os/persistentdata/persistentstorage/sqlite3api/SQLite/fts2_porter.c
changeset 0 bde4ae8d615e
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/os/persistentdata/persistentstorage/sqlite3api/SQLite/fts2_porter.c	Fri Jun 15 03:10:57 2012 +0200
     1.3 @@ -0,0 +1,642 @@
     1.4 +/*
     1.5 +** 2006 September 30
     1.6 +**
     1.7 +** The author disclaims copyright to this source code.  In place of
     1.8 +** a legal notice, here is a blessing:
     1.9 +**
    1.10 +**    May you do good and not evil.
    1.11 +**    May you find forgiveness for yourself and forgive others.
    1.12 +**    May you share freely, never taking more than you give.
    1.13 +**
    1.14 +*************************************************************************
    1.15 +** Implementation of the full-text-search tokenizer that implements
    1.16 +** a Porter stemmer.
    1.17 +*/
    1.18 +
    1.19 +/*
    1.20 +** The code in this file is only compiled if:
    1.21 +**
    1.22 +**     * The FTS2 module is being built as an extension
    1.23 +**       (in which case SQLITE_CORE is not defined), or
    1.24 +**
    1.25 +**     * The FTS2 module is being built into the core of
    1.26 +**       SQLite (in which case SQLITE_ENABLE_FTS2 is defined).
    1.27 +*/
    1.28 +#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS2)
    1.29 +
    1.30 +
    1.31 +#include <assert.h>
    1.32 +#include <stdlib.h>
    1.33 +#include <stdio.h>
    1.34 +#include <string.h>
    1.35 +#include <ctype.h>
    1.36 +
    1.37 +#include "fts2_tokenizer.h"
    1.38 +
    1.39 +/*
    1.40 +** Class derived from sqlite3_tokenizer
    1.41 +*/
    1.42 +typedef struct porter_tokenizer {
    1.43 +  sqlite3_tokenizer base;      /* Base class */
    1.44 +} porter_tokenizer;
    1.45 +
    1.46 +/*
    1.47 +** Class derived from sqlit3_tokenizer_cursor
    1.48 +*/
    1.49 +typedef struct porter_tokenizer_cursor {
    1.50 +  sqlite3_tokenizer_cursor base;
    1.51 +  const char *zInput;          /* input we are tokenizing */
    1.52 +  int nInput;                  /* size of the input */
    1.53 +  int iOffset;                 /* current position in zInput */
    1.54 +  int iToken;                  /* index of next token to be returned */
    1.55 +  char *zToken;                /* storage for current token */
    1.56 +  int nAllocated;              /* space allocated to zToken buffer */
    1.57 +} porter_tokenizer_cursor;
    1.58 +
    1.59 +
    1.60 +/* Forward declaration */
    1.61 +static const sqlite3_tokenizer_module porterTokenizerModule;
    1.62 +
    1.63 +
    1.64 +/*
    1.65 +** Create a new tokenizer instance.
    1.66 +*/
    1.67 +static int porterCreate(
    1.68 +  int argc, const char * const *argv,
    1.69 +  sqlite3_tokenizer **ppTokenizer
    1.70 +){
    1.71 +  porter_tokenizer *t;
    1.72 +  t = (porter_tokenizer *) sqlite3_malloc(sizeof(*t));
    1.73 +  if( t==NULL ) return SQLITE_NOMEM;
    1.74 +  memset(t, 0, sizeof(*t));
    1.75 +  *ppTokenizer = &t->base;
    1.76 +  return SQLITE_OK;
    1.77 +}
    1.78 +
    1.79 +/*
    1.80 +** Destroy a tokenizer
    1.81 +*/
    1.82 +static int porterDestroy(sqlite3_tokenizer *pTokenizer){
    1.83 +  sqlite3_free(pTokenizer);
    1.84 +  return SQLITE_OK;
    1.85 +}
    1.86 +
    1.87 +/*
    1.88 +** Prepare to begin tokenizing a particular string.  The input
    1.89 +** string to be tokenized is zInput[0..nInput-1].  A cursor
    1.90 +** used to incrementally tokenize this string is returned in 
    1.91 +** *ppCursor.
