
}
|
sl@0
|
3540 |
i = -1;
|
sl@0
|
3541 |
}else{
|
sl@0
|
3542 |
sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor);
|
sl@0
|
3543 |
assert( pItem->isPopulated==0 );
|
sl@0
|
3544 |
sqlite3Select(pParse, pSub, &dest);
|
sl@0
|
3545 |
pItem->isPopulated = 1;
|
sl@0
|
3546 |
}
|
sl@0
|
3547 |
if( pParse->nErr || db->mallocFailed ){
|
sl@0
|
3548 |
goto select_end;
|
sl@0
|
3549 |
}
|
sl@0
|
3550 |
pParse->nHeight -= sqlite3SelectExprHeight(p);
|
sl@0
|
3551 |
pTabList = p->pSrc;
|
sl@0
|
3552 |
if( !IgnorableOrderby(pDest) ){
|
sl@0
|
3553 |
pOrderBy = p->pOrderBy;
|
sl@0
|
3554 |
}
|
sl@0
|
3555 |
}
|
sl@0
|
3556 |
pEList = p->pEList;
|
sl@0
|
3557 |
#endif
|
sl@0
|
3558 |
pWhere = p->pWhere;
|
sl@0
|
3559 |
pGroupBy = p->pGroupBy;
|
sl@0
|
3560 |
pHaving = p->pHaving;
|
sl@0
|
3561 |
isDistinct = (p->selFlags & SF_Distinct)!=0;
|
sl@0
|
3562 |
|
sl@0
|
3563 |
#ifndef SQLITE_OMIT_COMPOUND_SELECT
|
sl@0
|
3564 |
/* If there is are a sequence of queries, do the earlier ones first.
|
sl@0
|
3565 |
*/
|
sl@0
|
3566 |
if( p->pPrior ){
|
sl@0
|
3567 |
if( p->pRightmost==0 ){
|
sl@0
|
3568 |
Select *pLoop, *pRight = 0;
|
sl@0
|
3569 |
int cnt = 0;
|
sl@0
|
3570 |
int mxSelect;
|
sl@0
|
3571 |
for(pLoop=p; pLoop; pLoop=pLoop->pPrior, cnt++){
|
sl@0
|
3572 |
pLoop->pRightmost = p;
|
sl@0
|
3573 |
pLoop->pNext = pRight;
|
sl@0
|
3574 |
pRight = pLoop;
|
sl@0
|
3575 |
}
|
sl@0
|
3576 |
mxSelect = db->aLimit[SQLITE_LIMIT_COMPOUND_SELECT];
|
sl@0
|
3577 |
if( mxSelect && cnt>mxSelect ){
|
sl@0
|
3578 |
sqlite3ErrorMsg(pParse, "too many terms in compound SELECT");
|
sl@0
|
3579 |
return 1;
|
sl@0
|
3580 |
}
|
sl@0
|
3581 |
}
|
sl@0
|
3582 |
return multiSelect(pParse, p, pDest);
|
sl@0
|
3583 |
}
|
sl@0
|
3584 |
#endif
|
sl@0
|
3585 |
|
sl@0
|
3586 |
/* If writing to memory or generating a set
|
sl@0
|
3587 |
** only a single column may be output.
|
sl@0
|
3588 |
*/
|
sl@0
|
3589 |
#ifndef SQLITE_OMIT_SUBQUERY
|
sl@0
|
3590 |
if( checkForMultiColumnSelectError(pParse, pDest, pEList->nExpr) ){
|
sl@0
|
3591 |
goto select_end;
|
sl@0
|
3592 |
}
|
sl@0
|
3593 |
#endif
|
sl@0
|
3594 |
|
sl@0
|
3595 |
/* If possible, rewrite the query to use GROUP BY instead of DISTINCT.
|
sl@0
|
3596 |
** GROUP BY might use an index, DISTINCT never does.
|
sl@0
|
3597 |
*/
|
sl@0
|
3598 |
if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct && !p->pGroupBy ){
|
sl@0
|
3599 |
p->pGroupBy = sqlite3ExprListDup(db, p->pEList);
|
sl@0
|
3600 |
pGroupBy = p->pGroupBy;
|
sl@0
|
3601 |
p->selFlags &= ~SF_Distinct;
|
sl@0
|
3602 |
isDistinct = 0;
|
sl@0
|
3603 |
}
|
sl@0
|
3604 |
|
sl@0
|
3605 |
/* If there is an ORDER BY clause, then this sorting
|
sl@0
|
3606 |
** index might end up being unused if the data can be
|
sl@0
|
3607 |
** extracted in pre-sorted order. If that is the case, then the
|
sl@0
|
3608 |
** OP_OpenEphemeral instruction will be changed to an OP_Noop once
|
sl@0
|
3609 |
** we figure out that the sorting index is not needed. The addrSortIndex
|
sl@0
|
3610 |
** variable is used to facilitate that change.
|
sl@0
|
3611 |
*/
|
sl@0
|
3612 |
if( pOrderBy ){
|
sl@0
|
3613 |
KeyInfo *pKeyInfo;
|
sl@0
|
3614 |
pKeyInfo = keyInfoFromExprList(pParse, pOrderBy);
|
sl@0
|
3615 |
pOrderBy->iECursor = pParse->nTab++;
|
sl@0
|
3616 |
p->addrOpenEphm[2] = addrSortIndex =
|
sl@0
|
3617 |
sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
|
sl@0
|
3618 |
pOrderBy->iECursor, pOrderBy->nExpr+2, 0,
|
sl@0
|
3619 |
(char*)pKeyInfo, P4_KEYINFO_HANDOFF);
|
sl@0
|
3620 |
}else{
|
sl@0
|
3621 |
addrSortIndex = -1;
|
sl@0
|
3622 |
}
|
sl@0
|
3623 |
|
sl@0
|
3624 |
/* If the output is destined for a temporary table, open that table.
