os/persistentdata/persistentstorage/sql/SQLite/vdbe.c
author sl
Tue, 10 Jun 2014 14:32:02 +0200
changeset 1 260cb5ec6c19
permissions -rw-r--r--
Update contrib.
sl@0
     1
/*
sl@0
     2
** 2001 September 15
sl@0
     3
**
sl@0
     4
** The author disclaims copyright to this source code.  In place of
sl@0
     5
** a legal notice, here is a blessing:
sl@0
     6
**
sl@0
     7
**    May you do good and not evil.
sl@0
     8
**    May you find forgiveness for yourself and forgive others.
sl@0
     9
**    May you share freely, never taking more than you give.
sl@0
    10
**
sl@0
    11
*************************************************************************
sl@0
    12
** The code in this file implements execution method of the 
sl@0
    13
** Virtual Database Engine (VDBE).  A separate file ("vdbeaux.c")
sl@0
    14
** handles housekeeping details such as creating and deleting
sl@0
    15
** VDBE instances.  This file is solely interested in executing
sl@0
    16
** the VDBE program.
sl@0
    17
**
sl@0
    18
** In the external interface, an "sqlite3_stmt*" is an opaque pointer
sl@0
    19
** to a VDBE.
sl@0
    20
**
sl@0
    21
** The SQL parser generates a program which is then executed by
sl@0
    22
** the VDBE to do the work of the SQL statement.  VDBE programs are 
sl@0
    23
** similar in form to assembly language.  The program consists of
sl@0
    24
** a linear sequence of operations.  Each operation has an opcode 
sl@0
    25
** and 5 operands.  Operands P1, P2, and P3 are integers.  Operand P4 
sl@0
    26
** is a null-terminated string.  Operand P5 is an unsigned character.
sl@0
    27
** Few opcodes use all 5 operands.
sl@0
    28
**
sl@0
    29
** Computation results are stored on a set of registers numbered beginning
sl@0
    30
** with 1 and going up to Vdbe.nMem.  Each register can store
sl@0
    31
** either an integer, a null-terminated string, a floating point
sl@0
    32
** number, or the SQL "NULL" value.  An implicit conversion from one
sl@0
    33
** type to the other occurs as necessary.
sl@0
    34
** 
sl@0
    35
** Most of the code in this file is taken up by the sqlite3VdbeExec()
sl@0
    36
** function which does the work of interpreting a VDBE program.
sl@0
    37
** But other routines are also provided to help in building up
sl@0
    38
** a program instruction by instruction.
sl@0
    39
**
sl@0
    40
** Various scripts scan this source file in order to generate HTML
sl@0
    41
** documentation, headers files, or other derived files.  The formatting
sl@0
    42
** of the code in this file is, therefore, important.  See other comments
sl@0
    43
** in this file for details.  If in doubt, do not deviate from existing
sl@0
    44
** commenting and indentation practices when changing or adding code.
sl@0
    45
**
sl@0
    46
** $Id: vdbe.c,v 1.772 2008/08/02 15:10:09 danielk1977 Exp $
sl@0
    47
*/
sl@0
    48
#include "sqliteInt.h"
sl@0
    49
#include <ctype.h>
sl@0
    50
#include "vdbeInt.h"
sl@0
    51
sl@0
    52
/*
sl@0
    53
** The following global variable is incremented every time a cursor
sl@0
    54
** moves, either by the OP_MoveXX, OP_Next, or OP_Prev opcodes.  The test
sl@0
    55
** procedures use this information to make sure that indices are
sl@0
    56
** working correctly.  This variable has no function other than to
sl@0
    57
** help verify the correct operation of the library.
sl@0
    58
*/
sl@0
    59
#ifdef SQLITE_TEST
sl@0
    60
int sqlite3_search_count = 0;
sl@0
    61
#endif
sl@0
    62
sl@0
    63
/*
sl@0
    64
** When this global variable is positive, it gets decremented once before
sl@0
    65
** each instruction in the VDBE.  When reaches zero, the u1.isInterrupted
sl@0
    66
** field of the sqlite3 structure is set in order to simulate and interrupt.
sl@0
    67
**
sl@0
    68
** This facility is used for testing purposes only.  It does not function
sl@0
    69
** in an ordinary build.
sl@0
    70
*/
sl@0
    71
#ifdef SQLITE_TEST
sl@0
    72
int sqlite3_interrupt_count = 0;
sl@0
    73
#endif
sl@0
    74
sl@0
    75
/*
sl@0
    76
** The next global variable is incremented each type the OP_Sort opcode
sl@0
    77
** is executed.  The test procedures use this information to make sure that
sl@0
    78
** sorting is occurring or not occurring at appropriate times.   This variable
sl@0
    79
** has no function other than to help verify the correct operation of the
sl@0
    80
** library.
sl@0
    81
*/
sl@0
    82
#ifdef SQLITE_TEST
sl@0
    83
int sqlite3_sort_count = 0;
sl@0
    84
#endif
sl@0
    85
sl@0
    86
/*
sl@0
    87
** The next global variable records the size of the largest MEM_Blob
sl@0
    88
** or MEM_Str that has been used by a VDBE opcode.  The test procedures
sl@0
    89
** use this information to make sure that the zero-blob functionality
sl@0
    90
** is working correctly.   This variable has no function other than to
sl@0
    91
** help verify the correct operation of the library.
sl@0
    92
*/
sl@0
    93
#ifdef SQLITE_TEST
sl@0
    94
int sqlite3_max_blobsize = 0;
sl@0
    95
static void updateMaxBlobsize(Mem *p){
sl@0
    96
  if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){
sl@0
    97
    sqlite3_max_blobsize = p->n;
sl@0
    98
  }
sl@0
    99
}
sl@0
   100
#endif
sl@0
   101
sl@0
   102
/*
sl@0
   103
** Test a register to see if it exceeds the current maximum blob size.
sl@0
   104
** If it does, record the new maximum blob size.
sl@0
   105
*/
sl@0
   106
#if defined(SQLITE_TEST) && !defined(SQLITE_OMIT_BUILTIN_TEST)
sl@0
   107
# define UPDATE_MAX_BLOBSIZE(P)  updateMaxBlobsize(P)
sl@0
   108
#else
sl@0
   109
# define UPDATE_MAX_BLOBSIZE(P)
sl@0
   110
#endif
sl@0
   111
sl@0
   112
/*
sl@0
   113
** Release the memory associated with a register.  This
sl@0
   114
** leaves the Mem.flags field in an inconsistent state.
sl@0
   115
*/
sl@0
   116
#define Release(P) if((P)->flags&MEM_Dyn){ sqlite3VdbeMemRelease(P); }
sl@0
   117
sl@0
   118
/*
sl@0
   119
** Convert the given register into a string if it isn't one
sl@0
   120
** already. Return non-zero if a malloc() fails.
sl@0
   121
*/
sl@0
   122
#define Stringify(P, enc) \
sl@0
   123
   if(((P)->flags&(MEM_Str|MEM_Blob))==0 && sqlite3VdbeMemStringify(P,enc)) \
sl@0
   124
     { goto no_mem; }
sl@0
   125
sl@0
   126
/*
sl@0
   127
** An ephemeral string value (signified by the MEM_Ephem flag) contains
sl@0
   128
** a pointer to a dynamically allocated string where some other entity
sl@0
   129
** is responsible for deallocating that string.  Because the register
sl@0
   130
** does not control the string, it might be deleted without the register
sl@0
   131
** knowing it.
sl@0
   132
**
sl@0
   133
** This routine converts an ephemeral string into a dynamically allocated
sl@0
   134
** string that the register itself controls.  In other words, it
sl@0
   135
** converts an MEM_Ephem string into an MEM_Dyn string.
sl@0
   136
*/
sl@0
   137
#define Deephemeralize(P) \
sl@0
   138
   if( ((P)->flags&MEM_Ephem)!=0 \
sl@0
   139
       && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;}
sl@0
   140
sl@0
   141
/*
sl@0
   142
** Call sqlite3VdbeMemExpandBlob() on the supplied value (type Mem*)
sl@0
   143
** P if required.
sl@0
   144
*/
sl@0
   145
#define ExpandBlob(P) (((P)->flags&MEM_Zero)?sqlite3VdbeMemExpandBlob(P):0)
sl@0
   146
sl@0
   147
/*
sl@0
   148
** Argument pMem points at a register that will be passed to a
sl@0
   149
** user-defined function or returned to the user as the result of a query.
sl@0
   150
** The second argument, 'db_enc' is the text encoding used by the vdbe for
sl@0
   151
** register variables.  This routine sets the pMem->enc and pMem->type
sl@0
   152
** variables used by the sqlite3_value_*() routines.
sl@0
   153
*/
sl@0
   154
#define storeTypeInfo(A,B) _storeTypeInfo(A)
sl@0
   155
static void _storeTypeInfo(Mem *pMem){
sl@0
   156
  int flags = pMem->flags;
sl@0
   157
  if( flags & MEM_Null ){
sl@0
   158
    pMem->type = SQLITE_NULL;
sl@0
   159
  }
sl@0
   160
  else if( flags & MEM_Int ){
sl@0
   161
    pMem->type = SQLITE_INTEGER;
sl@0
   162
  }
sl@0
   163
  else if( flags & MEM_Real ){
sl@0
   164
    pMem->type = SQLITE_FLOAT;
sl@0
   165
  }
sl@0
   166
  else if( flags & MEM_Str ){
sl@0
   167
    pMem->type = SQLITE_TEXT;
sl@0
   168
  }else{
sl@0
   169
    pMem->type = SQLITE_BLOB;
sl@0
   170
  }
sl@0
   171
}
sl@0
   172
sl@0
   173
/*
sl@0
   174
** Properties of opcodes.  The OPFLG_INITIALIZER macro is
sl@0
   175
** created by mkopcodeh.awk during compilation.  Data is obtained
sl@0
   176
** from the comments following the "case OP_xxxx:" statements in
sl@0
   177
** this file.  
sl@0
   178
*/
sl@0
   179
static unsigned char opcodeProperty[] = OPFLG_INITIALIZER;
sl@0
   180
sl@0
   181
/*
sl@0
   182
** Return true if an opcode has any of the OPFLG_xxx properties
sl@0
   183
** specified by mask.
sl@0
   184
*/
sl@0
   185
int sqlite3VdbeOpcodeHasProperty(int opcode, int mask){
sl@0
   186
  assert( opcode>0 && opcode<sizeof(opcodeProperty) );
sl@0
   187
  return (opcodeProperty[opcode]&mask)!=0;
sl@0
   188
}
sl@0
   189
sl@0
   190
/*
sl@0
   191
** Allocate cursor number iCur.  Return a pointer to it.  Return NULL
sl@0
   192
** if we run out of memory.
sl@0
   193
*/
sl@0
   194
static Cursor *allocateCursor(
sl@0
   195
  Vdbe *p, 
sl@0
   196
  int iCur, 
sl@0
   197
  Op *pOp,
sl@0
   198
  int iDb, 
sl@0
   199
  int isBtreeCursor
sl@0
   200
){
sl@0
   201
  /* Find the memory cell that will be used to store the blob of memory
sl@0
   202
  ** required for this Cursor structure. It is convenient to use a 
sl@0
   203
  ** vdbe memory cell to manage the memory allocation required for a
sl@0
   204
  ** Cursor structure for the following reasons:
sl@0
   205
  **
sl@0
   206
  **   * Sometimes cursor numbers are used for a couple of different
sl@0
   207
  **     purposes in a vdbe program. The different uses might require
sl@0
   208
  **     different sized allocations. Memory cells provide growable
sl@0
   209
  **     allocations.
sl@0
   210
  **
sl@0
   211
  **   * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can
sl@0
   212
  **     be freed lazily via the sqlite3_release_memory() API. This
sl@0
   213
  **     minimizes the number of malloc calls made by the system.
sl@0
   214
  **
sl@0
   215
  ** Memory cells for cursors are allocated at the top of the address
sl@0
   216
  ** space. Memory cell (p->nMem) corresponds to cursor 0. Space for
sl@0
   217
  ** cursor 1 is managed by memory cell (p->nMem-1), etc.
sl@0
   218
  */
sl@0
   219
  Mem *pMem = &p->aMem[p->nMem-iCur];
sl@0
   220
sl@0
   221
  int nByte;
sl@0
   222
  Cursor *pCx = 0;
sl@0
   223
  /* If the opcode of pOp is OP_SetNumColumns, then pOp->p2 contains
sl@0
   224
  ** the number of fields in the records contained in the table or
sl@0
   225
  ** index being opened. Use this to reserve space for the 
sl@0
   226
  ** Cursor.aType[] array.
sl@0
   227
  */
sl@0
   228
  int nField = 0;
sl@0
   229
  if( pOp->opcode==OP_SetNumColumns || pOp->opcode==OP_OpenEphemeral ){
sl@0
   230
    nField = pOp->p2;
sl@0
   231
  }
sl@0
   232
  nByte = 
sl@0
   233
      sizeof(Cursor) + 
sl@0
   234
      (isBtreeCursor?sqlite3BtreeCursorSize():0) + 
sl@0
   235
      2*nField*sizeof(u32);
sl@0
   236
sl@0
   237
  assert( iCur<p->nCursor );
sl@0
   238
  if( p->apCsr[iCur] ){
sl@0
   239
    sqlite3VdbeFreeCursor(p, p->apCsr[iCur]);
sl@0
   240
    p->apCsr[iCur] = 0;
sl@0
   241
  }
sl@0
   242
  if( SQLITE_OK==sqlite3VdbeMemGrow(pMem, nByte, 0) ){
sl@0
   243
    p->apCsr[iCur] = pCx = (Cursor *)pMem->z;
sl@0
   244
    memset(pMem->z, 0, nByte);
sl@0
   245
    pCx->iDb = iDb;
sl@0
   246
    pCx->nField = nField;
sl@0
   247
    if( nField ){
sl@0
   248
      pCx->aType = (u32 *)&pMem->z[sizeof(Cursor)];
sl@0
   249
    }
sl@0
   250
    if( isBtreeCursor ){
sl@0
   251
      pCx->pCursor = (BtCursor *)&pMem->z[sizeof(Cursor)+2*nField*sizeof(u32)];
sl@0
   252
    }
sl@0
   253
  }
sl@0
   254
  return pCx;
sl@0
   255
}
sl@0
   256
sl@0
   257
/*
sl@0
   258
** Try to convert a value into a numeric representation if we can
sl@0
   259
** do so without loss of information.  In other words, if the string
sl@0
   260
** looks like a number, convert it into a number.  If it does not
sl@0
   261
** look like a number, leave it alone.
sl@0
   262
*/
sl@0
   263
static void applyNumericAffinity(Mem *pRec){
sl@0
   264
  if( (pRec->flags & (MEM_Real|MEM_Int))==0 ){
sl@0
   265
    int realnum;
sl@0
   266
    sqlite3VdbeMemNulTerminate(pRec);
sl@0
   267
    if( (pRec->flags&MEM_Str)
sl@0
   268
         && sqlite3IsNumber(pRec->z, &realnum, pRec->enc) ){
sl@0
   269
      i64 value;
sl@0
   270
      sqlite3VdbeChangeEncoding(pRec, SQLITE_UTF8);
sl@0
   271
      if( !realnum && sqlite3Atoi64(pRec->z, &value) ){
sl@0
   272
        pRec->u.i = value;
sl@0
   273
        MemSetTypeFlag(pRec, MEM_Int);
sl@0
   274
      }else{
sl@0
   275
        sqlite3VdbeMemRealify(pRec);
sl@0
   276
      }
sl@0
   277
    }
sl@0
   278
  }
sl@0
   279
}
sl@0
   280
sl@0
   281
/*
sl@0
   282
** Processing is determine by the affinity parameter:
sl@0
   283
**
sl@0
   284
** SQLITE_AFF_INTEGER:
sl@0
   285
** SQLITE_AFF_REAL:
sl@0
   286
** SQLITE_AFF_NUMERIC:
sl@0
   287
**    Try to convert pRec to an integer representation or a 
sl@0
   288
**    floating-point representation if an integer representation
sl@0
   289
**    is not possible.  Note that the integer representation is
sl@0
   290
**    always preferred, even if the affinity is REAL, because
sl@0
   291
**    an integer representation is more space efficient on disk.
sl@0
   292
**
sl@0
   293
** SQLITE_AFF_TEXT:
sl@0
   294
**    Convert pRec to a text representation.
sl@0
   295
**
sl@0
   296
** SQLITE_AFF_NONE:
sl@0
   297
**    No-op.  pRec is unchanged.
sl@0
   298
*/
sl@0
   299
static void applyAffinity(
sl@0
   300
  Mem *pRec,          /* The value to apply affinity to */
sl@0
   301
  char affinity,      /* The affinity to be applied */
sl@0
   302
  u8 enc              /* Use this text encoding */
sl@0
   303
){
sl@0
   304
  if( affinity==SQLITE_AFF_TEXT ){
sl@0
   305
    /* Only attempt the conversion to TEXT if there is an integer or real
sl@0
   306
    ** representation (blob and NULL do not get converted) but no string
sl@0
   307
    ** representation.
sl@0
   308
    */
sl@0
   309
    if( 0==(pRec->flags&MEM_Str) && (pRec->flags&(MEM_Real|MEM_Int)) ){
sl@0
   310
      sqlite3VdbeMemStringify(pRec, enc);
sl@0
   311
    }
sl@0
   312
    pRec->flags &= ~(MEM_Real|MEM_Int);
sl@0
   313
  }else if( affinity!=SQLITE_AFF_NONE ){
sl@0
   314
    assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL
sl@0
   315
             || affinity==SQLITE_AFF_NUMERIC );
sl@0
   316
    applyNumericAffinity(pRec);
sl@0
   317
    if( pRec->flags & MEM_Real ){
sl@0
   318
      sqlite3VdbeIntegerAffinity(pRec);
sl@0
   319
    }
sl@0
   320
  }
sl@0
   321
}
sl@0
   322
sl@0
   323
/*
sl@0
   324
** Try to convert the type of a function argument or a result column
sl@0
   325
** into a numeric representation.  Use either INTEGER or REAL whichever
sl@0
   326
** is appropriate.  But only do the conversion if it is possible without
sl@0
   327
** loss of information and return the revised type of the argument.
sl@0
   328
**
sl@0
   329
** This is an EXPERIMENTAL api and is subject to change or removal.
sl@0
   330
*/
sl@0
   331
int sqlite3_value_numeric_type(sqlite3_value *pVal){
sl@0
   332
  Mem *pMem = (Mem*)pVal;
sl@0
   333
  applyNumericAffinity(pMem);
sl@0
   334
  storeTypeInfo(pMem, 0);
sl@0
   335
  return pMem->type;
sl@0
   336
}
sl@0
   337
sl@0
   338
/*
sl@0
   339
** Exported version of applyAffinity(). This one works on sqlite3_value*, 
sl@0
   340
** not the internal Mem* type.
sl@0
   341
*/
sl@0
   342
void sqlite3ValueApplyAffinity(
sl@0
   343
  sqlite3_value *pVal, 
sl@0
   344
  u8 affinity, 
sl@0
   345
  u8 enc
sl@0
   346
){
sl@0
   347
  applyAffinity((Mem *)pVal, affinity, enc);
sl@0
   348
}
sl@0
   349
sl@0
   350
#ifdef SQLITE_DEBUG
sl@0
   351
/*
sl@0
   352
** Write a nice string representation of the contents of cell pMem
sl@0
   353
** into buffer zBuf, length nBuf.
sl@0
   354
*/
sl@0
   355
void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf){
sl@0
   356
  char *zCsr = zBuf;
sl@0
   357
  int f = pMem->flags;
sl@0
   358
sl@0
   359
  static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"};
sl@0
   360
sl@0
   361
  if( f&MEM_Blob ){
sl@0
   362
    int i;
sl@0
   363
    char c;
sl@0
   364
    if( f & MEM_Dyn ){
sl@0
   365
      c = 'z';
sl@0
   366
      assert( (f & (MEM_Static|MEM_Ephem))==0 );
sl@0
   367
    }else if( f & MEM_Static ){
sl@0
   368
      c = 't';
sl@0
   369
      assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
sl@0
   370
    }else if( f & MEM_Ephem ){
sl@0
   371
      c = 'e';
sl@0
   372
      assert( (f & (MEM_Static|MEM_Dyn))==0 );
sl@0
   373
    }else{
sl@0
   374
      c = 's';
sl@0
   375
    }
sl@0
   376
sl@0
   377
    sqlite3_snprintf(100, zCsr, "%c", c);
sl@0
   378
    zCsr += strlen(zCsr);
sl@0
   379
    sqlite3_snprintf(100, zCsr, "%d[", pMem->n);
sl@0
   380
    zCsr += strlen(zCsr);
sl@0
   381
    for(i=0; i<16 && i<pMem->n; i++){
sl@0
   382
      sqlite3_snprintf(100, zCsr, "%02X", ((int)pMem->z[i] & 0xFF));
sl@0
   383
      zCsr += strlen(zCsr);
sl@0
   384
    }
sl@0
   385
    for(i=0; i<16 && i<pMem->n; i++){
sl@0
   386
      char z = pMem->z[i];
sl@0
   387
      if( z<32 || z>126 ) *zCsr++ = '.';
sl@0
   388
      else *zCsr++ = z;
sl@0
   389
    }
sl@0
   390
sl@0
   391
    sqlite3_snprintf(100, zCsr, "]%s", encnames[pMem->enc]);
sl@0
   392
    zCsr += strlen(zCsr);
sl@0
   393
    if( f & MEM_Zero ){
sl@0
   394
      sqlite3_snprintf(100, zCsr,"+%lldz",pMem->u.i);
sl@0
   395
      zCsr += strlen(zCsr);
sl@0
   396
    }
sl@0
   397
    *zCsr = '\0';
sl@0
   398
  }else if( f & MEM_Str ){
sl@0
   399
    int j, k;
sl@0
   400
    zBuf[0] = ' ';
sl@0
   401
    if( f & MEM_Dyn ){
sl@0
   402
      zBuf[1] = 'z';
sl@0
   403
      assert( (f & (MEM_Static|MEM_Ephem))==0 );
sl@0
   404
    }else if( f & MEM_Static ){
sl@0
   405
      zBuf[1] = 't';
sl@0
   406
      assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
sl@0
   407
    }else if( f & MEM_Ephem ){
sl@0
   408
      zBuf[1] = 'e';
sl@0
   409
      assert( (f & (MEM_Static|MEM_Dyn))==0 );
sl@0
   410
    }else{
sl@0
   411
      zBuf[1] = 's';
sl@0
   412
    }
sl@0
   413
    k = 2;
sl@0
   414
    sqlite3_snprintf(100, &zBuf[k], "%d", pMem->n);
sl@0
   415
    k += strlen(&zBuf[k]);
sl@0
   416
    zBuf[k++] = '[';
sl@0
   417
    for(j=0; j<15 && j<pMem->n; j++){
sl@0
   418
      u8 c = pMem->z[j];
sl@0
   419
      if( c>=0x20 && c<0x7f ){
sl@0
   420
        zBuf[k++] = c;
sl@0
   421
      }else{
sl@0
   422
        zBuf[k++] = '.';
sl@0
   423
      }
sl@0
   424
    }
sl@0
   425
    zBuf[k++] = ']';
sl@0
   426
    sqlite3_snprintf(100,&zBuf[k], encnames[pMem->enc]);
sl@0
   427
    k += strlen(&zBuf[k]);
sl@0
   428
    zBuf[k++] = 0;
sl@0
   429
  }
sl@0
   430
}
sl@0
   431
#endif
sl@0
   432
sl@0
   433
#ifdef SQLITE_DEBUG
sl@0
   434
/*
sl@0
   435
** Print the value of a register for tracing purposes:
sl@0
   436
*/
sl@0
   437
static void memTracePrint(FILE *out, Mem *p){
sl@0
   438
  if( p->flags & MEM_Null ){
sl@0
   439
    fprintf(out, " NULL");
sl@0
   440
  }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){
sl@0
   441
    fprintf(out, " si:%lld", p->u.i);
sl@0
   442
  }else if( p->flags & MEM_Int ){
sl@0
   443
    fprintf(out, " i:%lld", p->u.i);
sl@0
   444
  }else if( p->flags & MEM_Real ){
sl@0
   445
    fprintf(out, " r:%g", p->r);
sl@0
   446
  }else{
sl@0
   447
    char zBuf[200];
sl@0
   448
    sqlite3VdbeMemPrettyPrint(p, zBuf);
sl@0
   449
    fprintf(out, " ");
sl@0
   450
    fprintf(out, "%s", zBuf);
sl@0
   451
  }
sl@0
   452
}
sl@0
   453
static void registerTrace(FILE *out, int iReg, Mem *p){
sl@0
   454
  fprintf(out, "REG[%d] = ", iReg);
sl@0
   455
  memTracePrint(out, p);
sl@0
   456
  fprintf(out, "\n");
sl@0
   457
}
sl@0
   458
#endif
sl@0
   459
sl@0
   460
#ifdef SQLITE_DEBUG
sl@0
   461
#  define REGISTER_TRACE(R,M) if(p->trace)registerTrace(p->trace,R,M)
sl@0
   462
#else
sl@0
   463
#  define REGISTER_TRACE(R,M)
sl@0
   464
#endif
sl@0
   465
sl@0
   466
sl@0
   467
#ifdef VDBE_PROFILE
sl@0
   468
sl@0
   469
/* 
sl@0
   470
** hwtime.h contains inline assembler code for implementing 
sl@0
   471
** high-performance timing routines.
sl@0
   472
*/
sl@0
   473
#include "hwtime.h"
sl@0
   474
sl@0
   475
#endif
sl@0
   476
sl@0
   477
/*
sl@0
   478
** The CHECK_FOR_INTERRUPT macro defined here looks to see if the
sl@0
   479
** sqlite3_interrupt() routine has been called.  If it has been, then
sl@0
   480
** processing of the VDBE program is interrupted.
sl@0
   481
**
sl@0
   482
** This macro added to every instruction that does a jump in order to
sl@0
   483
** implement a loop.  This test used to be on every single instruction,
sl@0
   484
** but that meant we more testing that we needed.  By only testing the
sl@0
   485
** flag on jump instructions, we get a (small) speed improvement.
sl@0
   486
*/
sl@0
   487
#define CHECK_FOR_INTERRUPT \
sl@0
   488
   if( db->u1.isInterrupted ) goto abort_due_to_interrupt;
sl@0
   489
sl@0
   490
#ifdef SQLITE_DEBUG
sl@0
   491
static int fileExists(sqlite3 *db, const char *zFile){
sl@0
   492
  int res = 0;
sl@0
   493
  int rc = SQLITE_OK;
sl@0
   494
#ifdef SQLITE_TEST
sl@0
   495
  /* If we are currently testing IO errors, then do not call OsAccess() to
sl@0
   496
  ** test for the presence of zFile. This is because any IO error that
sl@0
   497
  ** occurs here will not be reported, causing the test to fail.
sl@0
   498
  */
sl@0
   499
  extern int sqlite3_io_error_pending;
sl@0
   500
  if( sqlite3_io_error_pending<=0 )
sl@0
   501
#endif
sl@0
   502
    rc = sqlite3OsAccess(db->pVfs, zFile, SQLITE_ACCESS_EXISTS, &res);
sl@0
   503
  return (res && rc==SQLITE_OK);
sl@0
   504
}
sl@0
   505
#endif
sl@0
   506
sl@0
   507
/*
sl@0
   508
** Execute as much of a VDBE program as we can then return.
sl@0
   509
**
sl@0
   510
** sqlite3VdbeMakeReady() must be called before this routine in order to
sl@0
   511
** close the program with a final OP_Halt and to set up the callbacks
sl@0
   512
** and the error message pointer.
sl@0
   513
**
sl@0
   514
** Whenever a row or result data is available, this routine will either
sl@0
   515
** invoke the result callback (if there is one) or return with
sl@0
   516
** SQLITE_ROW.
sl@0
   517
**
sl@0
   518
** If an attempt is made to open a locked database, then this routine
sl@0
   519
** will either invoke the busy callback (if there is one) or it will
sl@0
   520
** return SQLITE_BUSY.
sl@0
   521
**
sl@0
   522
** If an error occurs, an error message is written to memory obtained
sl@0
   523
** from sqlite3_malloc() and p->zErrMsg is made to point to that memory.
sl@0
   524
** The error code is stored in p->rc and this routine returns SQLITE_ERROR.
sl@0
   525
**
sl@0
   526
** If the callback ever returns non-zero, then the program exits
sl@0
   527
** immediately.  There will be no error message but the p->rc field is
sl@0
   528
** set to SQLITE_ABORT and this routine will return SQLITE_ERROR.
sl@0
   529
**
sl@0
   530
** A memory allocation error causes p->rc to be set to SQLITE_NOMEM and this
sl@0
   531
** routine to return SQLITE_ERROR.
sl@0
   532
**
sl@0
   533
** Other fatal errors return SQLITE_ERROR.
sl@0
   534
**
sl@0
   535
** After this routine has finished, sqlite3VdbeFinalize() should be
sl@0
   536
** used to clean up the mess that was left behind.
sl@0
   537
*/
sl@0
   538
int sqlite3VdbeExec(
sl@0
   539
  Vdbe *p                    /* The VDBE */
sl@0
   540
){
sl@0
   541
  int pc;                    /* The program counter */
sl@0
   542
  Op *pOp;                   /* Current operation */
sl@0
   543
  int rc = SQLITE_OK;        /* Value to return */
sl@0
   544
  sqlite3 *db = p->db;       /* The database */
sl@0
   545
  u8 encoding = ENC(db);     /* The database encoding */
sl@0
   546
  Mem *pIn1 = 0;             /* Input operands */
sl@0
   547
  Mem *pIn2 = 0;             /* Input operands */
sl@0
   548
  Mem *pIn3 = 0;             /* Input operands */
sl@0
   549
  Mem *pOut = 0;             /* Output operand */
sl@0
   550
  u8 opProperty;
sl@0
   551
  int iCompare = 0;          /* Result of last OP_Compare operation */
sl@0
   552
  int *aPermute = 0;         /* Permuation of columns for OP_Compare */
sl@0
   553
#ifdef VDBE_PROFILE
sl@0
   554
  u64 start;                 /* CPU clock count at start of opcode */
sl@0
   555
  int origPc;                /* Program counter at start of opcode */
sl@0
   556
#endif
sl@0
   557
#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
sl@0
   558
  int nProgressOps = 0;      /* Opcodes executed since progress callback. */
sl@0
   559
#endif
sl@0
   560
sl@0
   561
  assert( p->magic==VDBE_MAGIC_RUN );  /* sqlite3_step() verifies this */
sl@0
   562
  assert( db->magic==SQLITE_MAGIC_BUSY );
sl@0
   563
  sqlite3BtreeMutexArrayEnter(&p->aMutex);
sl@0
   564
  if( p->rc==SQLITE_NOMEM ){
sl@0
   565
    /* This happens if a malloc() inside a call to sqlite3_column_text() or
sl@0
   566
    ** sqlite3_column_text16() failed.  */
sl@0
   567
    goto no_mem;
sl@0
   568
  }
sl@0
   569
  assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY );
sl@0
   570
  p->rc = SQLITE_OK;
sl@0
   571
  assert( p->explain==0 );
sl@0
   572
  p->pResultSet = 0;
sl@0
   573
  db->busyHandler.nBusy = 0;
sl@0
   574
  CHECK_FOR_INTERRUPT;
sl@0
   575
  sqlite3VdbeIOTraceSql(p);
sl@0
   576
#ifdef SQLITE_DEBUG
sl@0
   577
  sqlite3BeginBenignMalloc();
sl@0
   578
  if( p->pc==0 
sl@0
   579
   && ((p->db->flags & SQLITE_VdbeListing) || fileExists(db, "vdbe_explain"))
sl@0
   580
  ){
sl@0
   581
    int i;
sl@0
   582
    printf("VDBE Program Listing:\n");
sl@0
   583
    sqlite3VdbePrintSql(p);
sl@0
   584
    for(i=0; i<p->nOp; i++){
sl@0
   585
      sqlite3VdbePrintOp(stdout, i, &p->aOp[i]);
sl@0
   586
    }
sl@0
   587
  }
sl@0
   588
  if( fileExists(db, "vdbe_trace") ){
sl@0
   589
    p->trace = stdout;
sl@0
   590
  }
sl@0
   591
  sqlite3EndBenignMalloc();
sl@0
   592
#endif
sl@0
   593
  for(pc=p->pc; rc==SQLITE_OK; pc++){
sl@0
   594
    assert( pc>=0 && pc<p->nOp );
sl@0
   595
    if( db->mallocFailed ) goto no_mem;
sl@0
   596
#ifdef VDBE_PROFILE
sl@0
   597
    origPc = pc;
sl@0
   598
    start = sqlite3Hwtime();
sl@0
   599
#endif
sl@0
   600
    pOp = &p->aOp[pc];
sl@0
   601
sl@0
   602
    /* Only allow tracing if SQLITE_DEBUG is defined.
