os/persistentdata/persistentstorage/sqlite3api/SQLite/pager.c
author sl@SLION-WIN7.fritz.box
Fri, 15 Jun 2012 03:10:57 +0200
changeset 0 bde4ae8d615e
permissions -rw-r--r--
First public contribution.
sl@0
     1
/*
sl@0
     2
** 2001 September 15
sl@0
     3
**
sl@0
     4
** The author disclaims copyright to this source code.  In place of
sl@0
     5
** a legal notice, here is a blessing:
sl@0
     6
**
sl@0
     7
**    May you do good and not evil.
sl@0
     8
**    May you find forgiveness for yourself and forgive others.
sl@0
     9
**    May you share freely, never taking more than you give.
sl@0
    10
**
sl@0
    11
*************************************************************************
sl@0
    12
** This is the implementation of the page cache subsystem or "pager".
sl@0
    13
** 
sl@0
    14
** The pager is used to access a database disk file.  It implements
sl@0
    15
** atomic commit and rollback through the use of a journal file that
sl@0
    16
** is separate from the database file.  The pager also implements file
sl@0
    17
** locking to prevent two processes from writing the same database
sl@0
    18
** file simultaneously, or one process from reading the database while
sl@0
    19
** another is writing.
sl@0
    20
**
sl@0
    21
** @(#) $Id: pager.c,v 1.496 2008/09/29 11:49:48 danielk1977 Exp $
sl@0
    22
*/
sl@0
    23
#ifndef SQLITE_OMIT_DISKIO
sl@0
    24
#include "sqliteInt.h"
sl@0
    25
sl@0
    26
/*
sl@0
    27
** Macros for troubleshooting.  Normally turned off
sl@0
    28
*/
sl@0
    29
#if 0
sl@0
    30
#define sqlite3DebugPrintf printf
sl@0
    31
#define PAGERTRACE1(X)       sqlite3DebugPrintf(X)
sl@0
    32
#define PAGERTRACE2(X,Y)     sqlite3DebugPrintf(X,Y)
sl@0
    33
#define PAGERTRACE3(X,Y,Z)   sqlite3DebugPrintf(X,Y,Z)
sl@0
    34
#define PAGERTRACE4(X,Y,Z,W) sqlite3DebugPrintf(X,Y,Z,W)
sl@0
    35
#define PAGERTRACE5(X,Y,Z,W,V) sqlite3DebugPrintf(X,Y,Z,W,V)
sl@0
    36
#else
sl@0
    37
#define PAGERTRACE1(X)
sl@0
    38
#define PAGERTRACE2(X,Y)
sl@0
    39
#define PAGERTRACE3(X,Y,Z)
sl@0
    40
#define PAGERTRACE4(X,Y,Z,W)
sl@0
    41
#define PAGERTRACE5(X,Y,Z,W,V)
sl@0
    42
#endif
sl@0
    43
sl@0
    44
/*
sl@0
    45
** The following two macros are used within the PAGERTRACEX() macros above
sl@0
    46
** to print out file-descriptors. 
sl@0
    47
**
sl@0
    48
** PAGERID() takes a pointer to a Pager struct as its argument. The
sl@0
    49
** associated file-descriptor is returned. FILEHANDLEID() takes an sqlite3_file
sl@0
    50
** struct as its argument.
sl@0
    51
*/
sl@0
    52
#define PAGERID(p) ((int)(p->fd))
sl@0
    53
#define FILEHANDLEID(fd) ((int)fd)
sl@0
    54
sl@0
    55
/*
sl@0
    56
** The page cache as a whole is always in one of the following
sl@0
    57
** states:
sl@0
    58
**
sl@0
    59
**   PAGER_UNLOCK        The page cache is not currently reading or 
sl@0
    60
**                       writing the database file.  There is no
sl@0
    61
**                       data held in memory.  This is the initial
sl@0
    62
**                       state.
sl@0
    63
**
sl@0
    64
**   PAGER_SHARED        The page cache is reading the database.
sl@0
    65
**                       Writing is not permitted.  There can be
sl@0
    66
**                       multiple readers accessing the same database
sl@0
    67
**                       file at the same time.
sl@0
    68
**
sl@0
    69
**   PAGER_RESERVED      This process has reserved the database for writing
sl@0
    70
**                       but has not yet made any changes.  Only one process
sl@0
    71
**                       at a time can reserve the database.  The original
sl@0
    72
**                       database file has not been modified so other
sl@0
    73
**                       processes may still be reading the on-disk
sl@0
    74
**                       database file.
sl@0
    75
**
sl@0
    76
**   PAGER_EXCLUSIVE     The page cache is writing the database.
sl@0
    77
**                       Access is exclusive.  No other processes or
sl@0
    78
**                       threads can be reading or writing while one
sl@0
    79
**                       process is writing.
sl@0
    80
**
sl@0
    81
**   PAGER_SYNCED        The pager moves to this state from PAGER_EXCLUSIVE
sl@0
    82
**                       after all dirty pages have been written to the
sl@0
    83
**                       database file and the file has been synced to
sl@0
    84
**                       disk. All that remains to do is to remove or
sl@0
    85
**                       truncate the journal file and the transaction 
sl@0
    86
**                       will be committed.
sl@0
    87
**
sl@0
    88
** The page cache comes up in PAGER_UNLOCK.  The first time a
sl@0
    89
** sqlite3PagerGet() occurs, the state transitions to PAGER_SHARED.
sl@0
    90
** After all pages have been released using sqlite_page_unref(),
sl@0
    91
** the state transitions back to PAGER_UNLOCK.  The first time
sl@0
    92
** that sqlite3PagerWrite() is called, the state transitions to
sl@0
    93
** PAGER_RESERVED.  (Note that sqlite3PagerWrite() can only be
sl@0
    94
** called on an outstanding page which means that the pager must
sl@0
    95
** be in PAGER_SHARED before it transitions to PAGER_RESERVED.)
sl@0
    96
** PAGER_RESERVED means that there is an open rollback journal.
sl@0
    97
** The transition to PAGER_EXCLUSIVE occurs before any changes
sl@0
    98
** are made to the database file, though writes to the rollback
sl@0
    99
** journal occurs with just PAGER_RESERVED.  After an sqlite3PagerRollback()
sl@0
   100
** or sqlite3PagerCommitPhaseTwo(), the state can go back to PAGER_SHARED,
sl@0
   101
** or it can stay at PAGER_EXCLUSIVE if we are in exclusive access mode.
sl@0
   102
*/
sl@0
   103
#define PAGER_UNLOCK      0
sl@0
   104
#define PAGER_SHARED      1   /* same as SHARED_LOCK */
sl@0
   105
#define PAGER_RESERVED    2   /* same as RESERVED_LOCK */
sl@0
   106
#define PAGER_EXCLUSIVE   4   /* same as EXCLUSIVE_LOCK */
sl@0
   107
#define PAGER_SYNCED      5
sl@0
   108
sl@0
   109
/*
sl@0
   110
** If the SQLITE_BUSY_RESERVED_LOCK macro is set to true at compile-time,
sl@0
   111
** then failed attempts to get a reserved lock will invoke the busy callback.
sl@0
   112
** This is off by default.  To see why, consider the following scenario:
sl@0
   113
** 
sl@0
   114
** Suppose thread A already has a shared lock and wants a reserved lock.
sl@0
   115
** Thread B already has a reserved lock and wants an exclusive lock.  If
sl@0
   116
** both threads are using their busy callbacks, it might be a long time
sl@0
   117
** be for one of the threads give up and allows the other to proceed.
sl@0
   118
** But if the thread trying to get the reserved lock gives up quickly
sl@0
   119
** (if it never invokes its busy callback) then the contention will be
sl@0
   120
** resolved quickly.
sl@0
   121
*/
sl@0
   122
#ifndef SQLITE_BUSY_RESERVED_LOCK
sl@0
   123
# define SQLITE_BUSY_RESERVED_LOCK 0
sl@0
   124
#endif
sl@0
   125
sl@0
   126
/*
sl@0
   127
** This macro rounds values up so that if the value is an address it
sl@0
   128
** is guaranteed to be an address that is aligned to an 8-byte boundary.
sl@0
   129
*/
sl@0
   130
#define FORCE_ALIGNMENT(X)   (((X)+7)&~7)
