os/persistentdata/persistentstorage/sql/SQLite364/mem4.c
author sl
Tue, 10 Jun 2014 14:32:02 +0200
changeset 1 260cb5ec6c19
permissions -rw-r--r--
Update contrib.
sl@0
     1
/*
sl@0
     2
** 2007 August 14
sl@0
     3
**
sl@0
     4
** The author disclaims copyright to this source code.  In place of
sl@0
     5
** a legal notice, here is a blessing:
sl@0
     6
**
sl@0
     7
**    May you do good and not evil.
sl@0
     8
**    May you find forgiveness for yourself and forgive others.
sl@0
     9
**    May you share freely, never taking more than you give.
sl@0
    10
**
sl@0
    11
*************************************************************************
sl@0
    12
** This file contains the C functions that implement a memory
sl@0
    13
** allocation subsystem for use by SQLite.  
sl@0
    14
**
sl@0
    15
** $Id: mem4.c,v 1.3 2008/06/18 17:09:10 danielk1977 Exp $
sl@0
    16
*/
sl@0
    17
#include "sqliteInt.h"
sl@0
    18
sl@0
    19
/*
sl@0
    20
** This version of the memory allocator attempts to obtain memory
sl@0
    21
** from mmap() if the size of the allocation is close to the size
sl@0
    22
** of a virtual memory page.  If the size of the allocation is different
sl@0
    23
** from the virtual memory page size, then ordinary malloc() is used.
sl@0
    24
** Ordinary malloc is also used if space allocated to mmap() is
sl@0
    25
** exhausted.
sl@0
    26
**
sl@0
    27
** Enable this memory allocation by compiling with -DSQLITE_MMAP_HEAP_SIZE=nnn
sl@0
    28
** where nnn is the maximum number of bytes of mmap-ed memory you want 
sl@0
    29
** to support.   This module may choose to use less memory than requested.
sl@0
    30
**
sl@0
    31
*/
sl@0
    32
#ifdef SQLITE_MMAP_HEAP_SIZE
sl@0
    33
sl@0
    34
/*
sl@0
    35
** This is a test version of the memory allocator that attempts to
sl@0
    36
** use mmap() and madvise() for allocations and frees of approximately
sl@0
    37
** the virtual memory page size.
sl@0
    38
*/
sl@0
    39
#include <sys/types.h>
sl@0
    40
#include <sys/mman.h>
sl@0
    41
#include <errno.h>
sl@0
    42
#include <unistd.h>
sl@0
    43
sl@0
    44
sl@0
    45
/*
sl@0
    46
** All of the static variables used by this module are collected
sl@0
    47
** into a single structure named "mem".  This is to keep the
sl@0
    48
** static variables organized and to reduce namespace pollution
sl@0
    49
** when this module is combined with other in the amalgamation.
sl@0
    50
*/
sl@0
    51
static struct {
sl@0
    52
  /*
sl@0
    53
  ** The alarm callback and its arguments.  The mem.mutex lock will
sl@0
    54
  ** be held while the callback is running.  Recursive calls into
sl@0
    55
  ** the memory subsystem are allowed, but no new callbacks will be
sl@0
    56
  ** issued.  The alarmBusy variable is set to prevent recursive
sl@0
    57
  ** callbacks.
sl@0
    58
  */
sl@0
    59
  sqlite3_int64 alarmThreshold;
sl@0
    60
  void (*alarmCallback)(void*, sqlite3_int64,int);
sl@0
    61
  void *alarmArg;
sl@0
    62
  int alarmBusy;
sl@0
    63
  
sl@0
    64
  /*
sl@0
    65
  ** Mutex to control access to the memory allocation subsystem.
sl@0
    66
  */
sl@0
    67
  sqlite3_mutex *mutex;
sl@0
    68
  
sl@0
    69
  /*
sl@0
    70
  ** Current allocation and high-water mark.
sl@0
    71
  */
sl@0
    72
  sqlite3_int64 nowUsed;
sl@0
    73
  sqlite3_int64 mxUsed;