sl@0
   603
    */
sl@0
   604
#ifdef SQLITE_DEBUG
sl@0
   605
    if( p->trace ){
sl@0
   606
      if( pc==0 ){
sl@0
   607
        printf("VDBE Execution Trace:\n");
sl@0
   608
        sqlite3VdbePrintSql(p);
sl@0
   609
      }
sl@0
   610
      sqlite3VdbePrintOp(p->trace, pc, pOp);
sl@0
   611
    }
sl@0
   612
    if( p->trace==0 && pc==0 ){
sl@0
   613
      sqlite3BeginBenignMalloc();
sl@0
   614
      if( fileExists(db, "vdbe_sqltrace") ){
sl@0
   615
        sqlite3VdbePrintSql(p);
sl@0
   616
      }
sl@0
   617
      sqlite3EndBenignMalloc();
sl@0
   618
    }
sl@0
   619
#endif
sl@0
   620
      
sl@0
   621
sl@0
   622
    /* Check to see if we need to simulate an interrupt.  This only happens
sl@0
   623
    ** if we have a special test build.
sl@0
   624
    */
sl@0
   625
#ifdef SQLITE_TEST
sl@0
   626
    if( sqlite3_interrupt_count>0 ){
sl@0
   627
      sqlite3_interrupt_count--;
sl@0
   628
      if( sqlite3_interrupt_count==0 ){
sl@0
   629
        sqlite3_interrupt(db);
sl@0
   630
      }
sl@0
   631
    }
sl@0
   632
#endif
sl@0
   633
sl@0
   634
#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
sl@0
   635
    /* Call the progress callback if it is configured and the required number
sl@0
   636
    ** of VDBE ops have been executed (either since this invocation of
sl@0
   637
    ** sqlite3VdbeExec() or since last time the progress callback was called).
sl@0
   638
    ** If the progress callback returns non-zero, exit the virtual machine with
sl@0
   639
    ** a return code SQLITE_ABORT.
sl@0
   640
    */
sl@0
   641
    if( db->xProgress ){
sl@0
   642
      if( db->nProgressOps==nProgressOps ){
sl@0
   643
        int prc;
sl@0
   644
        if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
sl@0
   645
        prc =db->xProgress(db->pProgressArg);
sl@0
   646
        if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
sl@0
   647
        if( prc!=0 ){
sl@0
   648
          rc = SQLITE_INTERRUPT;
sl@0
   649
          goto vdbe_error_halt;
sl@0
   650
        }
sl@0
   651
        nProgressOps = 0;
sl@0
   652
      }
sl@0
   653
      nProgressOps++;
sl@0
   654
    }
sl@0
   655
#endif
sl@0
   656
sl@0
   657
    /* Do common setup processing for any opcode that is marked
sl@0
   658
    ** with the "out2-prerelease" tag.  Such opcodes have a single
sl@0
   659
    ** output which is specified by the P2 parameter.  The P2 register
sl@0
   660
    ** is initialized to a NULL.
sl@0
   661
    */
sl@0
   662
    opProperty = opcodeProperty[pOp->opcode];
sl@0
   663
    if( (opProperty & OPFLG_OUT2_PRERELEASE)!=0 ){
sl@0
   664
      assert( pOp->p2>0 );
sl@0
   665
      assert( pOp->p2<=p->nMem );
sl@0
   666
      pOut = &p->aMem[pOp->p2];
sl@0
   667
      sqlite3VdbeMemReleaseExternal(pOut);
sl@0
   668
      pOut->flags = MEM_Null;
sl@0
   669
    }else
sl@0
   670
 
sl@0
   671
    /* Do common setup for opcodes marked with one of the following
sl@0
   672
    ** combinations of properties.
sl@0
   673
    **
sl@0
   674
    **           in1
sl@0
   675
    **           in1 in2
sl@0
   676
    **           in1 in2 out3
sl@0
   677
    **           in1 in3
sl@0
   678
    **
sl@0
   679
    ** Variables pIn1, pIn2, and pIn3 are made to point to appropriate
sl@0
   680
    ** registers for inputs.  Variable pOut points to the output register.
sl@0
   681
    */
sl@0
   682
    if( (opProperty & OPFLG_IN1)!=0 ){
sl@0
   683
      assert( pOp->p1>0 );
sl@0
   684
      assert( pOp->p1<=p->nMem );
sl@0
   685
      pIn1 = &p->aMem[pOp->p1];
sl@0
   686
      REGISTER_TRACE(pOp->p1, pIn1);
sl@0
   687
      if( (opProperty & OPFLG_IN2)!=0 ){
sl@0
   688
        assert( pOp->p2>0 );
sl@0
   689
        assert( pOp->p2<=p->nMem );
sl@0
   690
        pIn2 = &p->aMem[pOp->p2];
sl@0
   691
        REGISTER_TRACE(pOp->p2, pIn2);
sl@0
   692
        if( (opProperty & OPFLG_OUT3)!=0 ){
sl@0
   693
          assert( pOp->p3>0 );
sl@0
   694
          assert( pOp->p3<=p->nMem );
sl@0
   695
          pOut = &p->aMem[pOp->p3];
sl@0
   696
        }
sl@0
   697
      }else if( (opProperty & OPFLG_IN3)!=0 ){
sl@0
   698
        assert( pOp->p3>0 );
sl@0
   699
        assert( pOp->p3<=p->nMem );
sl@0
   700
        pIn3 = &p->aMem[pOp->p3];
sl@0
   701
        REGISTER_TRACE(pOp->p3, pIn3);
sl@0
   702
      }
sl@0
   703
    }else if( (opProperty & OPFLG_IN2)!=0 ){
sl@0
   704
      assert( pOp->p2>0 );
sl@0
   705
      assert( pOp->p2<=p->nMem );
sl@0
   706
      pIn2 = &p->aMem[pOp->p2];
sl@0
   707
      REGISTER_TRACE(pOp->p2, pIn2);
sl@0
   708
    }else if( (opProperty & OPFLG_IN3)!=0 ){
sl@0
   709
      assert( pOp->p3>0 );
sl@0
   710
      assert( pOp->p3<=p->nMem );
sl@0
   711
      pIn3 = &p->aMem[pOp->p3];
sl@0
   712
      REGISTER_TRACE(pOp->p3, pIn3);
sl@0
   713
    }
sl@0
   714
sl@0
   715
    switch( pOp->opcode ){
sl@0
   716
sl@0
   717
/*****************************************************************************
sl@0
   718
** What follows is a massive switch statement where each case implements a
sl@0
   719
** separate instruction in the virtual machine.  If we follow the usual
sl@0
   720
** indentation conventions, each case should be indented by 6 spaces.  But
sl@0
   721
** that is a lot of wasted space on the left margin.  So the code within
sl@0
   722
** the switch statement will break with convention and be flush-left. Another
sl@0
   723
** big comment (similar to this one) will mark the point in the code where
sl@0
   724
** we transition back to normal indentation.
sl@0
   725
**
sl@0
   726
** The formatting of each case is important.  The makefile for SQLite
sl@0
   727
** generates two C files "opcodes.h" and "opcodes.c" by scanning this
sl@0
   728
** file looking for lines that begin with "case OP_".  The opcodes.h files
sl@0
   729
** will be filled with #defines that give unique integer values to each
sl@0
   730
** opcode and the opcodes.c file is filled with an array of strings where
sl@0
   731
** each string is the symbolic name for the corresponding opcode.  If the
sl@0
   732
** case statement is followed by a comment of the form "/# same as ... #/"
sl@0
   733
** that comment is used to determine the particular value of the opcode.
sl@0
   734
**
sl@0
   735
** Other keywords in the comment that follows each case are used to
sl@0
   736
** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[].
sl@0
   737
** Keywords include: in1, in2, in3, out2_prerelease, out2, out3.  See
sl@0
   738
** the mkopcodeh.awk script for additional information.
sl@0
   739
**
sl@0
   740
** Documentation about VDBE opcodes is generated by scanning this file
sl@0
   741
** for lines of that contain "Opcode:".  That line and all subsequent
sl@0
   742
** comment lines are used in the generation of the opcode.html documentation
sl@0
   743
** file.
sl@0
   744
**
sl@0
   745
** SUMMARY:
sl@0
   746
**
sl@0
   747
**     Formatting is important to scripts that scan this file.
sl@0
   748
**     Do not deviate from the formatting style currently in use.
sl@0
   749
**
sl@0
   750
*****************************************************************************/
sl@0
   751
sl@0
   752
/* Opcode:  Goto * P2 * * *
sl@0
   753
**
sl@0
   754
** An unconditional jump to address P2.
sl@0
   755
** The next instruction executed will be 
sl@0
   756
** the one at index P2 from the beginning of
sl@0
   757
** the program.
sl@0
   758
*/
sl@0
   759
case OP_Goto: {             /* jump */
sl@0
   760
  CHECK_FOR_INTERRUPT;
sl@0
   761
  pc = pOp->p2 - 1;
sl@0
   762
  break;
sl@0
   763
}
sl@0
   764
sl@0
   765
/* Opcode:  Gosub P1 P2 * * *
sl@0
   766
**
sl@0
   767
** Write the current address onto register P1
sl@0
   768
** and then jump to address P2.
sl@0
   769
*/
sl@0
   770
case OP_Gosub: {            /* jump */
sl@0
   771
  assert( pOp->p1>0 );
sl@0
   772
  assert( pOp->p1<=p->nMem );
sl@0
   773
  pIn1 = &p->aMem[pOp->p1];
sl@0
   774
  assert( (pIn1->flags & MEM_Dyn)==0 );
sl@0
   775
  pIn1->flags = MEM_Int;
sl@0
   776
  pIn1->u.i = pc;
sl@0
   777
  REGISTER_TRACE(pOp->p1, pIn1);
sl@0
   778
  pc = pOp->p2 - 1;
sl@0
   779
  break;
sl@0
   780
}
sl@0
   781
sl@0
   782
/* Opcode:  Return P1 * * * *
sl@0
   783
**
sl@0
   784
** Jump to the next instruction after the address in register P1.
sl@0
   785
*/
sl@0
   786
case OP_Return: {           /* in1 */
sl@0
   787
  assert( pIn1->flags & MEM_Int );
sl@0
   788
  pc = pIn1->u.i;
sl@0
   789
  break;
sl@0
   790
}
sl@0
   791
sl@0
   792
/* Opcode:  Yield P1 * * * *
sl@0
   793
**
sl@0
   794
** Swap the program counter with the value in register P1.
sl@0
   795
*/
sl@0
   796
case OP_Yield: {
sl@0
   797
  int pcDest;
sl@0
   798
  assert( pOp->p1>0 );
sl@0
   799
  assert( pOp->p1<=p->nMem );
sl@0
   800
  pIn1 = &p->aMem[pOp->p1];
sl@0
   801
  assert( (pIn1->flags & MEM_Dyn)==0 );
sl@0
   802
  pIn1->flags = MEM_Int;
sl@0
   803
  pcDest = pIn1->u.i;
sl@0
   804
  pIn1->u.i = pc;
sl@0
   805
  REGISTER_TRACE(pOp->p1, pIn1);
sl@0
   806
  pc = pcDest;
sl@0
   807
  break;
sl@0
   808
}
sl@0
   809
sl@0
   810
sl@0
   811
/* Opcode:  Halt P1 P2 * P4 *
sl@0
   812
**
sl@0
   813
** Exit immediately.  All open cursors, Fifos, etc are closed
sl@0
   814
** automatically.
sl@0
   815
**
sl@0
   816
** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(),
sl@0
   817
** or sqlite3_finalize().  For a normal halt, this should be SQLITE_OK (0).
sl@0
   818
** For errors, it can be some other value.  If P1!=0 then P2 will determine
sl@0
   819
** whether or not to rollback the current transaction.  Do not rollback
sl@0
   820
** if P2==OE_Fail. Do the rollback if P2==OE_Rollback.  If P2==OE_Abort,
sl@0
   821
** then back out all changes that have occurred during this execution of the
sl@0
   822
** VDBE, but do not rollback the transaction. 
sl@0
   823
**
sl@0
   824
** If P4 is not null then it is an error message string.
sl@0
   825
**
sl@0
   826
** There is an implied "Halt 0 0 0" instruction inserted at the very end of
sl@0
   827
** every program.  So a jump past the last instruction of the program
sl@0
   828
** is the same as executing Halt.
sl@0
   829
*/
sl@0
   830
case OP_Halt: {
sl@0
   831
  p->rc = pOp->p1;
sl@0
   832
  p->pc = pc;
sl@0
   833
  p->errorAction = pOp->p2;
sl@0
   834
  if( pOp->p4.z ){
sl@0
   835
    sqlite3SetString(&p->zErrMsg, db, "%s", pOp->p4.z);
sl@0
   836
  }
sl@0
   837
  rc = sqlite3VdbeHalt(p);
sl@0
   838
  assert( rc==SQLITE_BUSY || rc==SQLITE_OK );
sl@0
   839
  if( rc==SQLITE_BUSY ){
sl@0
   840
    p->rc = rc = SQLITE_BUSY;
sl@0
   841
  }else{
sl@0
   842
    rc = p->rc ? SQLITE_ERROR : SQLITE_DONE;
sl@0
   843
  }
sl@0
   844
  goto vdbe_return;
sl@0
   845
}
sl@0
   846
sl@0
   847
/* Opcode: Integer P1 P2 * * *
sl@0
   848
**
sl@0
   849
** The 32-bit integer value P1 is written into register P2.
sl@0
   850
*/
sl@0
   851
case OP_Integer: {         /* out2-prerelease */
sl@0
   852
  pOut->flags = MEM_Int;
sl@0
   853
  pOut->u.i = pOp->p1;
sl@0
   854
  break;
sl@0
   855
}
sl@0
   856
sl@0
   857
/* Opcode: Int64 * P2 * P4 *
sl@0
   858
**
sl@0
   859
** P4 is a pointer to a 64-bit integer value.
sl@0
   860
** Write that value into register P2.
sl@0
   861
*/
sl@0
   862
case OP_Int64: {           /* out2-prerelease */
sl@0
   863
  assert( pOp->p4.pI64!=0 );
sl@0
   864
  pOut->flags = MEM_Int;
sl@0
   865
  pOut->u.i = *pOp->p4.pI64;
sl@0
   866
  break;
sl@0
   867
}
sl@0
   868
sl@0
   869
/* Opcode: Real * P2 * P4 *
sl@0
   870
**
sl@0
   871
** P4 is a pointer to a 64-bit floating point value.
sl@0
   872
** Write that value into register P2.
sl@0
   873
*/
sl@0
   874
case OP_Real: {            /* same as TK_FLOAT, out2-prerelease */
sl@0
   875
  pOut->flags = MEM_Real;
sl@0
   876
  assert( !sqlite3IsNaN(*pOp->p4.pReal) );
sl@0
   877
  pOut->r = *pOp->p4.pReal;
sl@0
   878
  break;
sl@0
   879
}
sl@0
   880
sl@0
   881
/* Opcode: String8 * P2 * P4 *
sl@0
   882
**
sl@0
   883
** P4 points to a nul terminated UTF-8 string. This opcode is transformed 
sl@0
   884
** into an OP_String before it is executed for the first time.
sl@0
   885
*/
sl@0
   886
case OP_String8: {         /* same as TK_STRING, out2-prerelease */
sl@0
   887
  assert( pOp->p4.z!=0 );
sl@0
   888
  pOp->opcode = OP_String;
sl@0
   889
  pOp->p1 = strlen(pOp->p4.z);
sl@0
   890
sl@0
   891
#ifndef SQLITE_OMIT_UTF16
sl@0
   892
  if( encoding!=SQLITE_UTF8 ){
sl@0
   893
    sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC);
sl@0
   894
    if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem;
sl@0
   895
    if( SQLITE_OK!=sqlite3VdbeMemMakeWriteable(pOut) ) goto no_mem;
sl@0
   896
    pOut->zMalloc = 0;
sl@0
   897
    pOut->flags |= MEM_Static;
sl@0
   898
    pOut->flags &= ~MEM_Dyn;
sl@0
   899
    if( pOp->p4type==P4_DYNAMIC ){
sl@0
   900
      sqlite3DbFree(db, pOp->p4.z);
sl@0
   901
    }
sl@0
   902
    pOp->p4type = P4_DYNAMIC;
sl@0
   903
    pOp->p4.z = pOut->z;
sl@0
   904
    pOp->p1 = pOut->n;
sl@0
   905
    if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){
sl@0
   906
      goto too_big;
sl@0
   907
    }
sl@0
   908
    UPDATE_MAX_BLOBSIZE(pOut);
sl@0
   909
    break;
sl@0
   910
  }
sl@0
   911
#endif
sl@0
   912
  if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){
sl@0
   913
    goto too_big;
sl@0
   914
  }
sl@0
   915
  /* Fall through to the next case, OP_String */
sl@0
   916
}
sl@0
   917
  
sl@0
   918
/* Opcode: String P1 P2 * P4 *
sl@0
   919
**
sl@0
   920
** The string value P4 of length P1 (bytes) is stored in register P2.
sl@0
   921
*/
sl@0
   922
case OP_String: {          /* out2-prerelease */
sl@0
   923
  assert( pOp->p4.z!=0 );
sl@0
   924
  pOut->flags = MEM_Str|MEM_Static|MEM_Term;
sl@0
   925
  pOut->z = pOp->p4.z;
sl@0
   926
  pOut->n = pOp->p1;
sl@0
   927
  pOut->enc = encoding;
sl@0
   928
  UPDATE_MAX_BLOBSIZE(pOut);
sl@0
   929
  break;
sl@0
   930
}
sl@0
   931
sl@0
   932
/* Opcode: Null * P2 * * *
sl@0
   933
**
sl@0
   934
** Write a NULL into register P2.
sl@0
   935
*/
sl@0
   936
case OP_Null: {           /* out2-prerelease */
sl@0
   937
  break;
sl@0
   938
}
sl@0
   939
sl@0
   940
sl@0
   941
#ifndef SQLITE_OMIT_BLOB_LITERAL
sl@0
   942
/* Opcode: Blob P1 P2 * P4
sl@0
   943
**
sl@0
   944
** P4 points to a blob of data P1 bytes long.  Store this
sl@0
   945
** blob in register P2. This instruction is not coded directly
sl@0
   946
** by the compiler. Instead, the compiler layer specifies
sl@0
   947
** an OP_HexBlob opcode, with the hex string representation of
sl@0
   948
** the blob as P4. This opcode is transformed to an OP_Blob
sl@0
   949
** the first time it is executed.
sl@0
   950
*/
sl@0
   951
case OP_Blob: {                /* out2-prerelease */
sl@0
   952
  assert( pOp->p1 <= SQLITE_MAX_LENGTH );
sl@0
   953
  sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0);
sl@0
   954
  pOut->enc = encoding;
sl@0
   955
  UPDATE_MAX_BLOBSIZE(pOut);
sl@0
   956
  break;
sl@0
   957
}
sl@0
   958
#endif /* SQLITE_OMIT_BLOB_LITERAL */
sl@0
   959
sl@0
   960
/* Opcode: Variable P1 P2 * * *
sl@0
   961
**
sl@0
   962
** The value of variable P1 is written into register P2. A variable is
sl@0
   963
** an unknown in the original SQL string as handed to sqlite3_compile().
sl@0
   964
** Any occurrence of the '?' character in the original SQL is considered
sl@0
   965
** a variable.  Variables in the SQL string are number from left to
sl@0
   966
** right beginning with 1.  The values of variables are set using the
sl@0
   967
** sqlite3_bind() API.
sl@0
   968
*/
sl@0
   969
case OP_Variable: {           /* out2-prerelease */
sl@0
   970
  int j = pOp->p1 - 1;
sl@0
   971
  Mem *pVar;
sl@0
   972
  assert( j>=0 && j<p->nVar );
sl@0
   973
sl@0
   974
  pVar = &p->aVar[j];
sl@0
   975
  if( sqlite3VdbeMemTooBig(pVar) ){
sl@0
   976
    goto too_big;
sl@0
   977
  }
sl@0
   978
  sqlite3VdbeMemShallowCopy(pOut, &p->aVar[j], MEM_Static);
sl@0
   979
  UPDATE_MAX_BLOBSIZE(pOut);
sl@0
   980
  break;
sl@0
   981
}
sl@0
   982
sl@0
   983
/* Opcode: Move P1 P2 P3 * *
sl@0
   984
**
sl@0
   985
** Move the values in register P1..P1+P3-1 over into
sl@0
   986
** registers P2..P2+P3-1.  Registers P1..P1+P1-1 are
sl@0
   987
** left holding a NULL.  It is an error for register ranges
sl@0
   988
** P1..P1+P3-1 and P2..P2+P3-1 to overlap.
sl@0
   989
*/
sl@0
   990
case OP_Move: {
sl@0
   991
  char *zMalloc;
sl@0
   992
  int n = pOp->p3;
sl@0
   993
  int p1 = pOp->p1;
sl@0
   994
  int p2 = pOp->p2;
sl@0
   995
  assert( n>0 );
sl@0
   996
  assert( p1>0 );
sl@0
   997
  assert( p1+n<p->nMem );
sl@0
   998
  pIn1 = &p->aMem[p1];
sl@0
   999
  assert( p2>0 );
sl@0
  1000
  assert( p2+n<p->nMem );
sl@0
  1001
  pOut = &p->aMem[p2];
sl@0
  1002
  assert( p1+n<=p2 || p2+n<=p1 );
sl@0
  1003
  while( n-- ){
sl@0
  1004
    zMalloc = pOut->zMalloc;
sl@0
  1005
    pOut->zMalloc = 0;
sl@0
  1006
    sqlite3VdbeMemMove(pOut, pIn1);
sl@0
  1007
    pIn1->zMalloc = zMalloc;
sl@0
  1008
    REGISTER_TRACE(p2++, pOut);
sl@0
  1009
    pIn1++;
sl@0
  1010
    pOut++;
sl@0
  1011
  }
sl@0
  1012
  break;
sl@0
  1013
}
sl@0
  1014
sl@0
  1015
/* Opcode: Copy P1 P2 * * *
sl@0
  1016
**
sl@0
  1017
** Make a copy of register P1 into register P2.
sl@0
  1018
**
sl@0
  1019
** This instruction makes a deep copy of the value.  A duplicate
sl@0
  1020
** is made of any string or blob constant.  See also OP_SCopy.
sl@0
  1021
*/
sl@0
  1022
case OP_Copy: {
sl@0
  1023
  assert( pOp->p1>0 );
sl@0
  1024
  assert( pOp->p1<=p->nMem );
sl@0
  1025
  pIn1 = &p->aMem[pOp->p1];
sl@0
  1026
  assert( pOp->p2>0 );
sl@0
  1027
  assert( pOp->p2<=p->nMem );
sl@0
  1028
  pOut = &p->aMem[pOp->p2];
sl@0
  1029
  assert( pOut!=pIn1 );
sl@0
  1030
  sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
sl@0
  1031
  Deephemeralize(pOut);
sl@0
  1032
  REGISTER_TRACE(pOp->p2, pOut);
sl@0
  1033
  break;
sl@0
  1034
}
sl@0
  1035
sl@0
  1036
/* Opcode: SCopy P1 P2 * * *
sl@0
  1037
**
sl@0
  1038
** Make a shallow copy of register P1 into register P2.
sl@0
  1039
**
sl@0
  1040
** This instruction makes a shallow copy of the value.  If the value
sl@0
  1041
** is a string or blob, then the copy is only a pointer to the
sl@0
  1042
** original and hence if the original changes so will the copy.
sl@0
  1043
** Worse, if the original is deallocated, the copy becomes invalid.
sl@0
  1044
** Thus the program must guarantee that the original will not change
sl@0
  1045
** during the lifetime of the copy.  Use OP_Copy to make a complete
sl@0
  1046
** copy.
sl@0
  1047
*/
sl@0
  1048
case OP_SCopy: {
sl@0
  1049
  assert( pOp->p1>0 );
sl@0
  1050
  assert( pOp->p1<=p->nMem );
sl@0
  1051
  pIn1 = &p->aMem[pOp->p1];
sl@0
  1052
  REGISTER_TRACE(pOp->p1, pIn1);
sl@0
  1053
  assert( pOp->p2>0 );
sl@0
  1054
  assert( pOp->p2<=p->nMem );
sl@0
  1055
  pOut = &p->aMem[pOp->p2];
sl@0
  1056
  assert( pOut!=pIn1 );
sl@0
  1057
  sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
sl@0
  1058
  REGISTER_TRACE(pOp->p2, pOut);
sl@0
  1059
  break;
sl@0
  1060
}
sl@0
  1061
sl@0
  1062
/* Opcode: ResultRow P1 P2 * * *
sl@0
  1063
**
sl@0
  1064
** The registers P1 through P1+P2-1 contain a single row of
sl@0
  1065
** results. This opcode causes the sqlite3_step() call to terminate
sl@0
  1066
** with an SQLITE_ROW return code and it sets up the sqlite3_stmt
sl@0
  1067
** structure to provide access to the top P1 values as the result
sl@0
  1068
** row.
sl@0
  1069
*/
sl@0
  1070
case OP_ResultRow: {
sl@0
  1071
  Mem *pMem;
sl@0
  1072
  int i;
sl@0
  1073
  assert( p->nResColumn==pOp->p2 );
sl@0
  1074
  assert( pOp->p1>0 );
sl@0
  1075
  assert( pOp->p1+pOp->p2<=p->nMem );
sl@0
  1076
sl@0
  1077
  /* Invalidate all ephemeral cursor row caches */
sl@0
  1078
  p->cacheCtr = (p->cacheCtr + 2)|1;
sl@0
  1079
sl@0
  1080
  /* Make sure the results of the current row are \000 terminated
sl@0
  1081
  ** and have an assigned type.  The results are de-ephemeralized as
sl@0
  1082
  ** as side effect.
sl@0
  1083
  */
sl@0
  1084
  pMem = p->pResultSet = &p->aMem[pOp->p1];
sl@0
  1085
  for(i=0; i<pOp->p2; i++){
sl@0
  1086
    sqlite3VdbeMemNulTerminate(&pMem[i]);
sl@0
  1087
    storeTypeInfo(&pMem[i], encoding);
sl@0
  1088
    REGISTER_TRACE(pOp->p1+i, &pMem[i]);
sl@0
  1089
  }
sl@0
  1090
  if( db->mallocFailed ) goto no_mem;
sl@0
  1091
sl@0
  1092
  /* Return SQLITE_ROW
sl@0
  1093
  */
sl@0
  1094
  p->nCallback++;
sl@0
  1095
  p->pc = pc + 1;
sl@0
  1096
  rc = SQLITE_ROW;
sl@0
  1097
  goto vdbe_return;
sl@0
  1098
}
sl@0
  1099
sl@0
  1100
/* Opcode: Concat P1 P2 P3 * *
sl@0
  1101
**
sl@0
  1102
** Add the text in register P1 onto the end of the text in
sl@0
  1103
** register P2 and store the result in register P3.
sl@0
  1104
** If either the P1 or P2 text are NULL then store NULL in P3.
sl@0
  1105
**
sl@0
  1106
**   P3 = P2 || P1
sl@0
  1107
**
sl@0
  1108
** It is illegal for P1 and P3 to be the same register. Sometimes,
sl@0
  1109
** if P3 is the same register as P2, the implementation is able
sl@0
  1110
** to avoid a memcpy().
sl@0
  1111
*/
sl@0
  1112
case OP_Concat: {           /* same as TK_CONCAT, in1, in2, out3 */
sl@0
  1113
  i64 nByte;
sl@0
  1114
sl@0
  1115
  assert( pIn1!=pOut );
sl@0
  1116
  if( (pIn1->flags | pIn2->flags) & MEM_Null ){
sl@0
  1117
    sqlite3VdbeMemSetNull(pOut);
sl@0
  1118
    break;
sl@0
  1119
  }
sl@0
  1120
  ExpandBlob(pIn1);
sl@0
  1121
  Stringify(pIn1, encoding);
sl@0
  1122
  ExpandBlob(pIn2);
sl@0
  1123
  Stringify(pIn2, encoding);
sl@0
  1124
  nByte = pIn1->n + pIn2->n;
sl@0
  1125
  if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
sl@0
  1126
    goto too_big;
sl@0
  1127
  }
sl@0
  1128
  MemSetTypeFlag(pOut, MEM_Str);
sl@0
  1129
  if( sqlite3VdbeMemGrow(pOut, nByte+2, pOut==pIn2) ){
sl@0
  1130
    goto no_mem;
sl@0
  1131
  }
sl@0
  1132
  if( pOut!=pIn2 ){
sl@0
  1133
    memcpy(pOut->z, pIn2->z, pIn2->n);
sl@0
  1134
  }
sl@0
  1135
  memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n);
sl@0
  1136
  pOut->z[nByte] = 0;
sl@0
  1137
  pOut->z[nByte+1] = 0;
sl@0
  1138
  pOut->flags |= MEM_Term;
sl@0
  1139
  pOut->n = nByte;
sl@0
  1140
  pOut->enc = encoding;
sl@0
  1141
  UPDATE_MAX_BLOBSIZE(pOut);
sl@0
  1142
  break;
sl@0
  1143
}
sl@0
  1144
sl@0
  1145
/* Opcode: Add P1 P2 P3 * *
sl@0
  1146
**
sl@0
  1147
** Add the value in register P1 to the value in register P2
sl@0
  1148
** and store the result in register P3.
sl@0
  1149
** If either input is NULL, the result is NULL.
sl@0
  1150
*/
sl@0
  1151
/* Opcode: Multiply P1 P2 P3 * *
sl@0
  1152
**
sl@0
  1153
**
sl@0
  1154
** Multiply the value in register P1 by the value in register P2
sl@0
  1155
** and store the result in register P3.
sl@0
  1156
** If either input is NULL, the result is NULL.
sl@0
  1157
*/
sl@0
  1158
/* Opcode: Subtract P1 P2 P3 * *
sl@0
  1159
**
sl@0
  1160
** Subtract the value in register P1 from the value in register P2
sl@0
  1161
** and store the result in register P3.
sl@0
  1162
** If either input is NULL, the result is NULL.
sl@0
  1163
*/
sl@0
  1164
/* Opcode: Divide P1 P2 P3 * *
sl@0
  1165
**
sl@0
  1166
** Divide the value in register P1 by the value in register P2
sl@0
  1167
** and store the result in register P3.  If the value in register P2
sl@0
  1168
** is zero, then the result is NULL.
sl@0
  1169
** If either input is NULL, the result is NULL.
sl@0
  1170
*/
sl@0
  1171
/* Opcode: Remainder P1 P2 P3 * *
sl@0
  1172
**
sl@0
  1173
** Compute the remainder after integer division of the value in
sl@0
  1174
** register P1 by the value in register P2 and store the result in P3. 
sl@0
  1175
** If the value in register P2 is zero the result is NULL.
sl@0
  1176
** If either operand is NULL, the result is NULL.
sl@0
  1177
*/
sl@0
  1178
case OP_Add:                   /* same as TK_PLUS, in1, in2, out3 */
sl@0
  1179
case OP_Subtract:              /* same as TK_MINUS, in1, in2, out3 */
sl@0
  1180
case OP_Multiply:              /* same as TK_STAR, in1, in2, out3 */
sl@0
  1181
case OP_Divide:                /* same as TK_SLASH, in1, in2, out3 */
sl@0
  1182
case OP_Remainder: {           /* same as TK_REM, in1, in2, out3 */
sl@0
  1183
  int flags;
sl@0
  1184
  applyNumericAffinity(pIn1);
sl@0
  1185
  applyNumericAffinity(pIn2);
sl@0
  1186
  flags = pIn1->flags | pIn2->flags;
sl@0
  1187
  if( (flags & MEM_Null)!=0 ) goto arithmetic_result_is_null;
sl@0
  1188
  if( (pIn1->flags & pIn2->flags & MEM_Int)==MEM_Int ){
sl@0
  1189
    i64 a, b;
sl@0
  1190
    a = pIn1->u.i;
sl@0
  1191
    b = pIn2->u.i;
sl@0
  1192
    switch( pOp->opcode ){
sl@0
  1193
      case OP_Add:         b += a;       break;
sl@0
  1194
      case OP_Subtract:    b -= a;       break;
sl@0
  1195
      case OP_Multiply:    b *= a;       break;
sl@0
  1196
      case OP_Divide: {
sl@0
  1197
        if( a==0 ) goto arithmetic_result_is_null;
sl@0
  1198
        /* Dividing the largest possible negative 64-bit integer (1<<63) by 
sl@0
  1199
        ** -1 returns an integer too large to store in a 64-bit data-type. On
sl@0
  1200
        ** some architectures, the value overflows to (1<<63). On others,
sl@0
  1201
        ** a SIGFPE is issued. The following statement normalizes this
sl@0
  1202
        ** behavior so that all architectures behave as if integer 
sl@0
  1203
        ** overflow occurred.
sl@0
  1204
        */
sl@0
  1205
        if( a==-1 && b==SMALLEST_INT64 ) a = 1;
sl@0
  1206
        b /= a;
sl@0
  1207
        break;
sl@0
  1208
      }
sl@0
  1209
      default: {
sl@0
  1210
        if( a==0 ) goto arithmetic_result_is_null;
sl@0
  1211
        if( a==-1 ) a = 1;
sl@0
  1212
        b %= a;
sl@0
  1213
        break;
sl@0
  1214
      }
sl@0
  1215
    }
sl@0
  1216
    pOut->u.i = b;
sl@0
  1217
    MemSetTypeFlag(pOut, MEM_Int);
sl@0
  1218
  }else{
sl@0
  1219
    double a, b;
sl@0
  1220
    a = sqlite3VdbeRealValue(pIn1);
sl@0
  1221
    b = sqlite3VdbeRealValue(pIn2);
sl@0
  1222
    switch( pOp->opcode ){
sl@0
  1223
      case OP_Add:         b += a;       break;
sl@0
  1224
      case OP_Subtract:    b -= a;       break;
sl@0
  1225
      case OP_Multiply:    b *= a;       break;
sl@0
  1226
      case OP_Divide: {
sl@0
  1227
        if( a==0.0 ) goto arithmetic_result_is_null;
sl@0
  1228
        b /= a;
sl@0
  1229
        break;
sl@0
  1230
      }
sl@0
  1231
      default: {
sl@0
  1232
        i64 ia = (i64)a;
sl@0
  1233
        i64 ib = (i64)b;
sl@0
  1234
        if( ia==0 ) goto arithmetic_result_is_null;
sl@0
  1235
        if( ia==-1 ) ia = 1;
sl@0
  1236
        b = ib % ia;
sl@0
  1237
        break;
sl@0
  1238
      }
sl@0
  1239
    }
sl@0
  1240
    if( sqlite3IsNaN(b) ){
sl@0
  1241
      goto arithmetic_result_is_null;
sl@0
  1242
    }
sl@0
  1243
    pOut->r = b;
sl@0
  1244
    MemSetTypeFlag(pOut, MEM_Real);
sl@0
  1245
    if( (flags & MEM_Real)==0 ){
sl@0
  1246
      sqlite3VdbeIntegerAffinity(pOut);
sl@0
  1247
    }
sl@0
  1248
  }
sl@0
  1249
  break;
sl@0
  1250
sl@0
  1251
arithmetic_result_is_null:
sl@0
  1252
  sqlite3VdbeMemSetNull(pOut);
sl@0
  1253
  break;
sl@0
  1254
}
sl@0
  1255
sl@0
  1256
/* Opcode: CollSeq * * P4
sl@0
  1257
**
sl@0
  1258
** P4 is a pointer to a CollSeq struct. If the next call to a user function
sl@0
  1259
** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will
sl@0
  1260
** be returned. This is used by the built-in min(), max() and nullif()
sl@0
  1261
** functions.
sl@0
  1262
**
sl@0
  1263
** The interface used by the implementation of the aforementioned functions
sl@0
  1264
** to retrieve the collation sequence set by this opcode is not available
sl@0
  1265
** publicly, only to user functions defined in func.c.
sl@0
  1266
*/
sl@0
  1267
case OP_CollSeq: {
sl@0
  1268
  assert( pOp->p4type==P4_COLLSEQ );
sl@0
  1269
  break;
sl@0
  1270
}
sl@0
  1271
sl@0
  1272
/* Opcode: Function P1 P2 P3 P4 P5
sl@0
  1273
**
sl@0
  1274
** Invoke a user function (P4 is a pointer to a Function structure that
sl@0
  1275
** defines the function) with P5 arguments taken from register P2 and
sl@0
  1276
** successors.  The result of the function is stored in register P3.
sl@0
  1277
** Register P3 must not be one of the function inputs.
sl@0
  1278
**
sl@0
  1279
** P1 is a 32-bit bitmask indicating whether or not each argument to the 
sl@0
  1280
** function was determined to be constant at compile time. If the first
sl@0
  1281
** argument was constant then bit 0 of P1 is set. This is used to determine
sl@0
  1282
** whether meta data associated with a user function argument using the
sl@0
  1283
** sqlite3_set_auxdata() API may be safely retained until the next
sl@0
  1284
** invocation of this opcode.
sl@0
  1285
**
sl@0
  1286
** See also: AggStep and AggFinal
sl@0
  1287
*/
sl@0
  1288
case OP_Function: {
sl@0
  1289
  int i;
sl@0
  1290
  Mem *pArg;
sl@0
  1291
  sqlite3_context ctx;
sl@0
  1292
  sqlite3_value **apVal;
sl@0
  1293
  int n = pOp->p5;
sl@0
  1294
sl@0
  1295
  apVal = p->apArg;
sl@0
  1296
  assert( apVal || n==0 );
sl@0
  1297
sl@0
  1298
  assert( n==0 || (pOp->p2>0 && pOp->p2+n<=p->nMem) );
sl@0
  1299
  assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n );
sl@0
  1300
  pArg = &p->aMem[pOp->p2];
sl@0
  1301
  for(i=0; i<n; i++, pArg++){
sl@0
  1302
    apVal[i] = pArg;
sl@0
  1303
    storeTypeInfo(pArg, encoding);
sl@0
  1304
    REGISTER_TRACE(pOp->p2, pArg);
sl@0
  1305
  }
sl@0
  1306
sl@0
  1307
  assert( pOp->p4type==P4_FUNCDEF || pOp->p4type==P4_VDBEFUNC );
sl@0
  1308
  if( pOp->p4type==P4_FUNCDEF ){
sl@0
  1309
    ctx.pFunc = pOp->p4.pFunc;
sl@0
  1310
    ctx.pVdbeFunc = 0;
sl@0
  1311
  }else{
sl@0
  1312
    ctx.pVdbeFunc = (VdbeFunc*)pOp->p4.pVdbeFunc;
sl@0
  1313
    ctx.pFunc = ctx.pVdbeFunc->pFunc;
sl@0
  1314
  }
sl@0
  1315
sl@0
  1316
  assert( pOp->p3>0 && pOp->p3<=p->nMem );
sl@0
  1317
  pOut = &p->aMem[pOp->p3];
sl@0
  1318
  ctx.s.flags = MEM_Null;
sl@0
  1319
  ctx.s.db = db;
sl@0
  1320
  ctx.s.xDel = 0;
sl@0
  1321
  ctx.s.zMalloc = 0;