|
sl@0
|
3625 |
*/
|
sl@0
|
3626 |
if( pDest->eDest==SRT_EphemTab ){
|
sl@0
|
3627 |
sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iParm, pEList->nExpr);
|
sl@0
|
3628 |
}
|
sl@0
|
3629 |
|
sl@0
|
3630 |
/* Set the limiter.
|
sl@0
|
3631 |
*/
|
sl@0
|
3632 |
iEnd = sqlite3VdbeMakeLabel(v);
|
sl@0
|
3633 |
computeLimitRegisters(pParse, p, iEnd);
|
sl@0
|
3634 |
|
sl@0
|
3635 |
/* Open a virtual index to use for the distinct set.
|
sl@0
|
3636 |
*/
|
sl@0
|
3637 |
if( isDistinct ){
|
sl@0
|
3638 |
KeyInfo *pKeyInfo;
|
sl@0
|
3639 |
assert( isAgg || pGroupBy );
|
sl@0
|
3640 |
distinct = pParse->nTab++;
|
sl@0
|
3641 |
pKeyInfo = keyInfoFromExprList(pParse, p->pEList);
|
sl@0
|
3642 |
sqlite3VdbeAddOp4(v, OP_OpenEphemeral, distinct, 0, 0,
|
sl@0
|
3643 |
(char*)pKeyInfo, P4_KEYINFO_HANDOFF);
|
sl@0
|
3644 |
}else{
|
sl@0
|
3645 |
distinct = -1;
|
sl@0
|
3646 |
}
|
sl@0
|
3647 |
|
sl@0
|
3648 |
/* Aggregate and non-aggregate queries are handled differently */
|
sl@0
|
3649 |
if( !isAgg && pGroupBy==0 ){
|
sl@0
|
3650 |
/* This case is for non-aggregate queries
|
sl@0
|
3651 |
** Begin the database scan
|
sl@0
|
3652 |
*/
|
sl@0
|
3653 |
pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pOrderBy, 0);
|
sl@0
|
3654 |
if( pWInfo==0 ) goto select_end;
|
sl@0
|
3655 |
|
sl@0
|
3656 |
/* If sorting index that was created by a prior OP_OpenEphemeral
|
sl@0
|
3657 |
** instruction ended up not being needed, then change the OP_OpenEphemeral
|
sl@0
|
3658 |
** into an OP_Noop.
|
sl@0
|
3659 |
*/
|
sl@0
|
3660 |
if( addrSortIndex>=0 && pOrderBy==0 ){
|
sl@0
|
3661 |
sqlite3VdbeChangeToNoop(v, addrSortIndex, 1);
|
sl@0
|
3662 |
p->addrOpenEphm[2] = -1;
|
sl@0
|
3663 |
}
|
sl@0
|
3664 |
|
sl@0
|
3665 |
/* Use the standard inner loop
|
sl@0
|
3666 |
*/
|
sl@0
|
3667 |
assert(!isDistinct);
|
sl@0
|
3668 |
selectInnerLoop(pParse, p, pEList, 0, 0, pOrderBy, -1, pDest,
|
sl@0
|
3669 |
pWInfo->iContinue, pWInfo->iBreak);
|
sl@0
|
3670 |
|
sl@0
|
3671 |
/* End the database scan loop.
|
sl@0
|
3672 |
*/
|
sl@0
|
3673 |
sqlite3WhereEnd(pWInfo);