sl@0
    74
sl@0
    75
  /*
sl@0
    76
  ** Current allocation and high-water marks for mmap allocated memory.
sl@0
    77
  */
sl@0
    78
  sqlite3_int64 nowUsedMMap;
sl@0
    79
  sqlite3_int64 mxUsedMMap;
sl@0
    80
sl@0
    81
  /*
sl@0
    82
  ** Size of a single mmap page.  Obtained from sysconf().
sl@0
    83
  */
sl@0
    84
  int szPage;
sl@0
    85
  int mnPage;
sl@0
    86
sl@0
    87
  /*
sl@0
    88
  ** The number of available mmap pages.
sl@0
    89
  */
sl@0
    90
  int nPage;
sl@0
    91
sl@0
    92
  /*
sl@0
    93
  ** Index of the first free page.  0 means no pages have been freed.
sl@0
    94
  */
sl@0
    95
  int firstFree;
sl@0
    96
sl@0
    97
  /* First unused page on the top of the heap.
sl@0
    98
  */
sl@0
    99
  int firstUnused;
sl@0
   100
sl@0
   101
  /*
sl@0
   102
  ** Bulk memory obtained from from mmap().
sl@0
   103
  */
sl@0
   104
  char *mmapHeap;   /* first byte of the heap */ 
sl@0
   105
sl@0
   106
} mem;
sl@0
   107
sl@0
   108
sl@0
   109
/*
sl@0
   110
** Enter the mutex mem.mutex. Allocate it if it is not already allocated.
sl@0
   111
** The mmap() region is initialized the first time this routine is called.
sl@0
   112
*/
sl@0
   113
static void memsys4Enter(void){
sl@0
   114
  if( mem.mutex==0 ){
sl@0
   115
    mem.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM);
sl@0
   116
  }
sl@0
   117
  sqlite3_mutex_enter(mem.mutex);
sl@0
   118
}
sl@0
   119
sl@0
   120
/*
sl@0
   121
** Attempt to free memory to the mmap heap.  This only works if
sl@0
   122
** the pointer p is within the range of memory addresses that
sl@0
   123
** comprise the mmap heap.  Return 1 if the memory was freed
sl@0
   124
** successfully.  Return 0 if the pointer is out of range.
sl@0
   125
*/
sl@0
   126
static int mmapFree(void *p){
sl@0
   127
  char *z;
sl@0
   128
  int idx, *a;
sl@0
   129
  if( mem.mmapHeap==MAP_FAILED || mem.nPage==0 ){
sl@0
   130
    return 0;
sl@0
   131
  }
sl@0
   132
  z = (char*)p;
sl@0
   133
  idx = (z - mem.mmapHeap)/mem.szPage;
sl@0
   134
  if( idx<1 || idx>=mem.nPage ){
sl@0
   135
    return 0;
sl@0
   136
  }
sl@0
   137
  a = (int*)mem.mmapHeap;
sl@0
   138
  a[idx] = a[mem.firstFree];
sl@0
   139
  mem.firstFree = idx;
sl@0
   140
  mem.nowUsedMMap -= mem.szPage;
sl@0
   141
  madvise(p, mem.szPage, MADV_DONTNEED);
sl@0
   142
  return 1;
