os/ossrv/compressionlibs/ziplib/test/oldezlib/EZLib/trees.cpp
author sl
Tue, 10 Jun 2014 14:32:02 +0200
changeset 1 260cb5ec6c19
permissions -rw-r--r--
Update contrib.
sl@0
     1
/* trees.c -- output deflated data using Huffman coding
sl@0
     2
 * Copyright (C) 1995-1998 Jean-loup Gailly
sl@0
     3
 * For conditions of distribution and use, see copyright notice in zlib.h 
sl@0
     4
 */
sl@0
     5
sl@0
     6
/*
sl@0
     7
 *  ALGORITHM
sl@0
     8
 *
sl@0
     9
 *      The "deflation" process uses several Huffman trees. The more
sl@0
    10
 *      common source values are represented by shorter bit sequences.
sl@0
    11
 *
sl@0
    12
 *      Each code tree is stored in a compressed form which is itself
sl@0
    13
 * a Huffman encoding of the lengths of all the code strings (in
sl@0
    14
 * ascending order by source values).  The actual code strings are
sl@0
    15
 * reconstructed from the lengths in the inflate process, as described
sl@0
    16
 * in the deflate specification.
sl@0
    17
 *
sl@0
    18
 *  REFERENCES
sl@0
    19
 *
sl@0
    20
 *      Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
sl@0
    21
 *      Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
sl@0
    22
 *
sl@0
    23
 *      Storer, James A.
sl@0
    24
 *          Data Compression:  Methods and Theory, pp. 49-50.
sl@0
    25
 *          Computer Science Press, 1988.  ISBN 0-7167-8156-5.
sl@0
    26
 *
sl@0
    27
 *      Sedgewick, R.
sl@0
    28
 *          Algorithms, p290.
sl@0
    29
 *          Addison-Wesley, 1983. ISBN 0-201-06672-6.
sl@0
    30
 */
sl@0
    31
sl@0
    32
/* @(#) $Id$ */
sl@0
    33
sl@0
    34
/* #define GEN_TREES_H */
sl@0
    35
sl@0
    36
#include <e32std.h>
sl@0
    37
sl@0
    38
#include "deflate.h"
sl@0
    39
sl@0
    40
#ifdef DEBUG
sl@0
    41
#  include <ctype.h>
sl@0
    42
#endif
sl@0
    43
sl@0
    44
/* ===========================================================================
sl@0
    45
 * Constants
sl@0
    46
 */
sl@0
    47
sl@0
    48
#define MAX_BL_BITS 7
sl@0
    49
/* Bit length codes must not exceed MAX_BL_BITS bits */
sl@0
    50
sl@0
    51
#define END_BLOCK 256
sl@0
    52
/* end of block literal code */
sl@0
    53
sl@0
    54
#define REP_3_6      16
sl@0
    55
/* repeat previous bit length 3-6 times (2 bits of repeat count) */
sl@0
    56
sl@0
    57
#define REPZ_3_10    17
sl@0
    58
/* repeat a zero length 3-10 times  (3 bits of repeat count) */
sl@0
    59
sl@0
    60
#define REPZ_11_138  18
sl@0
    61
/* repeat a zero length 11-138 times  (7 bits of repeat count) */
sl@0
    62
sl@0
    63
local const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
sl@0
    64
   = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
sl@0
    65
sl@0
    66
local const int extra_dbits[D_CODES] /* extra bits for each distance code */
sl@0
    67
   = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
sl@0
    68
sl@0
    69
local const int extra_blbits[BL_CODES]/* extra bits for each bit length code */
sl@0
    70
   = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
sl@0
    71
sl@0
    72
local const uch bl_order[BL_CODES]
sl@0
    73
   = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
sl@0
    74
/* The lengths of the bit length codes are sent in order of decreasing
sl@0
    75
 * probability, to avoid transmitting the lengths for unused bit length codes.
sl@0
    76
 */
sl@0
    77
sl@0
    78
#define Buf_size (8 * 2*sizeof(char))
sl@0
    79
/* Number of bits used within bi_buf. (bi_buf might be implemented on
sl@0
    80
 * more than 16 bits on some systems.)
sl@0
    81
 */
sl@0
    82
sl@0
    83
/* ===========================================================================
sl@0
    84
 * Local data. These are initialized only once.
sl@0
    85
 */
sl@0
    86
sl@0
    87
#define DIST_CODE_LEN  512 /* see definition of array dist_code below */
sl@0
    88
sl@0
    89
#if defined(GEN_TREES_H) || !defined(STDC)
sl@0
    90
/* non ANSI compilers may not accept trees.h */
sl@0
    91
sl@0
    92
local ct_data static_ltree[L_CODES+2];
sl@0
    93
/* The static literal tree. Since the bit lengths are imposed, there is no
sl@0
    94
 * need for the L_CODES extra codes used during heap construction. However
sl@0
    95
 * The codes 286 and 287 are needed to build a canonical tree (see _tr_init
sl@0
    96
 * below).
sl@0
    97
 */
sl@0
    98
sl@0
    99
local ct_data static_dtree[D_CODES];
sl@0
   100
/* The static distance tree. (Actually a trivial tree since all codes use
sl@0
   101
 * 5 bits.)
sl@0
   102
 */
sl@0
   103
sl@0
   104
uch _dist_code[DIST_CODE_LEN];
sl@0
   105
/* Distance codes. The first 256 values correspond to the distances
sl@0
   106
 * 3 .. 258, the last 256 values correspond to the top 8 bits of
sl@0
   107
 * the 15 bit distances.
sl@0
   108
 */
sl@0
   109
sl@0
   110
uch _length_code[MAX_MATCH-MIN_MATCH+1];
sl@0
   111
/* length code for each normalized match length (0 == MIN_MATCH) */
sl@0
   112
sl@0
   113
local int base_length[LENGTH_CODES];
sl@0
   114
/* First normalized length for each code (0 = MIN_MATCH) */
sl@0
   115
sl@0
   116
local int base_dist[D_CODES];
sl@0
   117
/* First normalized distance for each code (0 = distance of 1) */
sl@0
   118
sl@0
   119
#else
sl@0
   120
#  include "trees.h"
sl@0
   121
#endif /* GEN_TREES_H */
sl@0
   122
sl@0
   123
struct static_tree_desc_s {
sl@0
   124
    const ct_data *static_tree;  /* static tree or NULL */
sl@0
   125
    const intf *extra_bits;      /* extra bits for each code or NULL */
sl@0
   126
    int     extra_base;          /* base index for extra_bits */
sl@0
   127
    int     elems;               /* max number of elements in the tree */
sl@0
   128
    int     max_length;          /* max bit length for the codes */
sl@0
   129
};
sl@0
   130
sl@0
   131
const local static_tree_desc  static_l_desc =
sl@0
   132
{static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
sl@0
   133
sl@0
   134
const local static_tree_desc  static_d_desc =
sl@0
   135
{static_dtree, extra_dbits, 0,          D_CODES, MAX_BITS};
sl@0
   136
sl@0
   137
const local static_tree_desc  static_bl_desc =
sl@0
   138
{(const ct_data *)0, extra_blbits, 0,   BL_CODES, MAX_BL_BITS};
sl@0
   139
sl@0
   140
/* ===========================================================================
sl@0
   141
 * Local (static) routines in this file.
