sl@0
|
1 |
/*
|
sl@0
|
2 |
**
|
sl@0
|
3 |
** Portions Copyright (c) 2008 Nokia Corporation and/or its subsidiaries. All rights reserved.
|
sl@0
|
4 |
**
|
sl@0
|
5 |
** SQLite uses this code for testing only. It is not a part of
|
sl@0
|
6 |
** the SQLite library. This file implements two new TCL commands
|
sl@0
|
7 |
** "md5" and "md5file" that compute md5 checksums on arbitrary text
|
sl@0
|
8 |
** and on complete files. These commands are used by the "testfixture"
|
sl@0
|
9 |
** program to help verify the correct operation of the SQLite library.
|
sl@0
|
10 |
**
|
sl@0
|
11 |
** The original use of these TCL commands was to test the ROLLBACK
|
sl@0
|
12 |
** feature of SQLite. First compute the MD5-checksum of the database.
|
sl@0
|
13 |
** Then make some changes but rollback the changes rather than commit
|
sl@0
|
14 |
** them. Compute a second MD5-checksum of the file and verify that the
|
sl@0
|
15 |
** two checksums are the same. Such is the original use of this code.
|
sl@0
|
16 |
** New uses may have been added since this comment was written.
|
sl@0
|
17 |
**
|
sl@0
|
18 |
** $Id: test_md5.c,v 1.8 2008/05/16 04:51:55 danielk1977 Exp $
|
sl@0
|
19 |
*/
|
sl@0
|
20 |
/*
|
sl@0
|
21 |
* This code implements the MD5 message-digest algorithm.
|
sl@0
|
22 |
* The algorithm is due to Ron Rivest. This code was
|
sl@0
|
23 |
* written by Colin Plumb in 1993, no copyright is claimed.
|
sl@0
|
24 |
* This code is in the public domain; do with it what you wish.
|
sl@0
|
25 |
*
|
sl@0
|
26 |
* Equivalent code is available from RSA Data Security, Inc.
|
sl@0
|
27 |
* This code has been tested against that, and is equivalent,
|
sl@0
|
28 |
* except that you don't need to include two pages of legalese
|
sl@0
|
29 |
* with every copy.
|
sl@0
|
30 |
*
|
sl@0
|
31 |
* To compute the message digest of a chunk of bytes, declare an
|
sl@0
|
32 |
* MD5Context structure, pass it to MD5Init, call MD5Update as
|
sl@0
|
33 |
* needed on buffers full of bytes, and then call MD5Final, which
|
sl@0
|
34 |
* will fill a supplied 16-byte array with the digest.
|
sl@0
|
35 |
*/
|
sl@0
|
36 |
#include "tcl.h"
|
sl@0
|
37 |
#include <string.h>
|
sl@0
|
38 |
#include "sqlite3.h"
|
sl@0
|
39 |
#include <sys/param.h>
|
sl@0
|
40 |
|
sl@0
|
41 |
/* Symbian OS */
|
sl@0
|
42 |
extern char* GetFullFilePath(char* aPath, const char* aFileName);
|
sl@0
|
43 |
|
sl@0
|
44 |
/*
|
sl@0
|
45 |
* If compiled on a machine that doesn't have a 32-bit integer,
|
sl@0
|
46 |
* you just set "uint32" to the appropriate datatype for an
|
sl@0
|
47 |
* unsigned 32-bit integer. For example:
|
sl@0
|
48 |
*
|
sl@0
|
49 |
* cc -Duint32='unsigned long' md5.c
|
sl@0
|
50 |
*
|
sl@0
|
51 |
*/
|
sl@0
|
52 |
#ifndef uint32
|
sl@0
|
53 |
# define uint32 unsigned int
|
sl@0
|
54 |
#endif
|
sl@0
|
55 |
|
sl@0
|
56 |
struct Context {
|
sl@0
|
57 |
int isInit;
|
sl@0
|
58 |
uint32 buf[4];
|
sl@0
|
59 |
uint32 bits[2];
|
sl@0
|
60 |
unsigned char in[64];
|
sl@0
|
61 |
};
|
sl@0
|
62 |
typedef struct Context MD5Context;
|
sl@0
|
63 |
|
sl@0
|
64 |
/*
|
sl@0
|
65 |
* Note: this code is harmless on little-endian machines.
