os/ossrv/compressionlibs/ziplib/test/oldezlib/EZLib/trees.cpp
author sl
Tue, 10 Jun 2014 14:32:02 +0200
changeset 1 260cb5ec6c19
permissions -rw-r--r--
Update contrib.
     1 /* trees.c -- output deflated data using Huffman coding
     2  * Copyright (C) 1995-1998 Jean-loup Gailly
     3  * For conditions of distribution and use, see copyright notice in zlib.h 
     4  */
     5 
     6 /*
     7  *  ALGORITHM
     8  *
     9  *      The "deflation" process uses several Huffman trees. The more
    10  *      common source values are represented by shorter bit sequences.
    11  *
    12  *      Each code tree is stored in a compressed form which is itself
    13  * a Huffman encoding of the lengths of all the code strings (in
    14  * ascending order by source values).  The actual code strings are
    15  * reconstructed from the lengths in the inflate process, as described
    16  * in the deflate specification.
    17  *
    18  *  REFERENCES
    19  *
    20  *      Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
    21  *      Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
    22  *
    23  *      Storer, James A.
    24  *          Data Compression:  Methods and Theory, pp. 49-50.
    25  *          Computer Science Press, 1988.  ISBN 0-7167-8156-5.
    26  *
    27  *      Sedgewick, R.
    28  *          Algorithms, p290.
    29  *          Addison-Wesley, 1983. ISBN 0-201-06672-6.
    30  */
    31 
    32 /* @(#) $Id$ */
    33 
    34 /* #define GEN_TREES_H */
    35 
    36 #include <e32std.h>
    37 
    38 #include "deflate.h"
    39 
    40 #ifdef DEBUG
    41 #  include <ctype.h>
    42 #endif
    43 
    44 /* ===========================================================================
    45  * Constants
    46  */
    47 
    48 #define MAX_BL_BITS 7
    49 /* Bit length codes must not exceed MAX_BL_BITS bits */
    50 
    51 #define END_BLOCK 256
    52 /* end of block literal code */
    53 
    54 #define REP_3_6      16
    55 /* repeat previous bit length 3-6 times (2 bits of repeat count) */
    56 
    57 #define REPZ_3_10    17
    58 /* repeat a zero length 3-10 times  (3 bits of repeat count) */
    59 
    60 #define REPZ_11_138  18
    61 /* repeat a zero length 11-138 times  (7 bits of repeat count) */
    62 
    63 local const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
    64    = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
    65 
    66 local const int extra_dbits[D_CODES] /* extra bits for each distance code */
    67    = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
    68 
    69 local const int extra_blbits[BL_CODES]/* extra bits for each bit length code */
    70    = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
    71 
    72 local const uch bl_order[BL_CODES]
    73    = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
    74 /* The lengths of the bit length codes are sent in order of decreasing
    75  * probability, to avoid transmitting the lengths for unused bit length codes.
    76  */
    77 
    78 #define Buf_size (8 * 2*sizeof(char))
    79 /* Number of bits used within bi_buf. (bi_buf might be implemented on
    80  * more than 16 bits on some systems.)
    81  */
    82 
    83 /* ===========================================================================
    84  * Local data. These are initialized only once.
    85  */
    86 
    87 #define DIST_CODE_LEN  512 /* see definition of array dist_code below */
    88 
    89 #if defined(GEN_TREES_H) || !defined(STDC)
    90 /* non ANSI compilers may not accept trees.h */
    91 
    92 local ct_data static_ltree[L_CODES+2];
    93 /* The static literal tree. Since the bit lengths are imposed, there is no
    94  * need for the L_CODES extra codes used during heap construction. However
    95  * The codes 286 and 287 are needed to build a canonical tree (see _tr_init
    96  * below).
    97  */
    98 
    99 local ct_data static_dtree[D_CODES];
   100 /* The static distance tree. (Actually a trivial tree since all codes use
   101  * 5 bits.)
   102  */
   103 
   104 uch _dist_code[DIST_CODE_LEN];
   105 /* Distance codes. The first 256 values correspond to the distances
   106  * 3 .. 258, the last 256 values correspond to the top 8 bits of
   107  * the 15 bit distances.
   108  */
   109 
   110 uch _length_code[MAX_MATCH-MIN_MATCH+1];
   111 /* length code for each normalized match length (0 == MIN_MATCH) */
   112 
   113 local int base_length[LENGTH_CODES];
   114 /* First normalized length for each code (0 = MIN_MATCH) */
   115 
   116 local int base_dist[D_CODES];
   117 /* First normalized distance for each code (0 = distance of 1) */
   118 
   119 #else
   120 #  include "trees.h"
   121 #endif /* GEN_TREES_H */
   122 
   123 struct static_tree_desc_s {
   124     const ct_data *static_tree;  /* static tree or NULL */
   125     const intf *extra_bits;      /* extra bits for each code or NULL */
   126     int     extra_base;          /* base index for extra_bits */
   127     int     elems;               /* max number of elements in the tree */
   128     int     max_length;          /* max bit length for the codes */
   129 };
   130 
   131 const local static_tree_desc  static_l_desc =
   132 {static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
   133 
   134 const local static_tree_desc  static_d_desc =
   135 {static_dtree, extra_dbits, 0,          D_CODES, MAX_BITS};
   136 
   137 const local static_tree_desc  static_bl_desc =
   138 {(const ct_data *)0, extra_blbits, 0,   BL_CODES, MAX_BL_BITS};
   139 
   140 /* ===========================================================================
   141  * Local (static) routines in this file.
