sl@0
|
1 |
/*
|
sl@0
|
2 |
** 2007 October 14
|
sl@0
|
3 |
**
|
sl@0
|
4 |
** The author disclaims copyright to this source code. In place of
|
sl@0
|
5 |
** a legal notice, here is a blessing:
|
sl@0
|
6 |
**
|
sl@0
|
7 |
** May you do good and not evil.
|
sl@0
|
8 |
** May you find forgiveness for yourself and forgive others.
|
sl@0
|
9 |
** May you share freely, never taking more than you give.
|
sl@0
|
10 |
**
|
sl@0
|
11 |
*************************************************************************
|
sl@0
|
12 |
** This file contains the C functions that implement a memory
|
sl@0
|
13 |
** allocation subsystem for use by SQLite.
|
sl@0
|
14 |
**
|
sl@0
|
15 |
** This version of the memory allocation subsystem omits all
|
sl@0
|
16 |
** use of malloc(). The SQLite user supplies a block of memory
|
sl@0
|
17 |
** before calling sqlite3_initialize() from which allocations
|
sl@0
|
18 |
** are made and returned by the xMalloc() and xRealloc()
|
sl@0
|
19 |
** implementations. Once sqlite3_initialize() has been called,
|
sl@0
|
20 |
** the amount of memory available to SQLite is fixed and cannot
|
sl@0
|
21 |
** be changed.
|
sl@0
|
22 |
**
|
sl@0
|
23 |
** This version of the memory allocation subsystem is included
|
sl@0
|
24 |
** in the build only if SQLITE_ENABLE_MEMSYS5 is defined.
|
sl@0
|
25 |
**
|
sl@0
|
26 |
** $Id: mem5.c,v 1.11 2008/07/16 12:25:32 drh Exp $
|
sl@0
|
27 |
*/
|
sl@0
|
28 |
#include "sqliteInt.h"
|
sl@0
|
29 |
|
sl@0
|
30 |
/*
|
sl@0
|
31 |
** This version of the memory allocator is used only when
|
sl@0
|
32 |
** SQLITE_POW2_MEMORY_SIZE is defined.
|
sl@0
|
33 |
*/
|
sl@0
|
34 |
#ifdef SQLITE_ENABLE_MEMSYS5
|
sl@0
|
35 |
|
sl@0
|
36 |
/*
|
sl@0
|
37 |
** Log2 of the minimum size of an allocation. For example, if
|
sl@0
|
38 |
** 4 then all allocations will be rounded up to at least 16 bytes.
|
sl@0
|
39 |
** If 5 then all allocations will be rounded up to at least 32 bytes.
|
sl@0
|
40 |
*/
|
sl@0
|
41 |
#ifndef SQLITE_POW2_LOGMIN
|
sl@0
|
42 |
# define SQLITE_POW2_LOGMIN 6
|
sl@0
|
43 |
#endif
|
sl@0
|
44 |
|
sl@0
|
45 |
/*
|
sl@0
|
46 |
** Log2 of the maximum size of an allocation.
|
sl@0
|
47 |
*/
|
sl@0
|
48 |
#ifndef SQLITE_POW2_LOGMAX
|
sl@0
|
49 |
# define SQLITE_POW2_LOGMAX 20
|
sl@0
|
50 |
#endif
|
sl@0
|
51 |
#define POW2_MAX (((unsigned int)1)<<SQLITE_POW2_LOGMAX)
|
sl@0
|
52 |
|
sl@0
|
53 |
/*
|
sl@0
|
54 |
** Number of distinct allocation sizes.
|
sl@0
|
55 |
*/
|
sl@0
|
56 |
#define NSIZE (SQLITE_POW2_LOGMAX - SQLITE_POW2_LOGMIN + 1)