sl@0
   142
 */
sl@0
   143
sl@0
   144
local void tr_static_init OF((void));
sl@0
   145
local void init_block     OF((deflate_state *s));
sl@0
   146
local void pqdownheap     OF((deflate_state *s, ct_data *tree, int k));
sl@0
   147
local void gen_bitlen     OF((deflate_state *s, tree_desc *desc));
sl@0
   148
local void gen_codes      OF((ct_data *tree, int max_code, ushf *bl_count));
sl@0
   149
local void build_tree     OF((deflate_state *s, tree_desc *desc));
sl@0
   150
local void scan_tree      OF((deflate_state *s, ct_data *tree, int max_code));
sl@0
   151
local void send_tree      OF((deflate_state *s, ct_data *tree, int max_code));
sl@0
   152
local int  build_bl_tree  OF((deflate_state *s));
sl@0
   153
local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes,
sl@0
   154
                              int blcodes));
sl@0
   155
local void compress_block OF((deflate_state *s, ct_data *ltree,
sl@0
   156
                              ct_data *dtree));
sl@0
   157
local void set_data_type  OF((deflate_state *s));
sl@0
   158
local unsigned bi_reverse OF((unsigned value, int length));
sl@0
   159
local void bi_windup      OF((deflate_state *s));
sl@0
   160
local void bi_flush       OF((deflate_state *s));
sl@0
   161
local void copy_block     OF((deflate_state *s, charf *buf, unsigned len,
sl@0
   162
                              int header));
sl@0
   163
sl@0
   164
#ifdef GEN_TREES_H
sl@0
   165
local void gen_trees_header OF((void));
sl@0
   166
#endif
sl@0
   167
sl@0
   168
#ifndef DEBUG
sl@0
   169
#  define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
sl@0
   170
   /* Send a code of the given tree. c and tree must not have side effects */
sl@0
   171
sl@0
   172
#else /* DEBUG */
sl@0
   173
#  define send_code(s, c, tree) \
sl@0
   174
     { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \
sl@0
   175
       send_bits(s, tree[c].Code, tree[c].Len); }
sl@0
   176
#endif
sl@0
   177
sl@0
   178
/* ===========================================================================
sl@0
   179
 * Output a short LSB first on the stream.
sl@0
   180
 * IN assertion: there is enough room in pendingBuf.
sl@0
   181
 */
sl@0
   182
#define put_short(s, w) { \
sl@0
   183
    put_byte(s, (uch)((w) & 0xff)); \
sl@0
   184
    put_byte(s, (uch)((ush)(w) >> 8)); \
sl@0
   185
}
sl@0
   186
sl@0
   187
/* ===========================================================================
sl@0
   188
 * Send a value on a given number of bits.
sl@0
   189
 * IN assertion: length <= 16 and value fits in length bits.
sl@0
   190
 */
sl@0
   191
#ifdef DEBUG
sl@0
   192
local void send_bits      OF((deflate_state *s, int value, int length));
sl@0
   193
sl@0
   194
local void send_bits(
sl@0
   195
    deflate_state *s,
sl@0
   196
    int value,  /* value to send */
sl@0
   197
    int length) /* number of bits */
sl@0
   198
{
sl@0
   199
    Tracevv((stderr," l %2d v %4x ", length, value));
sl@0
   200
    Assert(length > 0 && length <= 15, "invalid length");
sl@0
   201
    s->bits_sent += (ulg)length;
sl@0
   202
sl@0
   203
    /* If not enough room in bi_buf, use (valid) bits from bi_buf and
sl@0
   204
     * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
sl@0
   205
     * unused bits in value.
sl@0
   206
     */
sl@0
   207
    if (s->bi_valid > (int)Buf_size - length) {
sl@0
   208
        s->bi_buf |= (value << s->bi_valid);
sl@0
   209
        put_short(s, s->bi_buf);
sl@0
   210
        s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
sl@0
   211
        s->bi_valid += length - Buf_size;
sl@0
   212
    } else {
sl@0
   213
        s->bi_buf |= value << s->bi_valid;
sl@0
   214
        s->bi_valid += length;
sl@0
   215
    }
sl@0
   216
}
sl@0
   217
#else /* !DEBUG */
sl@0
   218
sl@0
   219
#define send_bits(s, value, length) \
sl@0
   220
{ int len = length;\
sl@0
   221
  if (s->bi_valid > (int)Buf_size - len) {\
sl@0
   222
    int val = value;\
sl@0
   223
    s->bi_buf |= (val << s->bi_valid);\
sl@0
   224
    put_short(s, s->bi_buf);\
sl@0
   225
    s->bi_buf = STATIC_CAST(ush,val >> (Buf_size - s->bi_valid));\
sl@0
   226
    s->bi_valid += len - Buf_size;\
sl@0
   227
  } else {\
sl@0
   228
    s->bi_buf |= (value) << s->bi_valid;\
sl@0
   229
    s->bi_valid += len;\
sl@0
   230
  }\
sl@0
   231
}
sl@0
   232
#endif /* DEBUG */
sl@0
   233
sl@0
   234
sl@0
   235
#define MAX(a,b) (a >= b ? a : b)
sl@0
   236
/* the arguments must not have side effects */
sl@0
   237
sl@0
   238
/* ===========================================================================
sl@0
   239
 * Initialize the various 'constant' tables.
sl@0
   240
 */
sl@0
   241
local void tr_static_init()
sl@0
   242
{
sl@0
   243
#if defined(GEN_TREES_H) || !defined(STDC)
sl@0
   244
    static int static_init_done = 0;
sl@0
   245
    int n;        /* iterates over tree elements */
sl@0
   246
    int bits;     /* bit counter */
sl@0
   247
    int length;   /* length value */
sl@0
   248
    int code;     /* code value */
sl@0
   249
    int dist;     /* distance index */
sl@0
   250
    ush bl_count[MAX_BITS+1];
sl@0
   251
    /* number of codes at each bit length for an optimal tree */
sl@0
   252
sl@0
   253
    if (static_init_done) return;
sl@0
   254
sl@0
   255
    /* For some embedded targets, global variables are not initialized: */
sl@0
   256
    static_l_desc.static_tree = static_ltree;
sl@0
   257
    static_l_desc.extra_bits = extra_lbits;
sl@0
   258
    static_d_desc.static_tree = static_dtree;
sl@0
   259
    static_d_desc.extra_bits = extra_dbits;
sl@0
   260
    static_bl_desc.extra_bits = extra_blbits;
sl@0
   261
sl@0
   262
    /* Initialize the mapping length (0..255) -> length code (0..28) */
sl@0
   263
    length = 0;
sl@0
   264
    for (code = 0; code < LENGTH_CODES-1; code++) {
sl@0
   265
        base_length[code] = length;
sl@0
   266
        for (n = 0; n < (1<<extra_lbits[code]); n++) {
sl@0
   267
            _length_code[length++] = (uch)code;
sl@0
   268
        }
sl@0
   269
    }
sl@0
   270
    Assert (length == 256, "tr_static_init: length != 256");
sl@0
   271
    /* Note that the length 255 (match length 258) can be represented
sl@0
   272
     * in two different ways: code 284 + 5 bits or code 285, so we
sl@0
   273
     * overwrite length_code[255] to use the best encoding:
sl@0
   274
     */
sl@0
   275
    _length_code[length-1] = (uch)code;
sl@0
   276
sl@0
   277
    /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
sl@0
   278
    dist = 0;
sl@0
   279
    for (code = 0 ; code < 16; code++) {
sl@0
   280
        base_dist[code] = dist;
sl@0
   281
        for (n = 0; n < (1<<extra_dbits[code]); n++) {
sl@0
   282
            _dist_code[dist++] = (uch)code;
sl@0
   283
        }
sl@0
   284
    }
sl@0
   285
    Assert (dist == 256, "tr_static_init: dist != 256");
sl@0
   286
    dist >>= 7; /* from now on, all distances are divided by 128 */
sl@0
   287
    for ( ; code < D_CODES; code++) {
sl@0
   288
        base_dist[code] = dist << 7;
sl@0
   289
        for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
sl@0
   290
            _dist_code[256 + dist++] = (uch)code;
sl@0
   291
        }
sl@0
   292
    }
sl@0
   293
    Assert (dist == 256, "tr_static_init: 256+dist != 512");
sl@0
   294
sl@0
   295
    /* Construct the codes of the static literal tree */
sl@0
   296
    for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
sl@0
   297
    n = 0;
sl@0
   298
    while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
sl@0
   299
    while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
sl@0
   300
    while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
sl@0
   301
    while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
sl@0
   302
    /* Codes 286 and 287 do not exist, but we must include them in the
sl@0
   303
     * tree construction to get a canonical Huffman tree (longest code
sl@0
   304
     * all ones)
sl@0
   305
     */
sl@0
   306
    gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
sl@0
   307
sl@0
   308
    /* The static distance tree is trivial: */
sl@0
   309
    for (n = 0; n < D_CODES; n++) {
sl@0
   310
        static_dtree[n].Len = 5;
sl@0
   311
        static_dtree[n].Code = bi_reverse((unsigned)n, 5);
sl@0
   312
    }
sl@0
   313
    static_init_done = 1;
sl@0
   314
sl@0
   315
#  ifdef GEN_TREES_H
sl@0
   316
    gen_trees_header();
sl@0
   317
#  endif
sl@0
   318
#endif /* defined(GEN_TREES_H) || !defined(STDC) */
sl@0
   319
}
sl@0
   320
sl@0
   321
/* ===========================================================================
sl@0
   322
 * Genererate the file trees.h describing the static trees.
