os/security/crypto/weakcryptospi/source/bigint/bigint.cpp
author sl@SLION-WIN7.fritz.box
Fri, 15 Jun 2012 03:10:57 +0200
changeset 0 bde4ae8d615e
permissions -rw-r--r--
First public contribution.
sl@0
     1
/*
sl@0
     2
* Copyright (c) 2003-2010 Nokia Corporation and/or its subsidiary(-ies).
sl@0
     3
* All rights reserved.
sl@0
     4
* This component and the accompanying materials are made available
sl@0
     5
* under the terms of the License "Eclipse Public License v1.0"
sl@0
     6
* which accompanies this distribution, and is available
sl@0
     7
* at the URL "http://www.eclipse.org/legal/epl-v10.html".
sl@0
     8
*
sl@0
     9
* Initial Contributors:
sl@0
    10
* Nokia Corporation - initial contribution.
sl@0
    11
*
sl@0
    12
* Contributors:
sl@0
    13
*
sl@0
    14
* Description: 
sl@0
    15
*
sl@0
    16
*/
sl@0
    17
sl@0
    18
sl@0
    19
#include <random.h>
sl@0
    20
#include <bigint.h>
sl@0
    21
#include <e32std.h>
sl@0
    22
#include <euserext.h>
sl@0
    23
#include <securityerr.h>
sl@0
    24
#include "words.h"
sl@0
    25
#include "algorithms.h"
sl@0
    26
#include "windowslider.h"
sl@0
    27
#include "stackinteger.h"
sl@0
    28
#include "mont.h"
sl@0
    29
sl@0
    30
sl@0
    31
/**
sl@0
    32
* Creates a new buffer containing the big-endian binary representation of this
sl@0
    33
* integer.
sl@0
    34
*
sl@0
    35
* Note that it does not support the exporting of negative integers.
sl@0
    36
*
sl@0
    37
* @return	The new buffer.
sl@0
    38
* 
sl@0
    39
* @leave KErrNegativeExportNotSupported	If this instance is a negative integer.
sl@0
    40
*
sl@0
    41
*/
sl@0
    42
EXPORT_C HBufC8* TInteger::BufferLC() const
sl@0
    43
	{
sl@0
    44
	if(IsNegative())
sl@0
    45
		{
sl@0
    46
		User::Leave(KErrNegativeExportNotSupported);
sl@0
    47
		}
sl@0
    48
	TUint bytes = ByteCount();
sl@0
    49
	HBufC8* buf = HBufC8::NewMaxLC(bytes);
sl@0
    50
	TUint8* bufPtr = (TUint8*)(buf->Ptr());
sl@0
    51
	TUint8* regPtr = (TUint8*)Ptr();
sl@0
    52
sl@0
    53
	// we internally store the number little endian, as a string we want it big
sl@0
    54
	// endian
sl@0
    55
	for(TUint i=0,j=bytes-1; i<bytes; )
sl@0
    56
		{
sl@0
    57
		bufPtr[i++] = regPtr[j--];
sl@0
    58
		}
sl@0
    59
	return buf;
sl@0
    60
	}
sl@0
    61
sl@0
    62
EXPORT_C HBufC8* TInteger::BufferWithNoTruncationLC() const
sl@0
    63
 	{
sl@0
    64
 	if(IsNegative())
sl@0
    65
 		{
sl@0
    66
 		User::Leave(KErrNegativeExportNotSupported);
sl@0
    67
 		}
sl@0
    68
 	
sl@0
    69
 	TUint wordCount = Size();
sl@0
    70
 	TUint bytes = (wordCount)*WORD_SIZE;
sl@0
    71
     
sl@0
    72
  	HBufC8* buf = HBufC8::NewMaxLC(bytes);
sl@0
    73
 	TUint8* bufPtr = (TUint8*)(buf->Ptr());
sl@0
    74
	TUint8* regPtr = (TUint8*)Ptr();
sl@0
    75
	for(TUint i=0,j=bytes-1; i<bytes; )
sl@0
    76
 		{
sl@0
    77
 		bufPtr[i++] = regPtr[j--];
sl@0
    78
 		}
sl@0
    79
  
sl@0
    80
	return buf;
sl@0
    81
	}
sl@0
    82
sl@0
    83
/** 
sl@0
    84
* Gets the number of words required to represent this RInteger.
sl@0
    85
* 
sl@0
    86
* @return	The size of the integer in words.
sl@0
    87
*
sl@0
    88
*/
sl@0
    89
EXPORT_C TUint TInteger::WordCount() const
sl@0
    90
	{
sl@0
    91
	return CountWords(Ptr(), Size());
sl@0
    92
	}
sl@0
    93
sl@0
    94
/**
sl@0
    95
* Gets the number of bytes required to represent this RInteger.
sl@0
    96
* 
sl@0
    97
* @return	The size of the integer in bytes.
sl@0
    98
* 
sl@0
    99
*/
sl@0
   100
EXPORT_C TUint TInteger::ByteCount() const
sl@0
   101
	{
sl@0
   102
	TUint wordCount = WordCount();
sl@0
   103
	if(wordCount)
sl@0
   104
		{
sl@0
   105
		return (wordCount-1)*WORD_SIZE + BytePrecision((Ptr())[wordCount-1]);
sl@0
   106
		}
sl@0
   107
	else 
sl@0
   108
		{
sl@0
   109
		return 0;
sl@0
   110
		}
sl@0
   111
	}
sl@0
   112
sl@0
   113
/** 
sl@0
   114
* Get the number of bits required to represent this RInteger.
sl@0
   115
* 
sl@0
   116
* @return	The size of the integer in bits.