sl@0
   143
}
sl@0
   144
sl@0
   145
/*
sl@0
   146
** Attempt to allocate nBytes from the mmap heap.  Return a pointer
sl@0
   147
** to the allocated page.  Or, return NULL if the allocation fails.
sl@0
   148
** 
sl@0
   149
** The allocation will fail if nBytes is not the right size.
sl@0
   150
** Or, the allocation will fail if the mmap heap has been exhausted.
sl@0
   151
*/
sl@0
   152
static void *mmapAlloc(int nBytes){
sl@0
   153
  int idx = 0;
sl@0
   154
  if( nBytes>mem.szPage || nBytes<mem.mnPage ){
sl@0
   155
    return 0;
sl@0
   156
  }
sl@0
   157
  if( mem.nPage==0 ){
sl@0
   158
    mem.szPage = sysconf(_SC_PAGE_SIZE);
sl@0
   159
    mem.mnPage = mem.szPage - mem.szPage/10;
sl@0
   160
    mem.nPage = SQLITE_MMAP_HEAP_SIZE/mem.szPage;
sl@0
   161
    if( mem.nPage * sizeof(int) > mem.szPage ){
sl@0
   162
      mem.nPage = mem.szPage/sizeof(int);
sl@0
   163
    }
sl@0
   164
    mem.mmapHeap =  mmap(0, mem.szPage*mem.nPage, PROT_WRITE|PROT_READ,
sl@0
   165
                         MAP_ANONYMOUS|MAP_SHARED, -1, 0);
sl@0
   166
    if( mem.mmapHeap==MAP_FAILED ){
sl@0
   167
      mem.firstUnused = errno;
sl@0
   168
    }else{
sl@0
   169
      mem.firstUnused = 1;
sl@0
   170
      mem.nowUsedMMap = mem.szPage;
sl@0
   171
    }
sl@0
   172
  }
sl@0
   173
  if( mem.mmapHeap==MAP_FAILED ){
sl@0
   174
    return 0;
sl@0
   175
  }
sl@0
   176
  if( mem.firstFree ){
sl@0
   177
    int idx = mem.firstFree;
sl@0
   178
    int *a = (int*)mem.mmapHeap;
sl@0
   179
    mem.firstFree = a[idx];
sl@0
   180
  }else if( mem.firstUnused<mem.nPage ){
sl@0
   181
    idx = mem.firstUnused++;
sl@0
   182
  }
sl@0
   183
  if( idx ){
sl@0
   184
    mem.nowUsedMMap += mem.szPage;
sl@0
   185
    if( mem.nowUsedMMap>mem.mxUsedMMap ){
sl@0
   186
      mem.mxUsedMMap = mem.nowUsedMMap;
sl@0
   187
    }
sl@0
   188
    return (void*)&mem.mmapHeap[idx*mem.szPage];
sl@0
   189
  }else{
sl@0
   190
    return 0;
sl@0
   191
  }
sl@0
   192
}
sl@0
   193
sl@0
   194
/*
sl@0
   195
** Release the mmap-ed memory region if it is currently allocated and
sl@0
   196
** is not in use.
sl@0
   197
*/
sl@0
   198
static void mmapUnmap(void){
sl@0
   199
  if( mem.mmapHeap==MAP_FAILED ) return;
sl@0
   200
  if( mem.nPage==0 ) return;
sl@0
   201
  if( mem.nowUsedMMap>mem.szPage ) return;
sl@0
   202
  munmap(mem.mmapHeap, mem.nPage*mem.szPage);
sl@0
   203
  mem.nowUsedMMap = 0;
sl@0
   204
  mem.nPage = 0;
sl@0
   205
}
sl@0
   206
    
sl@0
   207
sl@0
   208
/*
sl@0
   209
** Return the amount of memory currently checked out.
sl@0
   210
*/
sl@0
   211
sqlite3_int64 sqlite3_memory_used(void){
sl@0
   212
  sqlite3_int64 n;
sl@0
   213
  memsys4Enter();
sl@0
   214
  n = mem.nowUsed + mem.nowUsedMMap;
sl@0
   215
  sqlite3_mutex_leave(mem.mutex);  
sl@0
   216
  return n;
