Update contrib.
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains the C functions that implement a memory
13 ** allocation subsystem for use by SQLite.
15 ** This version of the memory allocation subsystem omits all
16 ** use of malloc(). The SQLite user supplies a block of memory
17 ** before calling sqlite3_initialize() from which allocations
18 ** are made and returned by the xMalloc() and xRealloc()
19 ** implementations. Once sqlite3_initialize() has been called,
20 ** the amount of memory available to SQLite is fixed and cannot
23 ** This version of the memory allocation subsystem is included
24 ** in the build only if SQLITE_ENABLE_MEMSYS5 is defined.
26 ** $Id: mem5.c,v 1.11 2008/07/16 12:25:32 drh Exp $
28 #include "sqliteInt.h"
31 ** This version of the memory allocator is used only when
32 ** SQLITE_POW2_MEMORY_SIZE is defined.
34 #ifdef SQLITE_ENABLE_MEMSYS5
37 ** Log2 of the minimum size of an allocation. For example, if
38 ** 4 then all allocations will be rounded up to at least 16 bytes.
39 ** If 5 then all allocations will be rounded up to at least 32 bytes.
41 #ifndef SQLITE_POW2_LOGMIN
42 # define SQLITE_POW2_LOGMIN 6
46 ** Log2 of the maximum size of an allocation.
48 #ifndef SQLITE_POW2_LOGMAX
49 # define SQLITE_POW2_LOGMAX 20
51 #define POW2_MAX (((unsigned int)1)<<SQLITE_POW2_LOGMAX)
54 ** Number of distinct allocation sizes.
56 #define NSIZE (SQLITE_POW2_LOGMAX - SQLITE_POW2_LOGMIN + 1)
59 ** A minimum allocation is an instance of the following structure.
60 ** Larger allocations are an array of these structures where the
61 ** size of the array is a power of 2.
63 typedef struct Mem5Link Mem5Link;
65 int next; /* Index of next free chunk */
66 int prev; /* Index of previous free chunk */
70 ** Maximum size of any allocation is ((1<<LOGMAX)*mem5.nAtom). Since
71 ** mem5.nAtom is always at least 8, this is not really a practical
77 ** Masks used for mem5.aCtrl[] elements.
79 #define CTRL_LOGSIZE 0x1f /* Log2 Size of this block relative to POW2_MIN */
80 #define CTRL_FREE 0x20 /* True if not checked out */
83 ** All of the static variables used by this module are collected
84 ** into a single structure named "mem5". This is to keep the
85 ** static variables organized and to reduce namespace pollution
86 ** when this module is combined with other in the amalgamation.
90 ** The alarm callback and its arguments. The mem5.mutex lock will
91 ** be held while the callback is running. Recursive calls into
92 ** the memory subsystem are allowed, but no new callbacks will be
93 ** issued. The alarmBusy variable is set to prevent recursive
96 sqlite3_int64 alarmThreshold;
97 void (*alarmCallback)(void*, sqlite3_int64,int);
102 ** Mutex to control access to the memory allocation subsystem.
104 sqlite3_mutex *mutex;
107 ** Performance statistics
109 u64 nAlloc; /* Total number of calls to malloc */
110 u64 totalAlloc; /* Total of all malloc calls - includes internal frag */
111 u64 totalExcess; /* Total internal fragmentation */
112 u32 currentOut; /* Current checkout, including internal fragmentation */
113 u32 currentCount; /* Current number of distinct checkouts */
114 u32 maxOut; /* Maximum instantaneous currentOut */
115 u32 maxCount; /* Maximum instantaneous currentCount */
116 u32 maxRequest; /* Largest allocation (exclusive of internal frag) */
119 ** Lists of free blocks of various sizes.
121 int aiFreelist[LOGMAX+1];
124 ** Space for tracking which blocks are checked out and the size
125 ** of each block. One byte per block.
130 ** Memory available for allocation
132 int nAtom; /* Smallest possible allocation in bytes */
133 int nBlock; /* Number of nAtom sized blocks in zPool */
137 #define MEM5LINK(idx) ((Mem5Link *)(&mem5.zPool[(idx)*mem5.nAtom]))
140 ** Unlink the chunk at mem5.aPool[i] from list it is currently
141 ** on. It should be found on mem5.aiFreelist[iLogsize].
143 static void memsys5Unlink(int i, int iLogsize){
145 assert( i>=0 && i<mem5.nBlock );
146 assert( iLogsize>=0 && iLogsize<=LOGMAX );
147 assert( (mem5.aCtrl[i] & CTRL_LOGSIZE)==iLogsize );
149 next = MEM5LINK(i)->next;
150 prev = MEM5LINK(i)->prev;
152 mem5.aiFreelist[iLogsize] = next;
154 MEM5LINK(prev)->next = next;
157 MEM5LINK(next)->prev = prev;
162 ** Link the chunk at mem5.aPool[i] so that is on the iLogsize
165 static void memsys5Link(int i, int iLogsize){
167 assert( sqlite3_mutex_held(mem5.mutex) );
168 assert( i>=0 && i<mem5.nBlock );
169 assert( iLogsize>=0 && iLogsize<=LOGMAX );
170 assert( (mem5.aCtrl[i] & CTRL_LOGSIZE)==iLogsize );
172 x = MEM5LINK(i)->next = mem5.aiFreelist[iLogsize];
173 MEM5LINK(i)->prev = -1;
175 assert( x<mem5.nBlock );
176 MEM5LINK(x)->prev = i;
178 mem5.aiFreelist[iLogsize] = i;
182 ** If the STATIC_MEM mutex is not already held, obtain it now. The mutex
183 ** will already be held (obtained by code in malloc.c) if
184 ** sqlite3Config.bMemStat is true.
