os/ossrv/genericopenlibs/cstdlib/LMATH/S_EXPM1.C
author sl
Tue, 10 Jun 2014 14:32:02 +0200
changeset 1 260cb5ec6c19
permissions -rw-r--r--
Update contrib.
sl@0
     1
/* S_EXPM1.C
sl@0
     2
 * 
sl@0
     3
 * Portions Copyright (c) 1993-2005 Nokia Corporation and/or its subsidiary(-ies).
sl@0
     4
 * All rights reserved.
sl@0
     5
 */
sl@0
     6
sl@0
     7
sl@0
     8
/* @(#)s_expm1.c 5.1 93/09/24 */
sl@0
     9
/*
sl@0
    10
 * ====================================================
sl@0
    11
 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
sl@0
    12
 *
sl@0
    13
 * Developed at SunPro, a Sun Microsystems, Inc. business.
sl@0
    14
 * Permission to use, copy, modify, and distribute this
sl@0
    15
 * software is freely granted, provided that this notice 
sl@0
    16
 * is preserved.
sl@0
    17
 * ====================================================
sl@0
    18
 */
sl@0
    19
sl@0
    20
/*
sl@0
    21
FUNCTION
sl@0
    22
	<<expm1>>, <<expm1f>>---exponential minus 1
sl@0
    23
INDEX
sl@0
    24
	expm1
sl@0
    25
INDEX
sl@0
    26
	expm1f
sl@0
    27
sl@0
    28
ANSI_SYNOPSIS
sl@0
    29
	#include <math.h>
sl@0
    30
	double expm1(double <[x]>);
sl@0
    31
	float expm1f(float <[x]>);
sl@0
    32
sl@0
    33
TRAD_SYNOPSIS
sl@0
    34
	#include <math.h>
sl@0
    35
	double expm1(<[x]>);
sl@0
    36
	double <[x]>;
sl@0
    37
sl@0
    38
	float expm1f(<[x]>);
sl@0
    39
	float <[x]>;
sl@0
    40
sl@0
    41
DESCRIPTION
sl@0
    42
	<<expm1>> and <<expm1f>> calculate the exponential of <[x]>
sl@0
    43
	and subtract 1, that is,
sl@0
    44
	@ifinfo
sl@0
    45
	e raised to the power <[x]> minus 1 (where e
sl@0
    46
	@end ifinfo
sl@0
    47
	@tex
sl@0
    48
	$e^x - 1$ (where $e$
sl@0
    49
	@end tex
sl@0
    50
	is the base of the natural system of logarithms, approximately
sl@0
    51
	2.71828).  The result is accurate even for small values of
sl@0
    52
	<[x]>, where using <<exp(<[x]>)-1>> would lose many
sl@0
    53
	significant digits.
sl@0
    54
sl@0
    55
RETURNS
sl@0
    56
	e raised to the power <[x]>, minus 1.
sl@0
    57
sl@0
    58
PORTABILITY
sl@0
    59
	Neither <<expm1>> nor <<expm1f>> is required by ANSI C or by
sl@0
    60
	the System V Interface Definition (Issue 2).
sl@0
    61
*/
sl@0
    62
sl@0
    63
/* expm1(x)
sl@0
    64
 * Returns exp(x)-1, the exponential of x minus 1.
sl@0
    65
 *
sl@0
    66
 * Method
sl@0
    67
 *   1. Argument reduction:
sl@0
    68
 *	Given x, find r and integer k such that
sl@0
    69
 *
sl@0
    70
 *               x = k*ln2 + r,  |r| <= 0.5*ln2 ~ 0.34658  
sl@0
    71
 *
sl@0
    72
 *      Here a correction term c will be computed to compensate 
sl@0
    73
 *	the error in r when rounded to a floating-point number.
sl@0
    74
 *
sl@0
    75
 *   2. Approximating expm1(r) by a special rational function on
sl@0
    76
 *	the interval [0,0.34658]:
sl@0
    77
 *	Since
sl@0
    78
 *	    r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 - r^4/360 + ...
sl@0
    79
 *	we define R1(r*r) by
sl@0
    80
 *	    r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 * R1(r*r)
sl@0
    81
 *	That is,
sl@0
    82
 *	    R1(r**2) = 6/r *((exp(r)+1)/(exp(r)-1) - 2/r)
sl@0
    83
 *		     = 6/r * ( 1 + 2.0*(1/(exp(r)-1) - 1/r))
sl@0
    84
 *		     = 1 - r^2/60 + r^4/2520 - r^6/100800 + ...