sl@0
   131
sl@0
   132
/*
sl@0
   133
** A macro used for invoking the codec if there is one
sl@0
   134
*/
sl@0
   135
#ifdef SQLITE_HAS_CODEC
sl@0
   136
# define CODEC1(P,D,N,X) if( P->xCodec!=0 ){ P->xCodec(P->pCodecArg,D,N,X); }
sl@0
   137
# define CODEC2(P,D,N,X) ((char*)(P->xCodec!=0?P->xCodec(P->pCodecArg,D,N,X):D))
sl@0
   138
#else
sl@0
   139
# define CODEC1(P,D,N,X) /* NO-OP */
sl@0
   140
# define CODEC2(P,D,N,X) ((char*)D)
sl@0
   141
#endif
sl@0
   142
sl@0
   143
/*
sl@0
   144
** A open page cache is an instance of the following structure.
sl@0
   145
**
sl@0
   146
** Pager.errCode may be set to SQLITE_IOERR, SQLITE_CORRUPT, or
sl@0
   147
** or SQLITE_FULL. Once one of the first three errors occurs, it persists
sl@0
   148
** and is returned as the result of every major pager API call.  The
sl@0
   149
** SQLITE_FULL return code is slightly different. It persists only until the
sl@0
   150
** next successful rollback is performed on the pager cache. Also,
sl@0
   151
** SQLITE_FULL does not affect the sqlite3PagerGet() and sqlite3PagerLookup()
sl@0
   152
** APIs, they may still be used successfully.
sl@0
   153
*/
sl@0
   154
struct Pager {
sl@0
   155
  sqlite3_vfs *pVfs;          /* OS functions to use for IO */
sl@0
   156
  u8 journalOpen;             /* True if journal file descriptors is valid */
sl@0
   157
  u8 journalStarted;          /* True if header of journal is synced */
sl@0
   158
  u8 useJournal;              /* Use a rollback journal on this file */
sl@0
   159
  u8 noReadlock;              /* Do not bother to obtain readlocks */
sl@0
   160
  u8 stmtOpen;                /* True if the statement subjournal is open */
sl@0
   161
  u8 stmtInUse;               /* True we are in a statement subtransaction */
sl@0
   162
  u8 stmtAutoopen;            /* Open stmt journal when main journal is opened*/
sl@0
   163
  u8 noSync;                  /* Do not sync the journal if true */
sl@0
   164
  u8 fullSync;                /* Do extra syncs of the journal for robustness */
sl@0
   165
  u8 sync_flags;              /* One of SYNC_NORMAL or SYNC_FULL */
sl@0
   166
  u8 state;                   /* PAGER_UNLOCK, _SHARED, _RESERVED, etc. */
sl@0
   167
  u8 tempFile;                /* zFilename is a temporary file */
sl@0
   168
  u8 readOnly;                /* True for a read-only database */
sl@0
   169
  u8 needSync;                /* True if an fsync() is needed on the journal */
sl@0
   170
  u8 dirtyCache;              /* True if cached pages have changed */
sl@0
   171
  u8 alwaysRollback;          /* Disable DontRollback() for all pages */
sl@0
   172
  u8 memDb;                   /* True to inhibit all file I/O */
sl@0
   173
  u8 setMaster;               /* True if a m-j name has been written to jrnl */
sl@0
   174
  u8 doNotSync;               /* Boolean. While true, do not spill the cache */
sl@0
   175
  u8 exclusiveMode;           /* Boolean. True if locking_mode==EXCLUSIVE */
sl@0
   176
  u8 journalMode;             /* On of the PAGER_JOURNALMODE_* values */
sl@0
   177
  u8 dbModified;              /* True if there are any changes to the Db */
sl@0
   178
  u8 changeCountDone;         /* Set after incrementing the change-counter */
sl@0
   179
  u32 vfsFlags;               /* Flags for sqlite3_vfs.xOpen() */
sl@0
   180
  int errCode;                /* One of several kinds of errors */
sl@0
   181
  int dbSize;                 /* Number of pages in the file */
sl@0
   182
  int origDbSize;             /* dbSize before the current change */
sl@0
   183
  int stmtSize;               /* Size of database (in pages) at stmt_begin() */
sl@0
   184
  int nRec;                   /* Number of pages written to the journal */
sl@0
   185
  u32 cksumInit;              /* Quasi-random value added to every checksum */
sl@0
   186
  int stmtNRec;               /* Number of records in stmt subjournal */
sl@0
   187
  int nExtra;                 /* Add this many bytes to each in-memory page */
sl@0
   188
  int pageSize;               /* Number of bytes in a page */
sl@0
   189
  int nPage;                  /* Total number of in-memory pages */
sl@0
   190
  int mxPage;                 /* Maximum number of pages to hold in cache */
sl@0
   191
  Pgno mxPgno;                /* Maximum allowed size of the database */
sl@0
   192
  Bitvec *pInJournal;         /* One bit for each page in the database file */
sl@0
   193
  Bitvec *pInStmt;            /* One bit for each page in the database */
sl@0
   194
  Bitvec *pAlwaysRollback;    /* One bit for each page marked always-rollback */
sl@0
   195
  char *zFilename;            /* Name of the database file */
sl@0
   196
  char *zJournal;             /* Name of the journal file */
sl@0
   197
  char *zDirectory;           /* Directory hold database and journal files */
sl@0
   198
  sqlite3_file *fd, *jfd;     /* File descriptors for database and journal */
sl@0
   199
  sqlite3_file *stfd;         /* File descriptor for the statement subjournal*/
sl@0
   200
  BusyHandler *pBusyHandler;  /* Pointer to sqlite.busyHandler */
sl@0
   201
  i64 journalOff;             /* Current byte offset in the journal file */
sl@0
   202
  i64 journalHdr;             /* Byte offset to previous journal header */
sl@0
   203
  i64 stmtHdrOff;             /* First journal header written this statement */
sl@0
   204
  i64 stmtCksum;              /* cksumInit when statement was started */
sl@0
   205
  i64 stmtJSize;              /* Size of journal at stmt_begin() */
sl@0
   206
  int sectorSize;             /* Assumed sector size during rollback */
sl@0
   207
#ifdef SQLITE_TEST
sl@0
   208
  int nHit, nMiss;            /* Cache hits and missing */
sl@0
   209
  int nRead, nWrite;          /* Database pages read/written */
sl@0
   210
#endif
sl@0
   211
  void (*xReiniter)(DbPage*); /* Call this routine when reloading pages */
sl@0
   212
#ifdef SQLITE_HAS_CODEC
sl@0
   213
  void *(*xCodec)(void*,void*,Pgno,int); /* Routine for en/decoding data */
sl@0
   214
  void *pCodecArg;            /* First argument to xCodec() */
sl@0
   215
#endif
sl@0
   216
  char *pTmpSpace;            /* Pager.pageSize bytes of space for tmp use */
sl@0
   217
  char dbFileVers[16];        /* Changes whenever database file changes */
sl@0
   218
  i64 journalSizeLimit;       /* Size limit for persistent journal files */
sl@0
   219
  PCache *pPCache;            /* Pointer to page cache object */
sl@0
   220
};
sl@0
   221
sl@0
   222
/*
sl@0
   223
** The following global variables hold counters used for
sl@0
   224
** testing purposes only.  These variables do not exist in
sl@0
   225
** a non-testing build.  These variables are not thread-safe.
sl@0
   226
*/
sl@0
   227
#ifdef SQLITE_TEST
sl@0
   228
int sqlite3_pager_readdb_count = 0;    /* Number of full pages read from DB */
sl@0
   229
int sqlite3_pager_writedb_count = 0;   /* Number of full pages written to DB */
sl@0
   230
int sqlite3_pager_writej_count = 0;    /* Number of pages written to journal */
sl@0
   231
# define PAGER_INCR(v)  v++
sl@0
   232
#else
sl@0
   233
# define PAGER_INCR(v)
sl@0
   234
#endif
sl@0
   235
sl@0
   236
sl@0
   237
sl@0
   238
/*
sl@0
   239
** Journal files begin with the following magic string.  The data
sl@0
   240
** was obtained from /dev/random.  It is used only as a sanity check.
sl@0
   241
**
sl@0
   242
** Since version 2.8.0, the journal format contains additional sanity
sl@0
   243
** checking information.  If the power fails while the journal is begin
sl@0
   244
** written, semi-random garbage data might appear in the journal
sl@0
   245
** file after power is restored.  If an attempt is then made
sl@0
   246
** to roll the journal back, the database could be corrupted.  The additional
sl@0
   247
** sanity checking data is an attempt to discover the garbage in the
sl@0
   248
** journal and ignore it.
sl@0
   249
**
sl@0
   250
** The sanity checking information for the new journal format consists
sl@0
   251
** of a 32-bit checksum on each page of data.  The checksum covers both
sl@0
   252
** the page number and the pPager->pageSize bytes of data for the page.
sl@0
   253
** This cksum is initialized to a 32-bit random value that appears in the
sl@0
   254
** journal file right after the header.  The random initializer is important,
sl@0
   255
** because garbage data that appears at the end of a journal is likely
sl@0
   256
** data that was once in other files that have now been deleted.  If the
sl@0
   257
** garbage data came from an obsolete journal file, the checksums might
sl@0
   258
** be correct.  But by initializing the checksum to random value which
sl@0
   259
** is different for every journal, we minimize that risk.
sl@0
   260
*/
sl@0
   261
static const unsigned char aJournalMagic[] = {
sl@0
   262
  0xd9, 0xd5, 0x05, 0xf9, 0x20, 0xa1, 0x63, 0xd7,
sl@0
   263
};
sl@0
   264
sl@0
   265
/*
sl@0
   266
** The size of the header and of each page in the journal is determined
sl@0
   267
** by the following macros.
sl@0
   268
*/
sl@0
   269
#define JOURNAL_PG_SZ(pPager)  ((pPager->pageSize) + 8)
sl@0
   270
sl@0
   271
/*
sl@0
   272
** The journal header size for this pager. In the future, this could be
sl@0
   273
** set to some value read from the disk controller. The important
sl@0
   274
** characteristic is that it is the same size as a disk sector.
sl@0
   275
*/
sl@0
   276
#define JOURNAL_HDR_SZ(pPager) (pPager->sectorSize)
sl@0
   277
sl@0
   278
/*
sl@0
   279
** The macro MEMDB is true if we are dealing with an in-memory database.
sl@0
   280
** We do this as a macro so that if the SQLITE_OMIT_MEMORYDB macro is set,
sl@0
   281
** the value of MEMDB will be a constant and the compiler will optimize
sl@0
   282
** out code that would never execute.
sl@0
   283
*/
sl@0
   284
#ifdef SQLITE_OMIT_MEMORYDB
sl@0
   285
# define MEMDB 0
sl@0
   286
#else
sl@0
   287
# define MEMDB pPager->memDb
sl@0
   288
#endif
sl@0
   289
sl@0
   290
/*
sl@0
   291
** Page number PAGER_MJ_PGNO is never used in an SQLite database (it is
sl@0
   292
** reserved for working around a windows/posix incompatibility). It is
sl@0
   293
** used in the journal to signify that the remainder of the journal file 
sl@0
   294
** is devoted to storing a master journal name - there are no more pages to
sl@0
   295
** roll back. See comments for function writeMasterJournal() for details.
sl@0
   296
*/
sl@0
   297
/* #define PAGER_MJ_PGNO(x) (PENDING_BYTE/((x)->pageSize)) */
sl@0
   298
#define PAGER_MJ_PGNO(x) ((PENDING_BYTE/((x)->pageSize))+1)
sl@0
   299
sl@0
   300
/*
sl@0
   301
** The maximum legal page number is (2^31 - 1).
sl@0
   302
*/
sl@0
   303
#define PAGER_MAX_PGNO 2147483647
sl@0
   304
sl@0
   305
/*
sl@0
   306
** Return true if page *pPg has already been written to the statement
sl@0
   307
** journal (or statement snapshot has been created, if *pPg is part
sl@0
   308
** of an in-memory database).
sl@0
   309
*/
sl@0
   310
static int pageInStatement(PgHdr *pPg){
sl@0
   311
  Pager *pPager = pPg->pPager;
sl@0
   312
  if( MEMDB ){
sl@0
   313
    return pPg->apSave[1]!=0;
sl@0
   314
  }else{
sl@0
   315
    return sqlite3BitvecTest(pPager->pInStmt, pPg->pgno);
sl@0
   316
  }
sl@0
   317
}
sl@0
   318
sl@0
   319
/*
sl@0
   320
** Read a 32-bit integer from the given file descriptor.  Store the integer
sl@0
   321
** that is read in *pRes.  Return SQLITE_OK if everything worked, or an
sl@0
   322
** error code is something goes wrong.
sl@0
   323
**
sl@0
   324
** All values are stored on disk as big-endian.
sl@0
   325
*/
sl@0
   326
static int read32bits(sqlite3_file *fd, i64 offset, u32 *pRes){
sl@0
   327
  unsigned char ac[4];
sl@0
   328
  int rc = sqlite3OsRead(fd, ac, sizeof(ac), offset);
sl@0
   329
  if( rc==SQLITE_OK ){
sl@0
   330
    *pRes = sqlite3Get4byte(ac);
sl@0
   331
  }
sl@0
   332
  return rc;
sl@0
   333
}
sl@0
   334
sl@0
   335
/*
sl@0
   336
** Write a 32-bit integer into a string buffer in big-endian byte order.
sl@0
   337
*/
sl@0
   338
#define put32bits(A,B)  sqlite3Put4byte((u8*)A,B)
sl@0
   339
sl@0
   340
/*
sl@0
   341
** Write a 32-bit integer into the given file descriptor.  Return SQLITE_OK
sl@0
   342
** on success or an error code is something goes wrong.
sl@0
   343
*/
sl@0
   344
static int write32bits(sqlite3_file *fd, i64 offset, u32 val){
sl@0
   345
  char ac[4];
sl@0
   346
  put32bits(ac, val);
sl@0
   347
  return sqlite3OsWrite(fd, ac, 4, offset);
