Update contrib.
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** The code in this file implements execution method of the
13 ** Virtual Database Engine (VDBE). A separate file ("vdbeaux.c")
14 ** handles housekeeping details such as creating and deleting
15 ** VDBE instances. This file is solely interested in executing
18 ** In the external interface, an "sqlite3_stmt*" is an opaque pointer
21 ** The SQL parser generates a program which is then executed by
22 ** the VDBE to do the work of the SQL statement. VDBE programs are
23 ** similar in form to assembly language. The program consists of
24 ** a linear sequence of operations. Each operation has an opcode
25 ** and 5 operands. Operands P1, P2, and P3 are integers. Operand P4
26 ** is a null-terminated string. Operand P5 is an unsigned character.
27 ** Few opcodes use all 5 operands.
29 ** Computation results are stored on a set of registers numbered beginning
30 ** with 1 and going up to Vdbe.nMem. Each register can store
31 ** either an integer, a null-terminated string, a floating point
32 ** number, or the SQL "NULL" value. An implicit conversion from one
33 ** type to the other occurs as necessary.
35 ** Most of the code in this file is taken up by the sqlite3VdbeExec()
36 ** function which does the work of interpreting a VDBE program.
37 ** But other routines are also provided to help in building up
38 ** a program instruction by instruction.
40 ** Various scripts scan this source file in order to generate HTML
41 ** documentation, headers files, or other derived files. The formatting
42 ** of the code in this file is, therefore, important. See other comments
43 ** in this file for details. If in doubt, do not deviate from existing
44 ** commenting and indentation practices when changing or adding code.
46 ** $Id: vdbe.c,v 1.772 2008/08/02 15:10:09 danielk1977 Exp $
48 #include "sqliteInt.h"
53 ** The following global variable is incremented every time a cursor
54 ** moves, either by the OP_MoveXX, OP_Next, or OP_Prev opcodes. The test
55 ** procedures use this information to make sure that indices are
56 ** working correctly. This variable has no function other than to
57 ** help verify the correct operation of the library.
60 int sqlite3_search_count = 0;
64 ** When this global variable is positive, it gets decremented once before
65 ** each instruction in the VDBE. When reaches zero, the u1.isInterrupted
66 ** field of the sqlite3 structure is set in order to simulate and interrupt.
68 ** This facility is used for testing purposes only. It does not function
69 ** in an ordinary build.
72 int sqlite3_interrupt_count = 0;
76 ** The next global variable is incremented each type the OP_Sort opcode
77 ** is executed. The test procedures use this information to make sure that
78 ** sorting is occurring or not occurring at appropriate times. This variable
79 ** has no function other than to help verify the correct operation of the
83 int sqlite3_sort_count = 0;
87 ** The next global variable records the size of the largest MEM_Blob
88 ** or MEM_Str that has been used by a VDBE opcode. The test procedures
89 ** use this information to make sure that the zero-blob functionality
90 ** is working correctly. This variable has no function other than to
91 ** help verify the correct operation of the library.
94 int sqlite3_max_blobsize = 0;
95 static void updateMaxBlobsize(Mem *p){
96 if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){
97 sqlite3_max_blobsize = p->n;
103 ** Test a register to see if it exceeds the current maximum blob size.
104 ** If it does, record the new maximum blob size.
106 #if defined(SQLITE_TEST) && !defined(SQLITE_OMIT_BUILTIN_TEST)
107 # define UPDATE_MAX_BLOBSIZE(P) updateMaxBlobsize(P)
109 # define UPDATE_MAX_BLOBSIZE(P)
113 ** Release the memory associated with a register. This
114 ** leaves the Mem.flags field in an inconsistent state.
116 #define Release(P) if((P)->flags&MEM_Dyn){ sqlite3VdbeMemRelease(P); }
119 ** Convert the given register into a string if it isn't one
120 ** already. Return non-zero if a malloc() fails.
122 #define Stringify(P, enc) \
123 if(((P)->flags&(MEM_Str|MEM_Blob))==0 && sqlite3VdbeMemStringify(P,enc)) \
127 ** An ephemeral string value (signified by the MEM_Ephem flag) contains
128 ** a pointer to a dynamically allocated string where some other entity
129 ** is responsible for deallocating that string. Because the register
130 ** does not control the string, it might be deleted without the register
133 ** This routine converts an ephemeral string into a dynamically allocated
134 ** string that the register itself controls. In other words, it
135 ** converts an MEM_Ephem string into an MEM_Dyn string.
137 #define Deephemeralize(P) \
138 if( ((P)->flags&MEM_Ephem)!=0 \
139 && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;}
142 ** Call sqlite3VdbeMemExpandBlob() on the supplied value (type Mem*)
145 #define ExpandBlob(P) (((P)->flags&MEM_Zero)?sqlite3VdbeMemExpandBlob(P):0)
148 ** Argument pMem points at a register that will be passed to a
149 ** user-defined function or returned to the user as the result of a query.
150 ** The second argument, 'db_enc' is the text encoding used by the vdbe for
151 ** register variables. This routine sets the pMem->enc and pMem->type
152 ** variables used by the sqlite3_value_*() routines.
154 #define storeTypeInfo(A,B) _storeTypeInfo(A)
155 static void _storeTypeInfo(Mem *pMem){
156 int flags = pMem->flags;
157 if( flags & MEM_Null ){
158 pMem->type = SQLITE_NULL;
160 else if( flags & MEM_Int ){
161 pMem->type = SQLITE_INTEGER;
163 else if( flags & MEM_Real ){
164 pMem->type = SQLITE_FLOAT;
166 else if( flags & MEM_Str ){
167 pMem->type = SQLITE_TEXT;
169 pMem->type = SQLITE_BLOB;
174 ** Properties of opcodes. The OPFLG_INITIALIZER macro is
175 ** created by mkopcodeh.awk during compilation. Data is obtained
176 ** from the comments following the "case OP_xxxx:" statements in
179 static unsigned char opcodeProperty[] = OPFLG_INITIALIZER;
182 ** Return true if an opcode has any of the OPFLG_xxx properties
183 ** specified by mask.
185 int sqlite3VdbeOpcodeHasProperty(int opcode, int mask){
186 assert( opcode>0 && opcode<sizeof(opcodeProperty) );
187 return (opcodeProperty[opcode]&mask)!=0;
191 ** Allocate cursor number iCur. Return a pointer to it. Return NULL
192 ** if we run out of memory.
194 static Cursor *allocateCursor(
201 /* Find the memory cell that will be used to store the blob of memory
202 ** required for this Cursor structure. It is convenient to use a
203 ** vdbe memory cell to manage the memory allocation required for a
204 ** Cursor structure for the following reasons:
206 ** * Sometimes cursor numbers are used for a couple of different
207 ** purposes in a vdbe program. The different uses might require
208 ** different sized allocations. Memory cells provide growable
211 ** * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can
212 ** be freed lazily via the sqlite3_release_memory() API. This
213 ** minimizes the number of malloc calls made by the system.
215 ** Memory cells for cursors are allocated at the top of the address
216 ** space. Memory cell (p->nMem) corresponds to cursor 0. Space for
217 ** cursor 1 is managed by memory cell (p->nMem-1), etc.
219 Mem *pMem = &p->aMem[p->nMem-iCur];
223 /* If the opcode of pOp is OP_SetNumColumns, then pOp->p2 contains
224 ** the number of fields in the records contained in the table or
225 ** index being opened. Use this to reserve space for the
226 ** Cursor.aType[] array.
229 if( pOp->opcode==OP_SetNumColumns || pOp->opcode==OP_OpenEphemeral ){
234 (isBtreeCursor?sqlite3BtreeCursorSize():0) +
235 2*nField*sizeof(u32);
237 assert( iCur<p->nCursor );
238 if( p->apCsr[iCur] ){
239 sqlite3VdbeFreeCursor(p, p->apCsr[iCur]);
242 if( SQLITE_OK==sqlite3VdbeMemGrow(pMem, nByte, 0) ){
243 p->apCsr[iCur] = pCx = (Cursor *)pMem->z;
244 memset(pMem->z, 0, nByte);
246 pCx->nField = nField;
248 pCx->aType = (u32 *)&pMem->z[sizeof(Cursor)];
251 pCx->pCursor = (BtCursor *)&pMem->z[sizeof(Cursor)+2*nField*sizeof(u32)];
258 ** Try to convert a value into a numeric representation if we can
259 ** do so without loss of information. In other words, if the string
260 ** looks like a number, convert it into a number. If it does not
261 ** look like a number, leave it alone.
263 static void applyNumericAffinity(Mem *pRec){
264 if( (pRec->flags & (MEM_Real|MEM_Int))==0 ){
266 sqlite3VdbeMemNulTerminate(pRec);
267 if( (pRec->flags&MEM_Str)
268 && sqlite3IsNumber(pRec->z, &realnum, pRec->enc) ){
270 sqlite3VdbeChangeEncoding(pRec, SQLITE_UTF8);
271 if( !realnum && sqlite3Atoi64(pRec->z, &value) ){
273 MemSetTypeFlag(pRec, MEM_Int);
275 sqlite3VdbeMemRealify(pRec);
282 ** Processing is determine by the affinity parameter:
284 ** SQLITE_AFF_INTEGER:
286 ** SQLITE_AFF_NUMERIC:
287 ** Try to convert pRec to an integer representation or a
288 ** floating-point representation if an integer representation
289 ** is not possible. Note that the integer representation is
290 ** always preferred, even if the affinity is REAL, because
291 ** an integer representation is more space efficient on disk.
294 ** Convert pRec to a text representation.
297 ** No-op. pRec is unchanged.
299 static void applyAffinity(
300 Mem *pRec, /* The value to apply affinity to */
301 char affinity, /* The affinity to be applied */
302 u8 enc /* Use this text encoding */
304 if( affinity==SQLITE_AFF_TEXT ){
305 /* Only attempt the conversion to TEXT if there is an integer or real
306 ** representation (blob and NULL do not get converted) but no string
309 if( 0==(pRec->flags&MEM_Str) && (pRec->flags&(MEM_Real|MEM_Int)) ){
310 sqlite3VdbeMemStringify(pRec, enc);
312 pRec->flags &= ~(MEM_Real|MEM_Int);
313 }else if( affinity!=SQLITE_AFF_NONE ){
314 assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL
315 || affinity==SQLITE_AFF_NUMERIC );
316 applyNumericAffinity(pRec);
317 if( pRec->flags & MEM_Real ){
318 sqlite3VdbeIntegerAffinity(pRec);
324 ** Try to convert the type of a function argument or a result column
325 ** into a numeric representation. Use either INTEGER or REAL whichever
326 ** is appropriate. But only do the conversion if it is possible without
327 ** loss of information and return the revised type of the argument.
329 ** This is an EXPERIMENTAL api and is subject to change or removal.
331 int sqlite3_value_numeric_type(sqlite3_value *pVal){
332 Mem *pMem = (Mem*)pVal;
333 applyNumericAffinity(pMem);
334 storeTypeInfo(pMem, 0);
339 ** Exported version of applyAffinity(). This one works on sqlite3_value*,
340 ** not the internal Mem* type.
342 void sqlite3ValueApplyAffinity(
347 applyAffinity((Mem *)pVal, affinity, enc);
352 ** Write a nice string representation of the contents of cell pMem
353 ** into buffer zBuf, length nBuf.
355 void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf){
359 static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"};
366 assert( (f & (MEM_Static|MEM_Ephem))==0 );
367 }else if( f & MEM_Static ){
369 assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
370 }else if( f & MEM_Ephem ){
372 assert( (f & (MEM_Static|MEM_Dyn))==0 );
377 sqlite3_snprintf(100, zCsr, "%c", c);
378 zCsr += strlen(zCsr);
379 sqlite3_snprintf(100, zCsr, "%d[", pMem->n);
380 zCsr += strlen(zCsr);
381 for(i=0; i<16 && i<pMem->n; i++){
382 sqlite3_snprintf(100, zCsr, "%02X", ((int)pMem->z[i] & 0xFF));
383 zCsr += strlen(zCsr);
385 for(i=0; i<16 && i<pMem->n; i++){
387 if( z<32 || z>126 ) *zCsr++ = '.';
391 sqlite3_snprintf(100, zCsr, "]%s", encnames[pMem->enc]);
392 zCsr += strlen(zCsr);
394 sqlite3_snprintf(100, zCsr,"+%lldz",pMem->u.i);
395 zCsr += strlen(zCsr);
398 }else if( f & MEM_Str ){
403 assert( (f & (MEM_Static|MEM_Ephem))==0 );
404 }else if( f & MEM_Static ){
406 assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
407 }else if( f & MEM_Ephem ){
409 assert( (f & (MEM_Static|MEM_Dyn))==0 );
414 sqlite3_snprintf(100, &zBuf[k], "%d", pMem->n);
415 k += strlen(&zBuf[k]);
417 for(j=0; j<15 && j<pMem->n; j++){
419 if( c>=0x20 && c<0x7f ){
426 sqlite3_snprintf(100,&zBuf[k], encnames[pMem->enc]);
427 k += strlen(&zBuf[k]);
435 ** Print the value of a register for tracing purposes:
437 static void memTracePrint(FILE *out, Mem *p){
438 if( p->flags & MEM_Null ){
439 fprintf(out, " NULL");
440 }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){
441 fprintf(out, " si:%lld", p->u.i);
442 }else if( p->flags & MEM_Int ){
443 fprintf(out, " i:%lld", p->u.i);
444 }else if( p->flags & MEM_Real ){
445 fprintf(out, " r:%g", p->r);
448 sqlite3VdbeMemPrettyPrint(p, zBuf);
450 fprintf(out, "%s", zBuf);
453 static void registerTrace(FILE *out, int iReg, Mem *p){
454 fprintf(out, "REG[%d] = ", iReg);
455 memTracePrint(out, p);
461 # define REGISTER_TRACE(R,M) if(p->trace)registerTrace(p->trace,R,M)
463 # define REGISTER_TRACE(R,M)
470 ** hwtime.h contains inline assembler code for implementing
471 ** high-performance timing routines.
478 ** The CHECK_FOR_INTERRUPT macro defined here looks to see if the
479 ** sqlite3_interrupt() routine has been called. If it has been, then
480 ** processing of the VDBE program is interrupted.
482 ** This macro added to every instruction that does a jump in order to
483 ** implement a loop. This test used to be on every single instruction,
484 ** but that meant we more testing that we needed. By only testing the
485 ** flag on jump instructions, we get a (small) speed improvement.
487 #define CHECK_FOR_INTERRUPT \
488 if( db->u1.isInterrupted ) goto abort_due_to_interrupt;
491 static int fileExists(sqlite3 *db, const char *zFile){
495 /* If we are currently testing IO errors, then do not call OsAccess() to
496 ** test for the presence of zFile. This is because any IO error that
497 ** occurs here will not be reported, causing the test to fail.
499 extern int sqlite3_io_error_pending;
500 if( sqlite3_io_error_pending<=0 )
502 rc = sqlite3OsAccess(db->pVfs, zFile, SQLITE_ACCESS_EXISTS, &res);
503 return (res && rc==SQLITE_OK);
508 ** Execute as much of a VDBE program as we can then return.
510 ** sqlite3VdbeMakeReady() must be called before this routine in order to
511 ** close the program with a final OP_Halt and to set up the callbacks
512 ** and the error message pointer.
514 ** Whenever a row or result data is available, this routine will either
515 ** invoke the result callback (if there is one) or return with
518 ** If an attempt is made to open a locked database, then this routine
519 ** will either invoke the busy callback (if there is one) or it will
520 ** return SQLITE_BUSY.
522 ** If an error occurs, an error message is written to memory obtained
523 ** from sqlite3_malloc() and p->zErrMsg is made to point to that memory.
524 ** The error code is stored in p->rc and this routine returns SQLITE_ERROR.
526 ** If the callback ever returns non-zero, then the program exits
527 ** immediately. There will be no error message but the p->rc field is
528 ** set to SQLITE_ABORT and this routine will return SQLITE_ERROR.
530 ** A memory allocation error causes p->rc to be set to SQLITE_NOMEM and this
531 ** routine to return SQLITE_ERROR.
533 ** Other fatal errors return SQLITE_ERROR.
535 ** After this routine has finished, sqlite3VdbeFinalize() should be
536 ** used to clean up the mess that was left behind.
539 Vdbe *p /* The VDBE */
541 int pc; /* The program counter */
542 Op *pOp; /* Current operation */
543 int rc = SQLITE_OK; /* Value to return */
544 sqlite3 *db = p->db; /* The database */
545 u8 encoding = ENC(db); /* The database encoding */
546 Mem *pIn1 = 0; /* Input operands */
547 Mem *pIn2 = 0; /* Input operands */
548 Mem *pIn3 = 0; /* Input operands */
549 Mem *pOut = 0; /* Output operand */
551 int iCompare = 0; /* Result of last OP_Compare operation */
552 int *aPermute = 0; /* Permuation of columns for OP_Compare */
554 u64 start; /* CPU clock count at start of opcode */
555 int origPc; /* Program counter at start of opcode */
557 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
558 int nProgressOps = 0; /* Opcodes executed since progress callback. */
561 assert( p->magic==VDBE_MAGIC_RUN ); /* sqlite3_step() verifies this */
562 assert( db->magic==SQLITE_MAGIC_BUSY );
563 sqlite3BtreeMutexArrayEnter(&p->aMutex);
564 if( p->rc==SQLITE_NOMEM ){
565 /* This happens if a malloc() inside a call to sqlite3_column_text() or
566 ** sqlite3_column_text16() failed. */
569 assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY );
571 assert( p->explain==0 );
573 db->busyHandler.nBusy = 0;
575 sqlite3VdbeIOTraceSql(p);
577 sqlite3BeginBenignMalloc();
579 && ((p->db->flags & SQLITE_VdbeListing) || fileExists(db, "vdbe_explain"))
582 printf("VDBE Program Listing:\n");
583 sqlite3VdbePrintSql(p);
584 for(i=0; i<p->nOp; i++){
585 sqlite3VdbePrintOp(stdout, i, &p->aOp[i]);
588 if( fileExists(db, "vdbe_trace") ){
591 sqlite3EndBenignMalloc();
593 for(pc=p->pc; rc==SQLITE_OK; pc++){
594 assert( pc>=0 && pc<p->nOp );
595 if( db->mallocFailed ) goto no_mem;
598 start = sqlite3Hwtime();
602 /* Only allow tracing if SQLITE_DEBUG is defined.
607 printf("VDBE Execution Trace:\n");
608 sqlite3VdbePrintSql(p);
610 sqlite3VdbePrintOp(p->trace, pc, pOp);
612 if( p->trace==0 && pc==0 ){
613 sqlite3BeginBenignMalloc();
614 if( fileExists(db, "vdbe_sqltrace") ){
615 sqlite3VdbePrintSql(p);
617 sqlite3EndBenignMalloc();
622 /* Check to see if we need to simulate an interrupt. This only happens
623 ** if we have a special test build.
626 if( sqlite3_interrupt_count>0 ){
627 sqlite3_interrupt_count--;
628 if( sqlite3_interrupt_count==0 ){
629 sqlite3_interrupt(db);
634 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
635 /* Call the progress callback if it is configured and the required number
636 ** of VDBE ops have been executed (either since this invocation of
637 ** sqlite3VdbeExec() or since last time the progress callback was called).
638 ** If the progress callback returns non-zero, exit the virtual machine with
639 ** a return code SQLITE_ABORT.
642 if( db->nProgressOps==nProgressOps ){
644 if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
645 prc =db->xProgress(db->pProgressArg);
646 if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
648 rc = SQLITE_INTERRUPT;
649 goto vdbe_error_halt;
657 /* Do common setup processing for any opcode that is marked
658 ** with the "out2-prerelease" tag. Such opcodes have a single
659 ** output which is specified by the P2 parameter. The P2 register
660 ** is initialized to a NULL.
662 opProperty = opcodeProperty[pOp->opcode];
663 if( (opProperty & OPFLG_OUT2_PRERELEASE)!=0 ){
665 assert( pOp->p2<=p->nMem );
666 pOut = &p->aMem[pOp->p2];
667 sqlite3VdbeMemReleaseExternal(pOut);
668 pOut->flags = MEM_Null;
671 /* Do common setup for opcodes marked with one of the following
672 ** combinations of properties.
679 ** Variables pIn1, pIn2, and pIn3 are made to point to appropriate
680 ** registers for inputs. Variable pOut points to the output register.
