sl@0
|
1 |
/*
|
sl@0
|
2 |
** 2001 September 15
|
sl@0
|
3 |
**
|
sl@0
|
4 |
** The author disclaims copyright to this source code. In place of
|
sl@0
|
5 |
** a legal notice, here is a blessing:
|
sl@0
|
6 |
**
|
sl@0
|
7 |
** May you do good and not evil.
|
sl@0
|
8 |
** May you find forgiveness for yourself and forgive others.
|
sl@0
|
9 |
** May you share freely, never taking more than you give.
|
sl@0
|
10 |
**
|
sl@0
|
11 |
*************************************************************************
|
sl@0
|
12 |
**
|
sl@0
|
13 |
** Memory allocation functions used throughout sqlite.
|
sl@0
|
14 |
**
|
sl@0
|
15 |
** $Id: malloc.c,v 1.34 2008/08/05 17:53:23 drh Exp $
|
sl@0
|
16 |
*/
|
sl@0
|
17 |
#include "sqliteInt.h"
|
sl@0
|
18 |
#include <stdarg.h>
|
sl@0
|
19 |
#include <ctype.h>
|
sl@0
|
20 |
|
sl@0
|
21 |
/*
|
sl@0
|
22 |
** This routine runs when the memory allocator sees that the
|
sl@0
|
23 |
** total memory allocation is about to exceed the soft heap
|
sl@0
|
24 |
** limit.
|
sl@0
|
25 |
*/
|
sl@0
|
26 |
static void softHeapLimitEnforcer(
|
sl@0
|
27 |
void *NotUsed,
|
sl@0
|
28 |
sqlite3_int64 inUse,
|
sl@0
|
29 |
int allocSize
|
sl@0
|
30 |
){
|
sl@0
|
31 |
sqlite3_release_memory(allocSize);
|
sl@0
|
32 |
}
|
sl@0
|
33 |
|
sl@0
|
34 |
/*
|
sl@0
|
35 |
** Set the soft heap-size limit for the library. Passing a zero or
|
sl@0
|
36 |
** negative value indicates no limit.
|
sl@0
|
37 |
*/
|
sl@0
|
38 |
void sqlite3_soft_heap_limit(int n){
|
sl@0
|
39 |
sqlite3_uint64 iLimit;
|
sl@0
|
40 |
int overage;
|
sl@0
|
41 |
if( n<0 ){
|
sl@0
|
42 |
iLimit = 0;
|
sl@0
|
43 |
}else{
|
sl@0
|
44 |
iLimit = n;
|
sl@0
|
45 |
}
|
sl@0
|
46 |
sqlite3_initialize();
|
sl@0
|
47 |
if( iLimit>0 ){
|
sl@0
|
48 |
sqlite3_memory_alarm(softHeapLimitEnforcer, 0, iLimit);
|
sl@0
|
49 |
}else{
|
sl@0
|
50 |
sqlite3_memory_alarm(0, 0, 0);
|
sl@0
|
51 |
}
|
sl@0
|
52 |
overage = sqlite3_memory_used() - n;
|
sl@0
|
53 |
if( overage>0 ){
|
sl@0
|
54 |
sqlite3_release_memory(overage);
|
sl@0
|
55 |
}
|
sl@0
|
56 |
}
|
sl@0
|
57 |
|
sl@0
|
58 |
/*
|
sl@0
|
59 |
** Attempt to release up to n bytes of non-essential memory currently
|
sl@0
|
60 |
** held by SQLite. An example of non-essential memory is memory used to
|
sl@0
|
61 |
** cache database pages that are not currently in use.
|
sl@0
|
62 |
*/
|
sl@0
|
63 |
int sqlite3_release_memory(int n){
|
sl@0
|
64 |
#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
|
sl@0
|
65 |
int nRet = sqlite3VdbeReleaseMemory(n);
|
sl@0
|
66 |
nRet += sqlite3PagerReleaseMemory(n-nRet);
|
sl@0
|
67 |
return nRet;
|
sl@0
|
68 |
#else
|
sl@0
|
69 |
return SQLITE_OK;
|
sl@0
|
70 |
#endif
|
sl@0
|
71 |
}
|
sl@0
|
72 |
|
sl@0
|
73 |
/*
|
sl@0
|
74 |
** State information local to the memory allocation subsystem.
|
sl@0
|
75 |
*/
|
sl@0
|
76 |
static struct {
|
sl@0
|
77 |
sqlite3_mutex *mutex; /* Mutex to serialize access */
|
sl@0
|
78 |
|
sl@0
|
79 |
/*
|
sl@0
|
80 |
** The alarm callback and its arguments. The mem0.mutex lock will
|
sl@0
|
81 |
** be held while the callback is running. Recursive calls into
|
sl@0
|
82 |
** the memory subsystem are allowed, but no new callbacks will be
|
sl@0
|
83 |
** issued. The alarmBusy variable is set to prevent recursive
|
sl@0
|
84 |
** callbacks.
|
sl@0
|
85 |
*/
|
sl@0
|
86 |
sqlite3_int64 alarmThreshold;
|
sl@0
|
87 |
void (*alarmCallback)(void*, sqlite3_int64,int);
|
sl@0
|
88 |
void *alarmArg;
|
sl@0
|
89 |
int alarmBusy;
|
sl@0
|
90 |
|
sl@0
|
91 |
/*
|
sl@0
|
92 |
** Pointers to the end of sqlite3Config.pScratch and
|
sl@0
|
93 |
** sqlite3Config.pPage to a block of memory that records
|
sl@0
|
94 |
** which pages are available.
|
sl@0
|
95 |
*/
|
sl@0
|
96 |
u32 *aScratchFree;
|
sl@0
|
97 |
u32 *aPageFree;
|
sl@0
|
98 |
|
sl@0
|
99 |
/* Number of free pages for scratch and page-cache memory */
|
sl@0
|
100 |
u32 nScratchFree;
|
sl@0
|
101 |
u32 nPageFree;
|
sl@0
|
102 |
} mem0;
