os/persistentdata/persistentstorage/sql/SQLite/malloc.c
author sl
Tue, 10 Jun 2014 14:32:02 +0200
changeset 1 260cb5ec6c19
permissions -rw-r--r--
Update contrib.
     1 /*
     2 ** 2001 September 15
     3 **
     4 ** The author disclaims copyright to this source code.  In place of
     5 ** a legal notice, here is a blessing:
     6 **
     7 **    May you do good and not evil.
     8 **    May you find forgiveness for yourself and forgive others.
     9 **    May you share freely, never taking more than you give.
    10 **
    11 *************************************************************************
    12 **
    13 ** Memory allocation functions used throughout sqlite.
    14 **
    15 ** $Id: malloc.c,v 1.34 2008/08/05 17:53:23 drh Exp $
    16 */
    17 #include "sqliteInt.h"
    18 #include <stdarg.h>
    19 #include <ctype.h>
    20 
    21 /*
    22 ** This routine runs when the memory allocator sees that the
    23 ** total memory allocation is about to exceed the soft heap
    24 ** limit.
    25 */
    26 static void softHeapLimitEnforcer(
    27   void *NotUsed, 
    28   sqlite3_int64 inUse,
    29   int allocSize
    30 ){
    31   sqlite3_release_memory(allocSize);
    32 }
    33 
    34 /*
    35 ** Set the soft heap-size limit for the library. Passing a zero or 
    36 ** negative value indicates no limit.
    37 */
    38 void sqlite3_soft_heap_limit(int n){
    39   sqlite3_uint64 iLimit;
    40   int overage;
    41   if( n<0 ){
    42     iLimit = 0;
    43   }else{
    44     iLimit = n;
    45   }
    46   sqlite3_initialize();
    47   if( iLimit>0 ){
    48     sqlite3_memory_alarm(softHeapLimitEnforcer, 0, iLimit);
    49   }else{
    50     sqlite3_memory_alarm(0, 0, 0);
    51   }
    52   overage = sqlite3_memory_used() - n;
    53   if( overage>0 ){
    54     sqlite3_release_memory(overage);
    55   }
    56 }
    57 
    58 /*
    59 ** Attempt to release up to n bytes of non-essential memory currently
    60 ** held by SQLite. An example of non-essential memory is memory used to
    61 ** cache database pages that are not currently in use.
    62 */
    63 int sqlite3_release_memory(int n){
    64 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
    65   int nRet = sqlite3VdbeReleaseMemory(n);
    66   nRet += sqlite3PagerReleaseMemory(n-nRet);
    67   return nRet;
    68 #else
    69   return SQLITE_OK;
    70 #endif
    71 }
    72 
    73 /*
    74 ** State information local to the memory allocation subsystem.
    75 */
    76 static struct {
    77   sqlite3_mutex *mutex;         /* Mutex to serialize access */
    78 
    79   /*
    80   ** The alarm callback and its arguments.  The mem0.mutex lock will
    81   ** be held while the callback is running.  Recursive calls into
    82   ** the memory subsystem are allowed, but no new callbacks will be
    83   ** issued.  The alarmBusy variable is set to prevent recursive
    84   ** callbacks.
    85   */
    86   sqlite3_int64 alarmThreshold;
    87   void (*alarmCallback)(void*, sqlite3_int64,int);
    88   void *alarmArg;
    89   int alarmBusy;
    90 
    91   /*
    92   ** Pointers to the end of sqlite3Config.pScratch and
    93   ** sqlite3Config.pPage to a block of memory that records
    94   ** which pages are available.
    95   */
    96   u32 *aScratchFree;
    97   u32 *aPageFree;
    98 
    99   /* Number of free pages for scratch and page-cache memory */
   100   u32 nScratchFree;
   101   u32 nPageFree;
   102 } mem0;
   103 
   104 /*
   105 ** Initialize the memory allocation subsystem.
