os/persistentdata/persistentstorage/sql/SQLite/vdbeaux.c
changeset 0 bde4ae8d615e
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/os/persistentdata/persistentstorage/sql/SQLite/vdbeaux.c	Fri Jun 15 03:10:57 2012 +0200
     1.3 @@ -0,0 +1,2498 @@
     1.4 +/*
     1.5 +** 2003 September 6
     1.6 +**
     1.7 +** The author disclaims copyright to this source code.  In place of
     1.8 +** a legal notice, here is a blessing:
     1.9 +**
    1.10 +**    May you do good and not evil.
    1.11 +**    May you find forgiveness for yourself and forgive others.
    1.12 +**    May you share freely, never taking more than you give.
    1.13 +**
    1.14 +*************************************************************************
    1.15 +** This file contains code used for creating, destroying, and populating
    1.16 +** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.)  Prior
    1.17 +** to version 2.8.7, all this code was combined into the vdbe.c source file.
    1.18 +** But that file was getting too big so this subroutines were split out.
    1.19 +**
    1.20 +** $Id: vdbeaux.c,v 1.405 2008/08/02 03:50:39 drh Exp $
    1.21 +*/
    1.22 +#include "sqliteInt.h"
    1.23 +#include <ctype.h>
    1.24 +#include "vdbeInt.h"
    1.25 +
    1.26 +
    1.27 +
    1.28 +/*
    1.29 +** When debugging the code generator in a symbolic debugger, one can
    1.30 +** set the sqlite3VdbeAddopTrace to 1 and all opcodes will be printed
    1.31 +** as they are added to the instruction stream.
    1.32 +*/
    1.33 +#ifdef SQLITE_DEBUG
    1.34 +int sqlite3VdbeAddopTrace = 0;
    1.35 +#endif
    1.36 +
    1.37 +
    1.38 +/*
    1.39 +** Create a new virtual database engine.
    1.40 +*/
    1.41 +Vdbe *sqlite3VdbeCreate(sqlite3 *db){
    1.42 +  Vdbe *p;
    1.43 +  p = sqlite3DbMallocZero(db, sizeof(Vdbe) );
    1.44 +  if( p==0 ) return 0;
    1.45 +  p->db = db;
    1.46 +  if( db->pVdbe ){
    1.47 +    db->pVdbe->pPrev = p;
    1.48 +  }
    1.49 +  p->pNext = db->pVdbe;
    1.50 +  p->pPrev = 0;
    1.51 +  db->pVdbe = p;
    1.52 +  p->magic = VDBE_MAGIC_INIT;
    1.53 +  return p;
    1.54 +}
    1.55 +
    1.56 +/*
    1.57 +** Remember the SQL string for a prepared statement.
    1.58 +*/
    1.59 +void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n){
    1.60 +  if( p==0 ) return;
    1.61 +  assert( p->zSql==0 );
    1.62 +  p->zSql = sqlite3DbStrNDup(p->db, z, n);
    1.63 +}
    1.64 +
    1.65 +/*
    1.66 +** Return the SQL associated with a prepared statement
    1.67 +*/
    1.68 +const char *sqlite3_sql(sqlite3_stmt *pStmt){
    1.69 +  return ((Vdbe *)pStmt)->zSql;
    1.70 +}
    1.71 +
    1.72 +/*
    1.73 +** Swap all content between two VDBE structures.
    1.74 +*/
    1.75 +void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){
    1.76 +  Vdbe tmp, *pTmp;
    1.77 +  char *zTmp;
    1.78 +  int nTmp;
    1.79 +  tmp = *pA;
    1.80 +  *pA = *pB;
    1.81 +  *pB = tmp;
    1.82 +  pTmp = pA->pNext;
    1.83 +  pA->pNext = pB->pNext;
    1.84 +  pB->pNext = pTmp;
    1.85 +  pTmp = pA->pPrev;
    1.86 +  pA->pPrev = pB->pPrev;
    1.87 +  pB->pPrev = pTmp;
    1.88 +  zTmp = pA->zSql;
    1.89 +  pA->zSql = pB->zSql;
    1.90 +  pB->zSql = zTmp;
    1.91 +  nTmp = pA->nSql;
    1.92 +  pA->nSql = pB->nSql;
    1.93 +  pB->nSql = nTmp;
    1.94 +}
    1.95 +
    1.96 +#ifdef SQLITE_DEBUG
    1.97 +/*
    1.98 +** Turn tracing on or off
    1.99 +*/
   1.100 +void sqlite3VdbeTrace(Vdbe *p, FILE *trace){
   1.101 +  p->trace = trace;
   1.102 +}
   1.103 +#endif
   1.104 +
   1.105 +/*
   1.106 +** Resize the Vdbe.aOp array so that it contains at least N
   1.107 +** elements.
   1.108 +**
   1.109 +** If an out-of-memory error occurs while resizing the array,
   1.110 +** Vdbe.aOp and Vdbe.nOpAlloc remain unchanged (this is so that
   1.111 +** any opcodes already allocated can be correctly deallocated
   1.112 +** along with the rest of the Vdbe).
   1.113 +*/
   1.114 +static void resizeOpArray(Vdbe *p, int N){
   1.115 +  VdbeOp *pNew;
   1.116 +  pNew = sqlite3DbRealloc(p->db, p->aOp, N*sizeof(Op));
   1.117 +  if( pNew ){
   1.118 +    p->nOpAlloc = N;
   1.119 +    p->aOp = pNew;
   1.120 +  }
   1.121 +}
   1.122 +
   1.123 +/*
   1.124 +** Add a new instruction to the list of instructions current in the
   1.125 +** VDBE.  Return the address of the new instruction.
   1.126 +**
   1.127 +** Parameters:
   1.128 +**
   1.129 +**    p               Pointer to the VDBE
   1.130 +**
   1.131 +**    op              The opcode for this instruction
   1.132 +**
   1.133 +**    p1, p2, p3      Operands
   1.134 +**
   1.135 +** Use the sqlite3VdbeResolveLabel() function to fix an address and
   1.136 +** the sqlite3VdbeChangeP4() function to change the value of the P4
   1.137 +** operand.
   1.138 +*/
   1.139 +int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){
   1.140 +  int i;
   1.141 +  VdbeOp *pOp;
   1.142 +
   1.143 +  i = p->nOp;
   1.144 +  assert( p->magic==VDBE_MAGIC_INIT );
   1.145 +  if( p->nOpAlloc<=i ){
   1.146 +    resizeOpArray(p, p->nOpAlloc ? p->nOpAlloc*2 : 1024/sizeof(Op));
   1.147 +    if( p->db->mallocFailed ){
   1.148 +      return 0;
   1.149 +    }
   1.150 +  }
   1.151 +  p->nOp++;
   1.152 +  pOp = &p->aOp[i];
   1.153 +  pOp->opcode = op;
   1.154 +  pOp->p5 = 0;
   1.155 +  pOp->p1 = p1;
   1.156 +  pOp->p2 = p2;
   1.157 +  pOp->p3 = p3;
   1.158 +  pOp->p4.p = 0;
   1.159 +  pOp->p4type = P4_NOTUSED;
   1.160 +  p->expired = 0;
   1.161 +#ifdef SQLITE_DEBUG
   1.162 +  pOp->zComment = 0;
   1.163 +  if( sqlite3VdbeAddopTrace ) sqlite3VdbePrintOp(0, i, &p->aOp[i]);
   1.164 +#endif
   1.165 +#ifdef VDBE_PROFILE
   1.166 +  pOp->cycles = 0;
   1.167 +  pOp->cnt = 0;
   1.168 +#endif
   1.169 +  return i;
   1.170 +}
   1.171 +int sqlite3VdbeAddOp0(Vdbe *p, int op){
   1.172 +  return sqlite3VdbeAddOp3(p, op, 0, 0, 0);
   1.173 +}
   1.174 +int sqlite3VdbeAddOp1(Vdbe *p, int op, int p1){
   1.175 +  return sqlite3VdbeAddOp3(p, op, p1, 0, 0);
   1.176 +}
   1.177 +int sqlite3VdbeAddOp2(Vdbe *p, int op, int p1, int p2){
   1.178 +  return sqlite3VdbeAddOp3(p, op, p1, p2, 0);
   1.179 +}
   1.180 +
   1.181 +
   1.182 +/*
   1.183 +** Add an opcode that includes the p4 value as a pointer.
   1.184 +*/
   1.185 +int sqlite3VdbeAddOp4(
   1.186 +  Vdbe *p,            /* Add the opcode to this VM */
   1.187 +  int op,             /* The new opcode */
   1.188 +  int p1,             /* The P1 operand */
   1.189 +  int p2,             /* The P2 operand */
   1.190 +  int p3,             /* The P3 operand */
   1.191 +  const char *zP4,    /* The P4 operand */
   1.192 +  int p4type          /* P4 operand type */
   1.193 +){
   1.194 +  int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
   1.195 +  sqlite3VdbeChangeP4(p, addr, zP4, p4type);
   1.196 +  return addr;
   1.197 +}
   1.198 +
   1.199 +/*
   1.200 +** Create a new symbolic label for an instruction that has yet to be
   1.201 +** coded.  The symbolic label is really just a negative number.  The
   1.202 +** label can be used as the P2 value of an operation.  Later, when
   1.203 +** the label is resolved to a specific address, the VDBE will scan
   1.204 +** through its operation list and change all values of P2 which match
   1.205 +** the label into the resolved address.
   1.206 +**
   1.207 +** The VDBE knows that a P2 value is a label because labels are
   1.208 +** always negative and P2 values are suppose to be non-negative.
   1.209 +** Hence, a negative P2 value is a label that has yet to be resolved.
   1.210 +**
   1.211 +** Zero is returned if a malloc() fails.
   1.212 +*/
   1.213 +int sqlite3VdbeMakeLabel(Vdbe *p){
   1.214 +  int i;
   1.215 +  i = p->nLabel++;
   1.216 +  assert( p->magic==VDBE_MAGIC_INIT );
   1.217 +  if( i>=p->nLabelAlloc ){
   1.218 +    p->nLabelAlloc = p->nLabelAlloc*2 + 10;
   1.219 +    p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel,
   1.220 +                                    p->nLabelAlloc*sizeof(p->aLabel[0]));
   1.221 +  }
   1.222 +  if( p->aLabel ){
   1.223 +    p->aLabel[i] = -1;
   1.224 +  }
   1.225 +  return -1-i;
   1.226 +}
   1.227 +
   1.228 +/*
   1.229 +** Resolve label "x" to be the address of the next instruction to
   1.230 +** be inserted.  The parameter "x" must have been obtained from
   1.231 +** a prior call to sqlite3VdbeMakeLabel().
   1.232 +*/
   1.233 +void sqlite3VdbeResolveLabel(Vdbe *p, int x){
   1.234 +  int j = -1-x;
   1.235 +  assert( p->magic==VDBE_MAGIC_INIT );
   1.236 +  assert( j>=0 && j<p->nLabel );
   1.237 +  if( p->aLabel ){
   1.238 +    p->aLabel[j] = p->nOp;
   1.239 +  }
   1.240 +}
   1.241 +
   1.242 +/*
   1.243 +** Loop through the program looking for P2 values that are negative
   1.244 +** on jump instructions.  Each such value is a label.  Resolve the
   1.245 +** label by setting the P2 value to its correct non-zero value.
   1.246 +**
   1.247 +** This routine is called once after all opcodes have been inserted.
   1.248 +**
   1.249 +** Variable *pMaxFuncArgs is set to the maximum value of any P2 argument 
   1.250 +** to an OP_Function, OP_AggStep or OP_VFilter opcode. This is used by 
   1.251 +** sqlite3VdbeMakeReady() to size the Vdbe.apArg[] array.
   1.252 +**
   1.253 +** This routine also does the following optimization:  It scans for
   1.254 +** instructions that might cause a statement rollback.  Such instructions
   1.255 +** are:
   1.256 +**
   1.257 +**   *  OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
   1.258 +**   *  OP_Destroy
   1.259 +**   *  OP_VUpdate
   1.260 +**   *  OP_VRename
   1.261 +**
   1.262 +** If no such instruction is found, then every Statement instruction 
   1.263 +** is changed to a Noop.  In this way, we avoid creating the statement 
   1.264 +** journal file unnecessarily.
   1.265 +*/
   1.266 +static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){
   1.267 +  int i;
   1.268 +  int nMaxArgs = 0;
   1.269 +  Op *pOp;
   1.270 +  int *aLabel = p->aLabel;
   1.271 +  int doesStatementRollback = 0;
   1.272 +  int hasStatementBegin = 0;
   1.273 +  for(pOp=p->aOp, i=p->nOp-1; i>=0; i--, pOp++){
   1.274 +    u8 opcode = pOp->opcode;
   1.275 +
   1.276 +    if( opcode==OP_Function || opcode==OP_AggStep ){
   1.277 +      if( pOp->p5>nMaxArgs ) nMaxArgs = pOp->p5;
   1.278 +#ifndef SQLITE_OMIT_VIRTUALTABLE
   1.279 +    }else if( opcode==OP_VUpdate ){
   1.280 +      if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2;
   1.281 +#endif
   1.282 +    }
   1.283 +    if( opcode==OP_Halt ){
   1.284 +      if( pOp->p1==SQLITE_CONSTRAINT && pOp->p2==OE_Abort ){
   1.285 +        doesStatementRollback = 1;
   1.286 +      }
   1.287 +    }else if( opcode==OP_Statement ){
   1.288 +      hasStatementBegin = 1;
   1.289 +    }else if( opcode==OP_Destroy ){
   1.290 +      doesStatementRollback = 1;
   1.291 +#ifndef SQLITE_OMIT_VIRTUALTABLE
   1.292 +    }else if( opcode==OP_VUpdate || opcode==OP_VRename ){
   1.293 +      doesStatementRollback = 1;
   1.294 +    }else if( opcode==OP_VFilter ){
   1.295 +      int n;
   1.296 +      assert( p->nOp - i >= 3 );
   1.297 +      assert( pOp[-1].opcode==OP_Integer );
   1.298 +      n = pOp[-1].p1;
   1.299 +      if( n>nMaxArgs ) nMaxArgs = n;
   1.300 +#endif
   1.301 +    }
   1.302 +
   1.303 +    if( sqlite3VdbeOpcodeHasProperty(opcode, OPFLG_JUMP) && pOp->p2<0 ){
   1.304 +      assert( -1-pOp->p2<p->nLabel );
   1.305 +      pOp->p2 = aLabel[-1-pOp->p2];
   1.306 +    }
   1.307 +  }
   1.308 +  sqlite3DbFree(p->db, p->aLabel);
   1.309 +  p->aLabel = 0;
   1.310 +
   1.311 +  *pMaxFuncArgs = nMaxArgs;
   1.312 +
   1.313 +  /* If we never rollback a statement transaction, then statement
   1.314 +  ** transactions are not needed.  So change every OP_Statement
   1.315 +  ** opcode into an OP_Noop.  This avoid a call to sqlite3OsOpenExclusive()
   1.316 +  ** which can be expensive on some platforms.
   1.317 +  */
   1.318 +  if( hasStatementBegin && !doesStatementRollback ){
   1.319 +    for(pOp=p->aOp, i=p->nOp-1; i>=0; i--, pOp++){
   1.320 +      if( pOp->opcode==OP_Statement ){
   1.321 +        pOp->opcode = OP_Noop;
   1.322 +      }
   1.323 +    }
   1.324 +  }
   1.325 +}
   1.326 +
   1.327 +/*
   1.328 +** Return the address of the next instruction to be inserted.
   1.329 +*/
   1.330 +int sqlite3VdbeCurrentAddr(Vdbe *p){
   1.331 +  assert( p->magic==VDBE_MAGIC_INIT );
   1.332 +  return p->nOp;
   1.333 +}
   1.334 +
   1.335 +/*
   1.336 +** Add a whole list of operations to the operation stack.  Return the
   1.337 +** address of the first operation added.
