os/ossrv/genericopenlibs/cstdlib/LMATH/S_EXPM1.C
author sl
Tue, 10 Jun 2014 14:32:02 +0200
changeset 1 260cb5ec6c19
permissions -rw-r--r--
Update contrib.
     1 /* S_EXPM1.C
     2  * 
     3  * Portions Copyright (c) 1993-2005 Nokia Corporation and/or its subsidiary(-ies).
     4  * All rights reserved.
     5  */
     6 
     7 
     8 /* @(#)s_expm1.c 5.1 93/09/24 */
     9 /*
    10  * ====================================================
    11  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
    12  *
    13  * Developed at SunPro, a Sun Microsystems, Inc. business.
    14  * Permission to use, copy, modify, and distribute this
    15  * software is freely granted, provided that this notice 
    16  * is preserved.
    17  * ====================================================
    18  */
    19 
    20 /*
    21 FUNCTION
    22 	<<expm1>>, <<expm1f>>---exponential minus 1
    23 INDEX
    24 	expm1
    25 INDEX
    26 	expm1f
    27 
    28 ANSI_SYNOPSIS
    29 	#include <math.h>
    30 	double expm1(double <[x]>);
    31 	float expm1f(float <[x]>);
    32 
    33 TRAD_SYNOPSIS
    34 	#include <math.h>
    35 	double expm1(<[x]>);
    36 	double <[x]>;
    37 
    38 	float expm1f(<[x]>);
    39 	float <[x]>;
    40 
    41 DESCRIPTION
    42 	<<expm1>> and <<expm1f>> calculate the exponential of <[x]>
    43 	and subtract 1, that is,
    44 	@ifinfo
    45 	e raised to the power <[x]> minus 1 (where e
    46 	@end ifinfo
    47 	@tex
    48 	$e^x - 1$ (where $e$
    49 	@end tex
    50 	is the base of the natural system of logarithms, approximately
    51 	2.71828).  The result is accurate even for small values of
    52 	<[x]>, where using <<exp(<[x]>)-1>> would lose many
    53 	significant digits.
    54 
    55 RETURNS
    56 	e raised to the power <[x]>, minus 1.
    57 
    58 PORTABILITY
    59 	Neither <<expm1>> nor <<expm1f>> is required by ANSI C or by
    60 	the System V Interface Definition (Issue 2).
    61 */
    62 
    63 /* expm1(x)
    64  * Returns exp(x)-1, the exponential of x minus 1.
    65  *
    66  * Method
    67  *   1. Argument reduction:
    68  *	Given x, find r and integer k such that
    69  *
    70  *               x = k*ln2 + r,  |r| <= 0.5*ln2 ~ 0.34658  
    71  *
    72  *      Here a correction term c will be computed to compensate 
    73  *	the error in r when rounded to a floating-point number.
    74  *
    75  *   2. Approximating expm1(r) by a special rational function on
    76  *	the interval [0,0.34658]:
    77  *	Since
    78  *	    r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 - r^4/360 + ...
    79  *	we define R1(r*r) by
    80  *	    r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 * R1(r*r)
    81  *	That is,
    82  *	    R1(r**2) = 6/r *((exp(r)+1)/(exp(r)-1) - 2/r)
    83  *		     = 6/r * ( 1 + 2.0*(1/(exp(r)-1) - 1/r))
    84  *		     = 1 - r^2/60 + r^4/2520 - r^6/100800 + ...