sl@0
   117
* 
sl@0
   118
*/
sl@0
   119
EXPORT_C TUint TInteger::BitCount() const
sl@0
   120
	{
sl@0
   121
	TUint wordCount = WordCount();
sl@0
   122
	if(wordCount)
sl@0
   123
		{
sl@0
   124
		return (wordCount-1)*WORD_BITS + BitPrecision(Ptr()[wordCount-1]);
sl@0
   125
		}
sl@0
   126
	else 
sl@0
   127
		{
sl@0
   128
		return 0;
sl@0
   129
		}
sl@0
   130
	}
sl@0
   131
sl@0
   132
sl@0
   133
//These 3 declarations instantiate a constant 0, 1, 2 for ease of use and
sl@0
   134
//quick construction elsewhere in the code.  Note that the functions
sl@0
   135
//returning references to this static data return const references as you can't
sl@0
   136
//modify the ROM ;)
sl@0
   137
//word 0: Size of storage in words
sl@0
   138
//word 1: Pointer to storage
sl@0
   139
//word 2: LSW of storage
sl@0
   140
//word 3: MSW of storage
sl@0
   141
//Note that the flag bits in word 1 (Ptr()) are zero in the case of a positive
sl@0
   142
//stack based integer (SignBit == 0, IsHeapBasedBit == 0)
sl@0
   143
const TUint KBigintZero[4] = {2, (TUint)(KBigintZero+2), 0, 0};
sl@0
   144
const TUint KBigintOne[4] = {2, (TUint)(KBigintOne+2), 1, 0};
sl@0
   145
const TUint KBigintTwo[4] = {2, (TUint)(KBigintTwo+2), 2, 0};
sl@0
   146
sl@0
   147
/** 
sl@0
   148
 * Gets the TInteger that represents zero
sl@0
   149
 *
sl@0
   150
 * @return	The TInteger representing zero
sl@0
   151
 */
sl@0
   152
EXPORT_C const TInteger& TInteger::Zero(void)
sl@0
   153
	{
sl@0
   154
	return *reinterpret_cast<const TStackInteger64*>(KBigintZero);
sl@0
   155
	}
sl@0
   156
sl@0
   157
/** 
sl@0
   158
 * Gets the TInteger that represents one
sl@0
   159
 *
sl@0
   160
 * @return	The TInteger representing one
sl@0
   161
 */
sl@0
   162
EXPORT_C const TInteger& TInteger::One(void)
sl@0
   163
	{
sl@0
   164
	return *reinterpret_cast<const TStackInteger64*>(KBigintOne);
sl@0
   165
	}
sl@0
   166
	
sl@0
   167
/** 
sl@0
   168
 * Gets the TInteger that represents two
sl@0
   169
 *
sl@0
   170
 * @return	The TInteger representing two
sl@0
   171
 */
sl@0
   172
EXPORT_C const TInteger& TInteger::Two(void)
sl@0
   173
	{
sl@0
   174
	return *reinterpret_cast<const TStackInteger64*>(KBigintTwo);
sl@0
   175
	}
sl@0
   176
sl@0
   177
EXPORT_C RInteger TInteger::PlusL(const TInteger& aOperand) const
sl@0
   178
	{
sl@0
   179
	RInteger sum;
sl@0
   180
    if (NotNegative())
sl@0
   181
		{
sl@0
   182
        if (aOperand.NotNegative())
sl@0
   183
            sum = PositiveAddL(*this, aOperand);
sl@0
   184
        else
sl@0
   185
            sum = PositiveSubtractL(*this, aOperand);
sl@0
   186
		}
sl@0
   187
    else
sl@0
   188
		{
sl@0
   189
        if (aOperand.NotNegative())
sl@0
   190
            sum = PositiveSubtractL(aOperand, *this);
sl@0
   191
        else
sl@0
   192
			{
sl@0
   193
            sum = PositiveAddL(*this, aOperand);
sl@0
   194
			sum.SetSign(TInteger::ENegative);
sl@0
   195
			}
sl@0
   196
		}
sl@0
   197
	return sum;
sl@0
   198
	}
sl@0
   199
sl@0
   200
EXPORT_C RInteger TInteger::MinusL(const TInteger& aOperand) const
sl@0
   201
	{
sl@0
   202
	RInteger diff;
sl@0
   203
    if (NotNegative())
sl@0
   204
		{
sl@0
   205
        if (aOperand.NotNegative())
sl@0
   206
            diff = PositiveSubtractL(*this, aOperand);
sl@0
   207
        else
sl@0
   208
            diff = PositiveAddL(*this, aOperand);
sl@0
   209
		}
sl@0
   210
    else
sl@0
   211
		{
sl@0
   212
        if (aOperand.NotNegative())
sl@0
   213
			{
sl@0
   214
            diff = PositiveAddL(*this, aOperand);
sl@0
   215
			diff.SetSign(TInteger::ENegative);
sl@0
   216
			}
sl@0
   217
        else
sl@0
   218
            diff = PositiveSubtractL(aOperand, *this);
sl@0
   219
		}
sl@0
   220
	return diff;
sl@0
   221
	}
sl@0
   222
sl@0
   223
EXPORT_C RInteger TInteger::TimesL(const TInteger& aOperand) const
sl@0
   224
	{
sl@0
   225
	RInteger product = PositiveMultiplyL(*this, aOperand);
sl@0
   226
sl@0
   227
	if (NotNegative() != aOperand.NotNegative())
sl@0
   228
		{
sl@0
   229
		product.Negate();
sl@0
   230
		}
sl@0
   231
	return product;
sl@0
   232
	}
sl@0
   233
sl@0
   234
EXPORT_C RInteger TInteger::DividedByL(const TInteger& aOperand) const
sl@0
   235
	{
sl@0
   236
	RInteger quotient;
sl@0
   237
	RInteger remainder;
sl@0
   238
	DivideL(remainder, quotient, *this, aOperand);
sl@0
   239
	remainder.Close();
sl@0
   240
	return quotient;
sl@0
   241
	}
sl@0
   242
sl@0
   243
EXPORT_C RInteger TInteger::ModuloL(const TInteger& aOperand) const
sl@0
   244
	{
sl@0
   245
	RInteger remainder;
sl@0
   246
	RInteger quotient;
sl@0
   247
	DivideL(remainder, quotient, *this, aOperand);
sl@0
   248
	quotient.Close();
sl@0
   249
	return remainder;
sl@0
   250
	}
sl@0
   251
sl@0
   252
EXPORT_C TUint TInteger::ModuloL(TUint aOperand) const
sl@0
   253
	{
sl@0
   254
	if(!aOperand)
sl@0
   255
		{
sl@0
   256
		User::Leave(KErrDivideByZero);
sl@0
   257
		}
sl@0
   258
	return Modulo(*this, aOperand);
sl@0
   259
	}
sl@0
   260
sl@0
   261
EXPORT_C RInteger TInteger::ModularMultiplyL(const TInteger& aA, const TInteger& aB,
sl@0
   262
	const TInteger& aMod) 
sl@0
   263
	{
sl@0
   264
	RInteger product = aA.TimesL(aB);
sl@0
   265
	CleanupStack::PushL(product);
sl@0
   266
	RInteger reduced = product.ModuloL(aMod);
sl@0
   267
	CleanupStack::PopAndDestroy(&product); 
sl@0
   268
	return reduced;
sl@0
   269
	}
sl@0
   270
sl@0
   271
EXPORT_C RInteger TInteger::ModularExponentiateL(const TInteger& aBase, 
sl@0
   272
	const TInteger& aExp, const TInteger& aMod) 
sl@0
   273
	{
sl@0
   274
	CMontgomeryStructure* mont = CMontgomeryStructure::NewLC(aMod);
sl@0
   275
	RInteger result = RInteger::NewL(mont->ExponentiateL(aBase, aExp));
sl@0
   276
	CleanupStack::PopAndDestroy(mont);
sl@0
   277
	return result;
sl@0
   278
	}
sl@0
   279
sl@0
   280
EXPORT_C RInteger TInteger::GCDL(const TInteger& aOperand) const
sl@0
   281
	{
sl@0
   282
	//Binary GCD algorithm -- see HAC 14.4.1
sl@0
   283
	//with a slight variation -- our g counts shifts rather than actually
sl@0
   284
	//shifting.  We then do one shift at the end.