   1.338 +*/
   1.339 +int sqlite3VdbeAddOpList(Vdbe *p, int nOp, VdbeOpList const *aOp){
   1.340 +  int addr;
   1.341 +  assert( p->magic==VDBE_MAGIC_INIT );
   1.342 +  if( p->nOp + nOp > p->nOpAlloc ){
   1.343 +    resizeOpArray(p, p->nOpAlloc ? p->nOpAlloc*2 : 1024/sizeof(Op));
   1.344 +    assert( p->nOp+nOp<=p->nOpAlloc || p->db->mallocFailed );
   1.345 +  }
   1.346 +  if( p->db->mallocFailed ){
   1.347 +    return 0;
   1.348 +  }
   1.349 +  addr = p->nOp;
   1.350 +  if( nOp>0 ){
   1.351 +    int i;
   1.352 +    VdbeOpList const *pIn = aOp;
   1.353 +    for(i=0; i<nOp; i++, pIn++){
   1.354 +      int p2 = pIn->p2;
   1.355 +      VdbeOp *pOut = &p->aOp[i+addr];
   1.356 +      pOut->opcode = pIn->opcode;
   1.357 +      pOut->p1 = pIn->p1;
   1.358 +      if( p2<0 && sqlite3VdbeOpcodeHasProperty(pOut->opcode, OPFLG_JUMP) ){
   1.359 +        pOut->p2 = addr + ADDR(p2);
   1.360 +      }else{
   1.361 +        pOut->p2 = p2;
   1.362 +      }
   1.363 +      pOut->p3 = pIn->p3;
   1.364 +      pOut->p4type = P4_NOTUSED;
   1.365 +      pOut->p4.p = 0;
   1.366 +      pOut->p5 = 0;
   1.367 +#ifdef SQLITE_DEBUG
   1.368 +      pOut->zComment = 0;
   1.369 +      if( sqlite3VdbeAddopTrace ){
   1.370 +        sqlite3VdbePrintOp(0, i+addr, &p->aOp[i+addr]);
   1.371 +      }
   1.372 +#endif
   1.373 +    }
   1.374 +    p->nOp += nOp;
   1.375 +  }
   1.376 +  return addr;
   1.377 +}
   1.378 +
   1.379 +/*
   1.380 +** Change the value of the P1 operand for a specific instruction.
   1.381 +** This routine is useful when a large program is loaded from a
   1.382 +** static array using sqlite3VdbeAddOpList but we want to make a
   1.383 +** few minor changes to the program.
   1.384 +*/
   1.385 +void sqlite3VdbeChangeP1(Vdbe *p, int addr, int val){
   1.386 +  assert( p==0 || p->magic==VDBE_MAGIC_INIT );
   1.387 +  if( p && addr>=0 && p->nOp>addr && p->aOp ){
   1.388 +    p->aOp[addr].p1 = val;
   1.389 +  }
   1.390 +}
   1.391 +
   1.392 +/*
   1.393 +** Change the value of the P2 operand for a specific instruction.
   1.394 +** This routine is useful for setting a jump destination.
   1.395 +*/
   1.396 +void sqlite3VdbeChangeP2(Vdbe *p, int addr, int val){
   1.397 +  assert( p==0 || p->magic==VDBE_MAGIC_INIT );
   1.398 +  if( p && addr>=0 && p->nOp>addr && p->aOp ){
   1.399 +    p->aOp[addr].p2 = val;
   1.400 +  }
   1.401 +}
   1.402 +
   1.403 +/*
   1.404 +** Change the value of the P3 operand for a specific instruction.
   1.405 +*/
   1.406 +void sqlite3VdbeChangeP3(Vdbe *p, int addr, int val){
   1.407 +  assert( p==0 || p->magic==VDBE_MAGIC_INIT );
   1.408 +  if( p && addr>=0 && p->nOp>addr && p->aOp ){
   1.409 +    p->aOp[addr].p3 = val;
   1.410 +  }
   1.411 +}
   1.412 +
   1.413 +/*
   1.414 +** Change the value of the P5 operand for the most recently
   1.415 +** added operation.
   1.416 +*/
   1.417 +void sqlite3VdbeChangeP5(Vdbe *p, u8 val){
   1.418 +  assert( p==0 || p->magic==VDBE_MAGIC_INIT );
   1.419 +  if( p && p->aOp ){
   1.420 +    assert( p->nOp>0 );
   1.421 +    p->aOp[p->nOp-1].p5 = val;
   1.422 +  }
   1.423 +}
   1.424 +
   1.425 +/*
   1.426 +** Change the P2 operand of instruction addr so that it points to
   1.427 +** the address of the next instruction to be coded.
   1.428 +*/
   1.429 +void sqlite3VdbeJumpHere(Vdbe *p, int addr){
   1.430 +  sqlite3VdbeChangeP2(p, addr, p->nOp);
   1.431 +}
   1.432 +
   1.433 +
   1.434 +/*
   1.435 +** If the input FuncDef structure is ephemeral, then free it.  If
   1.436 +** the FuncDef is not ephermal, then do nothing.
   1.437 +*/
   1.438 +static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef){
   1.439 +  if( pDef && (pDef->flags & SQLITE_FUNC_EPHEM)!=0 ){
   1.440 +    sqlite3DbFree(db, pDef);
   1.441 +  }
   1.442 +}
   1.443 +
   1.444 +/*
   1.445 +** Delete a P4 value if necessary.
   1.446 +*/
   1.447 +static void freeP4(sqlite3 *db, int p4type, void *p4){
   1.448 +  if( p4 ){
   1.449 +    switch( p4type ){
   1.450 +      case P4_REAL:
   1.451 +      case P4_INT64:
   1.452 +      case P4_MPRINTF:
   1.453 +      case P4_DYNAMIC:
   1.454 +      case P4_KEYINFO:
   1.455 +      case P4_INTARRAY:
   1.456 +      case P4_KEYINFO_HANDOFF: {
   1.457 +        sqlite3DbFree(db, p4);
   1.458 +        break;
   1.459 +      }
   1.460 +      case P4_VDBEFUNC: {
   1.461 +        VdbeFunc *pVdbeFunc = (VdbeFunc *)p4;
   1.462 +        freeEphemeralFunction(db, pVdbeFunc->pFunc);
   1.463 +        sqlite3VdbeDeleteAuxData(pVdbeFunc, 0);
   1.464 +        sqlite3DbFree(db, pVdbeFunc);
   1.465 +        break;
   1.466 +      }
   1.467 +      case P4_FUNCDEF: {
   1.468 +        freeEphemeralFunction(db, (FuncDef*)p4);
   1.469 +        break;
   1.470 +      }
   1.471 +      case P4_MEM: {
   1.472 +        sqlite3ValueFree((sqlite3_value*)p4);
   1.473 +        break;
   1.474 +      }
   1.475 +    }
   1.476 +  }
   1.477 +}
   1.478 +
   1.479 +
   1.480 +/*
   1.481 +** Change N opcodes starting at addr to No-ops.
   1.482 +*/
   1.483 +void sqlite3VdbeChangeToNoop(Vdbe *p, int addr, int N){
   1.484 +  if( p && p->aOp ){
   1.485 +    VdbeOp *pOp = &p->aOp[addr];
   1.486 +    sqlite3 *db = p->db;
   1.487 +    while( N-- ){
   1.488 +      freeP4(db, pOp->p4type, pOp->p4.p);
   1.489 +      memset(pOp, 0, sizeof(pOp[0]));
   1.490 +      pOp->opcode = OP_Noop;
   1.491 +      pOp++;
   1.492 +    }
   1.493 +  }
   1.494 +}
   1.495 +
   1.496 +/*
   1.497 +** Change the value of the P4 operand for a specific instruction.
   1.498 +** This routine is useful when a large program is loaded from a
   1.499 +** static array using sqlite3VdbeAddOpList but we want to make a
   1.500 +** few minor changes to the program.
   1.501 +**
   1.502 +** If n>=0 then the P4 operand is dynamic, meaning that a copy of
   1.503 +** the string is made into memory obtained from sqlite3_malloc().
   1.504 +** A value of n==0 means copy bytes of zP4 up to and including the
   1.505 +** first null byte.  If n>0 then copy n+1 bytes of zP4.
   1.506 +**
   1.507 +** If n==P4_KEYINFO it means that zP4 is a pointer to a KeyInfo structure.
   1.508 +** A copy is made of the KeyInfo structure into memory obtained from
   1.509 +** sqlite3_malloc, to be freed when the Vdbe is finalized.
   1.510 +** n==P4_KEYINFO_HANDOFF indicates that zP4 points to a KeyInfo structure
   1.511 +** stored in memory that the caller has obtained from sqlite3_malloc. The 
   1.512 +** caller should not free the allocation, it will be freed when the Vdbe is
   1.513 +** finalized.
   1.514 +** 
   1.515 +** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points
   1.516 +** to a string or structure that is guaranteed to exist for the lifetime of
   1.517 +** the Vdbe. In these cases we can just copy the pointer.
   1.518 +**
   1.519 +** If addr<0 then change P4 on the most recently inserted instruction.
   1.520 +*/
   1.521 +void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){
   1.522 +  Op *pOp;
   1.523 +  sqlite3 *db;
   1.524 +  assert( p!=0 );
   1.525 +  db = p->db;
   1.526 +  assert( p->magic==VDBE_MAGIC_INIT );
   1.527 +  if( p->aOp==0 || db->mallocFailed ){
   1.528 +    if (n != P4_KEYINFO) {
   1.529 +      freeP4(db, n, (void*)*(char**)&zP4);
   1.530 +    }
   1.531 +    return;
   1.532 +  }
   1.533 +  assert( addr<p->nOp );
   1.534 +  if( addr<0 ){
   1.535 +    addr = p->nOp - 1;
   1.536 +    if( addr<0 ) return;
   1.537 +  }
   1.538 +  pOp = &p->aOp[addr];
   1.539 +  freeP4(db, pOp->p4type, pOp->p4.p);
   1.540 +  pOp->p4.p = 0;
   1.541 +  if( n==P4_INT32 ){
   1.542 +    /* Note: this cast is safe, because the origin data point was an int
   1.543 +    ** that was cast to a (const char *). */
   1.544 +    pOp->p4.i = SQLITE_PTR_TO_INT(zP4);
   1.545 +    pOp->p4type = n;
   1.546 +  }else if( zP4==0 ){
   1.547 +    pOp->p4.p = 0;
   1.548 +    pOp->p4type = P4_NOTUSED;
   1.549 +  }else if( n==P4_KEYINFO ){
   1.550 +    KeyInfo *pKeyInfo;
   1.551 +    int nField, nByte;
   1.552 +
   1.553 +    nField = ((KeyInfo*)zP4)->nField;
   1.554 +    nByte = sizeof(*pKeyInfo) + (nField-1)*sizeof(pKeyInfo->aColl[0]) + nField;
   1.555 +    pKeyInfo = sqlite3Malloc( nByte );
   1.556 +    pOp->p4.pKeyInfo = pKeyInfo;
   1.557 +    if( pKeyInfo ){
   1.558 +      u8 *aSortOrder;
   1.559 +      memcpy(pKeyInfo, zP4, nByte);
   1.560 +      aSortOrder = pKeyInfo->aSortOrder;
   1.561 +      if( aSortOrder ){
   1.562 +        pKeyInfo->aSortOrder = (unsigned char*)&pKeyInfo->aColl[nField];
   1.563 +        memcpy(pKeyInfo->aSortOrder, aSortOrder, nField);
   1.564 +      }
   1.565 +      pOp->p4type = P4_KEYINFO;
   1.566 +    }else{
   1.567 +      p->db->mallocFailed = 1;
   1.568 +      pOp->p4type = P4_NOTUSED;
   1.569 +    }
   1.570 +  }else if( n==P4_KEYINFO_HANDOFF ){
   1.571 +    pOp->p4.p = (void*)zP4;
   1.572 +    pOp->p4type = P4_KEYINFO;
   1.573 +  }else if( n<0 ){
   1.574 +    pOp->p4.p = (void*)zP4;
   1.575 +    pOp->p4type = n;
   1.576 +  }else{
   1.577 +    if( n==0 ) n = strlen(zP4);
   1.578 +    pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n);
   1.579 +    pOp->p4type = P4_DYNAMIC;
   1.580 +  }
   1.581 +}
   1.582 +
   1.583 +#ifndef NDEBUG
   1.584 +/*
   1.585 +** Change the comment on the the most recently coded instruction.  Or
   1.586 +** insert a No-op and add the comment to that new instruction.  This
   1.587 +** makes the code easier to read during debugging.  None of this happens
   1.588 +** in a production build.
   1.589 +*/
   1.590 +void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){
   1.591 +  va_list ap;
   1.592 +  assert( p->nOp>0 || p->aOp==0 );
   1.593 +  assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed );
   1.594 +  if( p->nOp ){
   1.595 +    char **pz = &p->aOp[p->nOp-1].zComment;
   1.596 +    va_start(ap, zFormat);
   1.597 +    sqlite3DbFree(p->db, *pz);
   1.598 +    *pz = sqlite3VMPrintf(p->db, zFormat, ap);
   1.599 +    va_end(ap);
   1.600 +  }
   1.601 +}
   1.602 +void sqlite3VdbeNoopComment(Vdbe *p, const char *zFormat, ...){
   1.603 +  va_list ap;
   1.604 +  sqlite3VdbeAddOp0(p, OP_Noop);
   1.605 +  assert( p->nOp>0 || p->aOp==0 );
   1.606 +  assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed );
   1.607 +  if( p->nOp ){
   1.608 +    char **pz = &p->aOp[p->nOp-1].zComment;
   1.609 +    va_start(ap, zFormat);
   1.610 +    sqlite3DbFree(p->db, *pz);
   1.611 +    *pz = sqlite3VMPrintf(p->db, zFormat, ap);
   1.612 +    va_end(ap);
   1.613 +  }
   1.614 +}
   1.615 +#endif  /* NDEBUG */
   1.616 +
   1.617 +/*
   1.618 +** Return the opcode for a given address.
   1.619 +*/
   1.620 +VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){
   1.621 +  assert( p->magic==VDBE_MAGIC_INIT );
   1.622 +  assert( (addr>=0 && addr<p->nOp) || p->db->mallocFailed );
   1.623 +  return ((addr>=0 && addr<p->nOp)?(&p->aOp[addr]):0);
   1.624 +}
   1.625 +
   1.626 +#if !defined(SQLITE_OMIT_EXPLAIN) || !defined(NDEBUG) \
   1.627 +     || defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
   1.628 +/*
   1.629 +** Compute a string that describes the P4 parameter for an opcode.
   1.630 +** Use zTemp for any required temporary buffer space.