682 if( (opProperty & OPFLG_IN1)!=0 ){
684 assert( pOp->p1<=p->nMem );
685 pIn1 = &p->aMem[pOp->p1];
686 REGISTER_TRACE(pOp->p1, pIn1);
687 if( (opProperty & OPFLG_IN2)!=0 ){
689 assert( pOp->p2<=p->nMem );
690 pIn2 = &p->aMem[pOp->p2];
691 REGISTER_TRACE(pOp->p2, pIn2);
692 if( (opProperty & OPFLG_OUT3)!=0 ){
694 assert( pOp->p3<=p->nMem );
695 pOut = &p->aMem[pOp->p3];
697 }else if( (opProperty & OPFLG_IN3)!=0 ){
699 assert( pOp->p3<=p->nMem );
700 pIn3 = &p->aMem[pOp->p3];
701 REGISTER_TRACE(pOp->p3, pIn3);
703 }else if( (opProperty & OPFLG_IN2)!=0 ){
705 assert( pOp->p2<=p->nMem );
706 pIn2 = &p->aMem[pOp->p2];
707 REGISTER_TRACE(pOp->p2, pIn2);
708 }else if( (opProperty & OPFLG_IN3)!=0 ){
710 assert( pOp->p3<=p->nMem );
711 pIn3 = &p->aMem[pOp->p3];
712 REGISTER_TRACE(pOp->p3, pIn3);
715 switch( pOp->opcode ){
717 /*****************************************************************************
718 ** What follows is a massive switch statement where each case implements a
719 ** separate instruction in the virtual machine. If we follow the usual
720 ** indentation conventions, each case should be indented by 6 spaces. But
721 ** that is a lot of wasted space on the left margin. So the code within
722 ** the switch statement will break with convention and be flush-left. Another
723 ** big comment (similar to this one) will mark the point in the code where
724 ** we transition back to normal indentation.
726 ** The formatting of each case is important. The makefile for SQLite
727 ** generates two C files "opcodes.h" and "opcodes.c" by scanning this
728 ** file looking for lines that begin with "case OP_". The opcodes.h files
729 ** will be filled with #defines that give unique integer values to each
730 ** opcode and the opcodes.c file is filled with an array of strings where
731 ** each string is the symbolic name for the corresponding opcode. If the
732 ** case statement is followed by a comment of the form "/# same as ... #/"
733 ** that comment is used to determine the particular value of the opcode.
735 ** Other keywords in the comment that follows each case are used to
736 ** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[].
737 ** Keywords include: in1, in2, in3, out2_prerelease, out2, out3. See
738 ** the mkopcodeh.awk script for additional information.
740 ** Documentation about VDBE opcodes is generated by scanning this file
741 ** for lines of that contain "Opcode:". That line and all subsequent
742 ** comment lines are used in the generation of the opcode.html documentation
747 ** Formatting is important to scripts that scan this file.
748 ** Do not deviate from the formatting style currently in use.
750 *****************************************************************************/
752 /* Opcode: Goto * P2 * * *
754 ** An unconditional jump to address P2.
755 ** The next instruction executed will be
756 ** the one at index P2 from the beginning of
759 case OP_Goto: { /* jump */
765 /* Opcode: Gosub P1 P2 * * *
767 ** Write the current address onto register P1
768 ** and then jump to address P2.
770 case OP_Gosub: { /* jump */
772 assert( pOp->p1<=p->nMem );
773 pIn1 = &p->aMem[pOp->p1];
774 assert( (pIn1->flags & MEM_Dyn)==0 );
775 pIn1->flags = MEM_Int;
777 REGISTER_TRACE(pOp->p1, pIn1);
782 /* Opcode: Return P1 * * * *
784 ** Jump to the next instruction after the address in register P1.
786 case OP_Return: { /* in1 */
787 assert( pIn1->flags & MEM_Int );
792 /* Opcode: Yield P1 * * * *
794 ** Swap the program counter with the value in register P1.
799 assert( pOp->p1<=p->nMem );
800 pIn1 = &p->aMem[pOp->p1];
801 assert( (pIn1->flags & MEM_Dyn)==0 );
802 pIn1->flags = MEM_Int;
805 REGISTER_TRACE(pOp->p1, pIn1);
811 /* Opcode: Halt P1 P2 * P4 *
813 ** Exit immediately. All open cursors, Fifos, etc are closed
816 ** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(),
817 ** or sqlite3_finalize(). For a normal halt, this should be SQLITE_OK (0).
818 ** For errors, it can be some other value. If P1!=0 then P2 will determine
819 ** whether or not to rollback the current transaction. Do not rollback
820 ** if P2==OE_Fail. Do the rollback if P2==OE_Rollback. If P2==OE_Abort,
821 ** then back out all changes that have occurred during this execution of the
822 ** VDBE, but do not rollback the transaction.
824 ** If P4 is not null then it is an error message string.
826 ** There is an implied "Halt 0 0 0" instruction inserted at the very end of
827 ** every program. So a jump past the last instruction of the program
828 ** is the same as executing Halt.
833 p->errorAction = pOp->p2;
835 sqlite3SetString(&p->zErrMsg, db, "%s", pOp->p4.z);
837 rc = sqlite3VdbeHalt(p);
838 assert( rc==SQLITE_BUSY || rc==SQLITE_OK );
839 if( rc==SQLITE_BUSY ){
840 p->rc = rc = SQLITE_BUSY;
842 rc = p->rc ? SQLITE_ERROR : SQLITE_DONE;
847 /* Opcode: Integer P1 P2 * * *
849 ** The 32-bit integer value P1 is written into register P2.
851 case OP_Integer: { /* out2-prerelease */
852 pOut->flags = MEM_Int;
857 /* Opcode: Int64 * P2 * P4 *
859 ** P4 is a pointer to a 64-bit integer value.
860 ** Write that value into register P2.
862 case OP_Int64: { /* out2-prerelease */
863 assert( pOp->p4.pI64!=0 );
864 pOut->flags = MEM_Int;
865 pOut->u.i = *pOp->p4.pI64;
869 /* Opcode: Real * P2 * P4 *
871 ** P4 is a pointer to a 64-bit floating point value.
872 ** Write that value into register P2.
874 case OP_Real: { /* same as TK_FLOAT, out2-prerelease */
875 pOut->flags = MEM_Real;
876 assert( !sqlite3IsNaN(*pOp->p4.pReal) );
877 pOut->r = *pOp->p4.pReal;
881 /* Opcode: String8 * P2 * P4 *
883 ** P4 points to a nul terminated UTF-8 string. This opcode is transformed
884 ** into an OP_String before it is executed for the first time.
886 case OP_String8: { /* same as TK_STRING, out2-prerelease */
887 assert( pOp->p4.z!=0 );
888 pOp->opcode = OP_String;
889 pOp->p1 = strlen(pOp->p4.z);
891 #ifndef SQLITE_OMIT_UTF16
892 if( encoding!=SQLITE_UTF8 ){
893 sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC);
894 if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem;
895 if( SQLITE_OK!=sqlite3VdbeMemMakeWriteable(pOut) ) goto no_mem;
897 pOut->flags |= MEM_Static;
898 pOut->flags &= ~MEM_Dyn;
899 if( pOp->p4type==P4_DYNAMIC ){
900 sqlite3DbFree(db, pOp->p4.z);
902 pOp->p4type = P4_DYNAMIC;
905 if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){
908 UPDATE_MAX_BLOBSIZE(pOut);
912 if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){
915 /* Fall through to the next case, OP_String */
918 /* Opcode: String P1 P2 * P4 *
920 ** The string value P4 of length P1 (bytes) is stored in register P2.
922 case OP_String: { /* out2-prerelease */
923 assert( pOp->p4.z!=0 );
924 pOut->flags = MEM_Str|MEM_Static|MEM_Term;
927 pOut->enc = encoding;
928 UPDATE_MAX_BLOBSIZE(pOut);
932 /* Opcode: Null * P2 * * *
934 ** Write a NULL into register P2.
936 case OP_Null: { /* out2-prerelease */
941 #ifndef SQLITE_OMIT_BLOB_LITERAL
942 /* Opcode: Blob P1 P2 * P4
944 ** P4 points to a blob of data P1 bytes long. Store this
945 ** blob in register P2. This instruction is not coded directly
946 ** by the compiler. Instead, the compiler layer specifies
947 ** an OP_HexBlob opcode, with the hex string representation of
948 ** the blob as P4. This opcode is transformed to an OP_Blob
949 ** the first time it is executed.
951 case OP_Blob: { /* out2-prerelease */
952 assert( pOp->p1 <= SQLITE_MAX_LENGTH );
953 sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0);
954 pOut->enc = encoding;
955 UPDATE_MAX_BLOBSIZE(pOut);
958 #endif /* SQLITE_OMIT_BLOB_LITERAL */
960 /* Opcode: Variable P1 P2 * * *
962 ** The value of variable P1 is written into register P2. A variable is
963 ** an unknown in the original SQL string as handed to sqlite3_compile().
964 ** Any occurrence of the '?' character in the original SQL is considered
965 ** a variable. Variables in the SQL string are number from left to
966 ** right beginning with 1. The values of variables are set using the
967 ** sqlite3_bind() API.
969 case OP_Variable: { /* out2-prerelease */
972 assert( j>=0 && j<p->nVar );
975 if( sqlite3VdbeMemTooBig(pVar) ){
978 sqlite3VdbeMemShallowCopy(pOut, &p->aVar[j], MEM_Static);
979 UPDATE_MAX_BLOBSIZE(pOut);
983 /* Opcode: Move P1 P2 P3 * *
985 ** Move the values in register P1..P1+P3-1 over into
986 ** registers P2..P2+P3-1. Registers P1..P1+P1-1 are
987 ** left holding a NULL. It is an error for register ranges
988 ** P1..P1+P3-1 and P2..P2+P3-1 to overlap.
997 assert( p1+n<p->nMem );
1000 assert( p2+n<p->nMem );
1001 pOut = &p->aMem[p2];
1002 assert( p1+n<=p2 || p2+n<=p1 );
1004 zMalloc = pOut->zMalloc;
1006 sqlite3VdbeMemMove(pOut, pIn1);
1007 pIn1->zMalloc = zMalloc;
1008 REGISTER_TRACE(p2++, pOut);
1015 /* Opcode: Copy P1 P2 * * *
1017 ** Make a copy of register P1 into register P2.
1019 ** This instruction makes a deep copy of the value. A duplicate
1020 ** is made of any string or blob constant. See also OP_SCopy.
1023 assert( pOp->p1>0 );
1024 assert( pOp->p1<=p->nMem );
1025 pIn1 = &p->aMem[pOp->p1];
1026 assert( pOp->p2>0 );
1027 assert( pOp->p2<=p->nMem );
1028 pOut = &p->aMem[pOp->p2];
1029 assert( pOut!=pIn1 );
1030 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
1031 Deephemeralize(pOut);
1032 REGISTER_TRACE(pOp->p2, pOut);
1036 /* Opcode: SCopy P1 P2 * * *
1038 ** Make a shallow copy of register P1 into register P2.
1040 ** This instruction makes a shallow copy of the value. If the value
1041 ** is a string or blob, then the copy is only a pointer to the
1042 ** original and hence if the original changes so will the copy.
1043 ** Worse, if the original is deallocated, the copy becomes invalid.
1044 ** Thus the program must guarantee that the original will not change
1045 ** during the lifetime of the copy. Use OP_Copy to make a complete
1049 assert( pOp->p1>0 );
1050 assert( pOp->p1<=p->nMem );
1051 pIn1 = &p->aMem[pOp->p1];
1052 REGISTER_TRACE(pOp->p1, pIn1);
1053 assert( pOp->p2>0 );
1054 assert( pOp->p2<=p->nMem );
1055 pOut = &p->aMem[pOp->p2];
1056 assert( pOut!=pIn1 );
1057 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
1058 REGISTER_TRACE(pOp->p2, pOut);
1062 /* Opcode: ResultRow P1 P2 * * *
1064 ** The registers P1 through P1+P2-1 contain a single row of
1065 ** results. This opcode causes the sqlite3_step() call to terminate
1066 ** with an SQLITE_ROW return code and it sets up the sqlite3_stmt
1067 ** structure to provide access to the top P1 values as the result
1070 case OP_ResultRow: {
1073 assert( p->nResColumn==pOp->p2 );
1074 assert( pOp->p1>0 );
1075 assert( pOp->p1+pOp->p2<=p->nMem );
1077 /* Invalidate all ephemeral cursor row caches */
1078 p->cacheCtr = (p->cacheCtr + 2)|1;
1080 /* Make sure the results of the current row are \000 terminated
1081 ** and have an assigned type. The results are de-ephemeralized as
1084 pMem = p->pResultSet = &p->aMem[pOp->p1];
1085 for(i=0; i<pOp->p2; i++){
1086 sqlite3VdbeMemNulTerminate(&pMem[i]);
1087 storeTypeInfo(&pMem[i], encoding);
1088 REGISTER_TRACE(pOp->p1+i, &pMem[i]);
1090 if( db->mallocFailed ) goto no_mem;
1092 /* Return SQLITE_ROW
1100 /* Opcode: Concat P1 P2 P3 * *
1102 ** Add the text in register P1 onto the end of the text in
1103 ** register P2 and store the result in register P3.
1104 ** If either the P1 or P2 text are NULL then store NULL in P3.
1108 ** It is illegal for P1 and P3 to be the same register. Sometimes,
1109 ** if P3 is the same register as P2, the implementation is able
1110 ** to avoid a memcpy().
1112 case OP_Concat: { /* same as TK_CONCAT, in1, in2, out3 */
1115 assert( pIn1!=pOut );
1116 if( (pIn1->flags | pIn2->flags) & MEM_Null ){
1117 sqlite3VdbeMemSetNull(pOut);
1121 Stringify(pIn1, encoding);
1123 Stringify(pIn2, encoding);
1124 nByte = pIn1->n + pIn2->n;
1125 if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
1128 MemSetTypeFlag(pOut, MEM_Str);
1129 if( sqlite3VdbeMemGrow(pOut, nByte+2, pOut==pIn2) ){
1133 memcpy(pOut->z, pIn2->z, pIn2->n);
1135 memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n);
1137 pOut->z[nByte+1] = 0;
1138 pOut->flags |= MEM_Term;
1140 pOut->enc = encoding;
1141 UPDATE_MAX_BLOBSIZE(pOut);
1145 /* Opcode: Add P1 P2 P3 * *
1147 ** Add the value in register P1 to the value in register P2
1148 ** and store the result in register P3.
1149 ** If either input is NULL, the result is NULL.
1151 /* Opcode: Multiply P1 P2 P3 * *
1154 ** Multiply the value in register P1 by the value in register P2
1155 ** and store the result in register P3.
1156 ** If either input is NULL, the result is NULL.
1158 /* Opcode: Subtract P1 P2 P3 * *
1160 ** Subtract the value in register P1 from the value in register P2
1161 ** and store the result in register P3.
1162 ** If either input is NULL, the result is NULL.
1164 /* Opcode: Divide P1 P2 P3 * *
1166 ** Divide the value in register P1 by the value in register P2
1167 ** and store the result in register P3. If the value in register P2
1168 ** is zero, then the result is NULL.
1169 ** If either input is NULL, the result is NULL.
1171 /* Opcode: Remainder P1 P2 P3 * *
1173 ** Compute the remainder after integer division of the value in
1174 ** register P1 by the value in register P2 and store the result in P3.
1175 ** If the value in register P2 is zero the result is NULL.
1176 ** If either operand is NULL, the result is NULL.
1178 case OP_Add: /* same as TK_PLUS, in1, in2, out3 */
1179 case OP_Subtract: /* same as TK_MINUS, in1, in2, out3 */
1180 case OP_Multiply: /* same as TK_STAR, in1, in2, out3 */
1181 case OP_Divide: /* same as TK_SLASH, in1, in2, out3 */
1182 case OP_Remainder: { /* same as TK_REM, in1, in2, out3 */
1184 applyNumericAffinity(pIn1);
1185 applyNumericAffinity(pIn2);
1186 flags = pIn1->flags | pIn2->flags;
1187 if( (flags & MEM_Null)!=0 ) goto arithmetic_result_is_null;
1188 if( (pIn1->flags & pIn2->flags & MEM_Int)==MEM_Int ){
1192 switch( pOp->opcode ){
1193 case OP_Add: b += a; break;
1194 case OP_Subtract: b -= a; break;
1195 case OP_Multiply: b *= a; break;
1197 if( a==0 ) goto arithmetic_result_is_null;
1198 /* Dividing the largest possible negative 64-bit integer (1<<63) by
1199 ** -1 returns an integer too large to store in a 64-bit data-type. On
1200 ** some architectures, the value overflows to (1<<63). On others,
1201 ** a SIGFPE is issued. The following statement normalizes this
1202 ** behavior so that all architectures behave as if integer
1203 ** overflow occurred.
1205 if( a==-1 && b==SMALLEST_INT64 ) a = 1;
1210 if( a==0 ) goto arithmetic_result_is_null;
1217 MemSetTypeFlag(pOut, MEM_Int);
1220 a = sqlite3VdbeRealValue(pIn1);
1221 b = sqlite3VdbeRealValue(pIn2);
1222 switch( pOp->opcode ){
1223 case OP_Add: b += a; break;
1224 case OP_Subtract: b -= a; break;
1225 case OP_Multiply: b *= a; break;
1227 if( a==0.0 ) goto arithmetic_result_is_null;
1234 if( ia==0 ) goto arithmetic_result_is_null;
1235 if( ia==-1 ) ia = 1;
1240 if( sqlite3IsNaN(b) ){
1241 goto arithmetic_result_is_null;
1244 MemSetTypeFlag(pOut, MEM_Real);
1245 if( (flags & MEM_Real)==0 ){
1246 sqlite3VdbeIntegerAffinity(pOut);
1251 arithmetic_result_is_null:
1252 sqlite3VdbeMemSetNull(pOut);
1256 /* Opcode: CollSeq * * P4
1258 ** P4 is a pointer to a CollSeq struct. If the next call to a user function
1259 ** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will
1260 ** be returned. This is used by the built-in min(), max() and nullif()
1263 ** The interface used by the implementation of the aforementioned functions
1264 ** to retrieve the collation sequence set by this opcode is not available
1265 ** publicly, only to user functions defined in func.c.
1268 assert( pOp->p4type==P4_COLLSEQ );
1272 /* Opcode: Function P1 P2 P3 P4 P5
1274 ** Invoke a user function (P4 is a pointer to a Function structure that
1275 ** defines the function) with P5 arguments taken from register P2 and
1276 ** successors. The result of the function is stored in register P3.
1277 ** Register P3 must not be one of the function inputs.
1279 ** P1 is a 32-bit bitmask indicating whether or not each argument to the
1280 ** function was determined to be constant at compile time. If the first
1281 ** argument was constant then bit 0 of P1 is set. This is used to determine
1282 ** whether meta data associated with a user function argument using the
1283 ** sqlite3_set_auxdata() API may be safely retained until the next
1284 ** invocation of this opcode.
1286 ** See also: AggStep and AggFinal
1291 sqlite3_context ctx;
1292 sqlite3_value **apVal;
1296 assert( apVal || n==0 );
1298 assert( n==0 || (pOp->p2>0 && pOp->p2+n<=p->nMem) );
1299 assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n );
1300 pArg = &p->aMem[pOp->p2];
1301 for(i=0; i<n; i++, pArg++){
1303 storeTypeInfo(pArg, encoding);
1304 REGISTER_TRACE(pOp->p2, pArg);
1307 assert( pOp->p4type==P4_FUNCDEF || pOp->p4type==P4_VDBEFUNC );
1308 if( pOp->p4type==P4_FUNCDEF ){
1309 ctx.pFunc = pOp->p4.pFunc;
1312 ctx.pVdbeFunc = (VdbeFunc*)pOp->p4.pVdbeFunc;
1313 ctx.pFunc = ctx.pVdbeFunc->pFunc;
1316 assert( pOp->p3>0 && pOp->p3<=p->nMem );
1317 pOut = &p->aMem[pOp->p3];
1318 ctx.s.flags = MEM_Null;
1323 /* The output cell may already have a buffer allocated. Move
1324 ** the pointer to ctx.s so in case the user-function can use
1325 ** the already allocated buffer instead of allocating a new one.
1327 sqlite3VdbeMemMove(&ctx.s, pOut);
1328 MemSetTypeFlag(&ctx.s, MEM_Null);
1331 if( ctx.pFunc->needCollSeq ){
1332 assert( pOp>p->aOp );
1333 assert( pOp[-1].p4type==P4_COLLSEQ );
1334 assert( pOp[-1].opcode==OP_CollSeq );
1335 ctx.pColl = pOp[-1].p4.pColl;
1337 if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
1338 (*ctx.pFunc->xFunc)(&ctx, n, apVal);
1339 if( sqlite3SafetyOn(db) ){
1340 sqlite3VdbeMemRelease(&ctx.s);
1341 goto abort_due_to_misuse;
1343 if( db->mallocFailed ){
1344 /* Even though a malloc() has failed, the implementation of the
1345 ** user function may have called an sqlite3_result_XXX() function
1346 ** to return a value. The following call releases any resources
1347 ** associated with such a value.
1349 ** Note: Maybe MemRelease() should be called if sqlite3SafetyOn()
1350 ** fails also (the if(...) statement above). But if people are
1351 ** misusing sqlite, they have bigger problems than a leaked value.
1353 sqlite3VdbeMemRelease(&ctx.s);
1357 /* If any auxiliary data functions have been called by this user function,
1358 ** immediately call the destructor for any non-static values.