|
sl@0
|
57 |
|
sl@0
|
58 |
/*
|
sl@0
|
59 |
** A minimum allocation is an instance of the following structure.
|
sl@0
|
60 |
** Larger allocations are an array of these structures where the
|
sl@0
|
61 |
** size of the array is a power of 2.
|
sl@0
|
62 |
*/
|
sl@0
|
63 |
typedef struct Mem5Link Mem5Link;
|
sl@0
|
64 |
struct Mem5Link {
|
sl@0
|
65 |
int next; /* Index of next free chunk */
|
sl@0
|
66 |
int prev; /* Index of previous free chunk */
|
sl@0
|
67 |
};
|
sl@0
|
68 |
|
sl@0
|
69 |
/*
|
sl@0
|
70 |
** Maximum size of any allocation is ((1<<LOGMAX)*mem5.nAtom). Since
|
sl@0
|
71 |
** mem5.nAtom is always at least 8, this is not really a practical
|
sl@0
|
72 |
** limitation.
|
sl@0
|
73 |
*/
|
sl@0
|
74 |
#define LOGMAX 30
|
sl@0
|
75 |
|
sl@0
|
76 |
/*
|
sl@0
|
77 |
** Masks used for mem5.aCtrl[] elements.
|
sl@0
|
78 |
*/
|
sl@0
|
79 |
#define CTRL_LOGSIZE 0x1f /* Log2 Size of this block relative to POW2_MIN */
|
sl@0
|
80 |
#define CTRL_FREE 0x20 /* True if not checked out */
|
sl@0
|
81 |
|
sl@0
|
82 |
/*
|
sl@0
|
83 |
** All of the static variables used by this module are collected
|
sl@0
|
84 |
** into a single structure named "mem5". This is to keep the
|
sl@0
|
85 |
** static variables organized and to reduce namespace pollution
|
sl@0
|
86 |
** when this module is combined with other in the amalgamation.
|
sl@0
|
87 |
*/
|
sl@0
|
88 |
static struct {
|
sl@0
|
89 |
/*
|
sl@0
|
90 |
** The alarm callback and its arguments. The mem5.mutex lock will
|
sl@0
|
91 |
** be held while the callback is running. Recursive calls into
|
sl@0
|
92 |
** the memory subsystem are allowed, but no new callbacks will be
|
sl@0
|
93 |
** issued. The alarmBusy variable is set to prevent recursive
|
sl@0
|
94 |
** callbacks.
|
sl@0
|
95 |
*/
|
sl@0
|
96 |
sqlite3_int64 alarmThreshold;
|
sl@0
|
97 |
void (*alarmCallback)(void*, sqlite3_int64,int);
|
sl@0
|
98 |
void *alarmArg;
|
sl@0
|
99 |
int alarmBusy;
|
sl@0
|
100 |
|
sl@0
|
101 |
/*
|
sl@0
|
102 |
** Mutex to control access to the memory allocation subsystem.
|
sl@0
|
103 |
*/
|
sl@0
|
104 |
sqlite3_mutex *mutex;
|
sl@0
|
105 |
|
sl@0
|
106 |
/*
|
sl@0
|
107 |
** Performance statistics
|
sl@0
|
108 |
*/
|
sl@0
|
109 |
u64 nAlloc; /* Total number of calls to malloc */
|
sl@0
|
110 |
u64 totalAlloc; /* Total of all malloc calls - includes internal frag */
|
sl@0
|
111 |
u64 totalExcess; /* Total internal fragmentation */
|
sl@0
|
112 |
u32 currentOut; /* Current checkout, including internal fragmentation */
|
sl@0
|
113 |
u32 currentCount; /* Current number of distinct checkouts */
|
sl@0
|
114 |
u32 maxOut; /* Maximum instantaneous currentOut */
|
sl@0
|
115 |
u32 maxCount; /* Maximum instantaneous currentCount */
|
sl@0
|
116 |
u32 maxRequest; /* Largest allocation (exclusive of internal frag) */
|
sl@0
|
117 |
|
sl@0
|
118 |
/*
|
sl@0
|
119 |
** Lists of free blocks of various sizes.
|
sl@0
|
120 |
*/
|
sl@0
|
121 |
int aiFreelist[LOGMAX+1];