   1.631 +*/
   1.632 +static char *displayP4(Op *pOp, char *zTemp, int nTemp){
   1.633 +  char *zP4 = zTemp;
   1.634 +  assert( nTemp>=20 );
   1.635 +  switch( pOp->p4type ){
   1.636 +    case P4_KEYINFO_STATIC:
   1.637 +    case P4_KEYINFO: {
   1.638 +      int i, j;
   1.639 +      KeyInfo *pKeyInfo = pOp->p4.pKeyInfo;
   1.640 +      sqlite3_snprintf(nTemp, zTemp, "keyinfo(%d", pKeyInfo->nField);
   1.641 +      i = strlen(zTemp);
   1.642 +      for(j=0; j<pKeyInfo->nField; j++){
   1.643 +        CollSeq *pColl = pKeyInfo->aColl[j];
   1.644 +        if( pColl ){
   1.645 +          int n = strlen(pColl->zName);
   1.646 +          if( i+n>nTemp-6 ){
   1.647 +            memcpy(&zTemp[i],",...",4);
   1.648 +            break;
   1.649 +          }
   1.650 +          zTemp[i++] = ',';
   1.651 +          if( pKeyInfo->aSortOrder && pKeyInfo->aSortOrder[j] ){
   1.652 +            zTemp[i++] = '-';
   1.653 +          }
   1.654 +          memcpy(&zTemp[i], pColl->zName,n+1);
   1.655 +          i += n;
   1.656 +        }else if( i+4<nTemp-6 ){
   1.657 +          memcpy(&zTemp[i],",nil",4);
   1.658 +          i += 4;
   1.659 +        }
   1.660 +      }
   1.661 +      zTemp[i++] = ')';
   1.662 +      zTemp[i] = 0;
   1.663 +      assert( i<nTemp );
   1.664 +      break;
   1.665 +    }
   1.666 +    case P4_COLLSEQ: {
   1.667 +      CollSeq *pColl = pOp->p4.pColl;
   1.668 +      sqlite3_snprintf(nTemp, zTemp, "collseq(%.20s)", pColl->zName);
   1.669 +      break;
   1.670 +    }
   1.671 +    case P4_FUNCDEF: {
   1.672 +      FuncDef *pDef = pOp->p4.pFunc;
   1.673 +      sqlite3_snprintf(nTemp, zTemp, "%s(%d)", pDef->zName, pDef->nArg);
   1.674 +      break;
   1.675 +    }
   1.676 +    case P4_INT64: {
   1.677 +      sqlite3_snprintf(nTemp, zTemp, "%lld", *pOp->p4.pI64);
   1.678 +      break;
   1.679 +    }
   1.680 +    case P4_INT32: {
   1.681 +      sqlite3_snprintf(nTemp, zTemp, "%d", pOp->p4.i);
   1.682 +      break;
   1.683 +    }
   1.684 +    case P4_REAL: {
   1.685 +      sqlite3_snprintf(nTemp, zTemp, "%.16g", *pOp->p4.pReal);
   1.686 +      break;
   1.687 +    }
   1.688 +    case P4_MEM: {
   1.689 +      Mem *pMem = pOp->p4.pMem;
   1.690 +      assert( (pMem->flags & MEM_Null)==0 );
   1.691 +      if( pMem->flags & MEM_Str ){
   1.692 +        zP4 = pMem->z;
   1.693 +      }else if( pMem->flags & MEM_Int ){
   1.694 +        sqlite3_snprintf(nTemp, zTemp, "%lld", pMem->u.i);
   1.695 +      }else if( pMem->flags & MEM_Real ){
   1.696 +        sqlite3_snprintf(nTemp, zTemp, "%.16g", pMem->r);
   1.697 +      }
   1.698 +      break;
   1.699 +    }
   1.700 +#ifndef SQLITE_OMIT_VIRTUALTABLE
   1.701 +    case P4_VTAB: {
   1.702 +      sqlite3_vtab *pVtab = pOp->p4.pVtab;
   1.703 +      sqlite3_snprintf(nTemp, zTemp, "vtab:%p:%p", pVtab, pVtab->pModule);
   1.704 +      break;
   1.705 +    }
   1.706 +#endif
   1.707 +    case P4_INTARRAY: {
   1.708 +      sqlite3_snprintf(nTemp, zTemp, "intarray");
   1.709 +      break;
   1.710 +    }
   1.711 +    default: {
   1.712 +      zP4 = pOp->p4.z;
   1.713 +      if( zP4==0 ){
   1.714 +        zP4 = zTemp;
   1.715 +        zTemp[0] = 0;
   1.716 +      }
   1.717 +    }
   1.718 +  }
   1.719 +  assert( zP4!=0 );
   1.720 +  return zP4;
   1.721 +}
   1.722 +#endif
   1.723 +
   1.724 +/*
   1.725 +** Declare to the Vdbe that the BTree object at db->aDb[i] is used.
   1.726 +**
   1.727 +*/
   1.728 +void sqlite3VdbeUsesBtree(Vdbe *p, int i){
   1.729 +  int mask;
   1.730 +  assert( i>=0 && i<p->db->nDb );
   1.731 +  assert( i<sizeof(p->btreeMask)*8 );
   1.732 +  mask = 1<<i;
   1.733 +  if( (p->btreeMask & mask)==0 ){
   1.734 +    p->btreeMask |= mask;
   1.735 +    sqlite3BtreeMutexArrayInsert(&p->aMutex, p->db->aDb[i].pBt);
   1.736 +  }
   1.737 +}
   1.738 +
   1.739 +
   1.740 +#if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
   1.741 +/*
   1.742 +** Print a single opcode.  This routine is used for debugging only.
   1.743 +*/
   1.744 +void sqlite3VdbePrintOp(FILE *pOut, int pc, Op *pOp){
   1.745 +  char *zP4;
   1.746 +  char zPtr[50];
   1.747 +  static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-4s %.2X %s\n";
   1.748 +  if( pOut==0 ) pOut = stdout;
   1.749 +  zP4 = displayP4(pOp, zPtr, sizeof(zPtr));
   1.750 +  fprintf(pOut, zFormat1, pc, 
   1.751 +      sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3, zP4, pOp->p5,
   1.752 +#ifdef SQLITE_DEBUG
   1.753 +      pOp->zComment ? pOp->zComment : ""
   1.754 +#else
   1.755 +      ""
   1.756 +#endif
   1.757 +  );
   1.758 +  fflush(pOut);
   1.759 +}
   1.760 +#endif
   1.761 +
   1.762 +/*
   1.763 +** Release an array of N Mem elements
   1.764 +*/
   1.765 +static void releaseMemArray(Mem *p, int N){
   1.766 +  if( p && N ){
   1.767 +    sqlite3 *db = p->db;
   1.768 +    int malloc_failed = db->mallocFailed;
   1.769 +    while( N-->0 ){
   1.770 +      assert( N<2 || p[0].db==p[1].db );
   1.771 +      sqlite3VdbeMemRelease(p);
   1.772 +      p->flags = MEM_Null;
   1.773 +      p++;
   1.774 +    }
   1.775 +    db->mallocFailed = malloc_failed;
   1.776 +  }
   1.777 +}
   1.778 +
   1.779 +#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
   1.780 +int sqlite3VdbeReleaseBuffers(Vdbe *p){
   1.781 +  int ii;
   1.782 +  int nFree = 0;
   1.783 +  assert( sqlite3_mutex_held(p->db->mutex) );
   1.784 +  for(ii=1; ii<=p->nMem; ii++){
   1.785 +    Mem *pMem = &p->aMem[ii];
   1.786 +    if( pMem->z && pMem->flags&MEM_Dyn ){
   1.787 +      assert( !pMem->xDel );
   1.788 +      nFree += sqlite3DbMallocSize(pMem->db, pMem->z);
   1.789 +      sqlite3VdbeMemRelease(pMem);
   1.790 +    }
   1.791 +  }
   1.792 +  return nFree;
   1.793 +}
   1.794 +#endif
   1.795 +
   1.796 +#ifndef SQLITE_OMIT_EXPLAIN
   1.797 +/*
   1.798 +** Give a listing of the program in the virtual machine.
   1.799 +**
   1.800 +** The interface is the same as sqlite3VdbeExec().  But instead of
   1.801 +** running the code, it invokes the callback once for each instruction.
   1.802 +** This feature is used to implement "EXPLAIN".
   1.803 +**
   1.804 +** When p->explain==1, each instruction is listed.  When
   1.805 +** p->explain==2, only OP_Explain instructions are listed and these
   1.806 +** are shown in a different format.  p->explain==2 is used to implement
   1.807 +** EXPLAIN QUERY PLAN.
   1.808 +*/
   1.809 +int sqlite3VdbeList(
   1.810 +  Vdbe *p                   /* The VDBE */
   1.811 +){
   1.812 +  sqlite3 *db = p->db;
   1.813 +  int i;
   1.814 +  int rc = SQLITE_OK;
   1.815 +  Mem *pMem = p->pResultSet = &p->aMem[1];
   1.816 +
   1.817 +  assert( p->explain );
   1.818 +  if( p->magic!=VDBE_MAGIC_RUN ) return SQLITE_MISUSE;
   1.819 +  assert( db->magic==SQLITE_MAGIC_BUSY );
   1.820 +  assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY );
   1.821 +
   1.822 +  /* Even though this opcode does not use dynamic strings for
   1.823 +  ** the result, result columns may become dynamic if the user calls
   1.824 +  ** sqlite3_column_text16(), causing a translation to UTF-16 encoding.
   1.825 +  */
   1.826 +  releaseMemArray(pMem, p->nMem);
   1.827 +
   1.828 +  do{
   1.829 +    i = p->pc++;
   1.830 +  }while( i<p->nOp && p->explain==2 && p->aOp[i].opcode!=OP_Explain );
   1.831 +  if( i>=p->nOp ){
   1.832 +    p->rc = SQLITE_OK;
   1.833 +    rc = SQLITE_DONE;
   1.834 +  }else if( db->u1.isInterrupted ){
   1.835 +    p->rc = SQLITE_INTERRUPT;
   1.836 +    rc = SQLITE_ERROR;
   1.837 +    sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(p->rc));
   1.838 +  }else{
   1.839 +    char *z;
   1.840 +    Op *pOp = &p->aOp[i];
   1.841 +    if( p->explain==1 ){
   1.842 +      pMem->flags = MEM_Int;
   1.843 +      pMem->type = SQLITE_INTEGER;
   1.844 +      pMem->u.i = i;                                /* Program counter */
   1.845 +      pMem++;
   1.846 +  
   1.847 +      pMem->flags = MEM_Static|MEM_Str|MEM_Term;
   1.848 +      pMem->z = (char*)sqlite3OpcodeName(pOp->opcode);  /* Opcode */
   1.849 +      assert( pMem->z!=0 );
   1.850 +      pMem->n = strlen(pMem->z);
   1.851 +      pMem->type = SQLITE_TEXT;
   1.852 +      pMem->enc = SQLITE_UTF8;
   1.853 +      pMem++;
   1.854 +    }
   1.855 +
   1.856 +    pMem->flags = MEM_Int;
   1.857 +    pMem->u.i = pOp->p1;                          /* P1 */
   1.858 +    pMem->type = SQLITE_INTEGER;
   1.859 +    pMem++;
   1.860 +
   1.861 +    pMem->flags = MEM_Int;
   1.862 +    pMem->u.i = pOp->p2;                          /* P2 */
   1.863 +    pMem->type = SQLITE_INTEGER;
   1.864 +    pMem++;
   1.865 +
   1.866 +    if( p->explain==1 ){
   1.867 +      pMem->flags = MEM_Int;
   1.868 +      pMem->u.i = pOp->p3;                          /* P3 */
   1.869 +      pMem->type = SQLITE_INTEGER;
   1.870 +      pMem++;
   1.871 +    }
   1.872 +
   1.873 +    if( sqlite3VdbeMemGrow(pMem, 32, 0) ){            /* P4 */
   1.874 +      p->db->mallocFailed = 1;
   1.875 +      return SQLITE_NOMEM;
   1.876 +    }
   1.877 +    pMem->flags = MEM_Dyn|MEM_Str|MEM_Term;
   1.878 +    z = displayP4(pOp, pMem->z, 32);
   1.879 +    if( z!=pMem->z ){
   1.880 +      sqlite3VdbeMemSetStr(pMem, z, -1, SQLITE_UTF8, 0);
   1.881 +    }else{
   1.882 +      assert( pMem->z!=0 );
   1.883 +      pMem->n = strlen(pMem->z);
   1.884 +      pMem->enc = SQLITE_UTF8;
   1.885 +    }
   1.886 +    pMem->type = SQLITE_TEXT;
   1.887 +    pMem++;
   1.888 +
   1.889 +    if( p->explain==1 ){
   1.890 +      if( sqlite3VdbeMemGrow(pMem, 4, 0) ){
   1.891 +        p->db->mallocFailed = 1;
   1.892 +        return SQLITE_NOMEM;
   1.893 +      }
   1.894 +      pMem->flags = MEM_Dyn|MEM_Str|MEM_Term;
   1.895 +      pMem->n = 2;
   1.896 +      sqlite3_snprintf(3, pMem->z, "%.2x", pOp->p5);   /* P5 */
   1.897 +      pMem->type = SQLITE_TEXT;
   1.898 +      pMem->enc = SQLITE_UTF8;
   1.899 +      pMem++;
   1.900 +  
   1.901 +#ifdef SQLITE_DEBUG
   1.902 +      if( pOp->zComment ){
   1.903 +        pMem->flags = MEM_Str|MEM_Term;
   1.904 +        pMem->z = pOp->zComment;
   1.905 +        pMem->n = strlen(pMem->z);
   1.906 +        pMem->enc = SQLITE_UTF8;
   1.907 +      }else
   1.908 +#endif
   1.909 +      {
   1.910 +        pMem->flags = MEM_Null;                       /* Comment */
   1.911 +        pMem->type = SQLITE_NULL;
   1.912 +      }
   1.913 +    }
   1.914 +
   1.915 +    p->nResColumn = 8 - 5*(p->explain-1);
   1.916 +    p->rc = SQLITE_OK;
   1.917 +    rc = SQLITE_ROW;
   1.918 +  }
   1.919 +  return rc;
   1.920 +}
   1.921 +#endif /* SQLITE_OMIT_EXPLAIN */
   1.922 +
   1.923 +#ifdef SQLITE_DEBUG
   1.924 +/*
   1.925 +** Print the SQL that was used to generate a VDBE program.
   1.926 +*/
   1.927 +void sqlite3VdbePrintSql(Vdbe *p){
   1.928 +  int nOp = p->nOp;
   1.929 +  VdbeOp *pOp;
   1.930 +  if( nOp<1 ) return;
   1.931 +  pOp = &p->aOp[0];
   1.932 +  if( pOp->opcode==OP_Trace && pOp->p4.z!=0 ){
   1.933 +    const char *z = pOp->p4.z;
   1.934 +    while( isspace(*(u8*)z) ) z++;
   1.935 +    printf("SQL: [%s]\n", z);
   1.936 +  }
   1.937 +}
   1.938 +#endif
   1.939 +
   1.940 +#if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE)
   1.941 +/*
   1.942 +** Print an IOTRACE message showing SQL content.
   1.943 +*/
   1.944 +void sqlite3VdbeIOTraceSql(Vdbe *p){
   1.945 +  int nOp = p->nOp;
   1.946 +  VdbeOp *pOp;
   1.947 +  if( sqlite3IoTrace==0 ) return;
   1.948 +  if( nOp<1 ) return;
   1.949 +  pOp = &p->aOp[0];
   1.950 +  if( pOp->opcode==OP_Trace && pOp->p4.z!=0 ){
   1.951 +    int i, j;
   1.952 +    char z[1000];
   1.953 +    sqlite3_snprintf(sizeof(z), z, "%s", pOp->p4.z);
   1.954 +    for(i=0; isspace((unsigned char)z[i]); i++){}
   1.955 +    for(j=0; z[i]; i++){
   1.956 +      if( isspace((unsigned char)z[i]) ){
   1.957 +        if( z[i-1]!=' ' ){
   1.958 +          z[j++] = ' ';
   1.959 +        }
   1.960 +      }else{
   1.961 +        z[j++] = z[i];
   1.962 +      }
   1.963 +    }
   1.964 +    z[j] = 0;
   1.965 +    sqlite3IoTrace("SQL %s\n", z);
   1.966 +  }
   1.967 +}
   1.968 +#endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */
   1.969 +
   1.970 +
   1.971 +/*
   1.972 +** Prepare a virtual machine for execution.  This involves things such
   1.973 +** as allocating stack space and initializing the program counter.