    85  *      We use a special Reme algorithm on [0,0.347] to generate 
    86  * 	a polynomial of degree 5 in r*r to approximate R1. The 
    87  *	maximum error of this polynomial approximation is bounded 
    88  *	by 2**-61. In other words,
    89  *	    R1(z) ~ 1.0 + Q1*z + Q2*z**2 + Q3*z**3 + Q4*z**4 + Q5*z**5
    90  *	where 	Q1  =  -1.6666666666666567384E-2,
    91  * 		Q2  =   3.9682539681370365873E-4,
    92  * 		Q3  =  -9.9206344733435987357E-6,
    93  * 		Q4  =   2.5051361420808517002E-7,
    94  * 		Q5  =  -6.2843505682382617102E-9;
    95  *  	(where z=r*r, and the values of Q1 to Q5 are listed below)
    96  *	with error bounded by
    97  *	    |                  5           |     -61
    98  *	    | 1.0+Q1*z+...+Q5*z   -  R1(z) | <= 2 
    99  *	    |                              |
   100  *	
   101  *	expm1(r) = exp(r)-1 is then computed by the following 
   102  * 	specific way which minimize the accumulation rounding error: 
   103  *			       2     3
   104  *			      r     r    [ 3 - (R1 + R1*r/2)  ]
   105  *	      expm1(r) = r + --- + --- * [--------------------]
   106  *		              2     2    [ 6 - r*(3 - R1*r/2) ]
   107  *	
   108  *	To compensate the error in the argument reduction, we use
   109  *		expm1(r+c) = expm1(r) + c + expm1(r)*c 
   110  *			   ~ expm1(r) + c + r*c 
   111  *	Thus c+r*c will be added in as the correction terms for
   112  *	expm1(r+c). Now rearrange the term to avoid optimization 
   113  * 	screw up:
   114  *		        (      2                                    2 )
   115  *		        ({  ( r    [ R1 -  (3 - R1*r/2) ]  )  }    r  )
   116  *	 expm1(r+c)~r - ({r*(--- * [--------------------]-c)-c} - --- )
   117  *	                ({  ( 2    [ 6 - r*(3 - R1*r/2) ]  )  }    2  )
   118  *                      (                                             )
   119  *    	
   120  *		   = r - E
   121  *   3. Scale back to obtain expm1(x):
   122  *	From step 1, we have
   123  *	   expm1(x) = either 2^k*[expm1(r)+1] - 1
   124  *		    = or     2^k*[expm1(r) + (1-2^-k)]
   125  *   4. Implementation notes:
   126  *	(A). To save one multiplication, we scale the coefficient Qi
   127  *	     to Qi*2^i, and replace z by (x^2)/2.
   128  *	(B). To achieve maximum accuracy, we compute expm1(x) by
   129  *	  (i)   if x < -56*ln2, return -1.0, (raise inexact if x!=inf)
   130  *	  (ii)  if k=0, return r-E
   131  *	  (iii) if k=-1, return 0.5*(r-E)-0.5
   132  *        (iv)	if k=1 if r < -0.25, return 2*((r+0.5)- E)
   133  *	       	       else	     return  1.0+2.0*(r-E);
   134  *	  (v)   if (k<-2||k>56) return 2^k(1-(E-r)) - 1 (or exp(x)-1)
   135  *	  (vi)  if k <= 20, return 2^k((1-2^-k)-(E-r)), else
   136  *	  (vii) return 2^k(1-((E+2^-k)-r)) 
   137  *
   138  * Special cases:
   139  *	expm1(INF) is INF, expm1(NaN) is NaN;
   140  *	expm1(-INF) is -1, and
   141  *	for finite argument, only expm1(0)=0 is exact.
   142  *
   143  * Accuracy:
   144  *	according to an error analysis, the error is always less than
   145  *	1 ulp (unit in the last place).
   146  *
   147  * Misc. info.
   148  *	For IEEE double 
   149  *	    if x >  7.09782712893383973096e+02 then expm1(x) overflow
   150  *
   151  * Constants:
   152  * The hexadecimal values are the intended ones for the following 
   153  * constants. The decimal values may be used, provided that the 
   154  * compiler will convert from decimal to binary accurately enough
   155  * to produce the hexadecimal values shown.
   156  */
   157 
   158 #include "FDLIBM.H"
   159 
   160 static const double
   161 one		= 1.0,
   162 huge		= 1.0e+300,
   163 tiny		= 1.0e-300,
   164 o_threshold	= 7.09782712893383973096e+02,/* 0x40862E42, 0xFEFA39EF */
   165 ln2_hi		= 6.93147180369123816490e-01,/* 0x3fe62e42, 0xfee00000 */
   166 ln2_lo		= 1.90821492927058770002e-10,/* 0x3dea39ef, 0x35793c76 */
   167 invln2		= 1.44269504088896338700e+00,/* 0x3ff71547, 0x652b82fe */
   168 	/* scaled coefficients related to expm1 */
   169 Q1  =  -3.33333333333331316428e-02, /* BFA11111 111110F4 */
   170 Q2  =   1.58730158725481460165e-03, /* 3F5A01A0 19FE5585 */
   171 Q3  =  -7.93650757867487942473e-05, /* BF14CE19 9EAADBB7 */
   172 Q4  =   4.00821782732936239552e-06, /* 3ED0CFCA 86E65239 */
   173 Q5  =  -2.01099218183624371326e-07; /* BE8AFDB7 6E09C32D */
   174 
   175 /**
   176 Calculate the exponential of x and subtract 1 
   177 that is raised to the power x minus 1
   178 @return e raised to the power x, minus 1.
   179 @param x e's power.