|
sl@0
|
66 |
*/
|
sl@0
|
67 |
static void byteReverse (unsigned char *buf, unsigned longs){
|
sl@0
|
68 |
uint32 t;
|
sl@0
|
69 |
do {
|
sl@0
|
70 |
t = (uint32)((unsigned)buf[3]<<8 | buf[2]) << 16 |
|
sl@0
|
71 |
((unsigned)buf[1]<<8 | buf[0]);
|
sl@0
|
72 |
*(uint32 *)buf = t;
|
sl@0
|
73 |
buf += 4;
|
sl@0
|
74 |
} while (--longs);
|
sl@0
|
75 |
}
|
sl@0
|
76 |
/* The four core functions - F1 is optimized somewhat */
|
sl@0
|
77 |
|
sl@0
|
78 |
/* #define F1(x, y, z) (x & y | ~x & z) */
|
sl@0
|
79 |
#define F1(x, y, z) (z ^ (x & (y ^ z)))
|
sl@0
|
80 |
#define F2(x, y, z) F1(z, x, y)
|
sl@0
|
81 |
#define F3(x, y, z) (x ^ y ^ z)
|
sl@0
|
82 |
#define F4(x, y, z) (y ^ (x | ~z))
|
sl@0
|
83 |
|
sl@0
|
84 |
/* This is the central step in the MD5 algorithm. */
|
sl@0
|
85 |
#define MD5STEP(f, w, x, y, z, data, s) \
|
sl@0
|
86 |
( w += f(x, y, z) + data, w = w<<s | w>>(32-s), w += x )
|
sl@0
|
87 |
|
sl@0
|
88 |
/*
|
sl@0
|
89 |
* The core of the MD5 algorithm, this alters an existing MD5 hash to
|
sl@0
|
90 |
* reflect the addition of 16 longwords of new data. MD5Update blocks
|
sl@0
|
91 |
* the data and converts bytes into longwords for this routine.
|
sl@0
|
92 |
*/
|
sl@0
|
93 |
static void MD5Transform(uint32 buf[4], const uint32 in[16]){
|
sl@0
|
94 |
register uint32 a, b, c, d;
|
sl@0
|
95 |
|
sl@0
|
96 |
a = buf[0];
|
sl@0
|
97 |
b = buf[1];
|
sl@0
|
98 |
c = buf[2];
|
sl@0
|
99 |
d = buf[3];
|
sl@0
|
100 |
|
sl@0
|
101 |
MD5STEP(F1, a, b, c, d, in[ 0]+0xd76aa478, 7);
|
sl@0
|
102 |
MD5STEP(F1, d, a, b, c, in[ 1]+0xe8c7b756, 12);
|
sl@0
|
103 |
MD5STEP(F1, c, d, a, b, in[ 2]+0x242070db, 17);
|
sl@0
|
104 |
MD5STEP(F1, b, c, d, a, in[ 3]+0xc1bdceee, 22);
|
sl@0
|
105 |
MD5STEP(F1, a, b, c, d, in[ 4]+0xf57c0faf, 7);
|
sl@0
|
106 |
MD5STEP(F1, d, a, b, c, in[ 5]+0x4787c62a, 12);
|
sl@0
|
107 |
MD5STEP(F1, c, d, a, b, in[ 6]+0xa8304613, 17);
|
sl@0
|
108 |
MD5STEP(F1, b, c, d, a, in[ 7]+0xfd469501, 22);
|
sl@0
|
109 |
MD5STEP(F1, a, b, c, d, in[ 8]+0x698098d8, 7);
|
sl@0
|
110 |
MD5STEP(F1, d, a, b, c, in[ 9]+0x8b44f7af, 12);
|
sl@0
|
111 |
