os/kernelhwsrv/kerneltest/e32test/misc/inflate.c
changeset 0 bde4ae8d615e
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/os/kernelhwsrv/kerneltest/e32test/misc/inflate.c	Fri Jun 15 03:10:57 2012 +0200
     1.3 @@ -0,0 +1,916 @@
     1.4 +/* inflate.c -- Not copyrighted 1992 by Mark Adler
     1.5 +   version c10p1, 10 January 1993 */
     1.6 +
     1.7 +/* You can do whatever you like with this source file, though I would
     1.8 +   prefer that if you modify it and redistribute it that you include
     1.9 +   comments to that effect with your name and the date.  Thank you.
    1.10 +   [The history has been moved to the file ChangeLog.]
    1.11 + */
    1.12 +
    1.13 +/*
    1.14 +   Inflate deflated (PKZIP's method 8 compressed) data.  The compression
    1.15 +   method searches for as much of the current string of bytes (up to a
    1.16 +   length of 258) in the previous 32K bytes.  If it doesn't find any
    1.17 +   matches (of at least length 3), it codes the next byte.  Otherwise, it
    1.18 +   codes the length of the matched string and its distance backwards from
    1.19 +   the current position.  There is a single Huffman code that codes both
    1.20 +   single bytes (called "literals") and match lengths.  A second Huffman
    1.21 +   code codes the distance information, which follows a length code.  Each
    1.22 +   length or distance code actually represents a base value and a number
    1.23 +   of "extra" (sometimes zero) bits to get to add to the base value.  At
    1.24 +   the end of each deflated block is a special end-of-block (EOB) literal/
    1.25 +   length code.  The decoding process is basically: get a literal/length
    1.26 +   code; if EOB then done; if a literal, emit the decoded byte; if a
    1.27 +   length then get the distance and emit the referred-to bytes from the
    1.28 +   sliding window of previously emitted data.
    1.29 +
    1.30 +   There are (currently) three kinds of inflate blocks: stored, fixed, and
    1.31 +   dynamic.  The compressor deals with some chunk of data at a time, and
    1.32 +   decides which method to use on a chunk-by-chunk basis.  A chunk might
    1.33 +   typically be 32K or 64K.  If the chunk is uncompressible, then the
    1.34 +   "stored" method is used.  In this case, the bytes are simply stored as
    1.35 +   is, eight bits per byte, with none of the above coding.  The bytes are
    1.36 +   preceded by a count, since there is no longer an EOB code.
    1.37 +
    1.38 +   If the data is compressible, then either the fixed or dynamic methods
    1.39 +   are used.  In the dynamic method, the compressed data is preceded by
    1.40 +   an encoding of the literal/length and distance Huffman codes that are
    1.41 +   to be used to decode this block.  The representation is itself Huffman
    1.42 +   coded, and so is preceded by a description of that code.  These code
    1.43 +   descriptions take up a little space, and so for small blocks, there is
    1.44 +   a predefined set of codes, called the fixed codes.  The fixed method is
    1.45 +   used if the block codes up smaller that way (usually for quite small
    1.46 +   chunks), otherwise the dynamic method is used.  In the latter case, the
    1.47 +   codes are customized to the probabilities in the current block, and so
    1.48 +   can code it much better than the pre-determined fixed codes.
    1.49 + 
    1.50 +   The Huffman codes themselves are decoded using a mutli-level table
    1.51 +   lookup, in order to maximize the speed of decoding plus the speed of
    1.52 +   building the decoding tables.  See the comments below that precede the
    1.53 +   lbits and dbits tuning parameters.
    1.54 + */
    1.55 +
    1.56 +
    1.57 +/*
    1.58 +   Notes beyond the 1.93a appnote.txt:
    1.59 +
    1.60 +   1. Distance pointers never point before the beginning of the output
    1.61 +      stream.
    1.62 +   2. Distance pointers can point back across blocks, up to 32k away.
    1.63 +   3. There is an implied maximum of 7 bits for the bit length table and
    1.64 +      15 bits for the actual data.
    1.65 +   4. If only one code exists, then it is encoded using one bit.  (Zero
    1.66 +      would be more efficient, but perhaps a little confusing.)  If two
    1.67 +      codes exist, they are coded using one bit each (0 and 1).
    1.68 +   5. There is no way of sending zero distance codes--a dummy must be
    1.69 +      sent if there are none.  (History: a pre 2.0 version of PKZIP would
    1.70 +      store blocks with no distance codes, but this was discovered to be
    1.71 +      too harsh a criterion.)  Valid only for 1.93a.  2.04c does allow
    1.72 +      zero distance codes, which is sent as one code of zero bits in
    1.73 +      length.
    1.74 +   6. There are up to 286 literal/length codes.  Code 256 represents the
    1.75 +      end-of-block.  Note however that the static length tree defines
    1.76 +      288 codes just to fill out the Huffman codes.  Codes 286 and 287
    1.77 +      cannot be used though, since there is no length base or extra bits
    1.78 +      defined for them.  Similarly, there are up to 30 distance codes.
    1.79 +      However, static trees define 32 codes (all 5 bits) to fill out the
    1.80 +      Huffman codes, but the last two had better not show up in the data.
    1.81 +   7. Unzip can check dynamic Huffman blocks for complete code sets.
    1.82 +      The exception is that a single code would not be complete (see #4).
    1.83 +   8. The five bits following the block type is really the number of
    1.84 +      literal codes sent minus 257.