|
sl@0
|
3674 |
}else{
|
sl@0
|
3675 |
/* This is the processing for aggregate queries */
|
sl@0
|
3676 |
NameContext sNC; /* Name context for processing aggregate information */
|
sl@0
|
3677 |
int iAMem; /* First Mem address for storing current GROUP BY */
|
sl@0
|
3678 |
int iBMem; /* First Mem address for previous GROUP BY */
|
sl@0
|
3679 |
int iUseFlag; /* Mem address holding flag indicating that at least
|
sl@0
|
3680 |
** one row of the input to the aggregator has been
|
sl@0
|
3681 |
** processed */
|
sl@0
|
3682 |
int iAbortFlag; /* Mem address which causes query abort if positive */
|
sl@0
|
3683 |
int groupBySort; /* Rows come from source in GROUP BY order */
|
sl@0
|
3684 |
int addrEnd; /* End of processing for this SELECT */
|
sl@0
|
3685 |
|
sl@0
|
3686 |
/* Remove any and all aliases between the result set and the
|
sl@0
|
3687 |
** GROUP BY clause.
|
sl@0
|
3688 |
*/
|
sl@0
|
3689 |
if( pGroupBy ){
|
sl@0
|
3690 |
int i; /* Loop counter */
|
sl@0
|
3691 |
struct ExprList_item *pItem; /* For looping over expression in a list */
|
sl@0
|
3692 |
|
sl@0
|
3693 |
for(i=p->pEList->nExpr, pItem=p->pEList->a; i>0; i--, pItem++){
|
sl@0
|
3694 |
pItem->iAlias = 0;
|
sl@0
|
3695 |
}
|
sl@0
|
3696 |
for(i=pGroupBy->nExpr, pItem=pGroupBy->a; i>0; i--, pItem++){
|
sl@0
|
3697 |
pItem->iAlias = 0;
|
sl@0
|
3698 |
}
|
sl@0
|
3699 |
}
|
sl@0
|
3700 |
|
sl@0
|
3701 |
|
sl@0
|
3702 |
/* Create a label to jump to when we want to abort the query */
|
sl@0
|
3703 |
addrEnd = sqlite3VdbeMakeLabel(v);
|
sl@0
|
3704 |
|
sl@0
|
3705 |
/* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
|
sl@0
|
3706 |
** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
|
sl@0
|
3707 |
** SELECT statement.
|
sl@0
|
3708 |
*/
|
sl@0
|
3709 |
memset(&sNC, 0, sizeof(sNC));
|
sl@0
|
3710 |
sNC.pParse = pParse;
|
sl@0
|
3711 |
sNC.pSrcList = pTabList;
|
sl@0
|
3712 |
sNC.pAggInfo = &sAggInfo;
|
sl@0
|
3713 |
sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr+1 : 0;
|
sl@0
|
3714 |
sAggInfo.pGroupBy = pGroupBy;
|
sl@0
|
3715 |
sqlite3ExprAnalyzeAggList(&sNC, pEList);
|
sl@0
|
3716 |
sqlite3ExprAnalyzeAggList(&sNC, pOrderBy);
|
sl@0
|
3717 |
if( pHaving ){
|
sl@0
|
3718 |
sqlite3ExprAnalyzeAggregates(&sNC, pHaving);
|
sl@0
|
3719 |
}
|
sl@0
|
3720 |
sAggInfo.nAccumulator = sAggInfo.nColumn;
|
sl@0
|
3721 |
for(i=0; i<sAggInfo.nFunc; i++){
|
sl@0
|
3722 |
sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->pList);
|
sl@0
|
3723 |
}
|
sl@0
|
3724 |
if( db->mallocFailed ) goto select_end;
|
sl@0
|
3725 |
|
sl@0
|
3726 |
/* Processing for aggregates with GROUP BY is very different and
|
sl@0
|
3727 |
** much more complex than aggregates without a GROUP BY.
|
sl@0
|
3728 |
*/
|
sl@0
|
3729 |
if( pGroupBy ){
|
sl@0
|
3730 |
KeyInfo *pKeyInfo; /* Keying information for the group by clause */
|
sl@0
|
3731 |
int j1; /* A-vs-B comparision jump */
|
sl@0
|
3732 |
int addrOutputRow; /* Start of subroutine that outputs a result row */
|
sl@0
|
3733 |
int regOutputRow; /* Return address register for output subroutine */
|
sl@0
|
3734 |
int addrSetAbort; /* Set the abort flag and return */
|
sl@0
|
3735 |
int addrTopOfLoop; /* Top of the input loop */
|
sl@0
|
3736 |
int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */
|
sl@0
|
3737 |
int addrReset; /* Subroutine for resetting the accumulator */
|
sl@0
|
3738 |
int regReset; /* Return address register for reset subroutine */
|
sl@0
|
3739 |
|
sl@0
|
3740 |
/* If there is a GROUP BY clause we might need a sorting index to
|
sl@0
|
3741 |
** implement it. Allocate that sorting index now. If it turns out
|
sl@0
|
3742 |
** that we do not need it after all, the OpenEphemeral instruction
|
sl@0
|
3743 |
** will be converted into a Noop.
|
sl@0
|
3744 |
*/
|
sl@0
|
3745 |
sAggInfo.sortingIdx = pParse->nTab++;
|
sl@0
|
3746 |
pKeyInfo = keyInfoFromExprList(pParse, pGroupBy);
|
sl@0
|
3747 |
addrSortingIdx = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
|
sl@0
|
3748 |
sAggInfo.sortingIdx, sAggInfo.nSortingColumn,
|
sl@0
|
3749 |
0, (char*)pKeyInfo, P4_KEYINFO_HANDOFF);
|
sl@0
|
3750 |
|
sl@0
|
3751 |
/* Initialize memory locations used by GROUP BY aggregate processing
|
sl@0
|
3752 |
*/
|
sl@0
|
3753 |
iUseFlag = ++pParse->nMem;
|
sl@0
|
3754 |
iAbortFlag = ++pParse->nMem;
|
sl@0
|
3755 |
regOutputRow = ++pParse->nMem;
|
sl@0
|
3756 |
addrOutputRow = sqlite3VdbeMakeLabel(v);
|
sl@0
|
3757 |
regReset = ++pParse->nMem;
|
sl@0
|
3758 |
addrReset = sqlite3VdbeMakeLabel(v);
|
sl@0
|
3759 |
iAMem = pParse->nMem + 1;
|
sl@0
|
3760 |
pParse->nMem += pGroupBy->nExpr;
|
sl@0
|
3761 |
iBMem = pParse->nMem + 1;
|
sl@0
|
3762 |
pParse->nMem += pGroupBy->nExpr;
|
sl@0
|
3763 |
sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag);
|
sl@0
|
3764 |
VdbeComment((v, "clear abort flag"));
|
sl@0
|
3765 |
sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag);
|
sl@0
|
3766 |
VdbeComment((v, "indicate accumulator empty"));
|
sl@0
|
3767 |
|
sl@0
|
3768 |
/* Begin a loop that will extract all source rows in GROUP BY order.