MD5STEP(F1, c, d, a, b, in[10]+0xffff5bb1, 17);
|
sl@0
|
112 |
MD5STEP(F1, b, c, d, a, in[11]+0x895cd7be, 22);
|
sl@0
|
113 |
MD5STEP(F1, a, b, c, d, in[12]+0x6b901122, 7);
|
sl@0
|
114 |
MD5STEP(F1, d, a, b, c, in[13]+0xfd987193, 12);
|
sl@0
|
115 |
MD5STEP(F1, c, d, a, b, in[14]+0xa679438e, 17);
|
sl@0
|
116 |
MD5STEP(F1, b, c, d, a, in[15]+0x49b40821, 22);
|
sl@0
|
117 |
|
sl@0
|
118 |
MD5STEP(F2, a, b, c, d, in[ 1]+0xf61e2562, 5);
|
sl@0
|
119 |
MD5STEP(F2, d, a, b, c, in[ 6]+0xc040b340, 9);
|
sl@0
|
120 |
MD5STEP(F2, c, d, a, b, in[11]+0x265e5a51, 14);
|
sl@0
|
121 |
MD5STEP(F2, b, c, d, a, in[ 0]+0xe9b6c7aa, 20);
|
sl@0
|
122 |
MD5STEP(F2, a, b, c, d, in[ 5]+0xd62f105d, 5);
|
sl@0
|
123 |
MD5STEP(F2, d, a, b, c, in[10]+0x02441453, 9);
|
sl@0
|
124 |
MD5STEP(F2, c, d, a, b, in[15]+0xd8a1e681, 14);
|
sl@0
|
125 |
MD5STEP(F2, b, c, d, a, in[ 4]+0xe7d3fbc8, 20);
|
sl@0
|
126 |
MD5STEP(F2, a, b, c, d, in[ 9]+0x21e1cde6, 5);
|
sl@0
|
127 |
MD5STEP(F2, d, a, b, c, in[14]+0xc33707d6, 9);
|
sl@0
|
128 |
MD5STEP(F2, c, d, a, b, in[ 3]+0xf4d50d87, 14);
|
sl@0
|
129 |
MD5STEP(F2, b, c, d, a, in[ 8]+0x455a14ed, 20);
|
sl@0
|
130 |
MD5STEP(F2, a, b, c, d, in[13]+0xa9e3e905, 5);
|
sl@0
|
131 |
MD5STEP(F2, d, a, b, c, in[ 2]+0xfcefa3f8, 9);
|
sl@0
|
132 |
MD5STEP(F2, c, d, a, b, in[ 7]+0x676f02d9, 14);
|
sl@0
|
133 |
MD5STEP(F2, b, c, d, a, in[12]+0x8d2a4c8a, 20);
|
sl@0
|
134 |
|
sl@0
|
135 |
MD5STEP(F3, a, b, c, d, in[ 5]+0xfffa3942, 4);
|
sl@0
|
136 |
MD5STEP(F3, d, a, b, c, in[ 8]+0x8771f681, 11);
|
sl@0
|
137 |
MD5STEP(F3, c, d, a, b, in[11]+0x6d9d6122, 16);
|
sl@0
|
138 |
MD5STEP(F3, b, c, d, a, in[14]+0xfde5380c, 23);
|
sl@0
|
139 |
MD5STEP(F3, a, b, c, d, in[ 1]+0xa4beea44, 4);
|
sl@0
|
140 |
MD5STEP(F3, d, a, b, c, in[ 4]+0x4bdecfa9, 11);
|
sl@0
|
141 |
MD5STEP(F3, c, d, a, b, in[ 7]+0xf6bb4b60, 16);
|
sl@0
|
142 |
MD5STEP(F3, b, c, d, a, in[10]+0xbebfbc70, 23);
|
sl@0
|
143 |
MD5STEP(F3, a, b, c, d, in[13]+0x289b7ec6, 4);
|
sl@0
|
144 |
MD5STEP(F3, d, a, b, c, in[ 0]+0xeaa127fa, 11);
|
sl@0
|
145 |
MD5STEP(F3, c, d, a, b, in[ 3]+0xd4ef3085, 16);
|
sl@0
|
146 |