    1.85 +   9. Length codes 8,16,16 are interpreted as 13 length codes of 8 bits
    1.86 +      (1+6+6).  Therefore, to output three times the length, you output
    1.87 +      three codes (1+1+1), whereas to output four times the same length,
    1.88 +      you only need two codes (1+3).  Hmm.
    1.89 +  10. In the tree reconstruction algorithm, Code = Code + Increment
    1.90 +      only if BitLength(i) is not zero.  (Pretty obvious.)
    1.91 +  11. Correction: 4 Bits: # of Bit Length codes - 4     (4 - 19)
    1.92 +  12. Note: length code 284 can represent 227-258, but length code 285
    1.93 +      really is 258.  The last length deserves its own, short code
    1.94 +      since it gets used a lot in very redundant files.  The length
    1.95 +      258 is special since 258 - 3 (the min match length) is 255.
    1.96 +  13. The literal/length and distance code bit lengths are read as a
    1.97 +      single stream of lengths.  It is possible (and advantageous) for
    1.98 +      a repeat code (16, 17, or 18) to go across the boundary between
    1.99 +      the two sets of lengths.
   1.100 + */
   1.101 +
   1.102 +#include "inflate.h"
   1.103 +
   1.104 +extern void* memcpy(void*, const void*, unsigned);
   1.105 +extern void* memset(void*, int, unsigned);
   1.106 +
   1.107 +/* Huffman code lookup table entry--this entry is four bytes for machines
   1.108 +   that have 16-bit pointers (e.g. PC's in the small or medium model).
   1.109 +   Valid extra bits are 0..13.  e == 15 is EOB (end of block), e == 16
   1.110 +   means that v is a literal, 16 < e < 32 means that v is a pointer to
   1.111 +   the next table, which codes e - 16 bits, and lastly e == 99 indicates
   1.112 +   an unused code.  If a code with e == 99 is looked up, this implies an
   1.113 +   error in the data. */
   1.114 +struct huft {
   1.115 +  uch e;                /* number of extra bits or operation */
   1.116 +  uch b;                /* number of bits in this code or subcode */
   1.117 +  union {
   1.118 +    ush n;              /* literal, length base, or distance base */
   1.119 +    struct huft *t;     /* pointer to next level of table */
   1.120 +  } v;
   1.121 +};
   1.122 +
   1.123 +
   1.124 +/* Function prototypes */
   1.125 +int huft_build(unsigned *, unsigned, unsigned, const ush *, const ush *,
   1.126 +                   struct huft **, int *);
   1.127 +int huft_free(struct huft *);
   1.128 +int inflate_codes(struct huft *, struct huft *, int, int);
   1.129 +int inflate_stored(void);
   1.130 +int inflate_fixed(void);
   1.131 +int inflate_dynamic(void);
   1.132 +int inflate_block(int *);
   1.133 +int inflate(void);
   1.134 +
   1.135 +
   1.136 +/* The inflate algorithm uses a sliding 32K byte window on the uncompressed
   1.137 +   stream to find repeated byte strings.  This is implemented here as a
   1.138 +   circular buffer.  The index is updated simply by incrementing and then
   1.139 +   and'ing with 0x7fff (32K-1). */
   1.140 +/* It is left to other modules to supply the 32K area.  It is assumed
   1.141 +   to be usable as if it were declared "uch slide[32768];" or as just
   1.142 +   "uch *slide;" and then malloc'ed in the latter case.  The definition
   1.143 +   must be in unzip.h, included above. */
   1.144 +/* unsigned wp;             current position in slide */
   1.145 +/*#define wp outcnt*/
   1.146 +/*#define flush_output(w) (wp=(w),flush_window())*/
   1.147 +
   1.148 +/* Tables for deflate from PKZIP's appnote.txt. */
   1.149 +static const unsigned border[] = {    /* Order of the bit length code lengths */
   1.150 +        16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15};
   1.151 +static const ush cplens[] = {         /* Copy lengths for literal codes 257..285 */
   1.152 +        3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
   1.153 +        35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0};
   1.154 +        /* note: see note #13 above about the 258 in this list. */
   1.155 +static const ush cplext[] = {         /* Extra bits for literal codes 257..285 */
   1.156 +        0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
   1.157 +        3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 99, 99}; /* 99==invalid */
   1.158 +static const ush cpdist[] = {         /* Copy offsets for distance codes 0..29 */
   1.159 +        1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
   1.160 +        257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
   1.161 +        8193, 12289, 16385, 24577};
   1.162 +static const ush cpdext[] = {         /* Extra bits for distance codes */
   1.163 +        0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6,
   1.164 +        7, 7, 8, 8, 9, 9, 10, 10, 11, 11,
   1.165 +        12, 12, 13, 13};
   1.166 +
   1.167 +
   1.168 +
   1.169 +/* Macros for inflate() bit peeking and grabbing.
   1.170 +   The usage is:
   1.171 +   
   1.172 +        NEEDBITS(j)
   1.173 +        x = b & mask_bits[j];
   1.174 +        DUMPBITS(j)
   1.175 +
   1.176 +   where NEEDBITS makes sure that b has at least j bits in it, and
   1.177 +   DUMPBITS removes the bits from b.  The macros use the variable k
   1.178 +   for the number of bits in b.  Normally, b and k are register
   1.179 +   variables for speed, and are initialized at the beginning of a
   1.180 +   routine that uses these macros from a global bit buffer and count.
   1.181 +
   1.182 +   If we assume that EOB will be the longest code, then we will never
   1.183 +   ask for bits with NEEDBITS that are beyond the end of the stream.