|
sl@0
|
3769 |
** This might involve two separate loops with an OP_Sort in between, or
|
sl@0
|
3770 |
** it might be a single loop that uses an index to extract information
|
sl@0
|
3771 |
** in the right order to begin with.
|
sl@0
|
3772 |
*/
|
sl@0
|
3773 |
sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
|
sl@0
|
3774 |
pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pGroupBy, 0);
|
sl@0
|
3775 |
if( pWInfo==0 ) goto select_end;
|
sl@0
|
3776 |
if( pGroupBy==0 ){
|
sl@0
|
3777 |
/* The optimizer is able to deliver rows in group by order so
|
sl@0
|
3778 |
** we do not have to sort. The OP_OpenEphemeral table will be
|
sl@0
|
3779 |
** cancelled later because we still need to use the pKeyInfo
|
sl@0
|
3780 |
*/
|
sl@0
|
3781 |
pGroupBy = p->pGroupBy;
|
sl@0
|
3782 |
groupBySort = 0;
|
sl@0
|
3783 |
}else{
|
sl@0
|
3784 |
/* Rows are coming out in undetermined order. We have to push
|
sl@0
|
3785 |
** each row into a sorting index, terminate the first loop,
|
sl@0
|
3786 |
** then loop over the sorting index in order to get the output
|
sl@0
|
3787 |
** in sorted order
|
sl@0
|
3788 |
*/
|
sl@0
|
3789 |
int regBase;
|
sl@0
|
3790 |
int regRecord;
|
sl@0
|
3791 |
int nCol;
|
sl@0
|
3792 |
int nGroupBy;
|
sl@0
|
3793 |
|
sl@0
|
3794 |
groupBySort = 1;
|
sl@0
|
3795 |
nGroupBy = pGroupBy->nExpr;
|
sl@0
|
3796 |
nCol = nGroupBy + 1;
|
sl@0
|
3797 |
j = nGroupBy+1;
|
sl@0
|
3798 |
for(i=0; i<sAggInfo.nColumn; i++){
|
sl@0
|
3799 |
if( sAggInfo.aCol[i].iSorterColumn>=j ){
|
sl@0
|
3800 |
nCol++;
|
sl@0
|
3801 |
j++;
|
sl@0
|
3802 |
}
|
sl@0
|
3803 |
}
|
sl@0
|
3804 |
regBase = sqlite3GetTempRange(pParse, nCol);
|
sl@0
|
3805 |
sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0);
|
sl@0
|
3806 |
sqlite3VdbeAddOp2(v, OP_Sequence, sAggInfo.sortingIdx,regBase+nGroupBy);
|
sl@0
|
3807 |
j = nGroupBy+1;
|
sl@0
|
3808 |
for(i=0; i<sAggInfo.nColumn; i++){
|
sl@0
|
3809 |
struct AggInfo_col *pCol = &sAggInfo.aCol[i];
|
sl@0
|
3810 |
if( pCol->iSorterColumn>=j ){
|
sl@0
|
3811 |
int r1 = j + regBase;
|
sl@0
|
3812 |
int r2;
|
sl@0
|
3813 |
|
sl@0
|
3814 |
r2 = sqlite3ExprCodeGetColumn(pParse,
|
sl@0
|
3815 |
pCol->pTab, pCol->iColumn, pCol->iTable, r1, 0);
|
sl@0
|
3816 |
if( r1!=r2 ){
|
sl@0
|
3817 |
sqlite3VdbeAddOp2(v, OP_SCopy, r2, r1);
|
sl@0
|
3818 |
}
|
sl@0
|
3819 |
j++;
|
sl@0
|
3820 |
}
|
sl@0
|
3821 |
}
|
sl@0
|
3822 |
regRecord = sqlite3GetTempReg(pParse);
|
sl@0
|
3823 |
sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord);
|
sl@0
|
3824 |
sqlite3VdbeAddOp2(v, OP_IdxInsert, sAggInfo.sortingIdx, regRecord);
|
sl@0
|
3825 |
sqlite3ReleaseTempReg(pParse, regRecord);
|
sl@0
|
3826 |
sqlite3ReleaseTempRange(pParse, regBase, nCol);
|
sl@0
|
3827 |
sqlite3WhereEnd(pWInfo);
|
sl@0
|
3828 |
sqlite3VdbeAddOp2(v, OP_Sort, sAggInfo.sortingIdx, addrEnd);
|
sl@0
|
3829 |
VdbeComment((v, "GROUP BY sort"));
|
sl@0
|
3830 |
sAggInfo.useSortingIdx = 1;
|
sl@0
|
3831 |
}
|
sl@0
|
3832 |
|
sl@0
|
3833 |
/* Evaluate the current GROUP BY terms and store in b0, b1, b2...
