Update contrib.
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
13 ** Memory allocation functions used throughout sqlite.
15 ** $Id: malloc.c,v 1.34 2008/08/05 17:53:23 drh Exp $
17 #include "sqliteInt.h"
22 ** This routine runs when the memory allocator sees that the
23 ** total memory allocation is about to exceed the soft heap
26 static void softHeapLimitEnforcer(
31 sqlite3_release_memory(allocSize);
35 ** Set the soft heap-size limit for the library. Passing a zero or
36 ** negative value indicates no limit.
38 void sqlite3_soft_heap_limit(int n){
39 sqlite3_uint64 iLimit;
48 sqlite3_memory_alarm(softHeapLimitEnforcer, 0, iLimit);
50 sqlite3_memory_alarm(0, 0, 0);
52 overage = sqlite3_memory_used() - n;
54 sqlite3_release_memory(overage);
59 ** Attempt to release up to n bytes of non-essential memory currently
60 ** held by SQLite. An example of non-essential memory is memory used to
61 ** cache database pages that are not currently in use.
63 int sqlite3_release_memory(int n){
64 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
65 int nRet = sqlite3VdbeReleaseMemory(n);
66 nRet += sqlite3PagerReleaseMemory(n-nRet);
74 ** State information local to the memory allocation subsystem.
77 sqlite3_mutex *mutex; /* Mutex to serialize access */
80 ** The alarm callback and its arguments. The mem0.mutex lock will
81 ** be held while the callback is running. Recursive calls into
82 ** the memory subsystem are allowed, but no new callbacks will be
83 ** issued. The alarmBusy variable is set to prevent recursive
86 sqlite3_int64 alarmThreshold;
87 void (*alarmCallback)(void*, sqlite3_int64,int);
92 ** Pointers to the end of sqlite3Config.pScratch and
93 ** sqlite3Config.pPage to a block of memory that records
94 ** which pages are available.
99 /* Number of free pages for scratch and page-cache memory */
105 ** Initialize the memory allocation subsystem.
107 int sqlite3MallocInit(void){
108 if( sqlite3Config.m.xMalloc==0 ){
109 sqlite3MemSetDefault();
111 memset(&mem0, 0, sizeof(mem0));
112 if( sqlite3Config.bCoreMutex ){
113 mem0.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM);
115 if( sqlite3Config.pScratch && sqlite3Config.szScratch>=100
116 && sqlite3Config.nScratch>=0 ){
118 sqlite3Config.szScratch -= 4;
119 mem0.aScratchFree = (u32*)&((char*)sqlite3Config.pScratch)
120 [sqlite3Config.szScratch*sqlite3Config.nScratch];
121 for(i=0; i<sqlite3Config.nScratch; i++){ mem0.aScratchFree[i] = i; }
122 mem0.nScratchFree = sqlite3Config.nScratch;
124 sqlite3Config.pScratch = 0;
125 sqlite3Config.szScratch = 0;
127 if( sqlite3Config.pPage && sqlite3Config.szPage>=512
128 && sqlite3Config.nPage>=1 ){
131 int sz = sqlite3Config.szPage;
132 int n = sqlite3Config.nPage;
133 overhead = (4*n + sz - 1)/sz;
134 sqlite3Config.nPage -= overhead;
135 mem0.aPageFree = (u32*)&((char*)sqlite3Config.pPage)
136 [sqlite3Config.szPage*sqlite3Config.nPage];
137 for(i=0; i<sqlite3Config.nPage; i++){ mem0.aPageFree[i] = i; }
138 mem0.nPageFree = sqlite3Config.nPage;
140 sqlite3Config.pPage = 0;
141 sqlite3Config.szPage = 0;
143 return sqlite3Config.m.xInit(sqlite3Config.m.pAppData);
147 ** Deinitialize the memory allocation subsystem.
149 void sqlite3MallocEnd(void){
150 sqlite3Config.m.xShutdown(sqlite3Config.m.pAppData);
151 memset(&mem0, 0, sizeof(mem0));
155 ** Return the amount of memory currently checked out.
157 sqlite3_int64 sqlite3_memory_used(void){
160 sqlite3_status(SQLITE_STATUS_MEMORY_USED, &n, &mx, 0);
161 res = (sqlite3_int64)n; /* Work around bug in Borland C. Ticket #3216 */
166 ** Return the maximum amount of memory that has ever been
167 ** checked out since either the beginning of this process
168 ** or since the most recent reset.
