os/ossrv/ssl/libcrypto/src/crypto/bn/bn_kron.c
author sl
Tue, 10 Jun 2014 14:32:02 +0200
changeset 1 260cb5ec6c19
permissions -rw-r--r--
Update contrib.
sl@0
     1
/* crypto/bn/bn_kron.c */
sl@0
     2
/* ====================================================================
sl@0
     3
 * Copyright (c) 1998-2000 The OpenSSL Project.  All rights reserved.
sl@0
     4
 *
sl@0
     5
 * Redistribution and use in source and binary forms, with or without
sl@0
     6
 * modification, are permitted provided that the following conditions
sl@0
     7
 * are met:
sl@0
     8
 *
sl@0
     9
 * 1. Redistributions of source code must retain the above copyright
sl@0
    10
 *    notice, this list of conditions and the following disclaimer. 
sl@0
    11
 *
sl@0
    12
 * 2. Redistributions in binary form must reproduce the above copyright
sl@0
    13
 *    notice, this list of conditions and the following disclaimer in
sl@0
    14
 *    the documentation and/or other materials provided with the
sl@0
    15
 *    distribution.
sl@0
    16
 *
sl@0
    17
 * 3. All advertising materials mentioning features or use of this
sl@0
    18
 *    software must display the following acknowledgment:
sl@0
    19
 *    "This product includes software developed by the OpenSSL Project
sl@0
    20
 *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
sl@0
    21
 *
sl@0
    22
 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
sl@0
    23
 *    endorse or promote products derived from this software without
sl@0
    24
 *    prior written permission. For written permission, please contact
sl@0
    25
 *    openssl-core@openssl.org.
sl@0
    26
 *
sl@0
    27
 * 5. Products derived from this software may not be called "OpenSSL"
sl@0
    28
 *    nor may "OpenSSL" appear in their names without prior written
sl@0
    29
 *    permission of the OpenSSL Project.
sl@0
    30
 *
sl@0
    31
 * 6. Redistributions of any form whatsoever must retain the following
sl@0
    32
 *    acknowledgment:
sl@0
    33
 *    "This product includes software developed by the OpenSSL Project
sl@0
    34
 *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
sl@0
    35
 *
sl@0
    36
 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
sl@0
    37
 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
sl@0
    38
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
sl@0
    39
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
sl@0
    40
 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
sl@0
    41
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
sl@0
    42
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
sl@0
    43
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
sl@0
    44
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
sl@0
    45
 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
sl@0
    46
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
sl@0
    47
 * OF THE POSSIBILITY OF SUCH DAMAGE.
sl@0
    48
 * ====================================================================
sl@0
    49
 *
sl@0
    50
 * This product includes cryptographic software written by Eric Young
sl@0
    51
 * (eay@cryptsoft.com).  This product includes software written by Tim
sl@0
    52
 * Hudson (tjh@cryptsoft.com).
sl@0
    53
 *
sl@0
    54
 */
sl@0
    55
sl@0
    56
#include "cryptlib.h"
sl@0
    57
#include "bn_lcl.h"
sl@0
    58
sl@0
    59
/* least significant word */
sl@0
    60
#define BN_lsw(n) (((n)->top == 0) ? (BN_ULONG) 0 : (n)->d[0])
sl@0
    61
sl@0
    62
/* Returns -2 for errors because both -1 and 0 are valid results. */
sl@0
    63
EXPORT_C int BN_kronecker(const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
sl@0
    64
	{
sl@0
    65
	int i;
sl@0
    66
	int ret = -2; /* avoid 'uninitialized' warning */
sl@0
    67
	int err = 0;
sl@0
    68
	BIGNUM *A, *B, *tmp;
sl@0
    69
	/* In 'tab', only odd-indexed entries are relevant:
sl@0
    70
	 * For any odd BIGNUM n,
sl@0
    71
	 *     tab[BN_lsw(n) & 7]
sl@0
    72
	 * is $(-1)^{(n^2-1)/8}$ (using TeX notation).
sl@0
    73
	 * Note that the sign of n does not matter.
sl@0
    74
	 */
sl@0
    75
	static const int tab[8] = {0, 1, 0, -1, 0, -1, 0, 1};
sl@0
    76
sl@0
    77
	bn_check_top(a);
sl@0
    78
	bn_check_top(b);
sl@0
    79
sl@0
    80
	BN_CTX_start(ctx);
sl@0
    81
	A = BN_CTX_get(ctx);
sl@0
    82
	B = BN_CTX_get(ctx);
sl@0
    83
	if (B == NULL) goto end;
sl@0
    84
	