|
sl@0
|
3834 |
** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
|
sl@0
|
3835 |
** Then compare the current GROUP BY terms against the GROUP BY terms
|
sl@0
|
3836 |
** from the previous row currently stored in a0, a1, a2...
|
sl@0
|
3837 |
*/
|
sl@0
|
3838 |
addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
|
sl@0
|
3839 |
for(j=0; j<pGroupBy->nExpr; j++){
|
sl@0
|
3840 |
if( groupBySort ){
|
sl@0
|
3841 |
sqlite3VdbeAddOp3(v, OP_Column, sAggInfo.sortingIdx, j, iBMem+j);
|
sl@0
|
3842 |
}else{
|
sl@0
|
3843 |
sAggInfo.directMode = 1;
|
sl@0
|
3844 |
sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j);
|
sl@0
|
3845 |
}
|
sl@0
|
3846 |
}
|
sl@0
|
3847 |
sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr,
|
sl@0
|
3848 |
(char*)pKeyInfo, P4_KEYINFO);
|
sl@0
|
3849 |
j1 = sqlite3VdbeCurrentAddr(v);
|
sl@0
|
3850 |
sqlite3VdbeAddOp3(v, OP_Jump, j1+1, 0, j1+1);
|
sl@0
|
3851 |
|
sl@0
|
3852 |
/* Generate code that runs whenever the GROUP BY changes.
|
sl@0
|
3853 |
** Changes in the GROUP BY are detected by the previous code
|
sl@0
|
3854 |
** block. If there were no changes, this block is skipped.
|
sl@0
|
3855 |
**
|
sl@0
|
3856 |
** This code copies current group by terms in b0,b1,b2,...
|
sl@0
|
3857 |
** over to a0,a1,a2. It then calls the output subroutine
|
sl@0
|
3858 |
** and resets the aggregate accumulator registers in preparation
|
sl@0
|
3859 |
** for the next GROUP BY batch.
|
sl@0
|
3860 |
*/
|
sl@0
|
3861 |
sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr);
|
sl@0
|
3862 |
sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
|
sl@0
|
3863 |
VdbeComment((v, "output one row"));
|
sl@0
|
3864 |
sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd);
|
sl@0
|
3865 |
VdbeComment((v, "check abort flag"));
|
sl@0
|
3866 |
sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
|
sl@0
|
3867 |
VdbeComment((v, "reset accumulator"));
|
sl@0
|
3868 |
|
sl@0
|
3869 |
/* Update the aggregate accumulators based on the content of
|
sl@0
|
3870 |
** the current row
|
sl@0
|
3871 |
*/
|
sl@0
|
3872 |
sqlite3VdbeJumpHere(v, j1);
|
sl@0
|
3873 |
updateAccumulator(pParse, &sAggInfo);
|
sl@0
|
3874 |
sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag);
|
sl@0
|
3875 |
VdbeComment((v, "indicate data in accumulator"));
|
sl@0
|
3876 |
|
sl@0
|
3877 |
/* End of the loop
|
sl@0
|
3878 |
*/
|
sl@0
|
3879 |
if( groupBySort ){
|
sl@0
|
3880 |
sqlite3VdbeAddOp2(v, OP_Next, sAggInfo.sortingIdx, addrTopOfLoop);
|
sl@0
|
3881 |
}else{
|
sl@0
|
3882 |
sqlite3WhereEnd(pWInfo);
|
sl@0
|
3883 |
sqlite3VdbeChangeToNoop(v, addrSortingIdx, 1);
|
sl@0
|
3884 |
}
|
sl@0
|
3885 |
|
sl@0
|
3886 |
/* Output the final row of result
|
sl@0
|
3887 |
*/
|
sl@0
|
3888 |
sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
|
sl@0
|
3889 |
VdbeComment((v, "output final row"));
|
sl@0
|
3890 |
|
sl@0
|
3891 |
/* Jump over the subroutines
|
sl@0
|
3892 |
*/
|
sl@0
|
3893 |
sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEnd);