sl@0
   285
	assert(NotNegative());
sl@0
   286
	assert(aOperand.NotNegative());
sl@0
   287
sl@0
   288
	RInteger x = RInteger::NewL(*this);
sl@0
   289
	CleanupStack::PushL(x);
sl@0
   290
	RInteger y = RInteger::NewL(aOperand);
sl@0
   291
	CleanupStack::PushL(y);
sl@0
   292
sl@0
   293
	// 1 Ensure x >= y
sl@0
   294
	if( x < y )
sl@0
   295
		{
sl@0
   296
		TClassSwap(x, y);
sl@0
   297
		}
sl@0
   298
sl@0
   299
	TUint g = 0;
sl@0
   300
	// 2 while x and y even x <- x/2, y <- y/2
sl@0
   301
	while( x.IsEven() && y.IsEven() )
sl@0
   302
		{
sl@0
   303
		x >>= 1;
sl@0
   304
		y >>= 1;
sl@0
   305
		++g;
sl@0
   306
		}
sl@0
   307
	// 3 while x != 0
sl@0
   308
	while( x.NotZero() )
sl@0
   309
		{
sl@0
   310
		// 3.1 while x even x <- x/2
sl@0
   311
		while( x.IsEven() )
sl@0
   312
			{
sl@0
   313
			x >>= 1;
sl@0
   314
			}
sl@0
   315
		// 3.2 while y even y <- y/2
sl@0
   316
		while( y.IsEven() )
sl@0
   317
			{
sl@0
   318
			y >>= 1;
sl@0
   319
			}
sl@0
   320
		// 3.3 t <- abs(x-y)/2
sl@0
   321
		RInteger t = x.MinusL(y);
sl@0
   322
		t >>= 1;
sl@0
   323
		t.SetSign(TInteger::EPositive);
sl@0
   324
sl@0
   325
		// 3.4 If x>=y then x <- t else y <- t
sl@0
   326
		if( x >= y )
sl@0
   327
			{
sl@0
   328
			x.Set(t);
sl@0
   329
			}
sl@0
   330
		else 
sl@0
   331
			{
sl@0
   332
			y.Set(t);
sl@0
   333
			}
sl@0
   334
		}
sl@0
   335
	
sl@0
   336
	// 4 Return (g*y) (equiv to y<<=g as our g was counting shifts not actually
sl@0
   337
	//shifting)
sl@0
   338
	y <<= g;
sl@0
   339
	CleanupStack::Pop(&y);
sl@0
   340
	CleanupStack::PopAndDestroy(&x); 
sl@0
   341
	return y;
sl@0
   342
	}
sl@0
   343
sl@0
   344
EXPORT_C RInteger TInteger::InverseModL(const TInteger& aMod) const
sl@0
   345
	{
sl@0
   346
	assert(aMod.NotNegative());
sl@0
   347
sl@0
   348
	RInteger result;
sl@0
   349
	if(IsNegative() || *this>=aMod)
sl@0
   350
		{
sl@0
   351
		RInteger temp = ModuloL(aMod);
sl@0
   352
		CleanupClosePushL(temp);
sl@0
   353
		result = temp.InverseModL(aMod);
sl@0
   354
		CleanupStack::PopAndDestroy(&temp);
sl@0
   355
		return result;
sl@0
   356
		}
sl@0
   357
sl@0
   358
	if(aMod.IsEven())
sl@0
   359
		{
sl@0
   360
		if( !aMod || IsEven() )
sl@0
   361
			{
sl@0
   362
			return RInteger::NewL(Zero());
sl@0
   363
			}
sl@0
   364
		if( *this == One() )
sl@0
   365
			{
sl@0
   366
			return RInteger::NewL(One());
sl@0
   367
			}
sl@0
   368
		RInteger u = aMod.InverseModL(*this); 
sl@0
   369
		CleanupClosePushL(u);
sl@0
   370
		if(!u)
sl@0
   371
			{
sl@0
   372
			result = RInteger::NewL(Zero());
sl@0
   373
			}
sl@0
   374
		else 
sl@0
   375
			{
sl@0
   376
			//calculates (aMod*(*this-u)+1)/(*this) 
sl@0
   377
			result = MinusL(u);
sl@0
   378
			CleanupClosePushL(result);
sl@0
   379
			result *= aMod;
sl@0
   380
			++result;
sl@0
   381
			result /= *this;
sl@0
   382
			CleanupStack::Pop(&result); 
sl@0
   383
			}
sl@0
   384
		CleanupStack::PopAndDestroy(&u);
sl@0
   385
		return result;
sl@0
   386
		}
sl@0
   387
sl@0
   388
	result = RInteger::NewEmptyL(aMod.Size());
sl@0
   389
	CleanupClosePushL(result);
sl@0
   390
	RInteger workspace = RInteger::NewEmptyL(aMod.Size() * 4);
sl@0
   391
	TUint k = AlmostInverse(result.Ptr(), workspace.Ptr(), Ptr(), Size(),
sl@0
   392
		aMod.Ptr(), aMod.Size());
sl@0
   393
	DivideByPower2Mod(result.Ptr(), result.Ptr(), k, aMod.Ptr(), aMod.Size());
sl@0
   394
	workspace.Close();
sl@0
   395
	CleanupStack::Pop(&result);
sl@0
   396
sl@0
   397
	return result;
sl@0
   398
	}
sl@0
   399
sl@0
   400
EXPORT_C TInteger& TInteger::operator+=(const TInteger& aOperand)
sl@0
   401
	{
sl@0
   402
	this->Set(PlusL(aOperand));
sl@0
   403
    return *this;
sl@0
   404
	}
sl@0
   405
sl@0
   406
EXPORT_C TInteger& TInteger::operator-=(const TInteger& aOperand)
sl@0
   407
	{
sl@0
   408
	this->Set(MinusL(aOperand));
sl@0
   409
    return *this;
sl@0
   410
	}
sl@0
   411
sl@0
   412
EXPORT_C TInteger& TInteger::operator*=(const TInteger& aOperand)
sl@0
   413
	{
sl@0
   414
	this->Set(TimesL(aOperand));
sl@0
   415
	return *this;
sl@0
   416
	}
sl@0
   417
sl@0
   418
EXPORT_C TInteger& TInteger::operator/=(const TInteger& aOperand)
sl@0
   419
	{
sl@0
   420
	this->Set(DividedByL(aOperand));
sl@0
   421
	return *this;
sl@0
   422
	}
sl@0
   423
sl@0
   424
EXPORT_C TInteger& TInteger::operator%=(const TInteger& aOperand)
sl@0
   425
	{
sl@0
   426
	this->Set(ModuloL(aOperand));
sl@0
   427
	return *this;
sl@0
   428
	}
sl@0
   429
sl@0
   430
EXPORT_C TInteger& TInteger::operator+=(TInt aOperand)
sl@0
   431
	{
sl@0
   432
	TStackInteger64 operand(aOperand);
sl@0
   433
	*this += operand;
sl@0
   434
	return *this;
sl@0
   435
	}
sl@0
   436
sl@0
   437
EXPORT_C TInteger& TInteger::operator-=(TInt aOperand)
sl@0
   438
	{
sl@0
   439
	TStackInteger64 operand(aOperand);
sl@0
   440
	*this -= operand;
sl@0
   441
	return *this;
sl@0
   442
	}
sl@0
   443
sl@0
   444
EXPORT_C TInteger& TInteger::operator*=(TInt aOperand)
sl@0
   445
	{
sl@0
   446
	TStackInteger64 operand(aOperand);
sl@0
   447
	*this *= operand;
sl@0
   448
	return *this;
sl@0
   449
	}
sl@0
   450
sl@0
   451
EXPORT_C TInteger& TInteger::operator--()
sl@0
   452
	{
sl@0
   453
    if (IsNegative())
sl@0
   454
		{
sl@0
   455
        if (Increment(Ptr(), Size()))
sl@0
   456
			{
sl@0
   457
            CleanGrowL(2*Size());
sl@0
   458
            (Ptr())[Size()/2]=1;
sl@0
   459
			}
sl@0