sl@0
   217
}
sl@0
   218
sl@0
   219
/*
sl@0
   220
** Return the maximum amount of memory that has ever been
sl@0
   221
** checked out since either the beginning of this process
sl@0
   222
** or since the most recent reset.
sl@0
   223
*/
sl@0
   224
sqlite3_int64 sqlite3_memory_highwater(int resetFlag){
sl@0
   225
  sqlite3_int64 n;
sl@0
   226
  memsys4Enter();
sl@0
   227
  n = mem.mxUsed + mem.mxUsedMMap;
sl@0
   228
  if( resetFlag ){
sl@0
   229
    mem.mxUsed = mem.nowUsed;
sl@0
   230
    mem.mxUsedMMap = mem.nowUsedMMap;
sl@0
   231
  }
sl@0
   232
  sqlite3_mutex_leave(mem.mutex);  
sl@0
   233
  return n;
sl@0
   234
}
sl@0
   235
sl@0
   236
/*
sl@0
   237
** Change the alarm callback
sl@0
   238
*/
sl@0
   239
int sqlite3_memory_alarm(
sl@0
   240
  void(*xCallback)(void *pArg, sqlite3_int64 used,int N),
sl@0
   241
  void *pArg,
sl@0
   242
  sqlite3_int64 iThreshold
sl@0
   243
){
sl@0
   244
  memsys4Enter();
sl@0
   245
  mem.alarmCallback = xCallback;
sl@0
   246
  mem.alarmArg = pArg;
sl@0
   247
  mem.alarmThreshold = iThreshold;
sl@0
   248
  sqlite3_mutex_leave(mem.mutex);
sl@0
   249
  return SQLITE_OK;
sl@0
   250
}
sl@0
   251
sl@0
   252
/*
sl@0
   253
** Trigger the alarm 
sl@0
   254
*/
sl@0
   255
static void sqlite3MemsysAlarm(int nByte){
sl@0
   256
  void (*xCallback)(void*,sqlite3_int64,int);
sl@0
   257
  sqlite3_int64 nowUsed;
sl@0
   258
  void *pArg;
sl@0
   259
  if( mem.alarmCallback==0 || mem.alarmBusy  ) return;
sl@0
   260
  mem.alarmBusy = 1;
sl@0
   261
  xCallback = mem.alarmCallback;
sl@0
   262
  nowUsed = mem.nowUsed;
sl@0
   263
  pArg = mem.alarmArg;
sl@0
   264
  sqlite3_mutex_leave(mem.mutex);
sl@0
   265
  xCallback(pArg, nowUsed, nByte);
sl@0
   266
  sqlite3_mutex_enter(mem.mutex);
sl@0
   267
  mem.alarmBusy = 0;
sl@0
   268
}
sl@0
   269
sl@0
   270
/*
sl@0
   271
** Allocate nBytes of memory
sl@0
   272
*/
sl@0
   273
static void *memsys4Malloc(int nBytes){
sl@0
   274
  sqlite3_int64 *p = 0;
sl@0
   275
  if( mem.alarmCallback!=0
sl@0
   276
         && mem.nowUsed+mem.nowUsedMMap+nBytes>=mem.alarmThreshold ){
sl@0
   277
    sqlite3MemsysAlarm(nBytes);
sl@0
   278
  }
sl@0
   279
  if( (p = mmapAlloc(nBytes))==0 ){
sl@0
   280
    p = malloc(nBytes+8);
sl@0
   281
    if( p==0 ){
sl@0
   282
      sqlite3MemsysAlarm(nBytes);
sl@0
   283
      p = malloc(nBytes+8);
sl@0
   284
    }
sl@0
   285
    if( p ){
sl@0
   286
      p[0] = nBytes;
sl@0
   287
      p++;
sl@0
   288
      mem.nowUsed += nBytes;
sl@0
   289
      if( mem.nowUsed>mem.mxUsed ){
sl@0
   290
        mem.mxUsed = mem.nowUsed;
sl@0
   291
      }
sl@0
   292
    }
sl@0
   293
  }
sl@0
   294
  return (void*)p; 
sl@0
   295
}
sl@0
   296
sl@0
   297
/*
sl@0
   298
** Return the size of a memory allocation
sl@0
   299
*/
sl@0
   300
static int memsys4Size(void *pPrior){
sl@0
   301
  char *z = (char*)pPrior;
sl@0
   302
  int idx = mem.nPage ? (z - mem.mmapHeap)/mem.szPage : 0;
sl@0
   303
  int nByte;
sl@0
   304
  if( idx>=1 && idx<mem.nPage ){
sl@0
   305
    nByte = mem.szPage;
sl@0
   306
  }else{
sl@0
   307
    sqlite3_int64 *p = pPrior;
sl@0
   308
    p--;
sl@0
   309
    nByte = (int)*p;
sl@0
   310
  }
sl@0
   311
  return nByte;
