os/persistentdata/persistentstorage/sql/SQLite/mem5.c
author sl
Tue, 10 Jun 2014 14:32:02 +0200
changeset 1 260cb5ec6c19
permissions -rw-r--r--
Update contrib.
     1 /*
     2 ** 2007 October 14
     3 **
     4 ** The author disclaims copyright to this source code.  In place of
     5 ** a legal notice, here is a blessing:
     6 **
     7 **    May you do good and not evil.
     8 **    May you find forgiveness for yourself and forgive others.
     9 **    May you share freely, never taking more than you give.
    10 **
    11 *************************************************************************
    12 ** This file contains the C functions that implement a memory
    13 ** allocation subsystem for use by SQLite. 
    14 **
    15 ** This version of the memory allocation subsystem omits all
    16 ** use of malloc(). The SQLite user supplies a block of memory
    17 ** before calling sqlite3_initialize() from which allocations
    18 ** are made and returned by the xMalloc() and xRealloc() 
    19 ** implementations. Once sqlite3_initialize() has been called,
    20 ** the amount of memory available to SQLite is fixed and cannot
    21 ** be changed.
    22 **
    23 ** This version of the memory allocation subsystem is included
    24 ** in the build only if SQLITE_ENABLE_MEMSYS5 is defined.
    25 **
    26 ** $Id: mem5.c,v 1.11 2008/07/16 12:25:32 drh Exp $
    27 */
    28 #include "sqliteInt.h"
    29 
    30 /*
    31 ** This version of the memory allocator is used only when 
    32 ** SQLITE_POW2_MEMORY_SIZE is defined.
    33 */
    34 #ifdef SQLITE_ENABLE_MEMSYS5
    35 
    36 /*
    37 ** Log2 of the minimum size of an allocation.  For example, if
    38 ** 4 then all allocations will be rounded up to at least 16 bytes.
    39 ** If 5 then all allocations will be rounded up to at least 32 bytes.
    40 */
    41 #ifndef SQLITE_POW2_LOGMIN
    42 # define SQLITE_POW2_LOGMIN 6
    43 #endif
    44 
    45 /*
    46 ** Log2 of the maximum size of an allocation.
    47 */
    48 #ifndef SQLITE_POW2_LOGMAX
    49 # define SQLITE_POW2_LOGMAX 20
    50 #endif
    51 #define POW2_MAX (((unsigned int)1)<<SQLITE_POW2_LOGMAX)
    52 
    53 /*
    54 ** Number of distinct allocation sizes.
    55 */
    56 #define NSIZE (SQLITE_POW2_LOGMAX - SQLITE_POW2_LOGMIN + 1)
    57 
    58 /*
    59 ** A minimum allocation is an instance of the following structure.
    60 ** Larger allocations are an array of these structures where the
    61 ** size of the array is a power of 2.
    62 */
    63 typedef struct Mem5Link Mem5Link;
    64 struct Mem5Link {
    65   int next;       /* Index of next free chunk */
    66   int prev;       /* Index of previous free chunk */
    67 };
    68 
    69 /*
    70 ** Maximum size of any allocation is ((1<<LOGMAX)*mem5.nAtom). Since
    71 ** mem5.nAtom is always at least 8, this is not really a practical
    72 ** limitation.
    73 */
    74 #define LOGMAX 30
    75 
    76 /*
    77 ** Masks used for mem5.aCtrl[] elements.
    78 */
    79 #define CTRL_LOGSIZE  0x1f    /* Log2 Size of this block relative to POW2_MIN */
    80 #define CTRL_FREE     0x20    /* True if not checked out */
    81 
    82 /*
    83 ** All of the static variables used by this module are collected
    84 ** into a single structure named "mem5".  This is to keep the
    85 ** static variables organized and to reduce namespace pollution
    86 ** when this module is combined with other in the amalgamation.
    87 */
    88 static struct {
    89   /*
    90   ** The alarm callback and its arguments.  The mem5.mutex lock will
    91   ** be held while the callback is running.  Recursive calls into
    92   ** the memory subsystem are allowed, but no new callbacks will be
    93   ** issued.  The alarmBusy variable is set to prevent recursive
    94   ** callbacks.