   106 */
   107 int sqlite3MallocInit(void){
   108   if( sqlite3Config.m.xMalloc==0 ){
   109     sqlite3MemSetDefault();
   110   }
   111   memset(&mem0, 0, sizeof(mem0));
   112   if( sqlite3Config.bCoreMutex ){
   113     mem0.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM);
   114   }
   115   if( sqlite3Config.pScratch && sqlite3Config.szScratch>=100
   116       && sqlite3Config.nScratch>=0 ){
   117     int i;
   118     sqlite3Config.szScratch -= 4;
   119     mem0.aScratchFree = (u32*)&((char*)sqlite3Config.pScratch)
   120                   [sqlite3Config.szScratch*sqlite3Config.nScratch];
   121     for(i=0; i<sqlite3Config.nScratch; i++){ mem0.aScratchFree[i] = i; }
   122     mem0.nScratchFree = sqlite3Config.nScratch;
   123   }else{
   124     sqlite3Config.pScratch = 0;
   125     sqlite3Config.szScratch = 0;
   126   }
   127   if( sqlite3Config.pPage && sqlite3Config.szPage>=512
   128       && sqlite3Config.nPage>=1 ){
   129     int i;
   130     int overhead;
   131     int sz = sqlite3Config.szPage;
   132     int n = sqlite3Config.nPage;
   133     overhead = (4*n + sz - 1)/sz;
   134     sqlite3Config.nPage -= overhead;
   135     mem0.aPageFree = (u32*)&((char*)sqlite3Config.pPage)
   136                   [sqlite3Config.szPage*sqlite3Config.nPage];
   137     for(i=0; i<sqlite3Config.nPage; i++){ mem0.aPageFree[i] = i; }
   138     mem0.nPageFree = sqlite3Config.nPage;
   139   }else{
   140     sqlite3Config.pPage = 0;
   141     sqlite3Config.szPage = 0;
   142   }
   143   return sqlite3Config.m.xInit(sqlite3Config.m.pAppData);
   144 }
   145 
   146 /*
   147 ** Deinitialize the memory allocation subsystem.
   148 */
   149 void sqlite3MallocEnd(void){
   150   sqlite3Config.m.xShutdown(sqlite3Config.m.pAppData);
   151   memset(&mem0, 0, sizeof(mem0));
   152 }
   153 
   154 /*
   155 ** Return the amount of memory currently checked out.
   156 */
   157 sqlite3_int64 sqlite3_memory_used(void){
   158   int n, mx;
   159   sqlite3_int64 res;
   160   sqlite3_status(SQLITE_STATUS_MEMORY_USED, &n, &mx, 0);
   161   res = (sqlite3_int64)n;  /* Work around bug in Borland C. Ticket #3216 */
   162   return res;
   163 }
   164 
   165 /*
   166 ** Return the maximum amount of memory that has ever been
   167 ** checked out since either the beginning of this process
   168 ** or since the most recent reset.
   169 */
   170 sqlite3_int64 sqlite3_memory_highwater(int resetFlag){
   171   int n, mx;
   172   sqlite3_int64 res;
   173   sqlite3_status(SQLITE_STATUS_MEMORY_USED, &n, &mx, resetFlag);
   174   res = (sqlite3_int64)mx;  /* Work around bug in Borland C. Ticket #3216 */
   175   return res;
   176 }
   177 
   178 /*
   179 ** Change the alarm callback
   180 */
   181 int sqlite3_memory_alarm(
   182   void(*xCallback)(void *pArg, sqlite3_int64 used,int N),
   183   void *pArg,
   184   sqlite3_int64 iThreshold
   185 ){
   186   sqlite3_mutex_enter(mem0.mutex);
   187   mem0.alarmCallback = xCallback;
   188   mem0.alarmArg = pArg;
   189   mem0.alarmThreshold = iThreshold;
   190   sqlite3_mutex_leave(mem0.mutex);
   191   return SQLITE_OK;
   192 }
   193 
   194 /*
   195 ** Trigger the alarm 
   196 */
   197 static void sqlite3MallocAlarm(int nByte){
   198   void (*xCallback)(void*,sqlite3_int64,int);
   199   sqlite3_int64 nowUsed;
   200   void *pArg;
   201   if( mem0.alarmCallback==0 || mem0.alarmBusy  ) return;
   202   mem0.alarmBusy = 1;
   203   xCallback = mem0.alarmCallback;
   204   nowUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED);
   205   pArg = mem0.alarmArg;
   206   sqlite3_mutex_leave(mem0.mutex);
   207   xCallback(pArg, nowUsed, nByte);
   208   sqlite3_mutex_enter(mem0.mutex);
   209   mem0.alarmBusy = 0;
   210 }
   211 
   212 /*
   213 ** Do a memory allocation with statistics and alarms.  Assume the
   214 ** lock is already held.