sl@0
   312
}
sl@0
   313
sl@0
   314
/*
sl@0
   315
** Free memory.
sl@0
   316
*/
sl@0
   317
static void memsys4Free(void *pPrior){
sl@0
   318
  sqlite3_int64 *p;
sl@0
   319
  int nByte;
sl@0
   320
  if( mmapFree(pPrior)==0 ){
sl@0
   321
    p = pPrior;
sl@0
   322
    p--;
sl@0
   323
    nByte = (int)*p;
sl@0
   324
    mem.nowUsed -= nByte;
sl@0
   325
    free(p);
sl@0
   326
    if( mem.nowUsed==0 ){
sl@0
   327
      mmapUnmap();
sl@0
   328
    }      
sl@0
   329
  }
sl@0
   330
}
sl@0
   331
sl@0
   332
/*
sl@0
   333
** Allocate nBytes of memory
sl@0
   334
*/
sl@0
   335
void *sqlite3_malloc(int nBytes){
sl@0
   336
  sqlite3_int64 *p = 0;
sl@0
   337
  if( nBytes>0 ){
sl@0
   338
    memsys4Enter();
sl@0
   339
    p = memsys4Malloc(nBytes);
sl@0
   340
    sqlite3_mutex_leave(mem.mutex);
sl@0
   341
  }
sl@0
   342
  return (void*)p; 
sl@0
   343
}
sl@0
   344
sl@0
   345
/*
sl@0
   346
** Free memory.
sl@0
   347
*/
sl@0
   348
void sqlite3_free(void *pPrior){
sl@0
   349
  if( pPrior==0 ){
sl@0
   350
    return;
sl@0
   351
  }
sl@0
   352
  assert( mem.mutex!=0 );
sl@0
   353
  sqlite3_mutex_enter(mem.mutex);
sl@0
   354
  memsys4Free(pPrior);
sl@0
   355
  sqlite3_mutex_leave(mem.mutex);  
sl@0
   356
}
sl@0
   357
sl@0
   358
sl@0
   359
sl@0
   360
/*
sl@0
   361
** Change the size of an existing memory allocation
sl@0
   362
*/
sl@0
   363
void *sqlite3_realloc(void *pPrior, int nBytes){
sl@0
   364
  int nOld;
sl@0
   365
  sqlite3_int64 *p;
sl@0
   366
  if( pPrior==0 ){
sl@0
   367
    return sqlite3_malloc(nBytes);
sl@0
   368
  }
sl@0
   369
  if( nBytes<=0 ){
sl@0
   370
    sqlite3_free(pPrior);
sl@0
   371
    return 0;
sl@0
   372
  }
sl@0
   373
  nOld = memsys4Size(pPrior);
sl@0
   374
  if( nBytes<=nOld && nBytes>=nOld-128 ){
sl@0
   375
    return pPrior;
sl@0
   376
  }
sl@0
   377
  assert( mem.mutex!=0 );
sl@0
   378
  sqlite3_mutex_enter(mem.mutex);
sl@0
   379
  p = memsys4Malloc(nBytes);
sl@0
   380
  if( p ){
sl@0
   381
    if( nOld<nBytes ){
sl@0
   382
      memcpy(p, pPrior, nOld);
sl@0
   383
    }else{
sl@0
   384
      memcpy(p, pPrior, nBytes);
sl@0
   385
    }
sl@0
   386
    memsys4Free(pPrior);
sl@0
   387
  }
sl@0
   388
  assert( mem.mutex!=0 );
sl@0
   389
  sqlite3_mutex_leave(mem.mutex);
sl@0
   390
  return (void*)p;
sl@0
   391
}
sl@0
   392
sl@0
   393
#endif /* SQLITE_MMAP_HEAP_SIZE */