sl@0
  1322
sl@0
  1323
  /* The output cell may already have a buffer allocated. Move
sl@0
  1324
  ** the pointer to ctx.s so in case the user-function can use
sl@0
  1325
  ** the already allocated buffer instead of allocating a new one.
sl@0
  1326
  */
sl@0
  1327
  sqlite3VdbeMemMove(&ctx.s, pOut);
sl@0
  1328
  MemSetTypeFlag(&ctx.s, MEM_Null);
sl@0
  1329
sl@0
  1330
  ctx.isError = 0;
sl@0
  1331
  if( ctx.pFunc->needCollSeq ){
sl@0
  1332
    assert( pOp>p->aOp );
sl@0
  1333
    assert( pOp[-1].p4type==P4_COLLSEQ );
sl@0
  1334
    assert( pOp[-1].opcode==OP_CollSeq );
sl@0
  1335
    ctx.pColl = pOp[-1].p4.pColl;
sl@0
  1336
  }
sl@0
  1337
  if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
sl@0
  1338
  (*ctx.pFunc->xFunc)(&ctx, n, apVal);
sl@0
  1339
  if( sqlite3SafetyOn(db) ){
sl@0
  1340
    sqlite3VdbeMemRelease(&ctx.s);
sl@0
  1341
    goto abort_due_to_misuse;
sl@0
  1342
  }
sl@0
  1343
  if( db->mallocFailed ){
sl@0
  1344
    /* Even though a malloc() has failed, the implementation of the
sl@0
  1345
    ** user function may have called an sqlite3_result_XXX() function
sl@0
  1346
    ** to return a value. The following call releases any resources
sl@0
  1347
    ** associated with such a value.
sl@0
  1348
    **
sl@0
  1349
    ** Note: Maybe MemRelease() should be called if sqlite3SafetyOn()
sl@0
  1350
    ** fails also (the if(...) statement above). But if people are
sl@0
  1351
    ** misusing sqlite, they have bigger problems than a leaked value.
sl@0
  1352
    */
sl@0
  1353
    sqlite3VdbeMemRelease(&ctx.s);
sl@0
  1354
    goto no_mem;
sl@0
  1355
  }
sl@0
  1356
sl@0
  1357
  /* If any auxiliary data functions have been called by this user function,
sl@0
  1358
  ** immediately call the destructor for any non-static values.
sl@0
  1359
  */
sl@0
  1360
  if( ctx.pVdbeFunc ){
sl@0
  1361
    sqlite3VdbeDeleteAuxData(ctx.pVdbeFunc, pOp->p1);
sl@0
  1362
    pOp->p4.pVdbeFunc = ctx.pVdbeFunc;
sl@0
  1363
    pOp->p4type = P4_VDBEFUNC;
sl@0
  1364
  }
sl@0
  1365
sl@0
  1366
  /* If the function returned an error, throw an exception */
sl@0
  1367
  if( ctx.isError ){
sl@0
  1368
    sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(&ctx.s));
sl@0
  1369
    rc = ctx.isError;
sl@0
  1370
  }
sl@0
  1371
sl@0
  1372
  /* Copy the result of the function into register P3 */
sl@0
  1373
  sqlite3VdbeChangeEncoding(&ctx.s, encoding);
sl@0
  1374
  sqlite3VdbeMemMove(pOut, &ctx.s);
sl@0
  1375
  if( sqlite3VdbeMemTooBig(pOut) ){
sl@0
  1376
    goto too_big;
sl@0
  1377
  }
sl@0
  1378
  REGISTER_TRACE(pOp->p3, pOut);
sl@0
  1379
  UPDATE_MAX_BLOBSIZE(pOut);
sl@0
  1380
  break;
sl@0
  1381
}
sl@0
  1382
sl@0
  1383
/* Opcode: BitAnd P1 P2 P3 * *
sl@0
  1384
**
sl@0
  1385
** Take the bit-wise AND of the values in register P1 and P2 and
sl@0
  1386
** store the result in register P3.
sl@0
  1387
** If either input is NULL, the result is NULL.
sl@0
  1388
*/
sl@0
  1389
/* Opcode: BitOr P1 P2 P3 * *
sl@0
  1390
**
sl@0
  1391
** Take the bit-wise OR of the values in register P1 and P2 and
sl@0
  1392
** store the result in register P3.
sl@0
  1393
** If either input is NULL, the result is NULL.
sl@0
  1394
*/
sl@0
  1395
/* Opcode: ShiftLeft P1 P2 P3 * *
sl@0
  1396
**
sl@0
  1397
** Shift the integer value in register P2 to the left by the
sl@0
  1398
** number of bits specified by the integer in regiser P1.
sl@0
  1399
** Store the result in register P3.
sl@0
  1400
** If either input is NULL, the result is NULL.
sl@0
  1401
*/
sl@0
  1402
/* Opcode: ShiftRight P1 P2 P3 * *
sl@0
  1403
**
sl@0
  1404
** Shift the integer value in register P2 to the right by the
sl@0
  1405
** number of bits specified by the integer in register P1.
sl@0
  1406
** Store the result in register P3.
sl@0
  1407
** If either input is NULL, the result is NULL.
sl@0
  1408
*/
sl@0
  1409
case OP_BitAnd:                 /* same as TK_BITAND, in1, in2, out3 */
sl@0
  1410
case OP_BitOr:                  /* same as TK_BITOR, in1, in2, out3 */
sl@0
  1411
case OP_ShiftLeft:              /* same as TK_LSHIFT, in1, in2, out3 */
sl@0
  1412
case OP_ShiftRight: {           /* same as TK_RSHIFT, in1, in2, out3 */
sl@0
  1413
  i64 a, b;
sl@0
  1414
sl@0
  1415
  if( (pIn1->flags | pIn2->flags) & MEM_Null ){
sl@0
  1416
    sqlite3VdbeMemSetNull(pOut);
sl@0
  1417
    break;
sl@0
  1418
  }
sl@0
  1419
  a = sqlite3VdbeIntValue(pIn2);
sl@0
  1420
  b = sqlite3VdbeIntValue(pIn1);
sl@0
  1421
  switch( pOp->opcode ){
sl@0
  1422
    case OP_BitAnd:      a &= b;     break;
sl@0
  1423
    case OP_BitOr:       a |= b;     break;
sl@0
  1424
    case OP_ShiftLeft:   a <<= b;    break;
sl@0
  1425
    default:  assert( pOp->opcode==OP_ShiftRight );
sl@0
  1426
                         a >>= b;    break;
sl@0
  1427
  }
sl@0
  1428
  pOut->u.i = a;
sl@0
  1429
  MemSetTypeFlag(pOut, MEM_Int);
sl@0
  1430
  break;
sl@0
  1431
}
sl@0
  1432
sl@0
  1433
/* Opcode: AddImm  P1 P2 * * *
sl@0
  1434
** 
sl@0
  1435
** Add the constant P2 to the value in register P1.
sl@0
  1436
** The result is always an integer.
sl@0
  1437
**
sl@0
  1438
** To force any register to be an integer, just add 0.
sl@0
  1439
*/
sl@0
  1440
case OP_AddImm: {            /* in1 */
sl@0
  1441
  sqlite3VdbeMemIntegerify(pIn1);
sl@0
  1442
  pIn1->u.i += pOp->p2;
sl@0
  1443
  break;
sl@0
  1444
}
sl@0
  1445
sl@0
  1446
/* Opcode: ForceInt P1 P2 P3 * *
sl@0
  1447
**
sl@0
  1448
** Convert value in register P1 into an integer.  If the value 
sl@0
  1449
** in P1 is not numeric (meaning that is is a NULL or a string that
sl@0
  1450
** does not look like an integer or floating point number) then
sl@0
  1451
** jump to P2.  If the value in P1 is numeric then
sl@0
  1452
** convert it into the least integer that is greater than or equal to its
sl@0
  1453
** current value if P3==0, or to the least integer that is strictly
sl@0
  1454
** greater than its current value if P3==1.
sl@0
  1455
*/
sl@0
  1456
case OP_ForceInt: {            /* jump, in1 */
sl@0
  1457
  i64 v;
sl@0
  1458
  applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding);
sl@0
  1459
  if( (pIn1->flags & (MEM_Int|MEM_Real))==0 ){
sl@0
  1460
    pc = pOp->p2 - 1;
sl@0
  1461
    break;
sl@0
  1462
  }
sl@0
  1463
  if( pIn1->flags & MEM_Int ){
sl@0
  1464
    v = pIn1->u.i + (pOp->p3!=0);
sl@0
  1465
  }else{
sl@0
  1466
    assert( pIn1->flags & MEM_Real );
sl@0
  1467
    v = (sqlite3_int64)pIn1->r;
sl@0
  1468
    if( pIn1->r>(double)v ) v++;
sl@0
  1469
    if( pOp->p3 && pIn1->r==(double)v ) v++;
sl@0
  1470
  }
sl@0
  1471
  pIn1->u.i = v;
sl@0
  1472
  MemSetTypeFlag(pIn1, MEM_Int);
sl@0
  1473
  break;
sl@0
  1474
}
sl@0
  1475
sl@0
  1476
/* Opcode: MustBeInt P1 P2 * * *
sl@0
  1477
** 
sl@0
  1478
** Force the value in register P1 to be an integer.  If the value
sl@0
  1479
** in P1 is not an integer and cannot be converted into an integer
sl@0
  1480
** without data loss, then jump immediately to P2, or if P2==0
sl@0
  1481
** raise an SQLITE_MISMATCH exception.
sl@0
  1482
*/
sl@0
  1483
case OP_MustBeInt: {            /* jump, in1 */
sl@0
  1484
  applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding);
sl@0
  1485
  if( (pIn1->flags & MEM_Int)==0 ){
sl@0
  1486
    if( pOp->p2==0 ){
sl@0
  1487
      rc = SQLITE_MISMATCH;
sl@0
  1488
      goto abort_due_to_error;
sl@0
  1489
    }else{
sl@0
  1490
      pc = pOp->p2 - 1;
sl@0
  1491
    }
sl@0
  1492
  }else{
sl@0
  1493
    MemSetTypeFlag(pIn1, MEM_Int);
sl@0
  1494
  }
sl@0
  1495
  break;
sl@0
  1496
}
sl@0
  1497
sl@0
  1498
/* Opcode: RealAffinity P1 * * * *
sl@0
  1499
**
sl@0
  1500
** If register P1 holds an integer convert it to a real value.
sl@0
  1501
**
sl@0
  1502
** This opcode is used when extracting information from a column that
sl@0
  1503
** has REAL affinity.  Such column values may still be stored as
sl@0
  1504
** integers, for space efficiency, but after extraction we want them
sl@0
  1505
** to have only a real value.
sl@0
  1506
*/
sl@0
  1507
case OP_RealAffinity: {                  /* in1 */
sl@0
  1508
  if( pIn1->flags & MEM_Int ){
sl@0
  1509
    sqlite3VdbeMemRealify(pIn1);
sl@0
  1510
  }
sl@0
  1511
  break;
sl@0
  1512
}
sl@0
  1513
sl@0
  1514
#ifndef SQLITE_OMIT_CAST
sl@0
  1515
/* Opcode: ToText P1 * * * *
sl@0
  1516
**
sl@0
  1517
** Force the value in register P1 to be text.
sl@0
  1518
** If the value is numeric, convert it to a string using the
sl@0
  1519
** equivalent of printf().  Blob values are unchanged and
sl@0
  1520
** are afterwards simply interpreted as text.
sl@0
  1521
**
sl@0
  1522
** A NULL value is not changed by this routine.  It remains NULL.
sl@0
  1523
*/
sl@0
  1524
case OP_ToText: {                  /* same as TK_TO_TEXT, in1 */
sl@0
  1525
  if( pIn1->flags & MEM_Null ) break;
sl@0
  1526
  assert( MEM_Str==(MEM_Blob>>3) );
sl@0
  1527
  pIn1->flags |= (pIn1->flags&MEM_Blob)>>3;
sl@0
  1528
  applyAffinity(pIn1, SQLITE_AFF_TEXT, encoding);
sl@0
  1529
  rc = ExpandBlob(pIn1);
sl@0
  1530
  assert( pIn1->flags & MEM_Str || db->mallocFailed );
sl@0
  1531
  pIn1->flags &= ~(MEM_Int|MEM_Real|MEM_Blob);
sl@0
  1532
  UPDATE_MAX_BLOBSIZE(pIn1);
sl@0
  1533
  break;
sl@0
  1534
}
sl@0
  1535
sl@0
  1536
/* Opcode: ToBlob P1 * * * *
sl@0
  1537
**
sl@0
  1538
** Force the value in register P1 to be a BLOB.
sl@0
  1539
** If the value is numeric, convert it to a string first.
sl@0
  1540
** Strings are simply reinterpreted as blobs with no change
sl@0
  1541
** to the underlying data.
sl@0
  1542
**
sl@0
  1543
** A NULL value is not changed by this routine.  It remains NULL.
sl@0
  1544
*/
sl@0
  1545
case OP_ToBlob: {                  /* same as TK_TO_BLOB, in1 */
sl@0
  1546
  if( pIn1->flags & MEM_Null ) break;
sl@0
  1547
  if( (pIn1->flags & MEM_Blob)==0 ){
sl@0
  1548
    applyAffinity(pIn1, SQLITE_AFF_TEXT, encoding);
sl@0
  1549
    assert( pIn1->flags & MEM_Str || db->mallocFailed );
sl@0
  1550
  }
sl@0
  1551
  MemSetTypeFlag(pIn1, MEM_Blob);
sl@0
  1552
  UPDATE_MAX_BLOBSIZE(pIn1);
sl@0
  1553
  break;
sl@0
  1554
}
sl@0
  1555
sl@0
  1556
/* Opcode: ToNumeric P1 * * * *
sl@0
  1557
**
sl@0
  1558
** Force the value in register P1 to be numeric (either an
sl@0
  1559
** integer or a floating-point number.)
sl@0
  1560
** If the value is text or blob, try to convert it to an using the
sl@0
  1561
** equivalent of atoi() or atof() and store 0 if no such conversion 
sl@0
  1562
** is possible.
sl@0
  1563
**
sl@0
  1564
** A NULL value is not changed by this routine.  It remains NULL.
sl@0
  1565
*/
sl@0
  1566
case OP_ToNumeric: {                  /* same as TK_TO_NUMERIC, in1 */
sl@0
  1567
  if( (pIn1->flags & (MEM_Null|MEM_Int|MEM_Real))==0 ){
sl@0
  1568
    sqlite3VdbeMemNumerify(pIn1);
sl@0
  1569
  }
sl@0
  1570
  break;
sl@0
  1571
}
sl@0
  1572
#endif /* SQLITE_OMIT_CAST */
sl@0
  1573
sl@0
  1574
/* Opcode: ToInt P1 * * * *
sl@0
  1575
**
sl@0
  1576
** Force the value in register P1 be an integer.  If
sl@0
  1577
** The value is currently a real number, drop its fractional part.
sl@0
  1578
** If the value is text or blob, try to convert it to an integer using the
sl@0
  1579
** equivalent of atoi() and store 0 if no such conversion is possible.
sl@0
  1580
**
sl@0
  1581
** A NULL value is not changed by this routine.  It remains NULL.
sl@0
  1582
*/
sl@0
  1583
case OP_ToInt: {                  /* same as TK_TO_INT, in1 */
sl@0
  1584
  if( (pIn1->flags & MEM_Null)==0 ){
sl@0
  1585
    sqlite3VdbeMemIntegerify(pIn1);
sl@0
  1586
  }
sl@0
  1587
  break;
sl@0
  1588
}
sl@0
  1589
sl@0
  1590
#ifndef SQLITE_OMIT_CAST
sl@0
  1591
/* Opcode: ToReal P1 * * * *
sl@0
  1592
**
sl@0
  1593
** Force the value in register P1 to be a floating point number.
sl@0
  1594
** If The value is currently an integer, convert it.
sl@0
  1595
** If the value is text or blob, try to convert it to an integer using the
sl@0
  1596
** equivalent of atoi() and store 0.0 if no such conversion is possible.
sl@0
  1597
**
sl@0
  1598
** A NULL value is not changed by this routine.  It remains NULL.
sl@0
  1599
*/
sl@0
  1600
case OP_ToReal: {                  /* same as TK_TO_REAL, in1 */
sl@0
  1601
  if( (pIn1->flags & MEM_Null)==0 ){
sl@0
  1602
    sqlite3VdbeMemRealify(pIn1);
sl@0
  1603
  }
sl@0
  1604
  break;
sl@0
  1605
}
sl@0
  1606
#endif /* SQLITE_OMIT_CAST */
sl@0
  1607
sl@0
  1608
/* Opcode: Lt P1 P2 P3 P4 P5
sl@0
  1609
**
sl@0
  1610
** Compare the values in register P1 and P3.  If reg(P3)<reg(P1) then
sl@0
  1611
** jump to address P2.  
sl@0
  1612
**
sl@0
  1613
** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or
sl@0
  1614
** reg(P3) is NULL then take the jump.  If the SQLITE_JUMPIFNULL 
sl@0
  1615
** bit is clear then fall thru if either operand is NULL.
sl@0
  1616
**
sl@0
  1617
** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
sl@0
  1618
** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made 
sl@0
  1619
** to coerce both inputs according to this affinity before the
sl@0
  1620
** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
sl@0
  1621
** affinity is used. Note that the affinity conversions are stored
sl@0
  1622
** back into the input registers P1 and P3.  So this opcode can cause
sl@0
  1623
** persistent changes to registers P1 and P3.
sl@0
  1624
**
sl@0
  1625
** Once any conversions have taken place, and neither value is NULL, 
sl@0
  1626
** the values are compared. If both values are blobs then memcmp() is
sl@0
  1627
** used to determine the results of the comparison.  If both values
sl@0
  1628
** are text, then the appropriate collating function specified in
sl@0
  1629
** P4 is  used to do the comparison.  If P4 is not specified then
sl@0
  1630
** memcmp() is used to compare text string.  If both values are
sl@0
  1631
** numeric, then a numeric comparison is used. If the two values
sl@0
  1632
** are of different types, then numbers are considered less than
sl@0
  1633
** strings and strings are considered less than blobs.
sl@0
  1634
**
sl@0
  1635
** If the SQLITE_STOREP2 bit of P5 is set, then do not jump.  Instead,
sl@0
  1636
** store a boolean result (either 0, or 1, or NULL) in register P2.
sl@0
  1637
*/
sl@0
  1638
/* Opcode: Ne P1 P2 P3 P4 P5
sl@0
  1639
**
sl@0
  1640
** This works just like the Lt opcode except that the jump is taken if
sl@0
  1641
** the operands in registers P1 and P3 are not equal.  See the Lt opcode for
sl@0
  1642
** additional information.
sl@0
  1643
*/
sl@0
  1644
/* Opcode: Eq P1 P2 P3 P4 P5
sl@0
  1645
**
sl@0
  1646
** This works just like the Lt opcode except that the jump is taken if
sl@0
  1647
** the operands in registers P1 and P3 are equal.
sl@0
  1648
** See the Lt opcode for additional information.
sl@0
  1649
*/
sl@0
  1650
/* Opcode: Le P1 P2 P3 P4 P5
sl@0
  1651
**
sl@0
  1652
** This works just like the Lt opcode except that the jump is taken if
sl@0
  1653
** the content of register P3 is less than or equal to the content of
sl@0
  1654
** register P1.  See the Lt opcode for additional information.
sl@0
  1655
*/
sl@0
  1656
/* Opcode: Gt P1 P2 P3 P4 P5
sl@0
  1657
**
sl@0
  1658
** This works just like the Lt opcode except that the jump is taken if
sl@0
  1659
** the content of register P3 is greater than the content of
sl@0
  1660
** register P1.  See the Lt opcode for additional information.
sl@0
  1661
*/
sl@0
  1662
/* Opcode: Ge P1 P2 P3 P4 P5
sl@0
  1663
**
sl@0
  1664
** This works just like the Lt opcode except that the jump is taken if
sl@0
  1665
** the content of register P3 is greater than or equal to the content of
sl@0
  1666
** register P1.  See the Lt opcode for additional information.
sl@0
  1667
*/
sl@0
  1668
case OP_Eq:               /* same as TK_EQ, jump, in1, in3 */
sl@0
  1669
case OP_Ne:               /* same as TK_NE, jump, in1, in3 */
sl@0
  1670
case OP_Lt:               /* same as TK_LT, jump, in1, in3 */
sl@0
  1671
case OP_Le:               /* same as TK_LE, jump, in1, in3 */
sl@0
  1672
case OP_Gt:               /* same as TK_GT, jump, in1, in3 */
sl@0
  1673
case OP_Ge: {             /* same as TK_GE, jump, in1, in3 */
sl@0
  1674
  int flags;
sl@0
  1675
  int res;
sl@0
  1676
  char affinity;
sl@0
  1677
sl@0
  1678
  flags = pIn1->flags|pIn3->flags;
sl@0
  1679
sl@0
  1680
  if( flags&MEM_Null ){
sl@0
  1681
    /* If either operand is NULL then the result is always NULL.
sl@0
  1682
    ** The jump is taken if the SQLITE_JUMPIFNULL bit is set.
sl@0
  1683
    */
sl@0
  1684
    if( pOp->p5 & SQLITE_STOREP2 ){
sl@0
  1685
      pOut = &p->aMem[pOp->p2];
sl@0
  1686
      MemSetTypeFlag(pOut, MEM_Null);
sl@0
  1687
      REGISTER_TRACE(pOp->p2, pOut);
sl@0
  1688
    }else if( pOp->p5 & SQLITE_JUMPIFNULL ){
sl@0
  1689
      pc = pOp->p2-1;
sl@0
  1690
    }
sl@0
  1691
    break;
sl@0
  1692
  }
sl@0
  1693
sl@0
  1694
  affinity = pOp->p5 & SQLITE_AFF_MASK;
sl@0
  1695
  if( affinity ){
sl@0
  1696
    applyAffinity(pIn1, affinity, encoding);
sl@0
  1697
    applyAffinity(pIn3, affinity, encoding);
sl@0
  1698
  }
sl@0
  1699
sl@0
  1700
  assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 );
sl@0
  1701
  ExpandBlob(pIn1);
sl@0
  1702
  ExpandBlob(pIn3);
sl@0
  1703
  res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl);
sl@0
  1704
  switch( pOp->opcode ){
sl@0
  1705
    case OP_Eq:    res = res==0;     break;
sl@0
  1706
    case OP_Ne:    res = res!=0;     break;
sl@0
  1707
    case OP_Lt:    res = res<0;      break;
sl@0
  1708
    case OP_Le:    res = res<=0;     break;
sl@0
  1709
    case OP_Gt:    res = res>0;      break;
sl@0
  1710
    default:       res = res>=0;     break;
sl@0
  1711
  }
sl@0
  1712
sl@0
  1713
  if( pOp->p5 & SQLITE_STOREP2 ){
sl@0
  1714
    pOut = &p->aMem[pOp->p2];
sl@0
  1715
    MemSetTypeFlag(pOut, MEM_Int);
sl@0
  1716
    pOut->u.i = res;
sl@0
  1717
    REGISTER_TRACE(pOp->p2, pOut);
sl@0
  1718
  }else if( res ){
sl@0
  1719
    pc = pOp->p2-1;
sl@0
  1720
  }
sl@0
  1721
  break;
sl@0
  1722
}
sl@0
  1723
sl@0
  1724
/* Opcode: Permutation * * * P4 *
sl@0
  1725
**
sl@0
  1726
** Set the permuation used by the OP_Compare operator to be the array
sl@0
  1727
** of integers in P4.
sl@0
  1728
**
sl@0
  1729
** The permutation is only valid until the next OP_Permutation, OP_Compare,
sl@0
  1730
** OP_Halt, or OP_ResultRow.  Typically the OP_Permutation should occur
sl@0
  1731
** immediately prior to the OP_Compare.
sl@0
  1732
*/
sl@0
  1733
case OP_Permutation: {
sl@0
  1734
  assert( pOp->p4type==P4_INTARRAY );
sl@0
  1735
  assert( pOp->p4.ai );
sl@0
  1736
  aPermute = pOp->p4.ai;
sl@0
  1737
  break;
sl@0
  1738
}
sl@0
  1739
sl@0
  1740
/* Opcode: Compare P1 P2 P3 P4 *
sl@0
  1741
**
sl@0
  1742
** Compare to vectors of registers in reg(P1)..reg(P1+P3-1) (all this
sl@0
  1743
** one "A") and in reg(P2)..reg(P2+P3-1) ("B").  Save the result of
sl@0
  1744
** the comparison for use by the next OP_Jump instruct.
sl@0
  1745
**
sl@0
  1746
** P4 is a KeyInfo structure that defines collating sequences and sort
sl@0
  1747
** orders for the comparison.  The permutation applies to registers
sl@0
  1748
** only.  The KeyInfo elements are used sequentially.
sl@0
  1749
**
sl@0
  1750
** The comparison is a sort comparison, so NULLs compare equal,
sl@0
  1751
** NULLs are less than numbers, numbers are less than strings,
sl@0
  1752
** and strings are less than blobs.
sl@0
  1753
*/
sl@0
  1754
case OP_Compare: {
sl@0
  1755
  int n = pOp->p3;
sl@0
  1756
  int i, p1, p2;
sl@0
  1757
  const KeyInfo *pKeyInfo = pOp->p4.pKeyInfo;
sl@0
  1758
  assert( n>0 );
sl@0
  1759
  assert( pKeyInfo!=0 );
sl@0
  1760
  p1 = pOp->p1;
sl@0
  1761
  assert( p1>0 && p1+n-1<p->nMem );
sl@0
  1762
  p2 = pOp->p2;
sl@0
  1763
  assert( p2>0 && p2+n-1<p->nMem );
sl@0
  1764
  for(i=0; i<n; i++){
sl@0
  1765
    int idx = aPermute ? aPermute[i] : i;
sl@0
  1766
    CollSeq *pColl;    /* Collating sequence to use on this term */
sl@0
  1767
    int bRev;          /* True for DESCENDING sort order */
sl@0
  1768
    REGISTER_TRACE(p1+idx, &p->aMem[p1+idx]);
sl@0
  1769
    REGISTER_TRACE(p2+idx, &p->aMem[p2+idx]);
sl@0
  1770
    assert( i<pKeyInfo->nField );
sl@0
  1771
    pColl = pKeyInfo->aColl[i];
sl@0
  1772
    bRev = pKeyInfo->aSortOrder[i];
sl@0
  1773
    iCompare = sqlite3MemCompare(&p->aMem[p1+idx], &p->aMem[p2+idx], pColl);
sl@0
  1774
    if( iCompare ){
sl@0
  1775
      if( bRev ) iCompare = -iCompare;
sl@0
  1776
      break;
sl@0
  1777
    }
sl@0
  1778
  }
sl@0
  1779
  aPermute = 0;
sl@0
  1780
  break;
sl@0
  1781
}
sl@0
  1782
sl@0
  1783
/* Opcode: Jump P1 P2 P3 * *
sl@0
  1784
**
sl@0
  1785
** Jump to the instruction at address P1, P2, or P3 depending on whether
sl@0
  1786
** in the most recent OP_Compare instruction the P1 vector was less than
sl@0
  1787
** equal to, or greater than the P2 vector, respectively.
sl@0
  1788
*/
sl@0
  1789
case OP_Jump: {             /* jump */
sl@0
  1790
  if( iCompare<0 ){
sl@0
  1791
    pc = pOp->p1 - 1;
sl@0
  1792
  }else if( iCompare==0 ){
sl@0
  1793
    pc = pOp->p2 - 1;
sl@0
  1794
  }else{
sl@0
  1795
    pc = pOp->p3 - 1;
sl@0
  1796
  }
sl@0
  1797
  break;
sl@0
  1798
}
sl@0
  1799
sl@0
  1800
/* Opcode: And P1 P2 P3 * *
sl@0
  1801
**
sl@0
  1802
** Take the logical AND of the values in registers P1 and P2 and
sl@0
  1803
** write the result into register P3.
sl@0
  1804
**
sl@0
  1805
** If either P1 or P2 is 0 (false) then the result is 0 even if
sl@0
  1806
** the other input is NULL.  A NULL and true or two NULLs give
sl@0
  1807
** a NULL output.
sl@0
  1808
*/
sl@0
  1809
/* Opcode: Or P1 P2 P3 * *
sl@0
  1810
**
sl@0
  1811
** Take the logical OR of the values in register P1 and P2 and
sl@0
  1812
** store the answer in register P3.
sl@0
  1813
**
sl@0
  1814
** If either P1 or P2 is nonzero (true) then the result is 1 (true)
sl@0
  1815
** even if the other input is NULL.  A NULL and false or two NULLs
sl@0
  1816
** give a NULL output.
sl@0
  1817
*/
sl@0
  1818
case OP_And:              /* same as TK_AND, in1, in2, out3 */
sl@0
  1819
case OP_Or: {             /* same as TK_OR, in1, in2, out3 */
sl@0
  1820
  int v1, v2;    /* 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
sl@0
  1821
sl@0
  1822
  if( pIn1->flags & MEM_Null ){
sl@0
  1823
    v1 = 2;
sl@0
  1824
  }else{
sl@0
  1825
    v1 = sqlite3VdbeIntValue(pIn1)!=0;
sl@0
  1826
  }
sl@0
  1827
  if( pIn2->flags & MEM_Null ){
sl@0
  1828
    v2 = 2;
sl@0
  1829
  }else{
sl@0
  1830
    v2 = sqlite3VdbeIntValue(pIn2)!=0;
sl@0
  1831
  }
sl@0
  1832
  if( pOp->opcode==OP_And ){
sl@0
  1833
    static const unsigned char and_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 };
sl@0
  1834
    v1 = and_logic[v1*3+v2];
sl@0
  1835
  }else{
sl@0
  1836
    static const unsigned char or_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 };
sl@0
  1837
    v1 = or_logic[v1*3+v2];
sl@0
  1838
  }
sl@0
  1839
  if( v1==2 ){
sl@0
  1840
    MemSetTypeFlag(pOut, MEM_Null);
sl@0
  1841
  }else{
sl@0
  1842
    pOut->u.i = v1;
sl@0
  1843
    MemSetTypeFlag(pOut, MEM_Int);
sl@0
  1844
  }
sl@0
  1845
  break;
sl@0
  1846
}
sl@0
  1847
sl@0
  1848
/* Opcode: Not P1 * * * *
sl@0
  1849
**
sl@0
  1850
** Interpret the value in register P1 as a boolean value.  Replace it
sl@0
  1851
** with its complement.  If the value in register P1 is NULL its value
sl@0
  1852
** is unchanged.
sl@0
  1853
*/
sl@0
  1854
case OP_Not: {                /* same as TK_NOT, in1 */
sl@0
  1855
  if( pIn1->flags & MEM_Null ) break;  /* Do nothing to NULLs */
sl@0
  1856
  sqlite3VdbeMemIntegerify(pIn1);
sl@0
  1857
  pIn1->u.i = !pIn1->u.i;
sl@0
  1858
  assert( pIn1->flags&MEM_Int );
sl@0
  1859
  break;
sl@0
  1860
}
sl@0
  1861
sl@0
  1862
/* Opcode: BitNot P1 * * * *
sl@0
  1863
**
sl@0
  1864
** Interpret the content of register P1 as an integer.  Replace it
sl@0
  1865
** with its ones-complement.  If the value is originally NULL, leave
sl@0
  1866
** it unchanged.
sl@0
  1867
*/
sl@0
  1868
case OP_BitNot: {             /* same as TK_BITNOT, in1 */
sl@0
  1869
  if( pIn1->flags & MEM_Null ) break;  /* Do nothing to NULLs */
sl@0
  1870
  sqlite3VdbeMemIntegerify(pIn1);
sl@0
  1871
  pIn1->u.i = ~pIn1->u.i;
sl@0
  1872
  assert( pIn1->flags&MEM_Int );
sl@0
  1873
  break;
sl@0
  1874
}
sl@0
  1875
sl@0
  1876
/* Opcode: If P1 P2 P3 * *
sl@0
  1877
**
sl@0
  1878
** Jump to P2 if the value in register P1 is true.  The value is
sl@0
  1879
** is considered true if it is numeric and non-zero.  If the value
sl@0
  1880
** in P1 is NULL then take the jump if P3 is true.
sl@0
  1881
*/
sl@0
  1882
/* Opcode: IfNot P1 P2 P3 * *
sl@0
  1883
**
sl@0
  1884
** Jump to P2 if the value in register P1 is False.  The value is
sl@0
  1885
** is considered true if it has a numeric value of zero.  If the value
sl@0
  1886
** in P1 is NULL then take the jump if P3 is true.
sl@0
  1887
*/
sl@0
  1888
case OP_If:                 /* jump, in1 */
sl@0
  1889
case OP_IfNot: {            /* jump, in1 */
sl@0
  1890
  int c;
sl@0
  1891
  if( pIn1->flags & MEM_Null ){
sl@0
  1892
    c = pOp->p3;
sl@0
  1893
  }else{
sl@0
  1894
#ifdef SQLITE_OMIT_FLOATING_POINT
sl@0
  1895
    c = sqlite3VdbeIntValue(pIn1);
sl@0
  1896
#else
sl@0
  1897
    c = sqlite3VdbeRealValue(pIn1)!=0.0;
sl@0
  1898
#endif
sl@0
  1899
    if( pOp->opcode==OP_IfNot ) c = !c;
sl@0
  1900
  }
sl@0
  1901
  if( c ){
sl@0
  1902
    pc = pOp->p2-1;
sl@0
  1903
  }
sl@0
  1904
  break;
sl@0
  1905
}
sl@0
  1906
sl@0
  1907
/* Opcode: IsNull P1 P2 P3 * *
sl@0
  1908
**
sl@0
  1909
** Jump to P2 if the value in register P1 is NULL.  If P3 is greater
sl@0
  1910
** than zero, then check all values reg(P1), reg(P1+1), 
sl@0
  1911
** reg(P1+2), ..., reg(P1+P3-1).
sl@0
  1912
*/
sl@0
  1913
case OP_IsNull: {            /* same as TK_ISNULL, jump, in1 */
sl@0
  1914
  int n = pOp->p3;
sl@0
  1915
  assert( pOp->p3==0 || pOp->p1>0 );
sl@0
  1916
  do{
sl@0
  1917
    if( (pIn1->flags & MEM_Null)!=0 ){
sl@0
  1918
      pc = pOp->p2 - 1;
sl@0
  1919
      break;
sl@0
  1920
    }
sl@0
  1921
    pIn1++;
sl@0
  1922
  }while( --n > 0 );
sl@0
  1923
  break;
sl@0
  1924
}
sl@0
  1925
sl@0
  1926
/* Opcode: NotNull P1 P2 * * *
sl@0
  1927
**
sl@0
  1928
** Jump to P2 if the value in register P1 is not NULL.  
sl@0
  1929
*/
sl@0
  1930
case OP_NotNull: {            /* same as TK_NOTNULL, jump, in1 */
sl@0
  1931
  if( (pIn1->flags & MEM_Null)==0 ){
sl@0
  1932
    pc = pOp->p2 - 1;
sl@0
  1933
  }
sl@0
  1934
  break;
sl@0
  1935
}
sl@0
  1936
sl@0
  1937
/* Opcode: SetNumColumns * P2 * * *
sl@0
  1938
**
sl@0
  1939
** This opcode sets the number of columns for the cursor opened by the
sl@0
  1940
** following instruction to P2.
sl@0
  1941
**
sl@0
  1942
** An OP_SetNumColumns is only useful if it occurs immediately before 
sl@0
  1943
** one of the following opcodes:
sl@0
  1944
**
sl@0
  1945
**     OpenRead
sl@0
  1946
**     OpenWrite
sl@0
  1947
**     OpenPseudo
sl@0
  1948
**
sl@0
  1949
** If the OP_Column opcode is to be executed on a cursor, then
sl@0
  1950
** this opcode must be present immediately before the opcode that
sl@0
  1951
** opens the cursor.
sl@0
  1952
*/
sl@0
  1953
case OP_SetNumColumns: {
sl@0
  1954
  break;