170 sqlite3_int64 sqlite3_memory_highwater(int resetFlag){
173 sqlite3_status(SQLITE_STATUS_MEMORY_USED, &n, &mx, resetFlag);
174 res = (sqlite3_int64)mx; /* Work around bug in Borland C. Ticket #3216 */
179 ** Change the alarm callback
181 int sqlite3_memory_alarm(
182 void(*xCallback)(void *pArg, sqlite3_int64 used,int N),
184 sqlite3_int64 iThreshold
186 sqlite3_mutex_enter(mem0.mutex);
187 mem0.alarmCallback = xCallback;
188 mem0.alarmArg = pArg;
189 mem0.alarmThreshold = iThreshold;
190 sqlite3_mutex_leave(mem0.mutex);
197 static void sqlite3MallocAlarm(int nByte){
198 void (*xCallback)(void*,sqlite3_int64,int);
199 sqlite3_int64 nowUsed;
201 if( mem0.alarmCallback==0 || mem0.alarmBusy ) return;
203 xCallback = mem0.alarmCallback;
204 nowUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED);
205 pArg = mem0.alarmArg;
206 sqlite3_mutex_leave(mem0.mutex);
207 xCallback(pArg, nowUsed, nByte);
208 sqlite3_mutex_enter(mem0.mutex);
213 ** Do a memory allocation with statistics and alarms. Assume the
214 ** lock is already held.
216 static int mallocWithAlarm(int n, void **pp){
219 assert( sqlite3_mutex_held(mem0.mutex) );
220 nFull = sqlite3Config.m.xRoundup(n);
221 sqlite3StatusSet(SQLITE_STATUS_MALLOC_SIZE, n);
222 if( mem0.alarmCallback!=0 ){
223 int nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED);
224 if( nUsed+nFull >= mem0.alarmThreshold ){
225 sqlite3MallocAlarm(nFull);
228 p = sqlite3Config.m.xMalloc(nFull);
229 if( p==0 && mem0.alarmCallback ){
230 sqlite3MallocAlarm(nFull);
231 p = sqlite3Config.m.xMalloc(nFull);
234 nFull = sqlite3MallocSize(p);
235 sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, nFull);
242 ** Allocate memory. This routine is like sqlite3_malloc() except that it
243 ** assumes the memory subsystem has already been initialized.
245 void *sqlite3Malloc(int n){
249 }else if( sqlite3Config.bMemstat ){
250 sqlite3_mutex_enter(mem0.mutex);
251 mallocWithAlarm(n, &p);
252 sqlite3_mutex_leave(mem0.mutex);
254 p = sqlite3Config.m.xMalloc(n);
260 ** This version of the memory allocation is for use by the application.
261 ** First make sure the memory subsystem is initialized, then do the
264 void *sqlite3_malloc(int n){
265 #ifndef SQLITE_OMIT_AUTOINIT
266 if( sqlite3_initialize() ) return 0;
268 return sqlite3Malloc(n);
272 ** Each thread may only have a single outstanding allocation from
273 ** xScratchMalloc(). We verify this constraint in the single-threaded
274 ** case by setting scratchAllocOut to 1 when an allocation
275 ** is outstanding clearing it when the allocation is freed.
277 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
278 static int scratchAllocOut = 0;
283 ** Allocate memory that is to be used and released right away.
284 ** This routine is similar to alloca() in that it is not intended
285 ** for situations where the memory might be held long-term. This
286 ** routine is intended to get memory to old large transient data
287 ** structures that would not normally fit on the stack of an
288 ** embedded processor.