   1.974 +** After the VDBE has be prepped, it can be executed by one or more
   1.975 +** calls to sqlite3VdbeExec().  
   1.976 +**
   1.977 +** This is the only way to move a VDBE from VDBE_MAGIC_INIT to
   1.978 +** VDBE_MAGIC_RUN.
   1.979 +*/
   1.980 +void sqlite3VdbeMakeReady(
   1.981 +  Vdbe *p,                       /* The VDBE */
   1.982 +  int nVar,                      /* Number of '?' see in the SQL statement */
   1.983 +  int nMem,                      /* Number of memory cells to allocate */
   1.984 +  int nCursor,                   /* Number of cursors to allocate */
   1.985 +  int isExplain                  /* True if the EXPLAIN keywords is present */
   1.986 +){
   1.987 +  int n;
   1.988 +  sqlite3 *db = p->db;
   1.989 +
   1.990 +  assert( p!=0 );
   1.991 +  assert( p->magic==VDBE_MAGIC_INIT );
   1.992 +
   1.993 +  /* There should be at least one opcode.
   1.994 +  */
   1.995 +  assert( p->nOp>0 );
   1.996 +
   1.997 +  /* Set the magic to VDBE_MAGIC_RUN sooner rather than later. This
   1.998 +   * is because the call to resizeOpArray() below may shrink the
   1.999 +   * p->aOp[] array to save memory if called when in VDBE_MAGIC_RUN 
  1.1000 +   * state.
  1.1001 +   */
  1.1002 +  p->magic = VDBE_MAGIC_RUN;
  1.1003 +
  1.1004 +  /* For each cursor required, also allocate a memory cell. Memory
  1.1005 +  ** cells (nMem+1-nCursor)..nMem, inclusive, will never be used by
  1.1006 +  ** the vdbe program. Instead they are used to allocate space for
  1.1007 +  ** Cursor/BtCursor structures. The blob of memory associated with 
  1.1008 +  ** cursor 0 is stored in memory cell nMem. Memory cell (nMem-1)
  1.1009 +  ** stores the blob of memory associated with cursor 1, etc.
  1.1010 +  **
  1.1011 +  ** See also: allocateCursor().
  1.1012 +  */
  1.1013 +  nMem += nCursor;
  1.1014 +
  1.1015 +  /*
  1.1016 +  ** Allocation space for registers.
  1.1017 +  */
  1.1018 +  if( p->aMem==0 ){
  1.1019 +    int nArg;       /* Maximum number of args passed to a user function. */
  1.1020 +    resolveP2Values(p, &nArg);
  1.1021 +    /*resizeOpArray(p, p->nOp);*/
  1.1022 +    assert( nVar>=0 );
  1.1023 +    if( isExplain && nMem<10 ){
  1.1024 +      p->nMem = nMem = 10;
  1.1025 +    }
  1.1026 +    p->aMem = sqlite3DbMallocZero(db,
  1.1027 +        nMem*sizeof(Mem)               /* aMem */
  1.1028 +      + nVar*sizeof(Mem)               /* aVar */
  1.1029 +      + nArg*sizeof(Mem*)              /* apArg */
  1.1030 +      + nVar*sizeof(char*)             /* azVar */
  1.1031 +      + nCursor*sizeof(Cursor*) + 1    /* apCsr */
  1.1032 +    );
  1.1033 +    if( !db->mallocFailed ){
  1.1034 +      p->aMem--;             /* aMem[] goes from 1..nMem */
  1.1035 +      p->nMem = nMem;        /*       not from 0..nMem-1 */
  1.1036 +      p->aVar = &p->aMem[nMem+1];
  1.1037 +      p->nVar = nVar;
  1.1038 +      p->okVar = 0;
  1.1039 +      p->apArg = (Mem**)&p->aVar[nVar];
  1.1040 +      p->azVar = (char**)&p->apArg[nArg];
  1.1041 +      p->apCsr = (Cursor**)&p->azVar[nVar];
  1.1042 +      p->nCursor = nCursor;
  1.1043 +      for(n=0; n<nVar; n++){
  1.1044 +        p->aVar[n].flags = MEM_Null;
  1.1045 +        p->aVar[n].db = db;
  1.1046 +      }
  1.1047 +      for(n=1; n<=nMem; n++){
  1.1048 +        p->aMem[n].flags = MEM_Null;
  1.1049 +        p->aMem[n].db = db;
  1.1050 +      }
  1.1051 +    }
  1.1052 +  }
  1.1053 +#ifdef SQLITE_DEBUG
  1.1054 +  for(n=1; n<p->nMem; n++){
  1.1055 +    assert( p->aMem[n].db==db );
  1.1056 +  }
  1.1057 +#endif
  1.1058 +
  1.1059 +  p->pc = -1;
  1.1060 +  p->rc = SQLITE_OK;
  1.1061 +  p->uniqueCnt = 0;
  1.1062 +  p->errorAction = OE_Abort;
  1.1063 +  p->explain |= isExplain;
  1.1064 +  p->magic = VDBE_MAGIC_RUN;
  1.1065 +  p->nChange = 0;
  1.1066 +  p->cacheCtr = 1;
  1.1067 +  p->minWriteFileFormat = 255;
  1.1068 +  p->openedStatement = 0;
  1.1069 +#ifdef VDBE_PROFILE
  1.1070 +  {
  1.1071 +    int i;
  1.1072 +    for(i=0; i<p->nOp; i++){
  1.1073 +      p->aOp[i].cnt = 0;
  1.1074 +      p->aOp[i].cycles = 0;
  1.1075 +    }
  1.1076 +  }
  1.1077 +#endif
  1.1078 +}
  1.1079 +
  1.1080 +/*
  1.1081 +** Close a VDBE cursor and release all the resources that cursor 
  1.1082 +** happens to hold.
  1.1083 +*/
  1.1084 +void sqlite3VdbeFreeCursor(Vdbe *p, Cursor *pCx){
  1.1085 +  if( pCx==0 ){
  1.1086 +    return;
  1.1087 +  }
  1.1088 +  if( pCx->pBt ){
  1.1089 +    sqlite3BtreeClose(pCx->pBt);
  1.1090 +    /* The pCx->pCursor will be close automatically, if it exists, by
  1.1091 +    ** the call above. */
  1.1092 +  }else if( pCx->pCursor ){
  1.1093 +    sqlite3BtreeCloseCursor(pCx->pCursor);
  1.1094 +  }
  1.1095 +#ifndef SQLITE_OMIT_VIRTUALTABLE
  1.1096 +  if( pCx->pVtabCursor ){
  1.1097 +    sqlite3_vtab_cursor *pVtabCursor = pCx->pVtabCursor;
  1.1098 +    const sqlite3_module *pModule = pCx->pModule;
  1.1099 +    p->inVtabMethod = 1;
  1.1100 +    (void)sqlite3SafetyOff(p->db);
  1.1101 +    pModule->xClose(pVtabCursor);
  1.1102 +    (void)sqlite3SafetyOn(p->db);
  1.1103 +    p->inVtabMethod = 0;
  1.1104 +  }
  1.1105 +#endif
  1.1106 +  if( !pCx->ephemPseudoTable ){
  1.1107 +    sqlite3DbFree(p->db, pCx->pData);
  1.1108 +  }
  1.1109 +}
  1.1110 +
  1.1111 +/*
  1.1112 +** Close all cursors except for VTab cursors that are currently
  1.1113 +** in use.
  1.1114 +*/
  1.1115 +static void closeAllCursorsExceptActiveVtabs(Vdbe *p){
  1.1116 +  int i;
  1.1117 +  if( p->apCsr==0 ) return;
  1.1118 +  for(i=0; i<p->nCursor; i++){
  1.1119 +    Cursor *pC = p->apCsr[i];
  1.1120 +    if( pC && (!p->inVtabMethod || !pC->pVtabCursor) ){
  1.1121 +      sqlite3VdbeFreeCursor(p, pC);
  1.1122 +      p->apCsr[i] = 0;
  1.1123 +    }
  1.1124 +  }
  1.1125 +}
  1.1126 +
  1.1127 +/*
  1.1128 +** Clean up the VM after execution.
  1.1129 +**
  1.1130 +** This routine will automatically close any cursors, lists, and/or
  1.1131 +** sorters that were left open.  It also deletes the values of
  1.1132 +** variables in the aVar[] array.
  1.1133 +*/
  1.1134 +static void Cleanup(Vdbe *p){
  1.1135 +  int i;
  1.1136 +  sqlite3 *db = p->db;
  1.1137 +  closeAllCursorsExceptActiveVtabs(p);
  1.1138 +  for(i=1; i<=p->nMem; i++){
  1.1139 +    MemSetTypeFlag(&p->aMem[i], MEM_Null);
  1.1140 +  }
  1.1141 +  releaseMemArray(&p->aMem[1], p->nMem);
  1.1142 +  sqlite3VdbeFifoClear(&p->sFifo);
  1.1143 +  if( p->contextStack ){
  1.1144 +    for(i=0; i<p->contextStackTop; i++){
  1.1145 +      sqlite3VdbeFifoClear(&p->contextStack[i].sFifo);
  1.1146 +    }
  1.1147 +    sqlite3DbFree(db, p->contextStack);
  1.1148 +  }
  1.1149 +  p->contextStack = 0;
  1.1150 +  p->contextStackDepth = 0;
  1.1151 +  p->contextStackTop = 0;
  1.1152 +  sqlite3DbFree(db, p->zErrMsg);
  1.1153 +  p->zErrMsg = 0;
  1.1154 +  p->pResultSet = 0;
  1.1155 +}
  1.1156 +
  1.1157 +/*
  1.1158 +** Set the number of result columns that will be returned by this SQL
  1.1159 +** statement. This is now set at compile time, rather than during
  1.1160 +** execution of the vdbe program so that sqlite3_column_count() can
  1.1161 +** be called on an SQL statement before sqlite3_step().
  1.1162 +*/
  1.1163 +void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){
  1.1164 +  Mem *pColName;
  1.1165 +  int n;
  1.1166 +  sqlite3 *db = p->db;
  1.1167 +
  1.1168 +  releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
  1.1169 +  sqlite3DbFree(db, p->aColName);
  1.1170 +  n = nResColumn*COLNAME_N;
  1.1171 +  p->nResColumn = nResColumn;
  1.1172 +  p->aColName = pColName = (Mem*)sqlite3DbMallocZero(db, sizeof(Mem)*n );
  1.1173 +  if( p->aColName==0 ) return;
  1.1174 +  while( n-- > 0 ){
  1.1175 +    pColName->flags = MEM_Null;
  1.1176 +    pColName->db = p->db;
  1.1177 +    pColName++;
  1.1178 +  }
  1.1179 +}
  1.1180 +
  1.1181 +/*
  1.1182 +** Set the name of the idx'th column to be returned by the SQL statement.
  1.1183 +** zName must be a pointer to a nul terminated string.
  1.1184 +**
  1.1185 +** This call must be made after a call to sqlite3VdbeSetNumCols().
  1.1186 +**
  1.1187 +** If N==P4_STATIC  it means that zName is a pointer to a constant static
  1.1188 +** string and we can just copy the pointer. If it is P4_DYNAMIC, then 
  1.1189 +** the string is freed using sqlite3DbFree(db, ) when the vdbe is finished with
  1.1190 +** it. Otherwise, N bytes of zName are copied.
  1.1191 +*/
  1.1192 +int sqlite3VdbeSetColName(Vdbe *p, int idx, int var, const char *zName, int N){
  1.1193 +  int rc;
  1.1194 +  Mem *pColName;
  1.1195 +  assert( idx<p->nResColumn );
  1.1196 +  assert( var<COLNAME_N );
  1.1197 +  if( p->db->mallocFailed ) return SQLITE_NOMEM;
  1.1198 +  assert( p->aColName!=0 );
  1.1199 +  pColName = &(p->aColName[idx+var*p->nResColumn]);
  1.1200 +  if( N==P4_DYNAMIC || N==P4_STATIC ){
  1.1201 +    rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, SQLITE_STATIC);
  1.1202 +  }else{
  1.1203 +    rc = sqlite3VdbeMemSetStr(pColName, zName, N, SQLITE_UTF8,SQLITE_TRANSIENT);
  1.1204 +  }
  1.1205 +  if( rc==SQLITE_OK && N==P4_DYNAMIC ){
  1.1206 +    pColName->flags &= (~MEM_Static);
  1.1207 +    pColName->zMalloc = pColName->z;
  1.1208 +  }
  1.1209 +  return rc;
  1.1210 +}
  1.1211 +
  1.1212 +/*
  1.1213 +** A read or write transaction may or may not be active on database handle
  1.1214 +** db. If a transaction is active, commit it. If there is a
  1.1215 +** write-transaction spanning more than one database file, this routine
  1.1216 +** takes care of the master journal trickery.
  1.1217 +*/
  1.1218 +static int vdbeCommit(sqlite3 *db, Vdbe *p){
  1.1219 +  int i;
  1.1220 +  int nTrans = 0;  /* Number of databases with an active write-transaction */
  1.1221 +  int rc = SQLITE_OK;
  1.1222 +  int needXcommit = 0;
  1.1223 +
  1.1224 +  /* Before doing anything else, call the xSync() callback for any
  1.1225 +  ** virtual module tables written in this transaction. This has to
  1.1226 +  ** be done before determining whether a master journal file is 
  1.1227 +  ** required, as an xSync() callback may add an attached database
  1.1228 +  ** to the transaction.
  1.1229 +  */
  1.1230 +  rc = sqlite3VtabSync(db, &p->zErrMsg);
  1.1231 +  if( rc!=SQLITE_OK ){
  1.1232 +    return rc;
  1.1233 +  }
  1.1234 +
  1.1235 +  /* This loop determines (a) if the commit hook should be invoked and
  1.1236 +  ** (b) how many database files have open write transactions, not 
  1.1237 +  ** including the temp database. (b) is important because if more than 
  1.1238 +  ** one database file has an open write transaction, a master journal
  1.1239 +  ** file is required for an atomic commit.
  1.1240 +  */ 
  1.1241 +  for(i=0; i<db->nDb; i++){ 
  1.1242 +    Btree *pBt = db->aDb[i].pBt;
  1.1243 +    if( sqlite3BtreeIsInTrans(pBt) ){
  1.1244 +      needXcommit = 1;
  1.1245 +      if( i!=1 ) nTrans++;
  1.1246 +    }
  1.1247 +  }
  1.1248 +
  1.1249 +  /* If there are any write-transactions at all, invoke the commit hook */
  1.1250 +  if( needXcommit && db->xCommitCallback ){
  1.1251 +    (void)sqlite3SafetyOff(db);
  1.1252 +    rc = db->xCommitCallback(db->pCommitArg);
  1.1253 +    (void)sqlite3SafetyOn(db);
  1.1254 +    if( rc ){
  1.1255 +      return SQLITE_CONSTRAINT;
  1.1256 +    }
  1.1257 +  }
  1.1258 +
  1.1259 +  /* The simple case - no more than one database file (not counting the
  1.1260 +  ** TEMP database) has a transaction active.   There is no need for the
  1.1261 +  ** master-journal.
  1.1262 +  **
  1.1263 +  ** If the return value of sqlite3BtreeGetFilename() is a zero length
  1.1264 +  ** string, it means the main database is :memory: or a temp file.  In 
  1.1265 +  ** that case we do not support atomic multi-file commits, so use the 
  1.1266 +  ** simple case then too.
  1.1267 +  */
  1.1268 +  if( 0==strlen(sqlite3BtreeGetFilename(db->aDb[0].pBt)) || nTrans<=1 ){
  1.1269 +    for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 
  1.1270 +      Btree *pBt = db->aDb[i].pBt;
  1.1271 +      if( pBt ){
  1.1272 +        rc = sqlite3BtreeCommitPhaseOne(pBt, 0);
  1.1273 +      }
  1.1274 +    }
  1.1275 +
  1.1276 +    /* Do the commit only if all databases successfully complete phase 1. 