sl@0
   348
}
sl@0
   349
sl@0
   350
/*
sl@0
   351
** If file pFd is open, call sqlite3OsUnlock() on it.
sl@0
   352
*/
sl@0
   353
static int osUnlock(sqlite3_file *pFd, int eLock){
sl@0
   354
  if( !pFd->pMethods ){
sl@0
   355
    return SQLITE_OK;
sl@0
   356
  }
sl@0
   357
  return sqlite3OsUnlock(pFd, eLock);
sl@0
   358
}
sl@0
   359
sl@0
   360
/*
sl@0
   361
** This function determines whether or not the atomic-write optimization
sl@0
   362
** can be used with this pager. The optimization can be used if:
sl@0
   363
**
sl@0
   364
**  (a) the value returned by OsDeviceCharacteristics() indicates that
sl@0
   365
**      a database page may be written atomically, and
sl@0
   366
**  (b) the value returned by OsSectorSize() is less than or equal
sl@0
   367
**      to the page size.
sl@0
   368
**
sl@0
   369
** If the optimization cannot be used, 0 is returned. If it can be used,
sl@0
   370
** then the value returned is the size of the journal file when it
sl@0
   371
** contains rollback data for exactly one page.
sl@0
   372
*/
sl@0
   373
#ifdef SQLITE_ENABLE_ATOMIC_WRITE
sl@0
   374
static int jrnlBufferSize(Pager *pPager){
sl@0
   375
  int dc;           /* Device characteristics */
sl@0
   376
  int nSector;      /* Sector size */
sl@0
   377
  int szPage;        /* Page size */
sl@0
   378
  sqlite3_file *fd = pPager->fd;
sl@0
   379
sl@0
   380
  if( fd->pMethods ){
sl@0
   381
    dc = sqlite3OsDeviceCharacteristics(fd);
sl@0
   382
    nSector = sqlite3OsSectorSize(fd);
sl@0
   383
    szPage = pPager->pageSize;
sl@0
   384
  }
sl@0
   385
sl@0
   386
  assert(SQLITE_IOCAP_ATOMIC512==(512>>8));
sl@0
   387
  assert(SQLITE_IOCAP_ATOMIC64K==(65536>>8));
sl@0
   388
sl@0
   389
  if( !fd->pMethods || 
sl@0
   390
       (dc & (SQLITE_IOCAP_ATOMIC|(szPage>>8)) && nSector<=szPage) ){
sl@0
   391
    return JOURNAL_HDR_SZ(pPager) + JOURNAL_PG_SZ(pPager);
sl@0
   392
  }
sl@0
   393
  return 0;
sl@0
   394
}
sl@0
   395
#endif
sl@0
   396
sl@0
   397
/*
sl@0
   398
** This function should be called when an error occurs within the pager
sl@0
   399
** code. The first argument is a pointer to the pager structure, the
sl@0
   400
** second the error-code about to be returned by a pager API function. 
sl@0
   401
** The value returned is a copy of the second argument to this function. 
sl@0
   402
**
sl@0
   403
** If the second argument is SQLITE_IOERR, SQLITE_CORRUPT, or SQLITE_FULL
sl@0
   404
** the error becomes persistent. Until the persisten error is cleared,
sl@0
   405
** subsequent API calls on this Pager will immediately return the same 
sl@0
   406
** error code.
sl@0
   407
**
sl@0
   408
** A persistent error indicates that the contents of the pager-cache 
sl@0
   409
** cannot be trusted. This state can be cleared by completely discarding 
sl@0
   410
** the contents of the pager-cache. If a transaction was active when
sl@0
   411
** the persistent error occured, then the rollback journal may need
sl@0
   412
** to be replayed.
sl@0
   413
*/
sl@0
   414
static void pager_unlock(Pager *pPager);
sl@0
   415
static int pager_error(Pager *pPager, int rc){
sl@0
   416
  int rc2 = rc & 0xff;
sl@0
   417
  assert(
sl@0
   418
       pPager->errCode==SQLITE_FULL ||
sl@0
   419
       pPager->errCode==SQLITE_OK ||
sl@0
   420
       (pPager->errCode & 0xff)==SQLITE_IOERR
sl@0
   421
  );
sl@0
   422
  if(
sl@0
   423
    rc2==SQLITE_FULL ||
sl@0
   424
    rc2==SQLITE_IOERR ||
sl@0
   425
    rc2==SQLITE_CORRUPT
sl@0
   426
  ){
sl@0
   427
    pPager->errCode = rc;
sl@0
   428
    if( pPager->state==PAGER_UNLOCK 
sl@0
   429
     && sqlite3PcacheRefCount(pPager->pPCache)==0 
sl@0
   430
    ){
sl@0
   431
      /* If the pager is already unlocked, call pager_unlock() now to
sl@0
   432
      ** clear the error state and ensure that the pager-cache is 
sl@0
   433
      ** completely empty.
sl@0
   434
      */
sl@0
   435
      pager_unlock(pPager);
sl@0
   436
    }
sl@0
   437
  }
sl@0
   438
  return rc;
sl@0
   439
}
sl@0
   440
sl@0
   441
/*
sl@0
   442
** If SQLITE_CHECK_PAGES is defined then we do some sanity checking
sl@0
   443
** on the cache using a hash function.  This is used for testing
sl@0
   444
** and debugging only.
sl@0
   445
*/
sl@0
   446
#ifdef SQLITE_CHECK_PAGES
sl@0
   447
/*
sl@0
   448
** Return a 32-bit hash of the page data for pPage.
sl@0
   449
*/
sl@0
   450
static u32 pager_datahash(int nByte, unsigned char *pData){
sl@0
   451
  u32 hash = 0;
sl@0
   452
  int i;
sl@0
   453
  for(i=0; i<nByte; i++){
sl@0
   454
    hash = (hash*1039) + pData[i];
sl@0
   455
  }
sl@0
   456
  return hash;
sl@0
   457
}
sl@0
   458
static u32 pager_pagehash(PgHdr *pPage){
sl@0
   459
  return pager_datahash(pPage->pPager->pageSize, (unsigned char *)pPage->pData);
sl@0
   460
}
sl@0
   461
static u32 pager_set_pagehash(PgHdr *pPage){
sl@0
   462
  pPage->pageHash = pager_pagehash(pPage);
sl@0
   463
}
sl@0
   464
sl@0
   465
/*
sl@0
   466
** The CHECK_PAGE macro takes a PgHdr* as an argument. If SQLITE_CHECK_PAGES
sl@0
   467
** is defined, and NDEBUG is not defined, an assert() statement checks
sl@0
   468
** that the page is either dirty or still matches the calculated page-hash.
sl@0
   469
*/
sl@0
   470
#define CHECK_PAGE(x) checkPage(x)
sl@0
   471
static void checkPage(PgHdr *pPg){
sl@0
   472
  Pager *pPager = pPg->pPager;
sl@0
   473
  assert( !pPg->pageHash || pPager->errCode || MEMDB 
sl@0
   474
      || (pPg->flags&PGHDR_DIRTY) || pPg->pageHash==pager_pagehash(pPg) );
sl@0
   475
}
sl@0
   476
sl@0
   477
#else
sl@0
   478
#define pager_datahash(X,Y)  0
sl@0
   479
#define pager_pagehash(X)  0
sl@0
   480
#define CHECK_PAGE(x)
sl@0
   481
#endif  /* SQLITE_CHECK_PAGES */
sl@0
   482
sl@0
   483
/*
sl@0
   484
** When this is called the journal file for pager pPager must be open.
sl@0
   485
** The master journal file name is read from the end of the file and 
sl@0
   486
** written into memory supplied by the caller. 
sl@0
   487
**
sl@0
   488
** zMaster must point to a buffer of at least nMaster bytes allocated by
sl@0
   489
** the caller. This should be sqlite3_vfs.mxPathname+1 (to ensure there is
sl@0
   490
** enough space to write the master journal name). If the master journal
sl@0
   491
** name in the journal is longer than nMaster bytes (including a
sl@0
   492
** nul-terminator), then this is handled as if no master journal name
sl@0
   493
** were present in the journal.
sl@0
   494
**
sl@0
   495
** If no master journal file name is present zMaster[0] is set to 0 and
sl@0
   496
** SQLITE_OK returned.
sl@0
   497
*/
sl@0
   498
static int readMasterJournal(sqlite3_file *pJrnl, char *zMaster, int nMaster){
sl@0
   499
  int rc;
sl@0
   500
  u32 len;
sl@0
   501
  i64 szJ;
sl@0
   502
  u32 cksum;
sl@0
   503
  u32 u;                   /* Unsigned loop counter */
sl@0
   504
  unsigned char aMagic[8]; /* A buffer to hold the magic header */
sl@0
   505
sl@0
   506
  zMaster[0] = '\0';
sl@0
   507
sl@0
   508
  rc = sqlite3OsFileSize(pJrnl, &szJ);
sl@0
   509
  if( rc!=SQLITE_OK || szJ<16 ) return rc;
sl@0
   510
sl@0
   511
  rc = read32bits(pJrnl, szJ-16, &len);
sl@0
   512
  if( rc!=SQLITE_OK ) return rc;
sl@0
   513
sl@0
   514
  if( len>=nMaster ){
sl@0
   515
    return SQLITE_OK;
sl@0
   516
  }
sl@0
   517
sl@0
   518
  rc = read32bits(pJrnl, szJ-12, &cksum);
sl@0
   519
  if( rc!=SQLITE_OK ) return rc;
sl@0
   520
sl@0
   521
  rc = sqlite3OsRead(pJrnl, aMagic, 8, szJ-8);
sl@0
   522
  if( rc!=SQLITE_OK || memcmp(aMagic, aJournalMagic, 8) ) return rc;
sl@0
   523
sl@0
   524
  rc = sqlite3OsRead(pJrnl, zMaster, len, szJ-16-len);
sl@0
   525
  if( rc!=SQLITE_OK ){
sl@0
   526
    return rc;
sl@0
   527
  }
sl@0
   528
  zMaster[len] = '\0';
sl@0
   529
sl@0
   530
  /* See if the checksum matches the master journal name */
sl@0
   531
  for(u=0; u<len; u++){
sl@0
   532
    cksum -= zMaster[u];
sl@0
   533
   }
sl@0
   534
  if( cksum ){
sl@0
   535
    /* If the checksum doesn't add up, then one or more of the disk sectors
sl@0
   536
    ** containing the master journal filename is corrupted. This means
sl@0
   537
    ** definitely roll back, so just return SQLITE_OK and report a (nul)
sl@0
   538
    ** master-journal filename.
sl@0
   539
    */
sl@0
   540
    zMaster[0] = '\0';
sl@0
   541
  }
sl@0
   542
   
sl@0
   543
  return SQLITE_OK;