MD5STEP(F3, b, c, d, a, in[ 6]+0x04881d05, 23);
|
sl@0
|
147 |
MD5STEP(F3, a, b, c, d, in[ 9]+0xd9d4d039, 4);
|
sl@0
|
148 |
MD5STEP(F3, d, a, b, c, in[12]+0xe6db99e5, 11);
|
sl@0
|
149 |
MD5STEP(F3, c, d, a, b, in[15]+0x1fa27cf8, 16);
|
sl@0
|
150 |
MD5STEP(F3, b, c, d, a, in[ 2]+0xc4ac5665, 23);
|
sl@0
|
151 |
|
sl@0
|
152 |
MD5STEP(F4, a, b, c, d, in[ 0]+0xf4292244, 6);
|
sl@0
|
153 |
MD5STEP(F4, d, a, b, c, in[ 7]+0x432aff97, 10);
|
sl@0
|
154 |
MD5STEP(F4, c, d, a, b, in[14]+0xab9423a7, 15);
|
sl@0
|
155 |
MD5STEP(F4, b, c, d, a, in[ 5]+0xfc93a039, 21);
|
sl@0
|
156 |
MD5STEP(F4, a, b, c, d, in[12]+0x655b59c3, 6);
|
sl@0
|
157 |
MD5STEP(F4, d, a, b, c, in[ 3]+0x8f0ccc92, 10);
|
sl@0
|
158 |
MD5STEP(F4, c, d, a, b, in[10]+0xffeff47d, 15);
|
sl@0
|
159 |
MD5STEP(F4, b, c, d, a, in[ 1]+0x85845dd1, 21);
|
sl@0
|
160 |
MD5STEP(F4, a, b, c, d, in[ 8]+0x6fa87e4f, 6);
|
sl@0
|
161 |
MD5STEP(F4, d, a, b, c, in[15]+0xfe2ce6e0, 10);
|
sl@0
|
162 |
MD5STEP(F4, c, d, a, b, in[ 6]+0xa3014314, 15);
|
sl@0
|
163 |
MD5STEP(F4, b, c, d, a, in[13]+0x4e0811a1, 21);
|
sl@0
|
164 |
MD5STEP(F4, a, b, c, d, in[ 4]+0xf7537e82, 6);
|
sl@0
|
165 |
MD5STEP(F4, d, a, b, c, in[11]+0xbd3af235, 10);
|
sl@0
|
166 |
MD5STEP(F4, c, d, a, b, in[ 2]+0x2ad7d2bb, 15);
|
sl@0
|
167 |
MD5STEP(F4, b, c, d, a, in[ 9]+0xeb86d391, 21);
|
sl@0
|
168 |
|
sl@0
|
169 |
buf[0] += a;
|
sl@0
|
170 |
buf[1] += b;
|
sl@0
|
171 |
buf[2] += c;
|
sl@0
|
172 |
buf[3] += d;
|
sl@0
|
173 |
}
|
sl@0
|
174 |
|
sl@0
|
175 |
/*
|
sl@0
|
176 |
* Start MD5 accumulation. Set bit count to 0 and buffer to mysterious
|
sl@0
|
177 |
* initialization constants.
|
sl@0
|
178 |
*/
|
sl@0
|
179 |
static void MD5Init(MD5Context *ctx){
|
sl@0
|
180 |
ctx->isInit = 1;
|
sl@0
|
181 |
ctx->buf[0] = 0x67452301;
|
sl@0
|
182 |
ctx->buf[1] = 0xefcdab89;
|
sl@0
|
183 |
ctx->buf[2] = 0x98badcfe;
|
sl@0
|
184 |
ctx->buf[3] = 0x10325476;
|
sl@0
|
185 |
ctx->bits[0] = 0;
|
sl@0
|
186 |
ctx->bits[1] = 0;
|
sl@0
|
187 |
}
|
sl@0
|
188 |
|
sl@0
|
189 |
/*
|
sl@0
|
190 |
* Update context to reflect the concatenation of another buffer full
|
sl@0
|
191 |
* of bytes.