   215 */
   216 static int mallocWithAlarm(int n, void **pp){
   217   int nFull;
   218   void *p;
   219   assert( sqlite3_mutex_held(mem0.mutex) );
   220   nFull = sqlite3Config.m.xRoundup(n);
   221   sqlite3StatusSet(SQLITE_STATUS_MALLOC_SIZE, n);
   222   if( mem0.alarmCallback!=0 ){
   223     int nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED);
   224     if( nUsed+nFull >= mem0.alarmThreshold ){
   225       sqlite3MallocAlarm(nFull);
   226     }
   227   }
   228   p = sqlite3Config.m.xMalloc(nFull);
   229   if( p==0 && mem0.alarmCallback ){
   230     sqlite3MallocAlarm(nFull);
   231     p = sqlite3Config.m.xMalloc(nFull);
   232   }
   233   if( p ){
   234     nFull = sqlite3MallocSize(p);
   235     sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, nFull);
   236   }
   237   *pp = p;
   238   return nFull;
   239 }
   240 
   241 /*
   242 ** Allocate memory.  This routine is like sqlite3_malloc() except that it
   243 ** assumes the memory subsystem has already been initialized.
   244 */
   245 void *sqlite3Malloc(int n){
   246   void *p;
   247   if( n<=0 ){
   248     p = 0;
   249   }else if( sqlite3Config.bMemstat ){
   250     sqlite3_mutex_enter(mem0.mutex);
   251     mallocWithAlarm(n, &p);
   252     sqlite3_mutex_leave(mem0.mutex);
   253   }else{
   254     p = sqlite3Config.m.xMalloc(n);
   255   }
   256   return p;
   257 }
   258 
   259 /*
   260 ** This version of the memory allocation is for use by the application.
   261 ** First make sure the memory subsystem is initialized, then do the
   262 ** allocation.
   263 */
   264 void *sqlite3_malloc(int n){
   265 #ifndef SQLITE_OMIT_AUTOINIT
   266   if( sqlite3_initialize() ) return 0;
   267 #endif
   268   return sqlite3Malloc(n);
   269 }
   270 
   271 /*
   272 ** Each thread may only have a single outstanding allocation from
   273 ** xScratchMalloc().  We verify this constraint in the single-threaded
   274 ** case by setting scratchAllocOut to 1 when an allocation
   275 ** is outstanding clearing it when the allocation is freed.
   276 */
   277 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
   278 static int scratchAllocOut = 0;
   279 #endif
   280 
   281 
   282 /*
   283 ** Allocate memory that is to be used and released right away.
   284 ** This routine is similar to alloca() in that it is not intended
   285 ** for situations where the memory might be held long-term.  This
   286 ** routine is intended to get memory to old large transient data
   287 ** structures that would not normally fit on the stack of an
   288 ** embedded processor.