1360 if( ctx.pVdbeFunc ){
1361 sqlite3VdbeDeleteAuxData(ctx.pVdbeFunc, pOp->p1);
1362 pOp->p4.pVdbeFunc = ctx.pVdbeFunc;
1363 pOp->p4type = P4_VDBEFUNC;
1366 /* If the function returned an error, throw an exception */
1368 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(&ctx.s));
1372 /* Copy the result of the function into register P3 */
1373 sqlite3VdbeChangeEncoding(&ctx.s, encoding);
1374 sqlite3VdbeMemMove(pOut, &ctx.s);
1375 if( sqlite3VdbeMemTooBig(pOut) ){
1378 REGISTER_TRACE(pOp->p3, pOut);
1379 UPDATE_MAX_BLOBSIZE(pOut);
1383 /* Opcode: BitAnd P1 P2 P3 * *
1385 ** Take the bit-wise AND of the values in register P1 and P2 and
1386 ** store the result in register P3.
1387 ** If either input is NULL, the result is NULL.
1389 /* Opcode: BitOr P1 P2 P3 * *
1391 ** Take the bit-wise OR of the values in register P1 and P2 and
1392 ** store the result in register P3.
1393 ** If either input is NULL, the result is NULL.
1395 /* Opcode: ShiftLeft P1 P2 P3 * *
1397 ** Shift the integer value in register P2 to the left by the
1398 ** number of bits specified by the integer in regiser P1.
1399 ** Store the result in register P3.
1400 ** If either input is NULL, the result is NULL.
1402 /* Opcode: ShiftRight P1 P2 P3 * *
1404 ** Shift the integer value in register P2 to the right by the
1405 ** number of bits specified by the integer in register P1.
1406 ** Store the result in register P3.
1407 ** If either input is NULL, the result is NULL.
1409 case OP_BitAnd: /* same as TK_BITAND, in1, in2, out3 */
1410 case OP_BitOr: /* same as TK_BITOR, in1, in2, out3 */
1411 case OP_ShiftLeft: /* same as TK_LSHIFT, in1, in2, out3 */
1412 case OP_ShiftRight: { /* same as TK_RSHIFT, in1, in2, out3 */
1415 if( (pIn1->flags | pIn2->flags) & MEM_Null ){
1416 sqlite3VdbeMemSetNull(pOut);
1419 a = sqlite3VdbeIntValue(pIn2);
1420 b = sqlite3VdbeIntValue(pIn1);
1421 switch( pOp->opcode ){
1422 case OP_BitAnd: a &= b; break;
1423 case OP_BitOr: a |= b; break;
1424 case OP_ShiftLeft: a <<= b; break;
1425 default: assert( pOp->opcode==OP_ShiftRight );
1429 MemSetTypeFlag(pOut, MEM_Int);
1433 /* Opcode: AddImm P1 P2 * * *
1435 ** Add the constant P2 to the value in register P1.
1436 ** The result is always an integer.
1438 ** To force any register to be an integer, just add 0.
1440 case OP_AddImm: { /* in1 */
1441 sqlite3VdbeMemIntegerify(pIn1);
1442 pIn1->u.i += pOp->p2;
1446 /* Opcode: ForceInt P1 P2 P3 * *
1448 ** Convert value in register P1 into an integer. If the value
1449 ** in P1 is not numeric (meaning that is is a NULL or a string that
1450 ** does not look like an integer or floating point number) then
1451 ** jump to P2. If the value in P1 is numeric then
1452 ** convert it into the least integer that is greater than or equal to its
1453 ** current value if P3==0, or to the least integer that is strictly
1454 ** greater than its current value if P3==1.
1456 case OP_ForceInt: { /* jump, in1 */
1458 applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding);
1459 if( (pIn1->flags & (MEM_Int|MEM_Real))==0 ){
1463 if( pIn1->flags & MEM_Int ){
1464 v = pIn1->u.i + (pOp->p3!=0);
1466 assert( pIn1->flags & MEM_Real );
1467 v = (sqlite3_int64)pIn1->r;
1468 if( pIn1->r>(double)v ) v++;
1469 if( pOp->p3 && pIn1->r==(double)v ) v++;
1472 MemSetTypeFlag(pIn1, MEM_Int);
1476 /* Opcode: MustBeInt P1 P2 * * *
1478 ** Force the value in register P1 to be an integer. If the value
1479 ** in P1 is not an integer and cannot be converted into an integer
1480 ** without data loss, then jump immediately to P2, or if P2==0
1481 ** raise an SQLITE_MISMATCH exception.
1483 case OP_MustBeInt: { /* jump, in1 */
1484 applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding);
1485 if( (pIn1->flags & MEM_Int)==0 ){
1487 rc = SQLITE_MISMATCH;
1488 goto abort_due_to_error;
1493 MemSetTypeFlag(pIn1, MEM_Int);
1498 /* Opcode: RealAffinity P1 * * * *
1500 ** If register P1 holds an integer convert it to a real value.
1502 ** This opcode is used when extracting information from a column that
1503 ** has REAL affinity. Such column values may still be stored as
1504 ** integers, for space efficiency, but after extraction we want them
1505 ** to have only a real value.
1507 case OP_RealAffinity: { /* in1 */
1508 if( pIn1->flags & MEM_Int ){
1509 sqlite3VdbeMemRealify(pIn1);
1514 #ifndef SQLITE_OMIT_CAST
1515 /* Opcode: ToText P1 * * * *
1517 ** Force the value in register P1 to be text.
1518 ** If the value is numeric, convert it to a string using the
1519 ** equivalent of printf(). Blob values are unchanged and
1520 ** are afterwards simply interpreted as text.
1522 ** A NULL value is not changed by this routine. It remains NULL.
1524 case OP_ToText: { /* same as TK_TO_TEXT, in1 */
1525 if( pIn1->flags & MEM_Null ) break;
1526 assert( MEM_Str==(MEM_Blob>>3) );
1527 pIn1->flags |= (pIn1->flags&MEM_Blob)>>3;
1528 applyAffinity(pIn1, SQLITE_AFF_TEXT, encoding);
1529 rc = ExpandBlob(pIn1);
1530 assert( pIn1->flags & MEM_Str || db->mallocFailed );
1531 pIn1->flags &= ~(MEM_Int|MEM_Real|MEM_Blob);
1532 UPDATE_MAX_BLOBSIZE(pIn1);
1536 /* Opcode: ToBlob P1 * * * *
1538 ** Force the value in register P1 to be a BLOB.
1539 ** If the value is numeric, convert it to a string first.
1540 ** Strings are simply reinterpreted as blobs with no change
1541 ** to the underlying data.
1543 ** A NULL value is not changed by this routine. It remains NULL.
1545 case OP_ToBlob: { /* same as TK_TO_BLOB, in1 */
1546 if( pIn1->flags & MEM_Null ) break;
1547 if( (pIn1->flags & MEM_Blob)==0 ){
1548 applyAffinity(pIn1, SQLITE_AFF_TEXT, encoding);
1549 assert( pIn1->flags & MEM_Str || db->mallocFailed );
1551 MemSetTypeFlag(pIn1, MEM_Blob);
1552 UPDATE_MAX_BLOBSIZE(pIn1);
1556 /* Opcode: ToNumeric P1 * * * *
1558 ** Force the value in register P1 to be numeric (either an
1559 ** integer or a floating-point number.)
1560 ** If the value is text or blob, try to convert it to an using the
1561 ** equivalent of atoi() or atof() and store 0 if no such conversion
1564 ** A NULL value is not changed by this routine. It remains NULL.
1566 case OP_ToNumeric: { /* same as TK_TO_NUMERIC, in1 */
1567 if( (pIn1->flags & (MEM_Null|MEM_Int|MEM_Real))==0 ){
1568 sqlite3VdbeMemNumerify(pIn1);
1572 #endif /* SQLITE_OMIT_CAST */
1574 /* Opcode: ToInt P1 * * * *
1576 ** Force the value in register P1 be an integer. If
1577 ** The value is currently a real number, drop its fractional part.
1578 ** If the value is text or blob, try to convert it to an integer using the
1579 ** equivalent of atoi() and store 0 if no such conversion is possible.
1581 ** A NULL value is not changed by this routine. It remains NULL.
1583 case OP_ToInt: { /* same as TK_TO_INT, in1 */
1584 if( (pIn1->flags & MEM_Null)==0 ){
1585 sqlite3VdbeMemIntegerify(pIn1);
1590 #ifndef SQLITE_OMIT_CAST
1591 /* Opcode: ToReal P1 * * * *
1593 ** Force the value in register P1 to be a floating point number.
1594 ** If The value is currently an integer, convert it.
1595 ** If the value is text or blob, try to convert it to an integer using the
1596 ** equivalent of atoi() and store 0.0 if no such conversion is possible.
1598 ** A NULL value is not changed by this routine. It remains NULL.
1600 case OP_ToReal: { /* same as TK_TO_REAL, in1 */
1601 if( (pIn1->flags & MEM_Null)==0 ){
1602 sqlite3VdbeMemRealify(pIn1);
1606 #endif /* SQLITE_OMIT_CAST */
1608 /* Opcode: Lt P1 P2 P3 P4 P5
1610 ** Compare the values in register P1 and P3. If reg(P3)<reg(P1) then
1611 ** jump to address P2.
1613 ** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or
1614 ** reg(P3) is NULL then take the jump. If the SQLITE_JUMPIFNULL
1615 ** bit is clear then fall thru if either operand is NULL.
1617 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
1618 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
1619 ** to coerce both inputs according to this affinity before the
1620 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
1621 ** affinity is used. Note that the affinity conversions are stored
1622 ** back into the input registers P1 and P3. So this opcode can cause
1623 ** persistent changes to registers P1 and P3.
1625 ** Once any conversions have taken place, and neither value is NULL,
1626 ** the values are compared. If both values are blobs then memcmp() is
1627 ** used to determine the results of the comparison. If both values
1628 ** are text, then the appropriate collating function specified in
1629 ** P4 is used to do the comparison. If P4 is not specified then
1630 ** memcmp() is used to compare text string. If both values are
1631 ** numeric, then a numeric comparison is used. If the two values
1632 ** are of different types, then numbers are considered less than
1633 ** strings and strings are considered less than blobs.
1635 ** If the SQLITE_STOREP2 bit of P5 is set, then do not jump. Instead,
1636 ** store a boolean result (either 0, or 1, or NULL) in register P2.
1638 /* Opcode: Ne P1 P2 P3 P4 P5
1640 ** This works just like the Lt opcode except that the jump is taken if
1641 ** the operands in registers P1 and P3 are not equal. See the Lt opcode for
1642 ** additional information.
1644 /* Opcode: Eq P1 P2 P3 P4 P5
1646 ** This works just like the Lt opcode except that the jump is taken if
1647 ** the operands in registers P1 and P3 are equal.
1648 ** See the Lt opcode for additional information.
1650 /* Opcode: Le P1 P2 P3 P4 P5
1652 ** This works just like the Lt opcode except that the jump is taken if
1653 ** the content of register P3 is less than or equal to the content of
1654 ** register P1. See the Lt opcode for additional information.
1656 /* Opcode: Gt P1 P2 P3 P4 P5
1658 ** This works just like the Lt opcode except that the jump is taken if
1659 ** the content of register P3 is greater than the content of
1660 ** register P1. See the Lt opcode for additional information.
1662 /* Opcode: Ge P1 P2 P3 P4 P5
1664 ** This works just like the Lt opcode except that the jump is taken if
1665 ** the content of register P3 is greater than or equal to the content of
1666 ** register P1. See the Lt opcode for additional information.
1668 case OP_Eq: /* same as TK_EQ, jump, in1, in3 */
1669 case OP_Ne: /* same as TK_NE, jump, in1, in3 */
1670 case OP_Lt: /* same as TK_LT, jump, in1, in3 */
1671 case OP_Le: /* same as TK_LE, jump, in1, in3 */
1672 case OP_Gt: /* same as TK_GT, jump, in1, in3 */
1673 case OP_Ge: { /* same as TK_GE, jump, in1, in3 */
1678 flags = pIn1->flags|pIn3->flags;
1680 if( flags&MEM_Null ){
1681 /* If either operand is NULL then the result is always NULL.
1682 ** The jump is taken if the SQLITE_JUMPIFNULL bit is set.
1684 if( pOp->p5 & SQLITE_STOREP2 ){
1685 pOut = &p->aMem[pOp->p2];
1686 MemSetTypeFlag(pOut, MEM_Null);
1687 REGISTER_TRACE(pOp->p2, pOut);
1688 }else if( pOp->p5 & SQLITE_JUMPIFNULL ){
1694 affinity = pOp->p5 & SQLITE_AFF_MASK;
1696 applyAffinity(pIn1, affinity, encoding);
1697 applyAffinity(pIn3, affinity, encoding);
1700 assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 );
1703 res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl);
1704 switch( pOp->opcode ){
1705 case OP_Eq: res = res==0; break;
1706 case OP_Ne: res = res!=0; break;
1707 case OP_Lt: res = res<0; break;
1708 case OP_Le: res = res<=0; break;
1709 case OP_Gt: res = res>0; break;
1710 default: res = res>=0; break;
1713 if( pOp->p5 & SQLITE_STOREP2 ){
1714 pOut = &p->aMem[pOp->p2];
1715 MemSetTypeFlag(pOut, MEM_Int);
1717 REGISTER_TRACE(pOp->p2, pOut);
1724 /* Opcode: Permutation * * * P4 *
1726 ** Set the permuation used by the OP_Compare operator to be the array
1727 ** of integers in P4.
1729 ** The permutation is only valid until the next OP_Permutation, OP_Compare,
1730 ** OP_Halt, or OP_ResultRow. Typically the OP_Permutation should occur
1731 ** immediately prior to the OP_Compare.
1733 case OP_Permutation: {
1734 assert( pOp->p4type==P4_INTARRAY );
1735 assert( pOp->p4.ai );
1736 aPermute = pOp->p4.ai;
1740 /* Opcode: Compare P1 P2 P3 P4 *
1742 ** Compare to vectors of registers in reg(P1)..reg(P1+P3-1) (all this
1743 ** one "A") and in reg(P2)..reg(P2+P3-1) ("B"). Save the result of
1744 ** the comparison for use by the next OP_Jump instruct.
1746 ** P4 is a KeyInfo structure that defines collating sequences and sort
1747 ** orders for the comparison. The permutation applies to registers
1748 ** only. The KeyInfo elements are used sequentially.
1750 ** The comparison is a sort comparison, so NULLs compare equal,
1751 ** NULLs are less than numbers, numbers are less than strings,
1752 ** and strings are less than blobs.
1757 const KeyInfo *pKeyInfo = pOp->p4.pKeyInfo;
1759 assert( pKeyInfo!=0 );
1761 assert( p1>0 && p1+n-1<p->nMem );
1763 assert( p2>0 && p2+n-1<p->nMem );
1765 int idx = aPermute ? aPermute[i] : i;
1766 CollSeq *pColl; /* Collating sequence to use on this term */
1767 int bRev; /* True for DESCENDING sort order */
1768 REGISTER_TRACE(p1+idx, &p->aMem[p1+idx]);
1769 REGISTER_TRACE(p2+idx, &p->aMem[p2+idx]);
1770 assert( i<pKeyInfo->nField );
1771 pColl = pKeyInfo->aColl[i];
1772 bRev = pKeyInfo->aSortOrder[i];
1773 iCompare = sqlite3MemCompare(&p->aMem[p1+idx], &p->aMem[p2+idx], pColl);
1775 if( bRev ) iCompare = -iCompare;
1783 /* Opcode: Jump P1 P2 P3 * *
1785 ** Jump to the instruction at address P1, P2, or P3 depending on whether
1786 ** in the most recent OP_Compare instruction the P1 vector was less than
1787 ** equal to, or greater than the P2 vector, respectively.
1789 case OP_Jump: { /* jump */
1792 }else if( iCompare==0 ){
1800 /* Opcode: And P1 P2 P3 * *
1802 ** Take the logical AND of the values in registers P1 and P2 and
1803 ** write the result into register P3.
1805 ** If either P1 or P2 is 0 (false) then the result is 0 even if
1806 ** the other input is NULL. A NULL and true or two NULLs give
1809 /* Opcode: Or P1 P2 P3 * *
1811 ** Take the logical OR of the values in register P1 and P2 and
1812 ** store the answer in register P3.
1814 ** If either P1 or P2 is nonzero (true) then the result is 1 (true)
1815 ** even if the other input is NULL. A NULL and false or two NULLs
1816 ** give a NULL output.
1818 case OP_And: /* same as TK_AND, in1, in2, out3 */
1819 case OP_Or: { /* same as TK_OR, in1, in2, out3 */
1820 int v1, v2; /* 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
1822 if( pIn1->flags & MEM_Null ){
1825 v1 = sqlite3VdbeIntValue(pIn1)!=0;
1827 if( pIn2->flags & MEM_Null ){
1830 v2 = sqlite3VdbeIntValue(pIn2)!=0;
1832 if( pOp->opcode==OP_And ){
1833 static const unsigned char and_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 };
1834 v1 = and_logic[v1*3+v2];
1836 static const unsigned char or_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 };
1837 v1 = or_logic[v1*3+v2];
1840 MemSetTypeFlag(pOut, MEM_Null);
1843 MemSetTypeFlag(pOut, MEM_Int);
1848 /* Opcode: Not P1 * * * *
1850 ** Interpret the value in register P1 as a boolean value. Replace it
1851 ** with its complement. If the value in register P1 is NULL its value
1854 case OP_Not: { /* same as TK_NOT, in1 */
1855 if( pIn1->flags & MEM_Null ) break; /* Do nothing to NULLs */
1856 sqlite3VdbeMemIntegerify(pIn1);
1857 pIn1->u.i = !pIn1->u.i;
1858 assert( pIn1->flags&MEM_Int );
1862 /* Opcode: BitNot P1 * * * *
1864 ** Interpret the content of register P1 as an integer. Replace it
1865 ** with its ones-complement. If the value is originally NULL, leave
1868 case OP_BitNot: { /* same as TK_BITNOT, in1 */
1869 if( pIn1->flags & MEM_Null ) break; /* Do nothing to NULLs */
1870 sqlite3VdbeMemIntegerify(pIn1);
1871 pIn1->u.i = ~pIn1->u.i;
1872 assert( pIn1->flags&MEM_Int );
1876 /* Opcode: If P1 P2 P3 * *
1878 ** Jump to P2 if the value in register P1 is true. The value is
1879 ** is considered true if it is numeric and non-zero. If the value
1880 ** in P1 is NULL then take the jump if P3 is true.
1882 /* Opcode: IfNot P1 P2 P3 * *
1884 ** Jump to P2 if the value in register P1 is False. The value is
1885 ** is considered true if it has a numeric value of zero. If the value
1886 ** in P1 is NULL then take the jump if P3 is true.
1888 case OP_If: /* jump, in1 */
1889 case OP_IfNot: { /* jump, in1 */
1891 if( pIn1->flags & MEM_Null ){
1894 #ifdef SQLITE_OMIT_FLOATING_POINT
1895 c = sqlite3VdbeIntValue(pIn1);
1897 c = sqlite3VdbeRealValue(pIn1)!=0.0;
1899 if( pOp->opcode==OP_IfNot ) c = !c;
1907 /* Opcode: IsNull P1 P2 P3 * *
1909 ** Jump to P2 if the value in register P1 is NULL. If P3 is greater
1910 ** than zero, then check all values reg(P1), reg(P1+1),
1911 ** reg(P1+2), ..., reg(P1+P3-1).
1913 case OP_IsNull: { /* same as TK_ISNULL, jump, in1 */
1915 assert( pOp->p3==0 || pOp->p1>0 );
1917 if( (pIn1->flags & MEM_Null)!=0 ){
1926 /* Opcode: NotNull P1 P2 * * *
1928 ** Jump to P2 if the value in register P1 is not NULL.
1930 case OP_NotNull: { /* same as TK_NOTNULL, jump, in1 */
1931 if( (pIn1->flags & MEM_Null)==0 ){
1937 /* Opcode: SetNumColumns * P2 * * *
1939 ** This opcode sets the number of columns for the cursor opened by the
1940 ** following instruction to P2.
1942 ** An OP_SetNumColumns is only useful if it occurs immediately before
1943 ** one of the following opcodes:
1949 ** If the OP_Column opcode is to be executed on a cursor, then
1950 ** this opcode must be present immediately before the opcode that
1951 ** opens the cursor.
1953 case OP_SetNumColumns: {
1957 /* Opcode: Column P1 P2 P3 P4 *
1959 ** Interpret the data that cursor P1 points to as a structure built using
1960 ** the MakeRecord instruction. (See the MakeRecord opcode for additional
1961 ** information about the format of the data.) Extract the P2-th column
1962 ** from this record. If there are less that (P2+1)
1963 ** values in the record, extract a NULL.
1965 ** The value extracted is stored in register P3.
1967 ** If the KeyAsData opcode has previously executed on this cursor, then the
1968 ** field might be extracted from the key rather than the data.
