Update contrib.
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains the C functions that implement a memory
13 ** allocation subsystem for use by SQLite.
15 ** $Id: mem4.c,v 1.3 2008/06/18 17:09:10 danielk1977 Exp $
17 #include "sqliteInt.h"
20 ** This version of the memory allocator attempts to obtain memory
21 ** from mmap() if the size of the allocation is close to the size
22 ** of a virtual memory page. If the size of the allocation is different
23 ** from the virtual memory page size, then ordinary malloc() is used.
24 ** Ordinary malloc is also used if space allocated to mmap() is
27 ** Enable this memory allocation by compiling with -DSQLITE_MMAP_HEAP_SIZE=nnn
28 ** where nnn is the maximum number of bytes of mmap-ed memory you want
29 ** to support. This module may choose to use less memory than requested.
32 #ifdef SQLITE_MMAP_HEAP_SIZE
35 ** This is a test version of the memory allocator that attempts to
36 ** use mmap() and madvise() for allocations and frees of approximately
37 ** the virtual memory page size.
39 #include <sys/types.h>
46 ** All of the static variables used by this module are collected
47 ** into a single structure named "mem". This is to keep the
48 ** static variables organized and to reduce namespace pollution
49 ** when this module is combined with other in the amalgamation.
53 ** The alarm callback and its arguments. The mem.mutex lock will
54 ** be held while the callback is running. Recursive calls into
55 ** the memory subsystem are allowed, but no new callbacks will be
56 ** issued. The alarmBusy variable is set to prevent recursive
59 sqlite3_int64 alarmThreshold;
60 void (*alarmCallback)(void*, sqlite3_int64,int);
65 ** Mutex to control access to the memory allocation subsystem.
70 ** Current allocation and high-water mark.
72 sqlite3_int64 nowUsed;
76 ** Current allocation and high-water marks for mmap allocated memory.
78 sqlite3_int64 nowUsedMMap;
79 sqlite3_int64 mxUsedMMap;
82 ** Size of a single mmap page. Obtained from sysconf().
88 ** The number of available mmap pages.
93 ** Index of the first free page. 0 means no pages have been freed.
97 /* First unused page on the top of the heap.
102 ** Bulk memory obtained from from mmap().
104 char *mmapHeap; /* first byte of the heap */
110 ** Enter the mutex mem.mutex. Allocate it if it is not already allocated.
111 ** The mmap() region is initialized the first time this routine is called.
113 static void memsys4Enter(void){
115 mem.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM);
117 sqlite3_mutex_enter(mem.mutex);
121 ** Attempt to free memory to the mmap heap. This only works if
122 ** the pointer p is within the range of memory addresses that
123 ** comprise the mmap heap. Return 1 if the memory was freed
124 ** successfully. Return 0 if the pointer is out of range.
126 static int mmapFree(void *p){
129 if( mem.mmapHeap==MAP_FAILED || mem.nPage==0 ){
133 idx = (z - mem.mmapHeap)/mem.szPage;
134 if( idx<1 || idx>=mem.nPage ){
137 a = (int*)mem.mmapHeap;
138 a[idx] = a[mem.firstFree];
140 mem.nowUsedMMap -= mem.szPage;
141 madvise(p, mem.szPage, MADV_DONTNEED);
146 ** Attempt to allocate nBytes from the mmap heap. Return a pointer
147 ** to the allocated page. Or, return NULL if the allocation fails.
149 ** The allocation will fail if nBytes is not the right size.
150 ** Or, the allocation will fail if the mmap heap has been exhausted.
152 static void *mmapAlloc(int nBytes){
154 if( nBytes>mem.szPage || nBytes<mem.mnPage ){
158 mem.szPage = sysconf(_SC_PAGE_SIZE);
159 mem.mnPage = mem.szPage - mem.szPage/10;
160 mem.nPage = SQLITE_MMAP_HEAP_SIZE/mem.szPage;
161 if( mem.nPage * sizeof(int) > mem.szPage ){
162 mem.nPage = mem.szPage/sizeof(int);
164 mem.mmapHeap = mmap(0, mem.szPage*mem.nPage, PROT_WRITE|PROT_READ,
165 MAP_ANONYMOUS|MAP_SHARED, -1, 0);
166 if( mem.mmapHeap==MAP_FAILED ){
167 mem.firstUnused = errno;
170 mem.nowUsedMMap = mem.szPage;
173 if( mem.mmapHeap==MAP_FAILED ){
177 int idx = mem.firstFree;
178 int *a = (int*)mem.mmapHeap;
179 mem.firstFree = a[idx];
180 }else if( mem.firstUnused<mem.nPage ){
181 idx = mem.firstUnused++;
184 mem.nowUsedMMap += mem.szPage;
185 if( mem.nowUsedMMap>mem.mxUsedMMap ){
186 mem.mxUsedMMap = mem.nowUsedMMap;
188 return (void*)&mem.mmapHeap[idx*mem.szPage];
195 ** Release the mmap-ed memory region if it is currently allocated and
198 static void mmapUnmap(void){
199 if( mem.mmapHeap==MAP_FAILED ) return;
200 if( mem.nPage==0 ) return;
201 if( mem.nowUsedMMap>mem.szPage ) return;
202 munmap(mem.mmapHeap, mem.nPage*mem.szPage);
209 ** Return the amount of memory currently checked out.