   460
		}
sl@0
   461
    else
sl@0
   462
		{
sl@0
   463
        if (Decrement(Ptr(), Size()))
sl@0
   464
			{
sl@0
   465
			this->CopyL(-1);
sl@0
   466
			}
sl@0
   467
		}
sl@0
   468
    return *this;	
sl@0
   469
	}
sl@0
   470
sl@0
   471
EXPORT_C TInteger& TInteger::operator++()
sl@0
   472
	{
sl@0
   473
	if(NotNegative())
sl@0
   474
		{
sl@0
   475
		if(Increment(Ptr(), Size()))
sl@0
   476
			{
sl@0
   477
			CleanGrowL(2*Size());
sl@0
   478
			(Ptr())[Size()/2]=1;
sl@0
   479
			}
sl@0
   480
		}
sl@0
   481
	else
sl@0
   482
		{
sl@0
   483
		DecrementNoCarry(Ptr(), Size());
sl@0
   484
		if(WordCount()==0)
sl@0
   485
			{
sl@0
   486
			this->CopyL(Zero());
sl@0
   487
			}
sl@0
   488
		}
sl@0
   489
	return *this;
sl@0
   490
	}
sl@0
   491
sl@0
   492
EXPORT_C TInteger& TInteger::operator <<=(TUint aBits)
sl@0
   493
	{
sl@0
   494
	const TUint wordCount = WordCount();
sl@0
   495
	const TUint shiftWords = aBits / WORD_BITS;
sl@0
   496
	const TUint shiftBits = aBits % WORD_BITS;
sl@0
   497
sl@0
   498
	CleanGrowL(wordCount+BitsToWords(aBits));
sl@0
   499
	ShiftWordsLeftByWords(Ptr(), wordCount + shiftWords, shiftWords);
sl@0
   500
	ShiftWordsLeftByBits(Ptr()+shiftWords, wordCount + BitsToWords(shiftBits), 
sl@0
   501
		shiftBits);
sl@0
   502
	return *this;
sl@0
   503
	}
sl@0
   504
sl@0
   505
EXPORT_C TInteger& TInteger::operator >>=(TUint aBits)
sl@0
   506
	{
sl@0
   507
	const TUint wordCount = WordCount();
sl@0
   508
	const TUint shiftWords = aBits / WORD_BITS;
sl@0
   509
	const TUint shiftBits = aBits % WORD_BITS;
sl@0
   510
sl@0
   511
	ShiftWordsRightByWords(Ptr(), wordCount, shiftWords);
sl@0
   512
	if(wordCount > shiftWords)
sl@0
   513
		{
sl@0
   514
		ShiftWordsRightByBits(Ptr(), wordCount - shiftWords, shiftBits);
sl@0
   515
		}
sl@0
   516
	if(IsNegative() && WordCount()==0) // avoid negative 0
sl@0
   517
		{
sl@0
   518
		SetSign(EPositive);
sl@0
   519
		}
sl@0
   520
	return *this;
sl@0
   521
	}
sl@0
   522
sl@0
   523
EXPORT_C TInt TInteger::UnsignedCompare(const TInteger& aThat) const
sl@0
   524
	{
sl@0
   525
	TUint size = WordCount();
sl@0
   526
	TUint thatSize = aThat.WordCount();
sl@0
   527
sl@0
   528
	if( size == thatSize )
sl@0
   529
		return Compare(Ptr(), aThat.Ptr(), size);
sl@0
   530
	else
sl@0
   531
		return size > thatSize ? 1 : -1;
sl@0
   532
	}
sl@0
   533
sl@0
   534
EXPORT_C TInt TInteger::SignedCompare(const TInteger& aThat) const
sl@0
   535
	{
sl@0
   536
    if (NotNegative())
sl@0
   537
		{
sl@0
   538
        if (aThat.NotNegative())
sl@0
   539
            return UnsignedCompare(aThat);
sl@0
   540
        else
sl@0
   541
            return 1;
sl@0
   542
		}
sl@0
   543
    else
sl@0
   544
		{
sl@0
   545
        if (aThat.NotNegative())
sl@0
   546
            return -1;
sl@0
   547
        else
sl@0
   548
            return -UnsignedCompare(aThat);
sl@0
   549
		}
sl@0
   550
	}
sl@0
   551
sl@0
   552
EXPORT_C TBool TInteger::operator!() const
sl@0
   553
	{
sl@0
   554
	//Ptr()[0] is just a quick way of weeding out non-zero numbers without
sl@0
   555
	//doing a full WordCount() == 0.  Very good odds that a non-zero number
sl@0
   556
	//will have a bit set in the least significant word
sl@0
   557
	return IsNegative() ? EFalse : (Ptr()[0]==0 && WordCount()==0);
sl@0
   558
	}
sl@0
   559
sl@0
   560
EXPORT_C TInt TInteger::SignedCompare(TInt aInteger) const
sl@0
   561
	{
sl@0
   562
	TStackInteger64 temp(aInteger);
sl@0
   563
	return SignedCompare(temp);
sl@0
   564
	}
sl@0
   565
sl@0
   566
/* TBool IsPrimeL(void) const 
sl@0
   567
 * and all primality related functions are implemented in primes.cpp */
sl@0
   568
sl@0
   569
EXPORT_C TBool TInteger::Bit(TUint aBitPos) const
sl@0
   570
	{
sl@0
   571
	if( aBitPos/WORD_BITS >= Size() )
sl@0
   572
		{
sl@0
   573
		return 0;
sl@0
   574
		}
sl@0
   575
	else 
sl@0
   576
		{
sl@0
   577
		return (((Ptr())[aBitPos/WORD_BITS] >> (aBitPos % WORD_BITS)) & 1);
sl@0
   578
		}
sl@0
   579
	}
sl@0
   580
sl@0
   581
EXPORT_C void TInteger::SetBit(TUint aBitPos) 
sl@0
   582
	{
sl@0
   583
	if( aBitPos/WORD_BITS < Size() )
sl@0
   584
		{
sl@0
   585
		ArraySetBit(Ptr(), aBitPos);
sl@0
   586
		}
sl@0
   587
	}
sl@0
   588
sl@0
   589
EXPORT_C void TInteger::Negate() 
sl@0
   590
	{
sl@0
   591
	if(!!(*this)) //don't flip sign if *this==0
sl@0
   592
		{
sl@0
   593
		SetSign(TSign((~Sign())&KSignMask));
sl@0
   594
		}
sl@0
   595
	}
sl@0
   596
sl@0
   597
EXPORT_C void TInteger::CopyL(const TInteger& aInteger, TBool aAllowShrink)
sl@0
   598
	{
sl@0
   599
	if(aAllowShrink)
sl@0
   600
		{
sl@0
   601
		CleanResizeL(aInteger.Size());
sl@0
   602
		}
sl@0
   603
	else
sl@0
   604
		{
sl@0
   605
		CleanGrowL(aInteger.Size());
sl@0
   606
		}
sl@0
   607
	Construct(aInteger);
sl@0
   608
	}
sl@0
   609
sl@0
   610
EXPORT_C void TInteger::CopyL(TInt aInteger, TBool aAllowShrink)
sl@0
   611
	{
sl@0
   612
	if(aAllowShrink)
sl@0
   613
		{
sl@0
   614
		CleanResizeL(2);
sl@0
   615
		}
sl@0
   616
	else
sl@0
   617
		{
sl@0
   618
		CleanGrowL(2);
sl@0
   619
		}
sl@0
   620
	Construct(aInteger);
sl@0
   621
	}
sl@0
   622
sl@0
   623
EXPORT_C void TInteger::Set(const RInteger& aInteger)
sl@0
   624
	{
sl@0
   625
	assert(IsHeapBased());
sl@0
   626
	Mem::FillZ(Ptr(), WordsToBytes(Size()));
sl@0
   627
	User::Free(Ptr());
sl@0
   628
	iPtr = aInteger.iPtr;
sl@0
   629
	iSize = aInteger.iSize;
sl@0
   630
	}