|
sl@0
|
122 |
|
sl@0
|
123 |
/*
|
sl@0
|
124 |
** Space for tracking which blocks are checked out and the size
|
sl@0
|
125 |
** of each block. One byte per block.
|
sl@0
|
126 |
*/
|
sl@0
|
127 |
u8 *aCtrl;
|
sl@0
|
128 |
|
sl@0
|
129 |
/*
|
sl@0
|
130 |
** Memory available for allocation
|
sl@0
|
131 |
*/
|
sl@0
|
132 |
int nAtom; /* Smallest possible allocation in bytes */
|
sl@0
|
133 |
int nBlock; /* Number of nAtom sized blocks in zPool */
|
sl@0
|
134 |
u8 *zPool;
|
sl@0
|
135 |
} mem5;
|
sl@0
|
136 |
|
sl@0
|
137 |
#define MEM5LINK(idx) ((Mem5Link *)(&mem5.zPool[(idx)*mem5.nAtom]))
|
sl@0
|
138 |
|
sl@0
|
139 |
/*
|
sl@0
|
140 |
** Unlink the chunk at mem5.aPool[i] from list it is currently
|
sl@0
|
141 |
** on. It should be found on mem5.aiFreelist[iLogsize].
|
sl@0
|
142 |
*/
|
sl@0
|
143 |
static void memsys5Unlink(int i, int iLogsize){
|
sl@0
|
144 |
int next, prev;
|
sl@0
|
145 |
assert( i>=0 && i<mem5.nBlock );
|
sl@0
|
146 |
assert( iLogsize>=0 && iLogsize<=LOGMAX );
|
sl@0
|
147 |
assert( (mem5.aCtrl[i] & CTRL_LOGSIZE)==iLogsize );
|
sl@0
|
148 |
|
sl@0
|
149 |
next = MEM5LINK(i)->next;
|
sl@0
|
150 |
prev = MEM5LINK(i)->prev;
|
sl@0
|
151 |
if( prev<0 ){
|
sl@0
|
152 |
mem5.aiFreelist[iLogsize] = next;
|
sl@0
|
153 |
}else{
|
sl@0
|
154 |
MEM5LINK(prev)->next = next;
|
sl@0
|
155 |
}
|
sl@0
|
156 |
if( next>=0 ){
|
sl@0
|
157 |
MEM5LINK(next)->prev = prev;
|
sl@0
|
158 |
}
|
sl@0
|
159 |
}
|
sl@0
|
160 |
|
sl@0
|
161 |
/*
|
sl@0
|
162 |
** Link the chunk at mem5.aPool[i] so that is on the iLogsize
|
sl@0
|
163 |
** free list.
|
sl@0
|
164 |
*/
|
sl@0
|
165 |
static void memsys5Link(int i, int iLogsize){
|
sl@0
|
166 |
int x;
|
sl@0
|
167 |
assert( sqlite3_mutex_held(mem5.mutex) );
|
sl@0
|
168 |
assert( i>=0 && i<mem5.nBlock );
|
sl@0
|
169 |
assert( iLogsize>=0 && iLogsize<=LOGMAX );
|
sl@0
|
170 |
assert( (mem5.aCtrl[i] & CTRL_LOGSIZE)==iLogsize );
|
sl@0
|
171 |
|
sl@0
|
172 |
x = MEM5LINK(i)->next = mem5.aiFreelist[iLogsize];
|
sl@0
|
173 |
MEM5LINK(i)->prev = -1;
|
sl@0
|
174 |
if( x>=0 ){
|
sl@0
|
175 |
assert( x<mem5.nBlock );
|
sl@0
|
176 |
MEM5LINK(x)->prev = i;
|
sl@0
|
177 |
}
|
sl@0
|
178 |
mem5.aiFreelist[iLogsize] = i;
|
sl@0
|
179 |
}
|
sl@0
|
180 |
|
sl@0
|
181 |
/*
|
sl@0
|
182 |
** If the STATIC_MEM mutex is not already held, obtain it now. The mutex
|
sl@0
|
183 |
** will already be held (obtained by code in malloc.c) if
|
sl@0
|
184 |
** sqlite3Config.bMemStat is true.
|
sl@0
|
185 |
*/
|
sl@0
|
186 |
static void memsys5Enter(void){
|
sl@0
|
187 |
if( sqlite3Config.bMemstat==0 && mem5.mutex==0 ){
|
sl@0
|
188 |
mem5.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM);
|
sl@0
|
189 |
}
|
sl@0
|
190 |
sqlite3_mutex_enter(mem5.mutex);
|
sl@0
|
191 |
}
|
sl@0
|
192 |
static void memsys5Leave(void){
|
sl@0
|
193 |
sqlite3_mutex_leave(mem5.mutex);