  1.1277 +    ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an
  1.1278 +    ** IO error while deleting or truncating a journal file. It is unlikely,
  1.1279 +    ** but could happen. In this case abandon processing and return the error.
  1.1280 +    */
  1.1281 +    for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
  1.1282 +      Btree *pBt = db->aDb[i].pBt;
  1.1283 +      if( pBt ){
  1.1284 +        rc = sqlite3BtreeCommitPhaseTwo(pBt);
  1.1285 +      }
  1.1286 +    }
  1.1287 +    if( rc==SQLITE_OK ){
  1.1288 +      sqlite3VtabCommit(db);
  1.1289 +    }
  1.1290 +  }
  1.1291 +
  1.1292 +  /* The complex case - There is a multi-file write-transaction active.
  1.1293 +  ** This requires a master journal file to ensure the transaction is
  1.1294 +  ** committed atomicly.
  1.1295 +  */
  1.1296 +#ifndef SQLITE_OMIT_DISKIO
  1.1297 +  else{
  1.1298 +    sqlite3_vfs *pVfs = db->pVfs;
  1.1299 +    int needSync = 0;
  1.1300 +    char *zMaster = 0;   /* File-name for the master journal */
  1.1301 +    char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt);
  1.1302 +    sqlite3_file *pMaster = 0;
  1.1303 +    i64 offset = 0;
  1.1304 +    int res;
  1.1305 +
  1.1306 +    /* Select a master journal file name */
  1.1307 +    do {
  1.1308 +      u32 random;
  1.1309 +      sqlite3DbFree(db, zMaster);
  1.1310 +      sqlite3_randomness(sizeof(random), &random);
  1.1311 +      zMaster = sqlite3MPrintf(db, "%s-mj%08X", zMainFile, random&0x7fffffff);
  1.1312 +      if( !zMaster ){
  1.1313 +        return SQLITE_NOMEM;
  1.1314 +      }
  1.1315 +      rc = sqlite3OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS, &res);
  1.1316 +    }while( rc==SQLITE_OK && res );
  1.1317 +    if( rc==SQLITE_OK ){
  1.1318 +      /* Open the master journal. */
  1.1319 +      rc = sqlite3OsOpenMalloc(pVfs, zMaster, &pMaster, 
  1.1320 +          SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|
  1.1321 +          SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_MASTER_JOURNAL, 0
  1.1322 +      );
  1.1323 +    }
  1.1324 +    if( rc!=SQLITE_OK ){
  1.1325 +      sqlite3DbFree(db, zMaster);
  1.1326 +      return rc;
  1.1327 +    }
  1.1328 + 
  1.1329 +    /* Write the name of each database file in the transaction into the new
  1.1330 +    ** master journal file. If an error occurs at this point close
  1.1331 +    ** and delete the master journal file. All the individual journal files
  1.1332 +    ** still have 'null' as the master journal pointer, so they will roll
  1.1333 +    ** back independently if a failure occurs.
  1.1334 +    */
  1.1335 +    for(i=0; i<db->nDb; i++){
  1.1336 +      Btree *pBt = db->aDb[i].pBt;
  1.1337 +      if( i==1 ) continue;   /* Ignore the TEMP database */
  1.1338 +      if( sqlite3BtreeIsInTrans(pBt) ){
  1.1339 +        char const *zFile = sqlite3BtreeGetJournalname(pBt);
  1.1340 +        if( zFile[0]==0 ) continue;  /* Ignore :memory: databases */
  1.1341 +        if( !needSync && !sqlite3BtreeSyncDisabled(pBt) ){
  1.1342 +          needSync = 1;
  1.1343 +        }
  1.1344 +        rc = sqlite3OsWrite(pMaster, zFile, strlen(zFile)+1, offset);
  1.1345 +        offset += strlen(zFile)+1;
  1.1346 +        if( rc!=SQLITE_OK ){
  1.1347 +          sqlite3OsCloseFree(pMaster);
  1.1348 +          sqlite3OsDelete(pVfs, zMaster, 0);
  1.1349 +          sqlite3DbFree(db, zMaster);
  1.1350 +          return rc;
  1.1351 +        }
  1.1352 +      }
  1.1353 +    }
  1.1354 +
  1.1355 +    /* Sync the master journal file. If the IOCAP_SEQUENTIAL device
  1.1356 +    ** flag is set this is not required.
  1.1357 +    */
  1.1358 +    zMainFile = sqlite3BtreeGetDirname(db->aDb[0].pBt);
  1.1359 +    if( (needSync 
  1.1360 +     && (0==(sqlite3OsDeviceCharacteristics(pMaster)&SQLITE_IOCAP_SEQUENTIAL))
  1.1361 +     && (rc=sqlite3OsSync(pMaster, SQLITE_SYNC_NORMAL))!=SQLITE_OK) ){
  1.1362 +      sqlite3OsCloseFree(pMaster);
  1.1363 +      sqlite3OsDelete(pVfs, zMaster, 0);
  1.1364 +      sqlite3DbFree(db, zMaster);
  1.1365 +      return rc;
  1.1366 +    }
  1.1367 +
  1.1368 +    /* Sync all the db files involved in the transaction. The same call
  1.1369 +    ** sets the master journal pointer in each individual journal. If
  1.1370 +    ** an error occurs here, do not delete the master journal file.
  1.1371 +    **
  1.1372 +    ** If the error occurs during the first call to
  1.1373 +    ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the
  1.1374 +    ** master journal file will be orphaned. But we cannot delete it,
  1.1375 +    ** in case the master journal file name was written into the journal
  1.1376 +    ** file before the failure occured.
  1.1377 +    */
  1.1378 +    for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 
  1.1379 +      Btree *pBt = db->aDb[i].pBt;
  1.1380 +      if( pBt ){
  1.1381 +        rc = sqlite3BtreeCommitPhaseOne(pBt, zMaster);
  1.1382 +      }
  1.1383 +    }
  1.1384 +    sqlite3OsCloseFree(pMaster);
  1.1385 +    if( rc!=SQLITE_OK ){
  1.1386 +      sqlite3DbFree(db, zMaster);
  1.1387 +      return rc;
  1.1388 +    }
  1.1389 +
  1.1390 +    /* Delete the master journal file. This commits the transaction. After
  1.1391 +    ** doing this the directory is synced again before any individual
  1.1392 +    ** transaction files are deleted.
  1.1393 +    */
  1.1394 +    rc = sqlite3OsDelete(pVfs, zMaster, 1);
  1.1395 +    sqlite3DbFree(db, zMaster);
  1.1396 +    zMaster = 0;
  1.1397 +    if( rc ){
  1.1398 +      return rc;
  1.1399 +    }
  1.1400 +
  1.1401 +    /* All files and directories have already been synced, so the following
  1.1402 +    ** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and
  1.1403 +    ** deleting or truncating journals. If something goes wrong while
  1.1404 +    ** this is happening we don't really care. The integrity of the
  1.1405 +    ** transaction is already guaranteed, but some stray 'cold' journals
  1.1406 +    ** may be lying around. Returning an error code won't help matters.
  1.1407 +    */
  1.1408 +    disable_simulated_io_errors();
  1.1409 +    sqlite3BeginBenignMalloc();
  1.1410 +    for(i=0; i<db->nDb; i++){ 
  1.1411 +      Btree *pBt = db->aDb[i].pBt;
  1.1412 +      if( pBt ){
  1.1413 +        sqlite3BtreeCommitPhaseTwo(pBt);
  1.1414 +      }
  1.1415 +    }
  1.1416 +    sqlite3EndBenignMalloc();
  1.1417 +    enable_simulated_io_errors();
  1.1418 +
  1.1419 +    sqlite3VtabCommit(db);
  1.1420 +  }
  1.1421 +#endif
  1.1422 +
  1.1423 +  return rc;
  1.1424 +}
  1.1425 +
  1.1426 +/* 
  1.1427 +** This routine checks that the sqlite3.activeVdbeCnt count variable
  1.1428 +** matches the number of vdbe's in the list sqlite3.pVdbe that are
  1.1429 +** currently active. An assertion fails if the two counts do not match.
  1.1430 +** This is an internal self-check only - it is not an essential processing
  1.1431 +** step.
  1.1432 +**
  1.1433 +** This is a no-op if NDEBUG is defined.
  1.1434 +*/
  1.1435 +#ifndef NDEBUG
  1.1436 +static void checkActiveVdbeCnt(sqlite3 *db){
  1.1437 +  Vdbe *p;
  1.1438 +  int cnt = 0;
  1.1439 +  p = db->pVdbe;
  1.1440 +  while( p ){
  1.1441 +    if( p->magic==VDBE_MAGIC_RUN && p->pc>=0 ){
  1.1442 +      cnt++;
  1.1443 +    }
  1.1444 +    p = p->pNext;
  1.1445 +  }
  1.1446 +  assert( cnt==db->activeVdbeCnt );
  1.1447 +}
  1.1448 +#else
  1.1449 +#define checkActiveVdbeCnt(x)
  1.1450 +#endif
  1.1451 +
  1.1452 +/*
  1.1453 +** For every Btree that in database connection db which 
  1.1454 +** has been modified, "trip" or invalidate each cursor in
  1.1455 +** that Btree might have been modified so that the cursor
  1.1456 +** can never be used again.  This happens when a rollback
  1.1457 +*** occurs.  We have to trip all the other cursors, even
  1.1458 +** cursor from other VMs in different database connections,
  1.1459 +** so that none of them try to use the data at which they
  1.1460 +** were pointing and which now may have been changed due
  1.1461 +** to the rollback.
  1.1462 +**
  1.1463 +** Remember that a rollback can delete tables complete and
  1.1464 +** reorder rootpages.  So it is not sufficient just to save
  1.1465 +** the state of the cursor.  We have to invalidate the cursor
  1.1466 +** so that it is never used again.
  1.1467 +*/
  1.1468 +static void invalidateCursorsOnModifiedBtrees(sqlite3 *db){
  1.1469 +  int i;
  1.1470 +  for(i=0; i<db->nDb; i++){
  1.1471 +    Btree *p = db->aDb[i].pBt;
  1.1472 +    if( p && sqlite3BtreeIsInTrans(p) ){
  1.1473 +      sqlite3BtreeTripAllCursors(p, SQLITE_ABORT);
  1.1474 +    }
  1.1475 +  }
  1.1476 +}
  1.1477 +
  1.1478 +/*
  1.1479 +** This routine is called the when a VDBE tries to halt.  If the VDBE
  1.1480 +** has made changes and is in autocommit mode, then commit those
  1.1481 +** changes.  If a rollback is needed, then do the rollback.
  1.1482 +**
  1.1483 +** This routine is the only way to move the state of a VM from
  1.1484 +** SQLITE_MAGIC_RUN to SQLITE_MAGIC_HALT.  It is harmless to
  1.1485 +** call this on a VM that is in the SQLITE_MAGIC_HALT state.
  1.1486 +**
  1.1487 +** Return an error code.  If the commit could not complete because of
  1.1488 +** lock contention, return SQLITE_BUSY.  If SQLITE_BUSY is returned, it
  1.1489 +** means the close did not happen and needs to be repeated.
  1.1490 +*/
  1.1491 +int sqlite3VdbeHalt(Vdbe *p){
  1.1492 +  sqlite3 *db = p->db;
  1.1493 +  int i;
  1.1494 +  int (*xFunc)(Btree *pBt) = 0;  /* Function to call on each btree backend */
  1.1495 +  int isSpecialError;            /* Set to true if SQLITE_NOMEM or IOERR */
  1.1496 +
  1.1497 +  /* This function contains the logic that determines if a statement or
  1.1498 +  ** transaction will be committed or rolled back as a result of the
  1.1499 +  ** execution of this virtual machine. 
  1.1500 +  **
  1.1501 +  ** If any of the following errors occur:
  1.1502 +  **
  1.1503 +  **     SQLITE_NOMEM
  1.1504 +  **     SQLITE_IOERR
  1.1505 +  **     SQLITE_FULL
  1.1506 +  **     SQLITE_INTERRUPT
  1.1507 +  **
  1.1508 +  ** Then the internal cache might have been left in an inconsistent
  1.1509 +  ** state.  We need to rollback the statement transaction, if there is
  1.1510 +  ** one, or the complete transaction if there is no statement transaction.
  1.1511 +  */
  1.1512 +
  1.1513 +  if( p->db->mallocFailed ){
  1.1514 +    p->rc = SQLITE_NOMEM;
  1.1515 +  }
  1.1516 +  closeAllCursorsExceptActiveVtabs(p);
  1.1517 +  if( p->magic!=VDBE_MAGIC_RUN ){
  1.1518 +    return SQLITE_OK;
  1.1519 +  }
  1.1520 +  checkActiveVdbeCnt(db);
  1.1521 +
  1.1522 +  /* No commit or rollback needed if the program never started */
  1.1523 +  if( p->pc>=0 ){
  1.1524 +    int mrc;   /* Primary error code from p->rc */
  1.1525 +
  1.1526 +    /* Lock all btrees used by the statement */
  1.1527 +    sqlite3BtreeMutexArrayEnter(&p->aMutex);
  1.1528 +
  1.1529 +    /* Check for one of the special errors */
  1.1530 +    mrc = p->rc & 0xff;
  1.1531 +    isSpecialError = mrc==SQLITE_NOMEM || mrc==SQLITE_IOERR
  1.1532 +                     || mrc==SQLITE_INTERRUPT || mrc==SQLITE_FULL;
  1.1533 +    if( isSpecialError ){
  1.1534 +      /* This loop does static analysis of the query to see which of the
  1.1535 +      ** following three categories it falls into:
  1.1536 +      **
  1.1537 +      **     Read-only
  1.1538 +      **     Query with statement journal
  1.1539 +      **     Query without statement journal
  1.1540 +      **
  1.1541 +      ** We could do something more elegant than this static analysis (i.e.
  1.1542 +      ** store the type of query as part of the compliation phase), but 
  1.1543 +      ** handling malloc() or IO failure is a fairly obscure edge case so 
  1.1544 +      ** this is probably easier. Todo: Might be an opportunity to reduce 
  1.1545 +      ** code size a very small amount though...
  1.1546 +      */
  1.1547 +      int notReadOnly = 0;
  1.1548 +      int isStatement = 0;
  1.1549 +      assert(p->aOp || p->nOp==0);
  1.1550 +      for(i=0; i<p->nOp; i++){ 
  1.1551 +        switch( p->aOp[i].opcode ){
  1.1552 +          case OP_Transaction:
  1.1553 +            notReadOnly |= p->aOp[i].p2;
  1.1554 +            break;
  1.1555 +          case OP_Statement:
  1.1556 +            isStatement = 1;
  1.1557 +            break;
  1.1558 +        }
  1.1559 +      }
  1.1560 +
  1.1561 +   
  1.1562 +      /* If the query was read-only, we need do no rollback at all. Otherwise,
  1.1563 +      ** proceed with the special handling.
  1.1564 +      */
  1.1565 +      if( notReadOnly || mrc!=SQLITE_INTERRUPT ){
  1.1566 +        if( p->rc==SQLITE_IOERR_BLOCKED && isStatement ){
  1.1567 +          xFunc = sqlite3BtreeRollbackStmt;
  1.1568 +          p->rc = SQLITE_BUSY;
  1.1569 +        } else if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) && isStatement ){
  1.1570 +          xFunc = sqlite3BtreeRollbackStmt;
  1.1571 +        }else{
  1.1572 +          /* We are forced to roll back the active transaction. Before doing
  1.1573 +          ** so, abort any other statements this handle currently has active.