sl@0
   544
}
sl@0
   545
sl@0
   546
/*
sl@0
   547
** Seek the journal file descriptor to the next sector boundary where a
sl@0
   548
** journal header may be read or written. Pager.journalOff is updated with
sl@0
   549
** the new seek offset.
sl@0
   550
**
sl@0
   551
** i.e for a sector size of 512:
sl@0
   552
**
sl@0
   553
** Input Offset              Output Offset
sl@0
   554
** ---------------------------------------
sl@0
   555
** 0                         0
sl@0
   556
** 512                       512
sl@0
   557
** 100                       512
sl@0
   558
** 2000                      2048
sl@0
   559
** 
sl@0
   560
*/
sl@0
   561
static void seekJournalHdr(Pager *pPager){
sl@0
   562
  i64 offset = 0;
sl@0
   563
  i64 c = pPager->journalOff;
sl@0
   564
  if( c ){
sl@0
   565
    offset = ((c-1)/JOURNAL_HDR_SZ(pPager) + 1) * JOURNAL_HDR_SZ(pPager);
sl@0
   566
  }
sl@0
   567
  assert( offset%JOURNAL_HDR_SZ(pPager)==0 );
sl@0
   568
  assert( offset>=c );
sl@0
   569
  assert( (offset-c)<JOURNAL_HDR_SZ(pPager) );
sl@0
   570
  pPager->journalOff = offset;
sl@0
   571
}
sl@0
   572
sl@0
   573
/*
sl@0
   574
** Write zeros over the header of the journal file.  This has the
sl@0
   575
** effect of invalidating the journal file and committing the
sl@0
   576
** transaction.
sl@0
   577
*/
sl@0
   578
static int zeroJournalHdr(Pager *pPager, int doTruncate){
sl@0
   579
  int rc = SQLITE_OK;
sl@0
   580
  static const char zeroHdr[28] = {0};
sl@0
   581
sl@0
   582
  if( pPager->journalOff ){
sl@0
   583
    i64 iLimit = pPager->journalSizeLimit;
sl@0
   584
sl@0
   585
    IOTRACE(("JZEROHDR %p\n", pPager))
sl@0
   586
    if( doTruncate || iLimit==0 ){
sl@0
   587
      rc = sqlite3OsTruncate(pPager->jfd, 0);
sl@0
   588
    }else{
sl@0
   589
      rc = sqlite3OsWrite(pPager->jfd, zeroHdr, sizeof(zeroHdr), 0);
sl@0
   590
    }
sl@0
   591
    if( rc==SQLITE_OK && !pPager->noSync ){
sl@0
   592
      rc = sqlite3OsSync(pPager->jfd, SQLITE_SYNC_DATAONLY|pPager->sync_flags);
sl@0
   593
    }
sl@0
   594
sl@0
   595
    /* At this point the transaction is committed but the write lock 
sl@0
   596
    ** is still held on the file. If there is a size limit configured for 
sl@0
   597
    ** the persistent journal and the journal file currently consumes more
sl@0
   598
    ** space than that limit allows for, truncate it now. There is no need
sl@0
   599
    ** to sync the file following this operation.
sl@0
   600
    */
sl@0
   601
    if( rc==SQLITE_OK && iLimit>0 ){
sl@0
   602
      i64 sz;
sl@0
   603
      rc = sqlite3OsFileSize(pPager->jfd, &sz);
sl@0
   604
      if( rc==SQLITE_OK && sz>iLimit ){
sl@0
   605
        rc = sqlite3OsTruncate(pPager->jfd, iLimit);
sl@0
   606
      }
sl@0
   607
    }
sl@0
   608
  }
sl@0
   609
  return rc;
sl@0
   610
}
sl@0
   611
sl@0
   612
/*
sl@0
   613
** The journal file must be open when this routine is called. A journal
sl@0
   614
** header (JOURNAL_HDR_SZ bytes) is written into the journal file at the
sl@0
   615
** current location.
sl@0
   616
**
sl@0
   617
** The format for the journal header is as follows:
sl@0
   618
** - 8 bytes: Magic identifying journal format.
sl@0
   619
** - 4 bytes: Number of records in journal, or -1 no-sync mode is on.
sl@0
   620
** - 4 bytes: Random number used for page hash.
sl@0
   621
** - 4 bytes: Initial database page count.
sl@0
   622
** - 4 bytes: Sector size used by the process that wrote this journal.
sl@0
   623
** - 4 bytes: Database page size.
sl@0
   624
** 
sl@0
   625
** Followed by (JOURNAL_HDR_SZ - 28) bytes of unused space.
sl@0
   626
*/
sl@0
   627
static int writeJournalHdr(Pager *pPager){
sl@0
   628
  int rc = SQLITE_OK;
sl@0
   629
  char *zHeader = pPager->pTmpSpace;
sl@0
   630
  int nHeader = pPager->pageSize;
sl@0
   631
  int nWrite;
sl@0
   632
sl@0
   633
  if( nHeader>JOURNAL_HDR_SZ(pPager) ){
sl@0
   634
    nHeader = JOURNAL_HDR_SZ(pPager);
sl@0
   635
  }
sl@0
   636
sl@0
   637
  if( pPager->stmtHdrOff==0 ){
sl@0
   638
    pPager->stmtHdrOff = pPager->journalOff;
sl@0
   639
  }
sl@0
   640
sl@0
   641
  seekJournalHdr(pPager);
sl@0
   642
  pPager->journalHdr = pPager->journalOff;
sl@0
   643
sl@0
   644
  memcpy(zHeader, aJournalMagic, sizeof(aJournalMagic));
sl@0
   645
sl@0
   646
  /* 
sl@0
   647
  ** Write the nRec Field - the number of page records that follow this
sl@0
   648
  ** journal header. Normally, zero is written to this value at this time.
sl@0
   649
  ** After the records are added to the journal (and the journal synced, 
sl@0
   650
  ** if in full-sync mode), the zero is overwritten with the true number
sl@0
   651
  ** of records (see syncJournal()).
sl@0
   652
  **
sl@0
   653
  ** A faster alternative is to write 0xFFFFFFFF to the nRec field. When
sl@0
   654
  ** reading the journal this value tells SQLite to assume that the
sl@0
   655
  ** rest of the journal file contains valid page records. This assumption
sl@0
   656
  ** is dangerous, as if a failure occured whilst writing to the journal
sl@0
   657
  ** file it may contain some garbage data. There are two scenarios
sl@0
   658
  ** where this risk can be ignored:
sl@0
   659
  **
sl@0
   660
  **   * When the pager is in no-sync mode. Corruption can follow a
sl@0
   661
  **     power failure in this case anyway.
sl@0
   662
  **
sl@0
   663
  **   * When the SQLITE_IOCAP_SAFE_APPEND flag is set. This guarantees
sl@0
   664
  **     that garbage data is never appended to the journal file.
sl@0
   665
  */
sl@0
   666
  assert(pPager->fd->pMethods||pPager->noSync);
sl@0
   667
  if( (pPager->noSync) 
sl@0
   668
   || (sqlite3OsDeviceCharacteristics(pPager->fd)&SQLITE_IOCAP_SAFE_APPEND) 
sl@0
   669
  ){
sl@0
   670
    put32bits(&zHeader[sizeof(aJournalMagic)], 0xffffffff);
sl@0
   671
  }else{
sl@0
   672
    put32bits(&zHeader[sizeof(aJournalMagic)], 0);
sl@0
   673
  }
sl@0
   674
sl@0
   675
  /* The random check-hash initialiser */ 
sl@0
   676
  sqlite3_randomness(sizeof(pPager->cksumInit), &pPager->cksumInit);
sl@0
   677
  put32bits(&zHeader[sizeof(aJournalMagic)+4], pPager->cksumInit);
sl@0
   678
  /* The initial database size */
sl@0
   679
  put32bits(&zHeader[sizeof(aJournalMagic)+8], pPager->dbSize);
sl@0
   680
  /* The assumed sector size for this process */
sl@0
   681
  put32bits(&zHeader[sizeof(aJournalMagic)+12], pPager->sectorSize);
sl@0
   682
  if( pPager->journalHdr==0 ){
sl@0
   683
    /* The page size */
sl@0
   684
    put32bits(&zHeader[sizeof(aJournalMagic)+16], pPager->pageSize);
sl@0
   685
  }
sl@0
   686
sl@0
   687
  for(nWrite=0; rc==SQLITE_OK&&nWrite<JOURNAL_HDR_SZ(pPager); nWrite+=nHeader){
sl@0
   688
    IOTRACE(("JHDR %p %lld %d\n", pPager, pPager->journalHdr, nHeader))
sl@0
   689
    rc = sqlite3OsWrite(pPager->jfd, zHeader, nHeader, pPager->journalOff);
sl@0
   690
    pPager->journalOff += nHeader;
sl@0
   691
  }
sl@0
   692
sl@0
   693
  return rc;
sl@0
   694
}
sl@0
   695
sl@0
   696
/*
sl@0
   697
** The journal file must be open when this is called. A journal header file
sl@0
   698
** (JOURNAL_HDR_SZ bytes) is read from the current location in the journal
sl@0
   699
** file. See comments above function writeJournalHdr() for a description of
sl@0
   700
** the journal header format.
sl@0
   701
**
sl@0
   702
** If the header is read successfully, *nRec is set to the number of
sl@0
   703
** page records following this header and *dbSize is set to the size of the
sl@0
   704
** database before the transaction began, in pages. Also, pPager->cksumInit
sl@0
   705
** is set to the value read from the journal header. SQLITE_OK is returned
sl@0
   706
** in this case.
sl@0
   707
**
sl@0
   708
** If the journal header file appears to be corrupted, SQLITE_DONE is
sl@0
   709
** returned and *nRec and *dbSize are not set.  If JOURNAL_HDR_SZ bytes
sl@0
   710
** cannot be read from the journal file an error code is returned.
sl@0
   711
*/
sl@0
   712
static int readJournalHdr(
sl@0
   713
  Pager *pPager, 
sl@0
   714
  i64 journalSize,
sl@0
   715
  u32 *pNRec, 
sl@0
   716
  u32 *pDbSize
sl@0
   717
){
sl@0
   718
  int rc;
sl@0
   719
  unsigned char aMagic[8]; /* A buffer to hold the magic header */
sl@0
   720
  i64 jrnlOff;
sl@0
   721
  int iPageSize;
sl@0
   722
sl@0
   723
  seekJournalHdr(pPager);
sl@0
   724
  if( pPager->journalOff+JOURNAL_HDR_SZ(pPager) > journalSize ){
sl@0
   725
    return SQLITE_DONE;
sl@0
   726
  }
sl@0
   727
  jrnlOff = pPager->journalOff;
sl@0
   728
sl@0
   729
  rc = sqlite3OsRead(pPager->jfd, aMagic, sizeof(aMagic), jrnlOff);
sl@0
   730
  if( rc ) return rc;
sl@0
   731
  jrnlOff += sizeof(aMagic);
sl@0
   732
sl@0
   733
  if( memcmp(aMagic, aJournalMagic, sizeof(aMagic))!=0 ){
sl@0
   734
    return SQLITE_DONE;
sl@0
   735
  }
sl@0
   736
sl@0
   737
  rc = read32bits(pPager->jfd, jrnlOff, pNRec);
sl@0
   738
  if( rc ) return rc;
sl@0
   739
sl@0
   740
  rc = read32bits(pPager->jfd, jrnlOff+4, &pPager->cksumInit);
sl@0
   741
  if( rc ) return rc;
sl@0
   742
sl@0
   743
  rc = read32bits(pPager->jfd, jrnlOff+8, pDbSize);
sl@0
   744
  if( rc ) return rc;
sl@0
   745
sl@0
   746
  rc = read32bits(pPager->jfd, jrnlOff+16, (u32 *)&iPageSize);
sl@0
   747
  if( rc==SQLITE_OK 
sl@0
   748
   && iPageSize>=512 
sl@0
   749
   && iPageSize<=SQLITE_MAX_PAGE_SIZE 
sl@0
   750
   && ((iPageSize-1)&iPageSize)==0 
sl@0
   751
  ){
sl@0
   752
    u16 pagesize = iPageSize;
sl@0
   753
    rc = sqlite3PagerSetPagesize(pPager, &pagesize);
sl@0
   754
  }
sl@0
   755
  if( rc ) return rc;