|
sl@0
|
103 |
|
sl@0
|
104 |
/*
|
sl@0
|
105 |
** Initialize the memory allocation subsystem.
|
sl@0
|
106 |
*/
|
sl@0
|
107 |
int sqlite3MallocInit(void){
|
sl@0
|
108 |
if( sqlite3Config.m.xMalloc==0 ){
|
sl@0
|
109 |
sqlite3MemSetDefault();
|
sl@0
|
110 |
}
|
sl@0
|
111 |
memset(&mem0, 0, sizeof(mem0));
|
sl@0
|
112 |
if( sqlite3Config.bCoreMutex ){
|
sl@0
|
113 |
mem0.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM);
|
sl@0
|
114 |
}
|
sl@0
|
115 |
if( sqlite3Config.pScratch && sqlite3Config.szScratch>=100
|
sl@0
|
116 |
&& sqlite3Config.nScratch>=0 ){
|
sl@0
|
117 |
int i;
|
sl@0
|
118 |
sqlite3Config.szScratch -= 4;
|
sl@0
|
119 |
mem0.aScratchFree = (u32*)&((char*)sqlite3Config.pScratch)
|
sl@0
|
120 |
[sqlite3Config.szScratch*sqlite3Config.nScratch];
|
sl@0
|
121 |
for(i=0; i<sqlite3Config.nScratch; i++){ mem0.aScratchFree[i] = i; }
|
sl@0
|
122 |
mem0.nScratchFree = sqlite3Config.nScratch;
|
sl@0
|
123 |
}else{
|
sl@0
|
124 |
sqlite3Config.pScratch = 0;
|
sl@0
|
125 |
sqlite3Config.szScratch = 0;
|
sl@0
|
126 |
}
|
sl@0
|
127 |
if( sqlite3Config.pPage && sqlite3Config.szPage>=512
|
sl@0
|
128 |
&& sqlite3Config.nPage>=1 ){
|
sl@0
|
129 |
int i;
|
sl@0
|
130 |
int overhead;
|
sl@0
|
131 |
int sz = sqlite3Config.szPage;
|
sl@0
|
132 |
int n = sqlite3Config.nPage;
|
sl@0
|
133 |
overhead = (4*n + sz - 1)/sz;
|
sl@0
|
134 |
sqlite3Config.nPage -= overhead;
|
sl@0
|
135 |
mem0.aPageFree = (u32*)&((char*)sqlite3Config.pPage)
|
sl@0
|
136 |
[sqlite3Config.szPage*sqlite3Config.nPage];
|
sl@0
|
137 |
for(i=0; i<sqlite3Config.nPage; i++){ mem0.aPageFree[i] = i; }
|
sl@0
|
138 |
mem0.nPageFree = sqlite3Config.nPage;
|
sl@0
|
139 |
}else{
|
sl@0
|
140 |
sqlite3Config.pPage = 0;
|
sl@0
|
141 |
sqlite3Config.szPage = 0;
|
sl@0
|
142 |
}
|
sl@0
|
143 |
return sqlite3Config.m.xInit(sqlite3Config.m.pAppData);
|
sl@0
|
144 |
}
|
sl@0
|
145 |
|
sl@0
|
146 |
/*
|
sl@0
|
147 |
** Deinitialize the memory allocation subsystem.
|
sl@0
|
148 |
*/
|
sl@0
|
149 |
void sqlite3MallocEnd(void){
|
sl@0
|
150 |
sqlite3Config.m.xShutdown(sqlite3Config.m.pAppData);
|
sl@0
|
151 |
memset(&mem0, 0, sizeof(mem0));
|
sl@0
|
152 |
}
|
sl@0
|
153 |
|
sl@0
|
154 |
/*
|
sl@0
|
155 |
** Return the amount of memory currently checked out.
|
sl@0
|
156 |
*/
|
sl@0
|
157 |
sqlite3_int64 sqlite3_memory_used(void){
|
sl@0
|
158 |
int n, mx;
|
sl@0
|
159 |
sqlite3_int64 res;
|
sl@0
|
160 |
sqlite3_status(SQLITE_STATUS_MEMORY_USED, &n, &mx, 0);
|
sl@0
|
161 |
res = (sqlite3_int64)n; /* Work around bug in Borland C. Ticket #3216 */
|
sl@0
|
162 |
return res;