sl@0
   631
sl@0
   632
RInteger TInteger::PositiveAddL(const TInteger &aA, const TInteger& aB) const
sl@0
   633
	{
sl@0
   634
	RInteger sum = RInteger::NewEmptyL(CryptoMax(aA.Size(), aB.Size()));
sl@0
   635
	const word aSize = aA.Size();
sl@0
   636
	const word bSize = aB.Size();
sl@0
   637
	const word* const aReg = aA.Ptr();
sl@0
   638
	const word* const bReg = aB.Ptr();
sl@0
   639
	word* const sumReg = sum.Ptr();
sl@0
   640
sl@0
   641
	word carry;
sl@0
   642
	if (aSize == bSize)
sl@0
   643
		carry = Add(sumReg, aReg, bReg, aSize);
sl@0
   644
	else if (aSize > bSize)
sl@0
   645
		{
sl@0
   646
		carry = Add(sumReg, aReg, bReg, bSize);
sl@0
   647
		CopyWords(sumReg+bSize, aReg+bSize, aSize-bSize);
sl@0
   648
		carry = Increment(sumReg+bSize, aSize-bSize, carry);
sl@0
   649
		}
sl@0
   650
	else
sl@0
   651
		{
sl@0
   652
		carry = Add(sumReg, aReg, bReg, aSize);
sl@0
   653
		CopyWords(sumReg+aSize, bReg+aSize, bSize-aSize);
sl@0
   654
		carry = Increment(sumReg+aSize, bSize-aSize, carry);
sl@0
   655
		}
sl@0
   656
sl@0
   657
	if (carry)
sl@0
   658
		{
sl@0
   659
		CleanupStack::PushL(sum);
sl@0
   660
		sum.CleanGrowL(2*sum.Size());
sl@0
   661
		CleanupStack::Pop(&sum);
sl@0
   662
		sum.Ptr()[sum.Size()/2] = 1;
sl@0
   663
		}
sl@0
   664
	sum.SetSign(TInteger::EPositive);
sl@0
   665
	return sum;
sl@0
   666
	}
sl@0
   667
sl@0
   668
RInteger TInteger::PositiveSubtractL(const TInteger &aA, const TInteger& aB) const
sl@0
   669
	{
sl@0
   670
	RInteger diff = RInteger::NewEmptyL(CryptoMax(aA.Size(), aB.Size()));
sl@0
   671
	unsigned aSize = aA.WordCount();
sl@0
   672
	aSize += aSize%2;
sl@0
   673
	unsigned bSize = aB.WordCount();
sl@0
   674
	bSize += bSize%2;
sl@0
   675
	const word* const aReg = aA.Ptr();
sl@0
   676
	const word* const bReg = aB.Ptr();
sl@0
   677
	word* const diffReg = diff.Ptr();
sl@0
   678
sl@0
   679
	if (aSize == bSize)
sl@0
   680
		{
sl@0
   681
		if (Compare(aReg, bReg, aSize) >= 0)
sl@0
   682
			{
sl@0
   683
			Subtract(diffReg, aReg, bReg, aSize);
sl@0
   684
			diff.SetSign(TInteger::EPositive);
sl@0
   685
			}
sl@0
   686
		else
sl@0
   687
			{
sl@0
   688
			Subtract(diffReg, bReg, aReg, aSize);
sl@0
   689
			diff.SetSign(TInteger::ENegative);
sl@0
   690
			}
sl@0
   691
		}
sl@0
   692
	else if (aSize > bSize)
sl@0
   693
		{
sl@0
   694
		word borrow = Subtract(diffReg, aReg, bReg, bSize);
sl@0
   695
		CopyWords(diffReg+bSize, aReg+bSize, aSize-bSize);
sl@0
   696
		borrow = Decrement(diffReg+bSize, aSize-bSize, borrow);
sl@0
   697
		assert(!borrow);
sl@0
   698
		diff.SetSign(TInteger::EPositive);
sl@0
   699
		}
sl@0
   700
	else
sl@0
   701
		{
sl@0
   702
		word borrow = Subtract(diffReg, bReg, aReg, aSize);
sl@0
   703
		CopyWords(diffReg+aSize, bReg+aSize, bSize-aSize);
sl@0
   704
		borrow = Decrement(diffReg+aSize, bSize-aSize, borrow);
sl@0
   705
		assert(!borrow);
sl@0
   706
		diff.SetSign(TInteger::ENegative);
sl@0
   707
		}
sl@0
   708
	return diff;
sl@0
   709
	}
sl@0
   710
sl@0
   711
RInteger TInteger::PositiveMultiplyL(const TInteger &aA, const TInteger &aB) const
sl@0
   712
	{
sl@0
   713
	unsigned aSize = RoundupSize(aA.WordCount());
sl@0
   714
	unsigned bSize = RoundupSize(aB.WordCount());
sl@0
   715
sl@0
   716
	RInteger product = RInteger::NewEmptyL(aSize+bSize);
sl@0
   717
	CleanupClosePushL(product);
sl@0
   718
sl@0
   719
	RInteger workspace = RInteger::NewEmptyL(aSize + bSize);
sl@0
   720
	AsymmetricMultiply(product.Ptr(), workspace.Ptr(), aA.Ptr(), aSize, aB.Ptr(), 
sl@0
   721
		bSize);
sl@0
   722
	workspace.Close();
sl@0
   723
	CleanupStack::Pop(&product);
sl@0
   724
	return product;
sl@0
   725
	}
sl@0
   726
sl@0
   727
TUint TInteger::Modulo(const TInteger& aDividend, TUint aDivisor) const
sl@0
   728
	{
sl@0
   729
	assert(aDivisor);
sl@0
   730
	TUint i = aDividend.WordCount();
sl@0
   731
	TUint remainder = 0;
sl@0
   732
	while(i--)
sl@0
   733
		{
sl@0
   734
		remainder = TUint(MAKE_DWORD(aDividend.Ptr()[i], remainder) % aDivisor);
sl@0
   735
		}
sl@0
   736
	return remainder;
sl@0
   737
	}
sl@0
   738
sl@0
   739
void TInteger::PositiveDivideL(RInteger &aRemainder, RInteger &aQuotient,
sl@0
   740
	const TInteger &aDividend, const TInteger &aDivisor) const
sl@0
   741
	{
sl@0
   742
	unsigned dividendSize = aDividend.WordCount();
sl@0
   743
	unsigned divisorSize = aDivisor.WordCount();
sl@0
   744
sl@0
   745
	if (!divisorSize)
sl@0
   746
		{
sl@0
   747
		User::Leave(KErrDivideByZero);
sl@0
   748
		}
sl@0
   749
sl@0
   750
	if (aDividend.UnsignedCompare(aDivisor) == -1)
sl@0
   751
		{
sl@0
   752
		aRemainder.CreateNewL(aDividend.Size());
sl@0
   753
		CleanupStack::PushL(aRemainder);
sl@0
   754
		aRemainder.CopyL(aDividend); //set remainder to a
sl@0
   755
		aRemainder.SetSign(TInteger::EPositive);
sl@0
   756
		aQuotient.CleanNewL(2); //Set quotient to zero
sl@0
   757
		CleanupStack::Pop(&aRemainder);
sl@0
   758
		return;
sl@0
   759
		}
sl@0
   760
sl@0
   761
	dividendSize += dividendSize%2;	// round up to next even number
sl@0
   762
	divisorSize += divisorSize%2;
sl@0
   763
sl@0
   764
	aRemainder.CleanNewL(divisorSize);
sl@0
   765
	CleanupStack::PushL(aRemainder);
sl@0
   766
	aQuotient.CleanNewL(dividendSize-divisorSize+2);
sl@0
   767
	CleanupStack::PushL(aQuotient);
sl@0
   768
sl@0
   769
	RInteger T = RInteger::NewEmptyL(dividendSize+2*divisorSize+4);
sl@0
   770
	Divide(aRemainder.Ptr(), aQuotient.Ptr(), T.Ptr(), aDividend.Ptr(), 
