os/kernelhwsrv/kernel/eka/nkern/x86/vectors.cpp
changeset 0 bde4ae8d615e
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/os/kernelhwsrv/kernel/eka/nkern/x86/vectors.cpp	Fri Jun 15 03:10:57 2012 +0200
     1.3 @@ -0,0 +1,156 @@
     1.4 +// Copyright (c) 1998-2009 Nokia Corporation and/or its subsidiary(-ies).
     1.5 +// All rights reserved.
     1.6 +// This component and the accompanying materials are made available
     1.7 +// under the terms of the License "Eclipse Public License v1.0"
     1.8 +// which accompanies this distribution, and is available
     1.9 +// at the URL "http://www.eclipse.org/legal/epl-v10.html".
    1.10 +//
    1.11 +// Initial Contributors:
    1.12 +// Nokia Corporation - initial contribution.
    1.13 +//
    1.14 +// Contributors:
    1.15 +//
    1.16 +// Description:
    1.17 +// e32\nkern\x86\vectors.cpp
    1.18 +// 
    1.19 +//
    1.20 +
    1.21 +// NThreadBase member data
    1.22 +#define __INCLUDE_NTHREADBASE_DEFINES__
    1.23 +
    1.24 +#include <x86.h>
    1.25 +#include "vectors.h"
    1.26 +
    1.27 +#ifdef _DEBUG
    1.28 +#define __CHECK_LOCK_STATE__
    1.29 +#endif
    1.30 +
    1.31 +void __X86VectorIrq();
    1.32 +void __X86VectorExc();
    1.33 +void __X86ExcFault(TAny*);
    1.34 +
    1.35 +
    1.36 +/** Register the global IRQ handler
    1.37 +	Called by the base port at boot time to bind the top level IRQ dispatcher
    1.38 +	to the X86 common IRQ handler. Should not be called at any other time.
    1.39 +
    1.40 +	The handler specified will be called with IRQs disabled. ESP will point
    1.41 +	to the top of the interrupt stack. On entry to the handler EAX will point
    1.42 +	to a block of saved registers, as follows:
    1.43 +
    1.44 +	[EAX+00h] = saved EDX
    1.45 +	[EAX+04h] = saved ECX
    1.46 +	[EAX+08h] = saved EAX
    1.47 +	[EAX+0Ch] = saved ES
    1.48 +	[EAX+10h] = saved DS
    1.49 +	[EAX+14h] = interrupt vector number
    1.50 +	[EAX+18h] = return EIP
    1.51 +	[EAX+1Ch] = return CS
    1.52 +	[EAX+20h] = return EFLAGS
    1.53 +	[EAX+24h] = return ESP if interrupt occurred while CPL>0
    1.54 +	[EAX+28h] = return SS if interrupt occurred while CPL>0
    1.55 +
    1.56 +	The handler should preserve all registers other than EAX, ECX, EDX
    1.57 +	and should return using a standard RET instruction.
    1.58 +
    1.59 +	@param	aHandler The address of the top level IRQ dispatcher routine
    1.60 + */
    1.61 +EXPORT_C void X86::SetIrqHandler(TLinAddr aHandler)
    1.62 +	{
    1.63 +	X86_IrqHandler=aHandler;
    1.64 +	}
    1.65 +
    1.66 +
    1.67 +/** Return the address immediately after the end of the interrupt stack.