|
sl@0
|
163 |
}
|
sl@0
|
164 |
|
sl@0
|
165 |
/*
|
sl@0
|
166 |
** Return the maximum amount of memory that has ever been
|
sl@0
|
167 |
** checked out since either the beginning of this process
|
sl@0
|
168 |
** or since the most recent reset.
|
sl@0
|
169 |
*/
|
sl@0
|
170 |
sqlite3_int64 sqlite3_memory_highwater(int resetFlag){
|
sl@0
|
171 |
int n, mx;
|
sl@0
|
172 |
sqlite3_int64 res;
|
sl@0
|
173 |
sqlite3_status(SQLITE_STATUS_MEMORY_USED, &n, &mx, resetFlag);
|
sl@0
|
174 |
res = (sqlite3_int64)mx; /* Work around bug in Borland C. Ticket #3216 */
|
sl@0
|
175 |
return res;
|
sl@0
|
176 |
}
|
sl@0
|
177 |
|
sl@0
|
178 |
/*
|
sl@0
|
179 |
** Change the alarm callback
|
sl@0
|
180 |
*/
|
sl@0
|
181 |
int sqlite3_memory_alarm(
|
sl@0
|
182 |
void(*xCallback)(void *pArg, sqlite3_int64 used,int N),
|
sl@0
|
183 |
void *pArg,
|
sl@0
|
184 |
sqlite3_int64 iThreshold
|
sl@0
|
185 |
){
|
sl@0
|
186 |
sqlite3_mutex_enter(mem0.mutex);
|
sl@0
|
187 |
mem0.alarmCallback = xCallback;
|
sl@0
|
188 |
mem0.alarmArg = pArg;
|
sl@0
|
189 |
mem0.alarmThreshold = iThreshold;
|
sl@0
|
190 |
sqlite3_mutex_leave(mem0.mutex);
|
sl@0
|
191 |
return SQLITE_OK;
|
sl@0
|
192 |
}
|
sl@0
|
193 |
|
sl@0
|
194 |
/*
|
sl@0
|
195 |
** Trigger the alarm
|
sl@0
|
196 |
*/
|
sl@0
|
197 |
static void sqlite3MallocAlarm(int nByte){
|
sl@0
|
198 |
void (*xCallback)(void*,sqlite3_int64,int);
|
sl@0
|
199 |
sqlite3_int64 nowUsed;
|
sl@0
|
200 |
void *pArg;
|
sl@0
|
201 |
if( mem0.alarmCallback==0 || mem0.alarmBusy ) return;
|
sl@0
|
202 |
mem0.alarmBusy = 1;
|
sl@0
|
203 |
xCallback = mem0.alarmCallback;
|
sl@0
|
204 |
nowUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED);
|
sl@0
|
205 |
pArg = mem0.alarmArg;
|
sl@0
|
206 |
sqlite3_mutex_leave(mem0.mutex);
|
sl@0
|
207 |
xCallback(pArg, nowUsed, nByte);
|
sl@0
|
208 |
sqlite3_mutex_enter(mem0.mutex);
|
sl@0
|
209 |
mem0.alarmBusy = 0;
|
sl@0
|
210 |
}
|
sl@0
|
211 |
|
sl@0
|
212 |
/*
|
sl@0
|
213 |
** Do a memory allocation with statistics and alarms. Assume the
|
sl@0
|
214 |
** lock is already held.
|
sl@0
|
215 |
*/
|
sl@0
|
216 |
static int mallocWithAlarm(int n, void **pp){
|
sl@0
|
217 |
int nFull;
|
sl@0
|
218 |
void *p;
|
sl@0
|
219 |
assert( sqlite3_mutex_held(mem0.mutex) );
|
sl@0
|
220 |
nFull = sqlite3Config.m.xRoundup(n);
|
sl@0
|
221 |
sqlite3StatusSet(SQLITE_STATUS_MALLOC_SIZE, n);
|
sl@0
|
222 |
if( mem0.alarmCallback!=0 ){
|
sl@0
|
223 |
int nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED);
|
sl@0
|
224 |
if( nUsed+nFull >= mem0.alarmThreshold ){
|
sl@0
|
225 |
sqlite3MallocAlarm(nFull);
|
sl@0
|
226 |
}
|
sl@0
|
227 |
}
|
sl@0
|
228 |
p = sqlite3Config.m.xMalloc(nFull);
|
sl@0
|
229 |
if( p==0 && mem0.alarmCallback ){
|
sl@0
|
230 |
sqlite3MallocAlarm(nFull);
|
sl@0
|
231 |
p = sqlite3Config.m.xMalloc(nFull);
|
sl@0
|
232 |
}
|
sl@0
|
233 |
if( p ){
|
sl@0
|
234 |
nFull = sqlite3MallocSize(p);
|
sl@0
|
235 |
sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, nFull);
|
sl@0
|
236 |
}
|
sl@0
|
237 |
*pp = p;
|
sl@0
|
238 |
return nFull;
|
sl@0
|
239 |
}
|
sl@0
|
240 |
|
sl@0
|
241 |
/*
|
sl@0
|
242 |
** Allocate memory. This routine is like sqlite3_malloc() except that it
|
sl@0
|
243 |
** assumes the memory subsystem has already been initialized.
|
sl@0
|
244 |
*/
|
sl@0
|
245 |
void *sqlite3Malloc(int n){
|
sl@0
|
246 |
void *p;
|
sl@0
|
247 |
if( n<=0 ){
|
sl@0
|
248 |
p = 0;
|
sl@0
|
249 |
}else if( sqlite3Config.bMemstat ){
|
sl@0
|
250 |
sqlite3_mutex_enter(mem0.mutex);
|
sl@0
|
251 |
mallocWithAlarm(n, &p);
|
sl@0
|
252 |
sqlite3_mutex_leave(mem0.mutex);
|
sl@0
|
253 |
}else{
|
sl@0
|
254 |
p = sqlite3Config.m.xMalloc(n);
|
sl@0
|
255 |
}
|
sl@0
|
256 |
return p;
|
sl@0
|
257 |
}
|
sl@0
|
258 |
|
sl@0
|
259 |
/*
|
sl@0
|
260 |
** This version of the memory allocation is for use by the application.
|
sl@0
|
261 |
** First make sure the memory subsystem is initialized, then do the
|
sl@0
|
262 |
** allocation.
|
sl@0
|
263 |
*/
|
sl@0
|
264 |
void *sqlite3_malloc(int n){
|
sl@0
|
265 |
#ifndef SQLITE_OMIT_AUTOINIT
|
sl@0
|
266 |
if( sqlite3_initialize() ) return 0;
|
sl@0
|
267 |
#endif
|
sl@0
|
268 |
return sqlite3Malloc(n);
|
sl@0
|
269 |
}
|
sl@0
|
270 |
|
sl@0
|
271 |
/*
|
sl@0
|
272 |
** Each thread may only have a single outstanding allocation from
|
sl@0
|
273 |
** xScratchMalloc(). We verify this constraint in the single-threaded
|
sl@0
|
274 |
** case by setting scratchAllocOut to 1 when an allocation
|
sl@0
|
275 |
** is outstanding clearing it when the allocation is freed.
|
sl@0
|
276 |
*/
|
sl@0
|
277 |
#if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
|
sl@0
|
278 |
static int scratchAllocOut = 0;