   289 */
   290 void *sqlite3ScratchMalloc(int n){
   291   void *p;
   292   assert( n>0 );
   293 
   294 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
   295   /* Verify that no more than one scratch allocation per thread
   296   ** is outstanding at one time.  (This is only checked in the
   297   ** single-threaded case since checking in the multi-threaded case
   298   ** would be much more complicated.) */
   299   assert( scratchAllocOut==0 );
   300 #endif
   301 
   302   if( sqlite3Config.szScratch<n ){
   303     goto scratch_overflow;
   304   }else{  
   305     sqlite3_mutex_enter(mem0.mutex);
   306     if( mem0.nScratchFree==0 ){
   307       sqlite3_mutex_leave(mem0.mutex);
   308       goto scratch_overflow;
   309     }else{
   310       int i;
   311       i = mem0.aScratchFree[--mem0.nScratchFree];
   312       sqlite3_mutex_leave(mem0.mutex);
   313       i *= sqlite3Config.szScratch;
   314       sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_USED, 1);
   315       sqlite3StatusSet(SQLITE_STATUS_SCRATCH_SIZE, n);
   316       p = (void*)&((char*)sqlite3Config.pScratch)[i];
   317     }
   318   }
   319 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
   320   scratchAllocOut = p!=0;
   321 #endif
   322 
   323   return p;
   324 
   325 scratch_overflow:
   326   if( sqlite3Config.bMemstat ){
   327     sqlite3_mutex_enter(mem0.mutex);
   328     sqlite3StatusSet(SQLITE_STATUS_SCRATCH_SIZE, n);
   329     n = mallocWithAlarm(n, &p);
   330     if( p ) sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_OVERFLOW, n);
   331     sqlite3_mutex_leave(mem0.mutex);
   332   }else{
   333     p = sqlite3Config.m.xMalloc(n);
   334   }
   335 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
   336   scratchAllocOut = p!=0;
   337 #endif
   338   return p;    
   339 }
   340 void sqlite3ScratchFree(void *p){
   341   if( p ){
   342 
   343 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
   344     /* Verify that no more than one scratch allocation per thread
   345     ** is outstanding at one time.  (This is only checked in the
   346     ** single-threaded case since checking in the multi-threaded case
   347     ** would be much more complicated.) */
   348     assert( scratchAllocOut==1 );
   349     scratchAllocOut = 0;
   350 #endif
   351 
   352     if( sqlite3Config.pScratch==0
   353            || p<sqlite3Config.pScratch
   354            || p>=(void*)mem0.aScratchFree ){
   355       if( sqlite3Config.bMemstat ){
   356         int iSize = sqlite3MallocSize(p);
   357         sqlite3_mutex_enter(mem0.mutex);
   358         sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_OVERFLOW, -iSize);
   359         sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, -iSize);
   360         sqlite3Config.m.xFree(p);
   361         sqlite3_mutex_leave(mem0.mutex);
   362       }else{
   363         sqlite3Config.m.xFree(p);
   364       }
   365     }else{
   366       int i;
   367       i = (u8 *)p - (u8 *)sqlite3Config.pScratch;
   368       i /= sqlite3Config.szScratch;
   369       assert( i>=0 && i<sqlite3Config.nScratch );
   370       sqlite3_mutex_enter(mem0.mutex);
   371       assert( mem0.nScratchFree<sqlite3Config.nScratch );
   372       mem0.aScratchFree[mem0.nScratchFree++] = i;
   373       sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_USED, -1);
   374       sqlite3_mutex_leave(mem0.mutex);
   375     }
   376   }
   377 }
   378 
   379 /*
   380 ** Allocate memory to be used by the page cache.  Make use of the
   381 ** memory buffer provided by SQLITE_CONFIG_PAGECACHE if there is one
   382 ** and that memory is of the right size and is not completely
   383 ** consumed.  Otherwise, failover to sqlite3Malloc().
   384 */
   385 void *sqlite3PageMalloc(int n){
   386   void *p;
   387   assert( n>0 );
   388   assert( (n & (n-1))==0 );
   389   assert( n>=512 && n<=32768 );
   390 
   391   if( sqlite3Config.szPage<n ){
   392     goto page_overflow;
   393   }else{  
   394     sqlite3_mutex_enter(mem0.mutex);
   395     if( mem0.nPageFree==0 ){
   396       sqlite3_mutex_leave(mem0.mutex);
   397       goto page_overflow;
   398     }else{
   399       int i;
   400       i = mem0.aPageFree[--mem0.nPageFree];
   401       sqlite3_mutex_leave(mem0.mutex);
   402       i *= sqlite3Config.szPage;
   403       sqlite3StatusSet(SQLITE_STATUS_PAGECACHE_SIZE, n);
   404       sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_USED, 1);
   405       p = (void*)&((char*)sqlite3Config.pPage)[i];
   406     }
   407   }
   408   return p;
   409 
   410 page_overflow:
   411   if( sqlite3Config.bMemstat ){
   412     sqlite3_mutex_enter(mem0.mutex);
   413     sqlite3StatusSet(SQLITE_STATUS_PAGECACHE_SIZE, n);
   414     n = mallocWithAlarm(n, &p);
   415     if( p ) sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_OVERFLOW, n);
   416     sqlite3_mutex_leave(mem0.mutex);
   417   }else{
   418     p = sqlite3Config.m.xMalloc(n);
   419   }
   420   return p;    
   421 }
   422 void sqlite3PageFree(void *p){
   423   if( p ){
   424     if( sqlite3Config.pPage==0
   425            || p<sqlite3Config.pPage
   426            || p>=(void*)mem0.aPageFree ){
   427       /* In this case, the page allocation was obtained from a regular 
   428       ** call to sqlite3_mem_methods.xMalloc() (a page-cache-memory 
   429       ** "overflow"). Free the block with sqlite3_mem_methods.xFree().