sl@0
   323
 */
sl@0
   324
#ifdef GEN_TREES_H
sl@0
   325
#  ifndef DEBUG
sl@0
   326
#    include <stdio.h>
sl@0
   327
#  endif
sl@0
   328
sl@0
   329
#  define SEPARATOR(i, last, width) \
sl@0
   330
      ((i) == (last)? "\n};\n\n" :    \
sl@0
   331
       ((i) % (width) == (width)-1 ? ",\n" : ", "))
sl@0
   332
sl@0
   333
void gen_trees_header()
sl@0
   334
{
sl@0
   335
    FILE *header = fopen("trees.h", "w");
sl@0
   336
    int i;
sl@0
   337
sl@0
   338
    Assert (header != NULL, "Can't open trees.h");
sl@0
   339
    fprintf(header,
sl@0
   340
	    "/* header created automatically with -DGEN_TREES_H */\n\n");
sl@0
   341
sl@0
   342
    fprintf(header, "local const ct_data static_ltree[L_CODES+2] = {\n");
sl@0
   343
    for (i = 0; i < L_CODES+2; i++) {
sl@0
   344
	fprintf(header, "{{%3u},{%3u}}%s", static_ltree[i].Code,
sl@0
   345
		static_ltree[i].Len, SEPARATOR(i, L_CODES+1, 5));
sl@0
   346
    }
sl@0
   347
sl@0
   348
    fprintf(header, "local const ct_data static_dtree[D_CODES] = {\n");
sl@0
   349
    for (i = 0; i < D_CODES; i++) {
sl@0
   350
	fprintf(header, "{{%2u},{%2u}}%s", static_dtree[i].Code,
sl@0
   351
		static_dtree[i].Len, SEPARATOR(i, D_CODES-1, 5));
sl@0
   352
    }
sl@0
   353
sl@0
   354
    fprintf(header, "const uch _dist_code[DIST_CODE_LEN] = {\n");
sl@0
   355
    for (i = 0; i < DIST_CODE_LEN; i++) {
sl@0
   356
	fprintf(header, "%2u%s", _dist_code[i],
sl@0
   357
		SEPARATOR(i, DIST_CODE_LEN-1, 20));
sl@0
   358
    }
sl@0
   359
sl@0
   360
    fprintf(header, "const uch _length_code[MAX_MATCH-MIN_MATCH+1]= {\n");
sl@0
   361
    for (i = 0; i < MAX_MATCH-MIN_MATCH+1; i++) {
sl@0
   362
	fprintf(header, "%2u%s", _length_code[i],
sl@0
   363
		SEPARATOR(i, MAX_MATCH-MIN_MATCH, 20));
sl@0
   364
    }
sl@0
   365
sl@0
   366
    fprintf(header, "local const int base_length[LENGTH_CODES] = {\n");
sl@0
   367
    for (i = 0; i < LENGTH_CODES; i++) {
sl@0
   368
	fprintf(header, "%1u%s", base_length[i],
sl@0
   369
		SEPARATOR(i, LENGTH_CODES-1, 20));
sl@0
   370
    }
sl@0
   371
sl@0
   372
    fprintf(header, "local const int base_dist[D_CODES] = {\n");
sl@0
   373
    for (i = 0; i < D_CODES; i++) {
sl@0
   374
	fprintf(header, "%5u%s", base_dist[i],
sl@0
   375
		SEPARATOR(i, D_CODES-1, 10));
sl@0
   376
    }
sl@0
   377
sl@0
   378
    fclose(header);
sl@0
   379
}
sl@0
   380
#endif /* GEN_TREES_H */
sl@0
   381
sl@0
   382
/* ===========================================================================
sl@0
   383
 * Initialize the tree data structures for a new zlib stream.
sl@0
   384
 */
sl@0
   385
void _tr_init(
sl@0
   386
    deflate_state *s)
sl@0
   387
{
sl@0
   388
    tr_static_init();
sl@0
   389
sl@0
   390
    s->l_desc.dyn_tree = s->dyn_ltree;
sl@0
   391
    s->l_desc.stat_desc = &static_l_desc;
sl@0
   392
sl@0
   393
    s->d_desc.dyn_tree = s->dyn_dtree;
sl@0
   394
    s->d_desc.stat_desc = &static_d_desc;
sl@0
   395
sl@0
   396
    s->bl_desc.dyn_tree = s->bl_tree;
sl@0
   397
    s->bl_desc.stat_desc = &static_bl_desc;
sl@0
   398
sl@0
   399
    s->bi_buf = 0;
sl@0
   400
    s->bi_valid = 0;
sl@0
   401
    s->last_eob_len = 8; /* enough lookahead for inflate */
sl@0
   402
#ifdef DEBUG
sl@0
   403
    s->compressed_len = 0L;
sl@0
   404
    s->bits_sent = 0L;
sl@0
   405
#endif
sl@0
   406
sl@0
   407
    /* Initialize the first block of the first file: */
sl@0
   408
    init_block(s);
sl@0
   409
}
sl@0
   410
sl@0
   411
/* ===========================================================================
sl@0
   412
 * Initialize a new block.
sl@0
   413
 */
sl@0
   414
local void init_block(
sl@0
   415
    deflate_state *s)
sl@0
   416
{
sl@0
   417
    int n; /* iterates over tree elements */
sl@0
   418
sl@0
   419
    /* Initialize the trees. */
sl@0
   420
    for (n = 0; n < L_CODES;  n++) s->dyn_ltree[n].Freq = 0;
sl@0
   421
    for (n = 0; n < D_CODES;  n++) s->dyn_dtree[n].Freq = 0;
sl@0
   422
    for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
sl@0
   423
sl@0
   424
    s->dyn_ltree[END_BLOCK].Freq = 1;
sl@0
   425
    s->opt_len = s->static_len = 0L;
sl@0
   426
    s->last_lit = s->matches = 0;
sl@0
   427
}
sl@0
   428
sl@0
   429
#define SMALLEST 1
sl@0
   430
/* Index within the heap array of least frequent node in the Huffman tree */
sl@0
   431
sl@0
   432
sl@0
   433
/* ===========================================================================
sl@0
   434
 * Remove the smallest element from the heap and recreate the heap with
sl@0
   435
 * one less element. Updates heap and heap_len.
sl@0
   436
 */
sl@0
   437
#define pqremove(s, tree, top) \
sl@0
   438
{\
sl@0
   439
    top = s->heap[SMALLEST]; \
sl@0
   440
    s->heap[SMALLEST] = s->heap[s->heap_len--]; \
sl@0
   441
    pqdownheap(s, tree, SMALLEST); \
sl@0
   442
}
sl@0
   443
sl@0
   444
/* ===========================================================================
sl@0
   445
 * Compares to subtrees, using the tree depth as tie breaker when
sl@0
   446
 * the subtrees have equal frequency. This minimizes the worst case length.
sl@0
   447
 */
sl@0
   448
#define smaller(tree, n, m, depth) \
sl@0
   449
   (tree[n].Freq < tree[m].Freq || \
sl@0
   450
   (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
sl@0
   451
sl@0
   452
/* ===========================================================================
sl@0
   453
 * Restore the heap property by moving down the tree starting at node k,
sl@0
   454
 * exchanging a node with the smallest of its two sons if necessary, stopping
sl@0
   455
 * when the heap property is re-established (each father smaller than its
sl@0
   456
 * two sons).