|
sl@0
|
279 |
#endif
|
sl@0
|
280 |
|
sl@0
|
281 |
|
sl@0
|
282 |
/*
|
sl@0
|
283 |
** Allocate memory that is to be used and released right away.
|
sl@0
|
284 |
** This routine is similar to alloca() in that it is not intended
|
sl@0
|
285 |
** for situations where the memory might be held long-term. This
|
sl@0
|
286 |
** routine is intended to get memory to old large transient data
|
sl@0
|
287 |
** structures that would not normally fit on the stack of an
|
sl@0
|
288 |
** embedded processor.
|
sl@0
|
289 |
*/
|
sl@0
|
290 |
void *sqlite3ScratchMalloc(int n){
|
sl@0
|
291 |
void *p;
|
sl@0
|
292 |
assert( n>0 );
|
sl@0
|
293 |
|
sl@0
|
294 |
#if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
|
sl@0
|
295 |
/* Verify that no more than one scratch allocation per thread
|
sl@0
|
296 |
** is outstanding at one time. (This is only checked in the
|
sl@0
|
297 |
** single-threaded case since checking in the multi-threaded case
|
sl@0
|
298 |
** would be much more complicated.) */
|
sl@0
|
299 |
assert( scratchAllocOut==0 );
|
sl@0
|
300 |
#endif
|
sl@0
|
301 |
|
sl@0
|
302 |
if( sqlite3Config.szScratch<n ){
|
sl@0
|
303 |
goto scratch_overflow;
|
sl@0
|
304 |
}else{
|
sl@0
|
305 |
sqlite3_mutex_enter(mem0.mutex);
|
sl@0
|
306 |
if( mem0.nScratchFree==0 ){
|
sl@0
|
307 |
sqlite3_mutex_leave(mem0.mutex);
|
sl@0
|
308 |
goto scratch_overflow;
|
sl@0
|
309 |
}else{
|
sl@0
|
310 |
int i;
|
sl@0
|
311 |
i = mem0.aScratchFree[--mem0.nScratchFree];
|
sl@0
|
312 |
sqlite3_mutex_leave(mem0.mutex);
|
sl@0
|
313 |
i *= sqlite3Config.szScratch;
|
sl@0
|
314 |
sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_USED, 1);
|
sl@0
|
315 |
sqlite3StatusSet(SQLITE_STATUS_SCRATCH_SIZE, n);
|
sl@0
|
316 |
p = (void*)&((char*)sqlite3Config.pScratch)[i];
|
sl@0
|
317 |
}
|
sl@0
|
318 |
}
|
sl@0
|
319 |
#if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
|
sl@0
|
320 |
scratchAllocOut = p!=0;
|
sl@0
|
321 |
#endif
|
sl@0
|
322 |
|
sl@0
|
323 |
return p;
|
sl@0
|
324 |
|
sl@0
|
325 |
scratch_overflow:
|
sl@0
|
326 |
if( sqlite3Config.bMemstat ){
|
sl@0
|
327 |
sqlite3_mutex_enter(mem0.mutex);
|
sl@0
|
328 |
sqlite3StatusSet(SQLITE_STATUS_SCRATCH_SIZE, n);
|
sl@0
|
329 |
n = mallocWithAlarm(n, &p);
|
sl@0
|
330 |
if( p ) sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_OVERFLOW, n);
|
sl@0
|
331 |
sqlite3_mutex_leave(mem0.mutex);
|
sl@0
|
332 |
}else{
|
sl@0
|
333 |
p = sqlite3Config.m.xMalloc(n);
|
sl@0
|
334 |
}
|
sl@0
|
335 |
#if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
|
sl@0
|
336 |
scratchAllocOut = p!=0;
|
sl@0
|
337 |
#endif
|
sl@0
|
338 |
return p;
|
sl@0
|
339 |
}
|
sl@0
|
340 |
void sqlite3ScratchFree(void *p){
|
sl@0
|
341 |
if( p ){
|
sl@0
|
342 |
|
sl@0
|
343 |
#if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
|
sl@0
|
344 |
/* Verify that no more than one scratch allocation per thread
|
sl@0
|
345 |
** is outstanding at one time. (This is only checked in the
|
sl@0
|
346 |
** single-threaded case since checking in the multi-threaded case
|
sl@0
|
347 |
** would be much more complicated.) */
|
sl@0
|
348 |
assert( scratchAllocOut==1 );
|
sl@0
|
349 |
scratchAllocOut = 0;
|
sl@0
|
350 |
#endif
|
sl@0
|
351 |
|
sl@0
|
352 |
if( sqlite3Config.pScratch==0
|
sl@0
|
353 |
|| p<sqlite3Config.pScratch
|
sl@0
|
354 |
|| p>=(void*)mem0.aScratchFree ){
|
sl@0
|
355 |
if( sqlite3Config.bMemstat ){
|
sl@0
|
356 |
int iSize = sqlite3MallocSize(p);
|
sl@0
|
357 |
sqlite3_mutex_enter(mem0.mutex);
|
sl@0
|
358 |
sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_OVERFLOW, -iSize);
|
sl@0
|
359 |
sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, -iSize);
|
sl@0
|
360 |
sqlite3Config.m.xFree(p);
|
sl@0
|
361 |
sqlite3_mutex_leave(mem0.mutex);
|
sl@0
|
362 |
}else{
|
sl@0
|
363 |
sqlite3Config.m.xFree(p);
|
sl@0
|
364 |
}
|
sl@0
|
365 |
}else{
|
sl@0
|
366 |
int i;
|
sl@0
|
367 |
i = (u8 *)p - (u8 *)sqlite3Config.pScratch;
|
sl@0
|
368 |
i /= sqlite3Config.szScratch;
|
sl@0
|
369 |
assert( i>=0 && i<sqlite3Config.nScratch );
|
sl@0
|
370 |
sqlite3_mutex_enter(mem0.mutex);
|
sl@0
|
371 |
assert( mem0.nScratchFree<sqlite3Config.nScratch );
|
sl@0
|
372 |
mem0.aScratchFree[mem0.nScratchFree++] = i;
|
sl@0
|
373 |
sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_USED, -1);
|
sl@0
|
374 |
sqlite3_mutex_leave(mem0.mutex);