   142  */
   143 
   144 local void tr_static_init OF((void));
   145 local void init_block     OF((deflate_state *s));
   146 local void pqdownheap     OF((deflate_state *s, ct_data *tree, int k));
   147 local void gen_bitlen     OF((deflate_state *s, tree_desc *desc));
   148 local void gen_codes      OF((ct_data *tree, int max_code, ushf *bl_count));
   149 local void build_tree     OF((deflate_state *s, tree_desc *desc));
   150 local void scan_tree      OF((deflate_state *s, ct_data *tree, int max_code));
   151 local void send_tree      OF((deflate_state *s, ct_data *tree, int max_code));
   152 local int  build_bl_tree  OF((deflate_state *s));
   153 local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes,
   154                               int blcodes));
   155 local void compress_block OF((deflate_state *s, ct_data *ltree,
   156                               ct_data *dtree));
   157 local void set_data_type  OF((deflate_state *s));
   158 local unsigned bi_reverse OF((unsigned value, int length));
   159 local void bi_windup      OF((deflate_state *s));
   160 local void bi_flush       OF((deflate_state *s));
   161 local void copy_block     OF((deflate_state *s, charf *buf, unsigned len,
   162                               int header));
   163 
   164 #ifdef GEN_TREES_H
   165 local void gen_trees_header OF((void));
   166 #endif
   167 
   168 #ifndef DEBUG
   169 #  define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
   170    /* Send a code of the given tree. c and tree must not have side effects */
   171 
   172 #else /* DEBUG */
   173 #  define send_code(s, c, tree) \
   174      { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \
   175        send_bits(s, tree[c].Code, tree[c].Len); }
   176 #endif
   177 
   178 /* ===========================================================================
   179  * Output a short LSB first on the stream.
   180  * IN assertion: there is enough room in pendingBuf.
   181  */
   182 #define put_short(s, w) { \
   183     put_byte(s, (uch)((w) & 0xff)); \
   184     put_byte(s, (uch)((ush)(w) >> 8)); \
   185 }
   186 
   187 /* ===========================================================================
   188  * Send a value on a given number of bits.
   189  * IN assertion: length <= 16 and value fits in length bits.
   190  */
   191 #ifdef DEBUG
   192 local void send_bits      OF((deflate_state *s, int value, int length));
   193 
   194 local void send_bits(
   195     deflate_state *s,
   196     int value,  /* value to send */
   197     int length) /* number of bits */
   198 {
   199     Tracevv((stderr," l %2d v %4x ", length, value));
   200     Assert(length > 0 && length <= 15, "invalid length");
   201     s->bits_sent += (ulg)length;
   202 
   203     /* If not enough room in bi_buf, use (valid) bits from bi_buf and
   204      * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
   205      * unused bits in value.
   206      */
   207     if (s->bi_valid > (int)Buf_size - length) {
   208         s->bi_buf |= (value << s->bi_valid);
   209         put_short(s, s->bi_buf);
   210         s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
   211         s->bi_valid += length - Buf_size;
   212     } else {
   213         s->bi_buf |= value << s->bi_valid;
   214         s->bi_valid += length;
   215     }
   216 }
   217 #else /* !DEBUG */
   218 
   219 #define send_bits(s, value, length) \
   220 { int len = length;\
   221   if (s->bi_valid > (int)Buf_size - len) {\
   222     int val = value;\
   223     s->bi_buf |= (val << s->bi_valid);\
   224     put_short(s, s->bi_buf);\
   225     s->bi_buf = STATIC_CAST(ush,val >> (Buf_size - s->bi_valid));\
   226     s->bi_valid += len - Buf_size;\
   227   } else {\
   228     s->bi_buf |= (value) << s->bi_valid;\
   229     s->bi_valid += len;\
   230   }\
   231 }
   232 #endif /* DEBUG */
   233 
   234 
   235 #define MAX(a,b) (a >= b ? a : b)
   236 /* the arguments must not have side effects */
   237 
   238 /* ===========================================================================
   239  * Initialize the various 'constant' tables.
   240  */
   241 local void tr_static_init()
   242 {
   243 #if defined(GEN_TREES_H) || !defined(STDC)
   244     static int static_init_done = 0;
   245     int n;        /* iterates over tree elements */
   246     int bits;     /* bit counter */
   247     int length;   /* length value */
   248     int code;     /* code value */
   249     int dist;     /* distance index */
   250     ush bl_count[MAX_BITS+1];
   251     /* number of codes at each bit length for an optimal tree */
   252 
   253     if (static_init_done) return;
   254 
   255     /* For some embedded targets, global variables are not initialized: */
   256     static_l_desc.static_tree = static_ltree;
   257     static_l_desc.extra_bits = extra_lbits;
   258     static_d_desc.static_tree = static_dtree;
   259     static_d_desc.extra_bits = extra_dbits;
   260     static_bl_desc.extra_bits = extra_blbits;
   261 
   262     /* Initialize the mapping length (0..255) -> length code (0..28) */
   263     length = 0;
   264     for (code = 0; code < LENGTH_CODES-1; code++) {
   265         base_length[code] = length;
   266         for (n = 0; n < (1<<extra_lbits[code]); n++) {
   267             _length_code[length++] = (uch)code;
   268         }
   269     }
   270     Assert (length == 256, "tr_static_init: length != 256");
   271     /* Note that the length 255 (match length 258) can be represented
   272      * in two different ways: code 284 + 5 bits or code 285, so we
   273      * overwrite length_code[255] to use the best encoding:
   274      */
   275     _length_code[length-1] = (uch)code;
   276 
   277     /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
   278     dist = 0;
   279     for (code = 0 ; code < 16; code++) {
   280         base_dist[code] = dist;
   281         for (n = 0; n < (1<<extra_dbits[code]); n++) {
   282             _dist_code[dist++] = (uch)code;
   283         }
   284     }
   285     Assert (dist == 256, "tr_static_init: dist != 256");
   286     dist >>= 7; /* from now on, all distances are divided by 128 */
   287     for ( ; code < D_CODES; code++) {
   288         base_dist[code] = dist << 7;
   289         for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
   290             _dist_code[256 + dist++] = (uch)code;
   291         }
   292     }
   293     Assert (dist == 256, "tr_static_init: 256+dist != 512");
   294 
   295     /* Construct the codes of the static literal tree */
   296     for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
   297     n = 0;
   298     while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
   299     while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
   300     while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
   301     while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
   302     /* Codes 286 and 287 do not exist, but we must include them in the
   303      * tree construction to get a canonical Huffman tree (longest code
   304      * all ones)
   305      */
   306     gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
   307 
   308     /* The static distance tree is trivial: */
   309     for (n = 0; n < D_CODES; n++) {
   310         static_dtree[n].Len = 5;
   311         static_dtree[n].Code = bi_reverse((unsigned)n, 5);
   312     }
   313     static_init_done = 1;
   314 
   315 #  ifdef GEN_TREES_H
   316     gen_trees_header();
   317 #  endif
   318 #endif /* defined(GEN_TREES_H) || !defined(STDC) */
   319 }
   320 
   321 /* ===========================================================================
   322  * Genererate the file trees.h describing the static trees.