sl@0
   457
 */
sl@0
   458
local void pqdownheap(
sl@0
   459
    deflate_state *s,
sl@0
   460
    ct_data *tree,  /* the tree to restore */
sl@0
   461
    int k)               /* node to move down */
sl@0
   462
{
sl@0
   463
    int v = s->heap[k];
sl@0
   464
    int j = k << 1;  /* left son of k */
sl@0
   465
    while (j <= s->heap_len) {
sl@0
   466
        /* Set j to the smallest of the two sons: */
sl@0
   467
        if (j < s->heap_len &&
sl@0
   468
            smaller(tree, s->heap[j+1], s->heap[j], s->depth)) {
sl@0
   469
            j++;
sl@0
   470
        }
sl@0
   471
        /* Exit if v is smaller than both sons */
sl@0
   472
        if (smaller(tree, v, s->heap[j], s->depth)) break;
sl@0
   473
sl@0
   474
        /* Exchange v with the smallest son */
sl@0
   475
        s->heap[k] = s->heap[j];  k = j;
sl@0
   476
sl@0
   477
        /* And continue down the tree, setting j to the left son of k */
sl@0
   478
        j <<= 1;
sl@0
   479
    }
sl@0
   480
    s->heap[k] = v;
sl@0
   481
}
sl@0
   482
sl@0
   483
/* ===========================================================================
sl@0
   484
 * Compute the optimal bit lengths for a tree and update the total bit length
sl@0
   485
 * for the current block.
sl@0
   486
 * IN assertion: the fields freq and dad are set, heap[heap_max] and
sl@0
   487
 *    above are the tree nodes sorted by increasing frequency.
sl@0
   488
 * OUT assertions: the field len is set to the optimal bit length, the
sl@0
   489
 *     array bl_count contains the frequencies for each bit length.
sl@0
   490
 *     The length opt_len is updated; static_len is also updated if stree is
sl@0
   491
 *     not null.
sl@0
   492
 */
sl@0
   493
local void gen_bitlen(
sl@0
   494
    deflate_state *s,
sl@0
   495
    tree_desc *desc)   /* the tree descriptor */
sl@0
   496
{
sl@0
   497
    ct_data *tree        = desc->dyn_tree;
sl@0
   498
    int max_code         = desc->max_code;
sl@0
   499
    const ct_data *stree = desc->stat_desc->static_tree;
sl@0
   500
    const intf *extra    = desc->stat_desc->extra_bits;
sl@0
   501
    int base             = desc->stat_desc->extra_base;
sl@0
   502
    int max_length       = desc->stat_desc->max_length;
sl@0
   503
    int h;              /* heap index */
sl@0
   504
    int n, m;           /* iterate over the tree elements */
sl@0
   505
    int bits;           /* bit length */
sl@0
   506
    int xbits;          /* extra bits */
sl@0
   507
    ush f;              /* frequency */
sl@0
   508
    int overflow = 0;   /* number of elements with bit length too large */
sl@0
   509
sl@0
   510
    for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
sl@0
   511
sl@0
   512
    /* In a first pass, compute the optimal bit lengths (which may
sl@0
   513
     * overflow in the case of the bit length tree).
sl@0
   514
     */
sl@0
   515
    tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
sl@0
   516
sl@0
   517
    for (h = s->heap_max+1; h < HEAP_SIZE; h++) {
sl@0
   518
        n = s->heap[h];
sl@0
   519
        bits = tree[tree[n].Dad].Len + 1;
sl@0
   520
        if (bits > max_length) bits = max_length, overflow++;
sl@0
   521
        tree[n].Len = (ush)bits;
sl@0
   522
        /* We overwrite tree[n].Dad which is no longer needed */
sl@0
   523
sl@0
   524
        if (n > max_code) continue; /* not a leaf node */
sl@0
   525
sl@0
   526
        s->bl_count[bits]++;
sl@0
   527
        xbits = 0;
sl@0
   528
        if (n >= base) xbits = extra[n-base];
sl@0
   529
        f = tree[n].Freq;
sl@0
   530
        s->opt_len += (ulg)f * (bits + xbits);
sl@0
   531
        if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits);
sl@0
   532
    }
sl@0
   533
    if (overflow == 0) return;
sl@0
   534
sl@0
   535
    Trace((stderr,"\nbit length overflow\n"));
sl@0
   536
    /* This happens for example on obj2 and pic of the Calgary corpus */
sl@0
   537
sl@0
   538
    /* Find the first bit length which could increase: */
sl@0
   539
    do {
sl@0
   540
        bits = max_length-1;
sl@0
   541
        while (s->bl_count[bits] == 0) bits--;
sl@0
   542
        s->bl_count[bits]--;      /* move one leaf down the tree */
sl@0
   543
        s->bl_count[bits+1] += 2; /* move one overflow item as its brother */
sl@0
   544
        s->bl_count[max_length]--;
sl@0
   545
        /* The brother of the overflow item also moves one step up,
sl@0
   546
         * but this does not affect bl_count[max_length]
sl@0
   547
         */
sl@0
   548
        overflow -= 2;
sl@0
   549
    } while (overflow > 0);
sl@0
   550
sl@0
   551
    /* Now recompute all bit lengths, scanning in increasing frequency.
sl@0
   552
     * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
sl@0
   553
     * lengths instead of fixing only the wrong ones. This idea is taken
sl@0
   554
     * from 'ar' written by Haruhiko Okumura.)
sl@0
   555
     */
sl@0
   556
    for (bits = max_length; bits != 0; bits--) {
sl@0
   557
        n = s->bl_count[bits];
sl@0
   558
        while (n != 0) {
sl@0
   559
            m = s->heap[--h];
sl@0
   560
            if (m > max_code) continue;
sl@0
   561
            if (tree[m].Len != (unsigned) bits) {
sl@0
   562
                Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
sl@0
   563
                s->opt_len += ((long)bits - (long)tree[m].Len)
sl@0
   564
                              *(long)tree[m].Freq;
sl@0
   565
                tree[m].Len = (ush)bits;
sl@0
   566
            }
sl@0
   567
            n--;
sl@0
   568
        }
sl@0
   569
    }
sl@0
   570
}
sl@0
   571
sl@0
   572
/* ===========================================================================
sl@0
   573
 * Generate the codes for a given tree and bit counts (which need not be
sl@0
   574
 * optimal).
sl@0
   575
 * IN assertion: the array bl_count contains the bit length statistics for
sl@0
   576
 * the given tree and the field len is set for all tree elements.
sl@0
   577
 * OUT assertion: the field code is set for all tree elements of non
sl@0
   578
 *     zero code length.
sl@0
   579
 */
sl@0
   580
local void gen_codes (
sl@0
   581
    ct_data *tree,             /* the tree to decorate */
sl@0
   582
    int max_code,             /* largest code with non zero frequency */
sl@0
   583
    ushf *bl_count)            /* number of codes at each bit length */
sl@0
   584
{
sl@0
   585
    ush next_code[MAX_BITS+1]; /* next code value for each bit length */
sl@0
   586
    ush code = 0;              /* running code value */
sl@0
   587
    int bits;                  /* bit index */
sl@0
   588
    int n;                     /* code index */
sl@0
   589
sl@0
   590
    /* The distribution counts are first used to generate the code values
sl@0
   591
     * without bit reversal.
sl@0
   592
     */
sl@0
   593
    for (bits = 1; bits <= MAX_BITS; bits++) {
sl@0
   594
        next_code[bits] = code = STATIC_CAST(ush,(code + bl_count[bits-1]) << 1);
sl@0
   595
    }
sl@0
   596
    /* Check that the bit counts in bl_count are consistent. The last code
sl@0
   597
     * must be all ones.
sl@0
   598
     */
sl@0
   599
    Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
sl@0
   600
            "inconsistent bit counts");
sl@0
   601
    Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
sl@0
   602
sl@0
   603
    for (n = 0;  n <= max_code; n++) {
sl@0
   604
        int len = tree[n].Len;
sl@0
   605
        if (len == 0) continue;
sl@0
   606
        /* Now reverse the bits */
sl@0
   607
        tree[n].Code = STATIC_CAST(ush,bi_reverse(next_code[len]++, len));
sl@0
   608
sl@0
   609
        Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
sl@0
   610
             n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
sl@0
   611
    }
sl@0
   612
}
sl@0
   613
sl@0
   614
/* ===========================================================================
sl@0
   615
 * Construct one Huffman tree and assigns the code bit strings and lengths.