|
sl@0
|
375 |
}
|
sl@0
|
376 |
}
|
sl@0
|
377 |
}
|
sl@0
|
378 |
|
sl@0
|
379 |
/*
|
sl@0
|
380 |
** Allocate memory to be used by the page cache. Make use of the
|
sl@0
|
381 |
** memory buffer provided by SQLITE_CONFIG_PAGECACHE if there is one
|
sl@0
|
382 |
** and that memory is of the right size and is not completely
|
sl@0
|
383 |
** consumed. Otherwise, failover to sqlite3Malloc().
|
sl@0
|
384 |
*/
|
sl@0
|
385 |
void *sqlite3PageMalloc(int n){
|
sl@0
|
386 |
void *p;
|
sl@0
|
387 |
assert( n>0 );
|
sl@0
|
388 |
assert( (n & (n-1))==0 );
|
sl@0
|
389 |
assert( n>=512 && n<=32768 );
|
sl@0
|
390 |
|
sl@0
|
391 |
if( sqlite3Config.szPage<n ){
|
sl@0
|
392 |
goto page_overflow;
|
sl@0
|
393 |
}else{
|
sl@0
|
394 |
sqlite3_mutex_enter(mem0.mutex);
|
sl@0
|
395 |
if( mem0.nPageFree==0 ){
|
sl@0
|
396 |
sqlite3_mutex_leave(mem0.mutex);
|
sl@0
|
397 |
goto page_overflow;
|
sl@0
|
398 |
}else{
|
sl@0
|
399 |
int i;
|
sl@0
|
400 |
i = mem0.aPageFree[--mem0.nPageFree];
|
sl@0
|
401 |
sqlite3_mutex_leave(mem0.mutex);
|
sl@0
|
402 |
i *= sqlite3Config.szPage;
|
sl@0
|
403 |
sqlite3StatusSet(SQLITE_STATUS_PAGECACHE_SIZE, n);
|
sl@0
|
404 |
sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_USED, 1);
|
sl@0
|
405 |
p = (void*)&((char*)sqlite3Config.pPage)[i];
|
sl@0
|
406 |
}
|
sl@0
|
407 |
}
|
sl@0
|
408 |
return p;
|
sl@0
|
409 |
|
sl@0
|
410 |
page_overflow:
|
sl@0
|
411 |
if( sqlite3Config.bMemstat ){
|
sl@0
|
412 |
sqlite3_mutex_enter(mem0.mutex);
|
sl@0
|
413 |
sqlite3StatusSet(SQLITE_STATUS_PAGECACHE_SIZE, n);
|
sl@0
|
414 |
n = mallocWithAlarm(n, &p);
|
sl@0
|
415 |
if( p ) sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_OVERFLOW, n);
|
sl@0
|
416 |
sqlite3_mutex_leave(mem0.mutex);
|
sl@0
|
417 |
}else{
|
sl@0
|
418 |
p = sqlite3Config.m.xMalloc(n);
|
sl@0
|
419 |
}
|
sl@0
|
420 |
return p;
|
sl@0
|
421 |
}
|
sl@0
|
422 |
void sqlite3PageFree(void *p){
|
sl@0
|
423 |
if( p ){
|
sl@0
|
424 |
if( sqlite3Config.pPage==0
|
sl@0
|
425 |
|| p<sqlite3Config.pPage
|
sl@0
|
426 |
|| p>=(void*)mem0.aPageFree ){
|
sl@0
|
427 |
/* In this case, the page allocation was obtained from a regular
|
sl@0
|
428 |
** call to sqlite3_mem_methods.xMalloc() (a page-cache-memory
|
sl@0
|
429 |
** "overflow"). Free the block with sqlite3_mem_methods.xFree().
|
sl@0
|
430 |
*/
|
sl@0
|
431 |
if( sqlite3Config.bMemstat ){
|
sl@0
|
432 |
int iSize = sqlite3MallocSize(p);
|
sl@0
|
433 |
sqlite3_mutex_enter(mem0.mutex);
|
sl@0
|
434 |
sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_OVERFLOW, -iSize);
|
sl@0
|
435 |
sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, -iSize);
|
sl@0
|
436 |
sqlite3Config.m.xFree(p);
|
sl@0
|
437 |
sqlite3_mutex_leave(mem0.mutex);
|
sl@0
|
438 |
}else{
|
sl@0
|
439 |
sqlite3Config.m.xFree(p);