   1.184 +   So, NEEDBITS should not read any more bytes than are needed to
   1.185 +   meet the request.  Then no bytes need to be "returned" to the buffer
   1.186 +   at the end of the last block.
   1.187 +
   1.188 +   However, this assumption is not true for fixed blocks--the EOB code
   1.189 +   is 7 bits, but the other literal/length codes can be 8 or 9 bits.
   1.190 +   (The EOB code is shorter than other codes because fixed blocks are
   1.191 +   generally short.  So, while a block always has an EOB, many other
   1.192 +   literal/length codes have a significantly lower probability of
   1.193 +   showing up at all.)  However, by making the first table have a
   1.194 +   lookup of seven bits, the EOB code will be found in that first
   1.195 +   lookup, and so will not require that too many bits be pulled from
   1.196 +   the stream.
   1.197 + */
   1.198 +
   1.199 +ulg bb;                         /* bit buffer */
   1.200 +unsigned bk;                    /* bits in bit buffer */
   1.201 +
   1.202 +static const ush mask_bits[] = {
   1.203 +    0x0000,
   1.204 +    0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff,
   1.205 +    0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff
   1.206 +};
   1.207 +
   1.208 +#define get_byte()  (inptr < inbuf_end ? *inptr++ : fill_inbuf())
   1.209 +#define NEXTBYTE()  (uch)get_byte()
   1.210 +#define NEEDBITS(n) {while(k<(n)){b|=((ulg)NEXTBYTE())<<k;k+=8;}}
   1.211 +#define DUMPBITS(n) {b>>=(n);k-=(n);}
   1.212 +
   1.213 +
   1.214 +/*
   1.215 +   Huffman code decoding is performed using a multi-level table lookup.
   1.216 +   The fastest way to decode is to simply build a lookup table whose
   1.217 +   size is determined by the longest code.  However, the time it takes
   1.218 +   to build this table can also be a factor if the data being decoded
   1.219 +   is not very long.  The most common codes are necessarily the
   1.220 +   shortest codes, so those codes dominate the decoding time, and hence
   1.221 +   the speed.  The idea is you can have a shorter table that decodes the
   1.222 +   shorter, more probable codes, and then point to subsidiary tables for
   1.223 +   the longer codes.  The time it costs to decode the longer codes is
   1.224 +   then traded against the time it takes to make longer tables.
   1.225 +
   1.226 +   This results of this trade are in the variables lbits and dbits
   1.227 +   below.  lbits is the number of bits the first level table for literal/
   1.228 +   length codes can decode in one step, and dbits is the same thing for
   1.229 +   the distance codes.  Subsequent tables are also less than or equal to
   1.230 +   those sizes.  These values may be adjusted either when all of the
   1.231 +   codes are shorter than that, in which case the longest code length in
   1.232 +   bits is used, or when the shortest code is *longer* than the requested
   1.233 +   table size, in which case the length of the shortest code in bits is
   1.234 +   used.
   1.235 +
   1.236 +   There are two different values for the two tables, since they code a
   1.237 +   different number of possibilities each.  The literal/length table
   1.238 +   codes 286 possible values, or in a flat code, a little over eight
   1.239 +   bits.  The distance table codes 30 possible values, or a little less
   1.240 +   than five bits, flat.  The optimum values for speed end up being
   1.241 +   about one bit more than those, so lbits is 8+1 and dbits is 5+1.
   1.242 +   The optimum values may differ though from machine to machine, and
   1.243 +   possibly even between compilers.  Your mileage may vary.
   1.244 + */
   1.245 +
   1.246 +
   1.247 +static const int lbits = 9;          /* bits in base literal/length lookup table */
   1.248 +static const int dbits = 6;          /* bits in base distance lookup table */
   1.249 +
   1.250 +
   1.251 +/* If BMAX needs to be larger than 16, then h and x[] should be ulg. */
   1.252 +#define BMAX 16         /* maximum bit length of any code (16 for explode) */
   1.253 +#define N_MAX 288       /* maximum number of codes in any set */
   1.254 +
   1.255 +
   1.256 +unsigned hufts;         /* track memory usage */
   1.257 +
   1.258 +
   1.259 +int huft_build(
   1.260 +unsigned *b,            /* code lengths in bits (all assumed <= BMAX) */
   1.261 +unsigned n,             /* number of codes (assumed <= N_MAX) */
   1.262 +unsigned s,             /* number of simple-valued codes (0..s-1) */
   1.263 +const ush *d,                 /* list of base values for non-simple codes */
   1.264 +const ush *e,                 /* list of extra bits for non-simple codes */
   1.265 +struct huft **t,        /* result: starting table */