sl@0
   756
sl@0
   757
  /* Update the assumed sector-size to match the value used by 
sl@0
   758
  ** the process that created this journal. If this journal was
sl@0
   759
  ** created by a process other than this one, then this routine
sl@0
   760
  ** is being called from within pager_playback(). The local value
sl@0
   761
  ** of Pager.sectorSize is restored at the end of that routine.
sl@0
   762
  */
sl@0
   763
  rc = read32bits(pPager->jfd, jrnlOff+12, (u32 *)&pPager->sectorSize);
sl@0
   764
  if( rc ) return rc;
sl@0
   765
sl@0
   766
  pPager->journalOff += JOURNAL_HDR_SZ(pPager);
sl@0
   767
  return SQLITE_OK;
sl@0
   768
}
sl@0
   769
sl@0
   770
sl@0
   771
/*
sl@0
   772
** Write the supplied master journal name into the journal file for pager
sl@0
   773
** pPager at the current location. The master journal name must be the last
sl@0
   774
** thing written to a journal file. If the pager is in full-sync mode, the
sl@0
   775
** journal file descriptor is advanced to the next sector boundary before
sl@0
   776
** anything is written. The format is:
sl@0
   777
**
sl@0
   778
** + 4 bytes: PAGER_MJ_PGNO.
sl@0
   779
** + N bytes: length of master journal name.
sl@0
   780
** + 4 bytes: N
sl@0
   781
** + 4 bytes: Master journal name checksum.
sl@0
   782
** + 8 bytes: aJournalMagic[].
sl@0
   783
**
sl@0
   784
** The master journal page checksum is the sum of the bytes in the master
sl@0
   785
** journal name.
sl@0
   786
**
sl@0
   787
** If zMaster is a NULL pointer (occurs for a single database transaction), 
sl@0
   788
** this call is a no-op.
sl@0
   789
*/
sl@0
   790
static int writeMasterJournal(Pager *pPager, const char *zMaster){
sl@0
   791
  int rc;
sl@0
   792
  int len; 
sl@0
   793
  int i; 
sl@0
   794
  i64 jrnlOff;
sl@0
   795
  i64 jrnlSize;
sl@0
   796
  u32 cksum = 0;
sl@0
   797
  char zBuf[sizeof(aJournalMagic)+2*4];
sl@0
   798
sl@0
   799
  if( !zMaster || pPager->setMaster) return SQLITE_OK;
sl@0
   800
  pPager->setMaster = 1;
sl@0
   801
sl@0
   802
  len = strlen(zMaster);
sl@0
   803
  for(i=0; i<len; i++){
sl@0
   804
    cksum += zMaster[i];
sl@0
   805
  }
sl@0
   806
sl@0
   807
  /* If in full-sync mode, advance to the next disk sector before writing
sl@0
   808
  ** the master journal name. This is in case the previous page written to
sl@0
   809
  ** the journal has already been synced.
sl@0
   810
  */
sl@0
   811
  if( pPager->fullSync ){
sl@0
   812
    seekJournalHdr(pPager);
sl@0
   813
  }
sl@0
   814
  jrnlOff = pPager->journalOff;
sl@0
   815
  pPager->journalOff += (len+20);
sl@0
   816
sl@0
   817
  rc = write32bits(pPager->jfd, jrnlOff, PAGER_MJ_PGNO(pPager));
sl@0
   818
  if( rc!=SQLITE_OK ) return rc;
sl@0
   819
  jrnlOff += 4;
sl@0
   820
sl@0
   821
  rc = sqlite3OsWrite(pPager->jfd, zMaster, len, jrnlOff);
sl@0
   822
  if( rc!=SQLITE_OK ) return rc;
sl@0
   823
  jrnlOff += len;
sl@0
   824
sl@0
   825
  put32bits(zBuf, len);
sl@0
   826
  put32bits(&zBuf[4], cksum);
sl@0
   827
  memcpy(&zBuf[8], aJournalMagic, sizeof(aJournalMagic));
sl@0
   828
  rc = sqlite3OsWrite(pPager->jfd, zBuf, 8+sizeof(aJournalMagic), jrnlOff);
sl@0
   829
  jrnlOff += 8+sizeof(aJournalMagic);
sl@0
   830
  pPager->needSync = !pPager->noSync;
sl@0
   831
sl@0
   832
  /* If the pager is in peristent-journal mode, then the physical 
sl@0
   833
  ** journal-file may extend past the end of the master-journal name
sl@0
   834
  ** and 8 bytes of magic data just written to the file. This is 
sl@0
   835
  ** dangerous because the code to rollback a hot-journal file
sl@0
   836
  ** will not be able to find the master-journal name to determine 
sl@0
   837
  ** whether or not the journal is hot. 
sl@0
   838
  **
sl@0
   839
  ** Easiest thing to do in this scenario is to truncate the journal 
sl@0
   840
  ** file to the required size.
sl@0
   841
  */ 
sl@0
   842
  if( (rc==SQLITE_OK)
sl@0
   843
   && (rc = sqlite3OsFileSize(pPager->jfd, &jrnlSize))==SQLITE_OK
sl@0
   844
   && jrnlSize>jrnlOff
sl@0
   845
  ){
sl@0
   846
    rc = sqlite3OsTruncate(pPager->jfd, jrnlOff);
sl@0
   847
  }
sl@0
   848
  return rc;
sl@0
   849
}
sl@0
   850
sl@0
   851
/*
sl@0
   852
** Find a page in the hash table given its page number.  Return
sl@0
   853
** a pointer to the page or NULL if not found.
sl@0
   854
*/
sl@0
   855
static PgHdr *pager_lookup(Pager *pPager, Pgno pgno){
sl@0
   856
  PgHdr *p;
sl@0
   857
  sqlite3PcacheFetch(pPager->pPCache, pgno, 0, &p);
sl@0
   858
  return p;
sl@0
   859
}
sl@0
   860
sl@0
   861
/*
sl@0
   862
** Clear the in-memory cache.  This routine
sl@0
   863
** sets the state of the pager back to what it was when it was first
sl@0
   864
** opened.  Any outstanding pages are invalidated and subsequent attempts
sl@0
   865
** to access those pages will likely result in a coredump.
sl@0
   866
*/
sl@0
   867
static void pager_reset(Pager *pPager){
sl@0
   868
  if( pPager->errCode ) return;
sl@0
   869
  sqlite3PcacheClear(pPager->pPCache);
sl@0
   870
}
sl@0
   871
sl@0
   872
/*
sl@0
   873
** Unlock the database file. 
sl@0
   874
**
sl@0
   875
** If the pager is currently in error state, discard the contents of 
sl@0
   876
** the cache and reset the Pager structure internal state. If there is
sl@0
   877
** an open journal-file, then the next time a shared-lock is obtained
sl@0
   878
** on the pager file (by this or any other process), it will be
sl@0
   879
** treated as a hot-journal and rolled back.
sl@0
   880
*/
sl@0
   881
static void pager_unlock(Pager *pPager){
sl@0
   882
  if( !pPager->exclusiveMode ){
sl@0
   883
    if( !MEMDB ){
sl@0
   884
      int rc = osUnlock(pPager->fd, NO_LOCK);
sl@0
   885
      if( rc ) pPager->errCode = rc;
sl@0
   886
      pPager->dbSize = -1;
sl@0
   887
      IOTRACE(("UNLOCK %p\n", pPager))
sl@0
   888
sl@0
   889
      /* Always close the journal file when dropping the database lock.
sl@0
   890
      ** Otherwise, another connection with journal_mode=delete might
sl@0
   891
      ** delete the file out from under us.
sl@0
   892
      */
sl@0
   893
      if( pPager->journalOpen ){
sl@0
   894
        sqlite3OsClose(pPager->jfd);
sl@0
   895
        pPager->journalOpen = 0;
sl@0
   896
        sqlite3BitvecDestroy(pPager->pInJournal);
sl@0
   897
        pPager->pInJournal = 0;
sl@0
   898
        sqlite3BitvecDestroy(pPager->pAlwaysRollback);
sl@0
   899
        pPager->pAlwaysRollback = 0;
sl@0
   900
      }
sl@0
   901
sl@0
   902
      /* If Pager.errCode is set, the contents of the pager cache cannot be
sl@0
   903
      ** trusted. Now that the pager file is unlocked, the contents of the
sl@0
   904
      ** cache can be discarded and the error code safely cleared.
sl@0
   905
      */
sl@0
   906
      if( pPager->errCode ){
sl@0
   907
        if( rc==SQLITE_OK ) pPager->errCode = SQLITE_OK;
sl@0
   908
        pager_reset(pPager);
sl@0
   909
        if( pPager->stmtOpen ){
sl@0
   910
          sqlite3OsClose(pPager->stfd);
sl@0
   911
          sqlite3BitvecDestroy(pPager->pInStmt);
sl@0
   912
          pPager->pInStmt = 0;
sl@0
   913
        }
sl@0
   914
        pPager->stmtOpen = 0;
sl@0
   915
        pPager->stmtInUse = 0;
sl@0
   916
        pPager->journalOff = 0;
sl@0
   917
        pPager->journalStarted = 0;
sl@0
   918
        pPager->stmtAutoopen = 0;
sl@0
   919
        pPager->origDbSize = 0;
sl@0
   920
      }
sl@0
   921
    }
sl@0
   922
sl@0
   923
    if( !MEMDB || pPager->errCode==SQLITE_OK ){
sl@0
   924
      pPager->state = PAGER_UNLOCK;
sl@0
   925
      pPager->changeCountDone = 0;
sl@0
   926
    }
sl@0
   927
  }
sl@0
   928
}
sl@0
   929
sl@0
   930
/*
sl@0
   931
** Execute a rollback if a transaction is active and unlock the 
sl@0
   932
** database file. If the pager has already entered the error state, 
sl@0
   933
** do not attempt the rollback.
sl@0
   934
*/
sl@0
   935
static void pagerUnlockAndRollback(Pager *p){
sl@0
   936
  if( p->errCode==SQLITE_OK && p->state>=PAGER_RESERVED ){
sl@0
   937
    sqlite3BeginBenignMalloc();
sl@0
   938
    sqlite3PagerRollback(p);
sl@0
   939
    sqlite3EndBenignMalloc();
sl@0
   940
  }
sl@0
   941
  pager_unlock(p);