   323  */
   324 #ifdef GEN_TREES_H
   325 #  ifndef DEBUG
   326 #    include <stdio.h>
   327 #  endif
   328 
   329 #  define SEPARATOR(i, last, width) \
   330       ((i) == (last)? "\n};\n\n" :    \
   331        ((i) % (width) == (width)-1 ? ",\n" : ", "))
   332 
   333 void gen_trees_header()
   334 {
   335     FILE *header = fopen("trees.h", "w");
   336     int i;
   337 
   338     Assert (header != NULL, "Can't open trees.h");
   339     fprintf(header,
   340 	    "/* header created automatically with -DGEN_TREES_H */\n\n");
   341 
   342     fprintf(header, "local const ct_data static_ltree[L_CODES+2] = {\n");
   343     for (i = 0; i < L_CODES+2; i++) {
   344 	fprintf(header, "{{%3u},{%3u}}%s", static_ltree[i].Code,
   345 		static_ltree[i].Len, SEPARATOR(i, L_CODES+1, 5));
   346     }
   347 
   348     fprintf(header, "local const ct_data static_dtree[D_CODES] = {\n");
   349     for (i = 0; i < D_CODES; i++) {
   350 	fprintf(header, "{{%2u},{%2u}}%s", static_dtree[i].Code,
   351 		static_dtree[i].Len, SEPARATOR(i, D_CODES-1, 5));
   352     }
   353 
   354     fprintf(header, "const uch _dist_code[DIST_CODE_LEN] = {\n");
   355     for (i = 0; i < DIST_CODE_LEN; i++) {
   356 	fprintf(header, "%2u%s", _dist_code[i],
   357 		SEPARATOR(i, DIST_CODE_LEN-1, 20));
   358     }
   359 
   360     fprintf(header, "const uch _length_code[MAX_MATCH-MIN_MATCH+1]= {\n");
   361     for (i = 0; i < MAX_MATCH-MIN_MATCH+1; i++) {
   362 	fprintf(header, "%2u%s", _length_code[i],
   363 		SEPARATOR(i, MAX_MATCH-MIN_MATCH, 20));
   364     }
   365 
   366     fprintf(header, "local const int base_length[LENGTH_CODES] = {\n");
   367     for (i = 0; i < LENGTH_CODES; i++) {
   368 	fprintf(header, "%1u%s", base_length[i],
   369 		SEPARATOR(i, LENGTH_CODES-1, 20));
   370     }
   371 
   372     fprintf(header, "local const int base_dist[D_CODES] = {\n");
   373     for (i = 0; i < D_CODES; i++) {
   374 	fprintf(header, "%5u%s", base_dist[i],
   375 		SEPARATOR(i, D_CODES-1, 10));
   376     }
   377 
   378     fclose(header);
   379 }
   380 #endif /* GEN_TREES_H */
   381 
   382 /* ===========================================================================
   383  * Initialize the tree data structures for a new zlib stream.
   384  */
   385 void _tr_init(
   386     deflate_state *s)
   387 {
   388     tr_static_init();
   389 
   390     s->l_desc.dyn_tree = s->dyn_ltree;
   391     s->l_desc.stat_desc = &static_l_desc;
   392 
   393     s->d_desc.dyn_tree = s->dyn_dtree;
   394     s->d_desc.stat_desc = &static_d_desc;
   395 
   396     s->bl_desc.dyn_tree = s->bl_tree;
   397     s->bl_desc.stat_desc = &static_bl_desc;
   398 
   399     s->bi_buf = 0;
   400     s->bi_valid = 0;
   401     s->last_eob_len = 8; /* enough lookahead for inflate */
   402 #ifdef DEBUG
   403     s->compressed_len = 0L;
   404     s->bits_sent = 0L;
   405 #endif
   406 
   407     /* Initialize the first block of the first file: */
   408     init_block(s);
   409 }
   410 
   411 /* ===========================================================================
   412  * Initialize a new block.
   413  */
   414 local void init_block(
   415     deflate_state *s)
   416 {
   417     int n; /* iterates over tree elements */
   418 
   419     /* Initialize the trees. */
   420     for (n = 0; n < L_CODES;  n++) s->dyn_ltree[n].Freq = 0;
   421     for (n = 0; n < D_CODES;  n++) s->dyn_dtree[n].Freq = 0;
   422     for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
   423 
   424     s->dyn_ltree[END_BLOCK].Freq = 1;
   425     s->opt_len = s->static_len = 0L;
   426     s->last_lit = s->matches = 0;
   427 }
   428 
   429 #define SMALLEST 1
   430 /* Index within the heap array of least frequent node in the Huffman tree */
   431 
   432 
   433 /* ===========================================================================
   434  * Remove the smallest element from the heap and recreate the heap with
   435  * one less element. Updates heap and heap_len.
   436  */
   437 #define pqremove(s, tree, top) \
   438 {\
   439     top = s->heap[SMALLEST]; \
   440     s->heap[SMALLEST] = s->heap[s->heap_len--]; \
   441     pqdownheap(s, tree, SMALLEST); \
   442 }
   443 
   444 /* ===========================================================================
   445  * Compares to subtrees, using the tree depth as tie breaker when
   446  * the subtrees have equal frequency. This minimizes the worst case length.
   447  */
   448 #define smaller(tree, n, m, depth) \
   449    (tree[n].Freq < tree[m].Freq || \
   450    (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
   451 
   452 /* ===========================================================================
   453  * Restore the heap property by moving down the tree starting at node k,
   454  * exchanging a node with the smallest of its two sons if necessary, stopping
   455  * when the heap property is re-established (each father smaller than its
   456  * two sons).