sl@0
    85
 *      We use a special Reme algorithm on [0,0.347] to generate 
sl@0
    86
 * 	a polynomial of degree 5 in r*r to approximate R1. The 
sl@0
    87
 *	maximum error of this polynomial approximation is bounded 
sl@0
    88
 *	by 2**-61. In other words,
sl@0
    89
 *	    R1(z) ~ 1.0 + Q1*z + Q2*z**2 + Q3*z**3 + Q4*z**4 + Q5*z**5
sl@0
    90
 *	where 	Q1  =  -1.6666666666666567384E-2,
sl@0
    91
 * 		Q2  =   3.9682539681370365873E-4,
sl@0
    92
 * 		Q3  =  -9.9206344733435987357E-6,
sl@0
    93
 * 		Q4  =   2.5051361420808517002E-7,
sl@0
    94
 * 		Q5  =  -6.2843505682382617102E-9;
sl@0
    95
 *  	(where z=r*r, and the values of Q1 to Q5 are listed below)
sl@0
    96
 *	with error bounded by
sl@0
    97
 *	    |                  5           |     -61
sl@0
    98
 *	    | 1.0+Q1*z+...+Q5*z   -  R1(z) | <= 2 
sl@0
    99
 *	    |                              |
sl@0
   100
 *	
sl@0
   101
 *	expm1(r) = exp(r)-1 is then computed by the following 
sl@0
   102
 * 	specific way which minimize the accumulation rounding error: 
sl@0
   103
 *			       2     3
sl@0
   104
 *			      r     r    [ 3 - (R1 + R1*r/2)  ]
sl@0
   105
 *	      expm1(r) = r + --- + --- * [--------------------]
sl@0
   106
 *		              2     2    [ 6 - r*(3 - R1*r/2) ]
sl@0
   107
 *	
sl@0
   108
 *	To compensate the error in the argument reduction, we use
sl@0
   109
 *		expm1(r+c) = expm1(r) + c + expm1(r)*c 
sl@0
   110
 *			   ~ expm1(r) + c + r*c 
sl@0
   111
 *	Thus c+r*c will be added in as the correction terms for
sl@0
   112
 *	expm1(r+c). Now rearrange the term to avoid optimization 
sl@0
   113
 * 	screw up:
sl@0
   114
 *		        (      2                                    2 )
sl@0
   115
 *		        ({  ( r    [ R1 -  (3 - R1*r/2) ]  )  }    r  )
sl@0
   116
 *	 expm1(r+c)~r - ({r*(--- * [--------------------]-c)-c} - --- )
sl@0
   117
 *	                ({  ( 2    [ 6 - r*(3 - R1*r/2) ]  )  }    2  )
sl@0
   118
 *                      (                                             )
sl@0
   119
 *    	
sl@0
   120
 *		   = r - E
sl@0
   121
 *   3. Scale back to obtain expm1(x):
sl@0
   122
 *	From step 1, we have
sl@0
   123
 *	   expm1(x) = either 2^k*[expm1(r)+1] - 1
sl@0
   124
 *		    = or     2^k*[expm1(r) + (1-2^-k)]
sl@0
   125
 *   4. Implementation notes:
sl@0
   126
 *	(A). To save one multiplication, we scale the coefficient Qi
sl@0
   127
 *	     to Qi*2^i, and replace z by (x^2)/2.
sl@0
   128
 *	(B). To achieve maximum accuracy, we compute expm1(x) by
sl@0
   129
 *	  (i)   if x < -56*ln2, return -1.0, (raise inexact if x!=inf)
sl@0
   130
 *	  (ii)  if k=0, return r-E
sl@0
   131
 *	  (iii) if k=-1, return 0.5*(r-E)-0.5
sl@0
   132
 *        (iv)	if k=1 if r < -0.25, return 2*((r+0.5)- E)
sl@0
   133
 *	       	       else	     return  1.0+2.0*(r-E);
sl@0
   134
 *	  (v)   if (k<-2||k>56) return 2^k(1-(E-r)) - 1 (or exp(x)-1)
sl@0
   135
 *	  (vi)  if k <= 20, return 2^k((1-2^-k)-(E-r)), else
sl@0
   136
 *	  (vii) return 2^k(1-((E+2^-k)-r)) 
sl@0
   137
 *
sl@0
   138
 * Special cases:
sl@0
   139
 *	expm1(INF) is INF, expm1(NaN) is NaN;
sl@0
   140
 *	expm1(-INF) is -1, and
sl@0
   141
 *	for finite argument, only expm1(0)=0 is exact.