290 void *sqlite3ScratchMalloc(int n){
294 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
295 /* Verify that no more than one scratch allocation per thread
296 ** is outstanding at one time. (This is only checked in the
297 ** single-threaded case since checking in the multi-threaded case
298 ** would be much more complicated.) */
299 assert( scratchAllocOut==0 );
302 if( sqlite3Config.szScratch<n ){
303 goto scratch_overflow;
305 sqlite3_mutex_enter(mem0.mutex);
306 if( mem0.nScratchFree==0 ){
307 sqlite3_mutex_leave(mem0.mutex);
308 goto scratch_overflow;
311 i = mem0.aScratchFree[--mem0.nScratchFree];
312 sqlite3_mutex_leave(mem0.mutex);
313 i *= sqlite3Config.szScratch;
314 sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_USED, 1);
315 sqlite3StatusSet(SQLITE_STATUS_SCRATCH_SIZE, n);
316 p = (void*)&((char*)sqlite3Config.pScratch)[i];
319 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
320 scratchAllocOut = p!=0;
326 if( sqlite3Config.bMemstat ){
327 sqlite3_mutex_enter(mem0.mutex);
328 sqlite3StatusSet(SQLITE_STATUS_SCRATCH_SIZE, n);
329 n = mallocWithAlarm(n, &p);
330 if( p ) sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_OVERFLOW, n);
331 sqlite3_mutex_leave(mem0.mutex);
333 p = sqlite3Config.m.xMalloc(n);
335 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
336 scratchAllocOut = p!=0;
340 void sqlite3ScratchFree(void *p){
343 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
344 /* Verify that no more than one scratch allocation per thread
345 ** is outstanding at one time. (This is only checked in the
346 ** single-threaded case since checking in the multi-threaded case
347 ** would be much more complicated.) */
348 assert( scratchAllocOut==1 );
352 if( sqlite3Config.pScratch==0
353 || p<sqlite3Config.pScratch
354 || p>=(void*)mem0.aScratchFree ){
355 if( sqlite3Config.bMemstat ){
356 int iSize = sqlite3MallocSize(p);
357 sqlite3_mutex_enter(mem0.mutex);
358 sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_OVERFLOW, -iSize);
359 sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, -iSize);
360 sqlite3Config.m.xFree(p);
361 sqlite3_mutex_leave(mem0.mutex);
363 sqlite3Config.m.xFree(p);
367 i = (u8 *)p - (u8 *)sqlite3Config.pScratch;
368 i /= sqlite3Config.szScratch;
369 assert( i>=0 && i<sqlite3Config.nScratch );
370 sqlite3_mutex_enter(mem0.mutex);
371 assert( mem0.nScratchFree<sqlite3Config.nScratch );
372 mem0.aScratchFree[mem0.nScratchFree++] = i;
373 sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_USED, -1);
374 sqlite3_mutex_leave(mem0.mutex);
380 ** Allocate memory to be used by the page cache. Make use of the
381 ** memory buffer provided by SQLITE_CONFIG_PAGECACHE if there is one
382 ** and that memory is of the right size and is not completely
383 ** consumed. Otherwise, failover to sqlite3Malloc().
385 void *sqlite3PageMalloc(int n){
388 assert( (n & (n-1))==0 );
389 assert( n>=512 && n<=32768 );
391 if( sqlite3Config.szPage<n ){
394 sqlite3_mutex_enter(mem0.mutex);
395 if( mem0.nPageFree==0 ){
396 sqlite3_mutex_leave(mem0.mutex);
400 i = mem0.aPageFree[--mem0.nPageFree];
401 sqlite3_mutex_leave(mem0.mutex);
402 i *= sqlite3Config.szPage;
403 sqlite3StatusSet(SQLITE_STATUS_PAGECACHE_SIZE, n);
404 sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_USED, 1);
405 p = (void*)&((char*)sqlite3Config.pPage)[i];
411 if( sqlite3Config.bMemstat ){
412 sqlite3_mutex_enter(mem0.mutex);
413 sqlite3StatusSet(SQLITE_STATUS_PAGECACHE_SIZE, n);
414 n = mallocWithAlarm(n, &p);
415 if( p ) sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_OVERFLOW, n);
416 sqlite3_mutex_leave(mem0.mutex);
418 p = sqlite3Config.m.xMalloc(n);
422 void sqlite3PageFree(void *p){
424 if( sqlite3Config.pPage==0
425 || p<sqlite3Config.pPage
426 || p>=(void*)mem0.aPageFree ){
427 /* In this case, the page allocation was obtained from a regular
428 ** call to sqlite3_mem_methods.xMalloc() (a page-cache-memory
429 ** "overflow"). Free the block with sqlite3_mem_methods.xFree().