   457  */
   458 local void pqdownheap(
   459     deflate_state *s,
   460     ct_data *tree,  /* the tree to restore */
   461     int k)               /* node to move down */
   462 {
   463     int v = s->heap[k];
   464     int j = k << 1;  /* left son of k */
   465     while (j <= s->heap_len) {
   466         /* Set j to the smallest of the two sons: */
   467         if (j < s->heap_len &&
   468             smaller(tree, s->heap[j+1], s->heap[j], s->depth)) {
   469             j++;
   470         }
   471         /* Exit if v is smaller than both sons */
   472         if (smaller(tree, v, s->heap[j], s->depth)) break;
   473 
   474         /* Exchange v with the smallest son */
   475         s->heap[k] = s->heap[j];  k = j;
   476 
   477         /* And continue down the tree, setting j to the left son of k */
   478         j <<= 1;
   479     }
   480     s->heap[k] = v;
   481 }
   482 
   483 /* ===========================================================================
   484  * Compute the optimal bit lengths for a tree and update the total bit length
   485  * for the current block.
   486  * IN assertion: the fields freq and dad are set, heap[heap_max] and
   487  *    above are the tree nodes sorted by increasing frequency.
   488  * OUT assertions: the field len is set to the optimal bit length, the
   489  *     array bl_count contains the frequencies for each bit length.
   490  *     The length opt_len is updated; static_len is also updated if stree is
   491  *     not null.
   492  */
   493 local void gen_bitlen(
   494     deflate_state *s,
   495     tree_desc *desc)   /* the tree descriptor */
   496 {
   497     ct_data *tree        = desc->dyn_tree;
   498     int max_code         = desc->max_code;
   499     const ct_data *stree = desc->stat_desc->static_tree;
   500     const intf *extra    = desc->stat_desc->extra_bits;
   501     int base             = desc->stat_desc->extra_base;
   502     int max_length       = desc->stat_desc->max_length;
   503     int h;              /* heap index */
   504     int n, m;           /* iterate over the tree elements */
   505     int bits;           /* bit length */
   506     int xbits;          /* extra bits */
   507     ush f;              /* frequency */
   508     int overflow = 0;   /* number of elements with bit length too large */
   509 
   510     for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
   511 
   512     /* In a first pass, compute the optimal bit lengths (which may
   513      * overflow in the case of the bit length tree).
   514      */
   515     tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
   516 
   517     for (h = s->heap_max+1; h < HEAP_SIZE; h++) {
   518         n = s->heap[h];
   519         bits = tree[tree[n].Dad].Len + 1;
   520         if (bits > max_length) bits = max_length, overflow++;
   521         tree[n].Len = (ush)bits;
   522         /* We overwrite tree[n].Dad which is no longer needed */
   523 
   524         if (n > max_code) continue; /* not a leaf node */
   525 
   526         s->bl_count[bits]++;
   527         xbits = 0;
   528         if (n >= base) xbits = extra[n-base];
   529         f = tree[n].Freq;
   530         s->opt_len += (ulg)f * (bits + xbits);
   531         if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits);
   532     }
   533     if (overflow == 0) return;
   534 
   535     Trace((stderr,"\nbit length overflow\n"));
   536     /* This happens for example on obj2 and pic of the Calgary corpus */
   537 
   538     /* Find the first bit length which could increase: */
   539     do {
   540         bits = max_length-1;
   541         while (s->bl_count[bits] == 0) bits--;
   542         s->bl_count[bits]--;      /* move one leaf down the tree */
   543         s->bl_count[bits+1] += 2; /* move one overflow item as its brother */
   544         s->bl_count[max_length]--;
   545         /* The brother of the overflow item also moves one step up,
   546          * but this does not affect bl_count[max_length]
   547          */
   548         overflow -= 2;
   549     } while (overflow > 0);
   550 
   551     /* Now recompute all bit lengths, scanning in increasing frequency.
   552      * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
   553      * lengths instead of fixing only the wrong ones. This idea is taken
   554      * from 'ar' written by Haruhiko Okumura.)
   555      */
   556     for (bits = max_length; bits != 0; bits--) {
   557         n = s->bl_count[bits];
   558         while (n != 0) {
   559             m = s->heap[--h];
   560             if (m > max_code) continue;
   561             if (tree[m].Len != (unsigned) bits) {
   562                 Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
   563                 s->opt_len += ((long)bits - (long)tree[m].Len)
   564                               *(long)tree[m].Freq;
   565                 tree[m].Len = (ush)bits;
   566             }
   567             n--;
   568         }
   569     }
   570 }
   571 
   572 /* ===========================================================================
   573  * Generate the codes for a given tree and bit counts (which need not be
   574  * optimal).
   575  * IN assertion: the array bl_count contains the bit length statistics for
   576  * the given tree and the field len is set for all tree elements.
   577  * OUT assertion: the field code is set for all tree elements of non
   578  *     zero code length.
   579  */
   580 local void gen_codes (
   581     ct_data *tree,             /* the tree to decorate */
   582     int max_code,             /* largest code with non zero frequency */
   583     ushf *bl_count)            /* number of codes at each bit length */
   584 {
   585     ush next_code[MAX_BITS+1]; /* next code value for each bit length */
   586     ush code = 0;              /* running code value */
   587     int bits;                  /* bit index */
   588     int n;                     /* code index */
   589 
   590     /* The distribution counts are first used to generate the code values
   591      * without bit reversal.
   592      */
   593     for (bits = 1; bits <= MAX_BITS; bits++) {
   594         next_code[bits] = code = STATIC_CAST(ush,(code + bl_count[bits-1]) << 1);
   595     }
   596     /* Check that the bit counts in bl_count are consistent. The last code
   597      * must be all ones.