|
sl@0
|
440 |
}
|
sl@0
|
441 |
}else{
|
sl@0
|
442 |
/* The page allocation was allocated from the sqlite3Config.pPage
|
sl@0
|
443 |
** buffer. In this case all that is add the index of the page in
|
sl@0
|
444 |
** the sqlite3Config.pPage array to the set of free indexes stored
|
sl@0
|
445 |
** in the mem0.aPageFree[] array.
|
sl@0
|
446 |
*/
|
sl@0
|
447 |
int i;
|
sl@0
|
448 |
i = (u8 *)p - (u8 *)sqlite3Config.pPage;
|
sl@0
|
449 |
i /= sqlite3Config.szPage;
|
sl@0
|
450 |
assert( i>=0 && i<sqlite3Config.nPage );
|
sl@0
|
451 |
sqlite3_mutex_enter(mem0.mutex);
|
sl@0
|
452 |
assert( mem0.nPageFree<sqlite3Config.nPage );
|
sl@0
|
453 |
mem0.aPageFree[mem0.nPageFree++] = i;
|
sl@0
|
454 |
sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_USED, -1);
|
sl@0
|
455 |
sqlite3_mutex_leave(mem0.mutex);
|
sl@0
|
456 |
#if !defined(NDEBUG) && 0
|
sl@0
|
457 |
/* Assert that a duplicate was not just inserted into aPageFree[]. */
|
sl@0
|
458 |
for(i=0; i<mem0.nPageFree-1; i++){
|
sl@0
|
459 |
assert( mem0.aPageFree[i]!=mem0.aPageFree[mem0.nPageFree-1] );
|
sl@0
|
460 |
}
|
sl@0
|
461 |
#endif
|
sl@0
|
462 |
}
|
sl@0
|
463 |
}
|
sl@0
|
464 |
}
|
sl@0
|
465 |
|
sl@0
|
466 |
/*
|
sl@0
|
467 |
** TRUE if p is a lookaside memory allocation from db
|
sl@0
|
468 |
*/
|
sl@0
|
469 |
static int isLookaside(sqlite3 *db, void *p){
|
sl@0
|
470 |
return db && p && p>=db->lookaside.pStart && p<db->lookaside.pEnd;
|
sl@0
|
471 |
}
|
sl@0
|
472 |
|
sl@0
|
473 |
/*
|
sl@0
|
474 |
** Return the size of a memory allocation previously obtained from
|
sl@0
|
475 |
** sqlite3Malloc() or sqlite3_malloc().
|
sl@0
|
476 |
*/
|
sl@0
|
477 |
int sqlite3MallocSize(void *p){
|
sl@0
|
478 |
return sqlite3Config.m.xSize(p);
|
sl@0
|
479 |
}
|
sl@0
|
480 |
int sqlite3DbMallocSize(sqlite3 *db, void *p){
|
sl@0
|
481 |
if( isLookaside(db, p) ){
|
sl@0
|
482 |
return db->lookaside.sz;
|
sl@0
|
483 |
}else{
|
sl@0
|
484 |
return sqlite3Config.m.xSize(p);
|
sl@0
|
485 |
}
|
sl@0
|
486 |
}
|
sl@0
|
487 |
|
sl@0
|
488 |
/*
|
sl@0
|
489 |
** Free memory previously obtained from sqlite3Malloc().
|
sl@0
|
490 |
*/
|
sl@0
|
491 |
void sqlite3_free(void *p){
|
sl@0
|
492 |
if( p==0 ) return;
|
sl@0
|
493 |
if( sqlite3Config.bMemstat ){
|
sl@0
|
494 |
sqlite3_mutex_enter(mem0.mutex);
|
sl@0
|
495 |
sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, -sqlite3MallocSize(p));
|
sl@0
|
496 |
sqlite3Config.m.xFree(p);
|
sl@0
|
497 |
sqlite3_mutex_leave(mem0.mutex);
|
sl@0
|
498 |
}else{
|
sl@0
|
499 |
sqlite3Config.m.xFree(p);
|
sl@0
|
500 |
}
|
sl@0
|
501 |
}
|
sl@0
|
502 |
|
sl@0
|
503 |
/*
|
sl@0
|
504 |
** Free memory that might be associated with a particular database
|
sl@0
|
505 |
** connection.
|
sl@0
|
506 |
*/
|
sl@0
|
507 |
void sqlite3DbFree(sqlite3 *db, void *p){
|
sl@0
|
508 |
if( isLookaside(db, p) ){
|
sl@0
|
509 |
LookasideSlot *pBuf = (LookasideSlot*)p;
|
sl@0
|
510 |
pBuf->pNext = db->lookaside.pFree;
|
sl@0
|
511 |
db->lookaside.pFree = pBuf;
|
sl@0
|
512 |
db->lookaside.nOut--;
|
sl@0
|
513 |
}else{
|
sl@0
|
514 |
sqlite3_free(p);
|
sl@0
|
515 |
}
|
sl@0
|
516 |
}
|
sl@0
|
517 |
|
sl@0
|
518 |
/*
|
sl@0
|
519 |
** Change the size of an existing memory allocation
|
sl@0
|
520 |
*/
|
sl@0
|
521 |
void *sqlite3Realloc(void *pOld, int nBytes){
|
sl@0
|
522 |
int nOld, nNew;
|
sl@0
|
523 |
void *pNew;
|
sl@0
|
524 |
if( pOld==0 ){
|
sl@0
|
525 |
return sqlite3Malloc(nBytes);
|
sl@0
|
526 |
}
|
sl@0
|
527 |
if( nBytes<=0 ){
|
sl@0
|
528 |
sqlite3_free(pOld);
|
sl@0
|
529 |
return 0;
|
sl@0
|
530 |
}
|
sl@0
|
531 |
nOld = sqlite3MallocSize(pOld);
|
sl@0
|
532 |
if( sqlite3Config.bMemstat ){
|
sl@0
|
533 |
sqlite3_mutex_enter(mem0.mutex);
|
sl@0
|
534 |
sqlite3StatusSet(SQLITE_STATUS_MALLOC_SIZE, nBytes);
|
sl@0
|
535 |
nNew = sqlite3Config.m.xRoundup(nBytes);
|
sl@0
|
536 |
if( nOld==nNew ){
|
sl@0
|
537 |
pNew = pOld;
|
sl@0
|
538 |
}else{
|
sl@0
|
539 |
if( sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED)+nNew-nOld >=
|
sl@0
|
540 |
mem0.alarmThreshold ){
|
sl@0
|
541 |
sqlite3MallocAlarm(nNew-nOld);
|
sl@0
|
542 |
}
|
sl@0
|
543 |
pNew = sqlite3Config.m.xRealloc(pOld, nNew);
|
sl@0
|
544 |
if( pNew==0 && mem0.alarmCallback ){
|
sl@0
|
545 |
sqlite3MallocAlarm(nBytes);
|
sl@0
|
546 |
pNew = sqlite3Config.m.xRealloc(pOld, nNew);
|
sl@0
|
547 |
}
|
sl@0
|
548 |
if( pNew ){
|
sl@0
|
549 |
nNew = sqlite3MallocSize(pNew);
|
sl@0
|
550 |
sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, nNew-nOld);
|
sl@0
|
551 |
}
|
sl@0
|
552 |
}
|
sl@0
|
553 |
sqlite3_mutex_leave(mem0.mutex);
|
sl@0
|
554 |
}else{
|
sl@0
|
555 |
pNew = sqlite3Config.m.xRealloc(pOld, nBytes);
|
sl@0
|
556 |
}
|
sl@0
|
557 |
return pNew;
