os/ossrv/ssl/libcrypto/src/crypto/bn/bn_kron.c
author sl
Tue, 10 Jun 2014 14:32:02 +0200
changeset 1 260cb5ec6c19
permissions -rw-r--r--
Update contrib.
     1 /* crypto/bn/bn_kron.c */
     2 /* ====================================================================
     3  * Copyright (c) 1998-2000 The OpenSSL Project.  All rights reserved.
     4  *
     5  * Redistribution and use in source and binary forms, with or without
     6  * modification, are permitted provided that the following conditions
     7  * are met:
     8  *
     9  * 1. Redistributions of source code must retain the above copyright
    10  *    notice, this list of conditions and the following disclaimer. 
    11  *
    12  * 2. Redistributions in binary form must reproduce the above copyright
    13  *    notice, this list of conditions and the following disclaimer in
    14  *    the documentation and/or other materials provided with the
    15  *    distribution.
    16  *
    17  * 3. All advertising materials mentioning features or use of this
    18  *    software must display the following acknowledgment:
    19  *    "This product includes software developed by the OpenSSL Project
    20  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
    21  *
    22  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
    23  *    endorse or promote products derived from this software without
    24  *    prior written permission. For written permission, please contact
    25  *    openssl-core@openssl.org.
    26  *
    27  * 5. Products derived from this software may not be called "OpenSSL"
    28  *    nor may "OpenSSL" appear in their names without prior written
    29  *    permission of the OpenSSL Project.
    30  *
    31  * 6. Redistributions of any form whatsoever must retain the following
    32  *    acknowledgment:
    33  *    "This product includes software developed by the OpenSSL Project
    34  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
    35  *
    36  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
    37  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
    38  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
    39  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
    40  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
    41  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
    42  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
    43  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
    44  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
    45  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
    46  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
    47  * OF THE POSSIBILITY OF SUCH DAMAGE.
    48  * ====================================================================
    49  *
    50  * This product includes cryptographic software written by Eric Young
    51  * (eay@cryptsoft.com).  This product includes software written by Tim
    52  * Hudson (tjh@cryptsoft.com).
    53  *
    54  */
    55 
    56 #include "cryptlib.h"
    57 #include "bn_lcl.h"
    58 
    59 /* least significant word */
    60 #define BN_lsw(n) (((n)->top == 0) ? (BN_ULONG) 0 : (n)->d[0])
    61 
    62 /* Returns -2 for errors because both -1 and 0 are valid results. */
    63 EXPORT_C int BN_kronecker(const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
    64 	{
    65 	int i;
    66 	int ret = -2; /* avoid 'uninitialized' warning */
    67 	int err = 0;
    68 	BIGNUM *A, *B, *tmp;
    69 	/* In 'tab', only odd-indexed entries are relevant:
    70 	 * For any odd BIGNUM n,
    71 	 *     tab[BN_lsw(n) & 7]
    72 	 * is $(-1)^{(n^2-1)/8}$ (using TeX notation).
    73 	 * Note that the sign of n does not matter.
    74 	 */
    75 	static const int tab[8] = {0, 1, 0, -1, 0, -1, 0, 1};
    76 
    77 	bn_check_top(a);
    78 	bn_check_top(b);
    79 
    80 	BN_CTX_start(ctx);
    81 	A = BN_CTX_get(ctx);
    82 	B = BN_CTX_get(ctx);
    83 	if (B == NULL) goto end;
    84 	
    85 	err = !BN_copy(A, a);
    86 	if (err) goto end;
    87 	err = !BN_copy(B, b);
    88 	if (err) goto end;
    89 
    90 	/*
    91 	 * Kronecker symbol, imlemented according to Henri Cohen,
    92 	 * "A Course in Computational Algebraic Number Theory"
    93 	 * (algorithm 1.4.10).
    94 	 */
    95 
    96 	/* Cohen's step 1: */
    97 
    98 	if (BN_is_zero(B))
    99 		{
   100 		ret = BN_abs_is_word(A, 1);
   101 		goto end;
   102  		}
   103 	
   104 	/* Cohen's step 2: */
   105 
   106 	if (!BN_is_odd(A) && !BN_is_odd(B))
   107 		{
   108 		ret = 0;
   109 		goto end;
   110 		}
   111 
   112 	/* now  B  is non-zero */
   113 	i = 0;
   114 	while (!BN_is_bit_set(B, i))
   115 		i++;
   116 	err = !BN_rshift(B, B, i);
   117 	if (err) goto end;
   118 	if (i & 1)
   119 		{
   120 		/* i is odd */
   121 		/* (thus  B  was even, thus  A  must be odd!)  */
   122 
   123 		/* set 'ret' to $(-1)^{(A^2-1)/8}$ */
   124 		ret = tab[BN_lsw(A) & 7];
   125 		}
   126 	else
   127 		{
   128 		/* i is even */
   129 		ret = 1;
   130 		}
   131 	
   132 	if (B->neg)
   133 		{
   134 		B->neg = 0;
   135 		if (A->neg)
   136 			ret = -ret;
   137 		}
   138 
   139 	/* now  B  is positive and odd, so what remains to be done is
   140 	 * to compute the Jacobi symbol  (A/B)  and multiply it by 'ret' */
   141 
   142 	while (1)
   143 		{
   144 		/* Cohen's step 3: */
   145 
   146 		/*  B  is positive and odd */
   147 
   148 		if (BN_is_zero(A))
   149 			{
   150 			ret = BN_is_one(B) ? ret : 0;
   151 			goto end;
   152 			}
   153 
   154 		/* now  A  is non-zero */
   155 		i = 0;
   156 		while (!BN_is_bit_set(A, i))
   157 			i++;
   158 		err = !BN_rshift(A, A, i);
   159 		if (err) goto end;
   160 		if (i & 1)
   161 			{
   162 			/* i is odd */
   163 			/* multiply 'ret' by  $(-1)^{(B^2-1)/8}$ */
   164 			ret = ret * tab[BN_lsw(B) & 7];
   165 			}
   166 	
   167 		/* Cohen's step 4: */
   168 		/* multiply 'ret' by  $(-1)^{(A-1)(B-1)/4}$ */
   169 		if ((A->neg ? ~BN_lsw(A) : BN_lsw(A)) & BN_lsw(B) & 2)
   170 			ret = -ret;
   171 		
   172 		/* (A, B) := (B mod |A|, |A|) */
   173 		err = !BN_nnmod(B, B, A, ctx);
   174 		if (err) goto end;
   175 		tmp = A; A = B; B = tmp;
   176 		tmp->neg = 0;
   177 		}
   178 end:
   179 	BN_CTX_end(ctx);
   180 	if (err)
   181 		return -2;
   182 	else
   183 		return ret;
   184 	}