sl@0
   616
 * Update the total bit length for the current block.
sl@0
   617
 * IN assertion: the field freq is set for all tree elements.
sl@0
   618
 * OUT assertions: the fields len and code are set to the optimal bit length
sl@0
   619
 *     and corresponding code. The length opt_len is updated; static_len is
sl@0
   620
 *     also updated if stree is not null. The field max_code is set.
sl@0
   621
 */
sl@0
   622
local void build_tree(
sl@0
   623
    deflate_state *s,
sl@0
   624
    tree_desc *desc) /* the tree descriptor */
sl@0
   625
{
sl@0
   626
    ct_data *tree         = desc->dyn_tree;
sl@0
   627
    const ct_data *stree  = desc->stat_desc->static_tree;
sl@0
   628
    int elems             = desc->stat_desc->elems;
sl@0
   629
    int n, m;          /* iterate over heap elements */
sl@0
   630
    int max_code = -1; /* largest code with non zero frequency */
sl@0
   631
    int node;          /* new node being created */
sl@0
   632
sl@0
   633
    /* Construct the initial heap, with least frequent element in
sl@0
   634
     * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
sl@0
   635
     * heap[0] is not used.
sl@0
   636
     */
sl@0
   637
    s->heap_len = 0, s->heap_max = HEAP_SIZE;
sl@0
   638
sl@0
   639
    for (n = 0; n < elems; n++) {
sl@0
   640
        if (tree[n].Freq != 0) {
sl@0
   641
            s->heap[++(s->heap_len)] = max_code = n;
sl@0
   642
            s->depth[n] = 0;
sl@0
   643
        } else {
sl@0
   644
            tree[n].Len = 0;
sl@0
   645
        }
sl@0
   646
    }
sl@0
   647
sl@0
   648
    /* The pkzip format requires that at least one distance code exists,
sl@0
   649
     * and that at least one bit should be sent even if there is only one
sl@0
   650
     * possible code. So to avoid special checks later on we force at least
sl@0
   651
     * two codes of non zero frequency.
sl@0
   652
     */
sl@0
   653
    while (s->heap_len < 2) {
sl@0
   654
        node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
sl@0
   655
        tree[node].Freq = 1;
sl@0
   656
        s->depth[node] = 0;
sl@0
   657
        s->opt_len--; if (stree) s->static_len -= stree[node].Len;
sl@0
   658
        /* node is 0 or 1 so it does not have extra bits */
sl@0
   659
    }
sl@0
   660
    desc->max_code = max_code;
sl@0
   661
sl@0
   662
    /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
sl@0
   663
     * establish sub-heaps of increasing lengths:
sl@0
   664
     */
sl@0
   665
    for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
sl@0
   666
sl@0
   667
    /* Construct the Huffman tree by repeatedly combining the least two
sl@0
   668
     * frequent nodes.
sl@0
   669
     */
sl@0
   670
    node = elems;              /* next internal node of the tree */
sl@0
   671
    do {
sl@0
   672
        pqremove(s, tree, n);  /* n = node of least frequency */
sl@0
   673
        m = s->heap[SMALLEST]; /* m = node of next least frequency */
sl@0
   674
sl@0
   675
        s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
sl@0
   676
        s->heap[--(s->heap_max)] = m;
sl@0
   677
sl@0
   678
        /* Create a new node father of n and m */
sl@0
   679
        tree[node].Freq = STATIC_CAST(ush,tree[n].Freq + tree[m].Freq);
sl@0
   680
        s->depth[node] = (uch) (MAX(s->depth[n], s->depth[m]) + 1);
sl@0
   681
        tree[n].Dad = tree[m].Dad = (ush)node;
sl@0
   682
#ifdef DUMP_BL_TREE
sl@0
   683
        if (tree == s->bl_tree) {
sl@0
   684
            fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
sl@0
   685
                    node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
sl@0
   686
        }
sl@0
   687
#endif
sl@0
   688
        /* and insert the new node in the heap */
sl@0
   689
        s->heap[SMALLEST] = node++;
sl@0
   690
        pqdownheap(s, tree, SMALLEST);
sl@0
   691
sl@0
   692
    } while (s->heap_len >= 2);
sl@0
   693
sl@0
   694
    s->heap[--(s->heap_max)] = s->heap[SMALLEST];
sl@0
   695
sl@0
   696
    /* At this point, the fields freq and dad are set. We can now
sl@0
   697
     * generate the bit lengths.
sl@0
   698
     */
sl@0
   699
    gen_bitlen(s, (tree_desc *)desc);
sl@0
   700
sl@0
   701
    /* The field len is now set, we can generate the bit codes */
sl@0
   702
    gen_codes ((ct_data *)tree, max_code, s->bl_count);
sl@0
   703
}
sl@0
   704
sl@0
   705
/* ===========================================================================
sl@0
   706
 * Scan a literal or distance tree to determine the frequencies of the codes
sl@0
   707
 * in the bit length tree.
sl@0
   708
 */
sl@0
   709
local void scan_tree (
sl@0
   710
    deflate_state *s,
sl@0
   711
    ct_data *tree,   /* the tree to be scanned */
sl@0
   712
    int max_code)    /* and its largest code of non zero frequency */
sl@0
   713
{
sl@0
   714
    int n;                     /* iterates over all tree elements */
sl@0
   715
    int prevlen = -1;          /* last emitted length */
sl@0
   716
    int curlen;                /* length of current code */
sl@0
   717
    int nextlen = tree[0].Len; /* length of next code */
sl@0
   718
    int count = 0;             /* repeat count of the current code */
sl@0
   719
    int max_count = 7;         /* max repeat count */
sl@0
   720
    int min_count = 4;         /* min repeat count */
sl@0
   721
sl@0
   722
    if (nextlen == 0) max_count = 138, min_count = 3;
sl@0
   723
    tree[max_code+1].Len = (ush)0xffff; /* guard */
sl@0
   724
sl@0
   725
    for (n = 0; n <= max_code; n++) {
sl@0
   726
        curlen = nextlen; nextlen = tree[n+1].Len;
sl@0
   727
        if (++count < max_count && curlen == nextlen) {
sl@0
   728
            continue;
sl@0
   729
        } else if (count < min_count) {
sl@0
   730
			s->bl_tree[curlen].Freq = STATIC_CAST(ush, s->bl_tree[curlen].Freq + count);
sl@0
   731
        } else if (curlen != 0) {
sl@0
   732
            if (curlen != prevlen) s->bl_tree[curlen].Freq++;
sl@0
   733
            s->bl_tree[REP_3_6].Freq++;
sl@0
   734
        } else if (count <= 10) {
sl@0
   735
            s->bl_tree[REPZ_3_10].Freq++;
sl@0
   736
        } else {
sl@0
   737
            s->bl_tree[REPZ_11_138].Freq++;
sl@0
   738
        }
sl@0
   739
        count = 0; prevlen = curlen;
sl@0
   740
        if (nextlen == 0) {
sl@0
   741
            max_count = 138, min_count = 3;
sl@0
   742
        } else if (curlen == nextlen) {
sl@0
   743
            max_count = 6, min_count = 3;
sl@0
   744
        } else {
sl@0
   745
            max_count = 7, min_count = 4;
sl@0
   746
        }
sl@0
   747
    }
sl@0
   748
}
sl@0
   749
sl@0
   750
/* ===========================================================================
sl@0
   751
 * Send a literal or distance tree in compressed form, using the codes in
sl@0
   752
 * bl_tree.