  1.1574 +          */
  1.1575 +          invalidateCursorsOnModifiedBtrees(db);
  1.1576 +          sqlite3RollbackAll(db);
  1.1577 +          db->autoCommit = 1;
  1.1578 +        }
  1.1579 +      }
  1.1580 +    }
  1.1581 +  
  1.1582 +    /* If the auto-commit flag is set and this is the only active vdbe, then
  1.1583 +    ** we do either a commit or rollback of the current transaction. 
  1.1584 +    **
  1.1585 +    ** Note: This block also runs if one of the special errors handled 
  1.1586 +    ** above has occured. 
  1.1587 +    */
  1.1588 +    if( db->autoCommit && db->activeVdbeCnt==1 ){
  1.1589 +      if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){
  1.1590 +        /* The auto-commit flag is true, and the vdbe program was 
  1.1591 +        ** successful or hit an 'OR FAIL' constraint. This means a commit 
  1.1592 +        ** is required.
  1.1593 +        */
  1.1594 +        int rc = vdbeCommit(db, p);
  1.1595 +        if( rc==SQLITE_BUSY ){
  1.1596 +          sqlite3BtreeMutexArrayLeave(&p->aMutex);
  1.1597 +          return SQLITE_BUSY;
  1.1598 +        }else if( rc!=SQLITE_OK ){
  1.1599 +          p->rc = rc;
  1.1600 +          sqlite3RollbackAll(db);
  1.1601 +        }else{
  1.1602 +          sqlite3CommitInternalChanges(db);
  1.1603 +        }
  1.1604 +      }else{
  1.1605 +        sqlite3RollbackAll(db);
  1.1606 +      }
  1.1607 +    }else if( !xFunc ){
  1.1608 +      if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){
  1.1609 +        if( p->openedStatement ){
  1.1610 +          xFunc = sqlite3BtreeCommitStmt;
  1.1611 +        } 
  1.1612 +      }else if( p->errorAction==OE_Abort ){
  1.1613 +        xFunc = sqlite3BtreeRollbackStmt;
  1.1614 +      }else{
  1.1615 +        invalidateCursorsOnModifiedBtrees(db);
  1.1616 +        sqlite3RollbackAll(db);
  1.1617 +        db->autoCommit = 1;
  1.1618 +      }
  1.1619 +    }
  1.1620 +  
  1.1621 +    /* If xFunc is not NULL, then it is one of sqlite3BtreeRollbackStmt or
  1.1622 +    ** sqlite3BtreeCommitStmt. Call it once on each backend. If an error occurs
  1.1623 +    ** and the return code is still SQLITE_OK, set the return code to the new
  1.1624 +    ** error value.
  1.1625 +    */
  1.1626 +    assert(!xFunc ||
  1.1627 +      xFunc==sqlite3BtreeCommitStmt ||
  1.1628 +      xFunc==sqlite3BtreeRollbackStmt
  1.1629 +    );
  1.1630 +    for(i=0; xFunc && i<db->nDb; i++){ 
  1.1631 +      int rc;
  1.1632 +      Btree *pBt = db->aDb[i].pBt;
  1.1633 +      if( pBt ){
  1.1634 +        rc = xFunc(pBt);
  1.1635 +        if( rc && (p->rc==SQLITE_OK || p->rc==SQLITE_CONSTRAINT) ){
  1.1636 +          p->rc = rc;
  1.1637 +          sqlite3DbFree(db, p->zErrMsg);
  1.1638 +          p->zErrMsg = 0;
  1.1639 +        }
  1.1640 +      }
  1.1641 +    }
  1.1642 +  
  1.1643 +    /* If this was an INSERT, UPDATE or DELETE and the statement was committed, 
  1.1644 +    ** set the change counter. 
  1.1645 +    */
  1.1646 +    if( p->changeCntOn && p->pc>=0 ){
  1.1647 +      if( !xFunc || xFunc==sqlite3BtreeCommitStmt ){
  1.1648 +        sqlite3VdbeSetChanges(db, p->nChange);
  1.1649 +      }else{
  1.1650 +        sqlite3VdbeSetChanges(db, 0);
  1.1651 +      }
  1.1652 +      p->nChange = 0;
  1.1653 +    }
  1.1654 +  
  1.1655 +    /* Rollback or commit any schema changes that occurred. */
  1.1656 +    if( p->rc!=SQLITE_OK && db->flags&SQLITE_InternChanges ){
  1.1657 +      sqlite3ResetInternalSchema(db, 0);
  1.1658 +      db->flags = (db->flags | SQLITE_InternChanges);
  1.1659 +    }
  1.1660 +
  1.1661 +    /* Release the locks */
  1.1662 +    sqlite3BtreeMutexArrayLeave(&p->aMutex);
  1.1663 +  }
  1.1664 +
  1.1665 +  /* We have successfully halted and closed the VM.  Record this fact. */
  1.1666 +  if( p->pc>=0 ){
  1.1667 +    db->activeVdbeCnt--;
  1.1668 +  }
  1.1669 +  p->magic = VDBE_MAGIC_HALT;
  1.1670 +  checkActiveVdbeCnt(db);
  1.1671 +  if( p->db->mallocFailed ){
  1.1672 +    p->rc = SQLITE_NOMEM;
  1.1673 +  }
  1.1674 +
  1.1675 +  return SQLITE_OK;
  1.1676 +}
  1.1677 +
  1.1678 +
  1.1679 +/*
  1.1680 +** Each VDBE holds the result of the most recent sqlite3_step() call
  1.1681 +** in p->rc.  This routine sets that result back to SQLITE_OK.
  1.1682 +*/
  1.1683 +void sqlite3VdbeResetStepResult(Vdbe *p){
  1.1684 +  p->rc = SQLITE_OK;
  1.1685 +}
  1.1686 +
  1.1687 +/*
  1.1688 +** Clean up a VDBE after execution but do not delete the VDBE just yet.
  1.1689 +** Write any error messages into *pzErrMsg.  Return the result code.
  1.1690 +**
  1.1691 +** After this routine is run, the VDBE should be ready to be executed
  1.1692 +** again.
  1.1693 +**
  1.1694 +** To look at it another way, this routine resets the state of the
  1.1695 +** virtual machine from VDBE_MAGIC_RUN or VDBE_MAGIC_HALT back to
  1.1696 +** VDBE_MAGIC_INIT.
  1.1697 +*/
  1.1698 +int sqlite3VdbeReset(Vdbe *p){
  1.1699 +  sqlite3 *db;
  1.1700 +  db = p->db;
  1.1701 +
  1.1702 +  /* If the VM did not run to completion or if it encountered an
  1.1703 +  ** error, then it might not have been halted properly.  So halt
  1.1704 +  ** it now.
  1.1705 +  */
  1.1706 +  (void)sqlite3SafetyOn(db);
  1.1707 +  sqlite3VdbeHalt(p);
  1.1708 +  (void)sqlite3SafetyOff(db);
  1.1709 +
  1.1710 +  /* If the VDBE has be run even partially, then transfer the error code
  1.1711 +  ** and error message from the VDBE into the main database structure.  But
  1.1712 +  ** if the VDBE has just been set to run but has not actually executed any
  1.1713 +  ** instructions yet, leave the main database error information unchanged.
  1.1714 +  */
  1.1715 +  if( p->pc>=0 ){
  1.1716 +    if( p->zErrMsg ){
  1.1717 +      sqlite3ValueSetStr(db->pErr,-1,p->zErrMsg,SQLITE_UTF8,SQLITE_TRANSIENT);
  1.1718 +      db->errCode = p->rc;
  1.1719 +      sqlite3DbFree(db, p->zErrMsg);
  1.1720 +      p->zErrMsg = 0;
  1.1721 +    }else if( p->rc ){
  1.1722 +      sqlite3Error(db, p->rc, 0);
  1.1723 +    }else{
  1.1724 +      sqlite3Error(db, SQLITE_OK, 0);
  1.1725 +    }
  1.1726 +  }else if( p->rc && p->expired ){
  1.1727 +    /* The expired flag was set on the VDBE before the first call
  1.1728 +    ** to sqlite3_step(). For consistency (since sqlite3_step() was
  1.1729 +    ** called), set the database error in this case as well.
  1.1730 +    */
  1.1731 +    sqlite3Error(db, p->rc, 0);
  1.1732 +    sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT);
  1.1733 +    sqlite3DbFree(db, p->zErrMsg);
  1.1734 +    p->zErrMsg = 0;
  1.1735 +  }
  1.1736 +
  1.1737 +  /* Reclaim all memory used by the VDBE
  1.1738 +  */
  1.1739 +  Cleanup(p);
  1.1740 +
  1.1741 +  /* Save profiling information from this VDBE run.
  1.1742 +  */
  1.1743 +#ifdef VDBE_PROFILE
  1.1744 +  {
  1.1745 +    FILE *out = fopen("vdbe_profile.out", "a");
  1.1746 +    if( out ){
  1.1747 +      int i;
  1.1748 +      fprintf(out, "---- ");
  1.1749 +      for(i=0; i<p->nOp; i++){
  1.1750 +        fprintf(out, "%02x", p->aOp[i].opcode);
  1.1751 +      }
  1.1752 +      fprintf(out, "\n");
  1.1753 +      for(i=0; i<p->nOp; i++){
  1.1754 +        fprintf(out, "%6d %10lld %8lld ",
  1.1755 +           p->aOp[i].cnt,
  1.1756 +           p->aOp[i].cycles,
  1.1757 +           p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0
  1.1758 +        );
  1.1759 +        sqlite3VdbePrintOp(out, i, &p->aOp[i]);
  1.1760 +      }
  1.1761 +      fclose(out);
  1.1762 +    }
  1.1763 +  }
  1.1764 +#endif
  1.1765 +  p->magic = VDBE_MAGIC_INIT;
  1.1766 +  return p->rc & db->errMask;
  1.1767 +}
  1.1768 + 
  1.1769 +/*
  1.1770 +** Clean up and delete a VDBE after execution.  Return an integer which is
  1.1771 +** the result code.  Write any error message text into *pzErrMsg.
  1.1772 +*/
  1.1773 +int sqlite3VdbeFinalize(Vdbe *p){
  1.1774 +  int rc = SQLITE_OK;
  1.1775 +  if( p->magic==VDBE_MAGIC_RUN || p->magic==VDBE_MAGIC_HALT ){
  1.1776 +    rc = sqlite3VdbeReset(p);
  1.1777 +    assert( (rc & p->db->errMask)==rc );
  1.1778 +  }else if( p->magic!=VDBE_MAGIC_INIT ){
  1.1779 +    return SQLITE_MISUSE;
  1.1780 +  }
  1.1781 +  sqlite3VdbeDelete(p);
  1.1782 +  return rc;
  1.1783 +}
  1.1784 +
  1.1785 +/*
  1.1786 +** Call the destructor for each auxdata entry in pVdbeFunc for which
  1.1787 +** the corresponding bit in mask is clear.  Auxdata entries beyond 31
  1.1788 +** are always destroyed.  To destroy all auxdata entries, call this
  1.1789 +** routine with mask==0.
  1.1790 +*/
  1.1791 +void sqlite3VdbeDeleteAuxData(VdbeFunc *pVdbeFunc, int mask){
  1.1792 +  int i;
  1.1793 +  for(i=0; i<pVdbeFunc->nAux; i++){
  1.1794 +    struct AuxData *pAux = &pVdbeFunc->apAux[i];
  1.1795 +    if( (i>31 || !(mask&(1<<i))) && pAux->pAux ){
  1.1796 +      if( pAux->xDelete ){
  1.1797 +        pAux->xDelete(pAux->pAux);
  1.1798 +      }
  1.1799 +      pAux->pAux = 0;
  1.1800 +    }
  1.1801 +  }
  1.1802 +}
  1.1803 +
  1.1804 +/*
  1.1805 +** Delete an entire VDBE.
  1.1806 +*/
  1.1807 +void sqlite3VdbeDelete(Vdbe *p){
  1.1808 +  int i;
  1.1809 +  sqlite3 *db;
  1.1810 +
  1.1811 +  if( p==0 ) return;
  1.1812 +  db = p->db;
  1.1813 +  if( p->pPrev ){
  1.1814 +    p->pPrev->pNext = p->pNext;
  1.1815 +  }else{
  1.1816 +    assert( db->pVdbe==p );
  1.1817 +    db->pVdbe = p->pNext;
  1.1818 +  }
  1.1819 +  if( p->pNext ){
  1.1820 +    p->pNext->pPrev = p->pPrev;
  1.1821 +  }
  1.1822 +  if( p->aOp ){
  1.1823 +    Op *pOp = p->aOp;
  1.1824 +    for(i=0; i<p->nOp; i++, pOp++){
  1.1825 +      freeP4(db, pOp->p4type, pOp->p4.p);
  1.1826 +#ifdef SQLITE_DEBUG
  1.1827 +      sqlite3DbFree(db, pOp->zComment);
  1.1828 +#endif     
  1.1829 +    }
  1.1830 +    sqlite3DbFree(db, p->aOp);
  1.1831 +  }
  1.1832 +  releaseMemArray(p->aVar, p->nVar);
  1.1833 +  sqlite3DbFree(db, p->aLabel);
  1.1834 +  if( p->aMem ){
  1.1835 +    sqlite3DbFree(db, &p->aMem[1]);
  1.1836 +  }
  1.1837 +  releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
  1.1838 +  sqlite3DbFree(db, p->aColName);
  1.1839 +  sqlite3DbFree(db, p->zSql);
  1.1840 +  p->magic = VDBE_MAGIC_DEAD;
  1.1841 +  sqlite3DbFree(db, p);
  1.1842 +}
  1.1843 +
  1.1844 +/*
  1.1845 +** If a MoveTo operation is pending on the given cursor, then do that
  1.1846 +** MoveTo now.  Return an error code.  If no MoveTo is pending, this
  1.1847 +** routine does nothing and returns SQLITE_OK.
  1.1848 +*/
  1.1849 +int sqlite3VdbeCursorMoveto(Cursor *p){
  1.1850 +  if( p->deferredMoveto ){
  1.1851 +    int res, rc;
  1.1852 +#ifdef SQLITE_TEST
  1.1853 +    extern int sqlite3_search_count;
  1.1854 +#endif
  1.1855 +    assert( p->isTable );
  1.1856 +    rc = sqlite3BtreeMoveto(p->pCursor, 0, 0, p->movetoTarget, 0, &res);
  1.1857 +    if( rc ) return rc;
  1.1858 +    *p->pIncrKey = 0;
  1.1859 +    p->lastRowid = keyToInt(p->movetoTarget);
  1.1860 +    p->rowidIsValid = res==0;
  1.1861 +    if( res<0 ){
  1.1862 +      rc = sqlite3BtreeNext(p->pCursor, &res);
  1.1863 +      if( rc ) return rc;
  1.1864 +    }
  1.1865 +#ifdef SQLITE_TEST
  1.1866 +    sqlite3_search_count++;
  1.1867 +#endif
  1.1868 +    p->deferredMoveto = 0;
  1.1869 +    p->cacheStatus = CACHE_STALE;
  1.1870 +  }else if( p->pCursor ){
  1.1871 +    int hasMoved;
  1.1872 +    int rc = sqlite3BtreeCursorHasMoved(p->pCursor, &hasMoved);
  1.1873 +    if( rc ) return rc;
  1.1874 +    if( hasMoved ){
  1.1875 +      p->cacheStatus = CACHE_STALE;
  1.1876 +      p->nullRow = 1;
  1.1877 +    }
  1.1878 +  }
  1.1879 +  return SQLITE_OK;
  1.1880 +}
  1.1881 +
  1.1882 +/*
  1.1883 +** The following functions:
  1.1884 +**
  1.1885 +** sqlite3VdbeSerialType()
  1.1886 +** sqlite3VdbeSerialTypeLen()
  1.1887 +** sqlite3VdbeSerialLen()
  1.1888 +** sqlite3VdbeSerialPut()
  1.1889 +** sqlite3VdbeSerialGet()
  1.1890 +**
  1.1891 +** encapsulate the code that serializes values for storage in SQLite
  1.1892 +** data and index records. Each serialized value consists of a
  1.1893 +** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned
  1.1894 +** integer, stored as a varint.