   1.266 +int *m                 /* maximum lookup bits, returns actual */
   1.267 +)
   1.268 +/* Given a list of code lengths and a maximum table size, make a set of
   1.269 +   tables to decode that set of codes.  Return zero on success, one if
   1.270 +   the given code set is incomplete (the tables are still built in this
   1.271 +   case), two if the input is invalid (all zero length codes or an
   1.272 +   oversubscribed set of lengths), and three if not enough memory. */
   1.273 +{
   1.274 +  unsigned a;                   /* counter for codes of length k */
   1.275 +  unsigned c[BMAX+1];           /* bit length count table */
   1.276 +  unsigned f;                   /* i repeats in table every f entries */
   1.277 +  int g;                        /* maximum code length */
   1.278 +  int h;                        /* table level */
   1.279 +  register unsigned i;          /* counter, current code */
   1.280 +  register unsigned j;          /* counter */
   1.281 +  register int k;               /* number of bits in current code */
   1.282 +  int l;                        /* bits per table (returned in m) */
   1.283 +  register unsigned *p;         /* pointer into c[], b[], or v[] */
   1.284 +  register struct huft *q;      /* points to current table */
   1.285 +  struct huft r;                /* table entry for structure assignment */
   1.286 +  struct huft *u[BMAX];         /* table stack */
   1.287 +  unsigned v[N_MAX];            /* values in order of bit length */
   1.288 +  register int w;               /* bits before this table == (l * h) */
   1.289 +  unsigned x[BMAX+1];           /* bit offsets, then code stack */
   1.290 +  unsigned *xp;                 /* pointer into x */
   1.291 +  int y;                        /* number of dummy codes added */
   1.292 +  unsigned z;                   /* number of entries in current table */
   1.293 +
   1.294 +
   1.295 +  /* Generate counts for each bit length */
   1.296 +  memset(c, 0, sizeof(c));
   1.297 +  p = b;  i = n;
   1.298 +  do {
   1.299 +/*    Tracecv(*p, (stderr, (n-i >= ' ' && n-i <= '~' ? "%c %d\n" : "0x%x %d\n"), 
   1.300 +	    n-i, *p));*/
   1.301 +    c[*p]++;                    /* assume all entries <= BMAX */
   1.302 +    p++;                      /* Can't combine with above line (Solaris bug) */
   1.303 +  } while (--i);
   1.304 +  if (c[0] == n)                /* null input--all zero length codes */
   1.305 +  {
   1.306 +    *t = (struct huft *)NULL;
   1.307 +    *m = 0;
   1.308 +    return 0;
   1.309 +  }
   1.310 +
   1.311 +
   1.312 +  /* Find minimum and maximum length, bound *m by those */
   1.313 +  l = *m;
   1.314 +  for (j = 1; j <= BMAX; j++)
   1.315 +    if (c[j])
   1.316 +      break;
   1.317 +  k = j;                        /* minimum code length */
   1.318 +  if ((unsigned)l < j)
   1.319 +    l = j;
   1.320 +  for (i = BMAX; i; i--)
   1.321 +    if (c[i])
   1.322 +      break;
   1.323 +  g = i;                        /* maximum code length */
   1.324 +  if ((unsigned)l > i)
   1.325 +    l = i;
   1.326 +  *m = l;
   1.327 +
   1.328 +
   1.329 +  /* Adjust last length count to fill out codes, if needed */
   1.330 +  for (y = 1 << j; j < i; j++, y <<= 1)
   1.331 +    if ((y -= c[j]) < 0)
   1.332 +      return 2;                 /* bad input: more codes than bits */
   1.333 +  if ((y -= c[i]) < 0)
   1.334 +    return 2;
   1.335 +  c[i] += y;
   1.336 +
   1.337 +
   1.338 +  /* Generate starting offsets into the value table for each length */
   1.339 +  x[1] = j = 0;
   1.340 +  p = c + 1;  xp = x + 2;
   1.341 +  while (--i) {                 /* note that i == g from above */
   1.342 +    *xp++ = (j += *p++);
   1.343 +  }
   1.344 +
   1.345 +
   1.346 +  /* Make a table of values in order of bit lengths */
   1.347 +  p = b;  i = 0;
   1.348 +  do {
   1.349 +    if ((j = *p++) != 0)
   1.350 +      v[x[j]++] = i;
   1.351 +  } while (++i < n);
   1.352 +
   1.353 +
   1.354 +  /* Generate the Huffman codes and for each, make the table entries */
   1.355 +  x[0] = i = 0;                 /* first Huffman code is zero */
   1.356 +  p = v;                        /* grab values in bit order */
   1.357 +  h = -1;                       /* no tables yet--level -1 */
   1.358 +  w = -l;                       /* bits decoded == (l * h) */
   1.359 +  u[0] = (struct huft *)NULL;   /* just to keep compilers happy */
   1.360 +  q = (struct huft *)NULL;      /* ditto */
   1.361 +  z = 0;                        /* ditto */
   1.362 +
   1.363 +  /* go through the bit lengths (k already is bits in shortest code) */
   1.364 +  for (; k <= g; k++)
   1.365 +  {
   1.366 +    a = c[k];
   1.367 +    while (a--)
   1.368 +    {
   1.369 +      /* here i is the Huffman code of length k bits for value *p */