431 if( sqlite3Config.bMemstat ){
432 int iSize = sqlite3MallocSize(p);
433 sqlite3_mutex_enter(mem0.mutex);
434 sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_OVERFLOW, -iSize);
435 sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, -iSize);
436 sqlite3Config.m.xFree(p);
437 sqlite3_mutex_leave(mem0.mutex);
439 sqlite3Config.m.xFree(p);
442 /* The page allocation was allocated from the sqlite3Config.pPage
443 ** buffer. In this case all that is add the index of the page in
444 ** the sqlite3Config.pPage array to the set of free indexes stored
445 ** in the mem0.aPageFree[] array.
448 i = (u8 *)p - (u8 *)sqlite3Config.pPage;
449 i /= sqlite3Config.szPage;
450 assert( i>=0 && i<sqlite3Config.nPage );
451 sqlite3_mutex_enter(mem0.mutex);
452 assert( mem0.nPageFree<sqlite3Config.nPage );
453 mem0.aPageFree[mem0.nPageFree++] = i;
454 sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_USED, -1);
455 sqlite3_mutex_leave(mem0.mutex);
456 #if !defined(NDEBUG) && 0
457 /* Assert that a duplicate was not just inserted into aPageFree[]. */
458 for(i=0; i<mem0.nPageFree-1; i++){
459 assert( mem0.aPageFree[i]!=mem0.aPageFree[mem0.nPageFree-1] );
467 ** TRUE if p is a lookaside memory allocation from db
469 static int isLookaside(sqlite3 *db, void *p){
470 return db && p && p>=db->lookaside.pStart && p<db->lookaside.pEnd;
474 ** Return the size of a memory allocation previously obtained from
475 ** sqlite3Malloc() or sqlite3_malloc().
477 int sqlite3MallocSize(void *p){
478 return sqlite3Config.m.xSize(p);
480 int sqlite3DbMallocSize(sqlite3 *db, void *p){
481 if( isLookaside(db, p) ){
482 return db->lookaside.sz;
484 return sqlite3Config.m.xSize(p);
489 ** Free memory previously obtained from sqlite3Malloc().
491 void sqlite3_free(void *p){
493 if( sqlite3Config.bMemstat ){
494 sqlite3_mutex_enter(mem0.mutex);
495 sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, -sqlite3MallocSize(p));
496 sqlite3Config.m.xFree(p);
497 sqlite3_mutex_leave(mem0.mutex);
499 sqlite3Config.m.xFree(p);
504 ** Free memory that might be associated with a particular database
507 void sqlite3DbFree(sqlite3 *db, void *p){
508 if( isLookaside(db, p) ){
509 LookasideSlot *pBuf = (LookasideSlot*)p;
510 pBuf->pNext = db->lookaside.pFree;
511 db->lookaside.pFree = pBuf;
512 db->lookaside.nOut--;
519 ** Change the size of an existing memory allocation
521 void *sqlite3Realloc(void *pOld, int nBytes){
525 return sqlite3Malloc(nBytes);
531 nOld = sqlite3MallocSize(pOld);
532 if( sqlite3Config.bMemstat ){
533 sqlite3_mutex_enter(mem0.mutex);
534 sqlite3StatusSet(SQLITE_STATUS_MALLOC_SIZE, nBytes);
535 nNew = sqlite3Config.m.xRoundup(nBytes);
539 if( sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED)+nNew-nOld >=
540 mem0.alarmThreshold ){
541 sqlite3MallocAlarm(nNew-nOld);
543 pNew = sqlite3Config.m.xRealloc(pOld, nNew);
544 if( pNew==0 && mem0.alarmCallback ){
545 sqlite3MallocAlarm(nBytes);
546 pNew = sqlite3Config.m.xRealloc(pOld, nNew);
549 nNew = sqlite3MallocSize(pNew);
550 sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, nNew-nOld);
553 sqlite3_mutex_leave(mem0.mutex);
555 pNew = sqlite3Config.m.xRealloc(pOld, nBytes);
561 ** The public interface to sqlite3Realloc. Make sure that the memory
562 ** subsystem is initialized prior to invoking sqliteRealloc.
564 void *sqlite3_realloc(void *pOld, int n){
565 #ifndef SQLITE_OMIT_AUTOINIT
566 if( sqlite3_initialize() ) return 0;
568 return sqlite3Realloc(pOld, n);
573 ** Allocate and zero memory.