|
sl@0
|
3894 |
|
sl@0
|
3895 |
/* Generate a subroutine that outputs a single row of the result
|
sl@0
|
3896 |
** set. This subroutine first looks at the iUseFlag. If iUseFlag
|
sl@0
|
3897 |
** is less than or equal to zero, the subroutine is a no-op. If
|
sl@0
|
3898 |
** the processing calls for the query to abort, this subroutine
|
sl@0
|
3899 |
** increments the iAbortFlag memory location before returning in
|
sl@0
|
3900 |
** order to signal the caller to abort.
|
sl@0
|
3901 |
*/
|
sl@0
|
3902 |
addrSetAbort = sqlite3VdbeCurrentAddr(v);
|
sl@0
|
3903 |
sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag);
|
sl@0
|
3904 |
VdbeComment((v, "set abort flag"));
|
sl@0
|
3905 |
sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
|
sl@0
|
3906 |
sqlite3VdbeResolveLabel(v, addrOutputRow);
|
sl@0
|
3907 |
addrOutputRow = sqlite3VdbeCurrentAddr(v);
|
sl@0
|
3908 |
sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2);
|
sl@0
|
3909 |
VdbeComment((v, "Groupby result generator entry point"));
|
sl@0
|
3910 |
sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
|
sl@0
|
3911 |
finalizeAggFunctions(pParse, &sAggInfo);
|
sl@0
|
3912 |
if( pHaving ){
|
sl@0
|
3913 |
sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL);
|
sl@0
|
3914 |
}
|
sl@0
|
3915 |
selectInnerLoop(pParse, p, p->pEList, 0, 0, pOrderBy,
|
sl@0
|
3916 |
distinct, pDest,
|
sl@0
|
3917 |
addrOutputRow+1, addrSetAbort);
|
sl@0
|
3918 |
sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
|
sl@0
|
3919 |
VdbeComment((v, "end groupby result generator"));
|
sl@0
|
3920 |
|
sl@0
|
3921 |
/* Generate a subroutine that will reset the group-by accumulator
|
sl@0
|
3922 |
*/
|
sl@0
|
3923 |
sqlite3VdbeResolveLabel(v, addrReset);
|
sl@0
|
3924 |
resetAccumulator(pParse, &sAggInfo);
|
sl@0
|
3925 |
sqlite3VdbeAddOp1(v, OP_Return, regReset);
|
sl@0
|
3926 |
|
sl@0
|
3927 |
} /* endif pGroupBy */
|
sl@0
|
3928 |
else {
|
sl@0
|
3929 |
ExprList *pMinMax = 0;
|
sl@0
|
3930 |
ExprList *pDel = 0;
|
sl@0
|
3931 |
u8 flag;
|
sl@0
|
3932 |
|
sl@0
|
3933 |
/* Check if the query is of one of the following forms:
|
sl@0
|
3934 |
**
|
sl@0
|
3935 |
** SELECT min(x) FROM ...
|
sl@0
|
3936 |
** SELECT max(x) FROM ...
|
sl@0
|
3937 |
**
|
sl@0
|
3938 |
** If it is, then ask the code in where.c to attempt to sort results
|
sl@0
|
3939 |
** as if there was an "ORDER ON x" or "ORDER ON x DESC" clause.
|
sl@0
|
3940 |
** If where.c is able to produce results sorted in this order, then
|
sl@0
|
3941 |
** add vdbe code to break out of the processing loop after the
|
sl@0
|
3942 |
** first iteration (since the first iteration of the loop is
|
sl@0
|
3943 |
** guaranteed to operate on the row with the minimum or maximum
|
sl@0
|
3944 |
** value of x, the only row required).
|
sl@0
|
3945 |
**
|
sl@0
|
3946 |
** A special flag must be passed to sqlite3WhereBegin() to slightly
|
sl@0
|
3947 |
** modify behaviour as follows:
|
sl@0
|
3948 |
**
|
sl@0
|
3949 |
** + If the query is a "SELECT min(x)", then the loop coded by
|
sl@0
|
3950 |
** where.c should not iterate over any values with a NULL value
|
sl@0
|
3951 |
** for x.
|
sl@0
|
3952 |
**
|
sl@0
|
3953 |
** + The optimizer code in where.c (the thing that decides which
|
sl@0
|
3954 |
** index or indices to use) should place a different priority on
|
sl@0
|
3955 |
** satisfying the 'ORDER BY' clause than it does in other cases.
|
sl@0
|
3956 |
** Refer to code and comments in where.c for details.
|
sl@0
|
3957 |
*/
|
sl@0
|
3958 |
flag = minMaxQuery(pParse, p);
|
sl@0
|
3959 |
if( flag ){
|
sl@0
|
3960 |
pDel = pMinMax = sqlite3ExprListDup(db, p->pEList->a[0].pExpr->pList);
|
sl@0
|
3961 |
if( pMinMax && !db->mallocFailed ){
|
sl@0
|
3962 |
pMinMax->a[0].sortOrder = flag!=WHERE_ORDERBY_MIN;
|
sl@0
|
3963 |
pMinMax->a[0].pExpr->op = TK_COLUMN;