1970 ** If the column contains fewer than P2 fields, then extract a NULL. Or,
1971 ** if the P4 argument is a P4_MEM use the value of the P4 argument as
1975 u32 payloadSize; /* Number of bytes in the record */
1976 int p1 = pOp->p1; /* P1 value of the opcode */
1977 int p2 = pOp->p2; /* column number to retrieve */
1978 Cursor *pC = 0; /* The VDBE cursor */
1979 char *zRec; /* Pointer to complete record-data */
1980 BtCursor *pCrsr; /* The BTree cursor */
1981 u32 *aType; /* aType[i] holds the numeric type of the i-th column */
1982 u32 *aOffset; /* aOffset[i] is offset to start of data for i-th column */
1983 u32 nField; /* number of fields in the record */
1984 int len; /* The length of the serialized data for the column */
1985 int i; /* Loop counter */
1986 char *zData; /* Part of the record being decoded */
1987 Mem *pDest; /* Where to write the extracted value */
1988 Mem sMem; /* For storing the record being decoded */
1993 assert( p1<p->nCursor );
1994 assert( pOp->p3>0 && pOp->p3<=p->nMem );
1995 pDest = &p->aMem[pOp->p3];
1996 MemSetTypeFlag(pDest, MEM_Null);
1998 /* This block sets the variable payloadSize to be the total number of
1999 ** bytes in the record.
2001 ** zRec is set to be the complete text of the record if it is available.
2002 ** The complete record text is always available for pseudo-tables
2003 ** If the record is stored in a cursor, the complete record text
2004 ** might be available in the pC->aRow cache. Or it might not be.
2005 ** If the data is unavailable, zRec is set to NULL.
2007 ** We also compute the number of columns in the record. For cursors,
2008 ** the number of columns is stored in the Cursor.nField element.
2012 #ifndef SQLITE_OMIT_VIRTUALTABLE
2013 assert( pC->pVtabCursor==0 );
2015 if( pC->pCursor!=0 ){
2016 /* The record is stored in a B-Tree */
2017 rc = sqlite3VdbeCursorMoveto(pC);
2018 if( rc ) goto abort_due_to_error;
2020 pCrsr = pC->pCursor;
2023 }else if( pC->cacheStatus==p->cacheCtr ){
2024 payloadSize = pC->payloadSize;
2025 zRec = (char*)pC->aRow;
2026 }else if( pC->isIndex ){
2028 sqlite3BtreeKeySize(pCrsr, &payloadSize64);
2029 payloadSize = payloadSize64;
2031 sqlite3BtreeDataSize(pCrsr, &payloadSize);
2033 nField = pC->nField;
2035 assert( pC->pseudoTable );
2036 /* The record is the sole entry of a pseudo-table */
2037 payloadSize = pC->nData;
2039 pC->cacheStatus = CACHE_STALE;
2040 assert( payloadSize==0 || zRec!=0 );
2041 nField = pC->nField;
2045 /* If payloadSize is 0, then just store a NULL */
2046 if( payloadSize==0 ){
2047 assert( pDest->flags&MEM_Null );
2050 if( payloadSize>db->aLimit[SQLITE_LIMIT_LENGTH] ){
2054 assert( p2<nField );
2056 /* Read and parse the table header. Store the results of the parse
2057 ** into the record header cache fields of the cursor.
2060 if( pC->cacheStatus==p->cacheCtr ){
2061 aOffset = pC->aOffset;
2063 u8 *zIdx; /* Index into header */
2064 u8 *zEndHdr; /* Pointer to first byte after the header */
2065 u32 offset; /* Offset into the data */
2066 int szHdrSz; /* Size of the header size field at start of record */
2067 int avail; /* Number of bytes of available data */
2070 pC->aOffset = aOffset = &aType[nField];
2071 pC->payloadSize = payloadSize;
2072 pC->cacheStatus = p->cacheCtr;
2074 /* Figure out how many bytes are in the header */
2079 zData = (char*)sqlite3BtreeKeyFetch(pCrsr, &avail);
2081 zData = (char*)sqlite3BtreeDataFetch(pCrsr, &avail);
2083 /* If KeyFetch()/DataFetch() managed to get the entire payload,
2084 ** save the payload in the pC->aRow cache. That will save us from
2085 ** having to make additional calls to fetch the content portion of
2088 if( avail>=payloadSize ){
2090 pC->aRow = (u8*)zData;
2095 /* The following assert is true in all cases accept when
2096 ** the database file has been corrupted externally.
2097 ** assert( zRec!=0 || avail>=payloadSize || avail>=9 ); */
2098 szHdrSz = getVarint32((u8*)zData, offset);
2100 /* The KeyFetch() or DataFetch() above are fast and will get the entire
2101 ** record header in most cases. But they will fail to get the complete
2102 ** record header if the record header does not fit on a single page
2103 ** in the B-Tree. When that happens, use sqlite3VdbeMemFromBtree() to
2104 ** acquire the complete header text.
2106 if( !zRec && avail<offset ){
2109 rc = sqlite3VdbeMemFromBtree(pCrsr, 0, offset, pC->isIndex, &sMem);
2110 if( rc!=SQLITE_OK ){
2115 zEndHdr = (u8 *)&zData[offset];
2116 zIdx = (u8 *)&zData[szHdrSz];
2118 /* Scan the header and use it to fill in the aType[] and aOffset[]
2119 ** arrays. aType[i] will contain the type integer for the i-th
2120 ** column and aOffset[i] will contain the offset from the beginning
2121 ** of the record to the start of the data for the i-th column
2123 for(i=0; i<nField; i++){
2125 aOffset[i] = offset;
2126 zIdx += getVarint32(zIdx, aType[i]);
2127 offset += sqlite3VdbeSerialTypeLen(aType[i]);
2129 /* If i is less that nField, then there are less fields in this
2130 ** record than SetNumColumns indicated there are columns in the
2131 ** table. Set the offset for any extra columns not present in
2132 ** the record to 0. This tells code below to store a NULL
2133 ** instead of deserializing a value from the record.
2138 sqlite3VdbeMemRelease(&sMem);
2139 sMem.flags = MEM_Null;
2141 /* If we have read more header data than was contained in the header,
2142 ** or if the end of the last field appears to be past the end of the
2143 ** record, or if the end of the last field appears to be before the end
2144 ** of the record (when all fields present), then we must be dealing
2145 ** with a corrupt database.
2147 if( zIdx>zEndHdr || offset>payloadSize || (zIdx==zEndHdr && offset!=payloadSize) ){
2148 rc = SQLITE_CORRUPT_BKPT;
2153 /* Get the column information. If aOffset[p2] is non-zero, then
2154 ** deserialize the value from the record. If aOffset[p2] is zero,
2155 ** then there are not enough fields in the record to satisfy the
2156 ** request. In this case, set the value NULL or to P4 if P4 is
2157 ** a pointer to a Mem object.
2160 assert( rc==SQLITE_OK );
2162 sqlite3VdbeMemReleaseExternal(pDest);
2163 sqlite3VdbeSerialGet((u8 *)&zRec[aOffset[p2]], aType[p2], pDest);
2165 len = sqlite3VdbeSerialTypeLen(aType[p2]);
2166 sqlite3VdbeMemMove(&sMem, pDest);
2167 rc = sqlite3VdbeMemFromBtree(pCrsr, aOffset[p2], len, pC->isIndex, &sMem);
2168 if( rc!=SQLITE_OK ){
2172 sqlite3VdbeSerialGet((u8*)zData, aType[p2], pDest);
2174 pDest->enc = encoding;
2176 if( pOp->p4type==P4_MEM ){
2177 sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static);
2179 assert( pDest->flags&MEM_Null );
2183 /* If we dynamically allocated space to hold the data (in the
2184 ** sqlite3VdbeMemFromBtree() call above) then transfer control of that
2185 ** dynamically allocated space over to the pDest structure.
2186 ** This prevents a memory copy.
2189 assert( sMem.z==sMem.zMalloc );
2190 assert( !(pDest->flags & MEM_Dyn) );
2191 assert( !(pDest->flags & (MEM_Blob|MEM_Str)) || pDest->z==sMem.z );
2192 pDest->flags &= ~(MEM_Ephem|MEM_Static);
2193 pDest->flags |= MEM_Term;
2195 pDest->zMalloc = sMem.zMalloc;
2198 rc = sqlite3VdbeMemMakeWriteable(pDest);
2201 UPDATE_MAX_BLOBSIZE(pDest);
2202 REGISTER_TRACE(pOp->p3, pDest);
2206 /* Opcode: Affinity P1 P2 * P4 *
2208 ** Apply affinities to a range of P2 registers starting with P1.
2210 ** P4 is a string that is P2 characters long. The nth character of the
2211 ** string indicates the column affinity that should be used for the nth
2212 ** memory cell in the range.
2215 char *zAffinity = pOp->p4.z;
2216 Mem *pData0 = &p->aMem[pOp->p1];
2217 Mem *pLast = &pData0[pOp->p2-1];
2220 for(pRec=pData0; pRec<=pLast; pRec++){
2222 applyAffinity(pRec, zAffinity[pRec-pData0], encoding);
2227 /* Opcode: MakeRecord P1 P2 P3 P4 *
2229 ** Convert P2 registers beginning with P1 into a single entry
2230 ** suitable for use as a data record in a database table or as a key
2231 ** in an index. The details of the format are irrelevant as long as
2232 ** the OP_Column opcode can decode the record later.
2233 ** Refer to source code comments for the details of the record
2236 ** P4 may be a string that is P2 characters long. The nth character of the
2237 ** string indicates the column affinity that should be used for the nth
2238 ** field of the index key.
2240 ** The mapping from character to affinity is given by the SQLITE_AFF_
2241 ** macros defined in sqliteInt.h.
2243 ** If P4 is NULL then all index fields have the affinity NONE.
2245 case OP_MakeRecord: {
2246 /* Assuming the record contains N fields, the record format looks
2249 ** ------------------------------------------------------------------------
2250 ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 |
2251 ** ------------------------------------------------------------------------
2253 ** Data(0) is taken from register P1. Data(1) comes from register P1+1
2256 ** Each type field is a varint representing the serial type of the
2257 ** corresponding data element (see sqlite3VdbeSerialType()). The
2258 ** hdr-size field is also a varint which is the offset from the beginning
2259 ** of the record to data0.
2261 u8 *zNewRecord; /* A buffer to hold the data for the new record */
2262 Mem *pRec; /* The new record */
2263 u64 nData = 0; /* Number of bytes of data space */
2264 int nHdr = 0; /* Number of bytes of header space */
2265 u64 nByte = 0; /* Data space required for this record */
2266 int nZero = 0; /* Number of zero bytes at the end of the record */
2267 int nVarint; /* Number of bytes in a varint */
2268 u32 serial_type; /* Type field */
2269 Mem *pData0; /* First field to be combined into the record */
2270 Mem *pLast; /* Last field of the record */
2271 int nField; /* Number of fields in the record */
2272 char *zAffinity; /* The affinity string for the record */
2273 int file_format; /* File format to use for encoding */
2274 int i; /* Space used in zNewRecord[] */
2277 zAffinity = pOp->p4.z;
2278 assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=p->nMem );
2279 pData0 = &p->aMem[nField];
2281 pLast = &pData0[nField-1];
2282 file_format = p->minWriteFileFormat;
2284 /* Loop through the elements that will make up the record to figure
2285 ** out how much space is required for the new record.
2287 for(pRec=pData0; pRec<=pLast; pRec++){
2290 applyAffinity(pRec, zAffinity[pRec-pData0], encoding);
2292 if( pRec->flags&MEM_Zero && pRec->n>0 ){
2293 sqlite3VdbeMemExpandBlob(pRec);
2295 serial_type = sqlite3VdbeSerialType(pRec, file_format);
2296 len = sqlite3VdbeSerialTypeLen(serial_type);
2298 nHdr += sqlite3VarintLen(serial_type);
2299 if( pRec->flags & MEM_Zero ){
2300 /* Only pure zero-filled BLOBs can be input to this Opcode.
2301 ** We do not allow blobs with a prefix and a zero-filled tail. */
2308 /* Add the initial header varint and total the size */
2309 nHdr += nVarint = sqlite3VarintLen(nHdr);
2310 if( nVarint<sqlite3VarintLen(nHdr) ){
2313 nByte = nHdr+nData-nZero;
2314 if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
2318 /* Make sure the output register has a buffer large enough to store
2319 ** the new record. The output register (pOp->p3) is not allowed to
2320 ** be one of the input registers (because the following call to
2321 ** sqlite3VdbeMemGrow() could clobber the value before it is used).
2323 assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 );
2324 pOut = &p->aMem[pOp->p3];
2325 if( sqlite3VdbeMemGrow(pOut, nByte, 0) ){
2328 zNewRecord = (u8 *)pOut->z;
2330 /* Write the record */
2331 i = putVarint32(zNewRecord, nHdr);
2332 for(pRec=pData0; pRec<=pLast; pRec++){
2333 serial_type = sqlite3VdbeSerialType(pRec, file_format);
2334 i += putVarint32(&zNewRecord[i], serial_type); /* serial type */
2336 for(pRec=pData0; pRec<=pLast; pRec++){ /* serial data */
2337 i += sqlite3VdbeSerialPut(&zNewRecord[i], nByte-i, pRec, file_format);
2341 assert( pOp->p3>0 && pOp->p3<=p->nMem );
2343 pOut->flags = MEM_Blob | MEM_Dyn;
2347 pOut->flags |= MEM_Zero;
2349 pOut->enc = SQLITE_UTF8; /* In case the blob is ever converted to text */
2350 REGISTER_TRACE(pOp->p3, pOut);
2351 UPDATE_MAX_BLOBSIZE(pOut);
2355 /* Opcode: Statement P1 * * * *
2357 ** Begin an individual statement transaction which is part of a larger
2358 ** transaction. This is needed so that the statement
2359 ** can be rolled back after an error without having to roll back the
2360 ** entire transaction. The statement transaction will automatically
2361 ** commit when the VDBE halts.
2363 ** If the database connection is currently in autocommit mode (that
2364 ** is to say, if it is in between BEGIN and COMMIT)
2365 ** and if there are no other active statements on the same database
2366 ** connection, then this operation is a no-op. No statement transaction
2367 ** is needed since any error can use the normal ROLLBACK process to
2370 ** If a statement transaction is started, then a statement journal file
2371 ** will be allocated and initialized.
2373 ** The statement is begun on the database file with index P1. The main
2374 ** database file has an index of 0 and the file used for temporary tables
2375 ** has an index of 1.
2377 case OP_Statement: {
2378 if( db->autoCommit==0 || db->activeVdbeCnt>1 ){
2381 assert( i>=0 && i<db->nDb );
2382 assert( db->aDb[i].pBt!=0 );
2383 pBt = db->aDb[i].pBt;
2384 assert( sqlite3BtreeIsInTrans(pBt) );
2385 assert( (p->btreeMask & (1<<i))!=0 );
2386 if( !sqlite3BtreeIsInStmt(pBt) ){
2387 rc = sqlite3BtreeBeginStmt(pBt);
2388 p->openedStatement = 1;
2394 /* Opcode: AutoCommit P1 P2 * * *
2396 ** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll
2397 ** back any currently active btree transactions. If there are any active
2398 ** VMs (apart from this one), then the COMMIT or ROLLBACK statement fails.
2400 ** This instruction causes the VM to halt.
2402 case OP_AutoCommit: {
2404 u8 rollback = pOp->p2;
2406 assert( i==1 || i==0 );
2407 assert( i==1 || rollback==0 );
2409 assert( db->activeVdbeCnt>0 ); /* At least this one VM is active */
2411 if( db->activeVdbeCnt>1 && i && !db->autoCommit ){
2412 /* If this instruction implements a COMMIT or ROLLBACK, other VMs are
2413 ** still running, and a transaction is active, return an error indicating
2414 ** that the other VMs must complete first.
2416 sqlite3SetString(&p->zErrMsg, db, "cannot %s transaction - "
2417 "SQL statements in progress",
2418 rollback ? "rollback" : "commit");
2420 }else if( i!=db->autoCommit ){
2423 sqlite3RollbackAll(db);
2427 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
2429 db->autoCommit = 1-i;
2430 p->rc = rc = SQLITE_BUSY;
2434 if( p->rc==SQLITE_OK ){
2441 sqlite3SetString(&p->zErrMsg, db,
2442 (!i)?"cannot start a transaction within a transaction":(
2443 (rollback)?"cannot rollback - no transaction is active":
2444 "cannot commit - no transaction is active"));
2451 /* Opcode: Transaction P1 P2 * * *
2453 ** Begin a transaction. The transaction ends when a Commit or Rollback
2454 ** opcode is encountered. Depending on the ON CONFLICT setting, the
2455 ** transaction might also be rolled back if an error is encountered.
2457 ** P1 is the index of the database file on which the transaction is
2458 ** started. Index 0 is the main database file and index 1 is the
2459 ** file used for temporary tables. Indices of 2 or more are used for
2460 ** attached databases.
2462 ** If P2 is non-zero, then a write-transaction is started. A RESERVED lock is
2463 ** obtained on the database file when a write-transaction is started. No
2464 ** other process can start another write transaction while this transaction is
2465 ** underway. Starting a write transaction also creates a rollback journal. A
2466 ** write transaction must be started before any changes can be made to the
2467 ** database. If P2 is 2 or greater then an EXCLUSIVE lock is also obtained
2470 ** If P2 is zero, then a read-lock is obtained on the database file.
2472 case OP_Transaction: {
2476 assert( i>=0 && i<db->nDb );
2477 assert( (p->btreeMask & (1<<i))!=0 );
2478 pBt = db->aDb[i].pBt;
2481 rc = sqlite3BtreeBeginTrans(pBt, pOp->p2);
2482 if( rc==SQLITE_BUSY ){
2484 p->rc = rc = SQLITE_BUSY;
2487 if( rc!=SQLITE_OK && rc!=SQLITE_READONLY /* && rc!=SQLITE_BUSY */ ){
2488 goto abort_due_to_error;
2494 /* Opcode: ReadCookie P1 P2 P3 * *
2496 ** Read cookie number P3 from database P1 and write it into register P2.
2497 ** P3==0 is the schema version. P3==1 is the database format.
2498 ** P3==2 is the recommended pager cache size, and so forth. P1==0 is
2499 ** the main database file and P1==1 is the database file used to store
2500 ** temporary tables.
2502 ** If P1 is negative, then this is a request to read the size of a
2503 ** databases free-list. P3 must be set to 1 in this case. The actual
2504 ** database accessed is ((P1+1)*-1). For example, a P1 parameter of -1
2505 ** corresponds to database 0 ("main"), a P1 of -2 is database 1 ("temp").
2507 ** There must be a read-lock on the database (either a transaction
2508 ** must be started or there must be an open cursor) before
2509 ** executing this instruction.
2511 case OP_ReadCookie: { /* out2-prerelease */
2514 int iCookie = pOp->p3;
2516 assert( pOp->p3<SQLITE_N_BTREE_META );
2521 assert( iDb>=0 && iDb<db->nDb );
2522 assert( db->aDb[iDb].pBt!=0 );
2523 assert( (p->btreeMask & (1<<iDb))!=0 );
2524 /* The indexing of meta values at the schema layer is off by one from
2525 ** the indexing in the btree layer. The btree considers meta[0] to
2526 ** be the number of free pages in the database (a read-only value)
2527 ** and meta[1] to be the schema cookie. The schema layer considers
2528 ** meta[1] to be the schema cookie. So we have to shift the index
2529 ** by one in the following statement.
2531 rc = sqlite3BtreeGetMeta(db->aDb[iDb].pBt, 1 + iCookie, (u32 *)&iMeta);
2533 MemSetTypeFlag(pOut, MEM_Int);
2537 /* Opcode: SetCookie P1 P2 P3 * *
2539 ** Write the content of register P3 (interpreted as an integer)
2540 ** into cookie number P2 of database P1.
2541 ** P2==0 is the schema version. P2==1 is the database format.
2542 ** P2==2 is the recommended pager cache size, and so forth. P1==0 is
2543 ** the main database file and P1==1 is the database file used to store
2544 ** temporary tables.
2546 ** A transaction must be started before executing this opcode.
2548 case OP_SetCookie: { /* in3 */
2550 assert( pOp->p2<SQLITE_N_BTREE_META );
2551 assert( pOp->p1>=0 && pOp->p1<db->nDb );
2552 assert( (p->btreeMask & (1<<pOp->p1))!=0 );
2553 pDb = &db->aDb[pOp->p1];
2554 assert( pDb->pBt!=0 );
2555 sqlite3VdbeMemIntegerify(pIn3);
2556 /* See note about index shifting on OP_ReadCookie */
2557 rc = sqlite3BtreeUpdateMeta(pDb->pBt, 1+pOp->p2, (int)pIn3->u.i);
2559 /* When the schema cookie changes, record the new cookie internally */
2560 pDb->pSchema->schema_cookie = pIn3->u.i;
2561 db->flags |= SQLITE_InternChanges;
2562 }else if( pOp->p2==1 ){
2563 /* Record changes in the file format */
2564 pDb->pSchema->file_format = pIn3->u.i;
2567 /* Invalidate all prepared statements whenever the TEMP database
2568 ** schema is changed. Ticket #1644 */
2569 sqlite3ExpirePreparedStatements(db);
2574 /* Opcode: VerifyCookie P1 P2 *
2576 ** Check the value of global database parameter number 0 (the
2577 ** schema version) and make sure it is equal to P2.