   1.370 +      /* make tables up to required level */
   1.371 +      while (k > w + l)
   1.372 +      {
   1.373 +        h++;
   1.374 +        w += l;                 /* previous table always l bits */
   1.375 +
   1.376 +        /* compute minimum size table less than or equal to l bits */
   1.377 +        z = (z = g - w) > (unsigned)l ? l : z;  /* upper limit on table size */
   1.378 +        if ((f = 1 << (j = k - w)) > a + 1)     /* try a k-w bit table */
   1.379 +        {                       /* too few codes for k-w bit table */
   1.380 +          f -= a + 1;           /* deduct codes from patterns left */
   1.381 +          xp = c + k;
   1.382 +          while (++j < z)       /* try smaller tables up to z bits */
   1.383 +          {
   1.384 +            if ((f <<= 1) <= *++xp)
   1.385 +              break;            /* enough codes to use up j bits */
   1.386 +            f -= *xp;           /* else deduct codes from patterns */
   1.387 +          }
   1.388 +        }
   1.389 +        z = 1 << j;             /* table entries for j-bit table */
   1.390 +
   1.391 +        /* allocate and link in new table */
   1.392 +        if ((q = (struct huft *)malloc((z + 1)*sizeof(struct huft))) ==
   1.393 +            (struct huft *)NULL)
   1.394 +        {
   1.395 +          if (h)
   1.396 +            huft_free(u[0]);
   1.397 +          return 3;             /* not enough memory */
   1.398 +        }
   1.399 +        hufts += z + 1;         /* track memory usage */
   1.400 +        *t = q + 1;             /* link to list for huft_free() */
   1.401 +        *(t = &(q->v.t)) = (struct huft *)NULL;
   1.402 +        u[h] = ++q;             /* table starts after link */
   1.403 +
   1.404 +        /* connect to last table, if there is one */
   1.405 +        if (h)
   1.406 +        {
   1.407 +          x[h] = i;             /* save pattern for backing up */
   1.408 +          r.b = (uch)l;         /* bits to dump before this table */
   1.409 +          r.e = (uch)(16 + j);  /* bits in this table */
   1.410 +          r.v.t = q;            /* pointer to this table */
   1.411 +          j = i >> (w - l);     /* (get around Turbo C bug) */
   1.412 +          u[h-1][j] = r;        /* connect to last table */
   1.413 +        }
   1.414 +      }
   1.415 +
   1.416 +      /* set up table entry in r */
   1.417 +      r.b = (uch)(k - w);
   1.418 +      if (p >= v + n)
   1.419 +        r.e = 99;               /* out of values--invalid code */
   1.420 +      else if (*p < s)
   1.421 +      {
   1.422 +        r.e = (uch)(*p < 256 ? 16 : 15);    /* 256 is end-of-block code */
   1.423 +        r.v.n = (ush)(*p);             /* simple code is just the value */
   1.424 +	p++;                           /* one compiler does not like *p++ */
   1.425 +      }
   1.426 +      else
   1.427 +      {
   1.428 +        r.e = (uch)e[*p - s];   /* non-simple--look up in lists */
   1.429 +        r.v.n = d[*p++ - s];
   1.430 +      }
   1.431 +
   1.432 +      /* fill code-like entries with r */
   1.433 +      f = 1 << (k - w);
   1.434 +      for (j = i >> w; j < z; j += f)
   1.435 +        q[j] = r;
   1.436 +
   1.437 +      /* backwards increment the k-bit code i */
   1.438 +      for (j = 1 << (k - 1); i & j; j >>= 1)
   1.439 +        i ^= j;
   1.440 +      i ^= j;
   1.441 +
   1.442 +      /* backup over finished tables */
   1.443 +      while ((i & ((1 << w) - 1)) != x[h])
   1.444 +      {
   1.445 +        h--;                    /* don't need to update q */
   1.446 +        w -= l;
   1.447 +      }
   1.448 +    }
   1.449 +  }
   1.450 +
   1.451 +
   1.452 +  /* Return true (1) if we were given an incomplete table */
   1.453 +  return y != 0 && g != 1;
   1.454 +}
   1.455 +
   1.456 +
   1.457 +
   1.458 +int huft_free(struct huft *t)
   1.459 +/* Free the malloc'ed tables built by huft_build(), which makes a linked
   1.460 +   list of the tables it made, with the links in a dummy first entry of
   1.461 +   each table. */
   1.462 +{
   1.463 +  register struct huft *p, *q;
   1.464 +
   1.465 +
   1.466 +  /* Go through linked list, freeing from the malloced (t[-1]) address. */
   1.467 +  p = t;
   1.468 +  while (p != (struct huft *)NULL)
   1.469 +  {
   1.470 +    q = (--p)->v.t;
   1.471 +    free((char*)p);
   1.472 +    p = q;
   1.473 +  } 
   1.474 +  return 0;
   1.475 +}
   1.476 +
   1.477 +
   1.478 +int inflate_codes(
   1.479 +struct huft *tl,
   1.480 +struct huft *td,   /* literal/length and distance decoder tables */
   1.481 +int bl,
   1.482 +int bd             /* number of bits decoded by tl[] and td[] */
   1.483 +)
   1.484 +/* inflate (decompress) the codes in a deflated (compressed) block.