sl@0
  1955
}
sl@0
  1956
sl@0
  1957
/* Opcode: Column P1 P2 P3 P4 *
sl@0
  1958
**
sl@0
  1959
** Interpret the data that cursor P1 points to as a structure built using
sl@0
  1960
** the MakeRecord instruction.  (See the MakeRecord opcode for additional
sl@0
  1961
** information about the format of the data.)  Extract the P2-th column
sl@0
  1962
** from this record.  If there are less that (P2+1) 
sl@0
  1963
** values in the record, extract a NULL.
sl@0
  1964
**
sl@0
  1965
** The value extracted is stored in register P3.
sl@0
  1966
**
sl@0
  1967
** If the KeyAsData opcode has previously executed on this cursor, then the
sl@0
  1968
** field might be extracted from the key rather than the data.
sl@0
  1969
**
sl@0
  1970
** If the column contains fewer than P2 fields, then extract a NULL.  Or,
sl@0
  1971
** if the P4 argument is a P4_MEM use the value of the P4 argument as
sl@0
  1972
** the result.
sl@0
  1973
*/
sl@0
  1974
case OP_Column: {
sl@0
  1975
  u32 payloadSize;   /* Number of bytes in the record */
sl@0
  1976
  int p1 = pOp->p1;  /* P1 value of the opcode */
sl@0
  1977
  int p2 = pOp->p2;  /* column number to retrieve */
sl@0
  1978
  Cursor *pC = 0;    /* The VDBE cursor */
sl@0
  1979
  char *zRec;        /* Pointer to complete record-data */
sl@0
  1980
  BtCursor *pCrsr;   /* The BTree cursor */
sl@0
  1981
  u32 *aType;        /* aType[i] holds the numeric type of the i-th column */
sl@0
  1982
  u32 *aOffset;      /* aOffset[i] is offset to start of data for i-th column */
sl@0
  1983
  u32 nField;        /* number of fields in the record */
sl@0
  1984
  int len;           /* The length of the serialized data for the column */
sl@0
  1985
  int i;             /* Loop counter */
sl@0
  1986
  char *zData;       /* Part of the record being decoded */
sl@0
  1987
  Mem *pDest;        /* Where to write the extracted value */
sl@0
  1988
  Mem sMem;          /* For storing the record being decoded */
sl@0
  1989
sl@0
  1990
  sMem.flags = 0;
sl@0
  1991
  sMem.db = 0;
sl@0
  1992
  sMem.zMalloc = 0;
sl@0
  1993
  assert( p1<p->nCursor );
sl@0
  1994
  assert( pOp->p3>0 && pOp->p3<=p->nMem );
sl@0
  1995
  pDest = &p->aMem[pOp->p3];
sl@0
  1996
  MemSetTypeFlag(pDest, MEM_Null);
sl@0
  1997
sl@0
  1998
  /* This block sets the variable payloadSize to be the total number of
sl@0
  1999
  ** bytes in the record.
sl@0
  2000
  **
sl@0
  2001
  ** zRec is set to be the complete text of the record if it is available.
sl@0
  2002
  ** The complete record text is always available for pseudo-tables
sl@0
  2003
  ** If the record is stored in a cursor, the complete record text
sl@0
  2004
  ** might be available in the  pC->aRow cache.  Or it might not be.
sl@0
  2005
  ** If the data is unavailable,  zRec is set to NULL.
sl@0
  2006
  **
sl@0
  2007
  ** We also compute the number of columns in the record.  For cursors,
sl@0
  2008
  ** the number of columns is stored in the Cursor.nField element.
sl@0
  2009
  */
sl@0
  2010
  pC = p->apCsr[p1];
sl@0
  2011
  assert( pC!=0 );
sl@0
  2012
#ifndef SQLITE_OMIT_VIRTUALTABLE
sl@0
  2013
  assert( pC->pVtabCursor==0 );
sl@0
  2014
#endif
sl@0
  2015
  if( pC->pCursor!=0 ){
sl@0
  2016
    /* The record is stored in a B-Tree */
sl@0
  2017
    rc = sqlite3VdbeCursorMoveto(pC);
sl@0
  2018
    if( rc ) goto abort_due_to_error;
sl@0
  2019
    zRec = 0;
sl@0
  2020
    pCrsr = pC->pCursor;
sl@0
  2021
    if( pC->nullRow ){
sl@0
  2022
      payloadSize = 0;
sl@0
  2023
    }else if( pC->cacheStatus==p->cacheCtr ){
sl@0
  2024
      payloadSize = pC->payloadSize;
sl@0
  2025
      zRec = (char*)pC->aRow;
sl@0
  2026
    }else if( pC->isIndex ){
sl@0
  2027
      i64 payloadSize64;
sl@0
  2028
      sqlite3BtreeKeySize(pCrsr, &payloadSize64);
sl@0
  2029
      payloadSize = payloadSize64;
sl@0
  2030
    }else{
sl@0
  2031
      sqlite3BtreeDataSize(pCrsr, &payloadSize);
sl@0
  2032
    }
sl@0
  2033
    nField = pC->nField;
sl@0
  2034
  }else{
sl@0
  2035
    assert( pC->pseudoTable );
sl@0
  2036
    /* The record is the sole entry of a pseudo-table */
sl@0
  2037
    payloadSize = pC->nData;
sl@0
  2038
    zRec = pC->pData;
sl@0
  2039
    pC->cacheStatus = CACHE_STALE;
sl@0
  2040
    assert( payloadSize==0 || zRec!=0 );
sl@0
  2041
    nField = pC->nField;
sl@0
  2042
    pCrsr = 0;
sl@0
  2043
  }
sl@0
  2044
sl@0
  2045
  /* If payloadSize is 0, then just store a NULL */
sl@0
  2046
  if( payloadSize==0 ){
sl@0
  2047
    assert( pDest->flags&MEM_Null );
sl@0
  2048
    goto op_column_out;
sl@0
  2049
  }
sl@0
  2050
  if( payloadSize>db->aLimit[SQLITE_LIMIT_LENGTH] ){
sl@0
  2051
    goto too_big;
sl@0
  2052
  }
sl@0
  2053
sl@0
  2054
  assert( p2<nField );
sl@0
  2055
sl@0
  2056
  /* Read and parse the table header.  Store the results of the parse
sl@0
  2057
  ** into the record header cache fields of the cursor.
sl@0
  2058
  */
sl@0
  2059
  aType = pC->aType;
sl@0
  2060
  if( pC->cacheStatus==p->cacheCtr ){
sl@0
  2061
    aOffset = pC->aOffset;
sl@0
  2062
  }else{
sl@0
  2063
    u8 *zIdx;        /* Index into header */
sl@0
  2064
    u8 *zEndHdr;     /* Pointer to first byte after the header */
sl@0
  2065
    u32 offset;      /* Offset into the data */
sl@0
  2066
    int szHdrSz;     /* Size of the header size field at start of record */
sl@0
  2067
    int avail;       /* Number of bytes of available data */
sl@0
  2068
sl@0
  2069
    assert(aType);
sl@0
  2070
    pC->aOffset = aOffset = &aType[nField];
sl@0
  2071
    pC->payloadSize = payloadSize;
sl@0
  2072
    pC->cacheStatus = p->cacheCtr;
sl@0
  2073
sl@0
  2074
    /* Figure out how many bytes are in the header */
sl@0
  2075
    if( zRec ){
sl@0
  2076
      zData = zRec;
sl@0
  2077
    }else{
sl@0
  2078
      if( pC->isIndex ){
sl@0
  2079
        zData = (char*)sqlite3BtreeKeyFetch(pCrsr, &avail);
sl@0
  2080
      }else{
sl@0
  2081
        zData = (char*)sqlite3BtreeDataFetch(pCrsr, &avail);
sl@0
  2082
      }
sl@0
  2083
      /* If KeyFetch()/DataFetch() managed to get the entire payload,
sl@0
  2084
      ** save the payload in the pC->aRow cache.  That will save us from
sl@0
  2085
      ** having to make additional calls to fetch the content portion of
sl@0
  2086
      ** the record.
sl@0
  2087
      */
sl@0
  2088
      if( avail>=payloadSize ){
sl@0
  2089
        zRec = zData;
sl@0
  2090
        pC->aRow = (u8*)zData;
sl@0
  2091
      }else{
sl@0
  2092
        pC->aRow = 0;
sl@0
  2093
      }
sl@0
  2094
    }
sl@0
  2095
    /* The following assert is true in all cases accept when
sl@0
  2096
    ** the database file has been corrupted externally.
sl@0
  2097
    **    assert( zRec!=0 || avail>=payloadSize || avail>=9 ); */
sl@0
  2098
    szHdrSz = getVarint32((u8*)zData, offset);
sl@0
  2099
sl@0
  2100
    /* The KeyFetch() or DataFetch() above are fast and will get the entire
sl@0
  2101
    ** record header in most cases.  But they will fail to get the complete
sl@0
  2102
    ** record header if the record header does not fit on a single page
sl@0
  2103
    ** in the B-Tree.  When that happens, use sqlite3VdbeMemFromBtree() to
sl@0
  2104
    ** acquire the complete header text.
sl@0
  2105
    */
sl@0
  2106
    if( !zRec && avail<offset ){
sl@0
  2107
      sMem.flags = 0;
sl@0
  2108
      sMem.db = 0;
sl@0
  2109
      rc = sqlite3VdbeMemFromBtree(pCrsr, 0, offset, pC->isIndex, &sMem);
sl@0
  2110
      if( rc!=SQLITE_OK ){
sl@0
  2111
        goto op_column_out;
sl@0
  2112
      }
sl@0
  2113
      zData = sMem.z;
sl@0
  2114
    }
sl@0
  2115
    zEndHdr = (u8 *)&zData[offset];
sl@0
  2116
    zIdx = (u8 *)&zData[szHdrSz];
sl@0
  2117
sl@0
  2118
    /* Scan the header and use it to fill in the aType[] and aOffset[]
sl@0
  2119
    ** arrays.  aType[i] will contain the type integer for the i-th
sl@0
  2120
    ** column and aOffset[i] will contain the offset from the beginning
sl@0
  2121
    ** of the record to the start of the data for the i-th column
sl@0
  2122
    */
sl@0
  2123
    for(i=0; i<nField; i++){
sl@0
  2124
      if( zIdx<zEndHdr ){
sl@0
  2125
        aOffset[i] = offset;
sl@0
  2126
        zIdx += getVarint32(zIdx, aType[i]);
sl@0
  2127
        offset += sqlite3VdbeSerialTypeLen(aType[i]);
sl@0
  2128
      }else{
sl@0
  2129
        /* If i is less that nField, then there are less fields in this
sl@0
  2130
        ** record than SetNumColumns indicated there are columns in the
sl@0
  2131
        ** table. Set the offset for any extra columns not present in
sl@0
  2132
        ** the record to 0. This tells code below to store a NULL
sl@0
  2133
        ** instead of deserializing a value from the record.
sl@0
  2134
        */
sl@0
  2135
        aOffset[i] = 0;
sl@0
  2136
      }
sl@0
  2137
    }
sl@0
  2138
    sqlite3VdbeMemRelease(&sMem);
sl@0
  2139
    sMem.flags = MEM_Null;
sl@0
  2140
sl@0
  2141
    /* If we have read more header data than was contained in the header,
sl@0
  2142
    ** or if the end of the last field appears to be past the end of the
sl@0
  2143
    ** record, or if the end of the last field appears to be before the end
sl@0
  2144
    ** of the record (when all fields present), then we must be dealing 
sl@0
  2145
    ** with a corrupt database.
sl@0
  2146
    */
sl@0
  2147
    if( zIdx>zEndHdr || offset>payloadSize || (zIdx==zEndHdr && offset!=payloadSize) ){
sl@0
  2148
      rc = SQLITE_CORRUPT_BKPT;
sl@0
  2149
      goto op_column_out;
sl@0
  2150
    }
sl@0
  2151
  }
sl@0
  2152
sl@0
  2153
  /* Get the column information. If aOffset[p2] is non-zero, then 
sl@0
  2154
  ** deserialize the value from the record. If aOffset[p2] is zero,
sl@0
  2155
  ** then there are not enough fields in the record to satisfy the
sl@0
  2156
  ** request.  In this case, set the value NULL or to P4 if P4 is
sl@0
  2157
  ** a pointer to a Mem object.
sl@0
  2158
  */
sl@0
  2159
  if( aOffset[p2] ){
sl@0
  2160
    assert( rc==SQLITE_OK );
sl@0
  2161
    if( zRec ){
sl@0
  2162
      sqlite3VdbeMemReleaseExternal(pDest);
sl@0
  2163
      sqlite3VdbeSerialGet((u8 *)&zRec[aOffset[p2]], aType[p2], pDest);
sl@0
  2164
    }else{
sl@0
  2165
      len = sqlite3VdbeSerialTypeLen(aType[p2]);
sl@0
  2166
      sqlite3VdbeMemMove(&sMem, pDest);
sl@0
  2167
      rc = sqlite3VdbeMemFromBtree(pCrsr, aOffset[p2], len, pC->isIndex, &sMem);
sl@0
  2168
      if( rc!=SQLITE_OK ){
sl@0
  2169
        goto op_column_out;
sl@0
  2170
      }
sl@0
  2171
      zData = sMem.z;
sl@0
  2172
      sqlite3VdbeSerialGet((u8*)zData, aType[p2], pDest);
sl@0
  2173
    }
sl@0
  2174
    pDest->enc = encoding;
sl@0
  2175
  }else{
sl@0
  2176
    if( pOp->p4type==P4_MEM ){
sl@0
  2177
      sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static);
sl@0
  2178
    }else{
sl@0
  2179
      assert( pDest->flags&MEM_Null );
sl@0
  2180
    }
sl@0
  2181
  }
sl@0
  2182
sl@0
  2183
  /* If we dynamically allocated space to hold the data (in the
sl@0
  2184
  ** sqlite3VdbeMemFromBtree() call above) then transfer control of that
sl@0
  2185
  ** dynamically allocated space over to the pDest structure.
sl@0
  2186
  ** This prevents a memory copy.
sl@0
  2187
  */
sl@0
  2188
  if( sMem.zMalloc ){
sl@0
  2189
    assert( sMem.z==sMem.zMalloc );
sl@0
  2190
    assert( !(pDest->flags & MEM_Dyn) );
sl@0
  2191
    assert( !(pDest->flags & (MEM_Blob|MEM_Str)) || pDest->z==sMem.z );
sl@0
  2192
    pDest->flags &= ~(MEM_Ephem|MEM_Static);
sl@0
  2193
    pDest->flags |= MEM_Term;
sl@0
  2194
    pDest->z = sMem.z;
sl@0
  2195
    pDest->zMalloc = sMem.zMalloc;
sl@0
  2196
  }
sl@0
  2197
sl@0
  2198
  rc = sqlite3VdbeMemMakeWriteable(pDest);
sl@0
  2199
sl@0
  2200
op_column_out:
sl@0
  2201
  UPDATE_MAX_BLOBSIZE(pDest);
sl@0
  2202
  REGISTER_TRACE(pOp->p3, pDest);
sl@0
  2203
  break;
sl@0
  2204
}
sl@0
  2205
sl@0
  2206
/* Opcode: Affinity P1 P2 * P4 *
sl@0
  2207
**
sl@0
  2208
** Apply affinities to a range of P2 registers starting with P1.
sl@0
  2209
**
sl@0
  2210
** P4 is a string that is P2 characters long. The nth character of the
sl@0
  2211
** string indicates the column affinity that should be used for the nth
sl@0
  2212
** memory cell in the range.
sl@0
  2213
*/
sl@0
  2214
case OP_Affinity: {
sl@0
  2215
  char *zAffinity = pOp->p4.z;
sl@0
  2216
  Mem *pData0 = &p->aMem[pOp->p1];
sl@0
  2217
  Mem *pLast = &pData0[pOp->p2-1];
sl@0
  2218
  Mem *pRec;
sl@0
  2219
sl@0
  2220
  for(pRec=pData0; pRec<=pLast; pRec++){
sl@0
  2221
    ExpandBlob(pRec);
sl@0
  2222
    applyAffinity(pRec, zAffinity[pRec-pData0], encoding);
sl@0
  2223
  }
sl@0
  2224
  break;
sl@0
  2225
}
sl@0
  2226
sl@0
  2227
/* Opcode: MakeRecord P1 P2 P3 P4 *
sl@0
  2228
**
sl@0
  2229
** Convert P2 registers beginning with P1 into a single entry
sl@0
  2230
** suitable for use as a data record in a database table or as a key
sl@0
  2231
** in an index.  The details of the format are irrelevant as long as
sl@0
  2232
** the OP_Column opcode can decode the record later.
sl@0
  2233
** Refer to source code comments for the details of the record
sl@0
  2234
** format.
sl@0
  2235
**
sl@0
  2236
** P4 may be a string that is P2 characters long.  The nth character of the
sl@0
  2237
** string indicates the column affinity that should be used for the nth
sl@0
  2238
** field of the index key.
sl@0
  2239
**
sl@0
  2240
** The mapping from character to affinity is given by the SQLITE_AFF_
sl@0
  2241
** macros defined in sqliteInt.h.
sl@0
  2242
**
sl@0
  2243
** If P4 is NULL then all index fields have the affinity NONE.
sl@0
  2244
*/
sl@0
  2245
case OP_MakeRecord: {
sl@0
  2246
  /* Assuming the record contains N fields, the record format looks
sl@0
  2247
  ** like this:
sl@0
  2248
  **
sl@0
  2249
  ** ------------------------------------------------------------------------
sl@0
  2250
  ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 | 
sl@0
  2251
  ** ------------------------------------------------------------------------
sl@0
  2252
  **
sl@0
  2253
  ** Data(0) is taken from register P1.  Data(1) comes from register P1+1
sl@0
  2254
  ** and so froth.
sl@0
  2255
  **
sl@0
  2256
  ** Each type field is a varint representing the serial type of the 
sl@0
  2257
  ** corresponding data element (see sqlite3VdbeSerialType()). The
sl@0
  2258
  ** hdr-size field is also a varint which is the offset from the beginning
sl@0
  2259
  ** of the record to data0.
sl@0
  2260
  */
sl@0
  2261
  u8 *zNewRecord;        /* A buffer to hold the data for the new record */
sl@0
  2262
  Mem *pRec;             /* The new record */
sl@0
  2263
  u64 nData = 0;         /* Number of bytes of data space */
sl@0
  2264
  int nHdr = 0;          /* Number of bytes of header space */
sl@0
  2265
  u64 nByte = 0;         /* Data space required for this record */
sl@0
  2266
  int nZero = 0;         /* Number of zero bytes at the end of the record */
sl@0
  2267
  int nVarint;           /* Number of bytes in a varint */
sl@0
  2268
  u32 serial_type;       /* Type field */
sl@0
  2269
  Mem *pData0;           /* First field to be combined into the record */
sl@0
  2270
  Mem *pLast;            /* Last field of the record */
sl@0
  2271
  int nField;            /* Number of fields in the record */
sl@0
  2272
  char *zAffinity;       /* The affinity string for the record */
sl@0
  2273
  int file_format;       /* File format to use for encoding */
sl@0
  2274
  int i;                 /* Space used in zNewRecord[] */
sl@0
  2275
sl@0
  2276
  nField = pOp->p1;
sl@0
  2277
  zAffinity = pOp->p4.z;
sl@0
  2278
  assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=p->nMem );
sl@0
  2279
  pData0 = &p->aMem[nField];
sl@0
  2280
  nField = pOp->p2;
sl@0
  2281
  pLast = &pData0[nField-1];
sl@0
  2282
  file_format = p->minWriteFileFormat;
sl@0
  2283
sl@0
  2284
  /* Loop through the elements that will make up the record to figure
sl@0
  2285
  ** out how much space is required for the new record.
sl@0
  2286
  */
sl@0
  2287
  for(pRec=pData0; pRec<=pLast; pRec++){
sl@0
  2288
    int len;
sl@0
  2289
    if( zAffinity ){
sl@0
  2290
      applyAffinity(pRec, zAffinity[pRec-pData0], encoding);
sl@0
  2291
    }
sl@0
  2292
    if( pRec->flags&MEM_Zero && pRec->n>0 ){
sl@0
  2293
      sqlite3VdbeMemExpandBlob(pRec);
sl@0
  2294
    }
sl@0
  2295
    serial_type = sqlite3VdbeSerialType(pRec, file_format);
sl@0
  2296
    len = sqlite3VdbeSerialTypeLen(serial_type);
sl@0
  2297
    nData += len;
sl@0
  2298
    nHdr += sqlite3VarintLen(serial_type);
sl@0
  2299
    if( pRec->flags & MEM_Zero ){
sl@0
  2300
      /* Only pure zero-filled BLOBs can be input to this Opcode.
sl@0
  2301
      ** We do not allow blobs with a prefix and a zero-filled tail. */
sl@0
  2302
      nZero += pRec->u.i;
sl@0
  2303
    }else if( len ){
sl@0
  2304
      nZero = 0;
sl@0
  2305
    }
sl@0
  2306
  }
sl@0
  2307
sl@0
  2308
  /* Add the initial header varint and total the size */
sl@0
  2309
  nHdr += nVarint = sqlite3VarintLen(nHdr);
sl@0
  2310
  if( nVarint<sqlite3VarintLen(nHdr) ){
sl@0
  2311
    nHdr++;
sl@0
  2312
  }
sl@0
  2313
  nByte = nHdr+nData-nZero;
sl@0
  2314
  if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
sl@0
  2315
    goto too_big;
sl@0
  2316
  }
sl@0
  2317
sl@0
  2318
  /* Make sure the output register has a buffer large enough to store 
sl@0
  2319
  ** the new record. The output register (pOp->p3) is not allowed to
sl@0
  2320
  ** be one of the input registers (because the following call to
sl@0
  2321
  ** sqlite3VdbeMemGrow() could clobber the value before it is used).
sl@0
  2322
  */
sl@0
  2323
  assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 );
sl@0
  2324
  pOut = &p->aMem[pOp->p3];
sl@0
  2325
  if( sqlite3VdbeMemGrow(pOut, nByte, 0) ){
sl@0
  2326
    goto no_mem;
sl@0
  2327
  }
sl@0
  2328
  zNewRecord = (u8 *)pOut->z;
sl@0
  2329
sl@0
  2330
  /* Write the record */
sl@0
  2331
  i = putVarint32(zNewRecord, nHdr);
sl@0
  2332
  for(pRec=pData0; pRec<=pLast; pRec++){
sl@0
  2333
    serial_type = sqlite3VdbeSerialType(pRec, file_format);
sl@0
  2334
    i += putVarint32(&zNewRecord[i], serial_type);      /* serial type */
sl@0
  2335
  }
sl@0
  2336
  for(pRec=pData0; pRec<=pLast; pRec++){  /* serial data */
sl@0
  2337
    i += sqlite3VdbeSerialPut(&zNewRecord[i], nByte-i, pRec, file_format);
sl@0
  2338
  }
sl@0
  2339
  assert( i==nByte );
sl@0
  2340
sl@0
  2341
  assert( pOp->p3>0 && pOp->p3<=p->nMem );
sl@0
  2342
  pOut->n = nByte;
sl@0
  2343
  pOut->flags = MEM_Blob | MEM_Dyn;
sl@0
  2344
  pOut->xDel = 0;
sl@0
  2345
  if( nZero ){
sl@0
  2346
    pOut->u.i = nZero;
sl@0
  2347
    pOut->flags |= MEM_Zero;
sl@0
  2348
  }
sl@0
  2349
  pOut->enc = SQLITE_UTF8;  /* In case the blob is ever converted to text */
sl@0
  2350
  REGISTER_TRACE(pOp->p3, pOut);
sl@0
  2351
  UPDATE_MAX_BLOBSIZE(pOut);
sl@0
  2352
  break;
sl@0
  2353
}
sl@0
  2354
sl@0
  2355
/* Opcode: Statement P1 * * * *
sl@0
  2356
**
sl@0
  2357
** Begin an individual statement transaction which is part of a larger
sl@0
  2358
** transaction.  This is needed so that the statement
sl@0
  2359
** can be rolled back after an error without having to roll back the
sl@0
  2360
** entire transaction.  The statement transaction will automatically
sl@0
  2361
** commit when the VDBE halts.
sl@0
  2362
**
sl@0
  2363
** If the database connection is currently in autocommit mode (that 
sl@0
  2364
** is to say, if it is in between BEGIN and COMMIT)
sl@0
  2365
** and if there are no other active statements on the same database
sl@0
  2366
** connection, then this operation is a no-op.  No statement transaction
sl@0
  2367
** is needed since any error can use the normal ROLLBACK process to
sl@0
  2368
** undo changes.
sl@0
  2369
**
sl@0
  2370
** If a statement transaction is started, then a statement journal file
sl@0
  2371
** will be allocated and initialized.
sl@0
  2372
**
sl@0
  2373
** The statement is begun on the database file with index P1.  The main
sl@0
  2374
** database file has an index of 0 and the file used for temporary tables
sl@0
  2375
** has an index of 1.
sl@0
  2376
*/
sl@0
  2377
case OP_Statement: {
sl@0
  2378
  if( db->autoCommit==0 || db->activeVdbeCnt>1 ){
sl@0
  2379
    int i = pOp->p1;
sl@0
  2380
    Btree *pBt;
sl@0
  2381
    assert( i>=0 && i<db->nDb );
sl@0
  2382
    assert( db->aDb[i].pBt!=0 );
sl@0
  2383
    pBt = db->aDb[i].pBt;
sl@0
  2384
    assert( sqlite3BtreeIsInTrans(pBt) );
sl@0
  2385
    assert( (p->btreeMask & (1<<i))!=0 );
sl@0
  2386
    if( !sqlite3BtreeIsInStmt(pBt) ){
sl@0
  2387
      rc = sqlite3BtreeBeginStmt(pBt);
sl@0
  2388
      p->openedStatement = 1;
sl@0
  2389
    }
sl@0
  2390
  }
sl@0
  2391
  break;
sl@0
  2392
}
sl@0
  2393
sl@0
  2394
/* Opcode: AutoCommit P1 P2 * * *
sl@0
  2395
**
sl@0
  2396
** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll
sl@0
  2397
** back any currently active btree transactions. If there are any active
sl@0
  2398
** VMs (apart from this one), then the COMMIT or ROLLBACK statement fails.
sl@0
  2399
**
sl@0
  2400
** This instruction causes the VM to halt.
sl@0
  2401
*/
sl@0
  2402
case OP_AutoCommit: {
sl@0
  2403
  u8 i = pOp->p1;
sl@0
  2404
  u8 rollback = pOp->p2;
sl@0
  2405
sl@0
  2406
  assert( i==1 || i==0 );
sl@0
  2407
  assert( i==1 || rollback==0 );
sl@0
  2408
sl@0
  2409
  assert( db->activeVdbeCnt>0 );  /* At least this one VM is active */
sl@0
  2410
sl@0
  2411
  if( db->activeVdbeCnt>1 && i && !db->autoCommit ){
sl@0
  2412
    /* If this instruction implements a COMMIT or ROLLBACK, other VMs are
sl@0
  2413
    ** still running, and a transaction is active, return an error indicating
sl@0
  2414
    ** that the other VMs must complete first. 
sl@0
  2415
    */
sl@0
  2416
    sqlite3SetString(&p->zErrMsg, db, "cannot %s transaction - "
sl@0
  2417
        "SQL statements in progress",
sl@0
  2418
        rollback ? "rollback" : "commit");
sl@0
  2419
    rc = SQLITE_ERROR;
sl@0
  2420
  }else if( i!=db->autoCommit ){
sl@0
  2421
    if( pOp->p2 ){
sl@0
  2422
      assert( i==1 );
sl@0
  2423
      sqlite3RollbackAll(db);
sl@0
  2424
      db->autoCommit = 1;
sl@0
  2425
    }else{
sl@0
  2426
      db->autoCommit = i;
sl@0
  2427
      if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
sl@0
  2428
        p->pc = pc;
sl@0
  2429
        db->autoCommit = 1-i;
sl@0
  2430
        p->rc = rc = SQLITE_BUSY;
sl@0
  2431
        goto vdbe_return;
sl@0
  2432
      }
sl@0
  2433
    }
sl@0
  2434
    if( p->rc==SQLITE_OK ){
sl@0
  2435
      rc = SQLITE_DONE;
sl@0
  2436
    }else{
sl@0
  2437
      rc = SQLITE_ERROR;
sl@0
  2438
    }
sl@0
  2439
    goto vdbe_return;
sl@0
  2440
  }else{
sl@0
  2441
    sqlite3SetString(&p->zErrMsg, db,
sl@0
  2442
        (!i)?"cannot start a transaction within a transaction":(
sl@0
  2443
        (rollback)?"cannot rollback - no transaction is active":
sl@0
  2444
                   "cannot commit - no transaction is active"));
sl@0
  2445
         
sl@0
  2446
    rc = SQLITE_ERROR;
sl@0
  2447
  }
sl@0
  2448
  break;
sl@0
  2449
}
sl@0
  2450
sl@0
  2451
/* Opcode: Transaction P1 P2 * * *
sl@0
  2452
**
sl@0
  2453
** Begin a transaction.  The transaction ends when a Commit or Rollback
sl@0
  2454
** opcode is encountered.  Depending on the ON CONFLICT setting, the
sl@0
  2455
** transaction might also be rolled back if an error is encountered.
sl@0
  2456
**
sl@0
  2457
** P1 is the index of the database file on which the transaction is
sl@0
  2458
** started.  Index 0 is the main database file and index 1 is the
sl@0
  2459
** file used for temporary tables.  Indices of 2 or more are used for
sl@0
  2460
** attached databases.
sl@0
  2461
**
sl@0
  2462
** If P2 is non-zero, then a write-transaction is started.  A RESERVED lock is
sl@0
  2463
** obtained on the database file when a write-transaction is started.  No
sl@0
  2464
** other process can start another write transaction while this transaction is
sl@0
  2465
** underway.  Starting a write transaction also creates a rollback journal. A
sl@0
  2466
** write transaction must be started before any changes can be made to the
sl@0
  2467
** database.  If P2 is 2 or greater then an EXCLUSIVE lock is also obtained
sl@0
  2468
** on the file.
sl@0
  2469
**
sl@0
  2470
** If P2 is zero, then a read-lock is obtained on the database file.
sl@0
  2471
*/
sl@0
  2472
case OP_Transaction: {
sl@0
  2473
  int i = pOp->p1;
sl@0
  2474
  Btree *pBt;
sl@0
  2475
sl@0
  2476
  assert( i>=0 && i<db->nDb );
sl@0
  2477
  assert( (p->btreeMask & (1<<i))!=0 );
sl@0
  2478
  pBt = db->aDb[i].pBt;
sl@0
  2479
sl@0
  2480
  if( pBt ){
sl@0
  2481
    rc = sqlite3BtreeBeginTrans(pBt, pOp->p2);
sl@0
  2482
    if( rc==SQLITE_BUSY ){
sl@0
  2483
      p->pc = pc;
sl@0
  2484
      p->rc = rc = SQLITE_BUSY;
sl@0
  2485
      goto vdbe_return;
sl@0
  2486
    }
sl@0
  2487
    if( rc!=SQLITE_OK && rc!=SQLITE_READONLY /* && rc!=SQLITE_BUSY */ ){
sl@0
  2488
      goto abort_due_to_error;
sl@0
  2489
    }
sl@0
  2490
  }
sl@0
  2491
  break;
sl@0
  2492
}
sl@0
  2493
sl@0
  2494
/* Opcode: ReadCookie P1 P2 P3 * *
sl@0
  2495
**
sl@0
  2496
** Read cookie number P3 from database P1 and write it into register P2.
sl@0
  2497
** P3==0 is the schema version.  P3==1 is the database format.
sl@0
  2498
** P3==2 is the recommended pager cache size, and so forth.  P1==0 is
sl@0
  2499
** the main database file and P1==1 is the database file used to store
sl@0
  2500
** temporary tables.
sl@0
  2501
**
sl@0
  2502
** If P1 is negative, then this is a request to read the size of a
sl@0
  2503
** databases free-list. P3 must be set to 1 in this case. The actual
sl@0
  2504
** database accessed is ((P1+1)*-1). For example, a P1 parameter of -1
sl@0
  2505
** corresponds to database 0 ("main"), a P1 of -2 is database 1 ("temp").
sl@0
  2506
**
sl@0
  2507
** There must be a read-lock on the database (either a transaction
sl@0
  2508
** must be started or there must be an open cursor) before
sl@0
  2509
** executing this instruction.
sl@0
  2510
*/
sl@0
  2511
case OP_ReadCookie: {               /* out2-prerelease */
sl@0
  2512
  int iMeta;
sl@0
  2513
  int iDb = pOp->p1;
sl@0
  2514
  int iCookie = pOp->p3;
sl@0
  2515
sl@0
  2516
  assert( pOp->p3<SQLITE_N_BTREE_META );
sl@0
  2517
  if( iDb<0 ){
sl@0
  2518
    iDb = (-1*(iDb+1));
sl@0
  2519
    iCookie *= -1;
sl@0
  2520
  }
sl@0
  2521
  assert( iDb>=0 && iDb<db->nDb );
sl@0
  2522
  assert( db->aDb[iDb].pBt!=0 );
sl@0
  2523
  assert( (p->btreeMask & (1<<iDb))!=0 );
sl@0
  2524
  /* The indexing of meta values at the schema layer is off by one from
sl@0
  2525
  ** the indexing in the btree layer.  The btree considers meta[0] to
sl@0
  2526
  ** be the number of free pages in the database (a read-only value)
sl@0
  2527
  ** and meta[1] to be the schema cookie.  The schema layer considers
sl@0
  2528
  ** meta[1] to be the schema cookie.  So we have to shift the index
sl@0
  2529
  ** by one in the following statement.
sl@0
  2530
  */
sl@0
  2531
  rc = sqlite3BtreeGetMeta(db->aDb[iDb].pBt, 1 + iCookie, (u32 *)&iMeta);
sl@0
  2532
  pOut->u.i = iMeta;
sl@0
  2533
  MemSetTypeFlag(pOut, MEM_Int);
sl@0
  2534
  break;
sl@0
  2535
}
sl@0
  2536
sl@0
  2537
/* Opcode: SetCookie P1 P2 P3 * *
sl@0
  2538
**
sl@0
  2539
** Write the content of register P3 (interpreted as an integer)
sl@0
  2540
** into cookie number P2 of database P1.
sl@0
  2541
** P2==0 is the schema version.  P2==1 is the database format.
sl@0
  2542
** P2==2 is the recommended pager cache size, and so forth.  P1==0 is
sl@0
  2543
** the main database file and P1==1 is the database file used to store
sl@0
  2544
** temporary tables.
sl@0
  2545
**
sl@0
  2546
** A transaction must be started before executing this opcode.
sl@0
  2547
*/
sl@0
  2548
case OP_SetCookie: {       /* in3 */
sl@0
  2549
  Db *pDb;
sl@0
  2550
  assert( pOp->p2<SQLITE_N_BTREE_META );
sl@0
  2551
  assert( pOp->p1>=0 && pOp->p1<db->nDb );
sl@0
  2552
  assert( (p->btreeMask & (1<<pOp->p1))!=0 );
sl@0
  2553
  pDb = &db->aDb[pOp->p1];
sl@0
  2554
  assert( pDb->pBt!=0 );
sl@0
  2555
  sqlite3VdbeMemIntegerify(pIn3);
sl@0
  2556
  /* See note about index shifting on OP_ReadCookie */
sl@0
  2557
  rc = sqlite3BtreeUpdateMeta(pDb->pBt, 1+pOp->p2, (int)pIn3->u.i);
sl@0
  2558
  if( pOp->p2==0 ){
sl@0
  2559
    /* When the schema cookie changes, record the new cookie internally */
sl@0
  2560
    pDb->pSchema->schema_cookie = pIn3->u.i;
sl@0
  2561
    db->flags |= SQLITE_InternChanges;
sl@0
  2562
  }else if( pOp->p2==1 ){
sl@0
  2563
    /* Record changes in the file format */
sl@0
  2564
    pDb->pSchema->file_format = pIn3->u.i;
sl@0
  2565
  }
sl@0
  2566
  if( pOp->p1==1 ){
sl@0
  2567
    /* Invalidate all prepared statements whenever the TEMP database
sl@0
  2568
    ** schema is changed.  Ticket #1644 */
sl@0
  2569
    sqlite3ExpirePreparedStatements(db);
sl@0
  2570
  }
sl@0
  2571
  break;