2578 ** P1 is the database number which is 0 for the main database file
2579 ** and 1 for the file holding temporary tables and some higher number
2580 ** for auxiliary databases.
2582 ** The cookie changes its value whenever the database schema changes.
2583 ** This operation is used to detect when that the cookie has changed
2584 ** and that the current process needs to reread the schema.
2586 ** Either a transaction needs to have been started or an OP_Open needs
2587 ** to be executed (to establish a read lock) before this opcode is
2590 case OP_VerifyCookie: {
2593 assert( pOp->p1>=0 && pOp->p1<db->nDb );
2594 assert( (p->btreeMask & (1<<pOp->p1))!=0 );
2595 pBt = db->aDb[pOp->p1].pBt;
2597 rc = sqlite3BtreeGetMeta(pBt, 1, (u32 *)&iMeta);
2602 if( rc==SQLITE_OK && iMeta!=pOp->p2 ){
2603 sqlite3DbFree(db, p->zErrMsg);
2604 p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed");
2605 /* If the schema-cookie from the database file matches the cookie
2606 ** stored with the in-memory representation of the schema, do
2607 ** not reload the schema from the database file.
2609 ** If virtual-tables are in use, this is not just an optimization.
2610 ** Often, v-tables store their data in other SQLite tables, which
2611 ** are queried from within xNext() and other v-table methods using
2612 ** prepared queries. If such a query is out-of-date, we do not want to
2613 ** discard the database schema, as the user code implementing the
2614 ** v-table would have to be ready for the sqlite3_vtab structure itself
2615 ** to be invalidated whenever sqlite3_step() is called from within
2616 ** a v-table method.
2618 if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){
2619 sqlite3ResetInternalSchema(db, pOp->p1);
2622 sqlite3ExpirePreparedStatements(db);
2628 /* Opcode: OpenRead P1 P2 P3 P4 P5
2630 ** Open a read-only cursor for the database table whose root page is
2631 ** P2 in a database file. The database file is determined by P3.
2632 ** P3==0 means the main database, P3==1 means the database used for
2633 ** temporary tables, and P3>1 means used the corresponding attached
2634 ** database. Give the new cursor an identifier of P1. The P1
2635 ** values need not be contiguous but all P1 values should be small integers.
2636 ** It is an error for P1 to be negative.
2638 ** If P5!=0 then use the content of register P2 as the root page, not
2639 ** the value of P2 itself.
2641 ** There will be a read lock on the database whenever there is an
2642 ** open cursor. If the database was unlocked prior to this instruction
2643 ** then a read lock is acquired as part of this instruction. A read
2644 ** lock allows other processes to read the database but prohibits
2645 ** any other process from modifying the database. The read lock is
2646 ** released when all cursors are closed. If this instruction attempts
2647 ** to get a read lock but fails, the script terminates with an
2648 ** SQLITE_BUSY error code.
2650 ** The P4 value is a pointer to a KeyInfo structure that defines the
2651 ** content and collating sequence of indices. P4 is NULL for cursors
2652 ** that are not pointing to indices.
2654 ** See also OpenWrite.
2656 /* Opcode: OpenWrite P1 P2 P3 P4 P5
2658 ** Open a read/write cursor named P1 on the table or index whose root
2659 ** page is P2. Or if P5!=0 use the content of register P2 to find the
2662 ** The P4 value is a pointer to a KeyInfo structure that defines the
2663 ** content and collating sequence of indices. P4 is NULL for cursors
2664 ** that are not pointing to indices.
2666 ** This instruction works just like OpenRead except that it opens the cursor
2667 ** in read/write mode. For a given table, there can be one or more read-only
2668 ** cursors or a single read/write cursor but not both.
2670 ** See also OpenRead.
2673 case OP_OpenWrite: {
2682 assert( iDb>=0 && iDb<db->nDb );
2683 assert( (p->btreeMask & (1<<iDb))!=0 );
2684 pDb = &db->aDb[iDb];
2687 if( pOp->opcode==OP_OpenWrite ){
2689 if( pDb->pSchema->file_format < p->minWriteFileFormat ){
2690 p->minWriteFileFormat = pDb->pSchema->file_format;
2697 assert( p2<=p->nMem );
2698 pIn2 = &p->aMem[p2];
2699 sqlite3VdbeMemIntegerify(pIn2);
2704 pCur = allocateCursor(p, i, &pOp[-1], iDb, 1);
2705 if( pCur==0 ) goto no_mem;
2707 rc = sqlite3BtreeCursor(pX, p2, wrFlag, pOp->p4.p, pCur->pCursor);
2708 if( pOp->p4type==P4_KEYINFO ){
2709 pCur->pKeyInfo = pOp->p4.pKeyInfo;
2710 pCur->pIncrKey = &pCur->pKeyInfo->incrKey;
2711 pCur->pKeyInfo->enc = ENC(p->db);
2714 pCur->pIncrKey = &pCur->bogusIncrKey;
2719 p->rc = rc = SQLITE_BUSY;
2723 int flags = sqlite3BtreeFlags(pCur->pCursor);
2724 /* Sanity checking. Only the lower four bits of the flags byte should
2725 ** be used. Bit 3 (mask 0x08) is unpredictable. The lower 3 bits
2726 ** (mask 0x07) should be either 5 (intkey+leafdata for tables) or
2727 ** 2 (zerodata for indices). If these conditions are not met it can
2728 ** only mean that we are dealing with a corrupt database file
2730 if( (flags & 0xf0)!=0 || ((flags & 0x07)!=5 && (flags & 0x07)!=2) ){
2731 rc = SQLITE_CORRUPT_BKPT;
2732 goto abort_due_to_error;
2734 pCur->isTable = (flags & BTREE_INTKEY)!=0;
2735 pCur->isIndex = (flags & BTREE_ZERODATA)!=0;
2736 /* If P4==0 it means we are expected to open a table. If P4!=0 then
2737 ** we expect to be opening an index. If this is not what happened,
2738 ** then the database is corrupt
2740 if( (pCur->isTable && pOp->p4type==P4_KEYINFO)
2741 || (pCur->isIndex && pOp->p4type!=P4_KEYINFO) ){
2742 rc = SQLITE_CORRUPT_BKPT;
2743 goto abort_due_to_error;
2747 case SQLITE_EMPTY: {
2748 pCur->isTable = pOp->p4type!=P4_KEYINFO;
2749 pCur->isIndex = !pCur->isTable;
2755 goto abort_due_to_error;
2761 /* Opcode: OpenEphemeral P1 P2 * P4 *
2763 ** Open a new cursor P1 to a transient table.
2764 ** The cursor is always opened read/write even if
2765 ** the main database is read-only. The transient or virtual
2766 ** table is deleted automatically when the cursor is closed.
2768 ** P2 is the number of columns in the virtual table.
2769 ** The cursor points to a BTree table if P4==0 and to a BTree index
2770 ** if P4 is not 0. If P4 is not NULL, it points to a KeyInfo structure
2771 ** that defines the format of keys in the index.
2773 ** This opcode was once called OpenTemp. But that created
2774 ** confusion because the term "temp table", might refer either
2775 ** to a TEMP table at the SQL level, or to a table opened by
2776 ** this opcode. Then this opcode was call OpenVirtual. But
2777 ** that created confusion with the whole virtual-table idea.
2779 case OP_OpenEphemeral: {
2782 static const int openFlags =
2783 SQLITE_OPEN_READWRITE |
2784 SQLITE_OPEN_CREATE |
2785 SQLITE_OPEN_EXCLUSIVE |
2786 SQLITE_OPEN_DELETEONCLOSE |
2787 SQLITE_OPEN_TRANSIENT_DB;
2790 pCx = allocateCursor(p, i, pOp, -1, 1);
2791 if( pCx==0 ) goto no_mem;
2793 rc = sqlite3BtreeFactory(db, 0, 1, SQLITE_DEFAULT_TEMP_CACHE_SIZE, openFlags,
2795 if( rc==SQLITE_OK ){
2796 rc = sqlite3BtreeBeginTrans(pCx->pBt, 1);
2798 if( rc==SQLITE_OK ){
2799 /* If a transient index is required, create it by calling
2800 ** sqlite3BtreeCreateTable() with the BTREE_ZERODATA flag before
2801 ** opening it. If a transient table is required, just use the
2802 ** automatically created table with root-page 1 (an INTKEY table).
2804 if( pOp->p4.pKeyInfo ){
2806 assert( pOp->p4type==P4_KEYINFO );
2807 rc = sqlite3BtreeCreateTable(pCx->pBt, &pgno, BTREE_ZERODATA);
2808 if( rc==SQLITE_OK ){
2809 assert( pgno==MASTER_ROOT+1 );
2810 rc = sqlite3BtreeCursor(pCx->pBt, pgno, 1,
2811 (KeyInfo*)pOp->p4.z, pCx->pCursor);
2812 pCx->pKeyInfo = pOp->p4.pKeyInfo;
2813 pCx->pKeyInfo->enc = ENC(p->db);
2814 pCx->pIncrKey = &pCx->pKeyInfo->incrKey;
2818 rc = sqlite3BtreeCursor(pCx->pBt, MASTER_ROOT, 1, 0, pCx->pCursor);
2820 pCx->pIncrKey = &pCx->bogusIncrKey;
2823 pCx->isIndex = !pCx->isTable;
2827 /* Opcode: OpenPseudo P1 P2 * * *
2829 ** Open a new cursor that points to a fake table that contains a single
2830 ** row of data. Any attempt to write a second row of data causes the
2831 ** first row to be deleted. All data is deleted when the cursor is
2834 ** A pseudo-table created by this opcode is useful for holding the
2835 ** NEW or OLD tables in a trigger. Also used to hold the a single
2836 ** row output from the sorter so that the row can be decomposed into
2837 ** individual columns using the OP_Column opcode.
2839 ** When OP_Insert is executed to insert a row in to the pseudo table,
2840 ** the pseudo-table cursor may or may not make it's own copy of the
2841 ** original row data. If P2 is 0, then the pseudo-table will copy the
2842 ** original row data. Otherwise, a pointer to the original memory cell
2843 ** is stored. In this case, the vdbe program must ensure that the
2844 ** memory cell containing the row data is not overwritten until the
2845 ** pseudo table is closed (or a new row is inserted into it).
2847 case OP_OpenPseudo: {
2851 pCx = allocateCursor(p, i, &pOp[-1], -1, 0);
2852 if( pCx==0 ) goto no_mem;
2854 pCx->pseudoTable = 1;
2855 pCx->ephemPseudoTable = pOp->p2;
2856 pCx->pIncrKey = &pCx->bogusIncrKey;
2862 /* Opcode: Close P1 * * * *
2864 ** Close a cursor previously opened as P1. If P1 is not
2865 ** currently open, this instruction is a no-op.
2869 assert( i>=0 && i<p->nCursor );
2870 sqlite3VdbeFreeCursor(p, p->apCsr[i]);
2875 /* Opcode: MoveGe P1 P2 P3 P4 *
2877 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
2878 ** use the integer value in register P3 as a key. If cursor P1 refers
2879 ** to an SQL index, then P3 is the first in an array of P4 registers
2880 ** that are used as an unpacked index key.
2882 ** Reposition cursor P1 so that it points to the smallest entry that
2883 ** is greater than or equal to the key value. If there are no records
2884 ** greater than or equal to the key and P2 is not zero, then jump to P2.
2886 ** A special feature of this opcode (and different from the
2887 ** related OP_MoveGt, OP_MoveLt, and OP_MoveLe) is that if P2 is
2888 ** zero and P1 is an SQL table (a b-tree with integer keys) then
2889 ** the seek is deferred until it is actually needed. It might be
2890 ** the case that the cursor is never accessed. By deferring the
2891 ** seek, we avoid unnecessary seeks.
2893 ** See also: Found, NotFound, Distinct, MoveLt, MoveGt, MoveLe
2895 /* Opcode: MoveGt P1 P2 P3 P4 *
2897 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
2898 ** use the integer value in register P3 as a key. If cursor P1 refers
2899 ** to an SQL index, then P3 is the first in an array of P4 registers
2900 ** that are used as an unpacked index key.
2902 ** Reposition cursor P1 so that it points to the smallest entry that
2903 ** is greater than the key value. If there are no records greater than
2904 ** the key and P2 is not zero, then jump to P2.
2906 ** See also: Found, NotFound, Distinct, MoveLt, MoveGe, MoveLe
2908 /* Opcode: MoveLt P1 P2 P3 P4 *
2910 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
2911 ** use the integer value in register P3 as a key. If cursor P1 refers
2912 ** to an SQL index, then P3 is the first in an array of P4 registers
2913 ** that are used as an unpacked index key.
2915 ** Reposition cursor P1 so that it points to the largest entry that
2916 ** is less than the key value. If there are no records less than
2917 ** the key and P2 is not zero, then jump to P2.
2919 ** See also: Found, NotFound, Distinct, MoveGt, MoveGe, MoveLe
2921 /* Opcode: MoveLe P1 P2 P3 P4 *
2923 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
2924 ** use the integer value in register P3 as a key. If cursor P1 refers
2925 ** to an SQL index, then P3 is the first in an array of P4 registers
2926 ** that are used as an unpacked index key.
2928 ** Reposition cursor P1 so that it points to the largest entry that
2929 ** is less than or equal to the key value. If there are no records
2930 ** less than or equal to the key and P2 is not zero, then jump to P2.
2932 ** See also: Found, NotFound, Distinct, MoveGt, MoveGe, MoveLt
2934 case OP_MoveLt: /* jump, in3 */
2935 case OP_MoveLe: /* jump, in3 */
2936 case OP_MoveGe: /* jump, in3 */
2937 case OP_MoveGt: { /* jump, in3 */
2941 assert( i>=0 && i<p->nCursor );
2944 if( pC->pCursor!=0 ){
2948 *pC->pIncrKey = oc==OP_MoveGt || oc==OP_MoveLe;
2950 i64 iKey = sqlite3VdbeIntValue(pIn3);
2952 assert( pOp->opcode==OP_MoveGe );
2953 pC->movetoTarget = iKey;
2954 pC->rowidIsValid = 0;
2955 pC->deferredMoveto = 1;
2958 rc = sqlite3BtreeMoveto(pC->pCursor, 0, 0, (u64)iKey, 0, &res);
2959 if( rc!=SQLITE_OK ){
2960 goto abort_due_to_error;
2962 pC->lastRowid = iKey;
2963 pC->rowidIsValid = res==0;
2966 int nField = pOp->p4.i;
2967 assert( pOp->p4type==P4_INT32 );
2969 r.pKeyInfo = pC->pKeyInfo;
2973 r.aMem = &p->aMem[pOp->p3];
2974 rc = sqlite3BtreeMoveto(pC->pCursor, 0, &r, 0, 0, &res);
2975 if( rc!=SQLITE_OK ){
2976 goto abort_due_to_error;
2978 pC->rowidIsValid = 0;
2980 pC->deferredMoveto = 0;
2981 pC->cacheStatus = CACHE_STALE;
2984 sqlite3_search_count++;
2986 if( oc==OP_MoveGe || oc==OP_MoveGt ){
2988 rc = sqlite3BtreeNext(pC->pCursor, &res);
2989 if( rc!=SQLITE_OK ) goto abort_due_to_error;
2990 pC->rowidIsValid = 0;
2995 assert( oc==OP_MoveLt || oc==OP_MoveLe );
2997 rc = sqlite3BtreePrevious(pC->pCursor, &res);
2998 if( rc!=SQLITE_OK ) goto abort_due_to_error;
2999 pC->rowidIsValid = 0;
3001 /* res might be negative because the table is empty. Check to
3002 ** see if this is the case.
3004 res = sqlite3BtreeEof(pC->pCursor);
3007 assert( pOp->p2>0 );
3011 }else if( !pC->pseudoTable ){
3012 /* This happens when attempting to open the sqlite3_master table
3013 ** for read access returns SQLITE_EMPTY. In this case always
3014 ** take the jump (since there are no records in the table).
3021 /* Opcode: Found P1 P2 P3 * *
3023 ** Register P3 holds a blob constructed by MakeRecord. P1 is an index.
3024 ** If an entry that matches the value in register p3 exists in P1 then
3025 ** jump to P2. If the P3 value does not match any entry in P1
3026 ** then fall thru. The P1 cursor is left pointing at the matching entry
3029 ** This instruction is used to implement the IN operator where the
3030 ** left-hand side is a SELECT statement. P1 may be a true index, or it
3031 ** may be a temporary index that holds the results of the SELECT
3032 ** statement. This instruction is also used to implement the
3033 ** DISTINCT keyword in SELECT statements.
3035 ** This instruction checks if index P1 contains a record for which
3036 ** the first N serialized values exactly match the N serialized values
3037 ** in the record in register P3, where N is the total number of values in
3038 ** the P3 record (the P3 record is a prefix of the P1 record).
3040 ** See also: NotFound, MoveTo, IsUnique, NotExists
3042 /* Opcode: NotFound P1 P2 P3 * *
3044 ** Register P3 holds a blob constructed by MakeRecord. P1 is
3045 ** an index. If no entry exists in P1 that matches the blob then jump
3046 ** to P2. If an entry does existing, fall through. The cursor is left
3047 ** pointing to the entry that matches.
3049 ** See also: Found, MoveTo, NotExists, IsUnique
3051 case OP_NotFound: /* jump, in3 */
3052 case OP_Found: { /* jump, in3 */
3054 int alreadyExists = 0;
3056 assert( i>=0 && i<p->nCursor );
3057 assert( p->apCsr[i]!=0 );
3058 if( (pC = p->apCsr[i])->pCursor!=0 ){
3060 assert( pC->isTable==0 );
3061 assert( pIn3->flags & MEM_Blob );
3062 if( pOp->opcode==OP_Found ){
3063 pC->pKeyInfo->prefixIsEqual = 1;
3065 rc = sqlite3BtreeMoveto(pC->pCursor, pIn3->z, 0, pIn3->n, 0, &res);
3066 pC->pKeyInfo->prefixIsEqual = 0;
3067 if( rc!=SQLITE_OK ){
3070 alreadyExists = (res==0);
3071 pC->deferredMoveto = 0;
3072 pC->cacheStatus = CACHE_STALE;
3074 if( pOp->opcode==OP_Found ){
3075 if( alreadyExists ) pc = pOp->p2 - 1;
3077 if( !alreadyExists ) pc = pOp->p2 - 1;
3082 /* Opcode: IsUnique P1 P2 P3 P4 *
3084 ** The P3 register contains an integer record number. Call this
3085 ** record number R. The P4 register contains an index key created
3086 ** using MakeIdxRec. Call it K.
3088 ** P1 is an index. So it has no data and its key consists of a
3089 ** record generated by OP_MakeRecord where the last field is the
3090 ** rowid of the entry that the index refers to.
3092 ** This instruction asks if there is an entry in P1 where the
3093 ** fields matches K but the rowid is different from R.
3094 ** If there is no such entry, then there is an immediate
3095 ** jump to P2. If any entry does exist where the index string
3096 ** matches K but the record number is not R, then the record
3097 ** number for that entry is written into P3 and control
3098 ** falls through to the next instruction.
3100 ** See also: NotFound, NotExists, Found
3102 case OP_IsUnique: { /* jump, in3 */
3109 /* Pop the value R off the top of the stack
3111 assert( pOp->p4type==P4_INT32 );
3112 assert( pOp->p4.i>0 && pOp->p4.i<=p->nMem );
3113 pK = &p->aMem[pOp->p4.i];
3114 sqlite3VdbeMemIntegerify(pIn3);
3116 assert( i>=0 && i<p->nCursor );
3119 pCrsr = pCx->pCursor;
3122 i64 v; /* The record number on the P1 entry that matches K */
3123 char *zKey; /* The value of K */
3124 int nKey; /* Number of bytes in K */
3125 int len; /* Number of bytes in K without the rowid at the end */
3126 int szRowid; /* Size of the rowid column at the end of zKey */
3128 /* Make sure K is a string and make zKey point to K
3130 assert( pK->flags & MEM_Blob );
3134 /* sqlite3VdbeIdxRowidLen() only returns other than SQLITE_OK when the
3135 ** record passed as an argument corrupt. Since the record in this case
3136 ** has just been created by an OP_MakeRecord instruction, and not loaded
3137 ** from the database file, it is not possible for it to be corrupt.
3138 ** Therefore, assert(rc==SQLITE_OK).
3140 rc = sqlite3VdbeIdxRowidLen((u8*)zKey, nKey, &szRowid);
3141 assert(rc==SQLITE_OK);
3144 /* Search for an entry in P1 where all but the last four bytes match K.