    1.92 +*/
    1.93 +static int porterOpen(
    1.94 +  sqlite3_tokenizer *pTokenizer,         /* The tokenizer */
    1.95 +  const char *zInput, int nInput,        /* String to be tokenized */
    1.96 +  sqlite3_tokenizer_cursor **ppCursor    /* OUT: Tokenization cursor */
    1.97 +){
    1.98 +  porter_tokenizer_cursor *c;
    1.99 +
   1.100 +  c = (porter_tokenizer_cursor *) sqlite3_malloc(sizeof(*c));
   1.101 +  if( c==NULL ) return SQLITE_NOMEM;
   1.102 +
   1.103 +  c->zInput = zInput;
   1.104 +  if( zInput==0 ){
   1.105 +    c->nInput = 0;
   1.106 +  }else if( nInput<0 ){
   1.107 +    c->nInput = (int)strlen(zInput);
   1.108 +  }else{
   1.109 +    c->nInput = nInput;
   1.110 +  }
   1.111 +  c->iOffset = 0;                 /* start tokenizing at the beginning */
   1.112 +  c->iToken = 0;
   1.113 +  c->zToken = NULL;               /* no space allocated, yet. */
   1.114 +  c->nAllocated = 0;
   1.115 +
   1.116 +  *ppCursor = &c->base;
   1.117 +  return SQLITE_OK;
   1.118 +}
   1.119 +
   1.120 +/*
   1.121 +** Close a tokenization cursor previously opened by a call to
   1.122 +** porterOpen() above.
   1.123 +*/
   1.124 +static int porterClose(sqlite3_tokenizer_cursor *pCursor){
   1.125 +  porter_tokenizer_cursor *c = (porter_tokenizer_cursor *) pCursor;
   1.126 +  sqlite3_free(c->zToken);
   1.127 +  sqlite3_free(c);
   1.128 +  return SQLITE_OK;
   1.129 +}
   1.130 +/*
   1.131 +** Vowel or consonant
   1.132 +*/
   1.133 +static const char cType[] = {
   1.134 +   0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0,
   1.135 +   1, 1, 1, 2, 1
   1.136 +};
   1.137 +
   1.138 +/*
   1.139 +** isConsonant() and isVowel() determine if their first character in
   1.140 +** the string they point to is a consonant or a vowel, according
   1.141 +** to Porter ruls.  
   1.142 +**
   1.143 +** A consonate is any letter other than 'a', 'e', 'i', 'o', or 'u'.
   1.144 +** 'Y' is a consonant unless it follows another consonant,
   1.145 +** in which case it is a vowel.
   1.146 +**
   1.147 +** In these routine, the letters are in reverse order.  So the 'y' rule
   1.148 +** is that 'y' is a consonant unless it is followed by another
   1.149 +** consonent.
   1.150 +*/
   1.151 +static int isVowel(const char*);
   1.152 +static int isConsonant(const char *z){
   1.153 +  int j;
   1.154 +  char x = *z;
   1.155 +  if( x==0 ) return 0;
   1.156 +  assert( x>='a' && x<='z' );
   1.157 +  j = cType[x-'a'];
   1.158 +  if( j<2 ) return j;
   1.159 +  return z[1]==0 || isVowel(z + 1);
   1.160 +}
   1.161 +static int isVowel(const char *z){
   1.162 +  int j;
   1.163 +  char x = *z;
   1.164 +  if( x==0 ) return 0;
   1.165 +  assert( x>='a' && x<='z' );
   1.166 +  j = cType[x-'a'];
   1.167 +  if( j<2 ) return 1-j;
   1.168 +  return isConsonant(z + 1);
   1.169 +}
   1.170 +
   1.171 +/*
   1.172 +** Let any sequence of one or more vowels be represented by V and let
   1.173 +** C be sequence of one or more consonants.  Then every word can be
   1.174 +** represented as:
   1.175 +**
   1.176 +**           [C] (VC){m} [V]
   1.177 +**
   1.178 +** In prose:  A word is an optional consonant followed by zero or
   1.179 +** vowel-consonant pairs followed by an optional vowel.  "m" is the
   1.180 +** number of vowel consonant pairs.  This routine computes the value
   1.181 +** of m for the first i bytes of a word.
   1.182 +**
   1.183 +** Return true if the m-value for z is 1 or more.  In other words,
   1.184 +** return true if z contains at least one vowel that is followed
   1.185 +** by a consonant.
   1.186 +**
   1.187 +** In this routine z[] is in reverse order.  So we are really looking
   1.188 +** for an instance of of a consonant followed by a vowel.