|
sl@0
|
194 |
}
|
sl@0
|
195 |
|
sl@0
|
196 |
/*
|
sl@0
|
197 |
** Return the size of an outstanding allocation, in bytes. The
|
sl@0
|
198 |
** size returned omits the 8-byte header overhead. This only
|
sl@0
|
199 |
** works for chunks that are currently checked out.
|
sl@0
|
200 |
*/
|
sl@0
|
201 |
static int memsys5Size(void *p){
|
sl@0
|
202 |
int iSize = 0;
|
sl@0
|
203 |
if( p ){
|
sl@0
|
204 |
int i = ((u8 *)p-mem5.zPool)/mem5.nAtom;
|
sl@0
|
205 |
assert( i>=0 && i<mem5.nBlock );
|
sl@0
|
206 |
iSize = mem5.nAtom * (1 << (mem5.aCtrl[i]&CTRL_LOGSIZE));
|
sl@0
|
207 |
}
|
sl@0
|
208 |
return iSize;
|
sl@0
|
209 |
}
|
sl@0
|
210 |
|
sl@0
|
211 |
/*
|
sl@0
|
212 |
** Find the first entry on the freelist iLogsize. Unlink that
|
sl@0
|
213 |
** entry and return its index.
|
sl@0
|
214 |
*/
|
sl@0
|
215 |
static int memsys5UnlinkFirst(int iLogsize){
|
sl@0
|
216 |
int i;
|
sl@0
|
217 |
int iFirst;
|
sl@0
|
218 |
|
sl@0
|
219 |
assert( iLogsize>=0 && iLogsize<=LOGMAX );
|
sl@0
|
220 |
i = iFirst = mem5.aiFreelist[iLogsize];
|
sl@0
|
221 |
assert( iFirst>=0 );
|
sl@0
|
222 |
while( i>0 ){
|
sl@0
|
223 |
if( i<iFirst ) iFirst = i;
|
sl@0
|
224 |
i = MEM5LINK(i)->next;
|
sl@0
|
225 |
}
|
sl@0
|
226 |
memsys5Unlink(iFirst, iLogsize);
|
sl@0
|
227 |
return iFirst;
|
sl@0
|
228 |
}
|
sl@0
|
229 |
|
sl@0
|
230 |
/*
|
sl@0
|
231 |
** Return a block of memory of at least nBytes in size.
|
sl@0
|
232 |
** Return NULL if unable.
|
sl@0
|
233 |
*/
|
sl@0
|
234 |
static void *memsys5MallocUnsafe(int nByte){
|
sl@0
|
235 |
int i; /* Index of a mem5.aPool[] slot */
|
sl@0
|
236 |
int iBin; /* Index into mem5.aiFreelist[] */
|
sl@0
|
237 |
int iFullSz; /* Size of allocation rounded up to power of 2 */
|
sl@0
|
238 |
int iLogsize; /* Log2 of iFullSz/POW2_MIN */
|
sl@0
|
239 |
|
sl@0
|
240 |
/* Keep track of the maximum allocation request. Even unfulfilled
|
sl@0
|
241 |
** requests are counted */
|
sl@0
|
242 |
if( nByte>mem5.maxRequest ){
|
sl@0
|
243 |
mem5.maxRequest = nByte;
|
sl@0
|
244 |
}
|
sl@0
|
245 |
|
sl@0
|
246 |
/* Round nByte up to the next valid power of two */
|
sl@0
|
247 |
if( nByte>POW2_MAX ) return 0;