    95   */
    96   sqlite3_int64 alarmThreshold;
    97   void (*alarmCallback)(void*, sqlite3_int64,int);
    98   void *alarmArg;
    99   int alarmBusy;
   100   
   101   /*
   102   ** Mutex to control access to the memory allocation subsystem.
   103   */
   104   sqlite3_mutex *mutex;
   105 
   106   /*
   107   ** Performance statistics
   108   */
   109   u64 nAlloc;         /* Total number of calls to malloc */
   110   u64 totalAlloc;     /* Total of all malloc calls - includes internal frag */
   111   u64 totalExcess;    /* Total internal fragmentation */
   112   u32 currentOut;     /* Current checkout, including internal fragmentation */
   113   u32 currentCount;   /* Current number of distinct checkouts */
   114   u32 maxOut;         /* Maximum instantaneous currentOut */
   115   u32 maxCount;       /* Maximum instantaneous currentCount */
   116   u32 maxRequest;     /* Largest allocation (exclusive of internal frag) */
   117   
   118   /*
   119   ** Lists of free blocks of various sizes.
   120   */
   121   int aiFreelist[LOGMAX+1];
   122 
   123   /*
   124   ** Space for tracking which blocks are checked out and the size
   125   ** of each block.  One byte per block.
   126   */
   127   u8 *aCtrl;
   128 
   129   /*
   130   ** Memory available for allocation
   131   */
   132   int nAtom;       /* Smallest possible allocation in bytes */
   133   int nBlock;      /* Number of nAtom sized blocks in zPool */
   134   u8 *zPool;
   135 } mem5;
   136 
   137 #define MEM5LINK(idx) ((Mem5Link *)(&mem5.zPool[(idx)*mem5.nAtom]))
   138 
   139 /*
   140 ** Unlink the chunk at mem5.aPool[i] from list it is currently
   141 ** on.  It should be found on mem5.aiFreelist[iLogsize].
   142 */
   143 static void memsys5Unlink(int i, int iLogsize){
   144   int next, prev;
   145   assert( i>=0 && i<mem5.nBlock );
   146   assert( iLogsize>=0 && iLogsize<=LOGMAX );
   147   assert( (mem5.aCtrl[i] & CTRL_LOGSIZE)==iLogsize );
   148 
   149   next = MEM5LINK(i)->next;
   150   prev = MEM5LINK(i)->prev;
   151   if( prev<0 ){
   152     mem5.aiFreelist[iLogsize] = next;
   153   }else{
   154     MEM5LINK(prev)->next = next;
   155   }
   156   if( next>=0 ){
   157     MEM5LINK(next)->prev = prev;
   158   }
   159 }
   160 
   161 /*
   162 ** Link the chunk at mem5.aPool[i] so that is on the iLogsize
   163 ** free list.
   164 */
   165 static void memsys5Link(int i, int iLogsize){
   166   int x;
   167   assert( sqlite3_mutex_held(mem5.mutex) );
   168   assert( i>=0 && i<mem5.nBlock );
   169   assert( iLogsize>=0 && iLogsize<=LOGMAX );
   170   assert( (mem5.aCtrl[i] & CTRL_LOGSIZE)==iLogsize );
   171 
   172   x = MEM5LINK(i)->next = mem5.aiFreelist[iLogsize];
   173   MEM5LINK(i)->prev = -1;
   174   if( x>=0 ){
   175     assert( x<mem5.nBlock );
   176     MEM5LINK(x)->prev = i;
   177   }
   178   mem5.aiFreelist[iLogsize] = i;
   179 }
   180 
   181 /*
   182 ** If the STATIC_MEM mutex is not already held, obtain it now. The mutex
   183 ** will already be held (obtained by code in malloc.c) if
   184 ** sqlite3Config.bMemStat is true.
   185 */
   186 static void memsys5Enter(void){
   187   if( sqlite3Config.bMemstat==0 && mem5.mutex==0 ){
   188     mem5.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM);
   189   }
   190   sqlite3_mutex_enter(mem5.mutex);
   191 }
   192 static void memsys5Leave(void){
   193   sqlite3_mutex_leave(mem5.mutex);
   194 }
   195 
   196 /*
   197 ** Return the size of an outstanding allocation, in bytes.  The
   198 ** size returned omits the 8-byte header overhead.  This only
   199 ** works for chunks that are currently checked out.