sl@0
    85
	err = !BN_copy(A, a);
sl@0
    86
	if (err) goto end;
sl@0
    87
	err = !BN_copy(B, b);
sl@0
    88
	if (err) goto end;
sl@0
    89
sl@0
    90
	/*
sl@0
    91
	 * Kronecker symbol, imlemented according to Henri Cohen,
sl@0
    92
	 * "A Course in Computational Algebraic Number Theory"
sl@0
    93
	 * (algorithm 1.4.10).
sl@0
    94
	 */
sl@0
    95
sl@0
    96
	/* Cohen's step 1: */
sl@0
    97
sl@0
    98
	if (BN_is_zero(B))
sl@0
    99
		{
sl@0
   100
		ret = BN_abs_is_word(A, 1);
sl@0
   101
		goto end;
sl@0
   102
 		}
sl@0
   103
	
sl@0
   104
	/* Cohen's step 2: */
sl@0
   105
sl@0
   106
	if (!BN_is_odd(A) && !BN_is_odd(B))
sl@0
   107
		{
sl@0
   108
		ret = 0;
sl@0
   109
		goto end;
sl@0
   110
		}
sl@0
   111
sl@0
   112
	/* now  B  is non-zero */
sl@0
   113
	i = 0;
sl@0
   114
	while (!BN_is_bit_set(B, i))
sl@0
   115
		i++;
sl@0
   116
	err = !BN_rshift(B, B, i);
sl@0
   117
	if (err) goto end;
sl@0
   118
	if (i & 1)
sl@0
   119
		{
sl@0
   120
		/* i is odd */
sl@0
   121
		/* (thus  B  was even, thus  A  must be odd!)  */
sl@0
   122
sl@0
   123
		/* set 'ret' to $(-1)^{(A^2-1)/8}$ */
sl@0
   124
		ret = tab[BN_lsw(A) & 7];
sl@0
   125
		}
sl@0
   126
	else
sl@0
   127
		{
sl@0
   128
		/* i is even */
sl@0
   129
		ret = 1;
sl@0
   130
		}
sl@0
   131
	
sl@0
   132
	if (B->neg)
sl@0
   133
		{
sl@0
   134
		B->neg = 0;
sl@0
   135
		if (A->neg)
sl@0
   136
			ret = -ret;
sl@0
   137
		}
sl@0
   138
sl@0
   139
	/* now  B  is positive and odd, so what remains to be done is
sl@0
   140
	 * to compute the Jacobi symbol  (A/B)  and multiply it by 'ret' */
sl@0
   141
sl@0
   142
	while (1)
sl@0
   143
		{
sl@0
   144
		/* Cohen's step 3: */
sl@0
   145
sl@0
   146
		/*  B  is positive and odd */
sl@0
   147
sl@0
   148
		if (BN_is_zero(A))
sl@0
   149
			{
sl@0
   150
			ret = BN_is_one(B) ? ret : 0;
sl@0
   151
			goto end;
sl@0
   152
			}
sl@0
   153
sl@0
   154
		/* now  A  is non-zero */
sl@0
   155
		i = 0;
sl@0
   156
		while (!BN_is_bit_set(A, i))
sl@0
   157
			i++;
sl@0
   158
		err = !BN_rshift(A, A, i);
sl@0
   159
		if (err) goto end;
sl@0
   160
		if (i & 1)
sl@0
   161
			{
sl@0
   162
			/* i is odd */
sl@0
   163
			/* multiply 'ret' by  $(-1)^{(B^2-1)/8}$ */
sl@0
   164
			ret = ret * tab[BN_lsw(B) & 7];
sl@0
   165
			}
sl@0
   166
	
sl@0
   167
		/* Cohen's step 4: */
sl@0
   168
		/* multiply 'ret' by  $(-1)^{(A-1)(B-1)/4}$ */
sl@0
   169
		if ((A->neg ? ~BN_lsw(A) : BN_lsw(A)) & BN_lsw(B) & 2)
sl@0
   170
			ret = -ret;
sl@0
   171
		
sl@0
   172
		/* (A, B) := (B mod |A|, |A|) */
sl@0
   173
		err = !BN_nnmod(B, B, A, ctx);
sl@0
   174
		if (err) goto end;
sl@0
   175
		tmp = A; A = B; B = tmp;
sl@0
   176
		tmp->neg = 0;
sl@0
   177
		}
sl@0
   178
end:
sl@0
   179
	BN_CTX_end(ctx);
sl@0
   180
	if (err)
sl@0
   181
		return -2;
sl@0
   182
	else
sl@0
   183
		return ret;
sl@0
   184
	}