sl@0
   142
 *
sl@0
   143
 * Accuracy:
sl@0
   144
 *	according to an error analysis, the error is always less than
sl@0
   145
 *	1 ulp (unit in the last place).
sl@0
   146
 *
sl@0
   147
 * Misc. info.
sl@0
   148
 *	For IEEE double 
sl@0
   149
 *	    if x >  7.09782712893383973096e+02 then expm1(x) overflow
sl@0
   150
 *
sl@0
   151
 * Constants:
sl@0
   152
 * The hexadecimal values are the intended ones for the following 
sl@0
   153
 * constants. The decimal values may be used, provided that the 
sl@0
   154
 * compiler will convert from decimal to binary accurately enough
sl@0
   155
 * to produce the hexadecimal values shown.
sl@0
   156
 */
sl@0
   157
sl@0
   158
#include "FDLIBM.H"
sl@0
   159
sl@0
   160
static const double
sl@0
   161
one		= 1.0,
sl@0
   162
huge		= 1.0e+300,
sl@0
   163
tiny		= 1.0e-300,
sl@0
   164
o_threshold	= 7.09782712893383973096e+02,/* 0x40862E42, 0xFEFA39EF */
sl@0
   165
ln2_hi		= 6.93147180369123816490e-01,/* 0x3fe62e42, 0xfee00000 */
sl@0
   166
ln2_lo		= 1.90821492927058770002e-10,/* 0x3dea39ef, 0x35793c76 */
sl@0
   167
invln2		= 1.44269504088896338700e+00,/* 0x3ff71547, 0x652b82fe */
sl@0
   168
	/* scaled coefficients related to expm1 */
sl@0
   169
Q1  =  -3.33333333333331316428e-02, /* BFA11111 111110F4 */
sl@0
   170
Q2  =   1.58730158725481460165e-03, /* 3F5A01A0 19FE5585 */
sl@0
   171
Q3  =  -7.93650757867487942473e-05, /* BF14CE19 9EAADBB7 */
sl@0
   172
Q4  =   4.00821782732936239552e-06, /* 3ED0CFCA 86E65239 */
sl@0
   173
Q5  =  -2.01099218183624371326e-07; /* BE8AFDB7 6E09C32D */
sl@0
   174
sl@0
   175
/**
sl@0
   176
Calculate the exponential of x and subtract 1 
sl@0
   177
that is raised to the power x minus 1
sl@0
   178
@return e raised to the power x, minus 1.
sl@0
   179
@param x e's power.
sl@0
   180
*/	
sl@0
   181
EXPORT_C double expm1(double x) __SOFTFP
sl@0
   182
{
sl@0
   183
	double y,hi,lo,c = 0.0,t,e,hxs,hfx,r1;
sl@0
   184
	__int32_t k,xsb;
sl@0
   185
	__uint32_t hx;
sl@0
   186
sl@0
   187
	GET_HIGH_WORD(hx,x);
sl@0
   188
	xsb = hx&0x80000000;		/* sign bit of x */
sl@0
   189
	if(xsb==0) y=x; else y= -x;	/* y = |x| */
sl@0
   190
	hx &= 0x7fffffff;		/* high word of |x| */
sl@0
   191
sl@0
   192
    /* filter out huge and non-finite argument */
sl@0
   193
	if(hx >= 0x4043687A) {			/* if |x|>=56*ln2 */
sl@0
   194
	    if(hx >= 0x40862E42) {		/* if |x|>=709.78... */
sl@0
   195
                if(hx>=0x7ff00000) {
sl@0
   196
		    __uint32_t low;
sl@0
   197
		    GET_LOW_WORD(low,x);
sl@0
   198
		    if(((hx&0xfffff)|low)!=0) 
sl@0
   199
		         return x+x; 	 /* NaN */
sl@0
   200
		    else return (xsb==0)? x:-1.0;/* exp(+-inf)={inf,-1} */
sl@0
   201
	        }
sl@0
   202