sl@0
   753
 */
sl@0
   754
local void send_tree (
sl@0
   755
    deflate_state *s,
sl@0
   756
    ct_data *tree, /* the tree to be scanned */
sl@0
   757
    int max_code)       /* and its largest code of non zero frequency */
sl@0
   758
{
sl@0
   759
    int n;                     /* iterates over all tree elements */
sl@0
   760
    int prevlen = -1;          /* last emitted length */
sl@0
   761
    int curlen;                /* length of current code */
sl@0
   762
    int nextlen = tree[0].Len; /* length of next code */
sl@0
   763
    int count = 0;             /* repeat count of the current code */
sl@0
   764
    int max_count = 7;         /* max repeat count */
sl@0
   765
    int min_count = 4;         /* min repeat count */
sl@0
   766
sl@0
   767
    /* tree[max_code+1].Len = -1; */  /* guard already set */
sl@0
   768
    if (nextlen == 0) max_count = 138, min_count = 3;
sl@0
   769
sl@0
   770
    for (n = 0; n <= max_code; n++) {
sl@0
   771
        curlen = nextlen; nextlen = tree[n+1].Len;
sl@0
   772
        if (++count < max_count && curlen == nextlen) {
sl@0
   773
            continue;
sl@0
   774
        } else if (count < min_count) {
sl@0
   775
            do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
sl@0
   776
sl@0
   777
        } else if (curlen != 0) {
sl@0
   778
            if (curlen != prevlen) {
sl@0
   779
                send_code(s, curlen, s->bl_tree); count--;
sl@0
   780
            }
sl@0
   781
            Assert(count >= 3 && count <= 6, " 3_6?");
sl@0
   782
            send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2);
sl@0
   783
sl@0
   784
        } else if (count <= 10) {
sl@0
   785
            send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3);
sl@0
   786
sl@0
   787
        } else {
sl@0
   788
            send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7);
sl@0
   789
        }
sl@0
   790
        count = 0; prevlen = curlen;
sl@0
   791
        if (nextlen == 0) {
sl@0
   792
            max_count = 138, min_count = 3;
sl@0
   793
        } else if (curlen == nextlen) {
sl@0
   794
            max_count = 6, min_count = 3;
sl@0
   795
        } else {
sl@0
   796
            max_count = 7, min_count = 4;
sl@0
   797
        }
sl@0
   798
    }
sl@0
   799
}
sl@0
   800
sl@0
   801
/* ===========================================================================
sl@0
   802
 * Construct the Huffman tree for the bit lengths and return the index in
sl@0
   803
 * bl_order of the last bit length code to send.
sl@0
   804
 */
sl@0
   805
local int build_bl_tree(
sl@0
   806
    deflate_state *s)
sl@0
   807
{
sl@0
   808
    int max_blindex;  /* index of last bit length code of non zero freq */
sl@0
   809
sl@0
   810
    /* Determine the bit length frequencies for literal and distance trees */
sl@0
   811
    scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
sl@0
   812
    scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
sl@0
   813
sl@0
   814
    /* Build the bit length tree: */
sl@0
   815
    build_tree(s, (tree_desc *)(&(s->bl_desc)));
sl@0
   816
    /* opt_len now includes the length of the tree representations, except
sl@0
   817
     * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
sl@0
   818
     */
sl@0
   819
sl@0
   820
    /* Determine the number of bit length codes to send. The pkzip format
sl@0
   821
     * requires that at least 4 bit length codes be sent. (appnote.txt says
sl@0
   822
     * 3 but the actual value used is 4.)
sl@0
   823
     */
sl@0
   824
    for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
sl@0
   825
        if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
sl@0
   826
    }
sl@0
   827
    /* Update opt_len to include the bit length tree and counts */
sl@0
   828
    s->opt_len += 3*(max_blindex+1) + 5+5+4;
sl@0
   829
    Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
sl@0
   830
            s->opt_len, s->static_len));
sl@0
   831
sl@0
   832
    return max_blindex;
sl@0
   833
}
sl@0
   834
sl@0
   835
/* ===========================================================================
sl@0
   836
 * Send the header for a block using dynamic Huffman trees: the counts, the
sl@0
   837
 * lengths of the bit length codes, the literal tree and the distance tree.
sl@0
   838
 * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
sl@0
   839
 */
sl@0
   840
local void send_all_trees(
sl@0
   841
    deflate_state *s,
sl@0
   842
    int lcodes, int dcodes, int blcodes) /* number of codes for each tree */
sl@0
   843
{
sl@0
   844
    int rank;                    /* index in bl_order */
sl@0
   845
sl@0
   846
    Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
sl@0
   847
    Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
sl@0
   848
            "too many codes");
sl@0
   849
    Tracev((stderr, "\nbl counts: "));
sl@0
   850
    send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */
sl@0
   851
    send_bits(s, dcodes-1,   5);
sl@0
   852
    send_bits(s, blcodes-4,  4); /* not -3 as stated in appnote.txt */
sl@0
   853
    for (rank = 0; rank < blcodes; rank++) {
sl@0
   854
        Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
sl@0
   855
        send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
sl@0
   856
    }
sl@0
   857
    Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
sl@0
   858
sl@0
   859
    send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */
sl@0
   860
    Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
sl@0
   861
sl@0
   862
    send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */
sl@0
   863
    Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
sl@0
   864
}
sl@0
   865
sl@0
   866
/* ===========================================================================
sl@0
   867
 * Send a stored block
sl@0
   868
 */
sl@0
   869
void _tr_stored_block(
sl@0
   870
    deflate_state *s,
sl@0
   871
    charf *buf,       /* input block */
sl@0
   872
    ulg stored_len,   /* length of input block */
sl@0
   873
    int eof)          /* true if this is the last block for a file */
sl@0
   874
{
sl@0
   875
    send_bits(s, (STORED_BLOCK<<1)+eof, 3);  /* send block type */
sl@0
   876
#ifdef DEBUG
sl@0
   877
    s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L;
sl@0
   878
    s->compressed_len += (stored_len + 4) << 3;
sl@0
   879
#endif
sl@0
   880
    copy_block(s, buf, (unsigned)stored_len, 1); /* with header */
sl@0
   881
}
sl@0
   882
sl@0
   883
/* ===========================================================================
sl@0
   884
 * Send one empty static block to give enough lookahead for inflate.
sl@0
   885
 * This takes 10 bits, of which 7 may remain in the bit buffer.
sl@0
   886
 * The current inflate code requires 9 bits of lookahead. If the
sl@0
   887
 * last two codes for the previous block (real code plus EOB) were coded
sl@0
   888
 * on 5 bits or less, inflate may have only 5+3 bits of lookahead to decode
sl@0
   889
 * the last real code. In this case we send two empty static blocks instead
sl@0
   890
 * of one. (There are no problems if the previous block is stored or fixed.)
sl@0
   891
 * To simplify the code, we assume the worst case of last real code encoded
sl@0
   892
 * on one bit only.
sl@0
   893
 */
sl@0
   894
void _tr_align(
sl@0
   895
    deflate_state *s)
sl@0
   896
{
sl@0
   897
    send_bits(s, STATIC_TREES<<1, 3);
sl@0
   898
    send_code(s, END_BLOCK, static_ltree);
sl@0
   899
#ifdef DEBUG
sl@0
   900
    s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
sl@0
   901
#endif
sl@0
   902
    bi_flush(s);
sl@0
   903
    /* Of the 10 bits for the empty block, we have already sent
sl@0
   904
     * (10 - bi_valid) bits. The lookahead for the last real code (before
sl@0
   905
     * the EOB of the previous block) was thus at least one plus the length
sl@0
   906
     * of the EOB plus what we have just sent of the empty static block.
sl@0
   907
     */
sl@0
   908
    if (1 + s->last_eob_len + 10 - s->bi_valid < 9) {
sl@0
   909
        send_bits(s, STATIC_TREES<<1, 3);
sl@0
   910
        send_code(s, END_BLOCK, static_ltree);
sl@0
   911
#ifdef DEBUG
sl@0
   912
        s->compressed_len += 10L;
sl@0
   913
#endif
sl@0
   914
        bi_flush(s);
sl@0
   915
    }
sl@0
   916
    s->last_eob_len = 7;
sl@0
   917
}
sl@0
   918
sl@0
   919
/* ===========================================================================
sl@0
   920
 * Determine the best encoding for the current block: dynamic trees, static
sl@0
   921
 * trees or store, and output the encoded block to the zip file.