   598      */
   599     Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
   600             "inconsistent bit counts");
   601     Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
   602 
   603     for (n = 0;  n <= max_code; n++) {
   604         int len = tree[n].Len;
   605         if (len == 0) continue;
   606         /* Now reverse the bits */
   607         tree[n].Code = STATIC_CAST(ush,bi_reverse(next_code[len]++, len));
   608 
   609         Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
   610              n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
   611     }
   612 }
   613 
   614 /* ===========================================================================
   615  * Construct one Huffman tree and assigns the code bit strings and lengths.
   616  * Update the total bit length for the current block.
   617  * IN assertion: the field freq is set for all tree elements.
   618  * OUT assertions: the fields len and code are set to the optimal bit length
   619  *     and corresponding code. The length opt_len is updated; static_len is
   620  *     also updated if stree is not null. The field max_code is set.
   621  */
   622 local void build_tree(
   623     deflate_state *s,
   624     tree_desc *desc) /* the tree descriptor */
   625 {
   626     ct_data *tree         = desc->dyn_tree;
   627     const ct_data *stree  = desc->stat_desc->static_tree;
   628     int elems             = desc->stat_desc->elems;
   629     int n, m;          /* iterate over heap elements */
   630     int max_code = -1; /* largest code with non zero frequency */
   631     int node;          /* new node being created */
   632 
   633     /* Construct the initial heap, with least frequent element in
   634      * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
   635      * heap[0] is not used.
   636      */
   637     s->heap_len = 0, s->heap_max = HEAP_SIZE;
   638 
   639     for (n = 0; n < elems; n++) {
   640         if (tree[n].Freq != 0) {
   641             s->heap[++(s->heap_len)] = max_code = n;
   642             s->depth[n] = 0;
   643         } else {
   644             tree[n].Len = 0;
   645         }
   646     }
   647 
   648     /* The pkzip format requires that at least one distance code exists,
   649      * and that at least one bit should be sent even if there is only one
   650      * possible code. So to avoid special checks later on we force at least
   651      * two codes of non zero frequency.
   652      */
   653     while (s->heap_len < 2) {
   654         node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
   655         tree[node].Freq = 1;
   656         s->depth[node] = 0;
   657         s->opt_len--; if (stree) s->static_len -= stree[node].Len;
   658         /* node is 0 or 1 so it does not have extra bits */
   659     }
   660     desc->max_code = max_code;
   661 
   662     /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
   663      * establish sub-heaps of increasing lengths:
   664      */
   665     for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
   666 
   667     /* Construct the Huffman tree by repeatedly combining the least two
   668      * frequent nodes.
   669      */
   670     node = elems;              /* next internal node of the tree */
   671     do {
   672         pqremove(s, tree, n);  /* n = node of least frequency */
   673         m = s->heap[SMALLEST]; /* m = node of next least frequency */
   674 
   675         s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
   676         s->heap[--(s->heap_max)] = m;
   677 
   678         /* Create a new node father of n and m */
   679         tree[node].Freq = STATIC_CAST(ush,tree[n].Freq + tree[m].Freq);
   680         s->depth[node] = (uch) (MAX(s->depth[n], s->depth[m]) + 1);
   681         tree[n].Dad = tree[m].Dad = (ush)node;
   682 #ifdef DUMP_BL_TREE
   683         if (tree == s->bl_tree) {
   684             fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
   685                     node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
   686         }
   687 #endif
   688         /* and insert the new node in the heap */
   689         s->heap[SMALLEST] = node++;
   690         pqdownheap(s, tree, SMALLEST);
   691 
   692     } while (s->heap_len >= 2);
   693 
   694     s->heap[--(s->heap_max)] = s->heap[SMALLEST];
   695 
   696     /* At this point, the fields freq and dad are set. We can now
   697      * generate the bit lengths.
   698      */
   699     gen_bitlen(s, (tree_desc *)desc);
   700 
   701     /* The field len is now set, we can generate the bit codes */
   702     gen_codes ((ct_data *)tree, max_code, s->bl_count);
   703 }
   704 
   705 /* ===========================================================================
   706  * Scan a literal or distance tree to determine the frequencies of the codes
   707  * in the bit length tree.
   708  */
   709 local void scan_tree (
   710     deflate_state *s,
   711     ct_data *tree,   /* the tree to be scanned */
   712     int max_code)    /* and its largest code of non zero frequency */
   713 {
   714     int n;                     /* iterates over all tree elements */
   715     int prevlen = -1;          /* last emitted length */
   716     int curlen;                /* length of current code */
   717     int nextlen = tree[0].Len; /* length of next code */
   718     int count = 0;             /* repeat count of the current code */
   719     int max_count = 7;         /* max repeat count */
   720     int min_count = 4;         /* min repeat count */
   721 
   722     if (nextlen == 0) max_count = 138, min_count = 3;
   723     tree[max_code+1].Len = (ush)0xffff; /* guard */
   724 
   725     for (n = 0; n <= max_code; n++) {
   726         curlen = nextlen; nextlen = tree[n+1].Len;
   727         if (++count < max_count && curlen == nextlen) {
   728             continue;
   729         } else if (count < min_count) {
   730 			s->bl_tree[curlen].Freq = STATIC_CAST(ush, s->bl_tree[curlen].Freq + count);
   731         } else if (curlen != 0) {
   732             if (curlen != prevlen) s->bl_tree[curlen].Freq++;
   733             s->bl_tree[REP_3_6].Freq++;
   734         } else if (count <= 10) {
   735             s->bl_tree[REPZ_3_10].Freq++;
   736         } else {
   737             s->bl_tree[REPZ_11_138].Freq++;
   738         }
   739         count = 0; prevlen = curlen;
   740         if (nextlen == 0) {
   741             max_count = 138, min_count = 3;
   742         } else if (curlen == nextlen) {
   743             max_count = 6, min_count = 3;
   744         } else {
   745             max_count = 7, min_count = 4;
   746         }
   747     }
   748 }
   749 
   750 /* ===========================================================================
   751  * Send a literal or distance tree in compressed form, using the codes in
   752  * bl_tree.