	        if(x > o_threshold) return huge*huge; /* overflow */
sl@0
   203
	    }
sl@0
   204
	    if(xsb!=0) { /* x < -56*ln2, return -1.0 with inexact */
sl@0
   205
		if(x+tiny<0.0)		/* raise inexact */
sl@0
   206
		return tiny-one;	/* return -1 */
sl@0
   207
	    }
sl@0
   208
	}
sl@0
   209
sl@0
   210
    /* argument reduction */
sl@0
   211
	if(hx > 0x3fd62e42) {		/* if  |x| > 0.5 ln2 */ 
sl@0
   212
	    if(hx < 0x3FF0A2B2) {	/* and |x| < 1.5 ln2 */
sl@0
   213
		if(xsb==0)
sl@0
   214
		    {hi = x - ln2_hi; lo =  ln2_lo;  k =  1;}
sl@0
   215
		else
sl@0
   216
		    {hi = x + ln2_hi; lo = -ln2_lo;  k = -1;}
sl@0
   217
	    } else {
sl@0
   218
		k  = invln2*x+((xsb==0)?0.5:-0.5);
sl@0
   219
		t  = k;
sl@0
   220
		hi = x - t*ln2_hi;	/* t*ln2_hi is exact here */
sl@0
   221
		lo = t*ln2_lo;
sl@0
   222
	    }
sl@0
   223
	    x  = hi - lo;
sl@0
   224
	    c  = (hi-x)-lo;
sl@0
   225
	} 
sl@0
   226
	else if(hx < 0x3c900000) {  	/* when |x|<2**-54, return x */
sl@0
   227
	    t = huge+x;	/* return x with inexact flags when x!=0 */
sl@0
   228
	    return x - (t-(huge+x));	
sl@0
   229
	}
sl@0
   230
	else k = 0;
sl@0
   231
sl@0
   232
    /* x is now in primary range */
sl@0
   233
	hfx = 0.5*x;
sl@0
   234
	hxs = x*hfx;
sl@0
   235
	r1 = one+hxs*(Q1+hxs*(Q2+hxs*(Q3+hxs*(Q4+hxs*Q5))));
sl@0
   236
	t  = 3.0-r1*hfx;
sl@0
   237
	e  = hxs*((r1-t)/(6.0 - x*t));
sl@0
   238
	if(k==0) return x - (x*e-hxs);		/* c is 0 */
sl@0
   239
	else {
sl@0
   240
	    e  = (x*(e-c)-c);
sl@0
   241
	    e -= hxs;
sl@0
   242
	    if(k== -1) return 0.5*(x-e)-0.5;
sl@0
   243
	    if(k==1) {
sl@0
   244
	       	if(x < -0.25) return -2.0*(e-(x+0.5));
sl@0
   245
	       	else 	      return  one+2.0*(x-e);
sl@0
   246
		}
sl@0
   247
	    if (k <= -2 || k>56) {   /* suffice to return exp(x)-1 */
sl@0
   248
	        __uint32_t high;
sl@0
   249
	        y = one-(e-x);
sl@0
   250
		GET_HIGH_WORD(high,y);
sl@0
   251
		SET_HIGH_WORD(y,high+(k<<20));	/* add k to y's exponent */
sl@0
   252
	        return y-one;
sl@0
   253
	    }
sl@0
   254
	    t = one;
sl@0
   255
	    if(k<20) {
sl@0
   256
	        __uint32_t high;
sl@0
   257
	        SET_HIGH_WORD(t,0x3ff00000 - (0x200000>>k));  /* t=1-2^-k */
sl@0
   258
	       	y = t-(e-x);
sl@0
   259
		GET_HIGH_WORD(high,y);
sl@0
   260
		SET_HIGH_WORD(y,high+(k<<20));	/* add k to y's exponent */
sl@0
   261
	   } else {
sl@0
   262
	        __uint32_t high;
sl@0
   263
		SET_HIGH_WORD(t,((0x3ff-k)<<20));	/* 2^-k */
sl@0
   264
	       	y = x-(e+t);
sl@0
   265
	       	y += one;
sl@0
   266
		GET_HIGH_WORD(high,y);
sl@0
   267
		SET_HIGH_WORD(y,high+(k<<20));	/* add k to y's exponent */
sl@0
   268
	    }
sl@0
   269
	}
sl@0
   270
	return y;
sl@0
   271
}