3145 ** If there is no such entry, jump immediately to P2.
3147 assert( pCx->deferredMoveto==0 );
3148 pCx->cacheStatus = CACHE_STALE;
3149 rc = sqlite3BtreeMoveto(pCrsr, zKey, 0, len, 0, &res);
3150 if( rc!=SQLITE_OK ){
3151 goto abort_due_to_error;
3154 rc = sqlite3BtreeNext(pCrsr, &res);
3160 rc = sqlite3VdbeIdxKeyCompare(pCx, 0, len, (u8*)zKey, &res);
3161 if( rc!=SQLITE_OK ) goto abort_due_to_error;
3167 /* At this point, pCrsr is pointing to an entry in P1 where all but
3168 ** the final entry (the rowid) matches K. Check to see if the
3169 ** final rowid column is different from R. If it equals R then jump
3170 ** immediately to P2.
3172 rc = sqlite3VdbeIdxRowid(pCrsr, &v);
3173 if( rc!=SQLITE_OK ){
3174 goto abort_due_to_error;
3181 /* The final varint of the key is different from R. Store it back
3182 ** into register R3. (The record number of an entry that violates
3183 ** a UNIQUE constraint.)
3186 assert( pIn3->flags&MEM_Int );
3191 /* Opcode: NotExists P1 P2 P3 * *
3193 ** Use the content of register P3 as a integer key. If a record
3194 ** with that key does not exist in table of P1, then jump to P2.
3195 ** If the record does exist, then fall thru. The cursor is left
3196 ** pointing to the record if it exists.
3198 ** The difference between this operation and NotFound is that this
3199 ** operation assumes the key is an integer and that P1 is a table whereas
3200 ** NotFound assumes key is a blob constructed from MakeRecord and
3203 ** See also: Found, MoveTo, NotFound, IsUnique
3205 case OP_NotExists: { /* jump, in3 */
3209 assert( i>=0 && i<p->nCursor );
3210 assert( p->apCsr[i]!=0 );
3211 if( (pCrsr = (pC = p->apCsr[i])->pCursor)!=0 ){
3214 assert( pIn3->flags & MEM_Int );
3215 assert( p->apCsr[i]->isTable );
3216 iKey = intToKey(pIn3->u.i);
3217 rc = sqlite3BtreeMoveto(pCrsr, 0, 0, iKey, 0,&res);
3218 pC->lastRowid = pIn3->u.i;
3219 pC->rowidIsValid = res==0;
3221 pC->cacheStatus = CACHE_STALE;
3222 /* res might be uninitialized if rc!=SQLITE_OK. But if rc!=SQLITE_OK
3223 ** processing is about to abort so we really do not care whether or not
3224 ** the following jump is taken. (In other words, do not stress over
3225 ** the error that valgrind sometimes shows on the next statement when
3226 ** running ioerr.test and similar failure-recovery test scripts.) */
3229 assert( pC->rowidIsValid==0 );
3231 }else if( !pC->pseudoTable ){
3232 /* This happens when an attempt to open a read cursor on the
3233 ** sqlite_master table returns SQLITE_EMPTY.
3235 assert( pC->isTable );
3237 assert( pC->rowidIsValid==0 );
3242 /* Opcode: Sequence P1 P2 * * *
3244 ** Find the next available sequence number for cursor P1.
3245 ** Write the sequence number into register P2.
3246 ** The sequence number on the cursor is incremented after this
3249 case OP_Sequence: { /* out2-prerelease */
3251 assert( i>=0 && i<p->nCursor );
3252 assert( p->apCsr[i]!=0 );
3253 pOut->u.i = p->apCsr[i]->seqCount++;
3254 MemSetTypeFlag(pOut, MEM_Int);
3259 /* Opcode: NewRowid P1 P2 P3 * *
3261 ** Get a new integer record number (a.k.a "rowid") used as the key to a table.
3262 ** The record number is not previously used as a key in the database
3263 ** table that cursor P1 points to. The new record number is written
3264 ** written to register P2.
3266 ** If P3>0 then P3 is a register that holds the largest previously
3267 ** generated record number. No new record numbers are allowed to be less
3268 ** than this value. When this value reaches its maximum, a SQLITE_FULL
3269 ** error is generated. The P3 register is updated with the generated
3270 ** record number. This P3 mechanism is used to help implement the
3271 ** AUTOINCREMENT feature.
3273 case OP_NewRowid: { /* out2-prerelease */
3277 assert( i>=0 && i<p->nCursor );
3278 assert( p->apCsr[i]!=0 );
3279 if( (pC = p->apCsr[i])->pCursor==0 ){
3280 /* The zero initialization above is all that is needed */
3282 /* The next rowid or record number (different terms for the same
3283 ** thing) is obtained in a two-step algorithm.
3285 ** First we attempt to find the largest existing rowid and add one
3286 ** to that. But if the largest existing rowid is already the maximum
3287 ** positive integer, we have to fall through to the second
3288 ** probabilistic algorithm
3290 ** The second algorithm is to select a rowid at random and see if
3291 ** it already exists in the table. If it does not exist, we have
3292 ** succeeded. If the random rowid does exist, we select a new one
3293 ** and try again, up to 1000 times.
3295 ** For a table with less than 2 billion entries, the probability
3296 ** of not finding a unused rowid is about 1.0e-300. This is a
3297 ** non-zero probability, but it is still vanishingly small and should
3298 ** never cause a problem. You are much, much more likely to have a
3299 ** hardware failure than for this algorithm to fail.
3301 ** The analysis in the previous paragraph assumes that you have a good
3302 ** source of random numbers. Is a library function like lrand48()
3303 ** good enough? Maybe. Maybe not. It's hard to know whether there
3304 ** might be subtle bugs is some implementations of lrand48() that
3305 ** could cause problems. To avoid uncertainty, SQLite uses its own
3306 ** random number generator based on the RC4 algorithm.
3308 ** To promote locality of reference for repetitive inserts, the
3309 ** first few attempts at choosing a random rowid pick values just a little
3310 ** larger than the previous rowid. This has been shown experimentally
3311 ** to double the speed of the COPY operation.
3313 int res, rx=SQLITE_OK, cnt;
3316 if( (sqlite3BtreeFlags(pC->pCursor)&(BTREE_INTKEY|BTREE_ZERODATA)) !=
3318 rc = SQLITE_CORRUPT_BKPT;
3319 goto abort_due_to_error;
3321 assert( (sqlite3BtreeFlags(pC->pCursor) & BTREE_INTKEY)!=0 );
3322 assert( (sqlite3BtreeFlags(pC->pCursor) & BTREE_ZERODATA)==0 );
3324 #ifdef SQLITE_32BIT_ROWID
3325 # define MAX_ROWID 0x7fffffff
3327 /* Some compilers complain about constants of the form 0x7fffffffffffffff.
3328 ** Others complain about 0x7ffffffffffffffffLL. The following macro seems
3329 ** to provide the constant while making all compilers happy.
3331 # define MAX_ROWID ( (((u64)0x7fffffff)<<32) | (u64)0xffffffff )
3334 if( !pC->useRandomRowid ){
3335 if( pC->nextRowidValid ){
3338 rc = sqlite3BtreeLast(pC->pCursor, &res);
3339 if( rc!=SQLITE_OK ){
3340 goto abort_due_to_error;
3345 sqlite3BtreeKeySize(pC->pCursor, &v);
3348 pC->useRandomRowid = 1;
3355 #ifndef SQLITE_OMIT_AUTOINCREMENT
3358 assert( pOp->p3>0 && pOp->p3<=p->nMem ); /* P3 is a valid memory cell */
3359 pMem = &p->aMem[pOp->p3];
3360 REGISTER_TRACE(pOp->p3, pMem);
3361 sqlite3VdbeMemIntegerify(pMem);
3362 assert( (pMem->flags & MEM_Int)!=0 ); /* mem(P3) holds an integer */
3363 if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){
3365 goto abort_due_to_error;
3367 if( v<pMem->u.i+1 ){
3375 pC->nextRowidValid = 1;
3376 pC->nextRowid = v+1;
3378 pC->nextRowidValid = 0;
3381 if( pC->useRandomRowid ){
3382 assert( pOp->p3==0 ); /* SQLITE_FULL must have occurred prior to this */
3383 v = db->priorNewRowid;
3386 if( cnt==0 && (v&0xffffff)==v ){
3389 sqlite3_randomness(sizeof(v), &v);
3390 if( cnt<5 ) v &= 0xffffff;
3392 if( v==0 ) continue;
3394 rx = sqlite3BtreeMoveto(pC->pCursor, 0, 0, (u64)x, 0, &res);
3396 }while( cnt<100 && rx==SQLITE_OK && res==0 );
3397 db->priorNewRowid = v;
3398 if( rx==SQLITE_OK && res==0 ){
3400 goto abort_due_to_error;
3403 pC->rowidIsValid = 0;
3404 pC->deferredMoveto = 0;
3405 pC->cacheStatus = CACHE_STALE;
3407 MemSetTypeFlag(pOut, MEM_Int);
3412 /* Opcode: Insert P1 P2 P3 P4 P5
3414 ** Write an entry into the table of cursor P1. A new entry is
3415 ** created if it doesn't already exist or the data for an existing
3416 ** entry is overwritten. The data is the value stored register
3417 ** number P2. The key is stored in register P3. The key must
3420 ** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is
3421 ** incremented (otherwise not). If the OPFLAG_LASTROWID flag of P5 is set,
3422 ** then rowid is stored for subsequent return by the
3423 ** sqlite3_last_insert_rowid() function (otherwise it is unmodified).
3425 ** Parameter P4 may point to a string containing the table-name, or
3426 ** may be NULL. If it is not NULL, then the update-hook
3427 ** (sqlite3.xUpdateCallback) is invoked following a successful insert.
3429 ** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically
3430 ** allocated, then ownership of P2 is transferred to the pseudo-cursor
3431 ** and register P2 becomes ephemeral. If the cursor is changed, the
3432 ** value of register P2 will then change. Make sure this does not
3433 ** cause any problems.)
3435 ** This instruction only works on tables. The equivalent instruction
3436 ** for indices is OP_IdxInsert.
3439 Mem *pData = &p->aMem[pOp->p2];
3440 Mem *pKey = &p->aMem[pOp->p3];
3442 i64 iKey; /* The integer ROWID or key for the record to be inserted */
3445 assert( i>=0 && i<p->nCursor );
3448 assert( pC->pCursor!=0 || pC->pseudoTable );
3449 assert( pKey->flags & MEM_Int );
3450 assert( pC->isTable );
3451 REGISTER_TRACE(pOp->p2, pData);
3452 REGISTER_TRACE(pOp->p3, pKey);
3454 iKey = intToKey(pKey->u.i);
3455 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
3456 if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = pKey->u.i;
3457 if( pC->nextRowidValid && pKey->u.i>=pC->nextRowid ){
3458 pC->nextRowidValid = 0;
3460 if( pData->flags & MEM_Null ){
3464 assert( pData->flags & (MEM_Blob|MEM_Str) );
3466 if( pC->pseudoTable ){
3467 if( !pC->ephemPseudoTable ){
3468 sqlite3DbFree(db, pC->pData);
3471 pC->nData = pData->n;
3472 if( pData->z==pData->zMalloc || pC->ephemPseudoTable ){
3473 pC->pData = pData->z;
3474 if( !pC->ephemPseudoTable ){
3475 pData->flags &= ~MEM_Dyn;
3476 pData->flags |= MEM_Ephem;
3480 pC->pData = sqlite3Malloc( pC->nData+2 );
3481 if( !pC->pData ) goto no_mem;
3482 memcpy(pC->pData, pData->z, pC->nData);
3483 pC->pData[pC->nData] = 0;
3484 pC->pData[pC->nData+1] = 0;
3489 if( pData->flags & MEM_Zero ){
3494 rc = sqlite3BtreeInsert(pC->pCursor, 0, iKey,
3495 pData->z, pData->n, nZero,
3496 pOp->p5 & OPFLAG_APPEND);
3499 pC->rowidIsValid = 0;
3500 pC->deferredMoveto = 0;
3501 pC->cacheStatus = CACHE_STALE;
3503 /* Invoke the update-hook if required. */
3504 if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z ){
3505 const char *zDb = db->aDb[pC->iDb].zName;
3506 const char *zTbl = pOp->p4.z;
3507 int op = ((pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT);
3508 assert( pC->isTable );
3509 db->xUpdateCallback(db->pUpdateArg, op, zDb, zTbl, iKey);
3510 assert( pC->iDb>=0 );
3515 /* Opcode: Delete P1 P2 * P4 *
3517 ** Delete the record at which the P1 cursor is currently pointing.
3519 ** The cursor will be left pointing at either the next or the previous
3520 ** record in the table. If it is left pointing at the next record, then
3521 ** the next Next instruction will be a no-op. Hence it is OK to delete
3522 ** a record from within an Next loop.
3524 ** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is
3525 ** incremented (otherwise not).
3527 ** P1 must not be pseudo-table. It has to be a real table with
3530 ** If P4 is not NULL, then it is the name of the table that P1 is
3531 ** pointing to. The update hook will be invoked, if it exists.
3532 ** If P4 is not NULL then the P1 cursor must have been positioned
3533 ** using OP_NotFound prior to invoking this opcode.
3540 assert( i>=0 && i<p->nCursor );
3543 assert( pC->pCursor!=0 ); /* Only valid for real tables, no pseudotables */
3545 /* If the update-hook will be invoked, set iKey to the rowid of the
3546 ** row being deleted.
3548 if( db->xUpdateCallback && pOp->p4.z ){
3549 assert( pC->isTable );
3550 assert( pC->rowidIsValid ); /* lastRowid set by previous OP_NotFound */
3551 iKey = pC->lastRowid;
3554 rc = sqlite3VdbeCursorMoveto(pC);
3555 if( rc ) goto abort_due_to_error;
3556 rc = sqlite3BtreeDelete(pC->pCursor);
3557 pC->nextRowidValid = 0;
3558 pC->cacheStatus = CACHE_STALE;
3560 /* Invoke the update-hook if required. */
3561 if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z ){
3562 const char *zDb = db->aDb[pC->iDb].zName;
3563 const char *zTbl = pOp->p4.z;
3564 db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb, zTbl, iKey);
3565 assert( pC->iDb>=0 );
3567 if( pOp->p2 & OPFLAG_NCHANGE ) p->nChange++;
3571 /* Opcode: ResetCount P1 * *
3573 ** This opcode resets the VMs internal change counter to 0. If P1 is true,
3574 ** then the value of the change counter is copied to the database handle
3575 ** change counter (returned by subsequent calls to sqlite3_changes())
3576 ** before it is reset. This is used by trigger programs.
3578 case OP_ResetCount: {
3580 sqlite3VdbeSetChanges(db, p->nChange);
3586 /* Opcode: RowData P1 P2 * * *
3588 ** Write into register P2 the complete row data for cursor P1.
3589 ** There is no interpretation of the data.
3590 ** It is just copied onto the P2 register exactly as
3591 ** it is found in the database file.
3593 ** If the P1 cursor must be pointing to a valid row (not a NULL row)
3594 ** of a real table, not a pseudo-table.
3596 /* Opcode: RowKey P1 P2 * * *
3598 ** Write into register P2 the complete row key for cursor P1.
3599 ** There is no interpretation of the data.
3600 ** The key is copied onto the P3 register exactly as
3601 ** it is found in the database file.
3603 ** If the P1 cursor must be pointing to a valid row (not a NULL row)
3604 ** of a real table, not a pseudo-table.
3613 pOut = &p->aMem[pOp->p2];
3615 /* Note that RowKey and RowData are really exactly the same instruction */
3616 assert( i>=0 && i<p->nCursor );
3618 assert( pC->isTable || pOp->opcode==OP_RowKey );
3619 assert( pC->isIndex || pOp->opcode==OP_RowData );
3621 assert( pC->nullRow==0 );
3622 assert( pC->pseudoTable==0 );
3623 assert( pC->pCursor!=0 );
3624 pCrsr = pC->pCursor;
3625 rc = sqlite3VdbeCursorMoveto(pC);
3626 if( rc ) goto abort_due_to_error;
3629 assert( !pC->isTable );
3630 sqlite3BtreeKeySize(pCrsr, &n64);
3631 if( n64>db->aLimit[SQLITE_LIMIT_LENGTH] ){
3636 sqlite3BtreeDataSize(pCrsr, &n);
3637 if( n>db->aLimit[SQLITE_LIMIT_LENGTH] ){
3641 if( sqlite3VdbeMemGrow(pOut, n, 0) ){
3645 MemSetTypeFlag(pOut, MEM_Blob);
3647 rc = sqlite3BtreeKey(pCrsr, 0, n, pOut->z);
3649 rc = sqlite3BtreeData(pCrsr, 0, n, pOut->z);
3651 pOut->enc = SQLITE_UTF8; /* In case the blob is ever cast to text */
3652 UPDATE_MAX_BLOBSIZE(pOut);
3656 /* Opcode: Rowid P1 P2 * * *
3658 ** Store in register P2 an integer which is the key of the table entry that
3659 ** P1 is currently point to.
3661 case OP_Rowid: { /* out2-prerelease */
3666 assert( i>=0 && i<p->nCursor );
3669 rc = sqlite3VdbeCursorMoveto(pC);
3670 if( rc ) goto abort_due_to_error;
3671 if( pC->rowidIsValid ){
3673 }else if( pC->pseudoTable ){
3674 v = keyToInt(pC->iKey);
3675 }else if( pC->nullRow ){
3676 /* Leave the rowid set to a NULL */
3679 assert( pC->pCursor!=0 );
3680 sqlite3BtreeKeySize(pC->pCursor, &v);
3684 MemSetTypeFlag(pOut, MEM_Int);
3688 /* Opcode: NullRow P1 * * * *
3690 ** Move the cursor P1 to a null row. Any OP_Column operations
3691 ** that occur while the cursor is on the null row will always
3698 assert( i>=0 && i<p->nCursor );
3702 pC->rowidIsValid = 0;
3706 /* Opcode: Last P1 P2 * * *
3708 ** The next use of the Rowid or Column or Next instruction for P1
3709 ** will refer to the last entry in the database table or index.
3710 ** If the table or index is empty and P2>0, then jump immediately to P2.
3711 ** If P2 is 0 or if the table or index is not empty, fall through
3712 ** to the following instruction.
3714 case OP_Last: { /* jump */
3720 assert( i>=0 && i<p->nCursor );
3723 pCrsr = pC->pCursor;
3725 rc = sqlite3BtreeLast(pCrsr, &res);
3727 pC->deferredMoveto = 0;
3728 pC->cacheStatus = CACHE_STALE;
3729 if( res && pOp->p2>0 ){
3736 /* Opcode: Sort P1 P2 * * *
3738 ** This opcode does exactly the same thing as OP_Rewind except that
3739 ** it increments an undocumented global variable used for testing.
3741 ** Sorting is accomplished by writing records into a sorting index,
3742 ** then rewinding that index and playing it back from beginning to
3743 ** end. We use the OP_Sort opcode instead of OP_Rewind to do the
3744 ** rewinding so that the global variable will be incremented and
3745 ** regression tests can determine whether or not the optimizer is
3746 ** correctly optimizing out sorts.
3748 case OP_Sort: { /* jump */
3750 sqlite3_sort_count++;
3751 sqlite3_search_count--;
3753 /* Fall through into OP_Rewind */
3755 /* Opcode: Rewind P1 P2 * * *
3757 ** The next use of the Rowid or Column or Next instruction for P1
3758 ** will refer to the first entry in the database table or index.
3759 ** If the table or index is empty and P2>0, then jump immediately to P2.
3760 ** If P2 is 0 or if the table or index is not empty, fall through
3761 ** to the following instruction.
3763 case OP_Rewind: { /* jump */
3769 assert( i>=0 && i<p->nCursor );
3772 if( (pCrsr = pC->pCursor)!=0 ){
3773 rc = sqlite3BtreeFirst(pCrsr, &res);
3774 pC->atFirst = res==0;
3775 pC->deferredMoveto = 0;
3776 pC->cacheStatus = CACHE_STALE;
3781 assert( pOp->p2>0 && pOp->p2<p->nOp );
3788 /* Opcode: Next P1 P2 * * *
3790 ** Advance cursor P1 so that it points to the next key/data pair in its
3791 ** table or index. If there are no more key/value pairs then fall through
3792 ** to the following instruction. But if the cursor advance was successful,
3793 ** jump immediately to P2.
3795 ** The P1 cursor must be for a real table, not a pseudo-table.
3799 /* Opcode: Prev P1 P2 * * *
3801 ** Back up cursor P1 so that it points to the previous key/data pair in its
3802 ** table or index. If there is no previous key/value pairs then fall through
3803 ** to the following instruction. But if the cursor backup was successful,
3804 ** jump immediately to P2.
3806 ** The P1 cursor must be for a real table, not a pseudo-table.