sl@0
   922
 */
sl@0
   923
void _tr_flush_block(
sl@0
   924
    deflate_state *s,
sl@0
   925
    charf *buf,       /* input block, or NULL if too old */
sl@0
   926
    ulg stored_len,   /* length of input block */
sl@0
   927
    int eof)          /* true if this is the last block for a file */
sl@0
   928
{
sl@0
   929
    ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
sl@0
   930
    int max_blindex = 0;  /* index of last bit length code of non zero freq */
sl@0
   931
sl@0
   932
    /* Build the Huffman trees unless a stored block is forced */
sl@0
   933
    if (s->level > 0) {
sl@0
   934
sl@0
   935
	 /* Check if the file is ascii or binary */
sl@0
   936
	if (s->data_type == Z_UNKNOWN) set_data_type(s);
sl@0
   937
sl@0
   938
	/* Construct the literal and distance trees */
sl@0
   939
	build_tree(s, (tree_desc *)(&(s->l_desc)));
sl@0
   940
	Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
sl@0
   941
		s->static_len));
sl@0
   942
sl@0
   943
	build_tree(s, (tree_desc *)(&(s->d_desc)));
sl@0
   944
	Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
sl@0
   945
		s->static_len));
sl@0
   946
	/* At this point, opt_len and static_len are the total bit lengths of
sl@0
   947
	 * the compressed block data, excluding the tree representations.
sl@0
   948
	 */
sl@0
   949
sl@0
   950
	/* Build the bit length tree for the above two trees, and get the index
sl@0
   951
	 * in bl_order of the last bit length code to send.
sl@0
   952
	 */
sl@0
   953
	max_blindex = build_bl_tree(s);
sl@0
   954
sl@0
   955
	/* Determine the best encoding. Compute first the block length in bytes*/
sl@0
   956
	opt_lenb = (s->opt_len+3+7)>>3;
sl@0
   957
	static_lenb = (s->static_len+3+7)>>3;
sl@0
   958
sl@0
   959
	Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
sl@0
   960
		opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
sl@0
   961
		s->last_lit));
sl@0
   962
sl@0
   963
	if (static_lenb <= opt_lenb) opt_lenb = static_lenb;
sl@0
   964
sl@0
   965
    } else {
sl@0
   966
        Assert(buf != (char*)0, "lost buf");
sl@0
   967
	opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
sl@0
   968
    }
sl@0
   969
sl@0
   970
#ifdef FORCE_STORED
sl@0
   971
    if (buf != (char*)0) { /* force stored block */
sl@0
   972
#else
sl@0
   973
    if (stored_len+4 <= opt_lenb && buf != (char*)0) {
sl@0
   974
                       /* 4: two words for the lengths */
sl@0
   975
#endif
sl@0
   976
        /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
sl@0
   977
         * Otherwise we can't have processed more than WSIZE input bytes since
sl@0
   978
         * the last block flush, because compression would have been
sl@0
   979
         * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
sl@0
   980
         * transform a block into a stored block.
sl@0
   981
         */
sl@0
   982
        _tr_stored_block(s, buf, stored_len, eof);
sl@0
   983
sl@0
   984
#ifdef FORCE_STATIC
sl@0
   985
    } else if (static_lenb >= 0) { /* force static trees */
sl@0
   986
#else
sl@0
   987
    } else if (static_lenb == opt_lenb) {
sl@0
   988
#endif
sl@0
   989
        send_bits(s, (STATIC_TREES<<1)+eof, 3);
sl@0
   990
        compress_block(s, (ct_data *)static_ltree, (ct_data *)static_dtree);
sl@0
   991
#ifdef DEBUG
sl@0
   992
        s->compressed_len += 3 + s->static_len;
sl@0
   993
#endif
sl@0
   994
    } else {
sl@0
   995
        send_bits(s, (DYN_TREES<<1)+eof, 3);
sl@0
   996
        send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1,
sl@0
   997
                       max_blindex+1);
sl@0
   998
        compress_block(s, (ct_data *)s->dyn_ltree, (ct_data *)s->dyn_dtree);
sl@0
   999
#ifdef DEBUG
sl@0
  1000
        s->compressed_len += 3 + s->opt_len;
sl@0
  1001
#endif
sl@0
  1002
    }
sl@0
  1003
    Assert (s->compressed_len == s->bits_sent, "bad compressed size");
sl@0
  1004
    /* The above check is made mod 2^32, for files larger than 512 MB
sl@0
  1005
     * and uLong implemented on 32 bits.
sl@0
  1006
     */
sl@0
  1007
    init_block(s);
sl@0
  1008
sl@0
  1009
    if (eof) {
sl@0
  1010
        bi_windup(s);
sl@0
  1011
#ifdef DEBUG
sl@0
  1012
        s->compressed_len += 7;  /* align on byte boundary */
sl@0
  1013
#endif
sl@0
  1014
    }
sl@0
  1015
    Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3,
sl@0
  1016
           s->compressed_len-7*eof));
sl@0
  1017
}
sl@0
  1018
sl@0
  1019
/* ===========================================================================
sl@0
  1020
 * Save the match info and tally the frequency counts. Return true if
sl@0
  1021
 * the current block must be flushed.
sl@0
  1022
 */
sl@0
  1023
int _tr_tally (
sl@0
  1024
    deflate_state *s,
sl@0
  1025
    unsigned dist,  /* distance of matched string */
sl@0
  1026
    unsigned lc)    /* match length-MIN_MATCH or unmatched char (if dist==0) */
sl@0
  1027
{
sl@0
  1028
    s->d_buf[s->last_lit] = (ush)dist;
sl@0
  1029
    s->l_buf[s->last_lit++] = (uch)lc;
sl@0
  1030
    if (dist == 0) {
sl@0
  1031
        /* lc is the unmatched char */
sl@0
  1032
        s->dyn_ltree[lc].Freq++;
sl@0
  1033
    } else {
sl@0
  1034
        s->matches++;
sl@0
  1035
        /* Here, lc is the match length - MIN_MATCH */
sl@0
  1036
        dist--;             /* dist = match distance - 1 */
sl@0
  1037
        Assert((ush)dist < (ush)MAX_DIST(s) &&
sl@0
  1038
               (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
sl@0
  1039
               (ush)d_code(dist) < (ush)D_CODES,  "_tr_tally: bad match");
sl@0
  1040
sl@0
  1041
        s->dyn_ltree[_length_code[lc]+LITERALS+1].Freq++;
sl@0
  1042
        s->dyn_dtree[d_code(dist)].Freq++;
sl@0
  1043
    }
sl@0
  1044
sl@0
  1045
#ifdef TRUNCATE_BLOCK
sl@0
  1046
    /* Try to guess if it is profitable to stop the current block here */
sl@0
  1047
    if ((s->last_lit & 0x1fff) == 0 && s->level > 2) {
sl@0
  1048
        /* Compute an upper bound for the compressed length */
sl@0
  1049
        ulg out_length = (ulg)s->last_lit*8L;
sl@0
  1050
        ulg in_length = (ulg)((long)s->strstart - s->block_start);
sl@0
  1051
        int dcode;
sl@0
  1052
        for (dcode = 0; dcode < D_CODES; dcode++) {
sl@0
  1053
            out_length += (ulg)s->dyn_dtree[dcode].Freq *
sl@0
  1054
                (5L+extra_dbits[dcode]);
sl@0
  1055
        }
sl@0
  1056
        out_length >>= 3;
sl@0
  1057
        Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
sl@0
  1058
               s->last_lit, in_length, out_length,
sl@0
  1059
               100L - out_length*100L/in_length));
sl@0
  1060
        if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1;
sl@0
  1061
    }
sl@0
  1062
#endif
sl@0
  1063
    return (s->last_lit == s->lit_bufsize-1);
sl@0
  1064
    /* We avoid equality with lit_bufsize because of wraparound at 64K
sl@0
  1065
     * on 16 bit machines and because stored blocks are restricted to
sl@0
  1066
     * 64K-1 bytes.