  1.1895 +**
  1.1896 +** In an SQLite index record, the serial type is stored directly before
  1.1897 +** the blob of data that it corresponds to. In a table record, all serial
  1.1898 +** types are stored at the start of the record, and the blobs of data at
  1.1899 +** the end. Hence these functions allow the caller to handle the
  1.1900 +** serial-type and data blob seperately.
  1.1901 +**
  1.1902 +** The following table describes the various storage classes for data:
  1.1903 +**
  1.1904 +**   serial type        bytes of data      type
  1.1905 +**   --------------     ---------------    ---------------
  1.1906 +**      0                     0            NULL
  1.1907 +**      1                     1            signed integer
  1.1908 +**      2                     2            signed integer
  1.1909 +**      3                     3            signed integer
  1.1910 +**      4                     4            signed integer
  1.1911 +**      5                     6            signed integer
  1.1912 +**      6                     8            signed integer
  1.1913 +**      7                     8            IEEE float
  1.1914 +**      8                     0            Integer constant 0
  1.1915 +**      9                     0            Integer constant 1
  1.1916 +**     10,11                               reserved for expansion
  1.1917 +**    N>=12 and even       (N-12)/2        BLOB
  1.1918 +**    N>=13 and odd        (N-13)/2        text
  1.1919 +**
  1.1920 +** The 8 and 9 types were added in 3.3.0, file format 4.  Prior versions
  1.1921 +** of SQLite will not understand those serial types.
  1.1922 +*/
  1.1923 +
  1.1924 +/*
  1.1925 +** Return the serial-type for the value stored in pMem.
  1.1926 +*/
  1.1927 +u32 sqlite3VdbeSerialType(Mem *pMem, int file_format){
  1.1928 +  int flags = pMem->flags;
  1.1929 +  int n;
  1.1930 +
  1.1931 +  if( flags&MEM_Null ){
  1.1932 +    return 0;
  1.1933 +  }
  1.1934 +  if( flags&MEM_Int ){
  1.1935 +    /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */
  1.1936 +#   define MAX_6BYTE ((((i64)0x00008000)<<32)-1)
  1.1937 +    i64 i = pMem->u.i;
  1.1938 +    u64 u;
  1.1939 +    if( file_format>=4 && (i&1)==i ){
  1.1940 +      return 8+i;
  1.1941 +    }
  1.1942 +    u = i<0 ? -i : i;
  1.1943 +    if( u<=127 ) return 1;
  1.1944 +    if( u<=32767 ) return 2;
  1.1945 +    if( u<=8388607 ) return 3;
  1.1946 +    if( u<=2147483647 ) return 4;
  1.1947 +    if( u<=MAX_6BYTE ) return 5;
  1.1948 +    return 6;
  1.1949 +  }
  1.1950 +  if( flags&MEM_Real ){
  1.1951 +    return 7;
  1.1952 +  }
  1.1953 +  assert( flags&(MEM_Str|MEM_Blob) );
  1.1954 +  n = pMem->n;
  1.1955 +  if( flags & MEM_Zero ){
  1.1956 +    n += pMem->u.i;
  1.1957 +  }
  1.1958 +  assert( n>=0 );
  1.1959 +  return ((n*2) + 12 + ((flags&MEM_Str)!=0));
  1.1960 +}
  1.1961 +
  1.1962 +/*
  1.1963 +** Return the length of the data corresponding to the supplied serial-type.
  1.1964 +*/
  1.1965 +int sqlite3VdbeSerialTypeLen(u32 serial_type){
  1.1966 +  if( serial_type>=12 ){
  1.1967 +    return (serial_type-12)/2;
  1.1968 +  }else{
  1.1969 +    static const u8 aSize[] = { 0, 1, 2, 3, 4, 6, 8, 8, 0, 0, 0, 0 };
  1.1970 +    return aSize[serial_type];
  1.1971 +  }
  1.1972 +}
  1.1973 +
  1.1974 +/*
  1.1975 +** If we are on an architecture with mixed-endian floating 
  1.1976 +** points (ex: ARM7) then swap the lower 4 bytes with the 
  1.1977 +** upper 4 bytes.  Return the result.
  1.1978 +**
  1.1979 +** For most architectures, this is a no-op.
  1.1980 +**
  1.1981 +** (later):  It is reported to me that the mixed-endian problem
  1.1982 +** on ARM7 is an issue with GCC, not with the ARM7 chip.  It seems
  1.1983 +** that early versions of GCC stored the two words of a 64-bit
  1.1984 +** float in the wrong order.  And that error has been propagated
  1.1985 +** ever since.  The blame is not necessarily with GCC, though.
  1.1986 +** GCC might have just copying the problem from a prior compiler.
  1.1987 +** I am also told that newer versions of GCC that follow a different
  1.1988 +** ABI get the byte order right.
  1.1989 +**
  1.1990 +** Developers using SQLite on an ARM7 should compile and run their
  1.1991 +** application using -DSQLITE_DEBUG=1 at least once.  With DEBUG
  1.1992 +** enabled, some asserts below will ensure that the byte order of
  1.1993 +** floating point values is correct.
  1.1994 +**
  1.1995 +** (2007-08-30)  Frank van Vugt has studied this problem closely
  1.1996 +** and has send his findings to the SQLite developers.  Frank
  1.1997 +** writes that some Linux kernels offer floating point hardware
  1.1998 +** emulation that uses only 32-bit mantissas instead of a full 
  1.1999 +** 48-bits as required by the IEEE standard.  (This is the
  1.2000 +** CONFIG_FPE_FASTFPE option.)  On such systems, floating point
  1.2001 +** byte swapping becomes very complicated.  To avoid problems,
  1.2002 +** the necessary byte swapping is carried out using a 64-bit integer
  1.2003 +** rather than a 64-bit float.  Frank assures us that the code here
  1.2004 +** works for him.  We, the developers, have no way to independently
  1.2005 +** verify this, but Frank seems to know what he is talking about
  1.2006 +** so we trust him.
  1.2007 +*/
  1.2008 +#ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT
  1.2009 +static u64 floatSwap(u64 in){
  1.2010 +  union {
  1.2011 +    u64 r;
  1.2012 +    u32 i[2];
  1.2013 +  } u;
  1.2014 +  u32 t;
  1.2015 +
  1.2016 +  u.r = in;
  1.2017 +  t = u.i[0];
  1.2018 +  u.i[0] = u.i[1];
  1.2019 +  u.i[1] = t;
  1.2020 +  return u.r;
  1.2021 +}
  1.2022 +# define swapMixedEndianFloat(X)  X = floatSwap(X)
  1.2023 +#else
  1.2024 +# define swapMixedEndianFloat(X)
  1.2025 +#endif
  1.2026 +
  1.2027 +/*
  1.2028 +** Write the serialized data blob for the value stored in pMem into 
  1.2029 +** buf. It is assumed that the caller has allocated sufficient space.
  1.2030 +** Return the number of bytes written.
  1.2031 +**
  1.2032 +** nBuf is the amount of space left in buf[].  nBuf must always be
  1.2033 +** large enough to hold the entire field.  Except, if the field is
  1.2034 +** a blob with a zero-filled tail, then buf[] might be just the right
  1.2035 +** size to hold everything except for the zero-filled tail.  If buf[]
  1.2036 +** is only big enough to hold the non-zero prefix, then only write that
  1.2037 +** prefix into buf[].  But if buf[] is large enough to hold both the
  1.2038 +** prefix and the tail then write the prefix and set the tail to all
  1.2039 +** zeros.
  1.2040 +**
  1.2041 +** Return the number of bytes actually written into buf[].  The number
  1.2042 +** of bytes in the zero-filled tail is included in the return value only
  1.2043 +** if those bytes were zeroed in buf[].
  1.2044 +*/ 
  1.2045 +int sqlite3VdbeSerialPut(u8 *buf, int nBuf, Mem *pMem, int file_format){
  1.2046 +  u32 serial_type = sqlite3VdbeSerialType(pMem, file_format);
  1.2047 +  int len;
  1.2048 +
  1.2049 +  /* Integer and Real */
  1.2050 +  if( serial_type<=7 && serial_type>0 ){
  1.2051 +    u64 v;
  1.2052 +    int i;
  1.2053 +    if( serial_type==7 ){
  1.2054 +      assert( sizeof(v)==sizeof(pMem->r) );
  1.2055 +      memcpy(&v, &pMem->r, sizeof(v));
  1.2056 +      swapMixedEndianFloat(v);
  1.2057 +    }else{
  1.2058 +      v = pMem->u.i;
  1.2059 +    }
  1.2060 +    len = i = sqlite3VdbeSerialTypeLen(serial_type);
  1.2061 +    assert( len<=nBuf );
  1.2062 +    while( i-- ){
  1.2063 +      buf[i] = (v&0xFF);
  1.2064 +      v >>= 8;
  1.2065 +    }
  1.2066 +    return len;
  1.2067 +  }
  1.2068 +
  1.2069 +  /* String or blob */
  1.2070 +  if( serial_type>=12 ){
  1.2071 +    assert( pMem->n + ((pMem->flags & MEM_Zero)?pMem->u.i:0)
  1.2072 +             == sqlite3VdbeSerialTypeLen(serial_type) );
  1.2073 +    assert( pMem->n<=nBuf );
  1.2074 +    len = pMem->n;
  1.2075 +    memcpy(buf, pMem->z, len);
  1.2076 +    if( pMem->flags & MEM_Zero ){
  1.2077 +      len += pMem->u.i;
  1.2078 +      if( len>nBuf ){
  1.2079 +        len = nBuf;
  1.2080 +      }
  1.2081 +      memset(&buf[pMem->n], 0, len-pMem->n);
  1.2082 +    }
  1.2083 +    return len;
  1.2084 +  }
  1.2085 +
  1.2086 +  /* NULL or constants 0 or 1 */
  1.2087 +  return 0;
  1.2088 +}
  1.2089 +
  1.2090 +/*
  1.2091 +** Deserialize the data blob pointed to by buf as serial type serial_type
  1.2092 +** and store the result in pMem.  Return the number of bytes read.
  1.2093 +*/ 
  1.2094 +int sqlite3VdbeSerialGet(
  1.2095 +  const unsigned char *buf,     /* Buffer to deserialize from */
  1.2096 +  u32 serial_type,              /* Serial type to deserialize */
  1.2097 +  Mem *pMem                     /* Memory cell to write value into */
  1.2098 +){
  1.2099 +  switch( serial_type ){
  1.2100 +    case 10:   /* Reserved for future use */
  1.2101 +    case 11:   /* Reserved for future use */
  1.2102 +    case 0: {  /* NULL */
  1.2103 +      pMem->flags = MEM_Null;
  1.2104 +      break;
  1.2105 +    }
  1.2106 +    case 1: { /* 1-byte signed integer */
  1.2107 +      pMem->u.i = (signed char)buf[0];
  1.2108 +      pMem->flags = MEM_Int;
  1.2109 +      return 1;
  1.2110 +    }
  1.2111 +    case 2: { /* 2-byte signed integer */
  1.2112 +      pMem->u.i = (((signed char)buf[0])<<8) | buf[1];
  1.2113 +      pMem->flags = MEM_Int;
  1.2114 +      return 2;
  1.2115 +    }
  1.2116 +    case 3: { /* 3-byte signed integer */
  1.2117 +      pMem->u.i = (((signed char)buf[0])<<16) | (buf[1]<<8) | buf[2];
  1.2118 +      pMem->flags = MEM_Int;
  1.2119 +      return 3;
  1.2120 +    }
  1.2121 +    case 4: { /* 4-byte signed integer */
  1.2122 +      pMem->u.i = (buf[0]<<24) | (buf[1]<<16) | (buf[2]<<8) | buf[3];
  1.2123 +      pMem->flags = MEM_Int;
  1.2124 +      return 4;
  1.2125 +    }
  1.2126 +    case 5: { /* 6-byte signed integer */
  1.2127 +      u64 x = (((signed char)buf[0])<<8) | buf[1];
  1.2128 +      u32 y = (buf[2]<<24) | (buf[3]<<16) | (buf[4]<<8) | buf[5];
  1.2129 +      x = (x<<32) | y;
  1.2130 +      pMem->u.i = *(i64*)&x;
  1.2131 +      pMem->flags = MEM_Int;
  1.2132 +      return 6;
  1.2133 +    }
  1.2134 +    case 6:   /* 8-byte signed integer */
  1.2135 +    case 7: { /* IEEE floating point */
  1.2136 +      u64 x;
  1.2137 +      u32 y;
  1.2138 +#if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT)
  1.2139 +      /* Verify that integers and floating point values use the same
  1.2140 +      ** byte order.  Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is
  1.2141 +      ** defined that 64-bit floating point values really are mixed
  1.2142 +      ** endian.
  1.2143 +      */
  1.2144 +      static const u64 t1 = ((u64)0x3ff00000)<<32;
  1.2145 +      static const double r1 = 1.0;
  1.2146 +      u64 t2 = t1;
  1.2147 +      swapMixedEndianFloat(t2);
  1.2148 +      assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 );
  1.2149 +#endif
  1.2150 +
  1.2151 +      x = (buf[0]<<24) | (buf[1]<<16) | (buf[2]<<8) | buf[3];
  1.2152 +      y = (buf[4]<<24) | (buf[5]<<16) | (buf[6]<<8) | buf[7];
  1.2153 +      x = (x<<32) | y;
  1.2154 +      if( serial_type==6 ){
  1.2155 +        pMem->u.i = *(i64*)&x;
  1.2156 +        pMem->flags = MEM_Int;
  1.2157 +      }else{
  1.2158 +        assert( sizeof(x)==8 && sizeof(pMem->r)==8 );
  1.2159 +        swapMixedEndianFloat(x);
  1.2160 +        memcpy(&pMem->r, &x, sizeof(x));
  1.2161 +        pMem->flags = sqlite3IsNaN(pMem->r) ? MEM_Null : MEM_Real;
  1.2162 +      }
  1.2163 +      return 8;
  1.2164 +    }
  1.2165 +    case 8:    /* Integer 0 */
  1.2166 +    case 9: {  /* Integer 1 */
  1.2167 +      pMem->u.i = serial_type-8;
  1.2168 +      pMem->flags = MEM_Int;
  1.2169 +      return 0;
  1.2170 +    }
  1.2171 +    default: {
  1.2172 +      int len = (serial_type-12)/2;
  1.2173 +      pMem->z = (char *)buf;
  1.2174 +      pMem->n = len;
  1.2175 +      pMem->xDel = 0;
  1.2176 +      if( serial_type&0x01 ){
  1.2177 +        pMem->flags = MEM_Str | MEM_Ephem;
  1.2178 +      }else{
  1.2179 +        pMem->flags = MEM_Blob | MEM_Ephem;
  1.2180 +      }
  1.2181 +      return len;
  1.2182 +    }
  1.2183 +  }
  1.2184 +  return 0;
  1.2185 +}
  1.2186 +
  1.2187 +
  1.2188 +/*
  1.2189 +** Given the nKey-byte encoding of a record in pKey[], parse the
  1.2190 +** record into a UnpackedRecord structure.  Return a pointer to
  1.2191 +** that structure.
  1.2192 +**
  1.2193 +** The calling function might provide szSpace bytes of memory
  1.2194 +** space at pSpace.  This space can be used to hold the returned
  1.2195 +** VDbeParsedRecord structure if it is large enough.  If it is
  1.2196 +** not big enough, space is obtained from sqlite3_malloc().