   430       */
   431       if( sqlite3Config.bMemstat ){
   432         int iSize = sqlite3MallocSize(p);
   433         sqlite3_mutex_enter(mem0.mutex);
   434         sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_OVERFLOW, -iSize);
   435         sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, -iSize);
   436         sqlite3Config.m.xFree(p);
   437         sqlite3_mutex_leave(mem0.mutex);
   438       }else{
   439         sqlite3Config.m.xFree(p);
   440       }
   441     }else{
   442       /* The page allocation was allocated from the sqlite3Config.pPage
   443       ** buffer. In this case all that is add the index of the page in
   444       ** the sqlite3Config.pPage array to the set of free indexes stored
   445       ** in the mem0.aPageFree[] array.
   446       */
   447       int i;
   448       i = (u8 *)p - (u8 *)sqlite3Config.pPage;
   449       i /= sqlite3Config.szPage;
   450       assert( i>=0 && i<sqlite3Config.nPage );
   451       sqlite3_mutex_enter(mem0.mutex);
   452       assert( mem0.nPageFree<sqlite3Config.nPage );
   453       mem0.aPageFree[mem0.nPageFree++] = i;
   454       sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_USED, -1);
   455       sqlite3_mutex_leave(mem0.mutex);
   456 #if !defined(NDEBUG) && 0
   457       /* Assert that a duplicate was not just inserted into aPageFree[]. */
   458       for(i=0; i<mem0.nPageFree-1; i++){
   459         assert( mem0.aPageFree[i]!=mem0.aPageFree[mem0.nPageFree-1] );
   460       }
   461 #endif
   462     }
   463   }
   464 }
   465 
   466 /*
   467 ** TRUE if p is a lookaside memory allocation from db
   468 */
   469 static int isLookaside(sqlite3 *db, void *p){
   470   return db && p && p>=db->lookaside.pStart && p<db->lookaside.pEnd;
   471 }
   472 
   473 /*
   474 ** Return the size of a memory allocation previously obtained from
   475 ** sqlite3Malloc() or sqlite3_malloc().
   476 */
   477 int sqlite3MallocSize(void *p){
   478   return sqlite3Config.m.xSize(p);
   479 }
   480 int sqlite3DbMallocSize(sqlite3 *db, void *p){
   481   if( isLookaside(db, p) ){
   482     return db->lookaside.sz;
   483   }else{
   484     return sqlite3Config.m.xSize(p);
   485   }
   486 }
   487 
   488 /*
   489 ** Free memory previously obtained from sqlite3Malloc().
   490 */
   491 void sqlite3_free(void *p){
   492   if( p==0 ) return;
   493   if( sqlite3Config.bMemstat ){
   494     sqlite3_mutex_enter(mem0.mutex);
   495     sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, -sqlite3MallocSize(p));
   496     sqlite3Config.m.xFree(p);
   497     sqlite3_mutex_leave(mem0.mutex);
   498   }else{
   499     sqlite3Config.m.xFree(p);
   500   }
   501 }
   502 
   503 /*
   504 ** Free memory that might be associated with a particular database
   505 ** connection.