sl@0
   942
}
sl@0
   943
sl@0
   944
/*
sl@0
   945
** This routine ends a transaction.  A transaction is ended by either
sl@0
   946
** a COMMIT or a ROLLBACK.
sl@0
   947
**
sl@0
   948
** When this routine is called, the pager has the journal file open and
sl@0
   949
** a RESERVED or EXCLUSIVE lock on the database.  This routine will release
sl@0
   950
** the database lock and acquires a SHARED lock in its place if that is
sl@0
   951
** the appropriate thing to do.  Release locks usually is appropriate,
sl@0
   952
** unless we are in exclusive access mode or unless this is a 
sl@0
   953
** COMMIT AND BEGIN or ROLLBACK AND BEGIN operation.
sl@0
   954
**
sl@0
   955
** The journal file is either deleted or truncated.
sl@0
   956
**
sl@0
   957
** TODO: Consider keeping the journal file open for temporary databases.
sl@0
   958
** This might give a performance improvement on windows where opening
sl@0
   959
** a file is an expensive operation.
sl@0
   960
*/
sl@0
   961
static int pager_end_transaction(Pager *pPager, int hasMaster){
sl@0
   962
  int rc = SQLITE_OK;
sl@0
   963
  int rc2 = SQLITE_OK;
sl@0
   964
  assert( !MEMDB );
sl@0
   965
  if( pPager->state<PAGER_RESERVED ){
sl@0
   966
    return SQLITE_OK;
sl@0
   967
  }
sl@0
   968
  sqlite3PagerStmtCommit(pPager);
sl@0
   969
  if( pPager->stmtOpen && !pPager->exclusiveMode ){
sl@0
   970
    sqlite3OsClose(pPager->stfd);
sl@0
   971
    pPager->stmtOpen = 0;
sl@0
   972
  }
sl@0
   973
  if( pPager->journalOpen ){
sl@0
   974
    if( pPager->journalMode==PAGER_JOURNALMODE_TRUNCATE
sl@0
   975
         && (rc = sqlite3OsTruncate(pPager->jfd, 0))==SQLITE_OK ){
sl@0
   976
      pPager->journalOff = 0;
sl@0
   977
      pPager->journalStarted = 0;
sl@0
   978
    }else if( pPager->exclusiveMode 
sl@0
   979
     || pPager->journalMode==PAGER_JOURNALMODE_PERSIST
sl@0
   980
    ){
sl@0
   981
      rc = zeroJournalHdr(pPager, hasMaster);
sl@0
   982
      pager_error(pPager, rc);
sl@0
   983
      pPager->journalOff = 0;
sl@0
   984
      pPager->journalStarted = 0;
sl@0
   985
    }else{
sl@0
   986
      assert( pPager->journalMode==PAGER_JOURNALMODE_DELETE || rc );
sl@0
   987
      sqlite3OsClose(pPager->jfd);
sl@0
   988
      pPager->journalOpen = 0;
sl@0
   989
      if( rc==SQLITE_OK && !pPager->tempFile ){
sl@0
   990
        rc = sqlite3OsDelete(pPager->pVfs, pPager->zJournal, 0);
sl@0
   991
      }
sl@0
   992
    }
sl@0
   993
    sqlite3BitvecDestroy(pPager->pInJournal);
sl@0
   994
    pPager->pInJournal = 0;
sl@0
   995
    sqlite3BitvecDestroy(pPager->pAlwaysRollback);
sl@0
   996
    pPager->pAlwaysRollback = 0;
sl@0
   997
    sqlite3PcacheCleanAll(pPager->pPCache);
sl@0
   998
#ifdef SQLITE_CHECK_PAGES
sl@0
   999
    sqlite3PcacheIterate(pPager->pPCache, pager_set_pagehash);
sl@0
  1000
#endif
sl@0
  1001
    sqlite3PcacheClearFlags(pPager->pPCache,
sl@0
  1002
       PGHDR_IN_JOURNAL | PGHDR_NEED_SYNC
sl@0
  1003
    );
sl@0
  1004
    pPager->dirtyCache = 0;
sl@0
  1005
    pPager->nRec = 0;
sl@0
  1006
  }else{
sl@0
  1007
    assert( pPager->pInJournal==0 );
sl@0
  1008
  }
sl@0
  1009
sl@0
  1010
  if( !pPager->exclusiveMode ){
sl@0
  1011
    rc2 = osUnlock(pPager->fd, SHARED_LOCK);
sl@0
  1012
    pPager->state = PAGER_SHARED;
sl@0
  1013
  }else if( pPager->state==PAGER_SYNCED ){
sl@0
  1014
    pPager->state = PAGER_EXCLUSIVE;
sl@0
  1015
  }
sl@0
  1016
  pPager->origDbSize = 0;
sl@0
  1017
  pPager->setMaster = 0;
sl@0
  1018
  pPager->needSync = 0;
sl@0
  1019
  /* lruListSetFirstSynced(pPager); */
sl@0
  1020
  pPager->dbSize = -1;
sl@0
  1021
  pPager->dbModified = 0;
sl@0
  1022
sl@0
  1023
  return (rc==SQLITE_OK?rc2:rc);
sl@0
  1024
}
sl@0
  1025
sl@0
  1026
/*
sl@0
  1027
** Compute and return a checksum for the page of data.
sl@0
  1028
**
sl@0
  1029
** This is not a real checksum.  It is really just the sum of the 
sl@0
  1030
** random initial value and the page number.  We experimented with
sl@0
  1031
** a checksum of the entire data, but that was found to be too slow.
sl@0
  1032
**
sl@0
  1033
** Note that the page number is stored at the beginning of data and
sl@0
  1034
** the checksum is stored at the end.  This is important.  If journal
sl@0
  1035
** corruption occurs due to a power failure, the most likely scenario
sl@0
  1036
** is that one end or the other of the record will be changed.  It is
sl@0
  1037
** much less likely that the two ends of the journal record will be
sl@0
  1038
** correct and the middle be corrupt.  Thus, this "checksum" scheme,
sl@0
  1039
** though fast and simple, catches the mostly likely kind of corruption.
sl@0
  1040
**
sl@0
  1041
** FIX ME:  Consider adding every 200th (or so) byte of the data to the
sl@0
  1042
** checksum.  That way if a single page spans 3 or more disk sectors and
sl@0
  1043
** only the middle sector is corrupt, we will still have a reasonable
sl@0
  1044
** chance of failing the checksum and thus detecting the problem.
sl@0
  1045
*/
sl@0
  1046
static u32 pager_cksum(Pager *pPager, const u8 *aData){
sl@0
  1047
  u32 cksum = pPager->cksumInit;
sl@0
  1048
  int i = pPager->pageSize-200;
sl@0
  1049
  while( i>0 ){
sl@0
  1050
    cksum += aData[i];
sl@0
  1051
    i -= 200;
sl@0
  1052
  }
sl@0
  1053
  return cksum;
sl@0
  1054
}
sl@0
  1055
sl@0
  1056
/* Forward declaration */
sl@0
  1057
static void makeClean(PgHdr*);
sl@0
  1058
sl@0
  1059
/*
sl@0
  1060
** Read a single page from the journal file opened on file descriptor
sl@0
  1061
** jfd.  Playback this one page.
sl@0
  1062
**
sl@0
  1063
** The isMainJrnl flag is true if this is the main rollback journal and
sl@0
  1064
** false for the statement journal.  The main rollback journal uses
sl@0
  1065
** checksums - the statement journal does not.
sl@0
  1066
*/
sl@0
  1067
static int pager_playback_one_page(
sl@0
  1068
  Pager *pPager,       /* The pager being played back */
sl@0
  1069
  sqlite3_file *jfd,   /* The file that is the journal being rolled back */
sl@0
  1070
  i64 offset,          /* Offset of the page within the journal */
sl@0
  1071
  int isMainJrnl       /* True for main rollback journal. False for Stmt jrnl */
sl@0
  1072
){
sl@0
  1073
  int rc;
sl@0
  1074
  PgHdr *pPg;                   /* An existing page in the cache */
sl@0
  1075
  Pgno pgno;                    /* The page number of a page in journal */
sl@0
  1076
  u32 cksum;                    /* Checksum used for sanity checking */
sl@0
  1077
  u8 *aData = (u8 *)pPager->pTmpSpace;   /* Temp storage for a page */
sl@0
  1078
sl@0
  1079
  /* isMainJrnl should be true for the main journal and false for
sl@0
  1080
  ** statement journals.  Verify that this is always the case
sl@0
  1081
  */
sl@0
  1082
  assert( jfd == (isMainJrnl ? pPager->jfd : pPager->stfd) );
sl@0
  1083
  assert( aData );
sl@0
  1084
sl@0
  1085
  rc = read32bits(jfd, offset, &pgno);
sl@0
  1086
  if( rc!=SQLITE_OK ) return rc;
sl@0
  1087
  rc = sqlite3OsRead(jfd, aData, pPager->pageSize, offset+4);
sl@0
  1088
  if( rc!=SQLITE_OK ) return rc;
sl@0
  1089
  pPager->journalOff += pPager->pageSize + 4;
sl@0
  1090
sl@0
  1091
  /* Sanity checking on the page.  This is more important that I originally
sl@0
  1092
  ** thought.  If a power failure occurs while the journal is being written,
sl@0
  1093
  ** it could cause invalid data to be written into the journal.  We need to
sl@0
  1094
  ** detect this invalid data (with high probability) and ignore it.
sl@0
  1095
  */
sl@0
  1096
  if( pgno==0 || pgno==PAGER_MJ_PGNO(pPager) ){
sl@0
  1097
    return SQLITE_DONE;
sl@0
  1098
  }
sl@0
  1099
  if( pgno>(unsigned)pPager->dbSize ){
sl@0
  1100
    return SQLITE_OK;
sl@0
  1101
  }
sl@0
  1102
  if( isMainJrnl ){
sl@0
  1103
    rc = read32bits(jfd, offset+pPager->pageSize+4, &cksum);
sl@0
  1104
    if( rc ) return rc;
sl@0
  1105
    pPager->journalOff += 4;
sl@0
  1106
    if( pager_cksum(pPager, aData)!=cksum ){
sl@0
  1107
      return SQLITE_DONE;
sl@0
  1108
    }
sl@0
  1109
  }
sl@0
  1110
sl@0
  1111
  assert( pPager->state==PAGER_RESERVED || pPager->state>=PAGER_EXCLUSIVE );