   200 */
   201 static int memsys5Size(void *p){
   202   int iSize = 0;
   203   if( p ){
   204     int i = ((u8 *)p-mem5.zPool)/mem5.nAtom;
   205     assert( i>=0 && i<mem5.nBlock );
   206     iSize = mem5.nAtom * (1 << (mem5.aCtrl[i]&CTRL_LOGSIZE));
   207   }
   208   return iSize;
   209 }
   210 
   211 /*
   212 ** Find the first entry on the freelist iLogsize.  Unlink that
   213 ** entry and return its index. 
   214 */
   215 static int memsys5UnlinkFirst(int iLogsize){
   216   int i;
   217   int iFirst;
   218 
   219   assert( iLogsize>=0 && iLogsize<=LOGMAX );
   220   i = iFirst = mem5.aiFreelist[iLogsize];
   221   assert( iFirst>=0 );
   222   while( i>0 ){
   223     if( i<iFirst ) iFirst = i;
   224     i = MEM5LINK(i)->next;
   225   }
   226   memsys5Unlink(iFirst, iLogsize);
   227   return iFirst;
   228 }
   229 
   230 /*
   231 ** Return a block of memory of at least nBytes in size.
   232 ** Return NULL if unable.
   233 */
   234 static void *memsys5MallocUnsafe(int nByte){
   235   int i;           /* Index of a mem5.aPool[] slot */
   236   int iBin;        /* Index into mem5.aiFreelist[] */
   237   int iFullSz;     /* Size of allocation rounded up to power of 2 */
   238   int iLogsize;    /* Log2 of iFullSz/POW2_MIN */
   239 
   240   /* Keep track of the maximum allocation request.  Even unfulfilled
   241   ** requests are counted */
   242   if( nByte>mem5.maxRequest ){
   243     mem5.maxRequest = nByte;
   244   }
   245 
   246   /* Round nByte up to the next valid power of two */
   247   if( nByte>POW2_MAX ) return 0;
   248   for(iFullSz=mem5.nAtom, iLogsize=0; iFullSz<nByte; iFullSz *= 2, iLogsize++){}
   249 
   250   /* Make sure mem5.aiFreelist[iLogsize] contains at least one free
   251   ** block.  If not, then split a block of the next larger power of
   252   ** two in order to create a new free block of size iLogsize.
   253   */
   254   for(iBin=iLogsize; mem5.aiFreelist[iBin]<0 && iBin<=LOGMAX; iBin++){}
   255   if( iBin>LOGMAX ) return 0;
   256   i = memsys5UnlinkFirst(iBin);
   257   while( iBin>iLogsize ){
   258     int newSize;
   259 
   260     iBin--;
   261     newSize = 1 << iBin;
   262     mem5.aCtrl[i+newSize] = CTRL_FREE | iBin;
   263     memsys5Link(i+newSize, iBin);
   264   }
   265   mem5.aCtrl[i] = iLogsize;
   266 
   267   /* Update allocator performance statistics. */
   268   mem5.nAlloc++;
   269   mem5.totalAlloc += iFullSz;
   270   mem5.totalExcess += iFullSz - nByte;
   271   mem5.currentCount++;
   272   mem5.currentOut += iFullSz;
   273   if( mem5.maxCount<mem5.currentCount ) mem5.maxCount = mem5.currentCount;
   274   if( mem5.maxOut<mem5.currentOut ) mem5.maxOut = mem5.currentOut;
   275 
   276   /* Return a pointer to the allocated memory. */
   277   return (void*)&mem5.zPool[i*mem5.nAtom];
   278 }
   279 
   280 /*
   281 ** Free an outstanding memory allocation.
   282 */
   283 static void memsys5FreeUnsafe(void *pOld){
   284   u32 size, iLogsize;
   285   int iBlock;             
   286 
   287   /* Set iBlock to the index of the block pointed to by pOld in 
   288   ** the array of mem5.nAtom byte blocks pointed to by mem5.zPool.