   506 */
   507 void sqlite3DbFree(sqlite3 *db, void *p){
   508   if( isLookaside(db, p) ){
   509     LookasideSlot *pBuf = (LookasideSlot*)p;
   510     pBuf->pNext = db->lookaside.pFree;
   511     db->lookaside.pFree = pBuf;
   512     db->lookaside.nOut--;
   513   }else{
   514     sqlite3_free(p);
   515   }
   516 }
   517 
   518 /*
   519 ** Change the size of an existing memory allocation
   520 */
   521 void *sqlite3Realloc(void *pOld, int nBytes){
   522   int nOld, nNew;
   523   void *pNew;
   524   if( pOld==0 ){
   525     return sqlite3Malloc(nBytes);
   526   }
   527   if( nBytes<=0 ){
   528     sqlite3_free(pOld);
   529     return 0;
   530   }
   531   nOld = sqlite3MallocSize(pOld);
   532   if( sqlite3Config.bMemstat ){
   533     sqlite3_mutex_enter(mem0.mutex);
   534     sqlite3StatusSet(SQLITE_STATUS_MALLOC_SIZE, nBytes);
   535     nNew = sqlite3Config.m.xRoundup(nBytes);
   536     if( nOld==nNew ){
   537       pNew = pOld;
   538     }else{
   539       if( sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED)+nNew-nOld >= 
   540             mem0.alarmThreshold ){
   541         sqlite3MallocAlarm(nNew-nOld);
   542       }
   543       pNew = sqlite3Config.m.xRealloc(pOld, nNew);
   544       if( pNew==0 && mem0.alarmCallback ){
   545         sqlite3MallocAlarm(nBytes);
   546         pNew = sqlite3Config.m.xRealloc(pOld, nNew);
   547       }
   548       if( pNew ){
   549         nNew = sqlite3MallocSize(pNew);
   550         sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, nNew-nOld);
   551       }
   552     }
   553     sqlite3_mutex_leave(mem0.mutex);
   554   }else{
   555     pNew = sqlite3Config.m.xRealloc(pOld, nBytes);
   556   }
   557   return pNew;
   558 }
   559 
   560 /*
   561 ** The public interface to sqlite3Realloc.  Make sure that the memory
   562 ** subsystem is initialized prior to invoking sqliteRealloc.
   563 */
   564 void *sqlite3_realloc(void *pOld, int n){
   565 #ifndef SQLITE_OMIT_AUTOINIT
   566   if( sqlite3_initialize() ) return 0;
   567 #endif
   568   return sqlite3Realloc(pOld, n);
   569 }
   570 
   571 
   572 /*
   573 ** Allocate and zero memory.
   574 */ 
   575 void *sqlite3MallocZero(int n){
   576   void *p = sqlite3Malloc(n);
   577   if( p ){
   578     memset(p, 0, n);
   579   }
   580   return p;
   581 }
   582 
   583 /*
   584 ** Allocate and zero memory.  If the allocation fails, make
   585 ** the mallocFailed flag in the connection pointer.
   586 */
   587 void *sqlite3DbMallocZero(sqlite3 *db, int n){
   588   void *p = sqlite3DbMallocRaw(db, n);
   589   if( p ){
   590     memset(p, 0, n);
   591   }
   592   return p;
   593 }
   594 
   595 /*
   596 ** Allocate and zero memory.  If the allocation fails, make
   597 ** the mallocFailed flag in the connection pointer.
   598 */
   599 void *sqlite3DbMallocRaw(sqlite3 *db, int n){
   600   void *p;
   601   if( db ){
   602     LookasideSlot *pBuf;
   603     if( db->mallocFailed ){
   604       return 0;
   605     }
   606     if( db->lookaside.bEnabled && n<=db->lookaside.sz
   607          && (pBuf = db->lookaside.pFree)!=0 ){
   608       db->lookaside.pFree = pBuf->pNext;
   609       db->lookaside.nOut++;
   610       if( db->lookaside.nOut>db->lookaside.mxOut ){
   611         db->lookaside.mxOut = db->lookaside.nOut;
   612       }
   613       return (void*)pBuf;
   614     }
   615   }
   616   p = sqlite3Malloc(n);
   617   if( !p && db ){
   618     db->mallocFailed = 1;
   619   }
   620   return p;
   621 }
   622 
   623 /*
   624 ** Resize the block of memory pointed to by p to n bytes. If the
   625 ** resize fails, set the mallocFailed flag in the connection object.