|
sl@0
|
248 |
for(iFullSz=mem5.nAtom, iLogsize=0; iFullSz<nByte; iFullSz *= 2, iLogsize++){}
|
sl@0
|
249 |
|
sl@0
|
250 |
/* Make sure mem5.aiFreelist[iLogsize] contains at least one free
|
sl@0
|
251 |
** block. If not, then split a block of the next larger power of
|
sl@0
|
252 |
** two in order to create a new free block of size iLogsize.
|
sl@0
|
253 |
*/
|
sl@0
|
254 |
for(iBin=iLogsize; mem5.aiFreelist[iBin]<0 && iBin<=LOGMAX; iBin++){}
|
sl@0
|
255 |
if( iBin>LOGMAX ) return 0;
|
sl@0
|
256 |
i = memsys5UnlinkFirst(iBin);
|
sl@0
|
257 |
while( iBin>iLogsize ){
|
sl@0
|
258 |
int newSize;
|
sl@0
|
259 |
|
sl@0
|
260 |
iBin--;
|
sl@0
|
261 |
newSize = 1 << iBin;
|
sl@0
|
262 |
mem5.aCtrl[i+newSize] = CTRL_FREE | iBin;
|
sl@0
|
263 |
memsys5Link(i+newSize, iBin);
|
sl@0
|
264 |
}
|
sl@0
|
265 |
mem5.aCtrl[i] = iLogsize;
|
sl@0
|
266 |
|
sl@0
|
267 |
/* Update allocator performance statistics. */
|
sl@0
|
268 |
mem5.nAlloc++;
|
sl@0
|
269 |
mem5.totalAlloc += iFullSz;
|
sl@0
|
270 |
mem5.totalExcess += iFullSz - nByte;
|
sl@0
|
271 |
mem5.currentCount++;
|
sl@0
|
272 |
mem5.currentOut += iFullSz;
|
sl@0
|
273 |
if( mem5.maxCount<mem5.currentCount ) mem5.maxCount = mem5.currentCount;
|
sl@0
|
274 |
if( mem5.maxOut<mem5.currentOut ) mem5.maxOut = mem5.currentOut;
|
sl@0
|
275 |
|
sl@0
|
276 |
/* Return a pointer to the allocated memory. */
|
sl@0
|
277 |
return (void*)&mem5.zPool[i*mem5.nAtom];
|
sl@0
|
278 |
}
|
sl@0
|
279 |
|
sl@0
|
280 |
/*
|
sl@0
|
281 |
** Free an outstanding memory allocation.
|
sl@0
|
282 |
*/
|
sl@0
|
283 |
static void memsys5FreeUnsafe(void *pOld){
|
sl@0
|
284 |
u32 size, iLogsize;
|
sl@0
|
285 |
int iBlock;
|
sl@0
|
286 |
|
sl@0
|
287 |
/* Set iBlock to the index of the block pointed to by pOld in
|
sl@0
|
288 |
** the array of mem5.nAtom byte blocks pointed to by mem5.zPool.
|
sl@0
|
289 |
*/
|
sl@0
|
290 |
iBlock = ((u8 *)pOld-mem5.zPool)/mem5.nAtom;
|
sl@0
|
291 |
|
sl@0
|
292 |
/* Check that the pointer pOld points to a valid, non-free block. */
|
sl@0
|
293 |
assert( iBlock>=0 && iBlock<mem5.nBlock );
|
sl@0
|
294 |
assert( ((u8 *)pOld-mem5.zPool)%mem5.nAtom==0 );
|
sl@0
|
295 |
assert( (mem5.aCtrl[iBlock] & CTRL_FREE)==0 );
|
sl@0
|
296 |
|
sl@0
|
297 |
iLogsize = mem5.aCtrl[iBlock] & CTRL_LOGSIZE;
|
sl@0
|
298 |
size = 1<<iLogsize;
|
sl@0
|
299 |
assert( iBlock+size-1<mem5.nBlock );
|
sl@0
|
300 |
|
sl@0
|
301 |
mem5.aCtrl[iBlock] |= CTRL_FREE;
|
sl@0
|
302 |
mem5.aCtrl[iBlock+size-1] |= CTRL_FREE;
|
sl@0
|
303 |
assert( mem5.currentCount>0 );
|
sl@0
|
304 |
assert( mem5.currentOut>=0 );
|
sl@0
|
305 |
mem5.currentCount--;
|
sl@0
|
306 |
mem5.currentOut -= size*mem5.nAtom;
|