sl@0
  1112
sl@0
  1113
  /* If the pager is in RESERVED state, then there must be a copy of this
sl@0
  1114
  ** page in the pager cache. In this case just update the pager cache,
sl@0
  1115
  ** not the database file. The page is left marked dirty in this case.
sl@0
  1116
  **
sl@0
  1117
  ** An exception to the above rule: If the database is in no-sync mode
sl@0
  1118
  ** and a page is moved during an incremental vacuum then the page may
sl@0
  1119
  ** not be in the pager cache. Later: if a malloc() or IO error occurs
sl@0
  1120
  ** during a Movepage() call, then the page may not be in the cache
sl@0
  1121
  ** either. So the condition described in the above paragraph is not
sl@0
  1122
  ** assert()able.
sl@0
  1123
  **
sl@0
  1124
  ** If in EXCLUSIVE state, then we update the pager cache if it exists
sl@0
  1125
  ** and the main file. The page is then marked not dirty.
sl@0
  1126
  **
sl@0
  1127
  ** Ticket #1171:  The statement journal might contain page content that is
sl@0
  1128
  ** different from the page content at the start of the transaction.
sl@0
  1129
  ** This occurs when a page is changed prior to the start of a statement
sl@0
  1130
  ** then changed again within the statement.  When rolling back such a
sl@0
  1131
  ** statement we must not write to the original database unless we know
sl@0
  1132
  ** for certain that original page contents are synced into the main rollback
sl@0
  1133
  ** journal.  Otherwise, a power loss might leave modified data in the
sl@0
  1134
  ** database file without an entry in the rollback journal that can
sl@0
  1135
  ** restore the database to its original form.  Two conditions must be
sl@0
  1136
  ** met before writing to the database files. (1) the database must be
sl@0
  1137
  ** locked.  (2) we know that the original page content is fully synced
sl@0
  1138
  ** in the main journal either because the page is not in cache or else
sl@0
  1139
  ** the page is marked as needSync==0.
sl@0
  1140
  **
sl@0
  1141
  ** 2008-04-14:  When attempting to vacuum a corrupt database file, it
sl@0
  1142
  ** is possible to fail a statement on a database that does not yet exist.
sl@0
  1143
  ** Do not attempt to write if database file has never been opened.
sl@0
  1144
  */
sl@0
  1145
  pPg = pager_lookup(pPager, pgno);
sl@0
  1146
  PAGERTRACE4("PLAYBACK %d page %d hash(%08x)\n",
sl@0
  1147
               PAGERID(pPager), pgno, pager_datahash(pPager->pageSize, aData));
sl@0
  1148
  if( (pPager->state>=PAGER_EXCLUSIVE)
sl@0
  1149
   && (pPg==0 || 0==(pPg->flags&PGHDR_NEED_SYNC))
sl@0
  1150
   && (pPager->fd->pMethods)
sl@0
  1151
  ){
sl@0
  1152
    i64 ofst = (pgno-1)*(i64)pPager->pageSize;
sl@0
  1153
    rc = sqlite3OsWrite(pPager->fd, aData, pPager->pageSize, ofst);
sl@0
  1154
  }
sl@0
  1155
  if( pPg ){
sl@0
  1156
    /* No page should ever be explicitly rolled back that is in use, except
sl@0
  1157
    ** for page 1 which is held in use in order to keep the lock on the
sl@0
  1158
    ** database active. However such a page may be rolled back as a result
sl@0
  1159
    ** of an internal error resulting in an automatic call to
sl@0
  1160
    ** sqlite3PagerRollback().
sl@0
  1161
    */
sl@0
  1162
    void *pData;
sl@0
  1163
    pData = pPg->pData;
sl@0
  1164
    memcpy(pData, aData, pPager->pageSize);
sl@0
  1165
    if( pPager->xReiniter ){
sl@0
  1166
      pPager->xReiniter(pPg);
sl@0
  1167
    }
sl@0
  1168
    if( isMainJrnl ) makeClean(pPg);
sl@0
  1169
#ifdef SQLITE_CHECK_PAGES
sl@0
  1170
    pPg->pageHash = pager_pagehash(pPg);
sl@0
  1171
#endif
sl@0
  1172
    /* If this was page 1, then restore the value of Pager.dbFileVers.
sl@0
  1173
    ** Do this before any decoding. */
sl@0
  1174
    if( pgno==1 ){
sl@0
  1175
      memcpy(&pPager->dbFileVers, &((u8*)pData)[24],sizeof(pPager->dbFileVers));
sl@0
  1176
    }
sl@0
  1177
sl@0
  1178
    /* Decode the page just read from disk */
sl@0
  1179
    CODEC1(pPager, pData, pPg->pgno, 3);
sl@0
  1180
    sqlite3PcacheRelease(pPg);
sl@0
  1181
  }
sl@0
  1182
  return rc;
sl@0
  1183
}
sl@0
  1184
sl@0
  1185
/*
sl@0
  1186
** Parameter zMaster is the name of a master journal file. A single journal
sl@0
  1187
** file that referred to the master journal file has just been rolled back.
sl@0
  1188
** This routine checks if it is possible to delete the master journal file,
sl@0
  1189
** and does so if it is.
sl@0
  1190
**
sl@0
  1191
** Argument zMaster may point to Pager.pTmpSpace. So that buffer is not 
sl@0
  1192
** available for use within this function.
sl@0
  1193
**
sl@0
  1194
**
sl@0
  1195
** The master journal file contains the names of all child journals.
sl@0
  1196
** To tell if a master journal can be deleted, check to each of the
sl@0
  1197
** children.  If all children are either missing or do not refer to
sl@0
  1198
** a different master journal, then this master journal can be deleted.
sl@0
  1199
*/
sl@0
  1200
static int pager_delmaster(Pager *pPager, const char *zMaster){
sl@0
  1201
  sqlite3_vfs *pVfs = pPager->pVfs;
sl@0
  1202
  int rc;
sl@0
  1203
  int master_open = 0;
sl@0
  1204
  sqlite3_file *pMaster;
sl@0
  1205
  sqlite3_file *pJournal;
sl@0
  1206
  char *zMasterJournal = 0; /* Contents of master journal file */
sl@0
  1207
  i64 nMasterJournal;       /* Size of master journal file */
sl@0
  1208
sl@0
  1209
  /* Open the master journal file exclusively in case some other process
sl@0
  1210
  ** is running this routine also. Not that it makes too much difference.
sl@0
  1211
  */
sl@0
  1212
  pMaster = (sqlite3_file *)sqlite3Malloc(pVfs->szOsFile * 2);
sl@0
  1213
  pJournal = (sqlite3_file *)(((u8 *)pMaster) + pVfs->szOsFile);
sl@0
  1214
  if( !pMaster ){
sl@0
  1215
    rc = SQLITE_NOMEM;
sl@0
  1216
  }else{
sl@0
  1217
    int flags = (SQLITE_OPEN_READONLY|SQLITE_OPEN_MASTER_JOURNAL);
sl@0
  1218
    rc = sqlite3OsOpen(pVfs, zMaster, pMaster, flags, 0);
sl@0
  1219
  }
sl@0
  1220
  if( rc!=SQLITE_OK ) goto delmaster_out;
sl@0
  1221
  master_open = 1;
sl@0
  1222
sl@0
  1223
  rc = sqlite3OsFileSize(pMaster, &nMasterJournal);
sl@0
  1224
  if( rc!=SQLITE_OK ) goto delmaster_out;
sl@0
  1225
sl@0
  1226
  if( nMasterJournal>0 ){
sl@0
  1227
    char *zJournal;
sl@0
  1228
    char *zMasterPtr = 0;
sl@0
  1229
    int nMasterPtr = pPager->pVfs->mxPathname+1;
sl@0
  1230
sl@0
  1231
    /* Load the entire master journal file into space obtained from
sl@0
  1232
    ** sqlite3_malloc() and pointed to by zMasterJournal. 
sl@0
  1233
    */
sl@0
  1234
    zMasterJournal = (char *)sqlite3Malloc(nMasterJournal + nMasterPtr);
sl@0
  1235
    if( !zMasterJournal ){
sl@0
  1236
      rc = SQLITE_NOMEM;
sl@0
  1237
      goto delmaster_out;
sl@0
  1238
    }
sl@0
  1239
    zMasterPtr = &zMasterJournal[nMasterJournal];
sl@0
  1240
    rc = sqlite3OsRead(pMaster, zMasterJournal, nMasterJournal, 0);
sl@0
  1241
    if( rc!=SQLITE_OK ) goto delmaster_out;
sl@0
  1242
sl@0
  1243
    zJournal = zMasterJournal;
sl@0
  1244
    while( (zJournal-zMasterJournal)<nMasterJournal ){
sl@0
  1245
      int exists;
sl@0
  1246
      rc = sqlite3OsAccess(pVfs, zJournal, SQLITE_ACCESS_EXISTS, &exists);
sl@0
  1247
      if( rc!=SQLITE_OK ){
sl@0
  1248
        goto delmaster_out;
sl@0
  1249
      }
sl@0
  1250
      if( exists ){
sl@0
  1251
        /* One of the journals pointed to by the master journal exists.
sl@0
  1252
        ** Open it and check if it points at the master journal. If
sl@0
  1253
        ** so, return without deleting the master journal file.
sl@0
  1254
        */
sl@0
  1255
        int c;
sl@0
  1256
        int flags = (SQLITE_OPEN_READONLY|SQLITE_OPEN_MAIN_JOURNAL);
sl@0
  1257
        rc = sqlite3OsOpen(pVfs, zJournal, pJournal, flags, 0);
sl@0
  1258
        if( rc!=SQLITE_OK ){
sl@0
  1259
          goto delmaster_out;
sl@0
  1260
        }
sl@0
  1261
sl@0
  1262
        rc = readMasterJournal(pJournal, zMasterPtr, nMasterPtr);
sl@0
  1263
        sqlite3OsClose(pJournal);
sl@0
  1264
        if( rc!=SQLITE_OK ){
sl@0
  1265
          goto delmaster_out;
sl@0
  1266
        }
sl@0
  1267
sl@0
  1268
        c = zMasterPtr[0]!=0 && strcmp(zMasterPtr, zMaster)==0;
sl@0
  1269
        if( c ){
sl@0
  1270
          /* We have a match. Do not delete the master journal file. */
sl@0
  1271
          goto delmaster_out;
sl@0
  1272
        }
sl@0
  1273
      }
sl@0
  1274
      zJournal += (strlen(zJournal)+1);
sl@0
  1275
    }
sl@0
  1276
  }
sl@0
  1277
  
sl@0
  1278
  rc = sqlite3OsDelete(pVfs, zMaster, 0);
sl@0
  1279
sl@0
  1280
delmaster_out:
sl@0
  1281
  if( zMasterJournal ){
sl@0
  1282
    sqlite3_free(zMasterJournal);
sl@0
  1283
  }  
sl@0
  1284
  if( master_open ){
sl@0
  1285
    sqlite3OsClose(pMaster);
sl@0
  1286
  }
sl@0
  1287
  sqlite3_free(pMaster);
sl@0
  1288
  return rc;
sl@0
  1289
}
sl@0
  1290
sl@0
  1291
sl@0
  1292
static void pager_truncate_cache(Pager *pPager);