sl@0
   771
		dividendSize, aDivisor.Ptr(), divisorSize);
sl@0
   772
	T.Close();
sl@0
   773
	CleanupStack::Pop(2, &aRemainder); //aQuotient, aRemainder
sl@0
   774
	}
sl@0
   775
sl@0
   776
void TInteger::DivideL(RInteger& aRemainder, RInteger& aQuotient, 
sl@0
   777
	const TInteger& aDividend, const TInteger& aDivisor) const
sl@0
   778
    {
sl@0
   779
    PositiveDivideL(aRemainder, aQuotient, aDividend, aDivisor);
sl@0
   780
sl@0
   781
    if (aDividend.IsNegative())
sl@0
   782
        {
sl@0
   783
        aQuotient.Negate();
sl@0
   784
        if (aRemainder.NotZero())
sl@0
   785
            {
sl@0
   786
            --aQuotient;
sl@0
   787
			assert(aRemainder.Size() <= aDivisor.Size());
sl@0
   788
			Subtract(aRemainder.Ptr(), aDivisor.Ptr(), aRemainder.Ptr(), 
sl@0
   789
				aRemainder.Size());
sl@0
   790
            }
sl@0
   791
        }
sl@0
   792
sl@0
   793
    if (aDivisor.IsNegative())
sl@0
   794
        aQuotient.Negate();
sl@0
   795
    }
sl@0
   796
sl@0
   797
void TInteger::RandomizeL(TUint aBits, TRandomAttribute aAttr)
sl@0
   798
	{
sl@0
   799
	if(!aBits)
sl@0
   800
		{
sl@0
   801
		return;
sl@0
   802
		}
sl@0
   803
	const TUint bytes = BitsToBytes(aBits);
sl@0
   804
	const TUint words = BitsToWords(aBits);
sl@0
   805
	CleanGrowL(words);
sl@0
   806
	TPtr8 buf((TUint8*)(Ptr()), bytes, WordsToBytes(Size()));
sl@0
   807
	TUint bitpos = aBits % BYTE_BITS;
sl@0
   808
	TRAPD(err, GenerateRandomBytesL(buf));
sl@0
   809
	if((err != KErrNone) && (err != KErrNotSecure))
sl@0
   810
	    User::Leave(err);
sl@0
   811
	//mask with 0 all bits above the num requested in the most significant byte
sl@0
   812
	if(bitpos)
sl@0
   813
		{
sl@0
   814
		buf[bytes-1] = TUint8( buf[bytes-1] & ((1L << bitpos) - 1) );
sl@0
   815
		}
sl@0
   816
	//set most significant (top) bit 
sl@0
   817
	if(aAttr == ETopBitSet || aAttr == ETop2BitsSet)
sl@0
   818
		{
sl@0
   819
		SetBit(aBits-1); //Set bit counts from 0
sl@0
   820
		assert(BitCount() == aBits);
sl@0
   821
		assert(Bit(aBits-1));
sl@0
   822
		}
sl@0
   823
	//set 2nd bit from top
sl@0
   824
	if(aAttr == ETop2BitsSet)
sl@0
   825
		{
sl@0
   826
		SetBit(aBits-2); //Set bit counts from 0
sl@0
   827
		assert(BitCount() == aBits);
sl@0
   828
		assert(Bit(aBits-1));
sl@0
   829
		assert(Bit(aBits-2));
sl@0
   830
		}
sl@0
   831
	}
sl@0
   832
sl@0
   833
void TInteger::RandomizeL(const TInteger& aMin, const TInteger& aMax)
sl@0
   834
	{
sl@0
   835
	assert(aMax > aMin);
sl@0
   836
	assert(aMin.NotNegative());
sl@0
   837
	RInteger range = RInteger::NewL(aMax);
sl@0
   838
	CleanupStack::PushL(range);
sl@0
   839
	range -= aMin;
sl@0
   840
	const TUint bits = range.BitCount();
sl@0
   841
sl@0
   842
	//if we find a number < range then aMin+range < aMax 
sl@0
   843
	do
sl@0
   844
		{
sl@0
   845
		RandomizeL(bits, EAllBitsRandom);
sl@0
   846
		} 
sl@0
   847
	while(*this > range);
sl@0
   848
sl@0
   849
	*this += aMin;
sl@0
   850
	CleanupStack::PopAndDestroy(&range);
sl@0
   851
	}
sl@0
   852
sl@0
   853
/* void PrimeRandomizeL(TUint aBits, TRandomAttribute aAttr)
sl@0
   854
 * and all primality related functions are implemented in primes.cpp */
sl@0
   855
sl@0
   856
void TInteger::CreateNewL(TUint aNewSize)
sl@0
   857
	{
sl@0
   858
	//should only be called on construction
sl@0
   859
	assert(!iPtr);
sl@0
   860
	
sl@0
   861
	TUint newSize = RoundupSize(aNewSize);
sl@0
   862
	SetPtr((TUint*)User::AllocL(WordsToBytes(newSize)));
sl@0
   863
	SetSize(newSize);
sl@0
   864
	SetHeapBased();
sl@0
   865
	}
sl@0
   866
sl@0
   867
void TInteger::CleanNewL(TUint aNewSize)
sl@0
   868
	{
sl@0
   869
	CreateNewL(aNewSize);
sl@0
   870
	Mem::FillZ(Ptr(), WordsToBytes(Size())); //clear integer storage
sl@0
   871
	}
sl@0
   872
sl@0
   873
void TInteger::CleanGrowL(TUint aNewSize)
sl@0
   874
	{
sl@0
   875
	assert(IsHeapBased());
sl@0
   876
	TUint newSize = RoundupSize(aNewSize);
sl@0
   877
	TUint oldSize = Size();
sl@0
   878
	if(newSize > oldSize)
sl@0
   879
		{
sl@0
   880
		TUint* oldPtr = Ptr();
sl@0
   881
		//1) allocate new memory and set ptr and size
sl@0
   882
		SetPtr((TUint*)User::AllocL(WordsToBytes(newSize)));
sl@0
   883
		SetSize(newSize);
sl@0
   884
		//2) copy old mem to new mem
sl@0
   885
		Mem::Copy(Ptr(), oldPtr, WordsToBytes(oldSize));
sl@0
   886
		//3) zero all old memory
sl@0
   887
		Mem::FillZ(oldPtr, WordsToBytes(oldSize));
sl@0
   888
		//4) give back old memory
sl@0
   889
		User::Free(oldPtr);
sl@0
   890
		//5) zero new memory from end of copy to end of growth
sl@0
   891
		Mem::FillZ(Ptr() + oldSize, WordsToBytes(newSize-oldSize));
sl@0
   892
		}
sl@0
   893
	}
sl@0
   894
sl@0
   895
void TInteger::CleanResizeL(TUint aNewSize)
sl@0
   896
	{
sl@0
   897
	assert(IsHeapBased());
sl@0
   898
	TUint newSize = RoundupSize(aNewSize);
sl@0
   899
	TUint oldSize = Size();
sl@0
   900
	if(newSize > oldSize)
sl@0
   901
		{
sl@0
   902
		CleanGrowL(aNewSize);
sl@0
   903
		}
sl@0
   904
	else if(newSize < oldSize)
sl@0
   905
		{
sl@0
   906
		TUint* oldPtr = Ptr();
sl@0
   907
		//1) zero memory above newsize
sl@0
   908
		Mem::FillZ(oldPtr+WordsToBytes(aNewSize),WordsToBytes(oldSize-newSize));
sl@0
   909
		//2) ReAlloc cell.  Since our newsize is less than oldsize, it is
sl@0
   910
		//guarenteed not to move.  Thus this is just freeing part of our old
sl@0
   911
		//cell to the heap for other uses.