   753  */
   754 local void send_tree (
   755     deflate_state *s,
   756     ct_data *tree, /* the tree to be scanned */
   757     int max_code)       /* and its largest code of non zero frequency */
   758 {
   759     int n;                     /* iterates over all tree elements */
   760     int prevlen = -1;          /* last emitted length */
   761     int curlen;                /* length of current code */
   762     int nextlen = tree[0].Len; /* length of next code */
   763     int count = 0;             /* repeat count of the current code */
   764     int max_count = 7;         /* max repeat count */
   765     int min_count = 4;         /* min repeat count */
   766 
   767     /* tree[max_code+1].Len = -1; */  /* guard already set */
   768     if (nextlen == 0) max_count = 138, min_count = 3;
   769 
   770     for (n = 0; n <= max_code; n++) {
   771         curlen = nextlen; nextlen = tree[n+1].Len;
   772         if (++count < max_count && curlen == nextlen) {
   773             continue;
   774         } else if (count < min_count) {
   775             do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
   776 
   777         } else if (curlen != 0) {
   778             if (curlen != prevlen) {
   779                 send_code(s, curlen, s->bl_tree); count--;
   780             }
   781             Assert(count >= 3 && count <= 6, " 3_6?");
   782             send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2);
   783 
   784         } else if (count <= 10) {
   785             send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3);
   786 
   787         } else {
   788             send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7);
   789         }
   790         count = 0; prevlen = curlen;
   791         if (nextlen == 0) {
   792             max_count = 138, min_count = 3;
   793         } else if (curlen == nextlen) {
   794             max_count = 6, min_count = 3;
   795         } else {
   796             max_count = 7, min_count = 4;
   797         }
   798     }
   799 }
   800 
   801 /* ===========================================================================
   802  * Construct the Huffman tree for the bit lengths and return the index in
   803  * bl_order of the last bit length code to send.
   804  */
   805 local int build_bl_tree(
   806     deflate_state *s)
   807 {
   808     int max_blindex;  /* index of last bit length code of non zero freq */
   809 
   810     /* Determine the bit length frequencies for literal and distance trees */
   811     scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
   812     scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
   813 
   814     /* Build the bit length tree: */
   815     build_tree(s, (tree_desc *)(&(s->bl_desc)));
   816     /* opt_len now includes the length of the tree representations, except
   817      * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
   818      */
   819 
   820     /* Determine the number of bit length codes to send. The pkzip format
   821      * requires that at least 4 bit length codes be sent. (appnote.txt says
   822      * 3 but the actual value used is 4.)
   823      */
   824     for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
   825         if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
   826     }
   827     /* Update opt_len to include the bit length tree and counts */
   828     s->opt_len += 3*(max_blindex+1) + 5+5+4;
   829     Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
   830             s->opt_len, s->static_len));
   831 
   832     return max_blindex;
   833 }
   834 
   835 /* ===========================================================================
   836  * Send the header for a block using dynamic Huffman trees: the counts, the
   837  * lengths of the bit length codes, the literal tree and the distance tree.
   838  * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
   839  */
   840 local void send_all_trees(
   841     deflate_state *s,
   842     int lcodes, int dcodes, int blcodes) /* number of codes for each tree */
   843 {
   844     int rank;                    /* index in bl_order */
   845 
   846     Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
   847     Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
   848             "too many codes");
   849     Tracev((stderr, "\nbl counts: "));
   850     send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */
   851     send_bits(s, dcodes-1,   5);
   852     send_bits(s, blcodes-4,  4); /* not -3 as stated in appnote.txt */
   853     for (rank = 0; rank < blcodes; rank++) {
   854         Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
   855         send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
   856     }
   857     Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
   858 
   859     send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */
   860     Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
   861 
   862     send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */
   863     Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
   864 }
   865 
   866 /* ===========================================================================
   867  * Send a stored block
   868  */
   869 void _tr_stored_block(
   870     deflate_state *s,
   871     charf *buf,       /* input block */
   872     ulg stored_len,   /* length of input block */
   873     int eof)          /* true if this is the last block for a file */
   874 {
   875     send_bits(s, (STORED_BLOCK<<1)+eof, 3);  /* send block type */
   876 #ifdef DEBUG
   877     s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L;
   878     s->compressed_len += (stored_len + 4) << 3;
   879 #endif
   880     copy_block(s, buf, (unsigned)stored_len, 1); /* with header */
   881 }
   882 
   883 /* ===========================================================================
   884  * Send one empty static block to give enough lookahead for inflate.
   885  * This takes 10 bits, of which 7 may remain in the bit buffer.
   886  * The current inflate code requires 9 bits of lookahead. If the
   887  * last two codes for the previous block (real code plus EOB) were coded
   888  * on 5 bits or less, inflate may have only 5+3 bits of lookahead to decode
   889  * the last real code. In this case we send two empty static blocks instead
   890  * of one. (There are no problems if the previous block is stored or fixed.)
   891  * To simplify the code, we assume the worst case of last real code encoded
   892  * on one bit only.
   893  */
   894 void _tr_align(
   895     deflate_state *s)
   896 {
   897     send_bits(s, STATIC_TREES<<1, 3);
   898     send_code(s, END_BLOCK, static_ltree);
   899 #ifdef DEBUG
   900     s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
   901 #endif
   902     bi_flush(s);
   903     /* Of the 10 bits for the empty block, we have already sent
   904      * (10 - bi_valid) bits. The lookahead for the last real code (before
   905      * the EOB of the previous block) was thus at least one plus the length
   906      * of the EOB plus what we have just sent of the empty static block.
   907      */
   908     if (1 + s->last_eob_len + 10 - s->bi_valid < 9) {
   909         send_bits(s, STATIC_TREES<<1, 3);
   910         send_code(s, END_BLOCK, static_ltree);
   911 #ifdef DEBUG
   912         s->compressed_len += 10L;
   913 #endif
   914         bi_flush(s);
   915     }
   916     s->last_eob_len = 7;
   917 }
   918 
   919 /* ===========================================================================
   920  * Determine the best encoding for the current block: dynamic trees, static
   921  * trees or store, and output the encoded block to the zip file.