186 static void memsys5Enter(void){
187 if( sqlite3Config.bMemstat==0 && mem5.mutex==0 ){
188 mem5.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM);
190 sqlite3_mutex_enter(mem5.mutex);
192 static void memsys5Leave(void){
193 sqlite3_mutex_leave(mem5.mutex);
197 ** Return the size of an outstanding allocation, in bytes. The
198 ** size returned omits the 8-byte header overhead. This only
199 ** works for chunks that are currently checked out.
201 static int memsys5Size(void *p){
204 int i = ((u8 *)p-mem5.zPool)/mem5.nAtom;
205 assert( i>=0 && i<mem5.nBlock );
206 iSize = mem5.nAtom * (1 << (mem5.aCtrl[i]&CTRL_LOGSIZE));
212 ** Find the first entry on the freelist iLogsize. Unlink that
213 ** entry and return its index.
215 static int memsys5UnlinkFirst(int iLogsize){
219 assert( iLogsize>=0 && iLogsize<=LOGMAX );
220 i = iFirst = mem5.aiFreelist[iLogsize];
223 if( i<iFirst ) iFirst = i;
224 i = MEM5LINK(i)->next;
226 memsys5Unlink(iFirst, iLogsize);
231 ** Return a block of memory of at least nBytes in size.
232 ** Return NULL if unable.
234 static void *memsys5MallocUnsafe(int nByte){
235 int i; /* Index of a mem5.aPool[] slot */
236 int iBin; /* Index into mem5.aiFreelist[] */
237 int iFullSz; /* Size of allocation rounded up to power of 2 */
238 int iLogsize; /* Log2 of iFullSz/POW2_MIN */
240 /* Keep track of the maximum allocation request. Even unfulfilled
241 ** requests are counted */
242 if( nByte>mem5.maxRequest ){
243 mem5.maxRequest = nByte;
246 /* Round nByte up to the next valid power of two */
247 if( nByte>POW2_MAX ) return 0;
248 for(iFullSz=mem5.nAtom, iLogsize=0; iFullSz<nByte; iFullSz *= 2, iLogsize++){}
250 /* Make sure mem5.aiFreelist[iLogsize] contains at least one free
251 ** block. If not, then split a block of the next larger power of
252 ** two in order to create a new free block of size iLogsize.
254 for(iBin=iLogsize; mem5.aiFreelist[iBin]<0 && iBin<=LOGMAX; iBin++){}
255 if( iBin>LOGMAX ) return 0;
256 i = memsys5UnlinkFirst(iBin);
257 while( iBin>iLogsize ){
262 mem5.aCtrl[i+newSize] = CTRL_FREE | iBin;
263 memsys5Link(i+newSize, iBin);
265 mem5.aCtrl[i] = iLogsize;
267 /* Update allocator performance statistics. */
269 mem5.totalAlloc += iFullSz;
270 mem5.totalExcess += iFullSz - nByte;
272 mem5.currentOut += iFullSz;
273 if( mem5.maxCount<mem5.currentCount ) mem5.maxCount = mem5.currentCount;
274 if( mem5.maxOut<mem5.currentOut ) mem5.maxOut = mem5.currentOut;
276 /* Return a pointer to the allocated memory. */
277 return (void*)&mem5.zPool[i*mem5.nAtom];
281 ** Free an outstanding memory allocation.
283 static void memsys5FreeUnsafe(void *pOld){
287 /* Set iBlock to the index of the block pointed to by pOld in
288 ** the array of mem5.nAtom byte blocks pointed to by mem5.zPool.