|
sl@0
|
3964 |
}
|
sl@0
|
3965 |
}
|
sl@0
|
3966 |
|
sl@0
|
3967 |
/* This case runs if the aggregate has no GROUP BY clause. The
|
sl@0
|
3968 |
** processing is much simpler since there is only a single row
|
sl@0
|
3969 |
** of output.
|
sl@0
|
3970 |
*/
|
sl@0
|
3971 |
resetAccumulator(pParse, &sAggInfo);
|
sl@0
|
3972 |
pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pMinMax, flag);
|
sl@0
|
3973 |
if( pWInfo==0 ){
|
sl@0
|
3974 |
sqlite3ExprListDelete(db, pDel);
|
sl@0
|
3975 |
goto select_end;
|
sl@0
|
3976 |
}
|
sl@0
|
3977 |
updateAccumulator(pParse, &sAggInfo);
|
sl@0
|
3978 |
if( !pMinMax && flag ){
|
sl@0
|
3979 |
sqlite3VdbeAddOp2(v, OP_Goto, 0, pWInfo->iBreak);
|
sl@0
|
3980 |
VdbeComment((v, "%s() by index",(flag==WHERE_ORDERBY_MIN?"min":"max")));
|
sl@0
|
3981 |
}
|
sl@0
|
3982 |
sqlite3WhereEnd(pWInfo);
|
sl@0
|
3983 |
finalizeAggFunctions(pParse, &sAggInfo);
|
sl@0
|
3984 |
pOrderBy = 0;
|
sl@0
|
3985 |
if( pHaving ){
|
sl@0
|
3986 |
sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL);
|
sl@0
|
3987 |
}
|
sl@0
|
3988 |
selectInnerLoop(pParse, p, p->pEList, 0, 0, 0, -1,
|
sl@0
|
3989 |
pDest, addrEnd, addrEnd);
|
sl@0
|
3990 |
|
sl@0
|
3991 |
sqlite3ExprListDelete(db, pDel);
|
sl@0
|
3992 |
}
|
sl@0
|
3993 |
sqlite3VdbeResolveLabel(v, addrEnd);
|
sl@0
|
3994 |
|
sl@0
|
3995 |
} /* endif aggregate query */
|
sl@0
|
3996 |
|
sl@0
|
3997 |
/* If there is an ORDER BY clause, then we need to sort the results
|
sl@0
|
3998 |
** and send them to the callback one by one.
|
sl@0
|
3999 |
*/
|
sl@0
|
4000 |
if( pOrderBy ){
|
sl@0
|
4001 |
generateSortTail(pParse, p, v, pEList->nExpr, pDest);
|
sl@0
|
4002 |
}
|
sl@0
|
4003 |
|
sl@0
|
4004 |
/* Jump here to skip this query
|
sl@0
|
4005 |
*/
|
sl@0
|
4006 |
sqlite3VdbeResolveLabel(v, iEnd);
|
sl@0
|
4007 |
|
sl@0
|
4008 |
/* The SELECT was successfully coded. Set the return code to 0
|
sl@0
|
4009 |
** to indicate no errors.
|
sl@0
|
4010 |
*/
|
sl@0
|
4011 |
rc = 0;
|
sl@0
|
4012 |
|
sl@0
|
4013 |
/* Control jumps to here if an error is encountered above, or upon
|
sl@0
|
4014 |
** successful coding of the SELECT.
|
sl@0
|
4015 |
*/
|
sl@0
|
4016 |
select_end:
|
sl@0
|
4017 |
|
sl@0
|
4018 |
/* Identify column names if results of the SELECT are to be output.
|
sl@0
|
4019 |
*/
|
sl@0
|
4020 |
if( rc==SQLITE_OK && pDest->eDest==SRT_Output ){
|
sl@0
|
4021 |
generateColumnNames(pParse, pTabList, pEList);
|
sl@0
|
4022 |
}
|
sl@0
|
4023 |
|
sl@0
|
4024 |
sqlite3DbFree(db, sAggInfo.aCol);
|
sl@0
|
4025 |
sqlite3DbFree(db, sAggInfo.aFunc);
|
sl@0
|
4026 |
return rc;
|
sl@0
|
4027 |
}
|
sl@0
|
4028 |
|
sl@0
|
4029 |
#if defined(SQLITE_DEBUG)