   1.485 +   Return an error code or zero if it all goes ok. */
   1.486 +{
   1.487 +  register unsigned e;  /* table entry flag/number of extra bits */
   1.488 +  unsigned n, d;        /* length and index for copy */
   1.489 +  struct huft *t;       /* pointer to table entry */
   1.490 +  unsigned ml, md;      /* masks for bl and bd bits */
   1.491 +  register ulg b=bb;       /* bit buffer */
   1.492 +  register unsigned k=bk;  /* number of bits in bit buffer */
   1.493 +  register uch* p=(uch*)outptr;
   1.494 +
   1.495 +  /* inflate the coded data */
   1.496 +  ml = mask_bits[bl];           /* precompute masks for speed */
   1.497 +  md = mask_bits[bd];
   1.498 +  for (;;)                      /* do until end of block */
   1.499 +  {
   1.500 +    NEEDBITS((unsigned)bl)
   1.501 +    if ((e = (t = tl + ((unsigned)b & ml))->e) > 16)
   1.502 +      do {
   1.503 +        if (e == 99)
   1.504 +          return 1;
   1.505 +        DUMPBITS(t->b)
   1.506 +        e -= 16;
   1.507 +        NEEDBITS(e)
   1.508 +      } while ((e = (t = t->v.t + ((unsigned)b & mask_bits[e]))->e) > 16);
   1.509 +    DUMPBITS(t->b)
   1.510 +    if (e == 16)                /* then it's a literal */
   1.511 +    {
   1.512 +      *p++ = (uch)t->v.n;
   1.513 +    }
   1.514 +    else                        /* it's an EOB or a length */
   1.515 +    {
   1.516 +      /* exit if end of block */
   1.517 +      if (e == 15)
   1.518 +        break;
   1.519 +
   1.520 +      /* get length of block to copy */
   1.521 +      NEEDBITS(e)
   1.522 +      n = t->v.n + ((unsigned)b & mask_bits[e]);
   1.523 +      DUMPBITS(e);
   1.524 +
   1.525 +      /* decode distance of block to copy */
   1.526 +      NEEDBITS((unsigned)bd)
   1.527 +      if ((e = (t = td + ((unsigned)b & md))->e) > 16)
   1.528 +        do {
   1.529 +          if (e == 99)
   1.530 +            return 1;
   1.531 +          DUMPBITS(t->b)
   1.532 +          e -= 16;
   1.533 +          NEEDBITS(e)
   1.534 +        } while ((e = (t = t->v.t + ((unsigned)b & mask_bits[e]))->e) > 16);
   1.535 +      DUMPBITS(t->b)
   1.536 +      NEEDBITS(e)
   1.537 +      d = t->v.n + ((unsigned)b & mask_bits[e]);
   1.538 +	  d &= ZIP_WINDOW_SIZE-1;
   1.539 +      DUMPBITS(e)
   1.540 +
   1.541 +      /* do the copy */
   1.542 +	  if (d>=n)
   1.543 +		  {
   1.544 +		  memcpy(p, p-d, n);
   1.545 +		  p+=n;
   1.546 +		  }
   1.547 +	  else
   1.548 +		  {
   1.549 +		  uch* q=p-d;
   1.550 +		  while(n--) *p++=*q++;
   1.551 +		  }
   1.552 +    }
   1.553 +  }
   1.554 +
   1.555 +
   1.556 +  /* restore the globals from the locals */
   1.557 +  outptr=p;
   1.558 +  bb = b;                       /* restore global bit buffer */
   1.559 +  bk = k;
   1.560 +
   1.561 +  /* done */
   1.562 +  return 0;
   1.563 +}
   1.564 +
   1.565 +
   1.566 +
   1.567 +int inflate_stored()
   1.568 +/* "decompress" an inflated type 0 (stored) block. */
   1.569 +{
   1.570 +  unsigned n;           /* number of bytes in block */
   1.571 +  register ulg b;       /* bit buffer */
   1.572 +  register unsigned k;  /* number of bits in bit buffer */
   1.573 +
   1.574 +  register uch* p=(uch*)outptr;
   1.575 +
   1.576 +
   1.577 +  /* make local copies of globals */
   1.578 +  b = bb;                       /* initialize bit buffer */
   1.579 +  k = bk;
   1.580 +
   1.581 +
   1.582 +  /* go to byte boundary */
   1.583 +  n = k & 7;
   1.584 +  DUMPBITS(n);
   1.585 +
   1.586 +
   1.587 +  /* get the length and its complement */
   1.588 +  NEEDBITS(16)
   1.589 +  n = ((unsigned)b & 0xffff);
   1.590 +  DUMPBITS(16)
   1.591 +  NEEDBITS(16)
   1.592 +  if (n != (unsigned)((~b) & 0xffff))
   1.593 +    return 1;                   /* error in compressed data */
   1.594 +  DUMPBITS(16)
   1.595 +
   1.596 +
   1.597 +  /* read and output the compressed data */
   1.598 +  while (n--)
   1.599 +  {
   1.600 +    NEEDBITS(8)
   1.601 +	*p++=(uch)b;
   1.602 +    DUMPBITS(8)
   1.603 +  }
   1.604 +
   1.605 +
   1.606 +  /* restore the globals from the locals */
   1.607 +  outptr=p;
   1.608 +  bb = b;                       /* restore global bit buffer */
   1.609 +  bk = k;
   1.610 +  return 0;
   1.611 +}
   1.612 +
   1.613 +
   1.614 +
   1.615 +int inflate_fixed()
   1.616 +/* decompress an inflated type 1 (fixed Huffman codes) block.  We should
   1.617 +   either replace this with a custom decoder, or at least precompute the
   1.618 +   Huffman tables. */
   1.619 +{
   1.620 +  int i;                /* temporary variable */
   1.621 +  struct huft *tl;      /* literal/length code table */
   1.622 +  struct huft *td;      /* distance code table */