|
sl@0
|
558 |
}
|
sl@0
|
559 |
|
sl@0
|
560 |
/*
|
sl@0
|
561 |
** The public interface to sqlite3Realloc. Make sure that the memory
|
sl@0
|
562 |
** subsystem is initialized prior to invoking sqliteRealloc.
|
sl@0
|
563 |
*/
|
sl@0
|
564 |
void *sqlite3_realloc(void *pOld, int n){
|
sl@0
|
565 |
#ifndef SQLITE_OMIT_AUTOINIT
|
sl@0
|
566 |
if( sqlite3_initialize() ) return 0;
|
sl@0
|
567 |
#endif
|
sl@0
|
568 |
return sqlite3Realloc(pOld, n);
|
sl@0
|
569 |
}
|
sl@0
|
570 |
|
sl@0
|
571 |
|
sl@0
|
572 |
/*
|
sl@0
|
573 |
** Allocate and zero memory.
|
sl@0
|
574 |
*/
|
sl@0
|
575 |
void *sqlite3MallocZero(int n){
|
sl@0
|
576 |
void *p = sqlite3Malloc(n);
|
sl@0
|
577 |
if( p ){
|
sl@0
|
578 |
memset(p, 0, n);
|
sl@0
|
579 |
}
|
sl@0
|
580 |
return p;
|
sl@0
|
581 |
}
|
sl@0
|
582 |
|
sl@0
|
583 |
/*
|
sl@0
|
584 |
** Allocate and zero memory. If the allocation fails, make
|
sl@0
|
585 |
** the mallocFailed flag in the connection pointer.
|
sl@0
|
586 |
*/
|
sl@0
|
587 |
void *sqlite3DbMallocZero(sqlite3 *db, int n){
|
sl@0
|
588 |
void *p = sqlite3DbMallocRaw(db, n);
|
sl@0
|
589 |
if( p ){
|
sl@0
|
590 |
memset(p, 0, n);
|
sl@0
|
591 |
}
|
sl@0
|
592 |
return p;
|
sl@0
|
593 |
}
|
sl@0
|
594 |
|
sl@0
|
595 |
/*
|
sl@0
|
596 |
** Allocate and zero memory. If the allocation fails, make
|
sl@0
|
597 |
** the mallocFailed flag in the connection pointer.
|
sl@0
|
598 |
*/
|
sl@0
|
599 |
void *sqlite3DbMallocRaw(sqlite3 *db, int n){
|
sl@0
|
600 |
void *p;
|
sl@0
|
601 |
if( db ){
|
sl@0
|
602 |
LookasideSlot *pBuf;
|
sl@0
|
603 |
if( db->mallocFailed ){
|
sl@0
|
604 |
return 0;
|
sl@0
|
605 |
}
|
sl@0
|
606 |
if( db->lookaside.bEnabled && n<=db->lookaside.sz
|
sl@0
|
607 |
&& (pBuf = db->lookaside.pFree)!=0 ){
|
sl@0
|
608 |
db->lookaside.pFree = pBuf->pNext;
|
sl@0
|
609 |
db->lookaside.nOut++;
|
sl@0
|
610 |
if( db->lookaside.nOut>db->lookaside.mxOut ){
|
sl@0
|
611 |
db->lookaside.mxOut = db->lookaside.nOut;
|
sl@0
|
612 |
}
|
sl@0
|
613 |
return (void*)pBuf;
|
sl@0
|
614 |
}
|
sl@0
|
615 |
}
|
sl@0
|
616 |
p = sqlite3Malloc(n);
|
sl@0
|
617 |
if( !p && db ){
|
sl@0
|
618 |
db->mallocFailed = 1;
|
sl@0
|
619 |
}
|
sl@0
|
620 |
return p;
|
sl@0
|
621 |
}
|
sl@0
|
622 |
|
sl@0
|
623 |
/*
|
sl@0
|
624 |
** Resize the block of memory pointed to by p to n bytes. If the
|
sl@0
|
625 |
** resize fails, set the mallocFailed flag in the connection object.
|
sl@0
|
626 |
*/
|
sl@0
|
627 |
void *sqlite3DbRealloc(sqlite3 *db, void *p, int n){
|
sl@0
|
628 |
void *pNew = 0;
|
sl@0
|
629 |
if( db->mallocFailed==0 ){
|
sl@0
|
630 |
if( p==0 ){
|
sl@0
|
631 |
return sqlite3DbMallocRaw(db, n);
|
sl@0
|
632 |
}
|
sl@0
|
633 |
if( isLookaside(db, p) ){
|
sl@0
|
634 |
if( n<=db->lookaside.sz ){
|
sl@0
|
635 |
return p;
|
sl@0
|
636 |
}
|
sl@0
|
637 |
pNew = sqlite3DbMallocRaw(db, n);
|
sl@0
|
638 |
if( pNew ){
|
sl@0
|
639 |
memcpy(pNew, p, db->lookaside.sz);
|
sl@0
|
640 |
sqlite3DbFree(db, p);
|
sl@0
|
641 |
}
|
sl@0
|
642 |
}else{
|
sl@0
|
643 |
pNew = sqlite3_realloc(p, n);
|
sl@0
|
644 |
if( !pNew ){
|
sl@0
|
645 |
db->mallocFailed = 1;
|
sl@0
|
646 |
}
|
sl@0
|
647 |
}
|
sl@0
|
648 |
}
|
sl@0
|
649 |
return pNew;