3808 case OP_Prev: /* jump */
3809 case OP_Next: { /* jump */
3814 CHECK_FOR_INTERRUPT;
3815 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3816 pC = p->apCsr[pOp->p1];
3818 break; /* See ticket #2273 */
3820 pCrsr = pC->pCursor;
3823 assert( pC->deferredMoveto==0 );
3824 rc = pOp->opcode==OP_Next ? sqlite3BtreeNext(pCrsr, &res) :
3825 sqlite3BtreePrevious(pCrsr, &res);
3827 pC->cacheStatus = CACHE_STALE;
3831 sqlite3_search_count++;
3834 pC->rowidIsValid = 0;
3838 /* Opcode: IdxInsert P1 P2 P3 * *
3840 ** Register P2 holds a SQL index key made using the
3841 ** MakeIdxRec instructions. This opcode writes that key
3842 ** into the index P1. Data for the entry is nil.
3844 ** P3 is a flag that provides a hint to the b-tree layer that this
3845 ** insert is likely to be an append.
3847 ** This instruction only works for indices. The equivalent instruction
3848 ** for tables is OP_Insert.
3850 case OP_IdxInsert: { /* in2 */
3854 assert( i>=0 && i<p->nCursor );
3855 assert( p->apCsr[i]!=0 );
3856 assert( pIn2->flags & MEM_Blob );
3857 if( (pCrsr = (pC = p->apCsr[i])->pCursor)!=0 ){
3858 assert( pC->isTable==0 );
3859 rc = ExpandBlob(pIn2);
3860 if( rc==SQLITE_OK ){
3862 const char *zKey = pIn2->z;
3863 rc = sqlite3BtreeInsert(pCrsr, zKey, nKey, "", 0, 0, pOp->p3);
3864 assert( pC->deferredMoveto==0 );
3865 pC->cacheStatus = CACHE_STALE;
3871 /* Opcode: IdxDeleteM P1 P2 P3 * *
3873 ** The content of P3 registers starting at register P2 form
3874 ** an unpacked index key. This opcode removes that entry from the
3875 ** index opened by cursor P1.
3877 case OP_IdxDelete: {
3881 assert( pOp->p3>0 );
3882 assert( pOp->p2>0 && pOp->p2+pOp->p3<=p->nMem );
3883 assert( i>=0 && i<p->nCursor );
3884 assert( p->apCsr[i]!=0 );
3885 if( (pCrsr = (pC = p->apCsr[i])->pCursor)!=0 ){
3888 r.pKeyInfo = pC->pKeyInfo;
3892 r.aMem = &p->aMem[pOp->p2];
3893 rc = sqlite3BtreeMoveto(pCrsr, 0, &r, 0, 0, &res);
3894 if( rc==SQLITE_OK && res==0 ){
3895 rc = sqlite3BtreeDelete(pCrsr);
3897 assert( pC->deferredMoveto==0 );
3898 pC->cacheStatus = CACHE_STALE;
3903 /* Opcode: IdxRowid P1 P2 * * *
3905 ** Write into register P2 an integer which is the last entry in the record at
3906 ** the end of the index key pointed to by cursor P1. This integer should be
3907 ** the rowid of the table entry to which this index entry points.
3909 ** See also: Rowid, MakeIdxRec.
3911 case OP_IdxRowid: { /* out2-prerelease */
3916 assert( i>=0 && i<p->nCursor );
3917 assert( p->apCsr[i]!=0 );
3918 if( (pCrsr = (pC = p->apCsr[i])->pCursor)!=0 ){
3921 assert( pC->deferredMoveto==0 );
3922 assert( pC->isTable==0 );
3924 rc = sqlite3VdbeIdxRowid(pCrsr, &rowid);
3925 if( rc!=SQLITE_OK ){
3926 goto abort_due_to_error;
3928 MemSetTypeFlag(pOut, MEM_Int);
3935 /* Opcode: IdxGE P1 P2 P3 P4 P5
3937 ** The P4 register values beginning with P3 form an unpacked index
3938 ** key that omits the ROWID. Compare this key value against the index
3939 ** that P1 is currently pointing to, ignoring the ROWID on the P1 index.
3941 ** If the P1 index entry is greater than or equal to the key value
3942 ** then jump to P2. Otherwise fall through to the next instruction.
3944 ** If P5 is non-zero then the key value is increased by an epsilon
3945 ** prior to the comparison. This make the opcode work like IdxGT except
3946 ** that if the key from register P3 is a prefix of the key in the cursor,
3947 ** the result is false whereas it would be true with IdxGT.
3949 /* Opcode: IdxLT P1 P2 P3 * P5
3951 ** The P4 register values beginning with P3 form an unpacked index
3952 ** key that omits the ROWID. Compare this key value against the index
3953 ** that P1 is currently pointing to, ignoring the ROWID on the P1 index.
3955 ** If the P1 index entry is less than the key value then jump to P2.
3956 ** Otherwise fall through to the next instruction.
3958 ** If P5 is non-zero then the key value is increased by an epsilon prior
3959 ** to the comparison. This makes the opcode work like IdxLE.
3961 case OP_IdxLT: /* jump, in3 */
3962 case OP_IdxGE: { /* jump, in3 */
3966 assert( i>=0 && i<p->nCursor );
3967 assert( p->apCsr[i]!=0 );
3968 if( (pC = p->apCsr[i])->pCursor!=0 ){
3971 assert( pC->deferredMoveto==0 );
3972 assert( pOp->p5==0 || pOp->p5==1 );
3973 assert( pOp->p4type==P4_INT32 );
3974 r.pKeyInfo = pC->pKeyInfo;
3975 r.nField = pOp->p4.i;
3978 r.aMem = &p->aMem[pOp->p3];
3979 *pC->pIncrKey = pOp->p5;
3980 rc = sqlite3VdbeIdxKeyCompare(pC, &r, 0, 0, &res);
3982 if( pOp->opcode==OP_IdxLT ){
3985 assert( pOp->opcode==OP_IdxGE );
3995 /* Opcode: Destroy P1 P2 P3 * *
3997 ** Delete an entire database table or index whose root page in the database
3998 ** file is given by P1.
4000 ** The table being destroyed is in the main database file if P3==0. If
4001 ** P3==1 then the table to be clear is in the auxiliary database file
4002 ** that is used to store tables create using CREATE TEMPORARY TABLE.
4004 ** If AUTOVACUUM is enabled then it is possible that another root page
4005 ** might be moved into the newly deleted root page in order to keep all
4006 ** root pages contiguous at the beginning of the database. The former
4007 ** value of the root page that moved - its value before the move occurred -
4008 ** is stored in register P2. If no page
4009 ** movement was required (because the table being dropped was already
4010 ** the last one in the database) then a zero is stored in register P2.
4011 ** If AUTOVACUUM is disabled then a zero is stored in register P2.
4015 case OP_Destroy: { /* out2-prerelease */
4018 #ifndef SQLITE_OMIT_VIRTUALTABLE
4021 for(pVdbe=db->pVdbe; pVdbe; pVdbe=pVdbe->pNext){
4022 if( pVdbe->magic==VDBE_MAGIC_RUN && pVdbe->inVtabMethod<2 && pVdbe->pc>=0 ){
4027 iCnt = db->activeVdbeCnt;
4031 p->errorAction = OE_Abort;
4035 assert( (p->btreeMask & (1<<iDb))!=0 );
4036 rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved);
4037 MemSetTypeFlag(pOut, MEM_Int);
4039 #ifndef SQLITE_OMIT_AUTOVACUUM
4040 if( rc==SQLITE_OK && iMoved!=0 ){
4041 sqlite3RootPageMoved(&db->aDb[iDb], iMoved, pOp->p1);
4048 /* Opcode: Clear P1 P2 *
4050 ** Delete all contents of the database table or index whose root page
4051 ** in the database file is given by P1. But, unlike Destroy, do not
4052 ** remove the table or index from the database file.
4054 ** The table being clear is in the main database file if P2==0. If
4055 ** P2==1 then the table to be clear is in the auxiliary database file
4056 ** that is used to store tables create using CREATE TEMPORARY TABLE.
4058 ** See also: Destroy
4061 assert( (p->btreeMask & (1<<pOp->p2))!=0 );
4062 rc = sqlite3BtreeClearTable(db->aDb[pOp->p2].pBt, pOp->p1);
4066 /* Opcode: CreateTable P1 P2 * * *
4068 ** Allocate a new table in the main database file if P1==0 or in the
4069 ** auxiliary database file if P1==1 or in an attached database if
4070 ** P1>1. Write the root page number of the new table into
4073 ** The difference between a table and an index is this: A table must
4074 ** have a 4-byte integer key and can have arbitrary data. An index
4075 ** has an arbitrary key but no data.
4077 ** See also: CreateIndex
4079 /* Opcode: CreateIndex P1 P2 * * *
4081 ** Allocate a new index in the main database file if P1==0 or in the
4082 ** auxiliary database file if P1==1 or in an attached database if
4083 ** P1>1. Write the root page number of the new table into
4086 ** See documentation on OP_CreateTable for additional information.
4088 case OP_CreateIndex: /* out2-prerelease */
4089 case OP_CreateTable: { /* out2-prerelease */
4093 assert( pOp->p1>=0 && pOp->p1<db->nDb );
4094 assert( (p->btreeMask & (1<<pOp->p1))!=0 );
4095 pDb = &db->aDb[pOp->p1];
4096 assert( pDb->pBt!=0 );
4097 if( pOp->opcode==OP_CreateTable ){
4098 /* flags = BTREE_INTKEY; */
4099 flags = BTREE_LEAFDATA|BTREE_INTKEY;
4101 flags = BTREE_ZERODATA;
4103 rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, flags);
4104 if( rc==SQLITE_OK ){
4106 MemSetTypeFlag(pOut, MEM_Int);
4111 /* Opcode: ParseSchema P1 P2 * P4 *
4113 ** Read and parse all entries from the SQLITE_MASTER table of database P1
4114 ** that match the WHERE clause P4. P2 is the "force" flag. Always do
4115 ** the parsing if P2 is true. If P2 is false, then this routine is a
4116 ** no-op if the schema is not currently loaded. In other words, if P2
4117 ** is false, the SQLITE_MASTER table is only parsed if the rest of the
4118 ** schema is already loaded into the symbol table.
4120 ** This opcode invokes the parser to create a new virtual machine,
4121 ** then runs the new virtual machine. It is thus a re-entrant opcode.
4123 case OP_ParseSchema: {
4126 const char *zMaster;
4129 assert( iDb>=0 && iDb<db->nDb );
4130 if( !pOp->p2 && !DbHasProperty(db, iDb, DB_SchemaLoaded) ){
4133 zMaster = SCHEMA_TABLE(iDb);
4135 initData.iDb = pOp->p1;
4136 initData.pzErrMsg = &p->zErrMsg;
4137 zSql = sqlite3MPrintf(db,
4138 "SELECT name, rootpage, sql FROM '%q'.%s WHERE %s",
4139 db->aDb[iDb].zName, zMaster, pOp->p4.z);
4140 if( zSql==0 ) goto no_mem;
4141 (void)sqlite3SafetyOff(db);
4142 assert( db->init.busy==0 );
4144 assert( !db->mallocFailed );
4145 rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0);
4146 if( rc==SQLITE_ABORT ) rc = initData.rc;
4147 sqlite3DbFree(db, zSql);
4149 (void)sqlite3SafetyOn(db);
4150 if( rc==SQLITE_NOMEM ){
4156 #if !defined(SQLITE_OMIT_ANALYZE) && !defined(SQLITE_OMIT_PARSER)
4157 /* Opcode: LoadAnalysis P1 * * * *
4159 ** Read the sqlite_stat1 table for database P1 and load the content
4160 ** of that table into the internal index hash table. This will cause
4161 ** the analysis to be used when preparing all subsequent queries.
4163 case OP_LoadAnalysis: {
4165 assert( iDb>=0 && iDb<db->nDb );
4166 rc = sqlite3AnalysisLoad(db, iDb);
4169 #endif /* !defined(SQLITE_OMIT_ANALYZE) && !defined(SQLITE_OMIT_PARSER) */
4171 /* Opcode: DropTable P1 * * P4 *
4173 ** Remove the internal (in-memory) data structures that describe
4174 ** the table named P4 in database P1. This is called after a table
4175 ** is dropped in order to keep the internal representation of the
4176 ** schema consistent with what is on disk.
4178 case OP_DropTable: {
4179 sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z);
4183 /* Opcode: DropIndex P1 * * P4 *
4185 ** Remove the internal (in-memory) data structures that describe
4186 ** the index named P4 in database P1. This is called after an index
4187 ** is dropped in order to keep the internal representation of the
4188 ** schema consistent with what is on disk.
4190 case OP_DropIndex: {
4191 sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z);
4195 /* Opcode: DropTrigger P1 * * P4 *
4197 ** Remove the internal (in-memory) data structures that describe
4198 ** the trigger named P4 in database P1. This is called after a trigger
4199 ** is dropped in order to keep the internal representation of the
4200 ** schema consistent with what is on disk.
4202 case OP_DropTrigger: {
4203 sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z);
4208 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
4209 /* Opcode: IntegrityCk P1 P2 P3 * P5
4211 ** Do an analysis of the currently open database. Store in
4212 ** register P1 the text of an error message describing any problems.
4213 ** If no problems are found, store a NULL in register P1.
4215 ** The register P3 contains the maximum number of allowed errors.
4216 ** At most reg(P3) errors will be reported.
4217 ** In other words, the analysis stops as soon as reg(P1) errors are
4218 ** seen. Reg(P1) is updated with the number of errors remaining.
4220 ** The root page numbers of all tables in the database are integer
4221 ** stored in reg(P1), reg(P1+1), reg(P1+2), .... There are P2 tables
4224 ** If P5 is not zero, the check is done on the auxiliary database
4225 ** file, not the main database file.
4227 ** This opcode is used to implement the integrity_check pragma.
4229 case OP_IntegrityCk: {
4230 int nRoot; /* Number of tables to check. (Number of root pages.) */
4231 int *aRoot; /* Array of rootpage numbers for tables to be checked */
4232 int j; /* Loop counter */
4233 int nErr; /* Number of errors reported */
4234 char *z; /* Text of the error report */
4235 Mem *pnErr; /* Register keeping track of errors remaining */
4239 aRoot = sqlite3DbMallocRaw(db, sizeof(int)*(nRoot+1) );
4240 if( aRoot==0 ) goto no_mem;
4241 assert( pOp->p3>0 && pOp->p3<=p->nMem );
4242 pnErr = &p->aMem[pOp->p3];
4243 assert( (pnErr->flags & MEM_Int)!=0 );
4244 assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 );
4245 pIn1 = &p->aMem[pOp->p1];
4246 for(j=0; j<nRoot; j++){
4247 aRoot[j] = sqlite3VdbeIntValue(&pIn1[j]);
4250 assert( pOp->p5<db->nDb );
4251 assert( (p->btreeMask & (1<<pOp->p5))!=0 );
4252 z = sqlite3BtreeIntegrityCheck(db->aDb[pOp->p5].pBt, aRoot, nRoot,
4254 sqlite3DbFree(db, aRoot);
4256 sqlite3VdbeMemSetNull(pIn1);
4262 sqlite3VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8, sqlite3_free);
4264 UPDATE_MAX_BLOBSIZE(pIn1);
4265 sqlite3VdbeChangeEncoding(pIn1, encoding);
4268 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
4270 /* Opcode: FifoWrite P1 * * * *
4272 ** Write the integer from register P1 into the Fifo.
4274 case OP_FifoWrite: { /* in1 */
4276 if( sqlite3VdbeFifoPush(&p->sFifo, sqlite3VdbeIntValue(pIn1))==SQLITE_NOMEM ){
4282 /* Opcode: FifoRead P1 P2 * * *
4284 ** Attempt to read a single integer from the Fifo. Store that
4285 ** integer in register P1.
4287 ** If the Fifo is empty jump to P2.
4289 case OP_FifoRead: { /* jump */
4290 CHECK_FOR_INTERRUPT;
4291 assert( pOp->p1>0 && pOp->p1<=p->nMem );
4292 pOut = &p->aMem[pOp->p1];
4293 MemSetTypeFlag(pOut, MEM_Int);
4294 if( sqlite3VdbeFifoPop(&p->sFifo, &pOut->u.i)==SQLITE_DONE ){
4300 #ifndef SQLITE_OMIT_TRIGGER
4301 /* Opcode: ContextPush * * *
4303 ** Save the current Vdbe context such that it can be restored by a ContextPop
4304 ** opcode. The context stores the last insert row id, the last statement change
4305 ** count, and the current statement change count.
4307 case OP_ContextPush: {
4308 int i = p->contextStackTop++;
4312 /* FIX ME: This should be allocated as part of the vdbe at compile-time */
4313 if( i>=p->contextStackDepth ){
4314 p->contextStackDepth = i+1;
4315 p->contextStack = sqlite3DbReallocOrFree(db, p->contextStack,
4316 sizeof(Context)*(i+1));
4317 if( p->contextStack==0 ) goto no_mem;
4319 pContext = &p->contextStack[i];
4320 pContext->lastRowid = db->lastRowid;
4321 pContext->nChange = p->nChange;
4322 pContext->sFifo = p->sFifo;
4323 sqlite3VdbeFifoInit(&p->sFifo, db);
4327 /* Opcode: ContextPop * * *
4329 ** Restore the Vdbe context to the state it was in when contextPush was last
4330 ** executed. The context stores the last insert row id, the last statement
4331 ** change count, and the current statement change count.
4333 case OP_ContextPop: {
4334 Context *pContext = &p->contextStack[--p->contextStackTop];
4335 assert( p->contextStackTop>=0 );
4336 db->lastRowid = pContext->lastRowid;
4337 p->nChange = pContext->nChange;
4338 sqlite3VdbeFifoClear(&p->sFifo);
4339 p->sFifo = pContext->sFifo;
4342 #endif /* #ifndef SQLITE_OMIT_TRIGGER */
4344 #ifndef SQLITE_OMIT_AUTOINCREMENT
4345 /* Opcode: MemMax P1 P2 * * *
4347 ** Set the value of register P1 to the maximum of its current value
4348 ** and the value in register P2.
4350 ** This instruction throws an error if the memory cell is not initially
4353 case OP_MemMax: { /* in1, in2 */
4354 sqlite3VdbeMemIntegerify(pIn1);
4355 sqlite3VdbeMemIntegerify(pIn2);
4356 if( pIn1->u.i<pIn2->u.i){
4357 pIn1->u.i = pIn2->u.i;
4361 #endif /* SQLITE_OMIT_AUTOINCREMENT */
4363 /* Opcode: IfPos P1 P2 * * *
4365 ** If the value of register P1 is 1 or greater, jump to P2.
4367 ** It is illegal to use this instruction on a register that does
4368 ** not contain an integer. An assertion fault will result if you try.
4370 case OP_IfPos: { /* jump, in1 */
4371 assert( pIn1->flags&MEM_Int );
4378 /* Opcode: IfNeg P1 P2 * * *
4380 ** If the value of register P1 is less than zero, jump to P2.
4382 ** It is illegal to use this instruction on a register that does
4383 ** not contain an integer. An assertion fault will result if you try.
4385 case OP_IfNeg: { /* jump, in1 */
4386 assert( pIn1->flags&MEM_Int );
4393 /* Opcode: IfZero P1 P2 * * *
4395 ** If the value of register P1 is exactly 0, jump to P2.
4397 ** It is illegal to use this instruction on a register that does
4398 ** not contain an integer. An assertion fault will result if you try.
4400 case OP_IfZero: { /* jump, in1 */
4401 assert( pIn1->flags&MEM_Int );
4408 /* Opcode: AggStep * P2 P3 P4 P5
4410 ** Execute the step function for an aggregate. The
4411 ** function has P5 arguments. P4 is a pointer to the FuncDef
4412 ** structure that specifies the function. Use register
4413 ** P3 as the accumulator.
4415 ** The P5 arguments are taken from register P2 and its
4422 sqlite3_context ctx;
4423 sqlite3_value **apVal;
4426 pRec = &p->aMem[pOp->p2];
4428 assert( apVal || n==0 );
4429 for(i=0; i<n; i++, pRec++){
4431 storeTypeInfo(pRec, encoding);
4433 ctx.pFunc = pOp->p4.pFunc;
4434 assert( pOp->p3>0 && pOp->p3<=p->nMem );
4435 ctx.pMem = pMem = &p->aMem[pOp->p3];
4437 ctx.s.flags = MEM_Null;
4444 if( ctx.pFunc->needCollSeq ){
4445 assert( pOp>p->aOp );
4446 assert( pOp[-1].p4type==P4_COLLSEQ );
4447 assert( pOp[-1].opcode==OP_CollSeq );
4448 ctx.pColl = pOp[-1].p4.pColl;
4450 (ctx.pFunc->xStep)(&ctx, n, apVal);
4452 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(&ctx.s));
4455 sqlite3VdbeMemRelease(&ctx.s);
4459 /* Opcode: AggFinal P1 P2 * P4 *
4461 ** Execute the finalizer function for an aggregate. P1 is
4462 ** the memory location that is the accumulator for the aggregate.