  1.2197 +**
  1.2198 +** The returned structure should be closed by a call to
  1.2199 +** sqlite3VdbeDeleteUnpackedRecord().
  1.2200 +*/ 
  1.2201 +UnpackedRecord *sqlite3VdbeRecordUnpack(
  1.2202 +  KeyInfo *pKeyInfo,     /* Information about the record format */
  1.2203 +  int nKey,              /* Size of the binary record */
  1.2204 +  const void *pKey,      /* The binary record */
  1.2205 +  void *pSpace,          /* Space available to hold resulting object */
  1.2206 +  int szSpace            /* Size of pSpace[] in bytes */
  1.2207 +){
  1.2208 +  const unsigned char *aKey = (const unsigned char *)pKey;
  1.2209 +  UnpackedRecord *p;
  1.2210 +  int nByte;
  1.2211 +  int idx, d;
  1.2212 +  u16 u;                 /* Unsigned loop counter */
  1.2213 +  u32 szHdr;
  1.2214 +  Mem *pMem;
  1.2215 +  
  1.2216 +  assert( sizeof(Mem)>sizeof(*p) );
  1.2217 +  nByte = sizeof(Mem)*(pKeyInfo->nField+2);
  1.2218 +  if( nByte>szSpace ){
  1.2219 +    p = sqlite3DbMallocRaw(pKeyInfo->db, nByte);
  1.2220 +    if( p==0 ) return 0;
  1.2221 +    p->needFree = 1;
  1.2222 +  }else{
  1.2223 +    p = pSpace;
  1.2224 +    p->needFree = 0;
  1.2225 +  }
  1.2226 +  p->pKeyInfo = pKeyInfo;
  1.2227 +  p->nField = pKeyInfo->nField + 1;
  1.2228 +  p->needDestroy = 1;
  1.2229 +  p->aMem = pMem = &((Mem*)p)[1];
  1.2230 +  idx = getVarint32(aKey, szHdr);
  1.2231 +  d = szHdr;
  1.2232 +  u = 0;
  1.2233 +  while( idx<szHdr && u<p->nField ){
  1.2234 +    u32 serial_type;
  1.2235 +
  1.2236 +    idx += getVarint32( aKey+idx, serial_type);
  1.2237 +    if( d>=nKey && sqlite3VdbeSerialTypeLen(serial_type)>0 ) break;
  1.2238 +    pMem->enc = pKeyInfo->enc;
  1.2239 +    pMem->db = pKeyInfo->db;
  1.2240 +    pMem->flags = 0;
  1.2241 +    pMem->zMalloc = 0;
  1.2242 +    d += sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem);
  1.2243 +    pMem++;
  1.2244 +    u++;
  1.2245 +  }
  1.2246 +  p->nField = u;
  1.2247 +  return (void*)p;
  1.2248 +}
  1.2249 +
  1.2250 +/*
  1.2251 +** This routine destroys a UnpackedRecord object
  1.2252 +*/
  1.2253 +void sqlite3VdbeDeleteUnpackedRecord(UnpackedRecord *p){
  1.2254 +  if( p ){
  1.2255 +    if( p->needDestroy ){
  1.2256 +      int i;
  1.2257 +      Mem *pMem;
  1.2258 +      for(i=0, pMem=p->aMem; i<p->nField; i++, pMem++){
  1.2259 +        if( pMem->zMalloc ){
  1.2260 +          sqlite3VdbeMemRelease(pMem);
  1.2261 +        }
  1.2262 +      }
  1.2263 +    }
  1.2264 +    if( p->needFree ){
  1.2265 +      sqlite3DbFree(p->pKeyInfo->db, p);
  1.2266 +    }
  1.2267 +  }
  1.2268 +}
  1.2269 +
  1.2270 +/*
  1.2271 +** This function compares the two table rows or index records
  1.2272 +** specified by {nKey1, pKey1} and pPKey2.  It returns a negative, zero
  1.2273 +** or positive integer if {nKey1, pKey1} is less than, equal to or 
  1.2274 +** greater than pPKey2.  The {nKey1, pKey1} key must be a blob
  1.2275 +** created by th OP_MakeRecord opcode of the VDBE.  The pPKey2
  1.2276 +** key must be a parsed key such as obtained from
  1.2277 +** sqlite3VdbeParseRecord.
  1.2278 +**
  1.2279 +** Key1 and Key2 do not have to contain the same number of fields.
  1.2280 +** But if the lengths differ, Key2 must be the shorter of the two.
  1.2281 +**
  1.2282 +** Historical note: In earlier versions of this routine both Key1
  1.2283 +** and Key2 were blobs obtained from OP_MakeRecord.  But we found
  1.2284 +** that in typical use the same Key2 would be submitted multiple times
  1.2285 +** in a row.  So an optimization was added to parse the Key2 key
  1.2286 +** separately and submit the parsed version.  In this way, we avoid
  1.2287 +** parsing the same Key2 multiple times in a row.
  1.2288 +*/
  1.2289 +int sqlite3VdbeRecordCompare(
  1.2290 +  int nKey1, const void *pKey1, 
  1.2291 +  UnpackedRecord *pPKey2
  1.2292 +){
  1.2293 +  u32 d1;            /* Offset into aKey[] of next data element */
  1.2294 +  u32 idx1;          /* Offset into aKey[] of next header element */
  1.2295 +  u32 szHdr1;        /* Number of bytes in header */
  1.2296 +  int i = 0;
  1.2297 +  int nField;
  1.2298 +  int rc = 0;
  1.2299 +  const unsigned char *aKey1 = (const unsigned char *)pKey1;
  1.2300 +  KeyInfo *pKeyInfo;
  1.2301 +  Mem mem1;
  1.2302 +
  1.2303 +  pKeyInfo = pPKey2->pKeyInfo;
  1.2304 +  mem1.enc = pKeyInfo->enc;
  1.2305 +  mem1.db = pKeyInfo->db;
  1.2306 +  mem1.flags = 0;
  1.2307 +  mem1.zMalloc = 0;
  1.2308 +  
  1.2309 +  idx1 = getVarint32(aKey1, szHdr1);
  1.2310 +  d1 = szHdr1;
  1.2311 +  nField = pKeyInfo->nField;
  1.2312 +  while( idx1<szHdr1 && i<pPKey2->nField ){
  1.2313 +    u32 serial_type1;
  1.2314 +
  1.2315 +    /* Read the serial types for the next element in each key. */
  1.2316 +    idx1 += getVarint32( aKey1+idx1, serial_type1 );
  1.2317 +    if( d1>=nKey1 && sqlite3VdbeSerialTypeLen(serial_type1)>0 ) break;
  1.2318 +
  1.2319 +    /* Extract the values to be compared.
  1.2320 +    */
  1.2321 +    d1 += sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1);
  1.2322 +
  1.2323 +    /* Do the comparison
  1.2324 +    */
  1.2325 +    rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i],
  1.2326 +                           i<nField ? pKeyInfo->aColl[i] : 0);
  1.2327 +    if( rc!=0 ){
  1.2328 +      break;
  1.2329 +    }
  1.2330 +    i++;
  1.2331 +  }
  1.2332 +  if( mem1.zMalloc ) sqlite3VdbeMemRelease(&mem1);
  1.2333 +
  1.2334 +  /* One of the keys ran out of fields, but all the fields up to that point
  1.2335 +  ** were equal. If the incrKey flag is true, then the second key is
  1.2336 +  ** treated as larger.
  1.2337 +  */
  1.2338 +  if( rc==0 ){
  1.2339 +    if( pKeyInfo->incrKey ){
  1.2340 +      rc = -1;
  1.2341 +    }else if( !pKeyInfo->prefixIsEqual ){
  1.2342 +      if( d1<nKey1 ){
  1.2343 +        rc = 1;
  1.2344 +      }
  1.2345 +    }
  1.2346 +  }else if( pKeyInfo->aSortOrder && i<pKeyInfo->nField
  1.2347 +               && pKeyInfo->aSortOrder[i] ){
  1.2348 +    rc = -rc;
  1.2349 +  }
  1.2350 +
  1.2351 +  return rc;
  1.2352 +}
  1.2353 +
  1.2354 +/*
  1.2355 +** The argument is an index entry composed using the OP_MakeRecord opcode.
  1.2356 +** The last entry in this record should be an integer (specifically
  1.2357 +** an integer rowid).  This routine returns the number of bytes in
  1.2358 +** that integer.
  1.2359 +*/
  1.2360 +int sqlite3VdbeIdxRowidLen(const u8 *aKey, int nKey, int *pRowidLen){
  1.2361 +  u32 szHdr;        /* Size of the header */
  1.2362 +  u32 typeRowid;    /* Serial type of the rowid */
  1.2363 +
  1.2364 +  (void)getVarint32(aKey, szHdr);
  1.2365 +  if( szHdr>nKey ){
  1.2366 +    return SQLITE_CORRUPT_BKPT;
  1.2367 +  }
  1.2368 +  (void)getVarint32(&aKey[szHdr-1], typeRowid);
  1.2369 +  *pRowidLen = sqlite3VdbeSerialTypeLen(typeRowid);
  1.2370 +  return SQLITE_OK;
  1.2371 +}
  1.2372 +  
  1.2373 +
  1.2374 +/*
  1.2375 +** pCur points at an index entry created using the OP_MakeRecord opcode.
  1.2376 +** Read the rowid (the last field in the record) and store it in *rowid.
  1.2377 +** Return SQLITE_OK if everything works, or an error code otherwise.
  1.2378 +*/
  1.2379 +int sqlite3VdbeIdxRowid(BtCursor *pCur, i64 *rowid){
  1.2380 +  i64 nCellKey = 0;
  1.2381 +  int rc;
  1.2382 +  u32 szHdr;        /* Size of the header */
  1.2383 +  u32 typeRowid;    /* Serial type of the rowid */
  1.2384 +  u32 lenRowid;     /* Size of the rowid */
  1.2385 +  Mem m, v;
  1.2386 +
  1.2387 +  sqlite3BtreeKeySize(pCur, &nCellKey);
  1.2388 +  if( nCellKey<=0 ){
  1.2389 +    return SQLITE_CORRUPT_BKPT;
  1.2390 +  }
  1.2391 +  m.flags = 0;
  1.2392 +  m.db = 0;
  1.2393 +  m.zMalloc = 0;
  1.2394 +  rc = sqlite3VdbeMemFromBtree(pCur, 0, nCellKey, 1, &m);
  1.2395 +  if( rc ){
  1.2396 +    return rc;
  1.2397 +  }
  1.2398 +  (void)getVarint32((u8*)m.z, szHdr);
  1.2399 +  (void)getVarint32((u8*)&m.z[szHdr-1], typeRowid);
  1.2400 +  lenRowid = sqlite3VdbeSerialTypeLen(typeRowid);
  1.2401 +  sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v);
  1.2402 +  *rowid = v.u.i;
  1.2403 +  sqlite3VdbeMemRelease(&m);
  1.2404 +  return SQLITE_OK;
  1.2405 +}
  1.2406 +
  1.2407 +/*
  1.2408 +** Compare the key of the index entry that cursor pC is point to against
  1.2409 +** the key string in pKey (of length nKey).  Write into *pRes a number
  1.2410 +** that is negative, zero, or positive if pC is less than, equal to,
  1.2411 +** or greater than pKey.  Return SQLITE_OK on success.
  1.2412 +**
  1.2413 +** pKey is either created without a rowid or is truncated so that it
  1.2414 +** omits the rowid at the end.  The rowid at the end of the index entry
  1.2415 +** is ignored as well.
  1.2416 +*/
  1.2417 +int sqlite3VdbeIdxKeyCompare(
  1.2418 +  Cursor *pC,                 /* The cursor to compare against */
  1.2419 +  UnpackedRecord *pUnpacked,
  1.2420 +  int nKey, const u8 *pKey,   /* The key to compare */
  1.2421 +  int *res                    /* Write the comparison result here */
  1.2422 +){
  1.2423 +  i64 nCellKey = 0;
  1.2424 +  int rc;
  1.2425 +  BtCursor *pCur = pC->pCursor;
  1.2426 +  int lenRowid;
  1.2427 +  Mem m;
  1.2428 +  UnpackedRecord *pRec;
  1.2429 +  char zSpace[200];
  1.2430 +
  1.2431 +  sqlite3BtreeKeySize(pCur, &nCellKey);
  1.2432 +  if( nCellKey<=0 ){
  1.2433 +    *res = 0;
  1.2434 +    return SQLITE_OK;
  1.2435 +  }
  1.2436 +  m.db = 0;
  1.2437 +  m.flags = 0;
  1.2438 +  m.zMalloc = 0;
  1.2439 +  if( (rc = sqlite3VdbeMemFromBtree(pC->pCursor, 0, nCellKey, 1, &m))
  1.2440 +   || (rc = sqlite3VdbeIdxRowidLen((u8*)m.z, m.n, &lenRowid))
  1.2441 +  ){
  1.2442 +    return rc;
  1.2443 +  }
  1.2444 +  if( !pUnpacked ){
  1.2445 +    pRec = sqlite3VdbeRecordUnpack(pC->pKeyInfo, nKey, pKey,
  1.2446 +                                zSpace, sizeof(zSpace));
  1.2447 +  }else{
  1.2448 +    pRec = pUnpacked;
  1.2449 +  }
  1.2450 +  if( pRec==0 ){
  1.2451 +    return SQLITE_NOMEM;
  1.2452 +  }
  1.2453 +  *res = sqlite3VdbeRecordCompare(m.n-lenRowid, m.z, pRec);
  1.2454 +  if( !pUnpacked ){
  1.2455 +    sqlite3VdbeDeleteUnpackedRecord(pRec);
  1.2456 +  }
  1.2457 +  sqlite3VdbeMemRelease(&m);
  1.2458 +  return SQLITE_OK;
  1.2459 +}
  1.2460 +
  1.2461 +/*
  1.2462 +** This routine sets the value to be returned by subsequent calls to
  1.2463 +** sqlite3_changes() on the database handle 'db'. 
  1.2464 +*/
  1.2465 +void sqlite3VdbeSetChanges(sqlite3 *db, int nChange){
  1.2466 +  assert( sqlite3_mutex_held(db->mutex) );
  1.2467 +  db->nChange = nChange;
  1.2468 +  db->nTotalChange += nChange;
  1.2469 +}
  1.2470 +
  1.2471 +/*
  1.2472 +** Set a flag in the vdbe to update the change counter when it is finalised
  1.2473 +** or reset.
  1.2474 +*/
  1.2475 +void sqlite3VdbeCountChanges(Vdbe *v){
  1.2476 +  v->changeCntOn = 1;
  1.2477 +}
  1.2478 +
  1.2479 +/*
  1.2480 +** Mark every prepared statement associated with a database connection
  1.2481 +** as expired.
  1.2482 +**
  1.2483 +** An expired statement means that recompilation of the statement is
  1.2484 +** recommend.  Statements expire when things happen that make their
  1.2485 +** programs obsolete.  Removing user-defined functions or collating
  1.2486 +** sequences, or changing an authorization function are the types of
  1.2487 +** things that make prepared statements obsolete.
  1.2488 +*/
  1.2489 +void sqlite3ExpirePreparedStatements(sqlite3 *db){
  1.2490 +  Vdbe *p;
  1.2491 +  for(p = db->pVdbe; p; p=p->pNext){
  1.2492 +    p->expired = 1;
  1.2493 +  }
  1.2494 +}
  1.2495 +
  1.2496 +/*
  1.2497 +** Return the database associated with the Vdbe.
  1.2498 +*/
  1.2499 +sqlite3 *sqlite3VdbeDb(Vdbe *v){
  1.2500 +  return v->db;
  1.2501 +}