|
sl@0
|
650 |
}
|
sl@0
|
651 |
|
sl@0
|
652 |
/*
|
sl@0
|
653 |
** Attempt to reallocate p. If the reallocation fails, then free p
|
sl@0
|
654 |
** and set the mallocFailed flag in the database connection.
|
sl@0
|
655 |
*/
|
sl@0
|
656 |
void *sqlite3DbReallocOrFree(sqlite3 *db, void *p, int n){
|
sl@0
|
657 |
void *pNew;
|
sl@0
|
658 |
pNew = sqlite3DbRealloc(db, p, n);
|
sl@0
|
659 |
if( !pNew ){
|
sl@0
|
660 |
sqlite3DbFree(db, p);
|
sl@0
|
661 |
}
|
sl@0
|
662 |
return pNew;
|
sl@0
|
663 |
}
|
sl@0
|
664 |
|
sl@0
|
665 |
/*
|
sl@0
|
666 |
** Make a copy of a string in memory obtained from sqliteMalloc(). These
|
sl@0
|
667 |
** functions call sqlite3MallocRaw() directly instead of sqliteMalloc(). This
|
sl@0
|
668 |
** is because when memory debugging is turned on, these two functions are
|
sl@0
|
669 |
** called via macros that record the current file and line number in the
|
sl@0
|
670 |
** ThreadData structure.
|
sl@0
|
671 |
*/
|
sl@0
|
672 |
char *sqlite3DbStrDup(sqlite3 *db, const char *z){
|
sl@0
|
673 |
char *zNew;
|
sl@0
|
674 |
size_t n;
|
sl@0
|
675 |
if( z==0 ){
|
sl@0
|
676 |
return 0;
|
sl@0
|
677 |
}
|
sl@0
|
678 |
n = strlen(z)+1;
|
sl@0
|
679 |
assert( (n&0x7fffffff)==n );
|
sl@0
|
680 |
zNew = sqlite3DbMallocRaw(db, (int)n);
|
sl@0
|
681 |
if( zNew ){
|
sl@0
|
682 |
memcpy(zNew, z, n);
|
sl@0
|
683 |
}
|
sl@0
|
684 |
return zNew;
|
sl@0
|
685 |
}
|
sl@0
|
686 |
char *sqlite3DbStrNDup(sqlite3 *db, const char *z, int n){
|
sl@0
|
687 |
char *zNew;
|
sl@0
|
688 |
if( z==0 ){
|
sl@0
|
689 |
return 0;
|
sl@0
|
690 |
}
|
sl@0
|
691 |
assert( (n&0x7fffffff)==n );
|
sl@0
|
692 |
zNew = sqlite3DbMallocRaw(db, n+1);
|
sl@0
|
693 |
if( zNew ){
|
sl@0
|
694 |
memcpy(zNew, z, n);
|
sl@0
|
695 |
zNew[n] = 0;
|
sl@0
|
696 |
}
|
sl@0
|
697 |
return zNew;
|
sl@0
|
698 |
}
|
sl@0
|
699 |
|
sl@0
|
700 |
/*
|
sl@0
|
701 |
** Create a string from the zFromat argument and the va_list that follows.
|
sl@0
|
702 |
** Store the string in memory obtained from sqliteMalloc() and make *pz
|
sl@0
|
703 |
** point to that string.
|
sl@0
|
704 |
*/
|
sl@0
|
705 |
void sqlite3SetString(char **pz, sqlite3 *db, const char *zFormat, ...){
|
sl@0
|
706 |
va_list ap;
|
sl@0
|
707 |
char *z;
|
sl@0
|
708 |
|
sl@0
|
709 |
va_start(ap, zFormat);
|
sl@0
|
710 |
z = sqlite3VMPrintf(db, zFormat, ap);
|
sl@0
|
711 |
va_end(ap);
|
sl@0
|
712 |
sqlite3DbFree(db, *pz);
|
sl@0
|
713 |
*pz = z;
|
sl@0
|
714 |
}
|
sl@0
|
715 |
|
sl@0
|
716 |
|
sl@0
|
717 |
/*
|
sl@0
|
718 |
** This function must be called before exiting any API function (i.e.
|
sl@0
|
719 |
** returning control to the user) that has called sqlite3_malloc or
|
sl@0
|
720 |
** sqlite3_realloc.
|
sl@0
|
721 |
**
|
sl@0
|
722 |
** The returned value is normally a copy of the second argument to this
|
sl@0
|
723 |
** function. However, if a malloc() failure has occured since the previous
|
sl@0
|
724 |
** invocation SQLITE_NOMEM is returned instead.
|
sl@0
|
725 |
**
|
sl@0
|
726 |
** If the first argument, db, is not NULL and a malloc() error has occured,
|
sl@0
|
727 |
** then the connection error-code (the value returned by sqlite3_errcode())
|
sl@0
|
728 |
** is set to SQLITE_NOMEM.
|
sl@0
|
729 |
*/
|
sl@0
|
730 |
int sqlite3ApiExit(sqlite3* db, int rc){
|
sl@0
|
731 |
/* If the db handle is not NULL, then we must hold the connection handle
|
sl@0
|
732 |
** mutex here. Otherwise the read (and possible write) of db->mallocFailed
|
sl@0
|
733 |
** is unsafe, as is the call to sqlite3Error().
|
sl@0
|
734 |
*/
|
sl@0
|
735 |
assert( !db || sqlite3_mutex_held(db->mutex) );
|
sl@0
|
736 |
if( db && db->mallocFailed ){
|
sl@0
|
737 |
sqlite3Error(db, SQLITE_NOMEM, 0);
|
sl@0
|
738 |
db->mallocFailed = 0;
|
sl@0
|
739 |
rc = SQLITE_NOMEM;
|
sl@0
|
740 |
}
|
sl@0
|
741 |
return rc & (db ? db->errMask : 0xff);
|
sl@0
|
742 |
}
|