   922  */
   923 void _tr_flush_block(
   924     deflate_state *s,
   925     charf *buf,       /* input block, or NULL if too old */
   926     ulg stored_len,   /* length of input block */
   927     int eof)          /* true if this is the last block for a file */
   928 {
   929     ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
   930     int max_blindex = 0;  /* index of last bit length code of non zero freq */
   931 
   932     /* Build the Huffman trees unless a stored block is forced */
   933     if (s->level > 0) {
   934 
   935 	 /* Check if the file is ascii or binary */
   936 	if (s->data_type == Z_UNKNOWN) set_data_type(s);
   937 
   938 	/* Construct the literal and distance trees */
   939 	build_tree(s, (tree_desc *)(&(s->l_desc)));
   940 	Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
   941 		s->static_len));
   942 
   943 	build_tree(s, (tree_desc *)(&(s->d_desc)));
   944 	Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
   945 		s->static_len));
   946 	/* At this point, opt_len and static_len are the total bit lengths of
   947 	 * the compressed block data, excluding the tree representations.
   948 	 */
   949 
   950 	/* Build the bit length tree for the above two trees, and get the index
   951 	 * in bl_order of the last bit length code to send.
   952 	 */
   953 	max_blindex = build_bl_tree(s);
   954 
   955 	/* Determine the best encoding. Compute first the block length in bytes*/
   956 	opt_lenb = (s->opt_len+3+7)>>3;
   957 	static_lenb = (s->static_len+3+7)>>3;
   958 
   959 	Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
   960 		opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
   961 		s->last_lit));
   962 
   963 	if (static_lenb <= opt_lenb) opt_lenb = static_lenb;
   964 
   965     } else {
   966         Assert(buf != (char*)0, "lost buf");
   967 	opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
   968     }
   969 
   970 #ifdef FORCE_STORED
   971     if (buf != (char*)0) { /* force stored block */
   972 #else
   973     if (stored_len+4 <= opt_lenb && buf != (char*)0) {
   974                        /* 4: two words for the lengths */
   975 #endif
   976         /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
   977          * Otherwise we can't have processed more than WSIZE input bytes since
   978          * the last block flush, because compression would have been
   979          * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
   980          * transform a block into a stored block.
   981          */
   982         _tr_stored_block(s, buf, stored_len, eof);
   983 
   984 #ifdef FORCE_STATIC
   985     } else if (static_lenb >= 0) { /* force static trees */
   986 #else
   987     } else if (static_lenb == opt_lenb) {
   988 #endif
   989         send_bits(s, (STATIC_TREES<<1)+eof, 3);
   990         compress_block(s, (ct_data *)static_ltree, (ct_data *)static_dtree);
   991 #ifdef DEBUG
   992         s->compressed_len += 3 + s->static_len;
   993 #endif
   994     } else {
   995         send_bits(s, (DYN_TREES<<1)+eof, 3);
   996         send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1,
   997                        max_blindex+1);
   998         compress_block(s, (ct_data *)s->dyn_ltree, (ct_data *)s->dyn_dtree);
   999 #ifdef DEBUG
  1000         s->compressed_len += 3 + s->opt_len;
  1001 #endif
  1002     }
  1003     Assert (s->compressed_len == s->bits_sent, "bad compressed size");
  1004     /* The above check is made mod 2^32, for files larger than 512 MB
  1005      * and uLong implemented on 32 bits.
  1006      */
  1007     init_block(s);
  1008 
  1009     if (eof) {
  1010         bi_windup(s);
  1011 #ifdef DEBUG
  1012         s->compressed_len += 7;  /* align on byte boundary */
  1013 #endif
  1014     }
  1015     Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3,
  1016            s->compressed_len-7*eof));
  1017 }
  1018 
  1019 /* ===========================================================================
  1020  * Save the match info and tally the frequency counts. Return true if
  1021  * the current block must be flushed.
  1022  */
  1023 int _tr_tally (
  1024     deflate_state *s,
  1025     unsigned dist,  /* distance of matched string */
  1026     unsigned lc)    /* match length-MIN_MATCH or unmatched char (if dist==0) */
  1027 {
  1028     s->d_buf[s->last_lit] = (ush)dist;
  1029     s->l_buf[s->last_lit++] = (uch)lc;
  1030     if (dist == 0) {
  1031         /* lc is the unmatched char */
  1032         s->dyn_ltree[lc].Freq++;
  1033     } else {
  1034         s->matches++;
  1035         /* Here, lc is the match length - MIN_MATCH */
  1036         dist--;             /* dist = match distance - 1 */
  1037         Assert((ush)dist < (ush)MAX_DIST(s) &&
  1038                (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
  1039                (ush)d_code(dist) < (ush)D_CODES,  "_tr_tally: bad match");
  1040 
  1041         s->dyn_ltree[_length_code[lc]+LITERALS+1].Freq++;
  1042         s->dyn_dtree[d_code(dist)].Freq++;
  1043     }
  1044 
  1045 #ifdef TRUNCATE_BLOCK
  1046     /* Try to guess if it is profitable to stop the current block here */
  1047     if ((s->last_lit & 0x1fff) == 0 && s->level > 2) {
  1048         /* Compute an upper bound for the compressed length */
  1049         ulg out_length = (ulg)s->last_lit*8L;
  1050         ulg in_length = (ulg)((long)s->strstart - s->block_start);
  1051         int dcode;
  1052         for (dcode = 0; dcode < D_CODES; dcode++) {
  1053             out_length += (ulg)s->dyn_dtree[dcode].Freq *
  1054                 (5L+extra_dbits[dcode]);
  1055         }
  1056         out_length >>= 3;
  1057         Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
  1058                s->last_lit, in_length, out_length,
  1059                100L - out_length*100L/in_length));
  1060         if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1;
  1061     }
  1062 #endif
  1063     return (s->last_lit == s->lit_bufsize-1);
  1064     /* We avoid equality with lit_bufsize because of wraparound at 64K
  1065      * on 16 bit machines and because stored blocks are restricted to
  1066      * 64K-1 bytes.