290 iBlock = ((u8 *)pOld-mem5.zPool)/mem5.nAtom;
292 /* Check that the pointer pOld points to a valid, non-free block. */
293 assert( iBlock>=0 && iBlock<mem5.nBlock );
294 assert( ((u8 *)pOld-mem5.zPool)%mem5.nAtom==0 );
295 assert( (mem5.aCtrl[iBlock] & CTRL_FREE)==0 );
297 iLogsize = mem5.aCtrl[iBlock] & CTRL_LOGSIZE;
299 assert( iBlock+size-1<mem5.nBlock );
301 mem5.aCtrl[iBlock] |= CTRL_FREE;
302 mem5.aCtrl[iBlock+size-1] |= CTRL_FREE;
303 assert( mem5.currentCount>0 );
304 assert( mem5.currentOut>=0 );
306 mem5.currentOut -= size*mem5.nAtom;
307 assert( mem5.currentOut>0 || mem5.currentCount==0 );
308 assert( mem5.currentCount>0 || mem5.currentOut==0 );
310 mem5.aCtrl[iBlock] = CTRL_FREE | iLogsize;
311 while( iLogsize<LOGMAX ){
313 if( (iBlock>>iLogsize) & 1 ){
314 iBuddy = iBlock - size;
316 iBuddy = iBlock + size;
319 if( (iBuddy+(1<<iLogsize))>mem5.nBlock ) break;
320 if( mem5.aCtrl[iBuddy]!=(CTRL_FREE | iLogsize) ) break;
321 memsys5Unlink(iBuddy, iLogsize);
324 mem5.aCtrl[iBuddy] = CTRL_FREE | iLogsize;
325 mem5.aCtrl[iBlock] = 0;
328 mem5.aCtrl[iBlock] = CTRL_FREE | iLogsize;
329 mem5.aCtrl[iBuddy] = 0;
333 memsys5Link(iBlock, iLogsize);
337 ** Allocate nBytes of memory
339 static void *memsys5Malloc(int nBytes){
340 sqlite3_int64 *p = 0;
343 p = memsys5MallocUnsafe(nBytes);
352 static void memsys5Free(void *pPrior){
358 memsys5FreeUnsafe(pPrior);
363 ** Change the size of an existing memory allocation
365 static void *memsys5Realloc(void *pPrior, int nBytes){
369 return memsys5Malloc(nBytes);
375 nOld = memsys5Size(pPrior);
380 p = memsys5MallocUnsafe(nBytes);
382 memcpy(p, pPrior, nOld);
383 memsys5FreeUnsafe(pPrior);
390 ** Round up a request size to the next valid allocation size.
392 static int memsys5Roundup(int n){
394 for(iFullSz=mem5.nAtom; iFullSz<n; iFullSz *= 2);
398 static int memsys5Log(int iValue){
400 for(iLog=0; (1<<iLog)<iValue; iLog++);
405 ** Initialize this module.
407 static int memsys5Init(void *NotUsed){
409 int nByte = sqlite3Config.nHeap;
410 u8 *zByte = (u8 *)sqlite3Config.pHeap;
411 int nMinLog; /* Log of minimum allocation size in bytes*/
418 nMinLog = memsys5Log(sqlite3Config.mnReq);
419 mem5.nAtom = (1<<nMinLog);
420 while( sizeof(Mem5Link)>mem5.nAtom ){
421 mem5.nAtom = mem5.nAtom << 1;
424 mem5.nBlock = (nByte / (mem5.nAtom+sizeof(u8)));
426 mem5.aCtrl = (u8 *)&mem5.zPool[mem5.nBlock*mem5.nAtom];
428 for(ii=0; ii<=LOGMAX; ii++){
429 mem5.aiFreelist[ii] = -1;
433 for(ii=LOGMAX; ii>=0; ii--){
434 int nAlloc = (1<<ii);
435 if( (iOffset+nAlloc)<=mem5.nBlock ){
436 mem5.aCtrl[iOffset] = ii | CTRL_FREE;
437 memsys5Link(iOffset, ii);
440 assert((iOffset+nAlloc)>mem5.nBlock);
447 ** Deinitialize this module.
449 static void memsys5Shutdown(void *NotUsed){
454 ** Open the file indicated and write a log of all unfreed memory
455 ** allocations into that log.
457 void sqlite3Memsys5Dump(const char *zFilename){
463 if( zFilename==0 || zFilename[0]==0 ){
466 out = fopen(zFilename, "w");
468 fprintf(stderr, "** Unable to output memory debug output log: %s **\n",
474 nMinLog = memsys5Log(mem5.nAtom);
475 for(i=0; i<=LOGMAX && i+nMinLog<32; i++){
476 for(n=0, j=mem5.aiFreelist[i]; j>=0; j = MEM5LINK(j)->next, n++){}
477 fprintf(out, "freelist items of size %d: %d\n", mem5.nAtom << i, n);
479 fprintf(out, "mem5.nAlloc = %llu\n", mem5.nAlloc);
480 fprintf(out, "mem5.totalAlloc = %llu\n", mem5.totalAlloc);
481 fprintf(out, "mem5.totalExcess = %llu\n", mem5.totalExcess);
482 fprintf(out, "mem5.currentOut = %u\n", mem5.currentOut);
483 fprintf(out, "mem5.currentCount = %u\n", mem5.currentCount);
484 fprintf(out, "mem5.maxOut = %u\n", mem5.maxOut);
485 fprintf(out, "mem5.maxCount = %u\n", mem5.maxCount);
486 fprintf(out, "mem5.maxRequest = %u\n", mem5.maxRequest);
497 ** This routine is the only routine in this file with external
498 ** linkage. It returns a pointer to a static sqlite3_mem_methods
499 ** struct populated with the memsys5 methods.
501 const sqlite3_mem_methods *sqlite3MemGetMemsys5(void){
502 static const sqlite3_mem_methods memsys5Methods = {
512 return &memsys5Methods;
515 #endif /* SQLITE_ENABLE_MEMSYS5 */