sl@0
  2572
}
sl@0
  2573
sl@0
  2574
/* Opcode: VerifyCookie P1 P2 *
sl@0
  2575
**
sl@0
  2576
** Check the value of global database parameter number 0 (the
sl@0
  2577
** schema version) and make sure it is equal to P2.  
sl@0
  2578
** P1 is the database number which is 0 for the main database file
sl@0
  2579
** and 1 for the file holding temporary tables and some higher number
sl@0
  2580
** for auxiliary databases.
sl@0
  2581
**
sl@0
  2582
** The cookie changes its value whenever the database schema changes.
sl@0
  2583
** This operation is used to detect when that the cookie has changed
sl@0
  2584
** and that the current process needs to reread the schema.
sl@0
  2585
**
sl@0
  2586
** Either a transaction needs to have been started or an OP_Open needs
sl@0
  2587
** to be executed (to establish a read lock) before this opcode is
sl@0
  2588
** invoked.
sl@0
  2589
*/
sl@0
  2590
case OP_VerifyCookie: {
sl@0
  2591
  int iMeta;
sl@0
  2592
  Btree *pBt;
sl@0
  2593
  assert( pOp->p1>=0 && pOp->p1<db->nDb );
sl@0
  2594
  assert( (p->btreeMask & (1<<pOp->p1))!=0 );
sl@0
  2595
  pBt = db->aDb[pOp->p1].pBt;
sl@0
  2596
  if( pBt ){
sl@0
  2597
    rc = sqlite3BtreeGetMeta(pBt, 1, (u32 *)&iMeta);
sl@0
  2598
  }else{
sl@0
  2599
    rc = SQLITE_OK;
sl@0
  2600
    iMeta = 0;
sl@0
  2601
  }
sl@0
  2602
  if( rc==SQLITE_OK && iMeta!=pOp->p2 ){
sl@0
  2603
    sqlite3DbFree(db, p->zErrMsg);
sl@0
  2604
    p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed");
sl@0
  2605
    /* If the schema-cookie from the database file matches the cookie 
sl@0
  2606
    ** stored with the in-memory representation of the schema, do
sl@0
  2607
    ** not reload the schema from the database file.
sl@0
  2608
    **
sl@0
  2609
    ** If virtual-tables are in use, this is not just an optimization.
sl@0
  2610
    ** Often, v-tables store their data in other SQLite tables, which
sl@0
  2611
    ** are queried from within xNext() and other v-table methods using
sl@0
  2612
    ** prepared queries. If such a query is out-of-date, we do not want to
sl@0
  2613
    ** discard the database schema, as the user code implementing the
sl@0
  2614
    ** v-table would have to be ready for the sqlite3_vtab structure itself
sl@0
  2615
    ** to be invalidated whenever sqlite3_step() is called from within 
sl@0
  2616
    ** a v-table method.
sl@0
  2617
    */
sl@0
  2618
    if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){
sl@0
  2619
      sqlite3ResetInternalSchema(db, pOp->p1);
sl@0
  2620
    }
sl@0
  2621
sl@0
  2622
    sqlite3ExpirePreparedStatements(db);
sl@0
  2623
    rc = SQLITE_SCHEMA;
sl@0
  2624
  }
sl@0
  2625
  break;
sl@0
  2626
}
sl@0
  2627
sl@0
  2628
/* Opcode: OpenRead P1 P2 P3 P4 P5
sl@0
  2629
**
sl@0
  2630
** Open a read-only cursor for the database table whose root page is
sl@0
  2631
** P2 in a database file.  The database file is determined by P3. 
sl@0
  2632
** P3==0 means the main database, P3==1 means the database used for 
sl@0
  2633
** temporary tables, and P3>1 means used the corresponding attached
sl@0
  2634
** database.  Give the new cursor an identifier of P1.  The P1
sl@0
  2635
** values need not be contiguous but all P1 values should be small integers.
sl@0
  2636
** It is an error for P1 to be negative.
sl@0
  2637
**
sl@0
  2638
** If P5!=0 then use the content of register P2 as the root page, not
sl@0
  2639
** the value of P2 itself.
sl@0
  2640
**
sl@0
  2641
** There will be a read lock on the database whenever there is an
sl@0
  2642
** open cursor.  If the database was unlocked prior to this instruction
sl@0
  2643
** then a read lock is acquired as part of this instruction.  A read
sl@0
  2644
** lock allows other processes to read the database but prohibits
sl@0
  2645
** any other process from modifying the database.  The read lock is
sl@0
  2646
** released when all cursors are closed.  If this instruction attempts
sl@0
  2647
** to get a read lock but fails, the script terminates with an
sl@0
  2648
** SQLITE_BUSY error code.
sl@0
  2649
**
sl@0
  2650
** The P4 value is a pointer to a KeyInfo structure that defines the
sl@0
  2651
** content and collating sequence of indices.  P4 is NULL for cursors
sl@0
  2652
** that are not pointing to indices.
sl@0
  2653
**
sl@0
  2654
** See also OpenWrite.
sl@0
  2655
*/
sl@0
  2656
/* Opcode: OpenWrite P1 P2 P3 P4 P5
sl@0
  2657
**
sl@0
  2658
** Open a read/write cursor named P1 on the table or index whose root
sl@0
  2659
** page is P2.  Or if P5!=0 use the content of register P2 to find the
sl@0
  2660
** root page.
sl@0
  2661
**
sl@0
  2662
** The P4 value is a pointer to a KeyInfo structure that defines the
sl@0
  2663
** content and collating sequence of indices.  P4 is NULL for cursors
sl@0
  2664
** that are not pointing to indices.
sl@0
  2665
**
sl@0
  2666
** This instruction works just like OpenRead except that it opens the cursor
sl@0
  2667
** in read/write mode.  For a given table, there can be one or more read-only
sl@0
  2668
** cursors or a single read/write cursor but not both.
sl@0
  2669
**
sl@0
  2670
** See also OpenRead.
sl@0
  2671
*/
sl@0
  2672
case OP_OpenRead:
sl@0
  2673
case OP_OpenWrite: {
sl@0
  2674
  int i = pOp->p1;
sl@0
  2675
  int p2 = pOp->p2;
sl@0
  2676
  int iDb = pOp->p3;
sl@0
  2677
  int wrFlag;
sl@0
  2678
  Btree *pX;
sl@0
  2679
  Cursor *pCur;
sl@0
  2680
  Db *pDb;
sl@0
  2681
  
sl@0
  2682
  assert( iDb>=0 && iDb<db->nDb );
sl@0
  2683
  assert( (p->btreeMask & (1<<iDb))!=0 );
sl@0
  2684
  pDb = &db->aDb[iDb];
sl@0
  2685
  pX = pDb->pBt;
sl@0
  2686
  assert( pX!=0 );
sl@0
  2687
  if( pOp->opcode==OP_OpenWrite ){
sl@0
  2688
    wrFlag = 1;
sl@0
  2689
    if( pDb->pSchema->file_format < p->minWriteFileFormat ){
sl@0
  2690
      p->minWriteFileFormat = pDb->pSchema->file_format;
sl@0
  2691
    }
sl@0
  2692
  }else{
sl@0
  2693
    wrFlag = 0;
sl@0
  2694
  }
sl@0
  2695
  if( pOp->p5 ){
sl@0
  2696
    assert( p2>0 );
sl@0
  2697
    assert( p2<=p->nMem );
sl@0
  2698
    pIn2 = &p->aMem[p2];
sl@0
  2699
    sqlite3VdbeMemIntegerify(pIn2);
sl@0
  2700
    p2 = pIn2->u.i;
sl@0
  2701
    assert( p2>=2 );
sl@0
  2702
  }
sl@0
  2703
  assert( i>=0 );
sl@0
  2704
  pCur = allocateCursor(p, i, &pOp[-1], iDb, 1);
sl@0
  2705
  if( pCur==0 ) goto no_mem;
sl@0
  2706
  pCur->nullRow = 1;
sl@0
  2707
  rc = sqlite3BtreeCursor(pX, p2, wrFlag, pOp->p4.p, pCur->pCursor);
sl@0
  2708
  if( pOp->p4type==P4_KEYINFO ){
sl@0
  2709
    pCur->pKeyInfo = pOp->p4.pKeyInfo;
sl@0
  2710
    pCur->pIncrKey = &pCur->pKeyInfo->incrKey;
sl@0
  2711
    pCur->pKeyInfo->enc = ENC(p->db);
sl@0
  2712
  }else{
sl@0
  2713
    pCur->pKeyInfo = 0;
sl@0
  2714
    pCur->pIncrKey = &pCur->bogusIncrKey;
sl@0
  2715
  }
sl@0
  2716
  switch( rc ){
sl@0
  2717
    case SQLITE_BUSY: {
sl@0
  2718
      p->pc = pc;
sl@0
  2719
      p->rc = rc = SQLITE_BUSY;
sl@0
  2720
      goto vdbe_return;
sl@0
  2721
    }
sl@0
  2722
    case SQLITE_OK: {
sl@0
  2723
      int flags = sqlite3BtreeFlags(pCur->pCursor);
sl@0
  2724
      /* Sanity checking.  Only the lower four bits of the flags byte should
sl@0
  2725
      ** be used.  Bit 3 (mask 0x08) is unpredictable.  The lower 3 bits
sl@0
  2726
      ** (mask 0x07) should be either 5 (intkey+leafdata for tables) or
sl@0
  2727
      ** 2 (zerodata for indices).  If these conditions are not met it can
sl@0
  2728
      ** only mean that we are dealing with a corrupt database file
sl@0
  2729
      */
sl@0
  2730
      if( (flags & 0xf0)!=0 || ((flags & 0x07)!=5 && (flags & 0x07)!=2) ){
sl@0
  2731
        rc = SQLITE_CORRUPT_BKPT;
sl@0
  2732
        goto abort_due_to_error;
sl@0
  2733
      }
sl@0
  2734
      pCur->isTable = (flags & BTREE_INTKEY)!=0;
sl@0
  2735
      pCur->isIndex = (flags & BTREE_ZERODATA)!=0;
sl@0
  2736
      /* If P4==0 it means we are expected to open a table.  If P4!=0 then
sl@0
  2737
      ** we expect to be opening an index.  If this is not what happened,
sl@0
  2738
      ** then the database is corrupt
sl@0
  2739
      */
sl@0
  2740
      if( (pCur->isTable && pOp->p4type==P4_KEYINFO)
sl@0
  2741
       || (pCur->isIndex && pOp->p4type!=P4_KEYINFO) ){
sl@0
  2742
        rc = SQLITE_CORRUPT_BKPT;
sl@0
  2743
        goto abort_due_to_error;
sl@0
  2744
      }
sl@0
  2745
      break;
sl@0
  2746
    }
sl@0
  2747
    case SQLITE_EMPTY: {
sl@0
  2748
      pCur->isTable = pOp->p4type!=P4_KEYINFO;
sl@0
  2749
      pCur->isIndex = !pCur->isTable;
sl@0
  2750
      pCur->pCursor = 0;
sl@0
  2751
      rc = SQLITE_OK;
sl@0
  2752
      break;
sl@0
  2753
    }
sl@0
  2754
    default: {
sl@0
  2755
      goto abort_due_to_error;
sl@0
  2756
    }
sl@0
  2757
  }
sl@0
  2758
  break;
sl@0
  2759
}
sl@0
  2760
sl@0
  2761
/* Opcode: OpenEphemeral P1 P2 * P4 *
sl@0
  2762
**
sl@0
  2763
** Open a new cursor P1 to a transient table.
sl@0
  2764
** The cursor is always opened read/write even if 
sl@0
  2765
** the main database is read-only.  The transient or virtual
sl@0
  2766
** table is deleted automatically when the cursor is closed.
sl@0
  2767
**
sl@0
  2768
** P2 is the number of columns in the virtual table.
sl@0
  2769
** The cursor points to a BTree table if P4==0 and to a BTree index
sl@0
  2770
** if P4 is not 0.  If P4 is not NULL, it points to a KeyInfo structure
sl@0
  2771
** that defines the format of keys in the index.
sl@0
  2772
**
sl@0
  2773
** This opcode was once called OpenTemp.  But that created
sl@0
  2774
** confusion because the term "temp table", might refer either
sl@0
  2775
** to a TEMP table at the SQL level, or to a table opened by
sl@0
  2776
** this opcode.  Then this opcode was call OpenVirtual.  But
sl@0
  2777
** that created confusion with the whole virtual-table idea.
sl@0
  2778
*/
sl@0
  2779
case OP_OpenEphemeral: {
sl@0
  2780
  int i = pOp->p1;
sl@0
  2781
  Cursor *pCx;
sl@0
  2782
  static const int openFlags = 
sl@0
  2783
      SQLITE_OPEN_READWRITE |
sl@0
  2784
      SQLITE_OPEN_CREATE |
sl@0
  2785
      SQLITE_OPEN_EXCLUSIVE |
sl@0
  2786
      SQLITE_OPEN_DELETEONCLOSE |
sl@0
  2787
      SQLITE_OPEN_TRANSIENT_DB;
sl@0
  2788
sl@0
  2789
  assert( i>=0 );
sl@0
  2790
  pCx = allocateCursor(p, i, pOp, -1, 1);
sl@0
  2791
  if( pCx==0 ) goto no_mem;
sl@0
  2792
  pCx->nullRow = 1;
sl@0
  2793
  rc = sqlite3BtreeFactory(db, 0, 1, SQLITE_DEFAULT_TEMP_CACHE_SIZE, openFlags,
sl@0
  2794
                           &pCx->pBt);
sl@0
  2795
  if( rc==SQLITE_OK ){
sl@0
  2796
    rc = sqlite3BtreeBeginTrans(pCx->pBt, 1);
sl@0
  2797
  }
sl@0
  2798
  if( rc==SQLITE_OK ){
sl@0
  2799
    /* If a transient index is required, create it by calling
sl@0
  2800
    ** sqlite3BtreeCreateTable() with the BTREE_ZERODATA flag before
sl@0
  2801
    ** opening it. If a transient table is required, just use the
sl@0
  2802
    ** automatically created table with root-page 1 (an INTKEY table).
sl@0
  2803
    */
sl@0
  2804
    if( pOp->p4.pKeyInfo ){
sl@0
  2805
      int pgno;
sl@0
  2806
      assert( pOp->p4type==P4_KEYINFO );
sl@0
  2807
      rc = sqlite3BtreeCreateTable(pCx->pBt, &pgno, BTREE_ZERODATA); 
sl@0
  2808
      if( rc==SQLITE_OK ){
sl@0
  2809
        assert( pgno==MASTER_ROOT+1 );
sl@0
  2810
        rc = sqlite3BtreeCursor(pCx->pBt, pgno, 1, 
sl@0
  2811
                                (KeyInfo*)pOp->p4.z, pCx->pCursor);
sl@0
  2812
        pCx->pKeyInfo = pOp->p4.pKeyInfo;
sl@0
  2813
        pCx->pKeyInfo->enc = ENC(p->db);
sl@0
  2814
        pCx->pIncrKey = &pCx->pKeyInfo->incrKey;
sl@0
  2815
      }
sl@0
  2816
      pCx->isTable = 0;
sl@0
  2817
    }else{
sl@0
  2818
      rc = sqlite3BtreeCursor(pCx->pBt, MASTER_ROOT, 1, 0, pCx->pCursor);
sl@0
  2819
      pCx->isTable = 1;
sl@0
  2820
      pCx->pIncrKey = &pCx->bogusIncrKey;
sl@0
  2821
    }
sl@0
  2822
  }
sl@0
  2823
  pCx->isIndex = !pCx->isTable;
sl@0
  2824
  break;
sl@0
  2825
}
sl@0
  2826
sl@0
  2827
/* Opcode: OpenPseudo P1 P2 * * *
sl@0
  2828
**
sl@0
  2829
** Open a new cursor that points to a fake table that contains a single
sl@0
  2830
** row of data.  Any attempt to write a second row of data causes the
sl@0
  2831
** first row to be deleted.  All data is deleted when the cursor is
sl@0
  2832
** closed.
sl@0
  2833
**
sl@0
  2834
** A pseudo-table created by this opcode is useful for holding the
sl@0
  2835
** NEW or OLD tables in a trigger.  Also used to hold the a single
sl@0
  2836
** row output from the sorter so that the row can be decomposed into
sl@0
  2837
** individual columns using the OP_Column opcode.
sl@0
  2838
**
sl@0
  2839
** When OP_Insert is executed to insert a row in to the pseudo table,
sl@0
  2840
** the pseudo-table cursor may or may not make it's own copy of the
sl@0
  2841
** original row data. If P2 is 0, then the pseudo-table will copy the
sl@0
  2842
** original row data. Otherwise, a pointer to the original memory cell
sl@0
  2843
** is stored. In this case, the vdbe program must ensure that the 
sl@0
  2844
** memory cell containing the row data is not overwritten until the
sl@0
  2845
** pseudo table is closed (or a new row is inserted into it).
sl@0
  2846
*/
sl@0
  2847
case OP_OpenPseudo: {
sl@0
  2848
  int i = pOp->p1;
sl@0
  2849
  Cursor *pCx;
sl@0
  2850
  assert( i>=0 );
sl@0
  2851
  pCx = allocateCursor(p, i, &pOp[-1], -1, 0);
sl@0
  2852
  if( pCx==0 ) goto no_mem;
sl@0
  2853
  pCx->nullRow = 1;
sl@0
  2854
  pCx->pseudoTable = 1;
sl@0
  2855
  pCx->ephemPseudoTable = pOp->p2;
sl@0
  2856
  pCx->pIncrKey = &pCx->bogusIncrKey;
sl@0
  2857
  pCx->isTable = 1;
sl@0
  2858
  pCx->isIndex = 0;
sl@0
  2859
  break;
sl@0
  2860
}
sl@0
  2861
sl@0
  2862
/* Opcode: Close P1 * * * *
sl@0
  2863
**
sl@0
  2864
** Close a cursor previously opened as P1.  If P1 is not
sl@0
  2865
** currently open, this instruction is a no-op.
sl@0
  2866
*/
sl@0
  2867
case OP_Close: {
sl@0
  2868
  int i = pOp->p1;
sl@0
  2869
  assert( i>=0 && i<p->nCursor );
sl@0
  2870
  sqlite3VdbeFreeCursor(p, p->apCsr[i]);
sl@0
  2871
  p->apCsr[i] = 0;
sl@0
  2872
  break;
sl@0
  2873
}
sl@0
  2874
sl@0
  2875
/* Opcode: MoveGe P1 P2 P3 P4 *
sl@0
  2876
**
sl@0
  2877
** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 
sl@0
  2878
** use the integer value in register P3 as a key. If cursor P1 refers 
sl@0
  2879
** to an SQL index, then P3 is the first in an array of P4 registers 
sl@0
  2880
** that are used as an unpacked index key. 
sl@0
  2881
**
sl@0
  2882
** Reposition cursor P1 so that  it points to the smallest entry that 
sl@0
  2883
** is greater than or equal to the key value. If there are no records 
sl@0
  2884
** greater than or equal to the key and P2 is not zero, then jump to P2.
sl@0
  2885
**
sl@0
  2886
** A special feature of this opcode (and different from the
sl@0
  2887
** related OP_MoveGt, OP_MoveLt, and OP_MoveLe) is that if P2 is
sl@0
  2888
** zero and P1 is an SQL table (a b-tree with integer keys) then
sl@0
  2889
** the seek is deferred until it is actually needed.  It might be
sl@0
  2890
** the case that the cursor is never accessed.  By deferring the
sl@0
  2891
** seek, we avoid unnecessary seeks.
sl@0
  2892
**
sl@0
  2893
** See also: Found, NotFound, Distinct, MoveLt, MoveGt, MoveLe
sl@0
  2894
*/
sl@0
  2895
/* Opcode: MoveGt P1 P2 P3 P4 *
sl@0
  2896
**
sl@0
  2897
** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 
sl@0
  2898
** use the integer value in register P3 as a key. If cursor P1 refers 
sl@0
  2899
** to an SQL index, then P3 is the first in an array of P4 registers 
sl@0
  2900
** that are used as an unpacked index key. 
sl@0
  2901
**
sl@0
  2902
** Reposition cursor P1 so that  it points to the smallest entry that 
sl@0
  2903
** is greater than the key value. If there are no records greater than 
sl@0
  2904
** the key and P2 is not zero, then jump to P2.
sl@0
  2905
**
sl@0
  2906
** See also: Found, NotFound, Distinct, MoveLt, MoveGe, MoveLe
sl@0
  2907
*/
sl@0
  2908
/* Opcode: MoveLt P1 P2 P3 P4 * 
sl@0
  2909
**
sl@0
  2910
** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 
sl@0
  2911
** use the integer value in register P3 as a key. If cursor P1 refers 
sl@0
  2912
** to an SQL index, then P3 is the first in an array of P4 registers 
sl@0
  2913
** that are used as an unpacked index key. 
sl@0
  2914
**
sl@0
  2915
** Reposition cursor P1 so that  it points to the largest entry that 
sl@0
  2916
** is less than the key value. If there are no records less than 
sl@0
  2917
** the key and P2 is not zero, then jump to P2.
sl@0
  2918
**
sl@0
  2919
** See also: Found, NotFound, Distinct, MoveGt, MoveGe, MoveLe
sl@0
  2920
*/
sl@0
  2921
/* Opcode: MoveLe P1 P2 P3 P4 *
sl@0
  2922
**
sl@0
  2923
** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 
sl@0
  2924
** use the integer value in register P3 as a key. If cursor P1 refers 
sl@0
  2925
** to an SQL index, then P3 is the first in an array of P4 registers 
sl@0
  2926
** that are used as an unpacked index key. 
sl@0
  2927
**
sl@0
  2928
** Reposition cursor P1 so that it points to the largest entry that 
sl@0
  2929
** is less than or equal to the key value. If there are no records 
sl@0
  2930
** less than or equal to the key and P2 is not zero, then jump to P2.
sl@0
  2931
**
sl@0
  2932
** See also: Found, NotFound, Distinct, MoveGt, MoveGe, MoveLt
sl@0
  2933
*/
sl@0
  2934
case OP_MoveLt:         /* jump, in3 */
sl@0
  2935
case OP_MoveLe:         /* jump, in3 */
sl@0
  2936
case OP_MoveGe:         /* jump, in3 */
sl@0
  2937
case OP_MoveGt: {       /* jump, in3 */
sl@0
  2938
  int i = pOp->p1;
sl@0
  2939
  Cursor *pC;
sl@0
  2940
sl@0
  2941
  assert( i>=0 && i<p->nCursor );
sl@0
  2942
  pC = p->apCsr[i];
sl@0
  2943
  assert( pC!=0 );
sl@0
  2944
  if( pC->pCursor!=0 ){
sl@0
  2945
    int res, oc;
sl@0
  2946
    oc = pOp->opcode;
sl@0
  2947
    pC->nullRow = 0;
sl@0
  2948
    *pC->pIncrKey = oc==OP_MoveGt || oc==OP_MoveLe;
sl@0
  2949
    if( pC->isTable ){
sl@0
  2950
      i64 iKey = sqlite3VdbeIntValue(pIn3);
sl@0
  2951
      if( pOp->p2==0 ){
sl@0
  2952
        assert( pOp->opcode==OP_MoveGe );
sl@0
  2953
        pC->movetoTarget = iKey;
sl@0
  2954
        pC->rowidIsValid = 0;
sl@0
  2955
        pC->deferredMoveto = 1;
sl@0
  2956
        break;
sl@0
  2957
      }
sl@0
  2958
      rc = sqlite3BtreeMoveto(pC->pCursor, 0, 0, (u64)iKey, 0, &res);
sl@0
  2959
      if( rc!=SQLITE_OK ){
sl@0
  2960
        goto abort_due_to_error;
sl@0
  2961
      }
sl@0
  2962
      pC->lastRowid = iKey;
sl@0
  2963
      pC->rowidIsValid = res==0;
sl@0
  2964
    }else{
sl@0
  2965
      UnpackedRecord r;
sl@0
  2966
      int nField = pOp->p4.i;
sl@0
  2967
      assert( pOp->p4type==P4_INT32 );
sl@0
  2968
      assert( nField>0 );
sl@0
  2969
      r.pKeyInfo = pC->pKeyInfo;
sl@0
  2970
      r.nField = nField;
sl@0
  2971
      r.needFree = 0;
sl@0
  2972
      r.needDestroy = 0;
sl@0
  2973
      r.aMem = &p->aMem[pOp->p3];
sl@0
  2974
      rc = sqlite3BtreeMoveto(pC->pCursor, 0, &r, 0, 0, &res);
sl@0
  2975
      if( rc!=SQLITE_OK ){
sl@0
  2976
        goto abort_due_to_error;
sl@0
  2977
      }
sl@0
  2978
      pC->rowidIsValid = 0;
sl@0
  2979
    }
sl@0
  2980
    pC->deferredMoveto = 0;
sl@0
  2981
    pC->cacheStatus = CACHE_STALE;
sl@0
  2982
    *pC->pIncrKey = 0;
sl@0
  2983
#ifdef SQLITE_TEST
sl@0
  2984
    sqlite3_search_count++;
sl@0
  2985
#endif
sl@0
  2986
    if( oc==OP_MoveGe || oc==OP_MoveGt ){
sl@0
  2987
      if( res<0 ){
sl@0
  2988
        rc = sqlite3BtreeNext(pC->pCursor, &res);
sl@0
  2989
        if( rc!=SQLITE_OK ) goto abort_due_to_error;
sl@0
  2990
        pC->rowidIsValid = 0;
sl@0
  2991
      }else{
sl@0
  2992
        res = 0;
sl@0
  2993
      }
sl@0
  2994
    }else{
sl@0
  2995
      assert( oc==OP_MoveLt || oc==OP_MoveLe );
sl@0
  2996
      if( res>=0 ){
sl@0
  2997
        rc = sqlite3BtreePrevious(pC->pCursor, &res);
sl@0
  2998
        if( rc!=SQLITE_OK ) goto abort_due_to_error;
sl@0
  2999
        pC->rowidIsValid = 0;
sl@0
  3000
      }else{
sl@0
  3001
        /* res might be negative because the table is empty.  Check to
sl@0
  3002
        ** see if this is the case.
sl@0
  3003
        */
sl@0
  3004
        res = sqlite3BtreeEof(pC->pCursor);
sl@0
  3005
      }
sl@0
  3006
    }
sl@0
  3007
    assert( pOp->p2>0 );
sl@0
  3008
    if( res ){
sl@0
  3009
      pc = pOp->p2 - 1;
sl@0
  3010
    }
sl@0
  3011
  }else if( !pC->pseudoTable ){
sl@0
  3012
    /* This happens when attempting to open the sqlite3_master table
sl@0
  3013
    ** for read access returns SQLITE_EMPTY. In this case always
sl@0
  3014
    ** take the jump (since there are no records in the table).
sl@0
  3015
    */
sl@0
  3016
    pc = pOp->p2 - 1;
sl@0
  3017
  }
sl@0
  3018
  break;
sl@0
  3019
}
sl@0
  3020
sl@0
  3021
/* Opcode: Found P1 P2 P3 * *
sl@0
  3022
**
sl@0
  3023
** Register P3 holds a blob constructed by MakeRecord.  P1 is an index.
sl@0
  3024
** If an entry that matches the value in register p3 exists in P1 then
sl@0
  3025
** jump to P2.  If the P3 value does not match any entry in P1
sl@0
  3026
** then fall thru.  The P1 cursor is left pointing at the matching entry
sl@0
  3027
** if it exists.
sl@0
  3028
**
sl@0
  3029
** This instruction is used to implement the IN operator where the
sl@0
  3030
** left-hand side is a SELECT statement.  P1 may be a true index, or it
sl@0
  3031
** may be a temporary index that holds the results of the SELECT
sl@0
  3032
** statement.   This instruction is also used to implement the
sl@0
  3033
** DISTINCT keyword in SELECT statements.
sl@0
  3034
**
sl@0
  3035
** This instruction checks if index P1 contains a record for which 
sl@0
  3036
** the first N serialized values exactly match the N serialized values
sl@0
  3037
** in the record in register P3, where N is the total number of values in
sl@0
  3038
** the P3 record (the P3 record is a prefix of the P1 record). 
sl@0
  3039
**
sl@0
  3040
** See also: NotFound, MoveTo, IsUnique, NotExists
sl@0
  3041
*/
sl@0
  3042
/* Opcode: NotFound P1 P2 P3 * *
sl@0
  3043
**
sl@0
  3044
** Register P3 holds a blob constructed by MakeRecord.  P1 is
sl@0
  3045
** an index.  If no entry exists in P1 that matches the blob then jump
sl@0
  3046
** to P2.  If an entry does existing, fall through.  The cursor is left
sl@0
  3047
** pointing to the entry that matches.
sl@0
  3048
**
sl@0
  3049
** See also: Found, MoveTo, NotExists, IsUnique
sl@0
  3050
*/
sl@0
  3051
case OP_NotFound:       /* jump, in3 */
sl@0
  3052
case OP_Found: {        /* jump, in3 */
sl@0
  3053
  int i = pOp->p1;
sl@0
  3054
  int alreadyExists = 0;
sl@0
  3055
  Cursor *pC;
sl@0
  3056
  assert( i>=0 && i<p->nCursor );
sl@0
  3057
  assert( p->apCsr[i]!=0 );
sl@0
  3058
  if( (pC = p->apCsr[i])->pCursor!=0 ){
sl@0
  3059
    int res;
sl@0
  3060
    assert( pC->isTable==0 );
sl@0
  3061
    assert( pIn3->flags & MEM_Blob );
sl@0
  3062
    if( pOp->opcode==OP_Found ){
sl@0
  3063
      pC->pKeyInfo->prefixIsEqual = 1;
sl@0
  3064
    }
sl@0
  3065
    rc = sqlite3BtreeMoveto(pC->pCursor, pIn3->z, 0, pIn3->n, 0, &res);
sl@0
  3066
    pC->pKeyInfo->prefixIsEqual = 0;
sl@0
  3067
    if( rc!=SQLITE_OK ){
sl@0
  3068
      break;
sl@0
  3069
    }
sl@0
  3070
    alreadyExists = (res==0);
sl@0
  3071
    pC->deferredMoveto = 0;
sl@0
  3072
    pC->cacheStatus = CACHE_STALE;
sl@0
  3073
  }
sl@0
  3074
  if( pOp->opcode==OP_Found ){
sl@0
  3075
    if( alreadyExists ) pc = pOp->p2 - 1;
sl@0
  3076
  }else{
sl@0
  3077
    if( !alreadyExists ) pc = pOp->p2 - 1;
sl@0
  3078
  }
sl@0
  3079
  break;
sl@0
  3080
}
sl@0
  3081
sl@0
  3082
/* Opcode: IsUnique P1 P2 P3 P4 *
sl@0
  3083
**
sl@0
  3084
** The P3 register contains an integer record number.  Call this
sl@0
  3085
** record number R.  The P4 register contains an index key created
sl@0
  3086
** using MakeIdxRec.  Call it K.
sl@0
  3087
**
sl@0
  3088
** P1 is an index.  So it has no data and its key consists of a
sl@0
  3089
** record generated by OP_MakeRecord where the last field is the 
sl@0
  3090
** rowid of the entry that the index refers to.
sl@0
  3091
** 
sl@0
  3092
** This instruction asks if there is an entry in P1 where the
sl@0
  3093
** fields matches K but the rowid is different from R.
sl@0
  3094
** If there is no such entry, then there is an immediate
sl@0
  3095
** jump to P2.  If any entry does exist where the index string
sl@0
  3096
** matches K but the record number is not R, then the record
sl@0
  3097
** number for that entry is written into P3 and control
sl@0
  3098
** falls through to the next instruction.
sl@0
  3099
**
sl@0
  3100
** See also: NotFound, NotExists, Found
sl@0
  3101
*/
sl@0
  3102
case OP_IsUnique: {        /* jump, in3 */
sl@0
  3103
  int i = pOp->p1;
sl@0
  3104
  Cursor *pCx;
sl@0
  3105
  BtCursor *pCrsr;
sl@0
  3106
  Mem *pK;
sl@0
  3107
  i64 R;
sl@0
  3108
sl@0
  3109
  /* Pop the value R off the top of the stack
sl@0
  3110
  */
sl@0
  3111
  assert( pOp->p4type==P4_INT32 );
sl@0
  3112
  assert( pOp->p4.i>0 && pOp->p4.i<=p->nMem );
sl@0
  3113
  pK = &p->aMem[pOp->p4.i];
sl@0
  3114
  sqlite3VdbeMemIntegerify(pIn3);
sl@0
  3115
  R = pIn3->u.i;
sl@0
  3116
  assert( i>=0 && i<p->nCursor );
sl@0
  3117
  pCx = p->apCsr[i];
sl@0
  3118
  assert( pCx!=0 );
sl@0
  3119
  pCrsr = pCx->pCursor;
sl@0
  3120
  if( pCrsr!=0 ){
sl@0
  3121
    int res;
sl@0
  3122
    i64 v;         /* The record number on the P1 entry that matches K */
sl@0
  3123
    char *zKey;    /* The value of K */
sl@0
  3124
    int nKey;      /* Number of bytes in K */
sl@0
  3125
    int len;       /* Number of bytes in K without the rowid at the end */
sl@0
  3126
    int szRowid;   /* Size of the rowid column at the end of zKey */
sl@0
  3127
sl@0
  3128
    /* Make sure K is a string and make zKey point to K
sl@0
  3129
    */
sl@0
  3130
    assert( pK->flags & MEM_Blob );
sl@0
  3131
    zKey = pK->z;
sl@0
  3132
    nKey = pK->n;
sl@0
  3133
sl@0
  3134
    /* sqlite3VdbeIdxRowidLen() only returns other than SQLITE_OK when the
sl@0
  3135
    ** record passed as an argument corrupt. Since the record in this case
sl@0
  3136
    ** has just been created by an OP_MakeRecord instruction, and not loaded
sl@0
  3137
    ** from the database file, it is not possible for it to be corrupt.
sl@0
  3138
    ** Therefore, assert(rc==SQLITE_OK).
sl@0
  3139
    */
sl@0
  3140
    rc = sqlite3VdbeIdxRowidLen((u8*)zKey, nKey, &szRowid);
sl@0
  3141
    assert(rc==SQLITE_OK);
sl@0
  3142
    len = nKey-szRowid;
sl@0
  3143
sl@0
  3144
    /* Search for an entry in P1 where all but the last four bytes match K.