sl@0
|
307 |
assert( mem5.currentOut>0 || mem5.currentCount==0 );
|
sl@0
|
308 |
assert( mem5.currentCount>0 || mem5.currentOut==0 );
|
sl@0
|
309 |
|
sl@0
|
310 |
mem5.aCtrl[iBlock] = CTRL_FREE | iLogsize;
|
sl@0
|
311 |
while( iLogsize<LOGMAX ){
|
sl@0
|
312 |
int iBuddy;
|
sl@0
|
313 |
if( (iBlock>>iLogsize) & 1 ){
|
sl@0
|
314 |
iBuddy = iBlock - size;
|
sl@0
|
315 |
}else{
|
sl@0
|
316 |
iBuddy = iBlock + size;
|
sl@0
|
317 |
}
|
sl@0
|
318 |
assert( iBuddy>=0 );
|
sl@0
|
319 |
if( (iBuddy+(1<<iLogsize))>mem5.nBlock ) break;
|
sl@0
|
320 |
if( mem5.aCtrl[iBuddy]!=(CTRL_FREE | iLogsize) ) break;
|
sl@0
|
321 |
memsys5Unlink(iBuddy, iLogsize);
|
sl@0
|
322 |
iLogsize++;
|
sl@0
|
323 |
if( iBuddy<iBlock ){
|
sl@0
|
324 |
mem5.aCtrl[iBuddy] = CTRL_FREE | iLogsize;
|
sl@0
|
325 |
mem5.aCtrl[iBlock] = 0;
|
sl@0
|
326 |
iBlock = iBuddy;
|
sl@0
|
327 |
}else{
|
sl@0
|
328 |
mem5.aCtrl[iBlock] = CTRL_FREE | iLogsize;
|
sl@0
|
329 |
mem5.aCtrl[iBuddy] = 0;
|
sl@0
|
330 |
}
|
sl@0
|
331 |
size *= 2;
|
sl@0
|
332 |
}
|
sl@0
|
333 |
memsys5Link(iBlock, iLogsize);
|
sl@0
|
334 |
}
|
sl@0
|
335 |
|
sl@0
|
336 |
/*
|
sl@0
|
337 |
** Allocate nBytes of memory
|
sl@0
|
338 |
*/
|
sl@0
|
339 |
static void *memsys5Malloc(int nBytes){
|
sl@0
|
340 |
sqlite3_int64 *p = 0;
|
sl@0
|
341 |
if( nBytes>0 ){
|
sl@0
|
342 |
memsys5Enter();
|
sl@0
|
343 |
p = memsys5MallocUnsafe(nBytes);
|
sl@0
|
344 |
memsys5Leave();
|
sl@0
|
345 |
}
|
sl@0
|
346 |
return (void*)p;
|
sl@0
|
347 |
}
|
sl@0
|
348 |
|
sl@0
|
349 |
/*
|
sl@0
|
350 |
** Free memory.
|
sl@0
|
351 |
*/
|
sl@0
|
352 |
static void memsys5Free(void *pPrior){
|
sl@0
|
353 |
if( pPrior==0 ){
|
sl@0
|
354 |
assert(0);
|
sl@0
|
355 |
return;
|
sl@0
|
356 |
}
|
sl@0
|
357 |
memsys5Enter();
|
sl@0
|
358 |
memsys5FreeUnsafe(pPrior);
|
sl@0
|
359 |
memsys5Leave();
|
sl@0
|
360 |
}
|
sl@0
|
361 |
|
sl@0
|
362 |
/*
|
sl@0
|
363 |
** Change the size of an existing memory allocation
|
sl@0
|
364 |
*/
|
sl@0
|
365 |
static void *memsys5Realloc(void *pPrior, int nBytes){
|
sl@0
|
366 |
int nOld;
|
sl@0
|
367 |
void *p;
|
sl@0
|
368 |
if( pPrior==0 ){
|
sl@0
|
369 |
return memsys5Malloc(nBytes);
|
sl@0
|
370 |
}
|
sl@0
|
371 |
if( nBytes<=0 ){
|
sl@0
|
372 |
memsys5Free(pPrior);
|
sl@0
|
373 |
return 0;
|
sl@0
|
374 |
}
|
sl@0
|
375 |
nOld = memsys5Size(pPrior);
|
sl@0
|
376 |
if( nBytes<=nOld ){
|
sl@0
|
377 |
return pPrior;
|
sl@0
|
378 |
}
|
sl@0
|
379 |
memsys5Enter();
|
sl@0
|
380 |
p = memsys5MallocUnsafe(nBytes);
|
sl@0
|
381 |
if( p ){
|
sl@0
|
382 |
memcpy(p, pPrior, nOld);
|
sl@0
|
383 |
memsys5FreeUnsafe(pPrior);
|
sl@0
|
384 |
}
|
sl@0
|
385 |
memsys5Leave();
|
sl@0
|
386 |
return p;