   1.189 +*/
   1.190 +static int m_gt_0(const char *z){
   1.191 +  while( isVowel(z) ){ z++; }
   1.192 +  if( *z==0 ) return 0;
   1.193 +  while( isConsonant(z) ){ z++; }
   1.194 +  return *z!=0;
   1.195 +}
   1.196 +
   1.197 +/* Like mgt0 above except we are looking for a value of m which is
   1.198 +** exactly 1
   1.199 +*/
   1.200 +static int m_eq_1(const char *z){
   1.201 +  while( isVowel(z) ){ z++; }
   1.202 +  if( *z==0 ) return 0;
   1.203 +  while( isConsonant(z) ){ z++; }
   1.204 +  if( *z==0 ) return 0;
   1.205 +  while( isVowel(z) ){ z++; }
   1.206 +  if( *z==0 ) return 1;
   1.207 +  while( isConsonant(z) ){ z++; }
   1.208 +  return *z==0;
   1.209 +}
   1.210 +
   1.211 +/* Like mgt0 above except we are looking for a value of m>1 instead
   1.212 +** or m>0
   1.213 +*/
   1.214 +static int m_gt_1(const char *z){
   1.215 +  while( isVowel(z) ){ z++; }
   1.216 +  if( *z==0 ) return 0;
   1.217 +  while( isConsonant(z) ){ z++; }
   1.218 +  if( *z==0 ) return 0;
   1.219 +  while( isVowel(z) ){ z++; }
   1.220 +  if( *z==0 ) return 0;
   1.221 +  while( isConsonant(z) ){ z++; }
   1.222 +  return *z!=0;
   1.223 +}
   1.224 +
   1.225 +/*
   1.226 +** Return TRUE if there is a vowel anywhere within z[0..n-1]
   1.227 +*/
   1.228 +static int hasVowel(const char *z){
   1.229 +  while( isConsonant(z) ){ z++; }
   1.230 +  return *z!=0;
   1.231 +}
   1.232 +
   1.233 +/*
   1.234 +** Return TRUE if the word ends in a double consonant.
   1.235 +**
   1.236 +** The text is reversed here. So we are really looking at
   1.237 +** the first two characters of z[].
   1.238 +*/
   1.239 +static int doubleConsonant(const char *z){
   1.240 +  return isConsonant(z) && z[0]==z[1] && isConsonant(z+1);
   1.241 +}
   1.242 +
   1.243 +/*
   1.244 +** Return TRUE if the word ends with three letters which
   1.245 +** are consonant-vowel-consonent and where the final consonant
   1.246 +** is not 'w', 'x', or 'y'.
   1.247 +**
   1.248 +** The word is reversed here.  So we are really checking the
   1.249 +** first three letters and the first one cannot be in [wxy].
   1.250 +*/
   1.251 +static int star_oh(const char *z){
   1.252 +  return
   1.253 +    z[0]!=0 && isConsonant(z) &&
   1.254 +    z[0]!='w' && z[0]!='x' && z[0]!='y' &&
   1.255 +    z[1]!=0 && isVowel(z+1) &&
   1.256 +    z[2]!=0 && isConsonant(z+2);
   1.257 +}
   1.258 +
   1.259 +/*
   1.260 +** If the word ends with zFrom and xCond() is true for the stem
   1.261 +** of the word that preceeds the zFrom ending, then change the 
   1.262 +** ending to zTo.
   1.263 +**
   1.264 +** The input word *pz and zFrom are both in reverse order.  zTo
   1.265 +** is in normal order. 
   1.266 +**
   1.267 +** Return TRUE if zFrom matches.  Return FALSE if zFrom does not
   1.268 +** match.  Not that TRUE is returned even if xCond() fails and
   1.269 +** no substitution occurs.
   1.270 +*/
   1.271 +static int stem(
   1.272 +  char **pz,             /* The word being stemmed (Reversed) */
   1.273 +  const char *zFrom,     /* If the ending matches this... (Reversed) */
   1.274 +  const char *zTo,       /* ... change the ending to this (not reversed) */
   1.275 +  int (*xCond)(const char*)   /* Condition that must be true */
   1.276 +){
   1.277 +  char *z = *pz;
   1.278 +  while( *zFrom && *zFrom==*z ){ z++; zFrom++; }
   1.279 +  if( *zFrom!=0 ) return 0;
   1.280 +  if( xCond && !xCond(z) ) return 1;
   1.281 +  while( *zTo ){
   1.282 +    *(--z) = *(zTo++);
   1.283 +  }
   1.284 +  *pz = z;
   1.285 +  return 1;
   1.286 +}
   1.287 +
   1.288 +/*
   1.289 +** This is the fallback stemmer used when the porter stemmer is
   1.290 +** inappropriate.  The input word is copied into the output with
   1.291 +** US-ASCII case folding.  If the input word is too long (more
   1.292 +** than 20 bytes if it contains no digits or more than 6 bytes if
   1.293 +** it contains digits) then word is truncated to 20 or 6 bytes
   1.294 +** by taking 10 or 3 bytes from the beginning and end.