|
sl@0
|
192 |
*/
|
sl@0
|
193 |
static
|
sl@0
|
194 |
void MD5Update(MD5Context *pCtx, const unsigned char *buf, unsigned int len){
|
sl@0
|
195 |
struct Context *ctx = (struct Context *)pCtx;
|
sl@0
|
196 |
uint32 t;
|
sl@0
|
197 |
|
sl@0
|
198 |
/* Update bitcount */
|
sl@0
|
199 |
|
sl@0
|
200 |
t = ctx->bits[0];
|
sl@0
|
201 |
if ((ctx->bits[0] = t + ((uint32)len << 3)) < t)
|
sl@0
|
202 |
ctx->bits[1]++; /* Carry from low to high */
|
sl@0
|
203 |
ctx->bits[1] += len >> 29;
|
sl@0
|
204 |
|
sl@0
|
205 |
t = (t >> 3) & 0x3f; /* Bytes already in shsInfo->data */
|
sl@0
|
206 |
|
sl@0
|
207 |
/* Handle any leading odd-sized chunks */
|
sl@0
|
208 |
|
sl@0
|
209 |
if ( t ) {
|
sl@0
|
210 |
unsigned char *p = (unsigned char *)ctx->in + t;
|
sl@0
|
211 |
|
sl@0
|
212 |
t = 64-t;
|
sl@0
|
213 |
if (len < t) {
|
sl@0
|
214 |
memcpy(p, buf, len);
|
sl@0
|
215 |
return;
|
sl@0
|
216 |
}
|
sl@0
|
217 |
memcpy(p, buf, t);
|
sl@0
|
218 |
byteReverse(ctx->in, 16);
|
sl@0
|
219 |
MD5Transform(ctx->buf, (uint32 *)ctx->in);
|
sl@0
|
220 |
buf += t;
|
sl@0
|
221 |
len -= t;
|
sl@0
|
222 |
}
|
sl@0
|
223 |
|
sl@0
|
224 |
/* Process data in 64-byte chunks */
|
sl@0
|
225 |
|
sl@0
|
226 |
while (len >= 64) {
|
sl@0
|
227 |
memcpy(ctx->in, buf, 64);
|
sl@0
|
228 |
byteReverse(ctx->in, 16);
|
sl@0
|
229 |
MD5Transform(ctx->buf, (uint32 *)ctx->in);
|
sl@0
|
230 |
buf += 64;
|
sl@0
|
231 |
len -= 64;
|
sl@0
|
232 |
}
|
sl@0
|
233 |
|
sl@0
|
234 |
/* Handle any remaining bytes of data. */
|
sl@0
|
235 |
|
sl@0
|
236 |
memcpy(ctx->in, buf, len);
|
sl@0
|
237 |
}
|
sl@0
|
238 |
|
sl@0
|
239 |
/*
|
sl@0
|
240 |
* Final wrapup - pad to 64-byte boundary with the bit pattern
|
sl@0
|
241 |
* 1 0* (64-bit count of bits processed, MSB-first)
|
sl@0
|
242 |
*/
|
sl@0
|
243 |
static void MD5Final(unsigned char digest[16], MD5Context *pCtx){
|
sl@0
|
244 |
struct Context *ctx = (struct Context *)pCtx;
|
sl@0
|
245 |
unsigned count;
|
sl@0
|
246 |
unsigned char *p;
|
sl@0
|
247 |
|
sl@0
|
248 |
/* Compute number of bytes mod 64 */
|
sl@0
|
249 |
count = (ctx->bits[0] >> 3) & 0x3F;
|
sl@0
|
250 |
|
sl@0
|
251 |
/* Set the first char of padding to 0x80. This is safe since there is
|
sl@0
|
252 |
always at least one byte free */
|
sl@0
|
253 |
p = ctx->in + count;
|
sl@0
|
254 |
*p++ = 0x80;
|
sl@0
|
255 |
|
sl@0
|
256 |
/* Bytes of padding needed to make 64 bytes */
|
sl@0
|
257 |
count = 64 - 1 - count;
|
sl@0
|
258 |
|
sl@0
|
259 |
/* Pad out to 56 mod 64 */
|
sl@0
|
260 |
if (count < 8) {
|
sl@0
|
261 |
/* Two lots of padding: Pad the first block to 64 bytes */
|
sl@0
|
262 |
memset(p, 0, count);
|
sl@0
|
263 |
byteReverse(ctx->in, 16);
|
sl@0
|
264 |
MD5Transform(ctx->buf, (uint32 *)ctx->in);
|
sl@0
|
265 |
|
sl@0
|
266 |
/* Now fill the next block with 56 bytes */
|
sl@0
|
267 |
memset(ctx->in, 0, 56);
|
sl@0
|
268 |
} else {
|
sl@0
|
269 |
/* Pad block to 56 bytes */
|
sl@0
|
270 |
memset(p, 0, count-8);
|
sl@0
|
271 |
}
|
sl@0
|
272 |
byteReverse(ctx->in, 14);
|
sl@0
|
273 |
|
sl@0
|
274 |
/* Append length in bits and transform */
|
sl@0
|
275 |
((uint32 *)ctx->in)[ 14 ] = ctx->bits[0];
|
sl@0
|
276 |
((uint32 *)ctx->in)[ 15 ] = ctx->bits[1];
|
sl@0
|
277 |
|
sl@0
|
278 |
MD5Transform(ctx->buf, (uint32 *)ctx->in);
|
sl@0
|
279 |
byteReverse((unsigned char *)ctx->buf, 4);
|
sl@0
|
280 |
memcpy(digest, ctx->buf, 16);