sl@0
  3145
    ** If there is no such entry, jump immediately to P2.
sl@0
  3146
    */
sl@0
  3147
    assert( pCx->deferredMoveto==0 );
sl@0
  3148
    pCx->cacheStatus = CACHE_STALE;
sl@0
  3149
    rc = sqlite3BtreeMoveto(pCrsr, zKey, 0, len, 0, &res);
sl@0
  3150
    if( rc!=SQLITE_OK ){
sl@0
  3151
      goto abort_due_to_error;
sl@0
  3152
    }
sl@0
  3153
    if( res<0 ){
sl@0
  3154
      rc = sqlite3BtreeNext(pCrsr, &res);
sl@0
  3155
      if( res ){
sl@0
  3156
        pc = pOp->p2 - 1;
sl@0
  3157
        break;
sl@0
  3158
      }
sl@0
  3159
    }
sl@0
  3160
    rc = sqlite3VdbeIdxKeyCompare(pCx, 0, len, (u8*)zKey, &res); 
sl@0
  3161
    if( rc!=SQLITE_OK ) goto abort_due_to_error;
sl@0
  3162
    if( res>0 ){
sl@0
  3163
      pc = pOp->p2 - 1;
sl@0
  3164
      break;
sl@0
  3165
    }
sl@0
  3166
sl@0
  3167
    /* At this point, pCrsr is pointing to an entry in P1 where all but
sl@0
  3168
    ** the final entry (the rowid) matches K.  Check to see if the
sl@0
  3169
    ** final rowid column is different from R.  If it equals R then jump
sl@0
  3170
    ** immediately to P2.
sl@0
  3171
    */
sl@0
  3172
    rc = sqlite3VdbeIdxRowid(pCrsr, &v);
sl@0
  3173
    if( rc!=SQLITE_OK ){
sl@0
  3174
      goto abort_due_to_error;
sl@0
  3175
    }
sl@0
  3176
    if( v==R ){
sl@0
  3177
      pc = pOp->p2 - 1;
sl@0
  3178
      break;
sl@0
  3179
    }
sl@0
  3180
sl@0
  3181
    /* The final varint of the key is different from R.  Store it back
sl@0
  3182
    ** into register R3.  (The record number of an entry that violates
sl@0
  3183
    ** a UNIQUE constraint.)
sl@0
  3184
    */
sl@0
  3185
    pIn3->u.i = v;
sl@0
  3186
    assert( pIn3->flags&MEM_Int );
sl@0
  3187
  }
sl@0
  3188
  break;
sl@0
  3189
}
sl@0
  3190
sl@0
  3191
/* Opcode: NotExists P1 P2 P3 * *
sl@0
  3192
**
sl@0
  3193
** Use the content of register P3 as a integer key.  If a record 
sl@0
  3194
** with that key does not exist in table of P1, then jump to P2. 
sl@0
  3195
** If the record does exist, then fall thru.  The cursor is left 
sl@0
  3196
** pointing to the record if it exists.
sl@0
  3197
**
sl@0
  3198
** The difference between this operation and NotFound is that this
sl@0
  3199
** operation assumes the key is an integer and that P1 is a table whereas
sl@0
  3200
** NotFound assumes key is a blob constructed from MakeRecord and
sl@0
  3201
** P1 is an index.
sl@0
  3202
**
sl@0
  3203
** See also: Found, MoveTo, NotFound, IsUnique
sl@0
  3204
*/
sl@0
  3205
case OP_NotExists: {        /* jump, in3 */
sl@0
  3206
  int i = pOp->p1;
sl@0
  3207
  Cursor *pC;
sl@0
  3208
  BtCursor *pCrsr;
sl@0
  3209
  assert( i>=0 && i<p->nCursor );
sl@0
  3210
  assert( p->apCsr[i]!=0 );
sl@0
  3211
  if( (pCrsr = (pC = p->apCsr[i])->pCursor)!=0 ){
sl@0
  3212
    int res;
sl@0
  3213
    u64 iKey;
sl@0
  3214
    assert( pIn3->flags & MEM_Int );
sl@0
  3215
    assert( p->apCsr[i]->isTable );
sl@0
  3216
    iKey = intToKey(pIn3->u.i);
sl@0
  3217
    rc = sqlite3BtreeMoveto(pCrsr, 0, 0, iKey, 0,&res);
sl@0
  3218
    pC->lastRowid = pIn3->u.i;
sl@0
  3219
    pC->rowidIsValid = res==0;
sl@0
  3220
    pC->nullRow = 0;
sl@0
  3221
    pC->cacheStatus = CACHE_STALE;
sl@0
  3222
    /* res might be uninitialized if rc!=SQLITE_OK.  But if rc!=SQLITE_OK
sl@0
  3223
    ** processing is about to abort so we really do not care whether or not
sl@0
  3224
    ** the following jump is taken.  (In other words, do not stress over
sl@0
  3225
    ** the error that valgrind sometimes shows on the next statement when
sl@0
  3226
    ** running ioerr.test and similar failure-recovery test scripts.) */
sl@0
  3227
    if( res!=0 ){
sl@0
  3228
      pc = pOp->p2 - 1;
sl@0
  3229
      assert( pC->rowidIsValid==0 );
sl@0
  3230
    }
sl@0
  3231
  }else if( !pC->pseudoTable ){
sl@0
  3232
    /* This happens when an attempt to open a read cursor on the 
sl@0
  3233
    ** sqlite_master table returns SQLITE_EMPTY.
sl@0
  3234
    */
sl@0
  3235
    assert( pC->isTable );
sl@0
  3236
    pc = pOp->p2 - 1;
sl@0
  3237
    assert( pC->rowidIsValid==0 );
sl@0
  3238
  }
sl@0
  3239
  break;
sl@0
  3240
}
sl@0
  3241
sl@0
  3242
/* Opcode: Sequence P1 P2 * * *
sl@0
  3243
**
sl@0
  3244
** Find the next available sequence number for cursor P1.
sl@0
  3245
** Write the sequence number into register P2.
sl@0
  3246
** The sequence number on the cursor is incremented after this
sl@0
  3247
** instruction.  
sl@0
  3248
*/
sl@0
  3249
case OP_Sequence: {           /* out2-prerelease */
sl@0
  3250
  int i = pOp->p1;
sl@0
  3251
  assert( i>=0 && i<p->nCursor );
sl@0
  3252
  assert( p->apCsr[i]!=0 );
sl@0
  3253
  pOut->u.i = p->apCsr[i]->seqCount++;
sl@0
  3254
  MemSetTypeFlag(pOut, MEM_Int);
sl@0
  3255
  break;
sl@0
  3256
}
sl@0
  3257
sl@0
  3258
sl@0
  3259
/* Opcode: NewRowid P1 P2 P3 * *
sl@0
  3260
**
sl@0
  3261
** Get a new integer record number (a.k.a "rowid") used as the key to a table.
sl@0
  3262
** The record number is not previously used as a key in the database
sl@0
  3263
** table that cursor P1 points to.  The new record number is written
sl@0
  3264
** written to register P2.
sl@0
  3265
**
sl@0
  3266
** If P3>0 then P3 is a register that holds the largest previously
sl@0
  3267
** generated record number.  No new record numbers are allowed to be less
sl@0
  3268
** than this value.  When this value reaches its maximum, a SQLITE_FULL
sl@0
  3269
** error is generated.  The P3 register is updated with the generated
sl@0
  3270
** record number.  This P3 mechanism is used to help implement the
sl@0
  3271
** AUTOINCREMENT feature.
sl@0
  3272
*/
sl@0
  3273
case OP_NewRowid: {           /* out2-prerelease */
sl@0
  3274
  int i = pOp->p1;
sl@0
  3275
  i64 v = 0;
sl@0
  3276
  Cursor *pC;
sl@0
  3277
  assert( i>=0 && i<p->nCursor );
sl@0
  3278
  assert( p->apCsr[i]!=0 );
sl@0
  3279
  if( (pC = p->apCsr[i])->pCursor==0 ){
sl@0
  3280
    /* The zero initialization above is all that is needed */
sl@0
  3281
  }else{
sl@0
  3282
    /* The next rowid or record number (different terms for the same
sl@0
  3283
    ** thing) is obtained in a two-step algorithm.
sl@0
  3284
    **
sl@0
  3285
    ** First we attempt to find the largest existing rowid and add one
sl@0
  3286
    ** to that.  But if the largest existing rowid is already the maximum
sl@0
  3287
    ** positive integer, we have to fall through to the second
sl@0
  3288
    ** probabilistic algorithm
sl@0
  3289
    **
sl@0
  3290
    ** The second algorithm is to select a rowid at random and see if
sl@0
  3291
    ** it already exists in the table.  If it does not exist, we have
sl@0
  3292
    ** succeeded.  If the random rowid does exist, we select a new one
sl@0
  3293
    ** and try again, up to 1000 times.
sl@0
  3294
    **
sl@0
  3295
    ** For a table with less than 2 billion entries, the probability
sl@0
  3296
    ** of not finding a unused rowid is about 1.0e-300.  This is a 
sl@0
  3297
    ** non-zero probability, but it is still vanishingly small and should
sl@0
  3298
    ** never cause a problem.  You are much, much more likely to have a
sl@0
  3299
    ** hardware failure than for this algorithm to fail.
sl@0
  3300
    **
sl@0
  3301
    ** The analysis in the previous paragraph assumes that you have a good
sl@0
  3302
    ** source of random numbers.  Is a library function like lrand48()
sl@0
  3303
    ** good enough?  Maybe. Maybe not. It's hard to know whether there
sl@0
  3304
    ** might be subtle bugs is some implementations of lrand48() that
sl@0
  3305
    ** could cause problems. To avoid uncertainty, SQLite uses its own 
sl@0
  3306
    ** random number generator based on the RC4 algorithm.
sl@0
  3307
    **
sl@0
  3308
    ** To promote locality of reference for repetitive inserts, the
sl@0
  3309
    ** first few attempts at choosing a random rowid pick values just a little
sl@0
  3310
    ** larger than the previous rowid.  This has been shown experimentally
sl@0
  3311
    ** to double the speed of the COPY operation.
sl@0
  3312
    */
sl@0
  3313
    int res, rx=SQLITE_OK, cnt;
sl@0
  3314
    i64 x;
sl@0
  3315
    cnt = 0;
sl@0
  3316
    if( (sqlite3BtreeFlags(pC->pCursor)&(BTREE_INTKEY|BTREE_ZERODATA)) !=
sl@0
  3317
          BTREE_INTKEY ){
sl@0
  3318
      rc = SQLITE_CORRUPT_BKPT;
sl@0
  3319
      goto abort_due_to_error;
sl@0
  3320
    }
sl@0
  3321
    assert( (sqlite3BtreeFlags(pC->pCursor) & BTREE_INTKEY)!=0 );
sl@0
  3322
    assert( (sqlite3BtreeFlags(pC->pCursor) & BTREE_ZERODATA)==0 );
sl@0
  3323
sl@0
  3324
#ifdef SQLITE_32BIT_ROWID
sl@0
  3325
#   define MAX_ROWID 0x7fffffff
sl@0
  3326
#else
sl@0
  3327
    /* Some compilers complain about constants of the form 0x7fffffffffffffff.
sl@0
  3328
    ** Others complain about 0x7ffffffffffffffffLL.  The following macro seems
sl@0
  3329
    ** to provide the constant while making all compilers happy.
sl@0
  3330
    */
sl@0
  3331
#   define MAX_ROWID  ( (((u64)0x7fffffff)<<32) | (u64)0xffffffff )
sl@0
  3332
#endif
sl@0
  3333
sl@0
  3334
    if( !pC->useRandomRowid ){
sl@0
  3335
      if( pC->nextRowidValid ){
sl@0
  3336
        v = pC->nextRowid;
sl@0
  3337
      }else{
sl@0
  3338
        rc = sqlite3BtreeLast(pC->pCursor, &res);
sl@0
  3339
        if( rc!=SQLITE_OK ){
sl@0
  3340
          goto abort_due_to_error;
sl@0
  3341
        }
sl@0
  3342
        if( res ){
sl@0
  3343
          v = 1;
sl@0
  3344
        }else{
sl@0
  3345
          sqlite3BtreeKeySize(pC->pCursor, &v);
sl@0
  3346
          v = keyToInt(v);
sl@0
  3347
          if( v==MAX_ROWID ){
sl@0
  3348
            pC->useRandomRowid = 1;
sl@0
  3349
          }else{
sl@0
  3350
            v++;
sl@0
  3351
          }
sl@0
  3352
        }
sl@0
  3353
      }
sl@0
  3354
sl@0
  3355
#ifndef SQLITE_OMIT_AUTOINCREMENT
sl@0
  3356
      if( pOp->p3 ){
sl@0
  3357
        Mem *pMem;
sl@0
  3358
        assert( pOp->p3>0 && pOp->p3<=p->nMem ); /* P3 is a valid memory cell */
sl@0
  3359
        pMem = &p->aMem[pOp->p3];
sl@0
  3360
	REGISTER_TRACE(pOp->p3, pMem);
sl@0
  3361
        sqlite3VdbeMemIntegerify(pMem);
sl@0
  3362
        assert( (pMem->flags & MEM_Int)!=0 );  /* mem(P3) holds an integer */
sl@0
  3363
        if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){
sl@0
  3364
          rc = SQLITE_FULL;
sl@0
  3365
          goto abort_due_to_error;
sl@0
  3366
        }
sl@0
  3367
        if( v<pMem->u.i+1 ){
sl@0
  3368
          v = pMem->u.i + 1;
sl@0
  3369
        }
sl@0
  3370
        pMem->u.i = v;
sl@0
  3371
      }
sl@0
  3372
#endif
sl@0
  3373
sl@0
  3374
      if( v<MAX_ROWID ){
sl@0
  3375
        pC->nextRowidValid = 1;
sl@0
  3376
        pC->nextRowid = v+1;
sl@0
  3377
      }else{
sl@0
  3378
        pC->nextRowidValid = 0;
sl@0
  3379
      }
sl@0
  3380
    }
sl@0
  3381
    if( pC->useRandomRowid ){
sl@0
  3382
      assert( pOp->p3==0 );  /* SQLITE_FULL must have occurred prior to this */
sl@0
  3383
      v = db->priorNewRowid;
sl@0
  3384
      cnt = 0;
sl@0
  3385
      do{
sl@0
  3386
        if( cnt==0 && (v&0xffffff)==v ){
sl@0
  3387
          v++;
sl@0
  3388
        }else{
sl@0
  3389
          sqlite3_randomness(sizeof(v), &v);
sl@0
  3390
          if( cnt<5 ) v &= 0xffffff;
sl@0
  3391
        }
sl@0
  3392
        if( v==0 ) continue;
sl@0
  3393
        x = intToKey(v);
sl@0
  3394
        rx = sqlite3BtreeMoveto(pC->pCursor, 0, 0, (u64)x, 0, &res);
sl@0
  3395
        cnt++;
sl@0
  3396
      }while( cnt<100 && rx==SQLITE_OK && res==0 );
sl@0
  3397
      db->priorNewRowid = v;
sl@0
  3398
      if( rx==SQLITE_OK && res==0 ){
sl@0
  3399
        rc = SQLITE_FULL;
sl@0
  3400
        goto abort_due_to_error;
sl@0
  3401
      }
sl@0
  3402
    }
sl@0
  3403
    pC->rowidIsValid = 0;
sl@0
  3404
    pC->deferredMoveto = 0;
sl@0
  3405
    pC->cacheStatus = CACHE_STALE;
sl@0
  3406
  }
sl@0
  3407
  MemSetTypeFlag(pOut, MEM_Int);
sl@0
  3408
  pOut->u.i = v;
sl@0
  3409
  break;
sl@0
  3410
}
sl@0
  3411
sl@0
  3412
/* Opcode: Insert P1 P2 P3 P4 P5
sl@0
  3413
**
sl@0
  3414
** Write an entry into the table of cursor P1.  A new entry is
sl@0
  3415
** created if it doesn't already exist or the data for an existing
sl@0
  3416
** entry is overwritten.  The data is the value stored register
sl@0
  3417
** number P2. The key is stored in register P3. The key must
sl@0
  3418
** be an integer.
sl@0
  3419
**
sl@0
  3420
** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is
sl@0
  3421
** incremented (otherwise not).  If the OPFLAG_LASTROWID flag of P5 is set,
sl@0
  3422
** then rowid is stored for subsequent return by the
sl@0
  3423
** sqlite3_last_insert_rowid() function (otherwise it is unmodified).
sl@0
  3424
**
sl@0
  3425
** Parameter P4 may point to a string containing the table-name, or
sl@0
  3426
** may be NULL. If it is not NULL, then the update-hook 
sl@0
  3427
** (sqlite3.xUpdateCallback) is invoked following a successful insert.
sl@0
  3428
**
sl@0
  3429
** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically
sl@0
  3430
** allocated, then ownership of P2 is transferred to the pseudo-cursor
sl@0
  3431
** and register P2 becomes ephemeral.  If the cursor is changed, the
sl@0
  3432
** value of register P2 will then change.  Make sure this does not
sl@0
  3433
** cause any problems.)
sl@0
  3434
**
sl@0
  3435
** This instruction only works on tables.  The equivalent instruction
sl@0
  3436
** for indices is OP_IdxInsert.
sl@0
  3437
*/
sl@0
  3438
case OP_Insert: {
sl@0
  3439
  Mem *pData = &p->aMem[pOp->p2];
sl@0
  3440
  Mem *pKey = &p->aMem[pOp->p3];
sl@0
  3441
sl@0
  3442
  i64 iKey;   /* The integer ROWID or key for the record to be inserted */
sl@0
  3443
  int i = pOp->p1;
sl@0
  3444
  Cursor *pC;
sl@0
  3445
  assert( i>=0 && i<p->nCursor );
sl@0
  3446
  pC = p->apCsr[i];
sl@0
  3447
  assert( pC!=0 );
sl@0
  3448
  assert( pC->pCursor!=0 || pC->pseudoTable );
sl@0
  3449
  assert( pKey->flags & MEM_Int );
sl@0
  3450
  assert( pC->isTable );
sl@0
  3451
  REGISTER_TRACE(pOp->p2, pData);
sl@0
  3452
  REGISTER_TRACE(pOp->p3, pKey);
sl@0
  3453
sl@0
  3454
  iKey = intToKey(pKey->u.i);
sl@0
  3455
  if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
sl@0
  3456
  if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = pKey->u.i;
sl@0
  3457
  if( pC->nextRowidValid && pKey->u.i>=pC->nextRowid ){
sl@0
  3458
    pC->nextRowidValid = 0;
sl@0
  3459
  }
sl@0
  3460
  if( pData->flags & MEM_Null ){
sl@0
  3461
    pData->z = 0;
sl@0
  3462
    pData->n = 0;
sl@0
  3463
  }else{
sl@0
  3464
    assert( pData->flags & (MEM_Blob|MEM_Str) );
sl@0
  3465
  }
sl@0
  3466
  if( pC->pseudoTable ){
sl@0
  3467
    if( !pC->ephemPseudoTable ){
sl@0
  3468
      sqlite3DbFree(db, pC->pData);
sl@0
  3469
    }
sl@0
  3470
    pC->iKey = iKey;
sl@0
  3471
    pC->nData = pData->n;
sl@0
  3472
    if( pData->z==pData->zMalloc || pC->ephemPseudoTable ){
sl@0
  3473
      pC->pData = pData->z;
sl@0
  3474
      if( !pC->ephemPseudoTable ){
sl@0
  3475
        pData->flags &= ~MEM_Dyn;
sl@0
  3476
        pData->flags |= MEM_Ephem;
sl@0
  3477
        pData->zMalloc = 0;
sl@0
  3478
      }
sl@0
  3479
    }else{
sl@0
  3480
      pC->pData = sqlite3Malloc( pC->nData+2 );
sl@0
  3481
      if( !pC->pData ) goto no_mem;
sl@0
  3482
      memcpy(pC->pData, pData->z, pC->nData);
sl@0
  3483
      pC->pData[pC->nData] = 0;
sl@0
  3484
      pC->pData[pC->nData+1] = 0;
sl@0
  3485
    }
sl@0
  3486
    pC->nullRow = 0;
sl@0
  3487
  }else{
sl@0
  3488
    int nZero;
sl@0
  3489
    if( pData->flags & MEM_Zero ){
sl@0
  3490
      nZero = pData->u.i;
sl@0
  3491
    }else{
sl@0
  3492
      nZero = 0;
sl@0
  3493
    }
sl@0
  3494
    rc = sqlite3BtreeInsert(pC->pCursor, 0, iKey,
sl@0
  3495
                            pData->z, pData->n, nZero,
sl@0
  3496
                            pOp->p5 & OPFLAG_APPEND);
sl@0
  3497
  }
sl@0
  3498
  
sl@0
  3499
  pC->rowidIsValid = 0;
sl@0
  3500
  pC->deferredMoveto = 0;
sl@0
  3501
  pC->cacheStatus = CACHE_STALE;
sl@0
  3502
sl@0
  3503
  /* Invoke the update-hook if required. */
sl@0
  3504
  if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z ){
sl@0
  3505
    const char *zDb = db->aDb[pC->iDb].zName;
sl@0
  3506
    const char *zTbl = pOp->p4.z;
sl@0
  3507
    int op = ((pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT);
sl@0
  3508
    assert( pC->isTable );
sl@0
  3509
    db->xUpdateCallback(db->pUpdateArg, op, zDb, zTbl, iKey);
sl@0
  3510
    assert( pC->iDb>=0 );
sl@0
  3511
  }
sl@0
  3512
  break;
sl@0
  3513
}
sl@0
  3514
sl@0
  3515
/* Opcode: Delete P1 P2 * P4 *
sl@0
  3516
**
sl@0
  3517
** Delete the record at which the P1 cursor is currently pointing.
sl@0
  3518
**
sl@0
  3519
** The cursor will be left pointing at either the next or the previous
sl@0
  3520
** record in the table. If it is left pointing at the next record, then
sl@0
  3521
** the next Next instruction will be a no-op.  Hence it is OK to delete
sl@0
  3522
** a record from within an Next loop.
sl@0
  3523
**
sl@0
  3524
** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is
sl@0
  3525
** incremented (otherwise not).
sl@0
  3526
**
sl@0
  3527
** P1 must not be pseudo-table.  It has to be a real table with
sl@0
  3528
** multiple rows.
sl@0
  3529
**
sl@0
  3530
** If P4 is not NULL, then it is the name of the table that P1 is
sl@0
  3531
** pointing to.  The update hook will be invoked, if it exists.
sl@0
  3532
** If P4 is not NULL then the P1 cursor must have been positioned
sl@0
  3533
** using OP_NotFound prior to invoking this opcode.
sl@0
  3534
*/
sl@0
  3535
case OP_Delete: {
sl@0
  3536
  int i = pOp->p1;
sl@0
  3537
  i64 iKey = 0;
sl@0
  3538
  Cursor *pC;
sl@0
  3539
sl@0
  3540
  assert( i>=0 && i<p->nCursor );
sl@0
  3541
  pC = p->apCsr[i];
sl@0
  3542
  assert( pC!=0 );
sl@0
  3543
  assert( pC->pCursor!=0 );  /* Only valid for real tables, no pseudotables */
sl@0
  3544
sl@0
  3545
  /* If the update-hook will be invoked, set iKey to the rowid of the
sl@0
  3546
  ** row being deleted.
sl@0
  3547
  */
sl@0
  3548
  if( db->xUpdateCallback && pOp->p4.z ){
sl@0
  3549
    assert( pC->isTable );
sl@0
  3550
    assert( pC->rowidIsValid );  /* lastRowid set by previous OP_NotFound */
sl@0
  3551
    iKey = pC->lastRowid;
sl@0
  3552
  }
sl@0
  3553
sl@0
  3554
  rc = sqlite3VdbeCursorMoveto(pC);
sl@0
  3555
  if( rc ) goto abort_due_to_error;
sl@0
  3556
  rc = sqlite3BtreeDelete(pC->pCursor);
sl@0
  3557
  pC->nextRowidValid = 0;
sl@0
  3558
  pC->cacheStatus = CACHE_STALE;
sl@0
  3559
sl@0
  3560
  /* Invoke the update-hook if required. */
sl@0
  3561
  if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z ){
sl@0
  3562
    const char *zDb = db->aDb[pC->iDb].zName;
sl@0
  3563
    const char *zTbl = pOp->p4.z;
sl@0
  3564
    db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb, zTbl, iKey);
sl@0
  3565
    assert( pC->iDb>=0 );
sl@0
  3566
  }
sl@0
  3567
  if( pOp->p2 & OPFLAG_NCHANGE ) p->nChange++;
sl@0
  3568
  break;
sl@0
  3569
}
sl@0
  3570
sl@0
  3571
/* Opcode: ResetCount P1 * *
sl@0
  3572
**
sl@0
  3573
** This opcode resets the VMs internal change counter to 0. If P1 is true,
sl@0
  3574
** then the value of the change counter is copied to the database handle
sl@0
  3575
** change counter (returned by subsequent calls to sqlite3_changes())
sl@0
  3576
** before it is reset. This is used by trigger programs.
sl@0
  3577
*/
sl@0
  3578
case OP_ResetCount: {
sl@0
  3579
  if( pOp->p1 ){
sl@0
  3580
    sqlite3VdbeSetChanges(db, p->nChange);
sl@0
  3581
  }
sl@0
  3582
  p->nChange = 0;
sl@0
  3583
  break;
sl@0
  3584
}
sl@0
  3585
sl@0
  3586
/* Opcode: RowData P1 P2 * * *
sl@0
  3587
**
sl@0
  3588
** Write into register P2 the complete row data for cursor P1.
sl@0
  3589
** There is no interpretation of the data.  
sl@0
  3590
** It is just copied onto the P2 register exactly as 
sl@0
  3591
** it is found in the database file.
sl@0
  3592
**
sl@0
  3593
** If the P1 cursor must be pointing to a valid row (not a NULL row)
sl@0
  3594
** of a real table, not a pseudo-table.
sl@0
  3595
*/
sl@0
  3596
/* Opcode: RowKey P1 P2 * * *
sl@0
  3597
**
sl@0
  3598
** Write into register P2 the complete row key for cursor P1.
sl@0
  3599
** There is no interpretation of the data.  
sl@0
  3600
** The key is copied onto the P3 register exactly as 
sl@0
  3601
** it is found in the database file.
sl@0
  3602
**
sl@0
  3603
** If the P1 cursor must be pointing to a valid row (not a NULL row)
sl@0
  3604
** of a real table, not a pseudo-table.
sl@0
  3605
*/
sl@0
  3606
case OP_RowKey:
sl@0
  3607
case OP_RowData: {
sl@0
  3608
  int i = pOp->p1;
sl@0
  3609
  Cursor *pC;
sl@0
  3610
  BtCursor *pCrsr;
sl@0
  3611
  u32 n;
sl@0
  3612
sl@0
  3613
  pOut = &p->aMem[pOp->p2];
sl@0
  3614
sl@0
  3615
  /* Note that RowKey and RowData are really exactly the same instruction */
sl@0
  3616
  assert( i>=0 && i<p->nCursor );
sl@0
  3617
  pC = p->apCsr[i];
sl@0
  3618
  assert( pC->isTable || pOp->opcode==OP_RowKey );
sl@0
  3619
  assert( pC->isIndex || pOp->opcode==OP_RowData );
sl@0
  3620
  assert( pC!=0 );
sl@0
  3621
  assert( pC->nullRow==0 );
sl@0
  3622
  assert( pC->pseudoTable==0 );
sl@0
  3623
  assert( pC->pCursor!=0 );
sl@0
  3624
  pCrsr = pC->pCursor;
sl@0
  3625
  rc = sqlite3VdbeCursorMoveto(pC);
sl@0
  3626
  if( rc ) goto abort_due_to_error;
sl@0
  3627
  if( pC->isIndex ){
sl@0
  3628
    i64 n64;
sl@0
  3629
    assert( !pC->isTable );
sl@0
  3630
    sqlite3BtreeKeySize(pCrsr, &n64);
sl@0
  3631
    if( n64>db->aLimit[SQLITE_LIMIT_LENGTH] ){
sl@0
  3632
      goto too_big;
sl@0
  3633
    }
sl@0
  3634
    n = n64;
sl@0
  3635
  }else{
sl@0
  3636
    sqlite3BtreeDataSize(pCrsr, &n);
sl@0
  3637
    if( n>db->aLimit[SQLITE_LIMIT_LENGTH] ){
sl@0
  3638
      goto too_big;
sl@0
  3639
    }
sl@0
  3640
  }
sl@0
  3641
  if( sqlite3VdbeMemGrow(pOut, n, 0) ){
sl@0
  3642
    goto no_mem;
sl@0
  3643
  }
sl@0
  3644
  pOut->n = n;
sl@0
  3645
  MemSetTypeFlag(pOut, MEM_Blob);
sl@0
  3646
  if( pC->isIndex ){
sl@0
  3647
    rc = sqlite3BtreeKey(pCrsr, 0, n, pOut->z);
sl@0
  3648
  }else{
sl@0
  3649
    rc = sqlite3BtreeData(pCrsr, 0, n, pOut->z);
sl@0
  3650
  }
sl@0
  3651
  pOut->enc = SQLITE_UTF8;  /* In case the blob is ever cast to text */
sl@0
  3652
  UPDATE_MAX_BLOBSIZE(pOut);
sl@0
  3653
  break;
sl@0
  3654
}
sl@0
  3655
sl@0
  3656
/* Opcode: Rowid P1 P2 * * *
sl@0
  3657
**
sl@0
  3658
** Store in register P2 an integer which is the key of the table entry that
sl@0
  3659
** P1 is currently point to.
sl@0
  3660
*/
sl@0
  3661
case OP_Rowid: {                 /* out2-prerelease */
sl@0
  3662
  int i = pOp->p1;
sl@0
  3663
  Cursor *pC;
sl@0
  3664
  i64 v;
sl@0
  3665
sl@0
  3666
  assert( i>=0 && i<p->nCursor );
sl@0
  3667
  pC = p->apCsr[i];
sl@0
  3668
  assert( pC!=0 );
sl@0
  3669
  rc = sqlite3VdbeCursorMoveto(pC);
sl@0
  3670
  if( rc ) goto abort_due_to_error;
sl@0
  3671
  if( pC->rowidIsValid ){
sl@0
  3672
    v = pC->lastRowid;
sl@0
  3673
  }else if( pC->pseudoTable ){
sl@0
  3674
    v = keyToInt(pC->iKey);
sl@0
  3675
  }else if( pC->nullRow ){
sl@0
  3676
    /* Leave the rowid set to a NULL */
sl@0
  3677
    break;
sl@0
  3678
  }else{
sl@0
  3679
    assert( pC->pCursor!=0 );
sl@0
  3680
    sqlite3BtreeKeySize(pC->pCursor, &v);
sl@0
  3681
    v = keyToInt(v);
sl@0
  3682
  }
sl@0
  3683
  pOut->u.i = v;
sl@0
  3684
  MemSetTypeFlag(pOut, MEM_Int);
sl@0
  3685
  break;
sl@0
  3686
}
sl@0
  3687
sl@0
  3688
/* Opcode: NullRow P1 * * * *
sl@0
  3689
**
sl@0
  3690
** Move the cursor P1 to a null row.  Any OP_Column operations
sl@0
  3691
** that occur while the cursor is on the null row will always
sl@0
  3692
** write a NULL.
sl@0
  3693
*/
sl@0
  3694
case OP_NullRow: {
sl@0
  3695
  int i = pOp->p1;
sl@0
  3696
  Cursor *pC;
sl@0
  3697
sl@0
  3698
  assert( i>=0 && i<p->nCursor );
sl@0
  3699
  pC = p->apCsr[i];
sl@0
  3700
  assert( pC!=0 );
sl@0
  3701
  pC->nullRow = 1;
sl@0
  3702
  pC->rowidIsValid = 0;
sl@0
  3703
  break;
sl@0
  3704
}
sl@0
  3705
sl@0
  3706
/* Opcode: Last P1 P2 * * *
sl@0
  3707
**
sl@0
  3708
** The next use of the Rowid or Column or Next instruction for P1 
sl@0
  3709
** will refer to the last entry in the database table or index.
sl@0
  3710
** If the table or index is empty and P2>0, then jump immediately to P2.
sl@0
  3711
** If P2 is 0 or if the table or index is not empty, fall through
sl@0
  3712
** to the following instruction.
sl@0
  3713
*/
sl@0
  3714
case OP_Last: {        /* jump */
sl@0
  3715
  int i = pOp->p1;
sl@0
  3716
  Cursor *pC;
sl@0
  3717
  BtCursor *pCrsr;
sl@0
  3718
  int res;
sl@0
  3719
sl@0
  3720
  assert( i>=0 && i<p->nCursor );
sl@0
  3721
  pC = p->apCsr[i];
sl@0
  3722
  assert( pC!=0 );
sl@0
  3723
  pCrsr = pC->pCursor;
sl@0
  3724
  assert( pCrsr!=0 );
sl@0
  3725
  rc = sqlite3BtreeLast(pCrsr, &res);
sl@0
  3726
  pC->nullRow = res;
sl@0
  3727
  pC->deferredMoveto = 0;
sl@0
  3728
  pC->cacheStatus = CACHE_STALE;
sl@0
  3729
  if( res && pOp->p2>0 ){
sl@0
  3730
    pc = pOp->p2 - 1;
sl@0
  3731
  }
sl@0
  3732
  break;
sl@0
  3733
}
sl@0
  3734
sl@0
  3735
sl@0
  3736
/* Opcode: Sort P1 P2 * * *
sl@0
  3737
**
sl@0
  3738
** This opcode does exactly the same thing as OP_Rewind except that
sl@0
  3739
** it increments an undocumented global variable used for testing.
sl@0
  3740
**
sl@0
  3741
** Sorting is accomplished by writing records into a sorting index,
sl@0
  3742
** then rewinding that index and playing it back from beginning to
sl@0
  3743
** end.  We use the OP_Sort opcode instead of OP_Rewind to do the
sl@0
  3744
** rewinding so that the global variable will be incremented and
sl@0
  3745
** regression tests can determine whether or not the optimizer is
sl@0
  3746
** correctly optimizing out sorts.
sl@0
  3747
*/
sl@0
  3748
case OP_Sort: {        /* jump */
sl@0
  3749
#ifdef SQLITE_TEST
sl@0
  3750
  sqlite3_sort_count++;
sl@0
  3751
  sqlite3_search_count--;
sl@0
  3752
#endif
sl@0
  3753
  /* Fall through into OP_Rewind */
sl@0
  3754
}
sl@0
  3755
/* Opcode: Rewind P1 P2 * * *
sl@0
  3756
**
sl@0
  3757
** The next use of the Rowid or Column or Next instruction for P1 
sl@0
  3758
** will refer to the first entry in the database table or index.
sl@0
  3759
** If the table or index is empty and P2>0, then jump immediately to P2.
sl@0
  3760
** If P2 is 0 or if the table or index is not empty, fall through
sl@0
  3761
** to the following instruction.
sl@0
  3762
*/
sl@0
  3763
case OP_Rewind: {        /* jump */
sl@0
  3764
  int i = pOp->p1;
sl@0
  3765
  Cursor *pC;
sl@0
  3766
  BtCursor *pCrsr;
sl@0
  3767
  int res;
sl@0
  3768
sl@0
  3769
  assert( i>=0 && i<p->nCursor );
sl@0
  3770
  pC = p->apCsr[i];
sl@0
  3771
  assert( pC!=0 );
sl@0
  3772
  if( (pCrsr = pC->pCursor)!=0 ){
sl@0
  3773
    rc = sqlite3BtreeFirst(pCrsr, &res);
sl@0
  3774
    pC->atFirst = res==0;
sl@0
  3775
    pC->deferredMoveto = 0;
sl@0
  3776
    pC->cacheStatus = CACHE_STALE;
sl@0
  3777
  }else{
sl@0
  3778
    res = 1;
sl@0
  3779
  }
sl@0
  3780
  pC->nullRow = res;
sl@0
  3781
  assert( pOp->p2>0 && pOp->p2<p->nOp );
sl@0
  3782
  if( res ){
sl@0
  3783
    pc = pOp->p2 - 1;
sl@0
  3784
  }
sl@0
  3785
  break;
sl@0
  3786
}
sl@0
  3787
sl@0
  3788
/* Opcode: Next P1 P2 * * *
sl@0
  3789
**
sl@0
  3790
** Advance cursor P1 so that it points to the next key/data pair in its
sl@0
  3791
** table or index.  If there are no more key/value pairs then fall through
sl@0
  3792
** to the following instruction.  But if the cursor advance was successful,
sl@0
  3793
** jump immediately to P2.
sl@0
  3794
**
sl@0
  3795
** The P1 cursor must be for a real table, not a pseudo-table.
sl@0
  3796
**
sl@0
  3797
** See also: Prev
sl@0
  3798
*/
sl@0
  3799
/* Opcode: Prev P1 P2 * * *
sl@0
  3800
**
sl@0
  3801
** Back up cursor P1 so that it points to the previous key/data pair in its
sl@0
  3802
** table or index.  If there is no previous key/value pairs then fall through
sl@0
  3803
** to the following instruction.  But if the cursor backup was successful,
sl@0
  3804
** jump immediately to P2.
sl@0
  3805
**
sl@0
  3806
** The P1 cursor must be for a real table, not a pseudo-table.
sl@0
  3807
*/
sl@0
  3808
case OP_Prev:          /* jump */
sl@0
  3809
case OP_Next: {        /* jump */
sl@0
  3810
  Cursor *pC;
sl@0
  3811
  BtCursor *pCrsr;
sl@0
  3812
  int res;
sl@0
  3813
sl@0
  3814
  CHECK_FOR_INTERRUPT;
sl@0
  3815
  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
sl@0
  3816
  pC = p->apCsr[pOp->p1];
sl@0
  3817
  if( pC==0 ){
sl@0
  3818
    break;  /* See ticket #2273 */
sl@0
  3819
  }
sl@0
  3820
  pCrsr = pC->pCursor;
sl@0
  3821
  assert( pCrsr );
sl@0
  3822
  res = 1;
sl@0
  3823
  assert( pC->deferredMoveto==0 );
sl@0
  3824
  rc = pOp->opcode==OP_Next ? sqlite3BtreeNext(pCrsr, &res) :
sl@0
  3825
                              sqlite3BtreePrevious(pCrsr, &res);
sl@0
  3826
  pC->nullRow = res;
sl@0
  3827
  pC->cacheStatus = CACHE_STALE;
sl@0
  3828
  if( res==0 ){
sl@0
  3829
    pc = pOp->p2 - 1;
sl@0
  3830
#ifdef SQLITE_TEST
sl@0
  3831
    sqlite3_search_count++;
sl@0
  3832
#endif
sl@0
  3833
  }
sl@0
  3834
  pC->rowidIsValid = 0;
sl@0
  3835
  break;