575 void *sqlite3MallocZero(int n){
576 void *p = sqlite3Malloc(n);
584 ** Allocate and zero memory. If the allocation fails, make
585 ** the mallocFailed flag in the connection pointer.
587 void *sqlite3DbMallocZero(sqlite3 *db, int n){
588 void *p = sqlite3DbMallocRaw(db, n);
596 ** Allocate and zero memory. If the allocation fails, make
597 ** the mallocFailed flag in the connection pointer.
599 void *sqlite3DbMallocRaw(sqlite3 *db, int n){
603 if( db->mallocFailed ){
606 if( db->lookaside.bEnabled && n<=db->lookaside.sz
607 && (pBuf = db->lookaside.pFree)!=0 ){
608 db->lookaside.pFree = pBuf->pNext;
609 db->lookaside.nOut++;
610 if( db->lookaside.nOut>db->lookaside.mxOut ){
611 db->lookaside.mxOut = db->lookaside.nOut;
616 p = sqlite3Malloc(n);
618 db->mallocFailed = 1;
624 ** Resize the block of memory pointed to by p to n bytes. If the
625 ** resize fails, set the mallocFailed flag in the connection object.
627 void *sqlite3DbRealloc(sqlite3 *db, void *p, int n){
629 if( db->mallocFailed==0 ){
631 return sqlite3DbMallocRaw(db, n);
633 if( isLookaside(db, p) ){
634 if( n<=db->lookaside.sz ){
637 pNew = sqlite3DbMallocRaw(db, n);
639 memcpy(pNew, p, db->lookaside.sz);
640 sqlite3DbFree(db, p);
643 pNew = sqlite3_realloc(p, n);
645 db->mallocFailed = 1;
653 ** Attempt to reallocate p. If the reallocation fails, then free p
654 ** and set the mallocFailed flag in the database connection.
656 void *sqlite3DbReallocOrFree(sqlite3 *db, void *p, int n){
658 pNew = sqlite3DbRealloc(db, p, n);
660 sqlite3DbFree(db, p);
666 ** Make a copy of a string in memory obtained from sqliteMalloc(). These
667 ** functions call sqlite3MallocRaw() directly instead of sqliteMalloc(). This
668 ** is because when memory debugging is turned on, these two functions are
669 ** called via macros that record the current file and line number in the
670 ** ThreadData structure.
672 char *sqlite3DbStrDup(sqlite3 *db, const char *z){
679 assert( (n&0x7fffffff)==n );
680 zNew = sqlite3DbMallocRaw(db, (int)n);
686 char *sqlite3DbStrNDup(sqlite3 *db, const char *z, int n){
691 assert( (n&0x7fffffff)==n );
692 zNew = sqlite3DbMallocRaw(db, n+1);
701 ** Create a string from the zFromat argument and the va_list that follows.
702 ** Store the string in memory obtained from sqliteMalloc() and make *pz
703 ** point to that string.
705 void sqlite3SetString(char **pz, sqlite3 *db, const char *zFormat, ...){
709 va_start(ap, zFormat);
710 z = sqlite3VMPrintf(db, zFormat, ap);
712 sqlite3DbFree(db, *pz);
718 ** This function must be called before exiting any API function (i.e.
719 ** returning control to the user) that has called sqlite3_malloc or
722 ** The returned value is normally a copy of the second argument to this
723 ** function. However, if a malloc() failure has occured since the previous
724 ** invocation SQLITE_NOMEM is returned instead.
726 ** If the first argument, db, is not NULL and a malloc() error has occured,
727 ** then the connection error-code (the value returned by sqlite3_errcode())
728 ** is set to SQLITE_NOMEM.
730 int sqlite3ApiExit(sqlite3* db, int rc){
731 /* If the db handle is not NULL, then we must hold the connection handle
732 ** mutex here. Otherwise the read (and possible write) of db->mallocFailed
733 ** is unsafe, as is the call to sqlite3Error().
735 assert( !db || sqlite3_mutex_held(db->mutex) );
736 if( db && db->mallocFailed ){
737 sqlite3Error(db, SQLITE_NOMEM, 0);
738 db->mallocFailed = 0;
741 return rc & (db ? db->errMask : 0xff);