sl@0
  1067
     */
sl@0
  1068
}
sl@0
  1069
sl@0
  1070
/* ===========================================================================
sl@0
  1071
 * Send the block data compressed using the given Huffman trees
sl@0
  1072
 */
sl@0
  1073
local void compress_block(
sl@0
  1074
    deflate_state *s,
sl@0
  1075
    ct_data *ltree, /* literal tree */
sl@0
  1076
    ct_data *dtree) /* distance tree */
sl@0
  1077
{
sl@0
  1078
    unsigned dist;      /* distance of matched string */
sl@0
  1079
    int lc;             /* match length or unmatched char (if dist == 0) */
sl@0
  1080
    unsigned lx = 0;    /* running index in l_buf */
sl@0
  1081
    unsigned code;      /* the code to send */
sl@0
  1082
    int extra;          /* number of extra bits to send */
sl@0
  1083
sl@0
  1084
    if (s->last_lit != 0) do {
sl@0
  1085
        dist = s->d_buf[lx];
sl@0
  1086
        lc = s->l_buf[lx++];
sl@0
  1087
        if (dist == 0) {
sl@0
  1088
            send_code(s, lc, ltree); /* send a literal byte */
sl@0
  1089
            Tracecv(isgraph(lc), (stderr," '%c' ", lc));
sl@0
  1090
        } else {
sl@0
  1091
            /* Here, lc is the match length - MIN_MATCH */
sl@0
  1092
            code = _length_code[lc];
sl@0
  1093
            send_code(s, code+LITERALS+1, ltree); /* send the length code */
sl@0
  1094
            extra = extra_lbits[code];
sl@0
  1095
            if (extra != 0) {
sl@0
  1096
                lc -= base_length[code];
sl@0
  1097
                send_bits(s, lc, extra);       /* send the extra length bits */
sl@0
  1098
            }
sl@0
  1099
            dist--; /* dist is now the match distance - 1 */
sl@0
  1100
            code = d_code(dist);
sl@0
  1101
            Assert (code < D_CODES, "bad d_code");
sl@0
  1102
sl@0
  1103
            send_code(s, code, dtree);       /* send the distance code */
sl@0
  1104
            extra = extra_dbits[code];
sl@0
  1105
            if (extra != 0) {
sl@0
  1106
                dist -= base_dist[code];
sl@0
  1107
                send_bits(s, dist, extra);   /* send the extra distance bits */
sl@0
  1108
            }
sl@0
  1109
        } /* literal or match pair ? */
sl@0
  1110
sl@0
  1111
        /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
sl@0
  1112
        Assert(s->pending < s->lit_bufsize + 2*lx, "pendingBuf overflow");
sl@0
  1113
sl@0
  1114
    } while (lx < s->last_lit);
sl@0
  1115
sl@0
  1116
    send_code(s, END_BLOCK, ltree);
sl@0
  1117
    s->last_eob_len = ltree[END_BLOCK].Len;
sl@0
  1118
}
sl@0
  1119
sl@0
  1120
/* ===========================================================================
sl@0
  1121
 * Set the data type to ASCII or BINARY, using a crude approximation:
sl@0
  1122
 * binary if more than 20% of the bytes are <= 6 or >= 128, ascii otherwise.
sl@0
  1123
 * IN assertion: the fields freq of dyn_ltree are set and the total of all
sl@0
  1124
 * frequencies does not exceed 64K (to fit in an int on 16 bit machines).
sl@0
  1125
 */
sl@0
  1126
local void set_data_type(
sl@0
  1127
    deflate_state *s)
sl@0
  1128
{
sl@0
  1129
    int n = 0;
sl@0
  1130
    unsigned ascii_freq = 0;
sl@0
  1131
    unsigned bin_freq = 0;
sl@0
  1132
    while (n < 7)        bin_freq += s->dyn_ltree[n++].Freq;
sl@0
  1133
    while (n < 128)    ascii_freq += s->dyn_ltree[n++].Freq;
sl@0
  1134
    while (n < LITERALS) bin_freq += s->dyn_ltree[n++].Freq;
sl@0
  1135
    s->data_type = (Byte)(bin_freq > (ascii_freq >> 2) ? Z_BINARY : Z_ASCII);
sl@0
  1136
}
sl@0
  1137
sl@0
  1138
/* ===========================================================================
sl@0
  1139
 * Reverse the first len bits of a code, using straightforward code (a faster
sl@0
  1140
 * method would use a table)
sl@0
  1141
 * IN assertion: 1 <= len <= 15
sl@0
  1142
 */
sl@0
  1143
local unsigned bi_reverse(
sl@0
  1144
    unsigned code, /* the value to invert */
sl@0
  1145
    int len)       /* its bit length */
sl@0
  1146
{
sl@0
  1147
    register unsigned res = 0;
sl@0
  1148
    do {
sl@0
  1149
        res |= code & 1;
sl@0
  1150
        code >>= 1, res <<= 1;
sl@0
  1151
    } while (--len > 0);
sl@0
  1152
    return res >> 1;
sl@0
  1153
}
sl@0
  1154
sl@0
  1155
/* ===========================================================================
sl@0
  1156
 * Flush the bit buffer, keeping at most 7 bits in it.
sl@0
  1157
 */
sl@0
  1158
local void bi_flush(
sl@0
  1159
    deflate_state *s)
sl@0
  1160
{
sl@0
  1161
    if (s->bi_valid == 16) {
sl@0
  1162
        put_short(s, s->bi_buf);
sl@0
  1163
        s->bi_buf = 0;
sl@0
  1164
        s->bi_valid = 0;
sl@0
  1165
    } else if (s->bi_valid >= 8) {
sl@0
  1166
        put_byte(s, (Byte)s->bi_buf);
sl@0
  1167
        s->bi_buf >>= 8;
sl@0
  1168
        s->bi_valid -= 8;
sl@0
  1169
    }
sl@0
  1170
}
sl@0
  1171
sl@0
  1172
/* ===========================================================================
sl@0
  1173
 * Flush the bit buffer and align the output on a byte boundary
sl@0
  1174
 */
sl@0
  1175
local void bi_windup(
sl@0
  1176
    deflate_state *s)
sl@0
  1177
{
sl@0
  1178
    if (s->bi_valid > 8) {
sl@0
  1179
        put_short(s, s->bi_buf);
sl@0
  1180
    } else if (s->bi_valid > 0) {
sl@0
  1181
        put_byte(s, (Byte)s->bi_buf);
sl@0
  1182
    }
sl@0
  1183
    s->bi_buf = 0;
sl@0
  1184
    s->bi_valid = 0;
sl@0
  1185
#ifdef DEBUG
sl@0
  1186
    s->bits_sent = (s->bits_sent+7) & ~7;
sl@0
  1187
#endif
sl@0
  1188
}
sl@0
  1189
sl@0
  1190
/* ===========================================================================
sl@0
  1191
 * Copy a stored block, storing first the length and its
sl@0
  1192
 * one's complement if requested.
sl@0
  1193
 */
sl@0
  1194
local void copy_block(
sl@0
  1195
    deflate_state *s,
sl@0
  1196
    charf    *buf,    /* the input data */
sl@0
  1197
    unsigned len,     /* its length */
sl@0
  1198
    int      header)  /* true if block header must be written */
sl@0
  1199
{
sl@0
  1200
    bi_windup(s);        /* align on byte boundary */
sl@0
  1201
    s->last_eob_len = 8; /* enough lookahead for inflate */
sl@0
  1202
sl@0
  1203
    if (header) {
sl@0
  1204
        put_short(s, (ush)len);   
sl@0
  1205
        put_short(s, (ush)~len);
sl@0
  1206
#ifdef DEBUG
sl@0
  1207
        s->bits_sent += 2*16;
sl@0
  1208
#endif
sl@0
  1209
    }
sl@0
  1210
#ifdef DEBUG
sl@0
  1211
    s->bits_sent += (ulg)len<<3;
sl@0
  1212
#endif
sl@0
  1213
    while (len--) {
sl@0
  1214
        put_byte(s, *buf++);
sl@0
  1215
    }
sl@0
  1216
}