sl@0
   912
		SetPtr((TUint*)User::ReAllocL(Ptr(), WordsToBytes(newSize)));
sl@0
   913
		SetSize(newSize);
sl@0
   914
		}
sl@0
   915
	}
sl@0
   916
sl@0
   917
EXPORT_C TInteger::TInteger() : iSize(0), iPtr(0)
sl@0
   918
	{
sl@0
   919
	}
sl@0
   920
sl@0
   921
void TInteger::Construct(const TDesC8& aValue)
sl@0
   922
	{
sl@0
   923
	assert(Size() >= BytesToWords(aValue.Size()));
sl@0
   924
	if(aValue.Size() > 0)
sl@0
   925
		{
sl@0
   926
		//People write numbers with the most significant digits first (big
sl@0
   927
		//endian) but we store our numbers in little endian.  Hence we need to
sl@0
   928
		//reverse the string by bytes.
sl@0
   929
sl@0
   930
		TUint bytes = aValue.Size();
sl@0
   931
		TUint8* i = (TUint8*)Ptr();
sl@0
   932
		TUint8* j = (TUint8*)aValue.Ptr() + bytes;
sl@0
   933
sl@0
   934
		//Swap the endianess of the number itself
sl@0
   935
		// (msb) 01 02 03 04 05 06 (lsb) becomes ->
sl@0
   936
		// (lsb) 06 05 04 03 02 01 (msb)
sl@0
   937
		while( j != (TUint8*)aValue.Ptr() )
sl@0
   938
			{
sl@0
   939
			*i++ = *--j;
sl@0
   940
			}
sl@0
   941
		Mem::FillZ((TUint8*)Ptr() + bytes, WordsToBytes(Size()) - bytes);
sl@0
   942
		}
sl@0
   943
	else
sl@0
   944
		{
sl@0
   945
		//if size is zero, we zero the whole register
sl@0
   946
		Mem::FillZ((TUint8*)Ptr(), WordsToBytes(Size()));
sl@0
   947
		}
sl@0
   948
	SetSign(EPositive);
sl@0
   949
	}
sl@0
   950
sl@0
   951
void TInteger::Construct(const TInteger& aInteger)
sl@0
   952
	{
sl@0
   953
	assert(Size() >= aInteger.Size());
sl@0
   954
	CopyWords(Ptr(), aInteger.Ptr(), aInteger.Size());
sl@0
   955
	if(Size() > aInteger.Size())
sl@0
   956
		{
sl@0
   957
		Mem::FillZ(Ptr()+aInteger.Size(), WordsToBytes(Size()-aInteger.Size()));
sl@0
   958
		}
sl@0
   959
	SetSign(aInteger.Sign());
sl@0
   960
	}
sl@0
   961
sl@0
   962
void TInteger::Construct(TInt aInteger)
sl@0
   963
	{
sl@0
   964
	Construct((TUint)aInteger);
sl@0
   965
	if(aInteger < 0)
sl@0
   966
		{
sl@0
   967
		SetSign(ENegative);
sl@0
   968
		Ptr()[0] = -aInteger;
sl@0
   969
		}
sl@0
   970
	}
sl@0
   971
sl@0
   972
void TInteger::Construct(TUint aInteger)
sl@0
   973
	{
sl@0
   974
	assert(Size() >= 2);
sl@0
   975
	SetSign(EPositive);
sl@0
   976
	Ptr()[0] = aInteger;
sl@0
   977
	Mem::FillZ(Ptr()+1, WordsToBytes(Size()-1));
sl@0
   978
	}
sl@0
   979
sl@0
   980
void TInteger::ConstructStack(TUint aWords, TUint aInteger)
sl@0
   981
	{
sl@0
   982
	SetPtr((TUint*)(this)+2);
sl@0
   983
	//SetStackBased(); //Not strictly needed as stackbased is a 0 at bit 1
sl@0
   984
	SetSize(aWords);
sl@0
   985
	assert(Size() >= 2);
sl@0
   986
	Ptr()[0] = aInteger;
sl@0
   987
	Mem::FillZ(&(Ptr()[1]), WordsToBytes(Size()-1));
sl@0
   988
	}
sl@0
   989
sl@0
   990
void TInteger::ConstructStack(TUint aWords, const TInteger& aInteger)
sl@0
   991
	{
sl@0
   992
	SetPtr((TUint*)(this)+2);
sl@0
   993
	//SetStackBased(); //Not strictly needed as stackbased is a 0 at bit 1
sl@0
   994
	SetSize(aWords);
sl@0
   995
	assert( Size() >= RoundupSize(aInteger.WordCount()) );
sl@0
   996
	CopyWords(Ptr(), aInteger.Ptr(), aInteger.Size());
sl@0
   997
	Mem::FillZ(Ptr()+aInteger.Size(), WordsToBytes(Size()-aInteger.Size()));
sl@0
   998
	}
sl@0
   999
sl@0
  1000
// Methods are excluded from coverage due to the problem with BullsEye on ONB.
sl@0
  1001
// Manually verified that these methods are functionally covered.