sl@0
  3836
}
sl@0
  3837
sl@0
  3838
/* Opcode: IdxInsert P1 P2 P3 * *
sl@0
  3839
**
sl@0
  3840
** Register P2 holds a SQL index key made using the
sl@0
  3841
** MakeIdxRec instructions.  This opcode writes that key
sl@0
  3842
** into the index P1.  Data for the entry is nil.
sl@0
  3843
**
sl@0
  3844
** P3 is a flag that provides a hint to the b-tree layer that this
sl@0
  3845
** insert is likely to be an append.
sl@0
  3846
**
sl@0
  3847
** This instruction only works for indices.  The equivalent instruction
sl@0
  3848
** for tables is OP_Insert.
sl@0
  3849
*/
sl@0
  3850
case OP_IdxInsert: {        /* in2 */
sl@0
  3851
  int i = pOp->p1;
sl@0
  3852
  Cursor *pC;
sl@0
  3853
  BtCursor *pCrsr;
sl@0
  3854
  assert( i>=0 && i<p->nCursor );
sl@0
  3855
  assert( p->apCsr[i]!=0 );
sl@0
  3856
  assert( pIn2->flags & MEM_Blob );
sl@0
  3857
  if( (pCrsr = (pC = p->apCsr[i])->pCursor)!=0 ){
sl@0
  3858
    assert( pC->isTable==0 );
sl@0
  3859
    rc = ExpandBlob(pIn2);
sl@0
  3860
    if( rc==SQLITE_OK ){
sl@0
  3861
      int nKey = pIn2->n;
sl@0
  3862
      const char *zKey = pIn2->z;
sl@0
  3863
      rc = sqlite3BtreeInsert(pCrsr, zKey, nKey, "", 0, 0, pOp->p3);
sl@0
  3864
      assert( pC->deferredMoveto==0 );
sl@0
  3865
      pC->cacheStatus = CACHE_STALE;
sl@0
  3866
    }
sl@0
  3867
  }
sl@0
  3868
  break;
sl@0
  3869
}
sl@0
  3870
sl@0
  3871
/* Opcode: IdxDeleteM P1 P2 P3 * *
sl@0
  3872
**
sl@0
  3873
** The content of P3 registers starting at register P2 form
sl@0
  3874
** an unpacked index key. This opcode removes that entry from the 
sl@0
  3875
** index opened by cursor P1.
sl@0
  3876
*/
sl@0
  3877
case OP_IdxDelete: {
sl@0
  3878
  int i = pOp->p1;
sl@0
  3879
  Cursor *pC;
sl@0
  3880
  BtCursor *pCrsr;
sl@0
  3881
  assert( pOp->p3>0 );
sl@0
  3882
  assert( pOp->p2>0 && pOp->p2+pOp->p3<=p->nMem );
sl@0
  3883
  assert( i>=0 && i<p->nCursor );
sl@0
  3884
  assert( p->apCsr[i]!=0 );
sl@0
  3885
  if( (pCrsr = (pC = p->apCsr[i])->pCursor)!=0 ){
sl@0
  3886
    int res;
sl@0
  3887
    UnpackedRecord r;
sl@0
  3888
    r.pKeyInfo = pC->pKeyInfo;
sl@0
  3889
    r.nField = pOp->p3;
sl@0
  3890
    r.needFree = 0;
sl@0
  3891
    r.needDestroy = 0;
sl@0
  3892
    r.aMem = &p->aMem[pOp->p2];
sl@0
  3893
    rc = sqlite3BtreeMoveto(pCrsr, 0, &r, 0, 0, &res);
sl@0
  3894
    if( rc==SQLITE_OK && res==0 ){
sl@0
  3895
      rc = sqlite3BtreeDelete(pCrsr);
sl@0
  3896
    }
sl@0
  3897
    assert( pC->deferredMoveto==0 );
sl@0
  3898
    pC->cacheStatus = CACHE_STALE;
sl@0
  3899
  }
sl@0
  3900
  break;
sl@0
  3901
}
sl@0
  3902
sl@0
  3903
/* Opcode: IdxRowid P1 P2 * * *
sl@0
  3904
**
sl@0
  3905
** Write into register P2 an integer which is the last entry in the record at
sl@0
  3906
** the end of the index key pointed to by cursor P1.  This integer should be
sl@0
  3907
** the rowid of the table entry to which this index entry points.
sl@0
  3908
**
sl@0
  3909
** See also: Rowid, MakeIdxRec.
sl@0
  3910
*/
sl@0
  3911
case OP_IdxRowid: {              /* out2-prerelease */
sl@0
  3912
  int i = pOp->p1;
sl@0
  3913
  BtCursor *pCrsr;
sl@0
  3914
  Cursor *pC;
sl@0
  3915
sl@0
  3916
  assert( i>=0 && i<p->nCursor );
sl@0
  3917
  assert( p->apCsr[i]!=0 );
sl@0
  3918
  if( (pCrsr = (pC = p->apCsr[i])->pCursor)!=0 ){
sl@0
  3919
    i64 rowid;
sl@0
  3920
sl@0
  3921
    assert( pC->deferredMoveto==0 );
sl@0
  3922
    assert( pC->isTable==0 );
sl@0
  3923
    if( !pC->nullRow ){
sl@0
  3924
      rc = sqlite3VdbeIdxRowid(pCrsr, &rowid);
sl@0
  3925
      if( rc!=SQLITE_OK ){
sl@0
  3926
        goto abort_due_to_error;
sl@0
  3927
      }
sl@0
  3928
      MemSetTypeFlag(pOut, MEM_Int);
sl@0
  3929
      pOut->u.i = rowid;
sl@0
  3930
    }
sl@0
  3931
  }
sl@0
  3932
  break;
sl@0
  3933
}
sl@0
  3934
sl@0
  3935
/* Opcode: IdxGE P1 P2 P3 P4 P5
sl@0
  3936
**
sl@0
  3937
** The P4 register values beginning with P3 form an unpacked index 
sl@0
  3938
** key that omits the ROWID.  Compare this key value against the index 
sl@0
  3939
** that P1 is currently pointing to, ignoring the ROWID on the P1 index.
sl@0
  3940
**
sl@0
  3941
** If the P1 index entry is greater than or equal to the key value
sl@0
  3942
** then jump to P2.  Otherwise fall through to the next instruction.
sl@0
  3943
**
sl@0
  3944
** If P5 is non-zero then the key value is increased by an epsilon 
sl@0
  3945
** prior to the comparison.  This make the opcode work like IdxGT except
sl@0
  3946
** that if the key from register P3 is a prefix of the key in the cursor,
sl@0
  3947
** the result is false whereas it would be true with IdxGT.
sl@0
  3948
*/
sl@0
  3949
/* Opcode: IdxLT P1 P2 P3 * P5
sl@0
  3950
**
sl@0
  3951
** The P4 register values beginning with P3 form an unpacked index 
sl@0
  3952
** key that omits the ROWID.  Compare this key value against the index 
sl@0
  3953
** that P1 is currently pointing to, ignoring the ROWID on the P1 index.
sl@0
  3954
**
sl@0
  3955
** If the P1 index entry is less than the key value then jump to P2.
sl@0
  3956
** Otherwise fall through to the next instruction.
sl@0
  3957
**
sl@0
  3958
** If P5 is non-zero then the key value is increased by an epsilon prior 
sl@0
  3959
** to the comparison.  This makes the opcode work like IdxLE.
sl@0
  3960
*/
sl@0
  3961
case OP_IdxLT:          /* jump, in3 */
sl@0
  3962
case OP_IdxGE: {        /* jump, in3 */
sl@0
  3963
  int i= pOp->p1;
sl@0
  3964
  Cursor *pC;
sl@0
  3965
sl@0
  3966
  assert( i>=0 && i<p->nCursor );
sl@0
  3967
  assert( p->apCsr[i]!=0 );
sl@0
  3968
  if( (pC = p->apCsr[i])->pCursor!=0 ){
sl@0
  3969
    int res;
sl@0
  3970
    UnpackedRecord r;
sl@0
  3971
    assert( pC->deferredMoveto==0 );
sl@0
  3972
    assert( pOp->p5==0 || pOp->p5==1 );
sl@0
  3973
    assert( pOp->p4type==P4_INT32 );
sl@0
  3974
    r.pKeyInfo = pC->pKeyInfo;
sl@0
  3975
    r.nField = pOp->p4.i;
sl@0
  3976
    r.needFree = 0;
sl@0
  3977
    r.needDestroy = 0;
sl@0
  3978
    r.aMem = &p->aMem[pOp->p3];
sl@0
  3979
    *pC->pIncrKey = pOp->p5;
sl@0
  3980
    rc = sqlite3VdbeIdxKeyCompare(pC, &r, 0, 0, &res);
sl@0
  3981
    *pC->pIncrKey = 0;
sl@0
  3982
    if( pOp->opcode==OP_IdxLT ){
sl@0
  3983
      res = -res;
sl@0
  3984
    }else{
sl@0
  3985
      assert( pOp->opcode==OP_IdxGE );
sl@0
  3986
      res++;
sl@0
  3987
    }
sl@0
  3988
    if( res>0 ){
sl@0
  3989
      pc = pOp->p2 - 1 ;
sl@0
  3990
    }
sl@0
  3991
  }
sl@0
  3992
  break;
sl@0
  3993
}
sl@0
  3994
sl@0
  3995
/* Opcode: Destroy P1 P2 P3 * *
sl@0
  3996
**
sl@0
  3997
** Delete an entire database table or index whose root page in the database
sl@0
  3998
** file is given by P1.
sl@0
  3999
**
sl@0
  4000
** The table being destroyed is in the main database file if P3==0.  If
sl@0
  4001
** P3==1 then the table to be clear is in the auxiliary database file
sl@0
  4002
** that is used to store tables create using CREATE TEMPORARY TABLE.
sl@0
  4003
**
sl@0
  4004
** If AUTOVACUUM is enabled then it is possible that another root page
sl@0
  4005
** might be moved into the newly deleted root page in order to keep all
sl@0
  4006
** root pages contiguous at the beginning of the database.  The former
sl@0
  4007
** value of the root page that moved - its value before the move occurred -
sl@0
  4008
** is stored in register P2.  If no page 
sl@0
  4009
** movement was required (because the table being dropped was already 
sl@0
  4010
** the last one in the database) then a zero is stored in register P2.
sl@0
  4011
** If AUTOVACUUM is disabled then a zero is stored in register P2.
sl@0
  4012
**
sl@0
  4013
** See also: Clear
sl@0
  4014
*/
sl@0
  4015
case OP_Destroy: {     /* out2-prerelease */
sl@0
  4016
  int iMoved;
sl@0
  4017
  int iCnt;
sl@0
  4018
#ifndef SQLITE_OMIT_VIRTUALTABLE
sl@0
  4019
  Vdbe *pVdbe;
sl@0
  4020
  iCnt = 0;
sl@0
  4021
  for(pVdbe=db->pVdbe; pVdbe; pVdbe=pVdbe->pNext){
sl@0
  4022
    if( pVdbe->magic==VDBE_MAGIC_RUN && pVdbe->inVtabMethod<2 && pVdbe->pc>=0 ){
sl@0
  4023
      iCnt++;
sl@0
  4024
    }
sl@0
  4025
  }
sl@0
  4026
#else
sl@0
  4027
  iCnt = db->activeVdbeCnt;
sl@0
  4028
#endif
sl@0
  4029
  if( iCnt>1 ){
sl@0
  4030
    rc = SQLITE_LOCKED;
sl@0
  4031
    p->errorAction = OE_Abort;
sl@0
  4032
  }else{
sl@0
  4033
    int iDb = pOp->p3;
sl@0
  4034
    assert( iCnt==1 );
sl@0
  4035
    assert( (p->btreeMask & (1<<iDb))!=0 );
sl@0
  4036
    rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved);
sl@0
  4037
    MemSetTypeFlag(pOut, MEM_Int);
sl@0
  4038
    pOut->u.i = iMoved;
sl@0
  4039
#ifndef SQLITE_OMIT_AUTOVACUUM
sl@0
  4040
    if( rc==SQLITE_OK && iMoved!=0 ){
sl@0
  4041
      sqlite3RootPageMoved(&db->aDb[iDb], iMoved, pOp->p1);
sl@0
  4042
    }
sl@0
  4043
#endif
sl@0
  4044
  }
sl@0
  4045
  break;
sl@0
  4046
}
sl@0
  4047
sl@0
  4048
/* Opcode: Clear P1 P2 *
sl@0
  4049
**
sl@0
  4050
** Delete all contents of the database table or index whose root page
sl@0
  4051
** in the database file is given by P1.  But, unlike Destroy, do not
sl@0
  4052
** remove the table or index from the database file.
sl@0
  4053
**
sl@0
  4054
** The table being clear is in the main database file if P2==0.  If
sl@0
  4055
** P2==1 then the table to be clear is in the auxiliary database file
sl@0
  4056
** that is used to store tables create using CREATE TEMPORARY TABLE.
sl@0
  4057
**
sl@0
  4058
** See also: Destroy
sl@0
  4059
*/
sl@0
  4060
case OP_Clear: {
sl@0
  4061
  assert( (p->btreeMask & (1<<pOp->p2))!=0 );
sl@0
  4062
  rc = sqlite3BtreeClearTable(db->aDb[pOp->p2].pBt, pOp->p1);
sl@0
  4063
  break;
sl@0
  4064
}
sl@0
  4065
sl@0
  4066
/* Opcode: CreateTable P1 P2 * * *
sl@0
  4067
**
sl@0
  4068
** Allocate a new table in the main database file if P1==0 or in the
sl@0
  4069
** auxiliary database file if P1==1 or in an attached database if
sl@0
  4070
** P1>1.  Write the root page number of the new table into
sl@0
  4071
** register P2
sl@0
  4072
**
sl@0
  4073
** The difference between a table and an index is this:  A table must
sl@0
  4074
** have a 4-byte integer key and can have arbitrary data.  An index
sl@0
  4075
** has an arbitrary key but no data.
sl@0
  4076
**
sl@0
  4077
** See also: CreateIndex
sl@0
  4078
*/
sl@0
  4079
/* Opcode: CreateIndex P1 P2 * * *
sl@0
  4080
**
sl@0
  4081
** Allocate a new index in the main database file if P1==0 or in the
sl@0
  4082
** auxiliary database file if P1==1 or in an attached database if
sl@0
  4083
** P1>1.  Write the root page number of the new table into
sl@0
  4084
** register P2.
sl@0
  4085
**
sl@0
  4086
** See documentation on OP_CreateTable for additional information.
sl@0
  4087
*/
sl@0
  4088
case OP_CreateIndex:            /* out2-prerelease */
sl@0
  4089
case OP_CreateTable: {          /* out2-prerelease */
sl@0
  4090
  int pgno;
sl@0
  4091
  int flags;
sl@0
  4092
  Db *pDb;
sl@0
  4093
  assert( pOp->p1>=0 && pOp->p1<db->nDb );
sl@0
  4094
  assert( (p->btreeMask & (1<<pOp->p1))!=0 );
sl@0
  4095
  pDb = &db->aDb[pOp->p1];
sl@0
  4096
  assert( pDb->pBt!=0 );
sl@0
  4097
  if( pOp->opcode==OP_CreateTable ){
sl@0
  4098
    /* flags = BTREE_INTKEY; */
sl@0
  4099
    flags = BTREE_LEAFDATA|BTREE_INTKEY;
sl@0
  4100
  }else{
sl@0
  4101
    flags = BTREE_ZERODATA;
sl@0
  4102
  }
sl@0
  4103
  rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, flags);
sl@0
  4104
  if( rc==SQLITE_OK ){
sl@0
  4105
    pOut->u.i = pgno;
sl@0
  4106
    MemSetTypeFlag(pOut, MEM_Int);
sl@0
  4107
  }
sl@0
  4108
  break;
sl@0
  4109
}
sl@0
  4110
sl@0
  4111
/* Opcode: ParseSchema P1 P2 * P4 *
sl@0
  4112
**
sl@0
  4113
** Read and parse all entries from the SQLITE_MASTER table of database P1
sl@0
  4114
** that match the WHERE clause P4.  P2 is the "force" flag.   Always do
sl@0
  4115
** the parsing if P2 is true.  If P2 is false, then this routine is a
sl@0
  4116
** no-op if the schema is not currently loaded.  In other words, if P2
sl@0
  4117
** is false, the SQLITE_MASTER table is only parsed if the rest of the
sl@0
  4118
** schema is already loaded into the symbol table.
sl@0
  4119
**
sl@0
  4120
** This opcode invokes the parser to create a new virtual machine,
sl@0
  4121
** then runs the new virtual machine.  It is thus a re-entrant opcode.
sl@0
  4122
*/
sl@0
  4123
case OP_ParseSchema: {
sl@0
  4124
  char *zSql;
sl@0
  4125
  int iDb = pOp->p1;
sl@0
  4126
  const char *zMaster;
sl@0
  4127
  InitData initData;
sl@0
  4128
sl@0
  4129
  assert( iDb>=0 && iDb<db->nDb );
sl@0
  4130
  if( !pOp->p2 && !DbHasProperty(db, iDb, DB_SchemaLoaded) ){
sl@0
  4131
    break;
sl@0
  4132
  }
sl@0
  4133
  zMaster = SCHEMA_TABLE(iDb);
sl@0
  4134
  initData.db = db;
sl@0
  4135
  initData.iDb = pOp->p1;
sl@0
  4136
  initData.pzErrMsg = &p->zErrMsg;
sl@0
  4137
  zSql = sqlite3MPrintf(db,
sl@0
  4138
     "SELECT name, rootpage, sql FROM '%q'.%s WHERE %s",
sl@0
  4139
     db->aDb[iDb].zName, zMaster, pOp->p4.z);
sl@0
  4140
  if( zSql==0 ) goto no_mem;
sl@0
  4141
  (void)sqlite3SafetyOff(db);
sl@0
  4142
  assert( db->init.busy==0 );
sl@0
  4143
  db->init.busy = 1;
sl@0
  4144
  assert( !db->mallocFailed );
sl@0
  4145
  rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0);
sl@0
  4146
  if( rc==SQLITE_ABORT ) rc = initData.rc;
sl@0
  4147
  sqlite3DbFree(db, zSql);
sl@0
  4148
  db->init.busy = 0;
sl@0
  4149
  (void)sqlite3SafetyOn(db);
sl@0
  4150
  if( rc==SQLITE_NOMEM ){
sl@0
  4151
    goto no_mem;
sl@0
  4152
  }
sl@0
  4153
  break;  
sl@0
  4154
}
sl@0
  4155
sl@0
  4156
#if !defined(SQLITE_OMIT_ANALYZE) && !defined(SQLITE_OMIT_PARSER)
sl@0
  4157
/* Opcode: LoadAnalysis P1 * * * *
sl@0
  4158
**
sl@0
  4159
** Read the sqlite_stat1 table for database P1 and load the content
sl@0
  4160
** of that table into the internal index hash table.  This will cause
sl@0
  4161
** the analysis to be used when preparing all subsequent queries.
sl@0
  4162
*/
sl@0
  4163
case OP_LoadAnalysis: {
sl@0
  4164
  int iDb = pOp->p1;
sl@0
  4165
  assert( iDb>=0 && iDb<db->nDb );
sl@0
  4166
  rc = sqlite3AnalysisLoad(db, iDb);
sl@0
  4167
  break;  
sl@0
  4168
}
sl@0
  4169
#endif /* !defined(SQLITE_OMIT_ANALYZE) && !defined(SQLITE_OMIT_PARSER)  */
sl@0
  4170
sl@0
  4171
/* Opcode: DropTable P1 * * P4 *
sl@0
  4172
**
sl@0
  4173
** Remove the internal (in-memory) data structures that describe
sl@0
  4174
** the table named P4 in database P1.  This is called after a table
sl@0
  4175
** is dropped in order to keep the internal representation of the
sl@0
  4176
** schema consistent with what is on disk.
sl@0
  4177
*/
sl@0
  4178
case OP_DropTable: {
sl@0
  4179
  sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z);
sl@0
  4180
  break;
sl@0
  4181
}
sl@0
  4182
sl@0
  4183
/* Opcode: DropIndex P1 * * P4 *
sl@0
  4184
**
sl@0
  4185
** Remove the internal (in-memory) data structures that describe
sl@0
  4186
** the index named P4 in database P1.  This is called after an index
sl@0
  4187
** is dropped in order to keep the internal representation of the
sl@0
  4188
** schema consistent with what is on disk.
sl@0
  4189
*/
sl@0
  4190
case OP_DropIndex: {
sl@0
  4191
  sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z);
sl@0
  4192
  break;
sl@0
  4193
}
sl@0
  4194
sl@0
  4195
/* Opcode: DropTrigger P1 * * P4 *
sl@0
  4196
**
sl@0
  4197
** Remove the internal (in-memory) data structures that describe
sl@0
  4198
** the trigger named P4 in database P1.  This is called after a trigger
sl@0
  4199
** is dropped in order to keep the internal representation of the
sl@0
  4200
** schema consistent with what is on disk.
sl@0
  4201
*/
sl@0
  4202
case OP_DropTrigger: {
sl@0
  4203
  sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z);
sl@0
  4204
  break;
sl@0
  4205
}
sl@0
  4206
sl@0
  4207
sl@0
  4208
#ifndef SQLITE_OMIT_INTEGRITY_CHECK
sl@0
  4209
/* Opcode: IntegrityCk P1 P2 P3 * P5
sl@0
  4210
**
sl@0
  4211
** Do an analysis of the currently open database.  Store in
sl@0
  4212
** register P1 the text of an error message describing any problems.
sl@0
  4213
** If no problems are found, store a NULL in register P1.
sl@0
  4214
**
sl@0
  4215
** The register P3 contains the maximum number of allowed errors.
sl@0
  4216
** At most reg(P3) errors will be reported.
sl@0
  4217
** In other words, the analysis stops as soon as reg(P1) errors are 
sl@0
  4218
** seen.  Reg(P1) is updated with the number of errors remaining.
sl@0
  4219
**
sl@0
  4220
** The root page numbers of all tables in the database are integer
sl@0
  4221
** stored in reg(P1), reg(P1+1), reg(P1+2), ....  There are P2 tables
sl@0
  4222
** total.
sl@0
  4223
**
sl@0
  4224
** If P5 is not zero, the check is done on the auxiliary database
sl@0
  4225
** file, not the main database file.
sl@0
  4226
**
sl@0
  4227
** This opcode is used to implement the integrity_check pragma.
sl@0
  4228
*/
sl@0
  4229
case OP_IntegrityCk: {
sl@0
  4230
  int nRoot;      /* Number of tables to check.  (Number of root pages.) */
sl@0
  4231
  int *aRoot;     /* Array of rootpage numbers for tables to be checked */
sl@0
  4232
  int j;          /* Loop counter */
sl@0
  4233
  int nErr;       /* Number of errors reported */
sl@0
  4234
  char *z;        /* Text of the error report */
sl@0
  4235
  Mem *pnErr;     /* Register keeping track of errors remaining */
sl@0
  4236
  
sl@0
  4237
  nRoot = pOp->p2;
sl@0
  4238
  assert( nRoot>0 );
sl@0
  4239
  aRoot = sqlite3DbMallocRaw(db, sizeof(int)*(nRoot+1) );
sl@0
  4240
  if( aRoot==0 ) goto no_mem;
sl@0
  4241
  assert( pOp->p3>0 && pOp->p3<=p->nMem );
sl@0
  4242
  pnErr = &p->aMem[pOp->p3];
sl@0
  4243
  assert( (pnErr->flags & MEM_Int)!=0 );
sl@0
  4244
  assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 );
sl@0
  4245
  pIn1 = &p->aMem[pOp->p1];
sl@0
  4246
  for(j=0; j<nRoot; j++){
sl@0
  4247
    aRoot[j] = sqlite3VdbeIntValue(&pIn1[j]);
sl@0
  4248
  }
sl@0
  4249
  aRoot[j] = 0;
sl@0
  4250
  assert( pOp->p5<db->nDb );
sl@0
  4251
  assert( (p->btreeMask & (1<<pOp->p5))!=0 );
sl@0
  4252
  z = sqlite3BtreeIntegrityCheck(db->aDb[pOp->p5].pBt, aRoot, nRoot,
sl@0
  4253
                                 pnErr->u.i, &nErr);
sl@0
  4254
  sqlite3DbFree(db, aRoot);
sl@0
  4255
  pnErr->u.i -= nErr;
sl@0
  4256
  sqlite3VdbeMemSetNull(pIn1);
sl@0
  4257
  if( nErr==0 ){
sl@0
  4258
    assert( z==0 );
sl@0
  4259
  }else if( z==0 ){
sl@0
  4260
    goto no_mem;
sl@0
  4261
  }else{
sl@0
  4262
    sqlite3VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8, sqlite3_free);
sl@0
  4263
  }
sl@0
  4264
  UPDATE_MAX_BLOBSIZE(pIn1);
sl@0
  4265
  sqlite3VdbeChangeEncoding(pIn1, encoding);
sl@0
  4266
  break;
sl@0
  4267
}
sl@0
  4268
#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
sl@0
  4269
sl@0
  4270
/* Opcode: FifoWrite P1 * * * *
sl@0
  4271
**
sl@0
  4272
** Write the integer from register P1 into the Fifo.
sl@0
  4273
*/
sl@0
  4274
case OP_FifoWrite: {        /* in1 */
sl@0
  4275
  p->sFifo.db = db;
sl@0
  4276
  if( sqlite3VdbeFifoPush(&p->sFifo, sqlite3VdbeIntValue(pIn1))==SQLITE_NOMEM ){
sl@0
  4277
    goto no_mem;
sl@0
  4278
  }
sl@0
  4279
  break;
sl@0
  4280
}
sl@0
  4281
sl@0
  4282
/* Opcode: FifoRead P1 P2 * * *
sl@0
  4283
**
sl@0
  4284
** Attempt to read a single integer from the Fifo.  Store that
sl@0
  4285
** integer in register P1.
sl@0
  4286
** 
sl@0
  4287
** If the Fifo is empty jump to P2.
sl@0
  4288
*/
sl@0
  4289
case OP_FifoRead: {         /* jump */
sl@0
  4290
  CHECK_FOR_INTERRUPT;
sl@0
  4291
  assert( pOp->p1>0 && pOp->p1<=p->nMem );
sl@0
  4292
  pOut = &p->aMem[pOp->p1];
sl@0
  4293
  MemSetTypeFlag(pOut, MEM_Int);
sl@0
  4294
  if( sqlite3VdbeFifoPop(&p->sFifo, &pOut->u.i)==SQLITE_DONE ){
sl@0
  4295
    pc = pOp->p2 - 1;
sl@0
  4296
  }
sl@0
  4297
  break;
sl@0
  4298
}
sl@0
  4299
sl@0
  4300
#ifndef SQLITE_OMIT_TRIGGER
sl@0
  4301
/* Opcode: ContextPush * * * 
sl@0
  4302
**
sl@0
  4303
** Save the current Vdbe context such that it can be restored by a ContextPop
sl@0
  4304
** opcode. The context stores the last insert row id, the last statement change
sl@0
  4305
** count, and the current statement change count.
sl@0
  4306
*/
sl@0
  4307
case OP_ContextPush: {
sl@0
  4308
  int i = p->contextStackTop++;
sl@0
  4309
  Context *pContext;
sl@0
  4310
sl@0
  4311
  assert( i>=0 );
sl@0
  4312
  /* FIX ME: This should be allocated as part of the vdbe at compile-time */
sl@0
  4313
  if( i>=p->contextStackDepth ){
sl@0
  4314
    p->contextStackDepth = i+1;
sl@0
  4315
    p->contextStack = sqlite3DbReallocOrFree(db, p->contextStack,
sl@0
  4316
                                          sizeof(Context)*(i+1));
sl@0
  4317
    if( p->contextStack==0 ) goto no_mem;
sl@0
  4318
  }
sl@0
  4319
  pContext = &p->contextStack[i];
sl@0
  4320
  pContext->lastRowid = db->lastRowid;
sl@0
  4321
  pContext->nChange = p->nChange;
sl@0
  4322
  pContext->sFifo = p->sFifo;
sl@0
  4323
  sqlite3VdbeFifoInit(&p->sFifo, db);
sl@0
  4324
  break;
sl@0
  4325
}
sl@0
  4326
sl@0
  4327
/* Opcode: ContextPop * * * 
sl@0
  4328
**
sl@0
  4329
** Restore the Vdbe context to the state it was in when contextPush was last
sl@0
  4330
** executed. The context stores the last insert row id, the last statement
sl@0
  4331
** change count, and the current statement change count.
sl@0
  4332
*/
sl@0
  4333
case OP_ContextPop: {
sl@0
  4334
  Context *pContext = &p->contextStack[--p->contextStackTop];
sl@0
  4335
  assert( p->contextStackTop>=0 );
sl@0
  4336
  db->lastRowid = pContext->lastRowid;
sl@0
  4337
  p->nChange = pContext->nChange;
sl@0
  4338
  sqlite3VdbeFifoClear(&p->sFifo);
sl@0
  4339
  p->sFifo = pContext->sFifo;
sl@0
  4340
  break;
sl@0
  4341
}
sl@0
  4342
#endif /* #ifndef SQLITE_OMIT_TRIGGER */
sl@0
  4343
sl@0
  4344
#ifndef SQLITE_OMIT_AUTOINCREMENT
sl@0
  4345
/* Opcode: MemMax P1 P2 * * *
sl@0
  4346
**
sl@0
  4347
** Set the value of register P1 to the maximum of its current value
sl@0
  4348
** and the value in register P2.
sl@0
  4349
**
sl@0
  4350
** This instruction throws an error if the memory cell is not initially
sl@0
  4351
** an integer.
sl@0
  4352
*/
sl@0
  4353
case OP_MemMax: {        /* in1, in2 */
sl@0
  4354
  sqlite3VdbeMemIntegerify(pIn1);
sl@0
  4355
  sqlite3VdbeMemIntegerify(pIn2);
sl@0
  4356
  if( pIn1->u.i<pIn2->u.i){
sl@0
  4357
    pIn1->u.i = pIn2->u.i;
sl@0
  4358
  }
sl@0
  4359
  break;
sl@0
  4360
}
sl@0
  4361
#endif /* SQLITE_OMIT_AUTOINCREMENT */
sl@0
  4362
sl@0
  4363
/* Opcode: IfPos P1 P2 * * *
sl@0
  4364
**
sl@0
  4365
** If the value of register P1 is 1 or greater, jump to P2.
sl@0
  4366
**
sl@0
  4367
** It is illegal to use this instruction on a register that does
sl@0
  4368
** not contain an integer.  An assertion fault will result if you try.
sl@0
  4369
*/
sl@0
  4370
case OP_IfPos: {        /* jump, in1 */
sl@0
  4371
  assert( pIn1->flags&MEM_Int );
sl@0
  4372
  if( pIn1->u.i>0 ){
sl@0
  4373
     pc = pOp->p2 - 1;
sl@0
  4374
  }
sl@0
  4375
  break;
sl@0
  4376
}
sl@0
  4377
sl@0
  4378
/* Opcode: IfNeg P1 P2 * * *
sl@0
  4379
**
sl@0
  4380
** If the value of register P1 is less than zero, jump to P2. 
sl@0
  4381
**
sl@0
  4382
** It is illegal to use this instruction on a register that does
sl@0
  4383
** not contain an integer.  An assertion fault will result if you try.
sl@0
  4384
*/
sl@0
  4385
case OP_IfNeg: {        /* jump, in1 */
sl@0
  4386
  assert( pIn1->flags&MEM_Int );
sl@0
  4387
  if( pIn1->u.i<0 ){
sl@0
  4388
     pc = pOp->p2 - 1;
sl@0
  4389
  }
sl@0
  4390
  break;
sl@0
  4391
}
sl@0
  4392
sl@0
  4393
/* Opcode: IfZero P1 P2 * * *
sl@0
  4394
**
sl@0
  4395
** If the value of register P1 is exactly 0, jump to P2. 
sl@0
  4396
**
sl@0
  4397
** It is illegal to use this instruction on a register that does
sl@0
  4398
** not contain an integer.  An assertion fault will result if you try.
sl@0
  4399
*/
sl@0
  4400
case OP_IfZero: {        /* jump, in1 */
sl@0
  4401
  assert( pIn1->flags&MEM_Int );
sl@0
  4402
  if( pIn1->u.i==0 ){
sl@0
  4403
     pc = pOp->p2 - 1;
sl@0
  4404
  }
sl@0
  4405
  break;
sl@0
  4406
}
sl@0
  4407
sl@0
  4408
/* Opcode: AggStep * P2 P3 P4 P5
sl@0
  4409
**
sl@0
  4410
** Execute the step function for an aggregate.  The
sl@0
  4411
** function has P5 arguments.   P4 is a pointer to the FuncDef
sl@0
  4412
** structure that specifies the function.  Use register
sl@0
  4413
** P3 as the accumulator.
sl@0
  4414
**
sl@0
  4415
** The P5 arguments are taken from register P2 and its
sl@0
  4416
** successors.
sl@0
  4417
*/
sl@0
  4418
case OP_AggStep: {
sl@0
  4419
  int n = pOp->p5;
sl@0
  4420
  int i;
sl@0
  4421
  Mem *pMem, *pRec;
sl@0
  4422
  sqlite3_context ctx;
sl@0
  4423
  sqlite3_value **apVal;
sl@0
  4424
sl@0
  4425
  assert( n>=0 );
sl@0
  4426
  pRec = &p->aMem[pOp->p2];
sl@0
  4427
  apVal = p->apArg;
sl@0
  4428
  assert( apVal || n==0 );
sl@0
  4429
  for(i=0; i<n; i++, pRec++){
sl@0
  4430
    apVal[i] = pRec;
sl@0
  4431
    storeTypeInfo(pRec, encoding);
sl@0
  4432
  }
sl@0
  4433
  ctx.pFunc = pOp->p4.pFunc;
sl@0
  4434
  assert( pOp->p3>0 && pOp->p3<=p->nMem );
sl@0
  4435
  ctx.pMem = pMem = &p->aMem[pOp->p3];
sl@0
  4436
  pMem->n++;
sl@0
  4437
  ctx.s.flags = MEM_Null;
sl@0
  4438
  ctx.s.z = 0;
sl@0
  4439
  ctx.s.zMalloc = 0;
sl@0
  4440
  ctx.s.xDel = 0;
sl@0
  4441
  ctx.s.db = db;
sl@0
  4442
  ctx.isError = 0;
sl@0
  4443
  ctx.pColl = 0;
sl@0
  4444
  if( ctx.pFunc->needCollSeq ){
sl@0
  4445
    assert( pOp>p->aOp );
sl@0
  4446
    assert( pOp[-1].p4type==P4_COLLSEQ );
sl@0
  4447
    assert( pOp[-1].opcode==OP_CollSeq );
sl@0
  4448
    ctx.pColl = pOp[-1].p4.pColl;
sl@0
  4449
  }
sl@0
  4450
  (ctx.pFunc->xStep)(&ctx, n, apVal);
sl@0
  4451
  if( ctx.isError ){
sl@0
  4452
    sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(&ctx.s));
sl@0
  4453
    rc = ctx.isError;
sl@0
  4454
  }
sl@0
  4455
  sqlite3VdbeMemRelease(&ctx.s);
sl@0
  4456
  break;