4464 ** P2 is the number of arguments that the step function takes and
4465 ** P4 is a pointer to the FuncDef for this function. The P2
4466 ** argument is not used by this opcode. It is only there to disambiguate
4467 ** functions that can take varying numbers of arguments. The
4468 ** P4 argument is only needed for the degenerate case where
4469 ** the step function was not previously called.
4473 assert( pOp->p1>0 && pOp->p1<=p->nMem );
4474 pMem = &p->aMem[pOp->p1];
4475 assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 );
4476 rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc);
4477 if( rc==SQLITE_ERROR ){
4478 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(pMem));
4480 sqlite3VdbeChangeEncoding(pMem, encoding);
4481 UPDATE_MAX_BLOBSIZE(pMem);
4482 if( sqlite3VdbeMemTooBig(pMem) ){
4489 #if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH)
4490 /* Opcode: Vacuum * * * * *
4492 ** Vacuum the entire database. This opcode will cause other virtual
4493 ** machines to be created and run. It may not be called from within
4497 if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
4498 rc = sqlite3RunVacuum(&p->zErrMsg, db);
4499 if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
4504 #if !defined(SQLITE_OMIT_AUTOVACUUM)
4505 /* Opcode: IncrVacuum P1 P2 * * *
4507 ** Perform a single step of the incremental vacuum procedure on
4508 ** the P1 database. If the vacuum has finished, jump to instruction
4509 ** P2. Otherwise, fall through to the next instruction.
4511 case OP_IncrVacuum: { /* jump */
4514 assert( pOp->p1>=0 && pOp->p1<db->nDb );
4515 assert( (p->btreeMask & (1<<pOp->p1))!=0 );
4516 pBt = db->aDb[pOp->p1].pBt;
4517 rc = sqlite3BtreeIncrVacuum(pBt);
4518 if( rc==SQLITE_DONE ){
4526 /* Opcode: Expire P1 * * * *
4528 ** Cause precompiled statements to become expired. An expired statement
4529 ** fails with an error code of SQLITE_SCHEMA if it is ever executed
4530 ** (via sqlite3_step()).
4532 ** If P1 is 0, then all SQL statements become expired. If P1 is non-zero,
4533 ** then only the currently executing statement is affected.
4537 sqlite3ExpirePreparedStatements(db);
4544 #ifndef SQLITE_OMIT_SHARED_CACHE
4545 /* Opcode: TableLock P1 P2 P3 P4 *
4547 ** Obtain a lock on a particular table. This instruction is only used when
4548 ** the shared-cache feature is enabled.
4550 ** If P1 is the index of the database in sqlite3.aDb[] of the database
4551 ** on which the lock is acquired. A readlock is obtained if P3==0 or
4552 ** a write lock if P3==1.
4554 ** P2 contains the root-page of the table to lock.
4556 ** P4 contains a pointer to the name of the table being locked. This is only
4557 ** used to generate an error message if the lock cannot be obtained.
4559 case OP_TableLock: {
4561 u8 isWriteLock = pOp->p3;
4562 assert( p1>=0 && p1<db->nDb );
4563 assert( (p->btreeMask & (1<<p1))!=0 );
4564 assert( isWriteLock==0 || isWriteLock==1 );
4565 rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock);
4566 if( rc==SQLITE_LOCKED ){
4567 const char *z = pOp->p4.z;
4568 sqlite3SetString(&p->zErrMsg, db, "database table is locked: %s", z);
4572 #endif /* SQLITE_OMIT_SHARED_CACHE */
4574 #ifndef SQLITE_OMIT_VIRTUALTABLE
4575 /* Opcode: VBegin * * * P4 *
4577 ** P4 may be a pointer to an sqlite3_vtab structure. If so, call the
4578 ** xBegin method for that table.
4580 ** Also, whether or not P4 is set, check that this is not being called from
4581 ** within a callback to a virtual table xSync() method. If it is, set the
4582 ** error code to SQLITE_LOCKED.
4585 sqlite3_vtab *pVtab = pOp->p4.pVtab;
4586 rc = sqlite3VtabBegin(db, pVtab);
4588 sqlite3DbFree(db, p->zErrMsg);
4589 p->zErrMsg = pVtab->zErrMsg;
4594 #endif /* SQLITE_OMIT_VIRTUALTABLE */
4596 #ifndef SQLITE_OMIT_VIRTUALTABLE
4597 /* Opcode: VCreate P1 * * P4 *
4599 ** P4 is the name of a virtual table in database P1. Call the xCreate method
4603 rc = sqlite3VtabCallCreate(db, pOp->p1, pOp->p4.z, &p->zErrMsg);
4606 #endif /* SQLITE_OMIT_VIRTUALTABLE */
4608 #ifndef SQLITE_OMIT_VIRTUALTABLE
4609 /* Opcode: VDestroy P1 * * P4 *
4611 ** P4 is the name of a virtual table in database P1. Call the xDestroy method
4615 p->inVtabMethod = 2;
4616 rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z);
4617 p->inVtabMethod = 0;
4620 #endif /* SQLITE_OMIT_VIRTUALTABLE */
4622 #ifndef SQLITE_OMIT_VIRTUALTABLE
4623 /* Opcode: VOpen P1 * * P4 *
4625 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
4626 ** P1 is a cursor number. This opcode opens a cursor to the virtual
4627 ** table and stores that cursor in P1.
4631 sqlite3_vtab_cursor *pVtabCursor = 0;
4633 sqlite3_vtab *pVtab = pOp->p4.pVtab;
4634 sqlite3_module *pModule = (sqlite3_module *)pVtab->pModule;
4636 assert(pVtab && pModule);
4637 if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
4638 rc = pModule->xOpen(pVtab, &pVtabCursor);
4639 sqlite3DbFree(db, p->zErrMsg);
4640 p->zErrMsg = pVtab->zErrMsg;
4642 if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
4643 if( SQLITE_OK==rc ){
4644 /* Initialize sqlite3_vtab_cursor base class */
4645 pVtabCursor->pVtab = pVtab;
4647 /* Initialise vdbe cursor object */
4648 pCur = allocateCursor(p, pOp->p1, &pOp[-1], -1, 0);
4650 pCur->pVtabCursor = pVtabCursor;
4651 pCur->pModule = pVtabCursor->pVtab->pModule;
4653 db->mallocFailed = 1;
4654 pModule->xClose(pVtabCursor);
4659 #endif /* SQLITE_OMIT_VIRTUALTABLE */
4661 #ifndef SQLITE_OMIT_VIRTUALTABLE
4662 /* Opcode: VFilter P1 P2 P3 P4 *
4664 ** P1 is a cursor opened using VOpen. P2 is an address to jump to if
4665 ** the filtered result set is empty.
4667 ** P4 is either NULL or a string that was generated by the xBestIndex
4668 ** method of the module. The interpretation of the P4 string is left
4669 ** to the module implementation.
4671 ** This opcode invokes the xFilter method on the virtual table specified
4672 ** by P1. The integer query plan parameter to xFilter is stored in register
4673 ** P3. Register P3+1 stores the argc parameter to be passed to the
4674 ** xFilter method. Registers P3+2..P3+1+argc are the argc
4675 ** additional parameters which are passed to
4676 ** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter.
4678 ** A jump is made to P2 if the result set after filtering would be empty.
4680 case OP_VFilter: { /* jump */
4683 const sqlite3_module *pModule;
4684 Mem *pQuery = &p->aMem[pOp->p3];
4685 Mem *pArgc = &pQuery[1];
4686 sqlite3_vtab_cursor *pVtabCursor;
4687 sqlite3_vtab *pVtab;
4689 Cursor *pCur = p->apCsr[pOp->p1];
4691 REGISTER_TRACE(pOp->p3, pQuery);
4692 assert( pCur->pVtabCursor );
4693 pVtabCursor = pCur->pVtabCursor;
4694 pVtab = pVtabCursor->pVtab;
4695 pModule = pVtab->pModule;
4697 /* Grab the index number and argc parameters */
4698 assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int );
4700 iQuery = pQuery->u.i;
4702 /* Invoke the xFilter method */
4706 Mem **apArg = p->apArg;
4707 for(i = 0; i<nArg; i++){
4708 apArg[i] = &pArgc[i+1];
4709 storeTypeInfo(apArg[i], 0);
4712 if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
4713 sqlite3VtabLock(pVtab);
4714 p->inVtabMethod = 1;
4715 rc = pModule->xFilter(pVtabCursor, iQuery, pOp->p4.z, nArg, apArg);
4716 p->inVtabMethod = 0;
4717 sqlite3DbFree(db, p->zErrMsg);
4718 p->zErrMsg = pVtab->zErrMsg;
4720 sqlite3VtabUnlock(db, pVtab);
4721 if( rc==SQLITE_OK ){
4722 res = pModule->xEof(pVtabCursor);
4724 if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
4734 #endif /* SQLITE_OMIT_VIRTUALTABLE */
4736 #ifndef SQLITE_OMIT_VIRTUALTABLE
4737 /* Opcode: VRowid P1 P2 * * *
4739 ** Store into register P2 the rowid of
4740 ** the virtual-table that the P1 cursor is pointing to.
4742 case OP_VRowid: { /* out2-prerelease */
4743 sqlite3_vtab *pVtab;
4744 const sqlite3_module *pModule;
4746 Cursor *pCur = p->apCsr[pOp->p1];
4748 assert( pCur->pVtabCursor );
4749 if( pCur->nullRow ){
4752 pVtab = pCur->pVtabCursor->pVtab;
4753 pModule = pVtab->pModule;
4754 assert( pModule->xRowid );
4755 if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
4756 rc = pModule->xRowid(pCur->pVtabCursor, &iRow);
4757 sqlite3DbFree(db, p->zErrMsg);
4758 p->zErrMsg = pVtab->zErrMsg;
4760 if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
4761 MemSetTypeFlag(pOut, MEM_Int);
4765 #endif /* SQLITE_OMIT_VIRTUALTABLE */
4767 #ifndef SQLITE_OMIT_VIRTUALTABLE
4768 /* Opcode: VColumn P1 P2 P3 * *
4770 ** Store the value of the P2-th column of
4771 ** the row of the virtual-table that the
4772 ** P1 cursor is pointing to into register P3.
4775 sqlite3_vtab *pVtab;
4776 const sqlite3_module *pModule;
4778 sqlite3_context sContext;
4780 Cursor *pCur = p->apCsr[pOp->p1];
4781 assert( pCur->pVtabCursor );
4782 assert( pOp->p3>0 && pOp->p3<=p->nMem );
4783 pDest = &p->aMem[pOp->p3];
4784 if( pCur->nullRow ){
4785 sqlite3VdbeMemSetNull(pDest);
4788 pVtab = pCur->pVtabCursor->pVtab;
4789 pModule = pVtab->pModule;
4790 assert( pModule->xColumn );
4791 memset(&sContext, 0, sizeof(sContext));
4793 /* The output cell may already have a buffer allocated. Move
4794 ** the current contents to sContext.s so in case the user-function
4795 ** can use the already allocated buffer instead of allocating a
4798 sqlite3VdbeMemMove(&sContext.s, pDest);
4799 MemSetTypeFlag(&sContext.s, MEM_Null);
4801 if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
4802 rc = pModule->xColumn(pCur->pVtabCursor, &sContext, pOp->p2);
4803 sqlite3DbFree(db, p->zErrMsg);
4804 p->zErrMsg = pVtab->zErrMsg;
4807 /* Copy the result of the function to the P3 register. We
4808 ** do this regardless of whether or not an error occured to ensure any
4809 ** dynamic allocation in sContext.s (a Mem struct) is released.
4811 sqlite3VdbeChangeEncoding(&sContext.s, encoding);
4812 REGISTER_TRACE(pOp->p3, pDest);
4813 sqlite3VdbeMemMove(pDest, &sContext.s);
4814 UPDATE_MAX_BLOBSIZE(pDest);
4816 if( sqlite3SafetyOn(db) ){
4817 goto abort_due_to_misuse;
4819 if( sqlite3VdbeMemTooBig(pDest) ){
4824 #endif /* SQLITE_OMIT_VIRTUALTABLE */
4826 #ifndef SQLITE_OMIT_VIRTUALTABLE
4827 /* Opcode: VNext P1 P2 * * *
4829 ** Advance virtual table P1 to the next row in its result set and
4830 ** jump to instruction P2. Or, if the virtual table has reached
4831 ** the end of its result set, then fall through to the next instruction.
4833 case OP_VNext: { /* jump */
4834 sqlite3_vtab *pVtab;
4835 const sqlite3_module *pModule;
4838 Cursor *pCur = p->apCsr[pOp->p1];
4839 assert( pCur->pVtabCursor );
4840 if( pCur->nullRow ){
4843 pVtab = pCur->pVtabCursor->pVtab;
4844 pModule = pVtab->pModule;
4845 assert( pModule->xNext );
4847 /* Invoke the xNext() method of the module. There is no way for the
4848 ** underlying implementation to return an error if one occurs during
4849 ** xNext(). Instead, if an error occurs, true is returned (indicating that
4850 ** data is available) and the error code returned when xColumn or
4851 ** some other method is next invoked on the save virtual table cursor.
4853 if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
4854 sqlite3VtabLock(pVtab);
4855 p->inVtabMethod = 1;
4856 rc = pModule->xNext(pCur->pVtabCursor);
4857 p->inVtabMethod = 0;
4858 sqlite3DbFree(db, p->zErrMsg);
4859 p->zErrMsg = pVtab->zErrMsg;
4861 sqlite3VtabUnlock(db, pVtab);
4862 if( rc==SQLITE_OK ){
4863 res = pModule->xEof(pCur->pVtabCursor);
4865 if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
4868 /* If there is data, jump to P2 */
4873 #endif /* SQLITE_OMIT_VIRTUALTABLE */
4875 #ifndef SQLITE_OMIT_VIRTUALTABLE
4876 /* Opcode: VRename P1 * * P4 *
4878 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
4879 ** This opcode invokes the corresponding xRename method. The value
4880 ** in register P1 is passed as the zName argument to the xRename method.
4883 sqlite3_vtab *pVtab = pOp->p4.pVtab;
4884 Mem *pName = &p->aMem[pOp->p1];
4885 assert( pVtab->pModule->xRename );
4886 REGISTER_TRACE(pOp->p1, pName);
4888 Stringify(pName, encoding);
4890 if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
4891 sqlite3VtabLock(pVtab);
4892 rc = pVtab->pModule->xRename(pVtab, pName->z);
4893 sqlite3DbFree(db, p->zErrMsg);
4894 p->zErrMsg = pVtab->zErrMsg;
4896 sqlite3VtabUnlock(db, pVtab);
4897 if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
4903 #ifndef SQLITE_OMIT_VIRTUALTABLE
4904 /* Opcode: VUpdate P1 P2 P3 P4 *
4906 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
4907 ** This opcode invokes the corresponding xUpdate method. P2 values
4908 ** are contiguous memory cells starting at P3 to pass to the xUpdate
4909 ** invocation. The value in register (P3+P2-1) corresponds to the
4910 ** p2th element of the argv array passed to xUpdate.
4912 ** The xUpdate method will do a DELETE or an INSERT or both.
4913 ** The argv[0] element (which corresponds to memory cell P3)
4914 ** is the rowid of a row to delete. If argv[0] is NULL then no
4915 ** deletion occurs. The argv[1] element is the rowid of the new
4916 ** row. This can be NULL to have the virtual table select the new
4917 ** rowid for itself. The subsequent elements in the array are
4918 ** the values of columns in the new row.
4920 ** If P2==1 then no insert is performed. argv[0] is the rowid of
4923 ** P1 is a boolean flag. If it is set to true and the xUpdate call
4924 ** is successful, then the value returned by sqlite3_last_insert_rowid()
4925 ** is set to the value of the rowid for the row just inserted.
4928 sqlite3_vtab *pVtab = pOp->p4.pVtab;
4929 sqlite3_module *pModule = (sqlite3_module *)pVtab->pModule;
4931 assert( pOp->p4type==P4_VTAB );
4932 if( pModule->xUpdate==0 ){
4933 sqlite3SetString(&p->zErrMsg, db, "read-only table");
4938 Mem **apArg = p->apArg;
4939 Mem *pX = &p->aMem[pOp->p3];
4940 for(i=0; i<nArg; i++){
4941 storeTypeInfo(pX, 0);
4945 if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
4946 sqlite3VtabLock(pVtab);
4947 rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid);
4948 sqlite3DbFree(db, p->zErrMsg);
4949 p->zErrMsg = pVtab->zErrMsg;
4951 sqlite3VtabUnlock(db, pVtab);
4952 if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
4953 if( pOp->p1 && rc==SQLITE_OK ){
4954 assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) );
4955 db->lastRowid = rowid;
4961 #endif /* SQLITE_OMIT_VIRTUALTABLE */
4963 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
4964 /* Opcode: Pagecount P1 P2 * * *
4966 ** Write the current number of pages in database P1 to memory cell P2.
4968 case OP_Pagecount: { /* out2-prerelease */
4971 Pager *pPager = sqlite3BtreePager(db->aDb[p1].pBt);
4973 rc = sqlite3PagerPagecount(pPager, &nPage);
4974 if( rc==SQLITE_OK ){
4975 pOut->flags = MEM_Int;
4982 #ifndef SQLITE_OMIT_TRACE
4983 /* Opcode: Trace * * * P4 *
4985 ** If tracing is enabled (by the sqlite3_trace()) interface, then
4986 ** the UTF-8 string contained in P4 is emitted on the trace callback.
4991 db->xTrace(db->pTraceArg, pOp->p4.z);
4994 if( (db->flags & SQLITE_SqlTrace)!=0 ){
4995 sqlite3DebugPrintf("SQL-trace: %s\n", pOp->p4.z);
4997 #endif /* SQLITE_DEBUG */
5004 /* Opcode: Noop * * * * *
5006 ** Do nothing. This instruction is often useful as a jump
5010 ** The magic Explain opcode are only inserted when explain==2 (which
5011 ** is to say when the EXPLAIN QUERY PLAN syntax is used.)
5012 ** This opcode records information from the optimizer. It is the
5013 ** the same as a no-op. This opcodesnever appears in a real VM program.
5015 default: { /* This is really OP_Noop and OP_Explain */
5019 /*****************************************************************************
5020 ** The cases of the switch statement above this line should all be indented
5021 ** by 6 spaces. But the left-most 6 spaces have been removed to improve the
5022 ** readability. From this point on down, the normal indentation rules are
5024 *****************************************************************************/
5029 u64 elapsed = sqlite3Hwtime() - start;
5030 pOp->cycles += elapsed;
5033 fprintf(stdout, "%10llu ", elapsed);
5034 sqlite3VdbePrintOp(stdout, origPc, &p->aOp[origPc]);
5039 /* The following code adds nothing to the actual functionality
5040 ** of the program. It is only here for testing and debugging.
5041 ** On the other hand, it does burn CPU cycles every time through
5042 ** the evaluator loop. So we can leave it out when NDEBUG is defined.
5045 assert( pc>=-1 && pc<p->nOp );
5049 if( rc!=0 ) fprintf(p->trace,"rc=%d\n",rc);
5050 if( opProperty & OPFLG_OUT2_PRERELEASE ){
5051 registerTrace(p->trace, pOp->p2, pOut);
5053 if( opProperty & OPFLG_OUT3 ){
5054 registerTrace(p->trace, pOp->p3, pOut);
5057 #endif /* SQLITE_DEBUG */
5059 } /* The end of the for(;;) loop the loops through opcodes */
5061 /* If we reach this point, it means that execution is finished with
5062 ** an error of some kind.
5068 if( rc==SQLITE_IOERR_NOMEM ) db->mallocFailed = 1;
5071 /* This is the only way out of this procedure. We have to
5072 ** release the mutexes on btrees that were acquired at the
5075 sqlite3BtreeMutexArrayLeave(&p->aMutex);
5078 /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH
5082 sqlite3SetString(&p->zErrMsg, db, "string or blob too big");
5084 goto vdbe_error_halt;
5086 /* Jump to here if a malloc() fails.
5089 db->mallocFailed = 1;
5090 sqlite3SetString(&p->zErrMsg, db, "out of memory");
5092 goto vdbe_error_halt;
5094 /* Jump to here for an SQLITE_MISUSE error.
5096 abort_due_to_misuse:
5098 /* Fall thru into abort_due_to_error */
5100 /* Jump to here for any other kind of fatal error. The "rc" variable
5101 ** should hold the error number.
5104 assert( p->zErrMsg==0 );
5105 if( db->mallocFailed ) rc = SQLITE_NOMEM;
5106 if( rc!=SQLITE_IOERR_NOMEM ){
5107 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(rc));
5109 goto vdbe_error_halt;
5111 /* Jump to here if the sqlite3_interrupt() API sets the interrupt
5114 abort_due_to_interrupt:
5115 assert( db->u1.isInterrupted );
5116 rc = SQLITE_INTERRUPT;
5118 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(rc));
5119 goto vdbe_error_halt;