   289   */
   290   iBlock = ((u8 *)pOld-mem5.zPool)/mem5.nAtom;
   291 
   292   /* Check that the pointer pOld points to a valid, non-free block. */
   293   assert( iBlock>=0 && iBlock<mem5.nBlock );
   294   assert( ((u8 *)pOld-mem5.zPool)%mem5.nAtom==0 );
   295   assert( (mem5.aCtrl[iBlock] & CTRL_FREE)==0 );
   296 
   297   iLogsize = mem5.aCtrl[iBlock] & CTRL_LOGSIZE;
   298   size = 1<<iLogsize;
   299   assert( iBlock+size-1<mem5.nBlock );
   300 
   301   mem5.aCtrl[iBlock] |= CTRL_FREE;
   302   mem5.aCtrl[iBlock+size-1] |= CTRL_FREE;
   303   assert( mem5.currentCount>0 );
   304   assert( mem5.currentOut>=0 );
   305   mem5.currentCount--;
   306   mem5.currentOut -= size*mem5.nAtom;
   307   assert( mem5.currentOut>0 || mem5.currentCount==0 );
   308   assert( mem5.currentCount>0 || mem5.currentOut==0 );
   309 
   310   mem5.aCtrl[iBlock] = CTRL_FREE | iLogsize;
   311   while( iLogsize<LOGMAX ){
   312     int iBuddy;
   313     if( (iBlock>>iLogsize) & 1 ){
   314       iBuddy = iBlock - size;
   315     }else{
   316       iBuddy = iBlock + size;
   317     }
   318     assert( iBuddy>=0 );
   319     if( (iBuddy+(1<<iLogsize))>mem5.nBlock ) break;
   320     if( mem5.aCtrl[iBuddy]!=(CTRL_FREE | iLogsize) ) break;
   321     memsys5Unlink(iBuddy, iLogsize);
   322     iLogsize++;
   323     if( iBuddy<iBlock ){
   324       mem5.aCtrl[iBuddy] = CTRL_FREE | iLogsize;
   325       mem5.aCtrl[iBlock] = 0;
   326       iBlock = iBuddy;
   327     }else{
   328       mem5.aCtrl[iBlock] = CTRL_FREE | iLogsize;
   329       mem5.aCtrl[iBuddy] = 0;
   330     }
   331     size *= 2;
   332   }
   333   memsys5Link(iBlock, iLogsize);
   334 }
   335 
   336 /*
   337 ** Allocate nBytes of memory
   338 */
   339 static void *memsys5Malloc(int nBytes){
   340   sqlite3_int64 *p = 0;
   341   if( nBytes>0 ){
   342     memsys5Enter();
   343     p = memsys5MallocUnsafe(nBytes);
   344     memsys5Leave();
   345   }
   346   return (void*)p; 
   347 }
   348 
   349 /*
   350 ** Free memory.
   351 */
   352 static void memsys5Free(void *pPrior){
   353   if( pPrior==0 ){
   354 assert(0);
   355     return;
   356   }
   357   memsys5Enter();
   358   memsys5FreeUnsafe(pPrior);
   359   memsys5Leave();  
   360 }
   361 
   362 /*
   363 ** Change the size of an existing memory allocation
   364 */
   365 static void *memsys5Realloc(void *pPrior, int nBytes){
   366   int nOld;
   367   void *p;
   368   if( pPrior==0 ){
   369     return memsys5Malloc(nBytes);
   370   }
   371   if( nBytes<=0 ){
   372     memsys5Free(pPrior);
   373     return 0;
   374   }
   375   nOld = memsys5Size(pPrior);
   376   if( nBytes<=nOld ){
   377     return pPrior;
   378   }
   379   memsys5Enter();
   380   p = memsys5MallocUnsafe(nBytes);
   381   if( p ){
   382     memcpy(p, pPrior, nOld);
   383     memsys5FreeUnsafe(pPrior);
   384   }
   385   memsys5Leave();
   386   return p;
   387 }
   388 
   389 /*
   390 ** Round up a request size to the next valid allocation size.
   391 */
   392 static int memsys5Roundup(int n){
   393   int iFullSz;
   394   for(iFullSz=mem5.nAtom; iFullSz<n; iFullSz *= 2);
   395   return iFullSz;
   396 }
   397 
   398 static int memsys5Log(int iValue){
   399   int iLog;
   400   for(iLog=0; (1<<iLog)<iValue; iLog++);
   401   return iLog;
   402 }
   403 
   404 /*
   405 ** Initialize this module.