  1067      */
  1068 }
  1069 
  1070 /* ===========================================================================
  1071  * Send the block data compressed using the given Huffman trees
  1072  */
  1073 local void compress_block(
  1074     deflate_state *s,
  1075     ct_data *ltree, /* literal tree */
  1076     ct_data *dtree) /* distance tree */
  1077 {
  1078     unsigned dist;      /* distance of matched string */
  1079     int lc;             /* match length or unmatched char (if dist == 0) */
  1080     unsigned lx = 0;    /* running index in l_buf */
  1081     unsigned code;      /* the code to send */
  1082     int extra;          /* number of extra bits to send */
  1083 
  1084     if (s->last_lit != 0) do {
  1085         dist = s->d_buf[lx];
  1086         lc = s->l_buf[lx++];
  1087         if (dist == 0) {
  1088             send_code(s, lc, ltree); /* send a literal byte */
  1089             Tracecv(isgraph(lc), (stderr," '%c' ", lc));
  1090         } else {
  1091             /* Here, lc is the match length - MIN_MATCH */
  1092             code = _length_code[lc];
  1093             send_code(s, code+LITERALS+1, ltree); /* send the length code */
  1094             extra = extra_lbits[code];
  1095             if (extra != 0) {
  1096                 lc -= base_length[code];
  1097                 send_bits(s, lc, extra);       /* send the extra length bits */
  1098             }
  1099             dist--; /* dist is now the match distance - 1 */
  1100             code = d_code(dist);
  1101             Assert (code < D_CODES, "bad d_code");
  1102 
  1103             send_code(s, code, dtree);       /* send the distance code */
  1104             extra = extra_dbits[code];
  1105             if (extra != 0) {
  1106                 dist -= base_dist[code];
  1107                 send_bits(s, dist, extra);   /* send the extra distance bits */
  1108             }
  1109         } /* literal or match pair ? */
  1110 
  1111         /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
  1112         Assert(s->pending < s->lit_bufsize + 2*lx, "pendingBuf overflow");
  1113 
  1114     } while (lx < s->last_lit);
  1115 
  1116     send_code(s, END_BLOCK, ltree);
  1117     s->last_eob_len = ltree[END_BLOCK].Len;
  1118 }
  1119 
  1120 /* ===========================================================================
  1121  * Set the data type to ASCII or BINARY, using a crude approximation:
  1122  * binary if more than 20% of the bytes are <= 6 or >= 128, ascii otherwise.
  1123  * IN assertion: the fields freq of dyn_ltree are set and the total of all
  1124  * frequencies does not exceed 64K (to fit in an int on 16 bit machines).
  1125  */
  1126 local void set_data_type(
  1127     deflate_state *s)
  1128 {
  1129     int n = 0;
  1130     unsigned ascii_freq = 0;
  1131     unsigned bin_freq = 0;
  1132     while (n < 7)        bin_freq += s->dyn_ltree[n++].Freq;
  1133     while (n < 128)    ascii_freq += s->dyn_ltree[n++].Freq;
  1134     while (n < LITERALS) bin_freq += s->dyn_ltree[n++].Freq;
  1135     s->data_type = (Byte)(bin_freq > (ascii_freq >> 2) ? Z_BINARY : Z_ASCII);
  1136 }
  1137 
  1138 /* ===========================================================================
  1139  * Reverse the first len bits of a code, using straightforward code (a faster
  1140  * method would use a table)
  1141  * IN assertion: 1 <= len <= 15
  1142  */
  1143 local unsigned bi_reverse(
  1144     unsigned code, /* the value to invert */
  1145     int len)       /* its bit length */
  1146 {
  1147     register unsigned res = 0;
  1148     do {
  1149         res |= code & 1;
  1150         code >>= 1, res <<= 1;
  1151     } while (--len > 0);
  1152     return res >> 1;
  1153 }
  1154 
  1155 /* ===========================================================================
  1156  * Flush the bit buffer, keeping at most 7 bits in it.
  1157  */
  1158 local void bi_flush(
  1159     deflate_state *s)
  1160 {
  1161     if (s->bi_valid == 16) {
  1162         put_short(s, s->bi_buf);
  1163         s->bi_buf = 0;
  1164         s->bi_valid = 0;
  1165     } else if (s->bi_valid >= 8) {
  1166         put_byte(s, (Byte)s->bi_buf);
  1167         s->bi_buf >>= 8;
  1168         s->bi_valid -= 8;
  1169     }
  1170 }
  1171 
  1172 /* ===========================================================================
  1173  * Flush the bit buffer and align the output on a byte boundary
  1174  */
  1175 local void bi_windup(
  1176     deflate_state *s)
  1177 {
  1178     if (s->bi_valid > 8) {
  1179         put_short(s, s->bi_buf);
  1180     } else if (s->bi_valid > 0) {
  1181         put_byte(s, (Byte)s->bi_buf);
  1182     }
  1183     s->bi_buf = 0;
  1184     s->bi_valid = 0;
  1185 #ifdef DEBUG
  1186     s->bits_sent = (s->bits_sent+7) & ~7;
  1187 #endif
  1188 }
  1189 
  1190 /* ===========================================================================
  1191  * Copy a stored block, storing first the length and its
  1192  * one's complement if requested.
  1193  */
  1194 local void copy_block(
  1195     deflate_state *s,
  1196     charf    *buf,    /* the input data */
  1197     unsigned len,     /* its length */
  1198     int      header)  /* true if block header must be written */
  1199 {
  1200     bi_windup(s);        /* align on byte boundary */
  1201     s->last_eob_len = 8; /* enough lookahead for inflate */
  1202 
  1203     if (header) {
  1204         put_short(s, (ush)len);   
  1205         put_short(s, (ush)~len);
  1206 #ifdef DEBUG
  1207         s->bits_sent += 2*16;
  1208 #endif
  1209     }
  1210 #ifdef DEBUG
  1211     s->bits_sent += (ulg)len<<3;
  1212 #endif
  1213     while (len--) {
  1214         put_byte(s, *buf++);
  1215     }
  1216 }