   1.295 +*/
   1.296 +static void copy_stemmer(const char *zIn, int nIn, char *zOut, int *pnOut){
   1.297 +  int i, mx, j;
   1.298 +  int hasDigit = 0;
   1.299 +  for(i=0; i<nIn; i++){
   1.300 +    int c = zIn[i];
   1.301 +    if( c>='A' && c<='Z' ){
   1.302 +      zOut[i] = c - 'A' + 'a';
   1.303 +    }else{
   1.304 +      if( c>='0' && c<='9' ) hasDigit = 1;
   1.305 +      zOut[i] = c;
   1.306 +    }
   1.307 +  }
   1.308 +  mx = hasDigit ? 3 : 10;
   1.309 +  if( nIn>mx*2 ){
   1.310 +    for(j=mx, i=nIn-mx; i<nIn; i++, j++){
   1.311 +      zOut[j] = zOut[i];
   1.312 +    }
   1.313 +    i = j;
   1.314 +  }
   1.315 +  zOut[i] = 0;
   1.316 +  *pnOut = i;
   1.317 +}
   1.318 +
   1.319 +
   1.320 +/*
   1.321 +** Stem the input word zIn[0..nIn-1].  Store the output in zOut.
   1.322 +** zOut is at least big enough to hold nIn bytes.  Write the actual
   1.323 +** size of the output word (exclusive of the '\0' terminator) into *pnOut.
   1.324 +**
   1.325 +** Any upper-case characters in the US-ASCII character set ([A-Z])
   1.326 +** are converted to lower case.  Upper-case UTF characters are
   1.327 +** unchanged.
   1.328 +**
   1.329 +** Words that are longer than about 20 bytes are stemmed by retaining
   1.330 +** a few bytes from the beginning and the end of the word.  If the
   1.331 +** word contains digits, 3 bytes are taken from the beginning and
   1.332 +** 3 bytes from the end.  For long words without digits, 10 bytes
   1.333 +** are taken from each end.  US-ASCII case folding still applies.
   1.334 +** 
   1.335 +** If the input word contains not digits but does characters not 
   1.336 +** in [a-zA-Z] then no stemming is attempted and this routine just 
   1.337 +** copies the input into the input into the output with US-ASCII
   1.338 +** case folding.
   1.339 +**
   1.340 +** Stemming never increases the length of the word.  So there is
   1.341 +** no chance of overflowing the zOut buffer.
   1.342 +*/
   1.343 +static void porter_stemmer(const char *zIn, int nIn, char *zOut, int *pnOut){
   1.344 +  int i, j, c;
   1.345 +  char zReverse[28];
   1.346 +  char *z, *z2;
   1.347 +  if( nIn<3 || nIn>=sizeof(zReverse)-7 ){
   1.348 +    /* The word is too big or too small for the porter stemmer.