   1.623 +  int bl;               /* lookup bits for tl */
   1.624 +  int bd;               /* lookup bits for td */
   1.625 +  unsigned l[288];      /* length list for huft_build */
   1.626 +
   1.627 +
   1.628 +  /* set up literal table */
   1.629 +  for (i = 0; i < 144; i++)
   1.630 +    l[i] = 8;
   1.631 +  for (; i < 256; i++)
   1.632 +    l[i] = 9;
   1.633 +  for (; i < 280; i++)
   1.634 +    l[i] = 7;
   1.635 +  for (; i < 288; i++)          /* make a complete, but wrong code set */
   1.636 +    l[i] = 8;
   1.637 +  bl = 7;
   1.638 +  if ((i = huft_build(l, 288, 257, cplens, cplext, &tl, &bl)) != 0)
   1.639 +    return i;
   1.640 +
   1.641 +
   1.642 +  /* set up distance table */
   1.643 +  for (i = 0; i < 30; i++)      /* make an incomplete code set */
   1.644 +    l[i] = 5;
   1.645 +  bd = 5;
   1.646 +  if ((i = huft_build(l, 30, 0, cpdist, cpdext, &td, &bd)) > 1)
   1.647 +  {
   1.648 +    huft_free(tl);
   1.649 +    return i;
   1.650 +  }
   1.651 +
   1.652 +
   1.653 +  /* decompress until an end-of-block code */
   1.654 +  if (inflate_codes(tl, td, bl, bd))
   1.655 +    return 1;
   1.656 +
   1.657 +
   1.658 +  /* free the decoding tables, return */
   1.659 +  huft_free(tl);
   1.660 +  huft_free(td);
   1.661 +  return 0;
   1.662 +}
   1.663 +
   1.664 +
   1.665 +
   1.666 +int inflate_dynamic()
   1.667 +/* decompress an inflated type 2 (dynamic Huffman codes) block. */
   1.668 +{
   1.669 +  int i;                /* temporary variables */
   1.670 +  unsigned j;
   1.671 +  unsigned l;           /* last length */
   1.672 +  unsigned m;           /* mask for bit lengths table */
   1.673 +  unsigned n;           /* number of lengths to get */
   1.674 +  struct huft *tl;      /* literal/length code table */
   1.675 +  struct huft *td;      /* distance code table */
   1.676 +  int bl;               /* lookup bits for tl */
   1.677 +  int bd;               /* lookup bits for td */
   1.678 +  unsigned nb;          /* number of bit length codes */
   1.679 +  unsigned nl;          /* number of literal/length codes */
   1.680 +  unsigned nd;          /* number of distance codes */
   1.681 +#ifdef PKZIP_BUG_WORKAROUND
   1.682 +  unsigned ll[288+32];  /* literal/length and distance code lengths */
   1.683 +#else
   1.684 +  unsigned ll[286+30];  /* literal/length and distance code lengths */
   1.685 +#endif
   1.686 +  register ulg b;       /* bit buffer */
   1.687 +  register unsigned k;  /* number of bits in bit buffer */
   1.688 +
   1.689 +
   1.690 +  /* make local bit buffer */
   1.691 +  b = bb;
   1.692 +  k = bk;
   1.693 +
   1.694 +
   1.695 +  /* read in table lengths */
   1.696 +  NEEDBITS(5)
   1.697 +  nl = 257 + ((unsigned)b & 0x1f);      /* number of literal/length codes */
   1.698 +  DUMPBITS(5)
   1.699 +  NEEDBITS(5)
   1.700 +  nd = 1 + ((unsigned)b & 0x1f);        /* number of distance codes */
   1.701 +  DUMPBITS(5)
   1.702 +  NEEDBITS(4)
   1.703 +  nb = 4 + ((unsigned)b & 0xf);         /* number of bit length codes */
   1.704 +  DUMPBITS(4)
   1.705 +#ifdef PKZIP_BUG_WORKAROUND
   1.706 +  if (nl > 288 || nd > 32)
   1.707 +#else
   1.708 +  if (nl > 286 || nd > 30)
   1.709 +#endif
   1.710 +    return 1;                   /* bad lengths */
   1.711 +
   1.712 +
   1.713 +  /* read in bit-length-code lengths */
   1.714 +  for (j = 0; j < nb; j++)
   1.715 +  {
   1.716 +    NEEDBITS(3)
   1.717 +    ll[border[j]] = (unsigned)b & 7;
   1.718 +    DUMPBITS(3)
   1.719 +  }
   1.720 +  for (; j < 19; j++)
   1.721 +    ll[border[j]] = 0;
   1.722 +
   1.723 +
   1.724 +  /* build decoding table for trees--single level, 7 bit lookup */
   1.725 +  bl = 7;
   1.726 +  if ((i = huft_build(ll, 19, 19, (ush*)NULL, (ush*)NULL, &tl, &bl)) != 0)
   1.727 +  {
   1.728 +    if (i == 1)
   1.729 +      huft_free(tl);
   1.730 +    return i;                   /* incomplete code set */
   1.731 +  }
   1.732 +
   1.733 +
   1.734 +  /* read in literal and distance code lengths */
   1.735 +  n = nl + nd;
   1.736 +  m = mask_bits[bl];
   1.737 +  i = l = 0;
   1.738 +  while ((unsigned)i < n)
   1.739 +  {
   1.740 +    NEEDBITS((unsigned)bl)
   1.741 +    j = (td = tl + ((unsigned)b & m))->b;
   1.742 +    DUMPBITS(j)
   1.743 +    j = td->v.n;
   1.744 +    if (j < 16)                 /* length of code in bits (0..15) */
   1.745 +      ll[i++] = l = j;          /* save last length in l */
   1.746 +    else if (j == 16)           /* repeat last length 3 to 6 times */
   1.747 +    {
   1.748 +      NEEDBITS(2)
   1.749 +      j = 3 + ((unsigned)b & 3);
   1.750 +      DUMPBITS(2)
   1.751 +      if ((unsigned)i + j > n)
   1.752 +        return 1;