sl@0
  1002
#ifdef _BullseyeCoverage
sl@0
  1003
#pragma suppress_warnings on
sl@0
  1004
#pragma BullseyeCoverage off
sl@0
  1005
#pragma suppress_warnings off
sl@0
  1006
#endif
sl@0
  1007
sl@0
  1008
EXPORT_C TInteger& TInteger::operator/=(TInt aOperand)
sl@0
  1009
	{
sl@0
  1010
	TStackInteger64 operand(aOperand);
sl@0
  1011
	*this /= operand;
sl@0
  1012
	return *this;
sl@0
  1013
	}
sl@0
  1014
sl@0
  1015
EXPORT_C TInteger& TInteger::operator%=(TInt aOperand)
sl@0
  1016
	{
sl@0
  1017
	TStackInteger64 operand(aOperand);
sl@0
  1018
	assert(operand.NotNegative());
sl@0
  1019
	*this %= operand;
sl@0
  1020
	return *this;
sl@0
  1021
	}
sl@0
  1022
sl@0
  1023
EXPORT_C TInt TInteger::ConvertToLongL(void) const
sl@0
  1024
	{
sl@0
  1025
	if(!IsConvertableToLong())
sl@0
  1026
		{
sl@0
  1027
		User::Leave(KErrTotalLossOfPrecision);
sl@0
  1028
		}
sl@0
  1029
	return ConvertToLong();
sl@0
  1030
	}
sl@0
  1031
sl@0
  1032
TInt TInteger::ConvertToLong(void) const
sl@0
  1033
	{
sl@0
  1034
	TUint value = ConvertToUnsignedLong();
sl@0
  1035
	return Sign() == EPositive ? value : -(static_cast<TInt>(value));
sl@0
  1036
	}
sl@0
  1037
sl@0
  1038
TBool TInteger::IsConvertableToLong(void) const
sl@0
  1039
	{
sl@0
  1040
	if(WordCount() > 1)
sl@0
  1041
		{
sl@0
  1042
		return EFalse;
sl@0
  1043
		}
sl@0
  1044
	TUint value = (Ptr())[0];
sl@0
  1045
	if(Sign() == EPositive)
sl@0
  1046
		{
sl@0
  1047
		return static_cast<TInt>(value) >= 0;
sl@0
  1048
		}
sl@0
  1049
	else
sl@0
  1050
		{
sl@0
  1051
		return -(static_cast<TInt>(value)) < 0;
sl@0
  1052
		}
sl@0
  1053
	}
sl@0
  1054
sl@0
  1055
EXPORT_C RInteger TInteger::SquaredL() const
sl@0
  1056
	{
sl@0
  1057
	//PositiveMultiplyL optimises for the squaring case already
sl@0
  1058
	//Any number squared is positive, no need for negative handling in TimesL
sl@0
  1059
	return PositiveMultiplyL(*this, *this);
sl@0
  1060
	}
sl@0
  1061
sl@0
  1062
EXPORT_C RInteger TInteger::DividedByL(TUint aOperand) const
sl@0
  1063
	{
sl@0
  1064
	TUint remainder;
sl@0
  1065
	RInteger quotient;
sl@0
  1066
	DivideL(remainder, quotient, *this, aOperand);
sl@0
  1067
	return quotient;
sl@0
  1068
	}
sl@0
  1069
sl@0
  1070
EXPORT_C RInteger TInteger::ExponentiateL(const TInteger& aExponent) const
sl@0
  1071
	{
sl@0
  1072
	//See HAC 14.85
sl@0
  1073
sl@0
  1074
	// 1.1 Precomputation
sl@0
  1075
	// g1 <- g
sl@0
  1076
	// g2 <- g^2
sl@0
  1077
	RInteger g2 = SquaredL();
sl@0
  1078
	CleanupStack::PushL(g2);
sl@0
  1079
	RInteger g1 = RInteger::NewL(*this);
sl@0
  1080
	CleanupStack::PushL(g1);
sl@0
  1081
	TWindowSlider slider(aExponent);
sl@0
  1082
sl@0
  1083
	// 1.2 
sl@0
  1084
	// For i from 1 to (2^(k-1) -1) do g2i+1 <- g2i-1 * g2
sl@0
  1085
	TUint count = (1 << (slider.WindowSize()-1)) - 1; //2^(k-1) -1
sl@0
  1086
	RRArray<RInteger> powerArray(count+1); //+1 because we append g1
sl@0
  1087
	powerArray.AppendL(g1);
sl@0
  1088
	CleanupStack::Pop(); //g1
sl@0
  1089
	CleanupClosePushL(powerArray);
sl@0
  1090
	for(TUint k=1; k <= count; k++)
sl@0
  1091
		{
sl@0
  1092
		RInteger g2iplus1 = g2.TimesL(powerArray[k-1]);
sl@0
  1093
		powerArray.AppendL(g2iplus1);
sl@0
  1094
		}
sl@0
  1095
sl@0
  1096
	// 2 A <- 1, i <- t
sl@0
  1097
	RInteger A = RInteger::NewL(One());
sl@0
  1098
	CleanupStack::PushL(A);
sl@0
  1099
	TInt i = aExponent.BitCount() - 1;
sl@0
  1100
sl@0
  1101
	// 3 While i>=0 do:
sl@0
  1102
	while( i>=0 )
sl@0
  1103
		{
sl@0
  1104
		// 3.1 If ei == 0 then A <- A^2
sl@0
  1105
		if(!aExponent.Bit(i))
sl@0
  1106
			{
sl@0
  1107
			A *= A;
sl@0
  1108
			i--;
sl@0
  1109
			}
sl@0
  1110
		// 3.2 Find longest bitstring ei,ei-1,...,el s.t. i-l+1<=k and el==1
sl@0
  1111
		// and do:
sl@0
  1112
		// A <- (A^2^(i-l+1)) * g[the index indicated by the bitstring value]
sl@0
  1113
		else
sl@0
  1114
			{
sl@0
  1115
			slider.FindNextWindow(i);
sl@0
  1116
			assert(slider.Length() >= 1);
sl@0
  1117
			for(TUint j=0; j<slider.Length(); j++)
sl@0
  1118
				{
sl@0
  1119
				A *= A;
sl@0
  1120
				}
sl@0
  1121
			A *= powerArray[slider.Value()>>1];
sl@0
  1122
			i -= slider.Length();
sl@0
  1123
			}
sl@0
  1124
		}
sl@0
  1125
	CleanupStack::Pop(&A);
sl@0
  1126
	CleanupStack::PopAndDestroy(2, &g2); //powerArray, g2
sl@0
  1127
	return A;
sl@0
  1128
	}
sl@0
  1129
sl@0
  1130
void TInteger::DivideL(TUint& aRemainder, RInteger& aQuotient,
sl@0
  1131
	const TInteger& aDividend, TUint aDivisor) const
sl@0
  1132
	{
sl@0
  1133
	if(!aDivisor)
sl@0
  1134
		{
sl@0
  1135
		User::Leave(KErrDivideByZero);
sl@0
  1136
		}
sl@0
  1137
	
sl@0
  1138
	TUint i = aDividend.WordCount();
sl@0
  1139
	aQuotient.CleanNewL(RoundupSize(i));
sl@0
  1140
	PositiveDivide(aRemainder, aQuotient, aDividend, aDivisor);
sl@0
  1141
sl@0
  1142
	if(aDividend.NotNegative())
sl@0
  1143
		{
sl@0
  1144
		aQuotient.SetSign(TInteger::EPositive);
sl@0
  1145
		}
sl@0
  1146
	else
sl@0
  1147
		{
sl@0
  1148
		aQuotient.SetSign(TInteger::ENegative);
sl@0
  1149
		if(aRemainder)
sl@0
  1150
			{
sl@0
  1151
			--aQuotient;
sl@0
  1152
			aRemainder = aDivisor = aRemainder;
sl@0
  1153
			}
sl@0
  1154
		}
sl@0
  1155
	}
sl@0
  1156
sl@0
  1157
void TInteger::PositiveDivide(TUint& aRemainder, TInteger& aQuotient, 
sl@0
  1158
	const TInteger& aDividend, TUint aDivisor) const
sl@0
  1159
	{
sl@0
  1160
	assert(aDivisor);
sl@0
  1161
sl@0
  1162
	TUint i = aDividend.WordCount();
sl@0
  1163
	assert(aQuotient.Size() >= RoundupSize(i));
sl@0
  1164
	assert(aQuotient.Sign() == TInteger::EPositive);
sl@0
  1165
	aRemainder = 0;
sl@0
  1166
	while(i--)
sl@0
  1167
		{
sl@0
  1168
		aQuotient.Ptr()[i] = 
sl@0
  1169
			TUint(MAKE_DWORD(aDividend.Ptr()[i], aRemainder) / aDivisor);
sl@0
  1170
		aRemainder = 
sl@0
  1171
			TUint(MAKE_DWORD(aDividend.Ptr()[i], aRemainder) % aDivisor);
sl@0
  1172
		}
sl@0
  1173
	}