   1.349 +    ** Fallback to the copy stemmer */
   1.350 +    copy_stemmer(zIn, nIn, zOut, pnOut);
   1.351 +    return;
   1.352 +  }
   1.353 +  for(i=0, j=sizeof(zReverse)-6; i<nIn; i++, j--){
   1.354 +    c = zIn[i];
   1.355 +    if( c>='A' && c<='Z' ){
   1.356 +      zReverse[j] = c + 'a' - 'A';
   1.357 +    }else if( c>='a' && c<='z' ){
   1.358 +      zReverse[j] = c;
   1.359 +    }else{
   1.360 +      /* The use of a character not in [a-zA-Z] means that we fallback
   1.361 +      ** to the copy stemmer */
   1.362 +      copy_stemmer(zIn, nIn, zOut, pnOut);
   1.363 +      return;
   1.364 +    }
   1.365 +  }
   1.366 +  memset(&zReverse[sizeof(zReverse)-5], 0, 5);
   1.367 +  z = &zReverse[j+1];
   1.368 +
   1.369 +
   1.370 +  /* Step 1a */
   1.371 +  if( z[0]=='s' ){
   1.372 +    if(
   1.373 +     !stem(&z, "sess", "ss", 0) &&
   1.374 +     !stem(&z, "sei", "i", 0)  &&
   1.375 +     !stem(&z, "ss", "ss", 0)
   1.376 +    ){
   1.377 +      z++;
   1.378 +    }
   1.379 +  }
   1.380 +
   1.381 +  /* Step 1b */  
   1.382 +  z2 = z;
   1.383 +  if( stem(&z, "dee", "ee", m_gt_0) ){
   1.384 +    /* Do nothing.  The work was all in the test */
   1.385 +  }else if( 
   1.386 +     (stem(&z, "gni", "", hasVowel) || stem(&z, "de", "", hasVowel))
   1.387 +      && z!=z2
   1.388 +  ){
   1.389 +     if( stem(&z, "ta", "ate", 0) ||
   1.390 +         stem(&z, "lb", "ble", 0) ||
   1.391 +         stem(&z, "zi", "ize", 0) ){
   1.392 +       /* Do nothing.  The work was all in the test */
   1.393 +     }else if( doubleConsonant(z) && (*z!='l' && *z!='s' && *z!='z') ){
   1.394 +       z++;
   1.395 +     }else if( m_eq_1(z) && star_oh(z) ){
   1.396 +       *(--z) = 'e';
   1.397 +     }
   1.398 +  }
   1.399 +
   1.400 +  /* Step 1c */
   1.401 +  if( z[0]=='y' && hasVowel(z+1) ){
   1.402 +    z[0] = 'i';
   1.403 +  }
   1.404 +
   1.405 +  /* Step 2 */
   1.406 +  switch( z[1] ){
   1.407 +   case 'a':
   1.408 +     stem(&z, "lanoita", "ate", m_gt_0) ||
   1.409 +     stem(&z, "lanoit", "tion", m_gt_0);
   1.410 +     break;
   1.411 +   case 'c':
   1.412 +     stem(&z, "icne", "ence", m_gt_0) ||
   1.413 +     stem(&z, "icna", "ance", m_gt_0);
   1.414 +     break;
   1.415 +   case 'e':
   1.416 +     stem(&z, "rezi", "ize", m_gt_0);
   1.417 +     break;
   1.418 +   case 'g':
   1.419 +     stem(&z, "igol", "log", m_gt_0);
   1.420 +     break;
   1.421 +   case 'l':
   1.422 +     stem(&z, "ilb", "ble", m_gt_0) ||
   1.423 +     stem(&z, "illa", "al", m_gt_0) ||
   1.424 +     stem(&z, "iltne", "ent", m_gt_0) ||
   1.425 +     stem(&z, "ile", "e", m_gt_0) ||
   1.426 +     stem(&z, "ilsuo", "ous", m_gt_0);
   1.427 +     break;
   1.428 +   case 'o':
   1.429 +     stem(&z, "noitazi", "ize", m_gt_0) ||
   1.430 +     stem(&z, "noita", "ate", m_gt_0) ||
   1.431 +     stem(&z, "rota", "ate", m_gt_0);
   1.432 +     break;
   1.433 +   case 's':
   1.434 +     stem(&z, "msila", "al", m_gt_0) ||
   1.435 +     stem(&z, "ssenevi", "ive", m_gt_0) ||
   1.436 +     stem(&z, "ssenluf", "ful", m_gt_0) ||
   1.437 +     stem(&z, "ssensuo", "ous", m_gt_0);
   1.438 +     break;
   1.439 +   case 't':
   1.440 +     stem(&z, "itila", "al", m_gt_0) ||
   1.441 +     stem(&z, "itivi", "ive", m_gt_0) ||