   626 */
   627 void *sqlite3DbRealloc(sqlite3 *db, void *p, int n){
   628   void *pNew = 0;
   629   if( db->mallocFailed==0 ){
   630     if( p==0 ){
   631       return sqlite3DbMallocRaw(db, n);
   632     }
   633     if( isLookaside(db, p) ){
   634       if( n<=db->lookaside.sz ){
   635         return p;
   636       }
   637       pNew = sqlite3DbMallocRaw(db, n);
   638       if( pNew ){
   639         memcpy(pNew, p, db->lookaside.sz);
   640         sqlite3DbFree(db, p);
   641       }
   642     }else{
   643       pNew = sqlite3_realloc(p, n);
   644       if( !pNew ){
   645         db->mallocFailed = 1;
   646       }
   647     }
   648   }
   649   return pNew;
   650 }
   651 
   652 /*
   653 ** Attempt to reallocate p.  If the reallocation fails, then free p
   654 ** and set the mallocFailed flag in the database connection.
   655 */
   656 void *sqlite3DbReallocOrFree(sqlite3 *db, void *p, int n){
   657   void *pNew;
   658   pNew = sqlite3DbRealloc(db, p, n);
   659   if( !pNew ){
   660     sqlite3DbFree(db, p);
   661   }
   662   return pNew;
   663 }
   664 
   665 /*
   666 ** Make a copy of a string in memory obtained from sqliteMalloc(). These 
   667 ** functions call sqlite3MallocRaw() directly instead of sqliteMalloc(). This
   668 ** is because when memory debugging is turned on, these two functions are 
   669 ** called via macros that record the current file and line number in the
   670 ** ThreadData structure.
   671 */
   672 char *sqlite3DbStrDup(sqlite3 *db, const char *z){
   673   char *zNew;
   674   size_t n;
   675   if( z==0 ){
   676     return 0;
   677   }
   678   n = strlen(z)+1;
   679   assert( (n&0x7fffffff)==n );
   680   zNew = sqlite3DbMallocRaw(db, (int)n);
   681   if( zNew ){
   682     memcpy(zNew, z, n);
   683   }
   684   return zNew;
   685 }
   686 char *sqlite3DbStrNDup(sqlite3 *db, const char *z, int n){
   687   char *zNew;
   688   if( z==0 ){
   689     return 0;
   690   }
   691   assert( (n&0x7fffffff)==n );
   692   zNew = sqlite3DbMallocRaw(db, n+1);
   693   if( zNew ){
   694     memcpy(zNew, z, n);
   695     zNew[n] = 0;
   696   }
   697   return zNew;
   698 }
   699 
   700 /*
   701 ** Create a string from the zFromat argument and the va_list that follows.
   702 ** Store the string in memory obtained from sqliteMalloc() and make *pz
   703 ** point to that string.
   704 */
   705 void sqlite3SetString(char **pz, sqlite3 *db, const char *zFormat, ...){
   706   va_list ap;
   707   char *z;
   708 
   709   va_start(ap, zFormat);
   710   z = sqlite3VMPrintf(db, zFormat, ap);
   711   va_end(ap);
   712   sqlite3DbFree(db, *pz);
   713   *pz = z;
   714 }
   715 
   716 
   717 /*
   718 ** This function must be called before exiting any API function (i.e. 
   719 ** returning control to the user) that has called sqlite3_malloc or
   720 ** sqlite3_realloc.
   721 **
   722 ** The returned value is normally a copy of the second argument to this
   723 ** function. However, if a malloc() failure has occured since the previous
   724 ** invocation SQLITE_NOMEM is returned instead. 
   725 **
   726 ** If the first argument, db, is not NULL and a malloc() error has occured,
   727 ** then the connection error-code (the value returned by sqlite3_errcode())
   728 ** is set to SQLITE_NOMEM.
   729 */
   730 int sqlite3ApiExit(sqlite3* db, int rc){
   731   /* If the db handle is not NULL, then we must hold the connection handle
   732   ** mutex here. Otherwise the read (and possible write) of db->mallocFailed 
   733   ** is unsafe, as is the call to sqlite3Error().
   734   */
   735   assert( !db || sqlite3_mutex_held(db->mutex) );
   736   if( db && db->mallocFailed ){
   737     sqlite3Error(db, SQLITE_NOMEM, 0);
   738     db->mallocFailed = 0;
   739     rc = SQLITE_NOMEM;
   740   }
   741   return rc & (db ? db->errMask : 0xff);
   742 }