|
sl@0
|
281 |
memset(ctx, 0, sizeof(ctx)); /* In case it is sensitive */
|
sl@0
|
282 |
}
|
sl@0
|
283 |
|
sl@0
|
284 |
/*
|
sl@0
|
285 |
** Convert a digest into base-16. digest should be declared as
|
sl@0
|
286 |
** "unsigned char digest[16]" in the calling function. The MD5
|
sl@0
|
287 |
** digest is stored in the first 16 bytes. zBuf should
|
sl@0
|
288 |
** be "char zBuf[33]".
|
sl@0
|
289 |
*/
|
sl@0
|
290 |
static void DigestToBase16(unsigned char *digest, char *zBuf){
|
sl@0
|
291 |
static char const zEncode[] = "0123456789abcdef";
|
sl@0
|
292 |
int i, j;
|
sl@0
|
293 |
|
sl@0
|
294 |
for(j=i=0; i<16; i++){
|
sl@0
|
295 |
int a = digest[i];
|
sl@0
|
296 |
zBuf[j++] = zEncode[(a>>4)&0xf];
|
sl@0
|
297 |
zBuf[j++] = zEncode[a & 0xf];
|
sl@0
|
298 |
}
|
sl@0
|
299 |
zBuf[j] = 0;
|
sl@0
|
300 |
}
|
sl@0
|
301 |
|
sl@0
|
302 |
/*
|
sl@0
|
303 |
** A TCL command for md5. The argument is the text to be hashed. The
|
sl@0
|
304 |
** Result is the hash in base64.
|
sl@0
|
305 |
*/
|
sl@0
|
306 |
static int md5_cmd(void*cd, Tcl_Interp *interp, int argc, const char **argv){
|
sl@0
|
307 |
MD5Context ctx;
|
sl@0
|
308 |
unsigned char digest[16];
|
sl@0
|
309 |
|
sl@0
|
310 |
if( argc!=2 ){
|
sl@0
|
311 |
Tcl_AppendResult(interp,"wrong # args: should be \"", argv[0],
|
sl@0
|
312 |
" TEXT\"", 0);
|
sl@0
|
313 |
return TCL_ERROR;
|
sl@0
|
314 |
}
|
sl@0
|
315 |
MD5Init(&ctx);
|
sl@0
|
316 |
MD5Update(&ctx, (unsigned char*)argv[1], (unsigned)strlen(argv[1]));
|
sl@0
|
317 |
MD5Final(digest, &ctx);
|
sl@0
|
318 |
DigestToBase16(digest, interp->result);
|
sl@0
|
319 |
return TCL_OK;