211 sqlite3_int64 sqlite3_memory_used(void){
214 n = mem.nowUsed + mem.nowUsedMMap;
215 sqlite3_mutex_leave(mem.mutex);
220 ** Return the maximum amount of memory that has ever been
221 ** checked out since either the beginning of this process
222 ** or since the most recent reset.
224 sqlite3_int64 sqlite3_memory_highwater(int resetFlag){
227 n = mem.mxUsed + mem.mxUsedMMap;
229 mem.mxUsed = mem.nowUsed;
230 mem.mxUsedMMap = mem.nowUsedMMap;
232 sqlite3_mutex_leave(mem.mutex);
237 ** Change the alarm callback
239 int sqlite3_memory_alarm(
240 void(*xCallback)(void *pArg, sqlite3_int64 used,int N),
242 sqlite3_int64 iThreshold
245 mem.alarmCallback = xCallback;
247 mem.alarmThreshold = iThreshold;
248 sqlite3_mutex_leave(mem.mutex);
255 static void sqlite3MemsysAlarm(int nByte){
256 void (*xCallback)(void*,sqlite3_int64,int);
257 sqlite3_int64 nowUsed;
259 if( mem.alarmCallback==0 || mem.alarmBusy ) return;
261 xCallback = mem.alarmCallback;
262 nowUsed = mem.nowUsed;
264 sqlite3_mutex_leave(mem.mutex);
265 xCallback(pArg, nowUsed, nByte);
266 sqlite3_mutex_enter(mem.mutex);
271 ** Allocate nBytes of memory
273 static void *memsys4Malloc(int nBytes){
274 sqlite3_int64 *p = 0;
275 if( mem.alarmCallback!=0
276 && mem.nowUsed+mem.nowUsedMMap+nBytes>=mem.alarmThreshold ){
277 sqlite3MemsysAlarm(nBytes);
279 if( (p = mmapAlloc(nBytes))==0 ){
280 p = malloc(nBytes+8);
282 sqlite3MemsysAlarm(nBytes);
283 p = malloc(nBytes+8);
288 mem.nowUsed += nBytes;
289 if( mem.nowUsed>mem.mxUsed ){
290 mem.mxUsed = mem.nowUsed;
298 ** Return the size of a memory allocation
300 static int memsys4Size(void *pPrior){
301 char *z = (char*)pPrior;
302 int idx = mem.nPage ? (z - mem.mmapHeap)/mem.szPage : 0;
304 if( idx>=1 && idx<mem.nPage ){
307 sqlite3_int64 *p = pPrior;
317 static void memsys4Free(void *pPrior){
320 if( mmapFree(pPrior)==0 ){
324 mem.nowUsed -= nByte;
326 if( mem.nowUsed==0 ){
333 ** Allocate nBytes of memory
335 void *sqlite3_malloc(int nBytes){
336 sqlite3_int64 *p = 0;
339 p = memsys4Malloc(nBytes);
340 sqlite3_mutex_leave(mem.mutex);
348 void sqlite3_free(void *pPrior){
352 assert( mem.mutex!=0 );
353 sqlite3_mutex_enter(mem.mutex);
355 sqlite3_mutex_leave(mem.mutex);
361 ** Change the size of an existing memory allocation
363 void *sqlite3_realloc(void *pPrior, int nBytes){
367 return sqlite3_malloc(nBytes);
370 sqlite3_free(pPrior);
373 nOld = memsys4Size(pPrior);
374 if( nBytes<=nOld && nBytes>=nOld-128 ){
377 assert( mem.mutex!=0 );
378 sqlite3_mutex_enter(mem.mutex);
379 p = memsys4Malloc(nBytes);
382 memcpy(p, pPrior, nOld);
384 memcpy(p, pPrior, nBytes);
388 assert( mem.mutex!=0 );
389 sqlite3_mutex_leave(mem.mutex);
393 #endif /* SQLITE_MMAP_HEAP_SIZE */