    1.68 +
    1.69 +	@return Interrupt Stack Base + Interrupt Stack Size
    1.70 + */
    1.71 +EXPORT_C TLinAddr X86::IrqStackTop(TInt /*aCpu*/)
    1.72 +	{
    1.73 +	return TLinAddr(X86_IrqStack) + IRQ_STACK_SIZE;
    1.74 +	}
    1.75 +
    1.76 +
    1.77 +void SetTrapGate(SX86Des* aEntry, PFV aHandler, TInt aDPL)
    1.78 +	{
    1.79 +	aEntry->iLow=(KRing0CS<<16)|(TUint32(aHandler)&0xffff);
    1.80 +	aEntry->iHigh=(TUint32(aHandler)&0xffff0000) | 0x8f00 | (aDPL<<13);
    1.81 +	}
    1.82 +
    1.83 +void SetInterruptGate(SX86Des* aEntry, PFV aHandler, TInt aDPL)
    1.84 +	{
    1.85 +	aEntry->iLow=(KRing0CS<<16)|(TUint32(aHandler)&0xffff);
    1.86 +	aEntry->iHigh=(TUint32(aHandler)&0xffff0000) | 0x8e00 | (aDPL<<13);
    1.87 +	}
    1.88 +
    1.89 +void SetTssDescriptor(SX86Des* aEntry, TX86Tss* aTss)
    1.90 +	{
    1.91 +	TUint addr3=TUint(aTss)>>24;
    1.92 +	TUint addr2=(TUint(aTss)>>16)&0xff;
    1.93 +	TUint addr01=TUint(aTss)&0xffff;
    1.94 +	aEntry->iLow=(addr01<<16)|(sizeof(TX86Tss)-1);
    1.95 +	aEntry->iHigh=(addr3<<24)|0x00108900|addr2;
    1.96 +	}
    1.97 +
    1.98 +void X86::Init1Interrupts()
    1.99 +//
   1.100 +// Initialise the interrupt and exception vector handlers.
   1.101 +//
   1.102 +	{
   1.103 +//	TheIrqHandler=0;	// done by placing TheIrqHandler, TheFiqHandler in .bss
   1.104 +	__KTRACE_OPT(KBOOT,DEBUGPRINT(">X86::Init1Interrupts()"));
   1.105 +	memset(X86_IrqStack,0xaa,IRQ_STACK_SIZE);
   1.106 +
   1.107 +#ifndef __STANDALONE_NANOKERNEL__
   1.108 +	TStackInfo& stackInfo =  TheSuperPage().iStackInfo;
   1.109 +	stackInfo.iIrqStackBase = X86_IrqStack;
   1.110 +	stackInfo.iIrqStackSize = IRQ_STACK_SIZE;
   1.111 +#endif
   1.112 +	
   1.113 +	TCpuPage& cp=X86::CpuPage();
   1.114 +	memclr(cp.iIdt, KIdtSize*sizeof(SX86Des));
   1.115 +	TInt i;
   1.116 +	for (i=0; i<64; i++)
   1.117 +		{
   1.118 +		if (i==0x03 || i==0x20 || i==0x21)
   1.119 +			SetTrapGate(cp.iIdt+i, TheExcVectors[i], 3);
   1.120 +		else if (i<0x20)
   1.121 +			SetTrapGate(cp.iIdt+i, TheExcVectors[i], 0);
   1.122 +		if (i>=0x30)
   1.123 +			SetInterruptGate(cp.iIdt+i, TheExcVectors[i], 0);
   1.124 +		}
   1.125 +	X86_IrqNestCount=-1;
   1.126 +	X86::DefaultCR0=get_cr0();
   1.127 +	memclr(&cp.iTss,sizeof(TX86Tss));
   1.128 +	cp.iTss.iCR3=get_cr3();
   1.129 +	cp.iTss.iSs0=KRing0DS;
   1.130 +	cp.iTss.iEsp0=get_esp();
   1.131 +	SetTssDescriptor(&cp.iGdt[5],&cp.iTss);
   1.132 +	X86_TSS_Ptr=&cp.iTss;
   1.133 +	__lidt(cp.iIdt,KIdtSize);
   1.134 +	__KTRACE_OPT(KBOOT,DEBUGPRINT("<X86::Init1Interrupts()"));
   1.135 +	}
   1.136 +
   1.137 +
   1.138 +/**	Return the current processor context type (thread, IDFC or interrupt)
   1.139 +
   1.140 +	@return	A value from NKern::TContext enumeration (but never EEscaped)
   1.141 +	@pre	Any context
   1.142 +
   1.143 +	@see	NKern::TContext
   1.144 + */
   1.145 +EXPORT_C TInt NKern::CurrentContext()
   1.146 +	{
   1.147 +	if (X86_IrqNestCount >= 0)
   1.148 +		return NKern::EInterrupt;
   1.149 +	if (TheScheduler.iInIDFC)
   1.150 +		return NKern::EIDFC;
   1.151 +	return NKern::EThread;
   1.152 +	}
   1.153 +
   1.154 +extern "C" void ExcFault(TAny*);
   1.155 +void __X86ExcFault(TAny* aInfo)
   1.156 +	{
   1.157 +	ExcFault(aInfo);
   1.158 +	}
   1.159 +