|
sl@0
|
387 |
}
|
sl@0
|
388 |
|
sl@0
|
389 |
/*
|
sl@0
|
390 |
** Round up a request size to the next valid allocation size.
|
sl@0
|
391 |
*/
|
sl@0
|
392 |
static int memsys5Roundup(int n){
|
sl@0
|
393 |
int iFullSz;
|
sl@0
|
394 |
for(iFullSz=mem5.nAtom; iFullSz<n; iFullSz *= 2);
|
sl@0
|
395 |
return iFullSz;
|
sl@0
|
396 |
}
|
sl@0
|
397 |
|
sl@0
|
398 |
static int memsys5Log(int iValue){
|
sl@0
|
399 |
int iLog;
|
sl@0
|
400 |
for(iLog=0; (1<<iLog)<iValue; iLog++);
|
sl@0
|
401 |
return iLog;
|
sl@0
|
402 |
}
|
sl@0
|
403 |
|
sl@0
|
404 |
/*
|
sl@0
|
405 |
** Initialize this module.
|
sl@0
|
406 |
*/
|
sl@0
|
407 |
static int memsys5Init(void *NotUsed){
|
sl@0
|
408 |
int ii;
|
sl@0
|
409 |
int nByte = sqlite3Config.nHeap;
|
sl@0
|
410 |
u8 *zByte = (u8 *)sqlite3Config.pHeap;
|
sl@0
|
411 |
int nMinLog; /* Log of minimum allocation size in bytes*/
|
sl@0
|
412 |
int iOffset;
|
sl@0
|
413 |
|
sl@0
|
414 |
if( !zByte ){
|
sl@0
|
415 |
return SQLITE_ERROR;
|
sl@0
|
416 |
}
|
sl@0
|
417 |
|
sl@0
|
418 |
nMinLog = memsys5Log(sqlite3Config.mnReq);
|
sl@0
|
419 |
mem5.nAtom = (1<<nMinLog);
|
sl@0
|
420 |
while( sizeof(Mem5Link)>mem5.nAtom ){
|
sl@0
|
421 |
mem5.nAtom = mem5.nAtom << 1;
|
sl@0
|
422 |
}
|
sl@0
|
423 |
|
sl@0
|
424 |
mem5.nBlock = (nByte / (mem5.nAtom+sizeof(u8)));
|
sl@0
|
425 |
mem5.zPool = zByte;
|
sl@0
|
426 |
mem5.aCtrl = (u8 *)&mem5.zPool[mem5.nBlock*mem5.nAtom];
|
sl@0
|
427 |
|
sl@0
|
428 |
for(ii=0; ii<=LOGMAX; ii++){
|
sl@0
|
429 |
mem5.aiFreelist[ii] = -1;
|
sl@0
|
430 |
}
|
sl@0
|
431 |
|
sl@0
|
432 |
iOffset = 0;
|
sl@0
|
433 |
for(ii=LOGMAX; ii>=0; ii--){
|
sl@0
|
434 |
int nAlloc = (1<<ii);
|
sl@0
|
435 |
if( (iOffset+nAlloc)<=mem5.nBlock ){
|
sl@0
|
436 |
mem5.aCtrl[iOffset] = ii | CTRL_FREE;
|
sl@0
|
437 |
memsys5Link(iOffset, ii);
|
sl@0
|
438 |
iOffset += nAlloc;
|
sl@0
|
439 |
}
|
sl@0
|
440 |
assert((iOffset+nAlloc)>mem5.nBlock);
|
sl@0
|
441 |
}
|
sl@0
|
442 |
|
sl@0
|
443 |
return SQLITE_OK;
|
sl@0
|
444 |
}
|
sl@0
|
445 |
|
sl@0
|
446 |
/*
|
sl@0
|
447 |
** Deinitialize this module.
|
sl@0
|
448 |
*/
|
sl@0
|
449 |
static void memsys5Shutdown(void *NotUsed){
|
sl@0
|
450 |
return;