   180 */	
   181 EXPORT_C double expm1(double x) __SOFTFP
   182 {
   183 	double y,hi,lo,c = 0.0,t,e,hxs,hfx,r1;
   184 	__int32_t k,xsb;
   185 	__uint32_t hx;
   186 
   187 	GET_HIGH_WORD(hx,x);
   188 	xsb = hx&0x80000000;		/* sign bit of x */
   189 	if(xsb==0) y=x; else y= -x;	/* y = |x| */
   190 	hx &= 0x7fffffff;		/* high word of |x| */
   191 
   192     /* filter out huge and non-finite argument */
   193 	if(hx >= 0x4043687A) {			/* if |x|>=56*ln2 */
   194 	    if(hx >= 0x40862E42) {		/* if |x|>=709.78... */
   195                 if(hx>=0x7ff00000) {
   196 		    __uint32_t low;
   197 		    GET_LOW_WORD(low,x);
   198 		    if(((hx&0xfffff)|low)!=0) 
   199 		         return x+x; 	 /* NaN */
   200 		    else return (xsb==0)? x:-1.0;/* exp(+-inf)={inf,-1} */
   201 	        }
   202 	        if(x > o_threshold) return huge*huge; /* overflow */
   203 	    }
   204 	    if(xsb!=0) { /* x < -56*ln2, return -1.0 with inexact */
   205 		if(x+tiny<0.0)		/* raise inexact */
   206 		return tiny-one;	/* return -1 */
   207 	    }
   208 	}
   209 
   210     /* argument reduction */
   211 	if(hx > 0x3fd62e42) {		/* if  |x| > 0.5 ln2 */ 
   212 	    if(hx < 0x3FF0A2B2) {	/* and |x| < 1.5 ln2 */
   213 		if(xsb==0)
   214 		    {hi = x - ln2_hi; lo =  ln2_lo;  k =  1;}
   215 		else
   216 		    {hi = x + ln2_hi; lo = -ln2_lo;  k = -1;}
   217 	    } else {
   218 		k  = invln2*x+((xsb==0)?0.5:-0.5);
   219 		t  = k;
   220 		hi = x - t*ln2_hi;	/* t*ln2_hi is exact here */
   221 		lo = t*ln2_lo;
   222 	    }
   223 	    x  = hi - lo;
   224 	    c  = (hi-x)-lo;
   225 	} 
   226 	else if(hx < 0x3c900000) {  	/* when |x|<2**-54, return x */
   227 	    t = huge+x;	/* return x with inexact flags when x!=0 */
   228 	    return x - (t-(huge+x));	
   229 	}
   230 	else k = 0;
   231 
   232     /* x is now in primary range */
   233 	hfx = 0.5*x;
   234 	hxs = x*hfx;
   235 	r1 = one+hxs*(Q1+hxs*(Q2+hxs*(Q3+hxs*(Q4+hxs*Q5))));
   236 	t  = 3.0-r1*hfx;
   237 	e  = hxs*((r1-t)/(6.0 - x*t));
   238 	if(k==0) return x - (x*e-hxs);		/* c is 0 */
   239 	else {
   240 	    e  = (x*(e-c)-c);
   241 	    e -= hxs;
   242 	    if(k== -1) return 0.5*(x-e)-0.5;
   243 	    if(k==1) {
   244 	       	if(x < -0.25) return -2.0*(e-(x+0.5));
   245 	       	else 	      return  one+2.0*(x-e);
   246 		}
   247 	    if (k <= -2 || k>56) {   /* suffice to return exp(x)-1 */
   248 	        __uint32_t high;
   249 	        y = one-(e-x);
   250 		GET_HIGH_WORD(high,y);
   251 		SET_HIGH_WORD(y,high+(k<<20));	/* add k to y's exponent */
   252 	        return y-one;
   253 	    }
   254 	    t = one;
   255 	    if(k<20) {
   256 	        __uint32_t high;
   257 	        SET_HIGH_WORD(t,0x3ff00000 - (0x200000>>k));  /* t=1-2^-k */
   258 	       	y = t-(e-x);
   259 		GET_HIGH_WORD(high,y);
   260 		SET_HIGH_WORD(y,high+(k<<20));	/* add k to y's exponent */
   261 	   } else {
   262 	        __uint32_t high;
   263 		SET_HIGH_WORD(t,((0x3ff-k)<<20));	/* 2^-k */
   264 	       	y = x-(e+t);
   265 	       	y += one;
   266 		GET_HIGH_WORD(high,y);
   267 		SET_HIGH_WORD(y,high+(k<<20));	/* add k to y's exponent */
   268 	    }
   269 	}
   270 	return y;
   271 }