   1.442 +     stem(&z, "itilib", "ble", m_gt_0);
   1.443 +     break;
   1.444 +  }
   1.445 +
   1.446 +  /* Step 3 */
   1.447 +  switch( z[0] ){
   1.448 +   case 'e':
   1.449 +     stem(&z, "etaci", "ic", m_gt_0) ||
   1.450 +     stem(&z, "evita", "", m_gt_0)   ||
   1.451 +     stem(&z, "ezila", "al", m_gt_0);
   1.452 +     break;
   1.453 +   case 'i':
   1.454 +     stem(&z, "itici", "ic", m_gt_0);
   1.455 +     break;
   1.456 +   case 'l':
   1.457 +     stem(&z, "laci", "ic", m_gt_0) ||
   1.458 +     stem(&z, "luf", "", m_gt_0);
   1.459 +     break;
   1.460 +   case 's':
   1.461 +     stem(&z, "ssen", "", m_gt_0);
   1.462 +     break;
   1.463 +  }
   1.464 +
   1.465 +  /* Step 4 */
   1.466 +  switch( z[1] ){
   1.467 +   case 'a':
   1.468 +     if( z[0]=='l' && m_gt_1(z+2) ){
   1.469 +       z += 2;
   1.470 +     }
   1.471 +     break;
   1.472 +   case 'c':
   1.473 +     if( z[0]=='e' && z[2]=='n' && (z[3]=='a' || z[3]=='e')  && m_gt_1(z+4)  ){
   1.474 +       z += 4;
   1.475 +     }
   1.476 +     break;
   1.477 +   case 'e':
   1.478 +     if( z[0]=='r' && m_gt_1(z+2) ){
   1.479 +       z += 2;
   1.480 +     }
   1.481 +     break;
   1.482 +   case 'i':
   1.483 +     if( z[0]=='c' && m_gt_1(z+2) ){
   1.484 +       z += 2;
   1.485 +     }
   1.486 +     break;
   1.487 +   case 'l':
   1.488 +     if( z[0]=='e' && z[2]=='b' && (z[3]=='a' || z[3]=='i') && m_gt_1(z+4) ){
   1.489 +       z += 4;
   1.490 +     }
   1.491 +     break;
   1.492 +   case 'n':
   1.493 +     if( z[0]=='t' ){
   1.494 +       if( z[2]=='a' ){
   1.495 +         if( m_gt_1(z+3) ){
   1.496 +           z += 3;
   1.497 +         }
   1.498 +       }else if( z[2]=='e' ){
   1.499 +         stem(&z, "tneme", "", m_gt_1) ||
   1.500 +         stem(&z, "tnem", "", m_gt_1) ||
   1.501 +         stem(&z, "tne", "", m_gt_1);
   1.502 +       }
   1.503 +     }
   1.504 +     break;
   1.505 +   case 'o':
   1.506 +     if( z[0]=='u' ){
   1.507 +       if( m_gt_1(z+2) ){
   1.508 +         z += 2;
   1.509 +       }
   1.510 +     }else if( z[3]=='s' || z[3]=='t' ){
   1.511 +       stem(&z, "noi", "", m_gt_1);
   1.512 +     }
   1.513 +     break;
   1.514 +   case 's':
   1.515 +     if( z[0]=='m' && z[2]=='i' && m_gt_1(z+3) ){
   1.516 +       z += 3;
   1.517 +     }
   1.518 +     break;
   1.519 +   case 't':
   1.520 +     stem(&z, "eta", "", m_gt_1) ||
   1.521 +     stem(&z, "iti", "", m_gt_1);
   1.522 +     break;
   1.523 +   case 'u':
   1.524 +     if( z[0]=='s' && z[2]=='o' && m_gt_1(z+3) ){
   1.525 +       z += 3;
   1.526 +     }
   1.527 +     break;
   1.528 +   case 'v':
   1.529 +   case 'z':
   1.530 +     if( z[0]=='e' && z[2]=='i' && m_gt_1(z+3) ){
   1.531 +       z += 3;
   1.532 +     }
   1.533 +     break;
   1.534 +  }
   1.535 +
   1.536 +  /* Step 5a */
   1.537 +  if( z[0]=='e' ){
   1.538 +    if( m_gt_1(z+1) ){
   1.539 +      z++;
   1.540 +    }else if( m_eq_1(z+1) && !star_oh(z+1) ){
   1.541 +      z++;
   1.542 +    }
   1.543 +  }
   1.544 +
   1.545 +  /* Step 5b */
   1.546 +  if( m_gt_1(z) && z[0]=='l' && z[1]=='l' ){
   1.547 +    z++;
   1.548 +  }
   1.549 +
   1.550 +  /* z[] is now the stemmed word in reverse order.  Flip it back
   1.551 +  ** around into forward order and return.