|
sl@0
|
4030 |
/*
|
sl@0
|
4031 |
*******************************************************************************
|
sl@0
|
4032 |
** The following code is used for testing and debugging only. The code
|
sl@0
|
4033 |
** that follows does not appear in normal builds.
|
sl@0
|
4034 |
**
|
sl@0
|
4035 |
** These routines are used to print out the content of all or part of a
|
sl@0
|
4036 |
** parse structures such as Select or Expr. Such printouts are useful
|
sl@0
|
4037 |
** for helping to understand what is happening inside the code generator
|
sl@0
|
4038 |
** during the execution of complex SELECT statements.
|
sl@0
|
4039 |
**
|
sl@0
|
4040 |
** These routine are not called anywhere from within the normal
|
sl@0
|
4041 |
** code base. Then are intended to be called from within the debugger
|
sl@0
|
4042 |
** or from temporary "printf" statements inserted for debugging.
|
sl@0
|
4043 |
*/
|
sl@0
|
4044 |
void sqlite3PrintExpr(Expr *p){
|
sl@0
|
4045 |
if( p->token.z && p->token.n>0 ){
|
sl@0
|
4046 |
sqlite3DebugPrintf("(%.*s", p->token.n, p->token.z);
|
sl@0
|
4047 |
}else{
|
sl@0
|
4048 |
sqlite3DebugPrintf("(%d", p->op);
|
sl@0
|
4049 |
}
|
sl@0
|
4050 |
if( p->pLeft ){
|
sl@0
|
4051 |
sqlite3DebugPrintf(" ");
|
sl@0
|
4052 |
sqlite3PrintExpr(p->pLeft);
|
sl@0
|
4053 |
}
|
sl@0
|
4054 |
if( p->pRight ){
|
sl@0
|
4055 |
sqlite3DebugPrintf(" ");
|
sl@0
|
4056 |
sqlite3PrintExpr(p->pRight);
|
sl@0
|
4057 |
}
|
sl@0
|
4058 |
sqlite3DebugPrintf(")");
|
sl@0
|
4059 |
}
|
sl@0
|
4060 |
void sqlite3PrintExprList(ExprList *pList){
|
sl@0
|
4061 |
int i;
|
sl@0
|
4062 |
for(i=0; i<pList->nExpr; i++){
|
sl@0
|
4063 |
sqlite3PrintExpr(pList->a[i].pExpr);
|
sl@0
|
4064 |
if( i<pList->nExpr-1 ){
|
sl@0
|
4065 |
sqlite3DebugPrintf(", ");
|
sl@0
|
4066 |
}
|
sl@0
|
4067 |
}
|
sl@0
|
4068 |
}
|
sl@0
|
4069 |
void sqlite3PrintSelect(Select *p, int indent){
|
sl@0
|
4070 |
sqlite3DebugPrintf("%*sSELECT(%p) ", indent, "", p);
|
sl@0
|
4071 |
sqlite3PrintExprList(p->pEList);
|
sl@0
|
4072 |
sqlite3DebugPrintf("\n");
|
sl@0
|
4073 |
if( p->pSrc ){
|
sl@0
|
4074 |
char *zPrefix;
|
sl@0
|
4075 |
int i;
|
sl@0
|
4076 |
zPrefix = "FROM";
|
sl@0
|
4077 |
for(i=0; i<p->pSrc->nSrc; i++){
|
sl@0
|
4078 |
struct SrcList_item *pItem = &p->pSrc->a[i];
|
sl@0
|
4079 |
sqlite3DebugPrintf("%*s ", indent+6, zPrefix);
|
sl@0
|
4080 |
zPrefix = "";
|
sl@0
|
4081 |
if( pItem->pSelect ){
|
sl@0
|
4082 |
sqlite3DebugPrintf("(\n");
|
sl@0
|
4083 |
sqlite3PrintSelect(pItem->pSelect, indent+10);
|
sl@0
|
4084 |
sqlite3DebugPrintf("%*s)", indent+8, "");
|
sl@0
|
4085 |
}else if( pItem->zName ){
|
sl@0
|
4086 |
sqlite3DebugPrintf("%s", pItem->zName);
|
sl@0
|
4087 |
}
|
sl@0
|
4088 |
if( pItem->pTab ){
|
sl@0
|
4089 |
sqlite3DebugPrintf("(table: %s)", pItem->pTab->zName);
|
sl@0
|
4090 |
}
|
sl@0
|
4091 |
if( pItem->zAlias ){
|
sl@0
|
4092 |
sqlite3DebugPrintf(" AS %s", pItem->zAlias);
|
sl@0
|
4093 |
}
|
sl@0
|
4094 |
if( i<p->pSrc->nSrc-1 ){
|
sl@0
|
4095 |
sqlite3DebugPrintf(",");
|
sl@0
|
4096 |
}
|
sl@0
|
4097 |
sqlite3DebugPrintf("\n");
|
sl@0
|
4098 |
}
|
sl@0
|
4099 |
}
|
sl@0
|
4100 |
if( p->pWhere ){
|
sl@0
|
4101 |
sqlite3DebugPrintf("%*s WHERE ", indent, "");
|
sl@0
|
4102 |
sqlite3PrintExpr(p->pWhere);
|
sl@0
|
4103 |
sqlite3DebugPrintf("\n");
|
sl@0
|
4104 |
}
|
sl@0
|
4105 |
if( p->pGroupBy ){
|
sl@0
|
4106 |
sqlite3DebugPrintf("%*s GROUP BY ", indent, "");
|
sl@0
|
4107 |
sqlite3PrintExprList(p->pGroupBy);
|
sl@0
|
4108 |
sqlite3DebugPrintf("\n");
|
sl@0
|
4109 |
}
|
sl@0
|
4110 |
if( p->pHaving ){
|
sl@0
|
4111 |
sqlite3DebugPrintf("%*s HAVING ", indent, "");
|
sl@0
|
4112 |
sqlite3PrintExpr(p->pHaving);
|
sl@0
|
4113 |
sqlite3DebugPrintf("\n");
|
sl@0
|
4114 |
}
|
sl@0
|
4115 |
if( p->pOrderBy ){
|
sl@0
|
4116 |
sqlite3DebugPrintf("%*s ORDER BY ", indent, "");
|
sl@0
|
4117 |
sqlite3PrintExprList(p->pOrderBy);
|
sl@0
|
4118 |
sqlite3DebugPrintf("\n");
|
sl@0
|
4119 |
}
|
sl@0
|
4120 |
}
|
sl@0
|
4121 |
/* End of the structure debug printing code
|
sl@0
|
4122 |
*****************************************************************************/
|
sl@0
|
4123 |
#endif /* defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */
|