   406 */
   407 static int memsys5Init(void *NotUsed){
   408   int ii;
   409   int nByte = sqlite3Config.nHeap;
   410   u8 *zByte = (u8 *)sqlite3Config.pHeap;
   411   int nMinLog;                 /* Log of minimum allocation size in bytes*/
   412   int iOffset;
   413 
   414   if( !zByte ){
   415     return SQLITE_ERROR;
   416   }
   417 
   418   nMinLog = memsys5Log(sqlite3Config.mnReq);
   419   mem5.nAtom = (1<<nMinLog);
   420   while( sizeof(Mem5Link)>mem5.nAtom ){
   421     mem5.nAtom = mem5.nAtom << 1;
   422   }
   423 
   424   mem5.nBlock = (nByte / (mem5.nAtom+sizeof(u8)));
   425   mem5.zPool = zByte;
   426   mem5.aCtrl = (u8 *)&mem5.zPool[mem5.nBlock*mem5.nAtom];
   427 
   428   for(ii=0; ii<=LOGMAX; ii++){
   429     mem5.aiFreelist[ii] = -1;
   430   }
   431 
   432   iOffset = 0;
   433   for(ii=LOGMAX; ii>=0; ii--){
   434     int nAlloc = (1<<ii);
   435     if( (iOffset+nAlloc)<=mem5.nBlock ){
   436       mem5.aCtrl[iOffset] = ii | CTRL_FREE;
   437       memsys5Link(iOffset, ii);
   438       iOffset += nAlloc;
   439     }
   440     assert((iOffset+nAlloc)>mem5.nBlock);
   441   }
   442 
   443   return SQLITE_OK;
   444 }
   445 
   446 /*
   447 ** Deinitialize this module.
   448 */
   449 static void memsys5Shutdown(void *NotUsed){
   450   return;
   451 }
   452 
   453 /*
   454 ** Open the file indicated and write a log of all unfreed memory 
   455 ** allocations into that log.
   456 */
   457 void sqlite3Memsys5Dump(const char *zFilename){
   458 #ifdef SQLITE_DEBUG
   459   FILE *out;
   460   int i, j, n;
   461   int nMinLog;
   462 
   463   if( zFilename==0 || zFilename[0]==0 ){
   464     out = stdout;
   465   }else{
   466     out = fopen(zFilename, "w");
   467     if( out==0 ){
   468       fprintf(stderr, "** Unable to output memory debug output log: %s **\n",
   469                       zFilename);
   470       return;
   471     }
   472   }
   473   memsys5Enter();
   474   nMinLog = memsys5Log(mem5.nAtom);
   475   for(i=0; i<=LOGMAX && i+nMinLog<32; i++){
   476     for(n=0, j=mem5.aiFreelist[i]; j>=0; j = MEM5LINK(j)->next, n++){}
   477     fprintf(out, "freelist items of size %d: %d\n", mem5.nAtom << i, n);
   478   }
   479   fprintf(out, "mem5.nAlloc       = %llu\n", mem5.nAlloc);
   480   fprintf(out, "mem5.totalAlloc   = %llu\n", mem5.totalAlloc);
   481   fprintf(out, "mem5.totalExcess  = %llu\n", mem5.totalExcess);
   482   fprintf(out, "mem5.currentOut   = %u\n", mem5.currentOut);
   483   fprintf(out, "mem5.currentCount = %u\n", mem5.currentCount);
   484   fprintf(out, "mem5.maxOut       = %u\n", mem5.maxOut);
   485   fprintf(out, "mem5.maxCount     = %u\n", mem5.maxCount);
   486   fprintf(out, "mem5.maxRequest   = %u\n", mem5.maxRequest);
   487   memsys5Leave();
   488   if( out==stdout ){
   489     fflush(stdout);
   490   }else{
   491     fclose(out);
   492   }
   493 #endif
   494 }
   495 
   496 /*
   497 ** This routine is the only routine in this file with external 
   498 ** linkage. It returns a pointer to a static sqlite3_mem_methods
   499 ** struct populated with the memsys5 methods.
   500 */
   501 const sqlite3_mem_methods *sqlite3MemGetMemsys5(void){
   502   static const sqlite3_mem_methods memsys5Methods = {
   503      memsys5Malloc,
   504      memsys5Free,
   505      memsys5Realloc,
   506      memsys5Size,
   507      memsys5Roundup,
   508      memsys5Init,
   509      memsys5Shutdown,
   510      0
   511   };
   512   return &memsys5Methods;
   513 }
   514 
   515 #endif /* SQLITE_ENABLE_MEMSYS5 */