   1.552 +  */
   1.553 +  *pnOut = i = strlen(z);
   1.554 +  zOut[i] = 0;
   1.555 +  while( *z ){
   1.556 +    zOut[--i] = *(z++);
   1.557 +  }
   1.558 +}
   1.559 +
   1.560 +/*
   1.561 +** Characters that can be part of a token.  We assume any character
   1.562 +** whose value is greater than 0x80 (any UTF character) can be
   1.563 +** part of a token.  In other words, delimiters all must have
   1.564 +** values of 0x7f or lower.
   1.565 +*/
   1.566 +static const char porterIdChar[] = {
   1.567 +/* x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF */
   1.568 +    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0,  /* 3x */
   1.569 +    0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,  /* 4x */
   1.570 +    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1,  /* 5x */
   1.571 +    0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,  /* 6x */
   1.572 +    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0,  /* 7x */
   1.573 +};
   1.574 +#define isDelim(C) (((ch=C)&0x80)==0 && (ch<0x30 || !porterIdChar[ch-0x30]))
   1.575 +
   1.576 +/*
   1.577 +** Extract the next token from a tokenization cursor.  The cursor must
   1.578 +** have been opened by a prior call to porterOpen().
   1.579 +*/
   1.580 +static int porterNext(
   1.581 +  sqlite3_tokenizer_cursor *pCursor,  /* Cursor returned by porterOpen */
   1.582 +  const char **pzToken,               /* OUT: *pzToken is the token text */
   1.583 +  int *pnBytes,                       /* OUT: Number of bytes in token */
   1.584 +  int *piStartOffset,                 /* OUT: Starting offset of token */
   1.585 +  int *piEndOffset,                   /* OUT: Ending offset of token */
   1.586 +  int *piPosition                     /* OUT: Position integer of token */
   1.587 +){
   1.588 +  porter_tokenizer_cursor *c = (porter_tokenizer_cursor *) pCursor;
   1.589 +  const char *z = c->zInput;
   1.590 +
   1.591 +  while( c->iOffset<c->nInput ){
   1.592 +    int iStartOffset, ch;
   1.593 +
   1.594 +    /* Scan past delimiter characters */
   1.595 +    while( c->iOffset<c->nInput && isDelim(z[c->iOffset]) ){
   1.596 +      c->iOffset++;
   1.597 +    }
   1.598 +
   1.599 +    /* Count non-delimiter characters. */
   1.600 +    iStartOffset = c->iOffset;
   1.601 +    while( c->iOffset<c->nInput && !isDelim(z[c->iOffset]) ){
   1.602 +      c->iOffset++;
   1.603 +    }
   1.604 +
   1.605 +    if( c->iOffset>iStartOffset ){
   1.606 +      int n = c->iOffset-iStartOffset;
   1.607 +      if( n>c->nAllocated ){
   1.608 +        c->nAllocated = n+20;
   1.609 +        c->zToken = sqlite3_realloc(c->zToken, c->nAllocated);
   1.610 +        if( c->zToken==NULL ) return SQLITE_NOMEM;
   1.611 +      }
   1.612 +      porter_stemmer(&z[iStartOffset], n, c->zToken, pnBytes);
   1.613 +      *pzToken = c->zToken;
   1.614 +      *piStartOffset = iStartOffset;
   1.615 +      *piEndOffset = c->iOffset;
   1.616 +      *piPosition = c->iToken++;
   1.617 +      return SQLITE_OK;
   1.618 +    }
   1.619 +  }
   1.620 +  return SQLITE_DONE;
   1.621 +}
   1.622 +
   1.623 +/*
   1.624 +** The set of routines that implement the porter-stemmer tokenizer
   1.625 +*/
   1.626 +static const sqlite3_tokenizer_module porterTokenizerModule = {
   1.627 +  0,
   1.628 +  porterCreate,
   1.629 +  porterDestroy,
   1.630 +  porterOpen,
   1.631 +  porterClose,
   1.632 +  porterNext,
   1.633 +};
   1.634 +
   1.635 +/*
   1.636 +** Allocate a new porter tokenizer.  Return a pointer to the new
   1.637 +** tokenizer in *ppModule
   1.638 +*/
   1.639 +void sqlite3Fts2PorterTokenizerModule(
   1.640 +  sqlite3_tokenizer_module const**ppModule
   1.641 +){
   1.642 +  *ppModule = &porterTokenizerModule;
   1.643 +}
   1.644 +
   1.645 +#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS2) */