   1.753 +      while (j--)
   1.754 +        ll[i++] = l;
   1.755 +    }
   1.756 +    else if (j == 17)           /* 3 to 10 zero length codes */
   1.757 +    {
   1.758 +      NEEDBITS(3)
   1.759 +      j = 3 + ((unsigned)b & 7);
   1.760 +      DUMPBITS(3)
   1.761 +      if ((unsigned)i + j > n)
   1.762 +        return 1;
   1.763 +      while (j--)
   1.764 +        ll[i++] = 0;
   1.765 +      l = 0;
   1.766 +    }
   1.767 +    else                        /* j == 18: 11 to 138 zero length codes */
   1.768 +    {
   1.769 +      NEEDBITS(7)
   1.770 +      j = 11 + ((unsigned)b & 0x7f);
   1.771 +      DUMPBITS(7)
   1.772 +      if ((unsigned)i + j > n)
   1.773 +        return 1;
   1.774 +      while (j--)
   1.775 +        ll[i++] = 0;
   1.776 +      l = 0;
   1.777 +    }
   1.778 +  }
   1.779 +
   1.780 +
   1.781 +  /* free decoding table for trees */
   1.782 +  huft_free(tl);
   1.783 +
   1.784 +
   1.785 +  /* restore the global bit buffer */
   1.786 +  bb = b;
   1.787 +  bk = k;
   1.788 +
   1.789 +
   1.790 +  /* build the decoding tables for literal/length and distance codes */
   1.791 +  bl = lbits;
   1.792 +  if ((i = huft_build(ll, nl, 257, cplens, cplext, &tl, &bl)) != 0)
   1.793 +  {
   1.794 +    if (i == 1) {
   1.795 +/*      fprintf(stderr, " incomplete literal tree\n");*/
   1.796 +      huft_free(tl);
   1.797 +    }
   1.798 +    return i;                   /* incomplete code set */
   1.799 +  }
   1.800 +  bd = dbits;
   1.801 +  if ((i = huft_build(ll + nl, nd, 0, cpdist, cpdext, &td, &bd)) != 0)
   1.802 +  {
   1.803 +    if (i == 1) {
   1.804 +/*      fprintf(stderr, " incomplete distance tree\n");*/
   1.805 +#ifdef PKZIP_BUG_WORKAROUND
   1.806 +      i = 0;
   1.807 +    }
   1.808 +#else
   1.809 +      huft_free(td);
   1.810 +    }
   1.811 +    huft_free(tl);
   1.812 +    return i;                   /* incomplete code set */
   1.813 +#endif
   1.814 +  }
   1.815 +
   1.816 +
   1.817 +  /* decompress until an end-of-block code */
   1.818 +  if (inflate_codes(tl, td, bl, bd))
   1.819 +    return 1;
   1.820 +
   1.821 +
   1.822 +  /* free the decoding tables, return */
   1.823 +  huft_free(tl);
   1.824 +  huft_free(td);
   1.825 +  return 0;
   1.826 +}
   1.827 +
   1.828 +
   1.829 +
   1.830 +int inflate_block(int* e)
   1.831 +/* decompress an inflated block */
   1.832 +{
   1.833 +  unsigned t;           /* block type */
   1.834 +  register ulg b;       /* bit buffer */
   1.835 +  register unsigned k;  /* number of bits in bit buffer */
   1.836 +
   1.837 +
   1.838 +  /* make local bit buffer */
   1.839 +  b = bb;
   1.840 +  k = bk;
   1.841 +
   1.842 +
   1.843 +  /* read in last block bit */
   1.844 +  NEEDBITS(1)
   1.845 +  *e = (int)b & 1;
   1.846 +  DUMPBITS(1)
   1.847 +
   1.848 +
   1.849 +  /* read in block type */
   1.850 +  NEEDBITS(2)
   1.851 +  t = (unsigned)b & 3;
   1.852 +  DUMPBITS(2)
   1.853 +
   1.854 +
   1.855 +  /* restore the global bit buffer */
   1.856 +  bb = b;
   1.857 +  bk = k;
   1.858 +
   1.859 +
   1.860 +  /* inflate that block type */
   1.861 +  if (t == 2)
   1.862 +    return inflate_dynamic();
   1.863 +  if (t == 0)
   1.864 +    return inflate_stored();
   1.865 +  if (t == 1)
   1.866 +    return inflate_fixed();
   1.867 +
   1.868 +
   1.869 +  /* bad block type */
   1.870 +  return 2;
   1.871 +}
   1.872 +
   1.873 +
   1.874 +
   1.875 +int inflate()
   1.876 +/* decompress an inflated entry */
   1.877 +{
   1.878 +  int e;                /* last block flag */
   1.879 +  int r;                /* result code */
   1.880 +  unsigned h;           /* maximum struct huft's malloc'ed */
   1.881 +
   1.882 +
   1.883 +  /* initialize window, bit buffer */
   1.884 +/*  wp = 0;*/
   1.885 +  bk = 0;
   1.886 +  bb = 0;
   1.887 +
   1.888 +
   1.889 +  /* decompress until the last block */
   1.890 +  h = 0;
   1.891 +  do {
   1.892 +    hufts = 0;
   1.893 +	r=inflate_block(&e);
   1.894 +	process_block(r);
   1.895 +	if (r!=0)
   1.896 +		return r;
   1.897 +    if (hufts > h)
   1.898 +      h = hufts;
   1.899 +  } while (!e);
   1.900 +
   1.901 +  /* Undo too much lookahead. The next read will be byte aligned so we
   1.902 +   * can discard unused bits in the last meaningful byte.
   1.903 +   */
   1.904 +/*  while (bk >= 8) {
   1.905 +    bk -= 8;
   1.906 +    inptr--;
   1.907 +  }*/
   1.908 +
   1.909 +  /* flush out slide */
   1.910 +/*  flush_output(wp);*/
   1.911 +
   1.912 +
   1.913 +  /* return success */
   1.914 +#ifdef DEBUG
   1.915 +/*  fprintf(stderr, "<%u> ", h);*/
   1.916 +#endif /* DEBUG */
   1.917 +
   1.918 +  return 0;
   1.919 +}