|
sl@0
|
320 |
}
|
sl@0
|
321 |
|
sl@0
|
322 |
/*
|
sl@0
|
323 |
** A TCL command to take the md5 hash of a file. The argument is the
|
sl@0
|
324 |
** name of the file.
|
sl@0
|
325 |
*/
|
sl@0
|
326 |
static int md5file_cmd(void*cd, Tcl_Interp*interp, int argc, const char **argv){
|
sl@0
|
327 |
FILE *in;
|
sl@0
|
328 |
MD5Context ctx;
|
sl@0
|
329 |
unsigned char digest[16];
|
sl@0
|
330 |
char zBuf[10240];
|
sl@0
|
331 |
char fnamebuf[MAXPATHLEN + 1];
|
sl@0
|
332 |
|
sl@0
|
333 |
if( argc!=2 ){
|
sl@0
|
334 |
Tcl_AppendResult(interp,"wrong # args: should be \"", argv[0],
|
sl@0
|
335 |
" FILENAME\"", 0);
|
sl@0
|
336 |
return TCL_ERROR;
|
sl@0
|
337 |
}
|
sl@0
|
338 |
if(GetFullFilePath(fnamebuf, argv[1]) == 0)
|
sl@0
|
339 |
return TCL_ERROR;
|
sl@0
|
340 |
in = fopen(fnamebuf,"rb");
|
sl@0
|
341 |
if( in==0 ){
|
sl@0
|
342 |
Tcl_AppendResult(interp,"unable to open file \"", fnamebuf, "\" for reading", 0);
|
sl@0
|
343 |
return TCL_ERROR;
|
sl@0
|
344 |
}
|
sl@0
|
345 |
MD5Init(&ctx);
|
sl@0
|
346 |
for(;;){
|
sl@0
|
347 |
int n;
|
sl@0
|
348 |
n = fread(zBuf, 1, sizeof(zBuf), in);
|
sl@0
|
349 |
if( n<=0 ) break;
|
sl@0
|
350 |
MD5Update(&ctx, (unsigned char*)zBuf, (unsigned)n);
|
sl@0
|
351 |
}
|
sl@0
|
352 |
fclose(in);
|
sl@0
|
353 |
MD5Final(digest, &ctx);
|
sl@0
|
354 |
DigestToBase16(digest, interp->result);
|
sl@0
|
355 |
return TCL_OK;
|
sl@0
|
356 |
}
|
sl@0
|
357 |
|
sl@0
|
358 |
/*
|
sl@0
|
359 |
** Register the two TCL commands above with the TCL interpreter.
|
sl@0
|
360 |
*/
|
sl@0
|
361 |
int Md5_Init(Tcl_Interp *interp){
|
sl@0
|
362 |
Tcl_CreateCommand(interp, "md5", (Tcl_CmdProc*)md5_cmd, 0, 0);
|
sl@0
|
363 |
Tcl_CreateCommand(interp, "md5file", (Tcl_CmdProc*)md5file_cmd, 0, 0);
|
sl@0
|
364 |
return TCL_OK;
|
sl@0
|
365 |
}
|
sl@0
|
366 |
|
sl@0
|
367 |
/*
|
sl@0
|
368 |
** During testing, the special md5sum() aggregate function is available.
|
sl@0
|
369 |
** inside SQLite. The following routines implement that function.
|
sl@0
|
370 |
*/
|
sl@0
|
371 |
static void md5step(sqlite3_context *context, int argc, sqlite3_value **argv){
|
sl@0
|
372 |
MD5Context *p;
|
sl@0
|
373 |
int i;
|
sl@0
|
374 |
if( argc<1 ) return;
|
sl@0
|
375 |
p = sqlite3_aggregate_context(context, sizeof(*p));
|
sl@0
|
376 |
if( p==0 ) return;
|
sl@0
|
377 |
if( !p->isInit ){
|
sl@0
|
378 |
MD5Init(p);
|
sl@0
|
379 |
}
|
sl@0
|
380 |
for(i=0; i<argc; i++){
|
sl@0
|
381 |
const char *zData = (char*)sqlite3_value_text(argv[i]);
|
sl@0
|
382 |
if( zData ){
|
sl@0
|
383 |
MD5Update(p, (unsigned char*)zData, strlen(zData));
|
sl@0
|
384 |
}
|
sl@0
|
385 |
}
|
sl@0
|
386 |
}
|
sl@0
|
387 |
static void md5finalize(sqlite3_context *context){
|
sl@0
|
388 |
MD5Context *p;
|
sl@0
|
389 |
unsigned char digest[16];
|
sl@0
|
390 |
char zBuf[33];
|
sl@0
|
391 |
p = sqlite3_aggregate_context(context, sizeof(*p));
|
sl@0
|
392 |
MD5Final(digest,p);
|
sl@0
|
393 |
DigestToBase16(digest, zBuf);
|
sl@0
|
394 |
sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
|
sl@0
|
395 |
}
|
sl@0
|
396 |
int Md5_Register(sqlite3 *db){
|
sl@0
|
397 |
int rc = sqlite3_create_function(db, "md5sum", -1, SQLITE_UTF8, 0, 0,
|
sl@0
|
398 |
md5step, md5finalize);
|
sl@0
|
399 |
sqlite3_overload_function(db, "md5sum", -1); /* To exercise this API */
|
sl@0
|
400 |
return rc;
|
sl@0
|
401 |
}
|