sl@0
  4457
}
sl@0
  4458
sl@0
  4459
/* Opcode: AggFinal P1 P2 * P4 *
sl@0
  4460
**
sl@0
  4461
** Execute the finalizer function for an aggregate.  P1 is
sl@0
  4462
** the memory location that is the accumulator for the aggregate.
sl@0
  4463
**
sl@0
  4464
** P2 is the number of arguments that the step function takes and
sl@0
  4465
** P4 is a pointer to the FuncDef for this function.  The P2
sl@0
  4466
** argument is not used by this opcode.  It is only there to disambiguate
sl@0
  4467
** functions that can take varying numbers of arguments.  The
sl@0
  4468
** P4 argument is only needed for the degenerate case where
sl@0
  4469
** the step function was not previously called.
sl@0
  4470
*/
sl@0
  4471
case OP_AggFinal: {
sl@0
  4472
  Mem *pMem;
sl@0
  4473
  assert( pOp->p1>0 && pOp->p1<=p->nMem );
sl@0
  4474
  pMem = &p->aMem[pOp->p1];
sl@0
  4475
  assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 );
sl@0
  4476
  rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc);
sl@0
  4477
  if( rc==SQLITE_ERROR ){
sl@0
  4478
    sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(pMem));
sl@0
  4479
  }
sl@0
  4480
  sqlite3VdbeChangeEncoding(pMem, encoding);
sl@0
  4481
  UPDATE_MAX_BLOBSIZE(pMem);
sl@0
  4482
  if( sqlite3VdbeMemTooBig(pMem) ){
sl@0
  4483
    goto too_big;
sl@0
  4484
  }
sl@0
  4485
  break;
sl@0
  4486
}
sl@0
  4487
sl@0
  4488
sl@0
  4489
#if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH)
sl@0
  4490
/* Opcode: Vacuum * * * * *
sl@0
  4491
**
sl@0
  4492
** Vacuum the entire database.  This opcode will cause other virtual
sl@0
  4493
** machines to be created and run.  It may not be called from within
sl@0
  4494
** a transaction.
sl@0
  4495
*/
sl@0
  4496
case OP_Vacuum: {
sl@0
  4497
  if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse; 
sl@0
  4498
  rc = sqlite3RunVacuum(&p->zErrMsg, db);
sl@0
  4499
  if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
sl@0
  4500
  break;
sl@0
  4501
}
sl@0
  4502
#endif
sl@0
  4503
sl@0
  4504
#if !defined(SQLITE_OMIT_AUTOVACUUM)
sl@0
  4505
/* Opcode: IncrVacuum P1 P2 * * *
sl@0
  4506
**
sl@0
  4507
** Perform a single step of the incremental vacuum procedure on
sl@0
  4508
** the P1 database. If the vacuum has finished, jump to instruction
sl@0
  4509
** P2. Otherwise, fall through to the next instruction.
sl@0
  4510
*/
sl@0
  4511
case OP_IncrVacuum: {        /* jump */
sl@0
  4512
  Btree *pBt;
sl@0
  4513
sl@0
  4514
  assert( pOp->p1>=0 && pOp->p1<db->nDb );
sl@0
  4515
  assert( (p->btreeMask & (1<<pOp->p1))!=0 );
sl@0
  4516
  pBt = db->aDb[pOp->p1].pBt;
sl@0
  4517
  rc = sqlite3BtreeIncrVacuum(pBt);
sl@0
  4518
  if( rc==SQLITE_DONE ){
sl@0
  4519
    pc = pOp->p2 - 1;
sl@0
  4520
    rc = SQLITE_OK;
sl@0
  4521
  }
sl@0
  4522
  break;
sl@0
  4523
}
sl@0
  4524
#endif
sl@0
  4525
sl@0
  4526
/* Opcode: Expire P1 * * * *
sl@0
  4527
**
sl@0
  4528
** Cause precompiled statements to become expired. An expired statement
sl@0
  4529
** fails with an error code of SQLITE_SCHEMA if it is ever executed 
sl@0
  4530
** (via sqlite3_step()).
sl@0
  4531
** 
sl@0
  4532
** If P1 is 0, then all SQL statements become expired. If P1 is non-zero,
sl@0
  4533
** then only the currently executing statement is affected. 
sl@0
  4534
*/
sl@0
  4535
case OP_Expire: {
sl@0
  4536
  if( !pOp->p1 ){
sl@0
  4537
    sqlite3ExpirePreparedStatements(db);
sl@0
  4538
  }else{
sl@0
  4539
    p->expired = 1;
sl@0
  4540
  }
sl@0
  4541
  break;
sl@0
  4542
}
sl@0
  4543
sl@0
  4544
#ifndef SQLITE_OMIT_SHARED_CACHE
sl@0
  4545
/* Opcode: TableLock P1 P2 P3 P4 *
sl@0
  4546
**
sl@0
  4547
** Obtain a lock on a particular table. This instruction is only used when
sl@0
  4548
** the shared-cache feature is enabled. 
sl@0
  4549
**
sl@0
  4550
** If P1 is  the index of the database in sqlite3.aDb[] of the database
sl@0
  4551
** on which the lock is acquired.  A readlock is obtained if P3==0 or
sl@0
  4552
** a write lock if P3==1.
sl@0
  4553
**
sl@0
  4554
** P2 contains the root-page of the table to lock.
sl@0
  4555
**
sl@0
  4556
** P4 contains a pointer to the name of the table being locked. This is only
sl@0
  4557
** used to generate an error message if the lock cannot be obtained.
sl@0
  4558
*/
sl@0
  4559
case OP_TableLock: {
sl@0
  4560
  int p1 = pOp->p1; 
sl@0
  4561
  u8 isWriteLock = pOp->p3;
sl@0
  4562
  assert( p1>=0 && p1<db->nDb );
sl@0
  4563
  assert( (p->btreeMask & (1<<p1))!=0 );
sl@0
  4564
  assert( isWriteLock==0 || isWriteLock==1 );
sl@0
  4565
  rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock);
sl@0
  4566
  if( rc==SQLITE_LOCKED ){
sl@0
  4567
    const char *z = pOp->p4.z;
sl@0
  4568
    sqlite3SetString(&p->zErrMsg, db, "database table is locked: %s", z);
sl@0
  4569
  }
sl@0
  4570
  break;
sl@0
  4571
}
sl@0
  4572
#endif /* SQLITE_OMIT_SHARED_CACHE */
sl@0
  4573
sl@0
  4574
#ifndef SQLITE_OMIT_VIRTUALTABLE
sl@0
  4575
/* Opcode: VBegin * * * P4 *
sl@0
  4576
**
sl@0
  4577
** P4 may be a pointer to an sqlite3_vtab structure. If so, call the 
sl@0
  4578
** xBegin method for that table.
sl@0
  4579
**
sl@0
  4580
** Also, whether or not P4 is set, check that this is not being called from
sl@0
  4581
** within a callback to a virtual table xSync() method. If it is, set the
sl@0
  4582
** error code to SQLITE_LOCKED.
sl@0
  4583
*/
sl@0
  4584
case OP_VBegin: {
sl@0
  4585
  sqlite3_vtab *pVtab = pOp->p4.pVtab;
sl@0
  4586
  rc = sqlite3VtabBegin(db, pVtab);
sl@0
  4587
  if( pVtab ){
sl@0
  4588
    sqlite3DbFree(db, p->zErrMsg);
sl@0
  4589
    p->zErrMsg = pVtab->zErrMsg;
sl@0
  4590
    pVtab->zErrMsg = 0;
sl@0
  4591
  }
sl@0
  4592
  break;
sl@0
  4593
}
sl@0
  4594
#endif /* SQLITE_OMIT_VIRTUALTABLE */
sl@0
  4595
sl@0
  4596
#ifndef SQLITE_OMIT_VIRTUALTABLE
sl@0
  4597
/* Opcode: VCreate P1 * * P4 *
sl@0
  4598
**
sl@0
  4599
** P4 is the name of a virtual table in database P1. Call the xCreate method
sl@0
  4600
** for that table.
sl@0
  4601
*/
sl@0
  4602
case OP_VCreate: {
sl@0
  4603
  rc = sqlite3VtabCallCreate(db, pOp->p1, pOp->p4.z, &p->zErrMsg);
sl@0
  4604
  break;
sl@0
  4605
}
sl@0
  4606
#endif /* SQLITE_OMIT_VIRTUALTABLE */
sl@0
  4607
sl@0
  4608
#ifndef SQLITE_OMIT_VIRTUALTABLE
sl@0
  4609
/* Opcode: VDestroy P1 * * P4 *
sl@0
  4610
**
sl@0
  4611
** P4 is the name of a virtual table in database P1.  Call the xDestroy method
sl@0
  4612
** of that table.
sl@0
  4613
*/
sl@0
  4614
case OP_VDestroy: {
sl@0
  4615
  p->inVtabMethod = 2;
sl@0
  4616
  rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z);
sl@0
  4617
  p->inVtabMethod = 0;
sl@0
  4618
  break;
sl@0
  4619
}
sl@0
  4620
#endif /* SQLITE_OMIT_VIRTUALTABLE */
sl@0
  4621
sl@0
  4622
#ifndef SQLITE_OMIT_VIRTUALTABLE
sl@0
  4623
/* Opcode: VOpen P1 * * P4 *
sl@0
  4624
**
sl@0
  4625
** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
sl@0
  4626
** P1 is a cursor number.  This opcode opens a cursor to the virtual
sl@0
  4627
** table and stores that cursor in P1.
sl@0
  4628
*/
sl@0
  4629
case OP_VOpen: {
sl@0
  4630
  Cursor *pCur = 0;
sl@0
  4631
  sqlite3_vtab_cursor *pVtabCursor = 0;
sl@0
  4632
sl@0
  4633
  sqlite3_vtab *pVtab = pOp->p4.pVtab;
sl@0
  4634
  sqlite3_module *pModule = (sqlite3_module *)pVtab->pModule;
sl@0
  4635
sl@0
  4636
  assert(pVtab && pModule);
sl@0
  4637
  if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
sl@0
  4638
  rc = pModule->xOpen(pVtab, &pVtabCursor);
sl@0
  4639
  sqlite3DbFree(db, p->zErrMsg);
sl@0
  4640
  p->zErrMsg = pVtab->zErrMsg;
sl@0
  4641
  pVtab->zErrMsg = 0;
sl@0
  4642
  if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
sl@0
  4643
  if( SQLITE_OK==rc ){
sl@0
  4644
    /* Initialize sqlite3_vtab_cursor base class */
sl@0
  4645
    pVtabCursor->pVtab = pVtab;
sl@0
  4646
sl@0
  4647
    /* Initialise vdbe cursor object */
sl@0
  4648
    pCur = allocateCursor(p, pOp->p1, &pOp[-1], -1, 0);
sl@0
  4649
    if( pCur ){
sl@0
  4650
      pCur->pVtabCursor = pVtabCursor;
sl@0
  4651
      pCur->pModule = pVtabCursor->pVtab->pModule;
sl@0
  4652
    }else{
sl@0
  4653
      db->mallocFailed = 1;
sl@0
  4654
      pModule->xClose(pVtabCursor);
sl@0
  4655
    }
sl@0
  4656
  }
sl@0
  4657
  break;
sl@0
  4658
}
sl@0
  4659
#endif /* SQLITE_OMIT_VIRTUALTABLE */
sl@0
  4660
sl@0
  4661
#ifndef SQLITE_OMIT_VIRTUALTABLE
sl@0
  4662
/* Opcode: VFilter P1 P2 P3 P4 *
sl@0
  4663
**
sl@0
  4664
** P1 is a cursor opened using VOpen.  P2 is an address to jump to if
sl@0
  4665
** the filtered result set is empty.
sl@0
  4666
**
sl@0
  4667
** P4 is either NULL or a string that was generated by the xBestIndex
sl@0
  4668
** method of the module.  The interpretation of the P4 string is left
sl@0
  4669
** to the module implementation.
sl@0
  4670
**
sl@0
  4671
** This opcode invokes the xFilter method on the virtual table specified
sl@0
  4672
** by P1.  The integer query plan parameter to xFilter is stored in register
sl@0
  4673
** P3. Register P3+1 stores the argc parameter to be passed to the
sl@0
  4674
** xFilter method. Registers P3+2..P3+1+argc are the argc
sl@0
  4675
** additional parameters which are passed to
sl@0
  4676
** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter.
sl@0
  4677
**
sl@0
  4678
** A jump is made to P2 if the result set after filtering would be empty.
sl@0
  4679
*/
sl@0
  4680
case OP_VFilter: {   /* jump */
sl@0
  4681
  int nArg;
sl@0
  4682
  int iQuery;
sl@0
  4683
  const sqlite3_module *pModule;
sl@0
  4684
  Mem *pQuery = &p->aMem[pOp->p3];
sl@0
  4685
  Mem *pArgc = &pQuery[1];
sl@0
  4686
  sqlite3_vtab_cursor *pVtabCursor;
sl@0
  4687
  sqlite3_vtab *pVtab;
sl@0
  4688
sl@0
  4689
  Cursor *pCur = p->apCsr[pOp->p1];
sl@0
  4690
sl@0
  4691
  REGISTER_TRACE(pOp->p3, pQuery);
sl@0
  4692
  assert( pCur->pVtabCursor );
sl@0
  4693
  pVtabCursor = pCur->pVtabCursor;
sl@0
  4694
  pVtab = pVtabCursor->pVtab;
sl@0
  4695
  pModule = pVtab->pModule;
sl@0
  4696
sl@0
  4697
  /* Grab the index number and argc parameters */
sl@0
  4698
  assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int );
sl@0
  4699
  nArg = pArgc->u.i;
sl@0
  4700
  iQuery = pQuery->u.i;
sl@0
  4701
sl@0
  4702
  /* Invoke the xFilter method */
sl@0
  4703
  {
sl@0
  4704
    int res = 0;
sl@0
  4705
    int i;
sl@0
  4706
    Mem **apArg = p->apArg;
sl@0
  4707
    for(i = 0; i<nArg; i++){
sl@0
  4708
      apArg[i] = &pArgc[i+1];
sl@0
  4709
      storeTypeInfo(apArg[i], 0);
sl@0
  4710
    }
sl@0
  4711
sl@0
  4712
    if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
sl@0
  4713
    sqlite3VtabLock(pVtab);
sl@0
  4714
    p->inVtabMethod = 1;
sl@0
  4715
    rc = pModule->xFilter(pVtabCursor, iQuery, pOp->p4.z, nArg, apArg);
sl@0
  4716
    p->inVtabMethod = 0;
sl@0
  4717
    sqlite3DbFree(db, p->zErrMsg);
sl@0
  4718
    p->zErrMsg = pVtab->zErrMsg;
sl@0
  4719
    pVtab->zErrMsg = 0;
sl@0
  4720
    sqlite3VtabUnlock(db, pVtab);
sl@0
  4721
    if( rc==SQLITE_OK ){
sl@0
  4722
      res = pModule->xEof(pVtabCursor);
sl@0
  4723
    }
sl@0
  4724
    if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
sl@0
  4725
sl@0
  4726
    if( res ){
sl@0
  4727
      pc = pOp->p2 - 1;
sl@0
  4728
    }
sl@0
  4729
  }
sl@0
  4730
  pCur->nullRow = 0;
sl@0
  4731
sl@0
  4732
  break;
sl@0
  4733
}
sl@0
  4734
#endif /* SQLITE_OMIT_VIRTUALTABLE */
sl@0
  4735
sl@0
  4736
#ifndef SQLITE_OMIT_VIRTUALTABLE
sl@0
  4737
/* Opcode: VRowid P1 P2 * * *
sl@0
  4738
**
sl@0
  4739
** Store into register P2  the rowid of
sl@0
  4740
** the virtual-table that the P1 cursor is pointing to.
sl@0
  4741
*/
sl@0
  4742
case OP_VRowid: {             /* out2-prerelease */
sl@0
  4743
  sqlite3_vtab *pVtab;
sl@0
  4744
  const sqlite3_module *pModule;
sl@0
  4745
  sqlite_int64 iRow;
sl@0
  4746
  Cursor *pCur = p->apCsr[pOp->p1];
sl@0
  4747
sl@0
  4748
  assert( pCur->pVtabCursor );
sl@0
  4749
  if( pCur->nullRow ){
sl@0
  4750
    break;
sl@0
  4751
  }
sl@0
  4752
  pVtab = pCur->pVtabCursor->pVtab;
sl@0
  4753
  pModule = pVtab->pModule;
sl@0
  4754
  assert( pModule->xRowid );
sl@0
  4755
  if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
sl@0
  4756
  rc = pModule->xRowid(pCur->pVtabCursor, &iRow);
sl@0
  4757
  sqlite3DbFree(db, p->zErrMsg);
sl@0
  4758
  p->zErrMsg = pVtab->zErrMsg;
sl@0
  4759
  pVtab->zErrMsg = 0;
sl@0
  4760
  if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
sl@0
  4761
  MemSetTypeFlag(pOut, MEM_Int);
sl@0
  4762
  pOut->u.i = iRow;
sl@0
  4763
  break;
sl@0
  4764
}
sl@0
  4765
#endif /* SQLITE_OMIT_VIRTUALTABLE */
sl@0
  4766
sl@0
  4767
#ifndef SQLITE_OMIT_VIRTUALTABLE
sl@0
  4768
/* Opcode: VColumn P1 P2 P3 * *
sl@0
  4769
**
sl@0
  4770
** Store the value of the P2-th column of
sl@0
  4771
** the row of the virtual-table that the 
sl@0
  4772
** P1 cursor is pointing to into register P3.
sl@0
  4773
*/
sl@0
  4774
case OP_VColumn: {
sl@0
  4775
  sqlite3_vtab *pVtab;
sl@0
  4776
  const sqlite3_module *pModule;
sl@0
  4777
  Mem *pDest;
sl@0
  4778
  sqlite3_context sContext;
sl@0
  4779
sl@0
  4780
  Cursor *pCur = p->apCsr[pOp->p1];
sl@0
  4781
  assert( pCur->pVtabCursor );
sl@0
  4782
  assert( pOp->p3>0 && pOp->p3<=p->nMem );
sl@0
  4783
  pDest = &p->aMem[pOp->p3];
sl@0
  4784
  if( pCur->nullRow ){
sl@0
  4785
    sqlite3VdbeMemSetNull(pDest);
sl@0
  4786
    break;
sl@0
  4787
  }
sl@0
  4788
  pVtab = pCur->pVtabCursor->pVtab;
sl@0
  4789
  pModule = pVtab->pModule;
sl@0
  4790
  assert( pModule->xColumn );
sl@0
  4791
  memset(&sContext, 0, sizeof(sContext));
sl@0
  4792
sl@0
  4793
  /* The output cell may already have a buffer allocated. Move
sl@0
  4794
  ** the current contents to sContext.s so in case the user-function 
sl@0
  4795
  ** can use the already allocated buffer instead of allocating a 
sl@0
  4796
  ** new one.
sl@0
  4797
  */
sl@0
  4798
  sqlite3VdbeMemMove(&sContext.s, pDest);
sl@0
  4799
  MemSetTypeFlag(&sContext.s, MEM_Null);
sl@0
  4800
sl@0
  4801
  if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
sl@0
  4802
  rc = pModule->xColumn(pCur->pVtabCursor, &sContext, pOp->p2);
sl@0
  4803
  sqlite3DbFree(db, p->zErrMsg);
sl@0
  4804
  p->zErrMsg = pVtab->zErrMsg;
sl@0
  4805
  pVtab->zErrMsg = 0;
sl@0
  4806
sl@0
  4807
  /* Copy the result of the function to the P3 register. We
sl@0
  4808
  ** do this regardless of whether or not an error occured to ensure any
sl@0
  4809
  ** dynamic allocation in sContext.s (a Mem struct) is  released.
sl@0
  4810
  */
sl@0
  4811
  sqlite3VdbeChangeEncoding(&sContext.s, encoding);
sl@0
  4812
  REGISTER_TRACE(pOp->p3, pDest);
sl@0
  4813
  sqlite3VdbeMemMove(pDest, &sContext.s);
sl@0
  4814
  UPDATE_MAX_BLOBSIZE(pDest);
sl@0
  4815
sl@0
  4816
  if( sqlite3SafetyOn(db) ){
sl@0
  4817
    goto abort_due_to_misuse;
sl@0
  4818
  }
sl@0
  4819
  if( sqlite3VdbeMemTooBig(pDest) ){
sl@0
  4820
    goto too_big;
sl@0
  4821
  }
sl@0
  4822
  break;
sl@0
  4823
}
sl@0
  4824
#endif /* SQLITE_OMIT_VIRTUALTABLE */
sl@0
  4825
sl@0
  4826
#ifndef SQLITE_OMIT_VIRTUALTABLE
sl@0
  4827
/* Opcode: VNext P1 P2 * * *
sl@0
  4828
**
sl@0
  4829
** Advance virtual table P1 to the next row in its result set and
sl@0
  4830
** jump to instruction P2.  Or, if the virtual table has reached
sl@0
  4831
** the end of its result set, then fall through to the next instruction.
sl@0
  4832
*/
sl@0
  4833
case OP_VNext: {   /* jump */
sl@0
  4834
  sqlite3_vtab *pVtab;
sl@0
  4835
  const sqlite3_module *pModule;
sl@0
  4836
  int res = 0;
sl@0
  4837
sl@0
  4838
  Cursor *pCur = p->apCsr[pOp->p1];
sl@0
  4839
  assert( pCur->pVtabCursor );
sl@0
  4840
  if( pCur->nullRow ){
sl@0
  4841
    break;
sl@0
  4842
  }
sl@0
  4843
  pVtab = pCur->pVtabCursor->pVtab;
sl@0
  4844
  pModule = pVtab->pModule;
sl@0
  4845
  assert( pModule->xNext );
sl@0
  4846
sl@0
  4847
  /* Invoke the xNext() method of the module. There is no way for the
sl@0
  4848
  ** underlying implementation to return an error if one occurs during
sl@0
  4849
  ** xNext(). Instead, if an error occurs, true is returned (indicating that 
sl@0
  4850
  ** data is available) and the error code returned when xColumn or
sl@0
  4851
  ** some other method is next invoked on the save virtual table cursor.
sl@0
  4852
  */
sl@0
  4853
  if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
sl@0
  4854
  sqlite3VtabLock(pVtab);
sl@0
  4855
  p->inVtabMethod = 1;
sl@0
  4856
  rc = pModule->xNext(pCur->pVtabCursor);
sl@0
  4857
  p->inVtabMethod = 0;
sl@0
  4858
  sqlite3DbFree(db, p->zErrMsg);
sl@0
  4859
  p->zErrMsg = pVtab->zErrMsg;
sl@0
  4860
  pVtab->zErrMsg = 0;
sl@0
  4861
  sqlite3VtabUnlock(db, pVtab);
sl@0
  4862
  if( rc==SQLITE_OK ){
sl@0
  4863
    res = pModule->xEof(pCur->pVtabCursor);
sl@0
  4864
  }
sl@0
  4865
  if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
sl@0
  4866
sl@0
  4867
  if( !res ){
sl@0
  4868
    /* If there is data, jump to P2 */
sl@0
  4869
    pc = pOp->p2 - 1;
sl@0
  4870
  }
sl@0
  4871
  break;
sl@0
  4872
}
sl@0
  4873
#endif /* SQLITE_OMIT_VIRTUALTABLE */
sl@0
  4874
sl@0
  4875
#ifndef SQLITE_OMIT_VIRTUALTABLE
sl@0
  4876
/* Opcode: VRename P1 * * P4 *
sl@0
  4877
**
sl@0
  4878
** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
sl@0
  4879
** This opcode invokes the corresponding xRename method. The value
sl@0
  4880
** in register P1 is passed as the zName argument to the xRename method.
sl@0
  4881
*/
sl@0
  4882
case OP_VRename: {
sl@0
  4883
  sqlite3_vtab *pVtab = pOp->p4.pVtab;
sl@0
  4884
  Mem *pName = &p->aMem[pOp->p1];
sl@0
  4885
  assert( pVtab->pModule->xRename );
sl@0
  4886
  REGISTER_TRACE(pOp->p1, pName);
sl@0
  4887
sl@0
  4888
  Stringify(pName, encoding);
sl@0
  4889
sl@0
  4890
  if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
sl@0
  4891
  sqlite3VtabLock(pVtab);
sl@0
  4892
  rc = pVtab->pModule->xRename(pVtab, pName->z);
sl@0
  4893
  sqlite3DbFree(db, p->zErrMsg);
sl@0
  4894
  p->zErrMsg = pVtab->zErrMsg;
sl@0
  4895
  pVtab->zErrMsg = 0;
sl@0
  4896
  sqlite3VtabUnlock(db, pVtab);
sl@0
  4897
  if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
sl@0
  4898
sl@0
  4899
  break;
sl@0
  4900
}
sl@0
  4901
#endif
sl@0
  4902
sl@0
  4903
#ifndef SQLITE_OMIT_VIRTUALTABLE
sl@0
  4904
/* Opcode: VUpdate P1 P2 P3 P4 *
sl@0
  4905
**
sl@0
  4906
** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
sl@0
  4907
** This opcode invokes the corresponding xUpdate method. P2 values
sl@0
  4908
** are contiguous memory cells starting at P3 to pass to the xUpdate 
sl@0
  4909
** invocation. The value in register (P3+P2-1) corresponds to the 
sl@0
  4910
** p2th element of the argv array passed to xUpdate.
sl@0
  4911
**
sl@0
  4912
** The xUpdate method will do a DELETE or an INSERT or both.
sl@0
  4913
** The argv[0] element (which corresponds to memory cell P3)
sl@0
  4914
** is the rowid of a row to delete.  If argv[0] is NULL then no 
sl@0
  4915
** deletion occurs.  The argv[1] element is the rowid of the new 
sl@0
  4916
** row.  This can be NULL to have the virtual table select the new 
sl@0
  4917
** rowid for itself.  The subsequent elements in the array are 
sl@0
  4918
** the values of columns in the new row.
sl@0
  4919
**
sl@0
  4920
** If P2==1 then no insert is performed.  argv[0] is the rowid of
sl@0
  4921
** a row to delete.
sl@0
  4922
**
sl@0
  4923
** P1 is a boolean flag. If it is set to true and the xUpdate call
sl@0
  4924
** is successful, then the value returned by sqlite3_last_insert_rowid() 
sl@0
  4925
** is set to the value of the rowid for the row just inserted.
sl@0
  4926
*/
sl@0
  4927
case OP_VUpdate: {
sl@0
  4928
  sqlite3_vtab *pVtab = pOp->p4.pVtab;
sl@0
  4929
  sqlite3_module *pModule = (sqlite3_module *)pVtab->pModule;
sl@0
  4930
  int nArg = pOp->p2;
sl@0
  4931
  assert( pOp->p4type==P4_VTAB );
sl@0
  4932
  if( pModule->xUpdate==0 ){
sl@0
  4933
    sqlite3SetString(&p->zErrMsg, db, "read-only table");
sl@0
  4934
    rc = SQLITE_ERROR;
sl@0
  4935
  }else{
sl@0
  4936
    int i;
sl@0
  4937
    sqlite_int64 rowid;
sl@0
  4938
    Mem **apArg = p->apArg;
sl@0
  4939
    Mem *pX = &p->aMem[pOp->p3];
sl@0
  4940
    for(i=0; i<nArg; i++){
sl@0
  4941
      storeTypeInfo(pX, 0);
sl@0
  4942
      apArg[i] = pX;
sl@0
  4943
      pX++;
sl@0
  4944
    }
sl@0
  4945
    if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
sl@0
  4946
    sqlite3VtabLock(pVtab);
sl@0
  4947
    rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid);
sl@0
  4948
    sqlite3DbFree(db, p->zErrMsg);
sl@0
  4949
    p->zErrMsg = pVtab->zErrMsg;
sl@0
  4950
    pVtab->zErrMsg = 0;
sl@0
  4951
    sqlite3VtabUnlock(db, pVtab);
sl@0
  4952
    if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
sl@0
  4953
    if( pOp->p1 && rc==SQLITE_OK ){
sl@0
  4954
      assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) );
sl@0
  4955
      db->lastRowid = rowid;
sl@0
  4956
    }
sl@0
  4957
    p->nChange++;
sl@0
  4958
  }
sl@0
  4959
  break;
sl@0
  4960
}
sl@0
  4961
#endif /* SQLITE_OMIT_VIRTUALTABLE */
sl@0
  4962
sl@0
  4963
#ifndef  SQLITE_OMIT_PAGER_PRAGMAS
sl@0
  4964
/* Opcode: Pagecount P1 P2 * * *
sl@0
  4965
**
sl@0
  4966
** Write the current number of pages in database P1 to memory cell P2.
sl@0
  4967
*/
sl@0
  4968
case OP_Pagecount: {            /* out2-prerelease */
sl@0
  4969
  int p1 = pOp->p1; 
sl@0
  4970
  int nPage;
sl@0
  4971
  Pager *pPager = sqlite3BtreePager(db->aDb[p1].pBt);
sl@0
  4972
sl@0
  4973
  rc = sqlite3PagerPagecount(pPager, &nPage);
sl@0
  4974
  if( rc==SQLITE_OK ){
sl@0
  4975
    pOut->flags = MEM_Int;
sl@0
  4976
    pOut->u.i = nPage;
sl@0
  4977
  }
sl@0
  4978
  break;
sl@0
  4979
}
sl@0
  4980
#endif
sl@0
  4981
sl@0
  4982
#ifndef SQLITE_OMIT_TRACE
sl@0
  4983
/* Opcode: Trace * * * P4 *
sl@0
  4984
**
sl@0
  4985
** If tracing is enabled (by the sqlite3_trace()) interface, then
sl@0
  4986
** the UTF-8 string contained in P4 is emitted on the trace callback.
sl@0
  4987
*/
sl@0
  4988
case OP_Trace: {
sl@0
  4989
  if( pOp->p4.z ){
sl@0
  4990
    if( db->xTrace ){
sl@0
  4991
      db->xTrace(db->pTraceArg, pOp->p4.z);
sl@0
  4992
    }
sl@0
  4993
#ifdef SQLITE_DEBUG
sl@0
  4994
    if( (db->flags & SQLITE_SqlTrace)!=0 ){
sl@0
  4995
      sqlite3DebugPrintf("SQL-trace: %s\n", pOp->p4.z);
sl@0
  4996
    }
sl@0
  4997
#endif /* SQLITE_DEBUG */
sl@0
  4998
  }
sl@0
  4999
  break;
sl@0
  5000
}
sl@0
  5001
#endif
sl@0
  5002
sl@0
  5003
sl@0
  5004
/* Opcode: Noop * * * * *
sl@0
  5005
**
sl@0
  5006
** Do nothing.  This instruction is often useful as a jump
sl@0
  5007
** destination.
sl@0
  5008
*/
sl@0
  5009
/*
sl@0
  5010
** The magic Explain opcode are only inserted when explain==2 (which
sl@0
  5011
** is to say when the EXPLAIN QUERY PLAN syntax is used.)
sl@0
  5012
** This opcode records information from the optimizer.  It is the
sl@0
  5013
** the same as a no-op.  This opcodesnever appears in a real VM program.
sl@0
  5014
*/
sl@0
  5015
default: {          /* This is really OP_Noop and OP_Explain */
sl@0
  5016
  break;
sl@0
  5017
}
sl@0
  5018
sl@0
  5019
/*****************************************************************************
sl@0
  5020
** The cases of the switch statement above this line should all be indented
sl@0
  5021
** by 6 spaces.  But the left-most 6 spaces have been removed to improve the
sl@0
  5022
** readability.  From this point on down, the normal indentation rules are
sl@0
  5023
** restored.
sl@0
  5024
*****************************************************************************/
sl@0
  5025
    }
sl@0
  5026
sl@0
  5027
#ifdef VDBE_PROFILE
sl@0
  5028
    {
sl@0
  5029
      u64 elapsed = sqlite3Hwtime() - start;
sl@0
  5030
      pOp->cycles += elapsed;
sl@0
  5031
      pOp->cnt++;
sl@0
  5032
#if 0
sl@0
  5033
        fprintf(stdout, "%10llu ", elapsed);
sl@0
  5034
        sqlite3VdbePrintOp(stdout, origPc, &p->aOp[origPc]);
sl@0
  5035
#endif
sl@0
  5036
    }
sl@0
  5037
#endif
sl@0
  5038
sl@0
  5039
    /* The following code adds nothing to the actual functionality
sl@0
  5040
    ** of the program.  It is only here for testing and debugging.
sl@0
  5041
    ** On the other hand, it does burn CPU cycles every time through
sl@0
  5042
    ** the evaluator loop.  So we can leave it out when NDEBUG is defined.
sl@0
  5043
    */
sl@0
  5044
#ifndef NDEBUG
sl@0
  5045
    assert( pc>=-1 && pc<p->nOp );
sl@0
  5046
sl@0
  5047
#ifdef SQLITE_DEBUG
sl@0
  5048
    if( p->trace ){
sl@0
  5049
      if( rc!=0 ) fprintf(p->trace,"rc=%d\n",rc);
sl@0
  5050
      if( opProperty & OPFLG_OUT2_PRERELEASE ){
sl@0
  5051
        registerTrace(p->trace, pOp->p2, pOut);
sl@0
  5052
      }
sl@0
  5053
      if( opProperty & OPFLG_OUT3 ){
sl@0
  5054
        registerTrace(p->trace, pOp->p3, pOut);
sl@0
  5055
      }
sl@0
  5056
    }
sl@0
  5057
#endif  /* SQLITE_DEBUG */
sl@0
  5058
#endif  /* NDEBUG */
sl@0
  5059
  }  /* The end of the for(;;) loop the loops through opcodes */
sl@0
  5060
sl@0
  5061
  /* If we reach this point, it means that execution is finished with
sl@0
  5062
  ** an error of some kind.
sl@0
  5063
  */
sl@0
  5064
vdbe_error_halt:
sl@0
  5065
  assert( rc );
sl@0
  5066
  p->rc = rc;
sl@0
  5067
  sqlite3VdbeHalt(p);
sl@0
  5068
  if( rc==SQLITE_IOERR_NOMEM ) db->mallocFailed = 1;
sl@0
  5069
  rc = SQLITE_ERROR;
sl@0
  5070
sl@0
  5071
  /* This is the only way out of this procedure.  We have to
sl@0
  5072
  ** release the mutexes on btrees that were acquired at the
sl@0
  5073
  ** top. */
sl@0
  5074
vdbe_return:
sl@0
  5075
  sqlite3BtreeMutexArrayLeave(&p->aMutex);
sl@0
  5076
  return rc;
sl@0
  5077
sl@0
  5078
  /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH
sl@0
  5079
  ** is encountered.
sl@0
  5080
  */
sl@0
  5081
too_big:
sl@0
  5082
  sqlite3SetString(&p->zErrMsg, db, "string or blob too big");
sl@0
  5083
  rc = SQLITE_TOOBIG;
sl@0
  5084
  goto vdbe_error_halt;
sl@0
  5085
sl@0
  5086
  /* Jump to here if a malloc() fails.
sl@0
  5087
  */
sl@0
  5088
no_mem:
sl@0
  5089
  db->mallocFailed = 1;
sl@0
  5090
  sqlite3SetString(&p->zErrMsg, db, "out of memory");
sl@0
  5091
  rc = SQLITE_NOMEM;
sl@0
  5092
  goto vdbe_error_halt;
sl@0
  5093
sl@0
  5094
  /* Jump to here for an SQLITE_MISUSE error.
sl@0
  5095
  */
sl@0
  5096
abort_due_to_misuse:
sl@0
  5097
  rc = SQLITE_MISUSE;
sl@0
  5098
  /* Fall thru into abort_due_to_error */
sl@0
  5099
sl@0
  5100
  /* Jump to here for any other kind of fatal error.  The "rc" variable
sl@0
  5101
  ** should hold the error number.
sl@0
  5102
  */
sl@0
  5103
abort_due_to_error:
sl@0
  5104
  assert( p->zErrMsg==0 );
sl@0
  5105
  if( db->mallocFailed ) rc = SQLITE_NOMEM;
sl@0
  5106
  if( rc!=SQLITE_IOERR_NOMEM ){
sl@0
  5107
    sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(rc));
sl@0
  5108
  }
sl@0
  5109
  goto vdbe_error_halt;
sl@0
  5110
sl@0
  5111
  /* Jump to here if the sqlite3_interrupt() API sets the interrupt
sl@0
  5112
  ** flag.
sl@0
  5113
  */
sl@0
  5114
abort_due_to_interrupt:
sl@0
  5115
  assert( db->u1.isInterrupted );
sl@0
  5116
  rc = SQLITE_INTERRUPT;
sl@0
  5117
  p->rc = rc;
sl@0
  5118
  sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(rc));
sl@0
  5119
  goto vdbe_error_halt;
sl@0
  5120
}