|
sl@0
|
451 |
}
|
sl@0
|
452 |
|
sl@0
|
453 |
/*
|
sl@0
|
454 |
** Open the file indicated and write a log of all unfreed memory
|
sl@0
|
455 |
** allocations into that log.
|
sl@0
|
456 |
*/
|
sl@0
|
457 |
void sqlite3Memsys5Dump(const char *zFilename){
|
sl@0
|
458 |
#ifdef SQLITE_DEBUG
|
sl@0
|
459 |
FILE *out;
|
sl@0
|
460 |
int i, j, n;
|
sl@0
|
461 |
int nMinLog;
|
sl@0
|
462 |
|
sl@0
|
463 |
if( zFilename==0 || zFilename[0]==0 ){
|
sl@0
|
464 |
out = stdout;
|
sl@0
|
465 |
}else{
|
sl@0
|
466 |
out = fopen(zFilename, "w");
|
sl@0
|
467 |
if( out==0 ){
|
sl@0
|
468 |
fprintf(stderr, "** Unable to output memory debug output log: %s **\n",
|
sl@0
|
469 |
zFilename);
|
sl@0
|
470 |
return;
|
sl@0
|
471 |
}
|
sl@0
|
472 |
}
|
sl@0
|
473 |
memsys5Enter();
|
sl@0
|
474 |
nMinLog = memsys5Log(mem5.nAtom);
|
sl@0
|
475 |
for(i=0; i<=LOGMAX && i+nMinLog<32; i++){
|
sl@0
|
476 |
for(n=0, j=mem5.aiFreelist[i]; j>=0; j = MEM5LINK(j)->next, n++){}
|
sl@0
|
477 |
fprintf(out, "freelist items of size %d: %d\n", mem5.nAtom << i, n);
|
sl@0
|
478 |
}
|
sl@0
|
479 |
fprintf(out, "mem5.nAlloc = %llu\n", mem5.nAlloc);
|
sl@0
|
480 |
fprintf(out, "mem5.totalAlloc = %llu\n", mem5.totalAlloc);
|
sl@0
|
481 |
fprintf(out, "mem5.totalExcess = %llu\n", mem5.totalExcess);
|
sl@0
|
482 |
fprintf(out, "mem5.currentOut = %u\n", mem5.currentOut);
|
sl@0
|
483 |
fprintf(out, "mem5.currentCount = %u\n", mem5.currentCount);
|
sl@0
|
484 |
fprintf(out, "mem5.maxOut = %u\n", mem5.maxOut);
|
sl@0
|
485 |
fprintf(out, "mem5.maxCount = %u\n", mem5.maxCount);
|
sl@0
|
486 |
fprintf(out, "mem5.maxRequest = %u\n", mem5.maxRequest);
|
sl@0
|
487 |
memsys5Leave();
|
sl@0
|
488 |
if( out==stdout ){
|
sl@0
|
489 |
fflush(stdout);
|
sl@0
|
490 |
}else{
|
sl@0
|
491 |
fclose(out);
|
sl@0
|
492 |
}
|
sl@0
|
493 |
#endif
|
sl@0
|
494 |
}
|
sl@0
|
495 |
|
sl@0
|
496 |
/*
|
sl@0
|
497 |
** This routine is the only routine in this file with external
|
sl@0
|
498 |
** linkage. It returns a pointer to a static sqlite3_mem_methods
|
sl@0
|
499 |
** struct populated with the memsys5 methods.
|
sl@0
|
500 |
*/
|
sl@0
|
501 |
const sqlite3_mem_methods *sqlite3MemGetMemsys5(void){
|
sl@0
|
502 |
static const sqlite3_mem_methods memsys5Methods = {
|
sl@0
|
503 |
memsys5Malloc,
|
sl@0
|
504 |
memsys5Free,
|
sl@0
|
505 |
memsys5Realloc,
|
sl@0
|
506 |
memsys5Size,
|
sl@0
|
507 |
memsys5Roundup,
|
sl@0
|
508 |
memsys5Init,
|
sl@0
|
509 |
memsys5Shutdown,
|
sl@0
|
510 |
0
|
sl@0
|
511 |
};
|
sl@0
|
512 |
return &memsys5Methods;
|
sl@0
|
513 |
}
|
sl@0
|
514 |
|
sl@0
|
515 |
#endif /* SQLITE_ENABLE_MEMSYS5 */
|