sl@0
  1293
sl@0
  1294
/*
sl@0
  1295
** Truncate the main file of the given pager to the number of pages
sl@0
  1296
** indicated. Also truncate the cached representation of the file.
sl@0
  1297
**
sl@0
  1298
** Might might be the case that the file on disk is smaller than nPage.
sl@0
  1299
** This can happen, for example, if we are in the middle of a transaction
sl@0
  1300
** which has extended the file size and the new pages are still all held
sl@0
  1301
** in cache, then an INSERT or UPDATE does a statement rollback.  Some
sl@0
  1302
** operating system implementations can get confused if you try to
sl@0
  1303
** truncate a file to some size that is larger than it currently is,
sl@0
  1304
** so detect this case and write a single zero byte to the end of the new
sl@0
  1305
** file instead.
sl@0
  1306
*/
sl@0
  1307
static int pager_truncate(Pager *pPager, int nPage){
sl@0
  1308
  int rc = SQLITE_OK;
sl@0
  1309
  if( pPager->state>=PAGER_EXCLUSIVE && pPager->fd->pMethods ){
sl@0
  1310
    i64 currentSize, newSize;
sl@0
  1311
    rc = sqlite3OsFileSize(pPager->fd, &currentSize);
sl@0
  1312
    newSize = pPager->pageSize*(i64)nPage;
sl@0
  1313
    if( rc==SQLITE_OK && currentSize!=newSize ){
sl@0
  1314
      if( currentSize>newSize ){
sl@0
  1315
        rc = sqlite3OsTruncate(pPager->fd, newSize);
sl@0
  1316
      }else{
sl@0
  1317
        rc = sqlite3OsWrite(pPager->fd, "", 1, newSize-1);
sl@0
  1318
      }
sl@0
  1319
    }
sl@0
  1320
  }
sl@0
  1321
  if( rc==SQLITE_OK ){
sl@0
  1322
    pPager->dbSize = nPage;
sl@0
  1323
    pager_truncate_cache(pPager);
sl@0
  1324
  }
sl@0
  1325
  return rc;
sl@0
  1326
}
sl@0
  1327
sl@0
  1328
/*
sl@0
  1329
** Set the sectorSize for the given pager.
sl@0
  1330
**
sl@0
  1331
** The sector size is at least as big as the sector size reported
sl@0
  1332
** by sqlite3OsSectorSize().  The minimum sector size is 512.
sl@0
  1333
*/
sl@0
  1334
static void setSectorSize(Pager *pPager){
sl@0
  1335
  assert(pPager->fd->pMethods||pPager->tempFile);
sl@0
  1336
  if( !pPager->tempFile ){
sl@0
  1337
    /* Sector size doesn't matter for temporary files. Also, the file
sl@0
  1338
    ** may not have been opened yet, in whcih case the OsSectorSize()
sl@0
  1339
    ** call will segfault.
sl@0
  1340
    */
sl@0
  1341
    pPager->sectorSize = sqlite3OsSectorSize(pPager->fd);
sl@0
  1342
  }
sl@0
  1343
  if( pPager->sectorSize<512 ){
sl@0
  1344
    pPager->sectorSize = 512;
sl@0
  1345
  }
sl@0
  1346
}
sl@0
  1347
sl@0
  1348
/*
sl@0
  1349
** Playback the journal and thus restore the database file to
sl@0
  1350
** the state it was in before we started making changes.  
sl@0
  1351
**
sl@0
  1352
** The journal file format is as follows: 
sl@0
  1353
**
sl@0
  1354
**  (1)  8 byte prefix.  A copy of aJournalMagic[].
sl@0
  1355
**  (2)  4 byte big-endian integer which is the number of valid page records
sl@0
  1356
**       in the journal.  If this value is 0xffffffff, then compute the
sl@0
  1357
**       number of page records from the journal size.
sl@0
  1358
**  (3)  4 byte big-endian integer which is the initial value for the 
sl@0
  1359
**       sanity checksum.
sl@0
  1360
**  (4)  4 byte integer which is the number of pages to truncate the
sl@0
  1361
**       database to during a rollback.
sl@0
  1362
**  (5)  4 byte big-endian integer which is the sector size.  The header
sl@0
  1363
**       is this many bytes in size.
sl@0
  1364
**  (6)  4 byte big-endian integer which is the page case.
sl@0
  1365
**  (7)  4 byte integer which is the number of bytes in the master journal
sl@0
  1366
**       name.  The value may be zero (indicate that there is no master
sl@0
  1367
**       journal.)
sl@0
  1368
**  (8)  N bytes of the master journal name.  The name will be nul-terminated
sl@0
  1369
**       and might be shorter than the value read from (5).  If the first byte
sl@0
  1370
**       of the name is \000 then there is no master journal.  The master
sl@0
  1371
**       journal name is stored in UTF-8.
sl@0
  1372
**  (9)  Zero or more pages instances, each as follows:
sl@0
  1373
**        +  4 byte page number.
sl@0
  1374
**        +  pPager->pageSize bytes of data.
sl@0
  1375
**        +  4 byte checksum
sl@0
  1376
**
sl@0
  1377
** When we speak of the journal header, we mean the first 8 items above.
sl@0
  1378
** Each entry in the journal is an instance of the 9th item.
sl@0
  1379
**
sl@0
  1380
** Call the value from the second bullet "nRec".  nRec is the number of
sl@0
  1381
** valid page entries in the journal.  In most cases, you can compute the
sl@0
  1382
** value of nRec from the size of the journal file.  But if a power
sl@0
  1383
** failure occurred while the journal was being written, it could be the
sl@0
  1384
** case that the size of the journal file had already been increased but
sl@0
  1385
** the extra entries had not yet made it safely to disk.  In such a case,
sl@0
  1386
** the value of nRec computed from the file size would be too large.  For
sl@0
  1387
** that reason, we always use the nRec value in the header.
sl@0
  1388
**
sl@0
  1389
** If the nRec value is 0xffffffff it means that nRec should be computed
sl@0
  1390
** from the file size.  This value is used when the user selects the
sl@0
  1391
** no-sync option for the journal.  A power failure could lead to corruption
sl@0
  1392
** in this case.  But for things like temporary table (which will be
sl@0
  1393
** deleted when the power is restored) we don't care.  
sl@0
  1394
**
sl@0
  1395
** If the file opened as the journal file is not a well-formed
sl@0
  1396
** journal file then all pages up to the first corrupted page are rolled
sl@0
  1397
** back (or no pages if the journal header is corrupted). The journal file
sl@0
  1398
** is then deleted and SQLITE_OK returned, just as if no corruption had
sl@0
  1399
** been encountered.
sl@0
  1400
**
sl@0
  1401
** If an I/O or malloc() error occurs, the journal-file is not deleted
sl@0
  1402
** and an error code is returned.
sl@0
  1403
*/
sl@0
  1404
static int pager_playback(Pager *pPager, int isHot){
sl@0
  1405
  sqlite3_vfs *pVfs = pPager->pVfs;
sl@0
  1406
  i64 szJ;                 /* Size of the journal file in bytes */
sl@0
  1407
  u32 nRec;                /* Number of Records in the journal */
sl@0
  1408
  u32 u;                   /* Unsigned loop counter */
sl@0
  1409
  Pgno mxPg = 0;           /* Size of the original file in pages */
sl@0
  1410
  int rc;                  /* Result code of a subroutine */
sl@0
  1411
  int res = 1;             /* Value returned by sqlite3OsAccess() */
sl@0
  1412
  char *zMaster = 0;       /* Name of master journal file if any */
sl@0
  1413
sl@0
  1414
  /* Figure out how many records are in the journal.  Abort early if
sl@0
  1415
  ** the journal is empty.
sl@0
  1416
  */
sl@0
  1417
  assert( pPager->journalOpen );
sl@0
  1418
  rc = sqlite3OsFileSize(pPager->jfd, &szJ);
sl@0
  1419
  if( rc!=SQLITE_OK || szJ==0 ){
sl@0
  1420
    goto end_playback;
sl@0
  1421
  }
sl@0
  1422
sl@0
  1423
  /* Read the master journal name from the journal, if it is present.
sl@0
  1424
  ** If a master journal file name is specified, but the file is not
sl@0
  1425
  ** present on disk, then the journal is not hot and does not need to be
sl@0
  1426
  ** played back.
sl@0
  1427
  */
sl@0
  1428
  zMaster = pPager->pTmpSpace;
sl@0
  1429
  rc = readMasterJournal(pPager->jfd, zMaster, pPager->pVfs->mxPathname+1);
sl@0
  1430
  if( rc==SQLITE_OK && zMaster[0] ){
sl@0
  1431
    rc = sqlite3OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS, &res);
sl@0
  1432
  }
sl@0
  1433
  zMaster = 0;
sl@0
  1434
  if( rc!=SQLITE_OK || !res ){
sl@0
  1435
    goto end_playback;
sl@0
  1436
  }
sl@0
  1437
  pPager->journalOff = 0;
sl@0
  1438
sl@0
  1439
  /* This loop terminates either when the readJournalHdr() call returns
sl@0
  1440
  ** SQLITE_DONE or an IO error occurs. */
sl@0
  1441
  while( 1 ){
sl@0
  1442
sl@0
  1443
    /* Read the next journal header from the journal file.  If there are
sl@0
  1444
    ** not enough bytes left in the journal file for a complete header, or
sl@0
  1445
    ** it is corrupted, then a process must of failed while writing it.
sl@0
  1446
    ** This indicates nothing more needs to be rolled back.
sl@0
  1447
    */
sl@0
  1448
    rc = readJournalHdr(pPager, szJ, &nRec, &mxPg);
sl@0
  1449
    if( rc!=SQLITE_OK ){ 
sl@0
  1450
      if( rc==SQLITE_DONE ){
sl@0
  1451
        rc = SQLITE_OK;
sl@0
  1452
      }
sl@0
  1453
      goto end_playback;
sl@0
  1454
    }
sl@0
  1455
sl@0
  1456
    /* If nRec is 0xffffffff, then this journal was created by a process
sl@0
  1457
    ** working in no-sync mode. This means that the rest of the journal
sl@0
  1458
    ** file consists of pages, there are no more journal headers. Compute
sl@0
  1459
    ** the value of nRec based on this assumption.
sl@0
  1460
    */
sl@0
  1461
    if( nRec==0xffffffff ){
sl@0
  1462
      assert( pPager->journalOff==JOURNAL_HDR_SZ(pPager) );
sl@0
  1463
      nRec = (szJ - JOURNAL_HDR_SZ(pPager))/JOURNAL_PG_SZ(pPager);
sl@0
  1464
    }
sl@0
  1465
sl@0
  1466
    /* If nRec is 0 and this rollback is of a transaction created by this
sl@0
  1467
    ** process and if this is the final header in the journal, then it means
sl@0
  1468
    ** that this part of the journal was being filled but has not yet been
sl@0
  1469
    ** synced to disk.  Compute the number of pages based on the remaining
sl@0
  1470
    ** size of the file.
sl@0
  1471
    **
sl@0
  1472
    ** The third term of the test was added to fix ticket #2565.
sl@0
  1473
    */
sl@0
  1474
    if( nRec==0 && !isHot &&
sl@0
  1475
        pPager->journalHdr+JOURNAL_HDR_SZ(pPager)==pPager->journalOff ){
sl@0
  1476
      nRec = (szJ - pPager->journalOff) / JOURNAL_PG_SZ(pPager);
sl@0
  1477
    }
sl@0
  1478
sl@0
  1479
    /* If this is the first header read from the journal, truncate the
sl@0
  1480
    ** database file back to its original size.
sl@0
  1481
    */
sl@0
  1482
    if( pPager->journalOff==JOURNAL_HDR_SZ(pPager) ){
sl@0
  1483
      rc = pager_truncate(pPager, mxPg);
sl@0
  1484
      if( rc!=SQLITE_OK ){
sl@0
  1485
        goto end_playback;
sl@0
  1486
      }
sl@0
  1487
    }
sl@0
  1488
sl@0
  1489
    /* Copy original pages out of the journal and back into the database file.
sl@0
  1490
    */
sl@0
  1491
    for(u=0; u<nRec; u++){
sl@0
  1492
      rc = pager_playback_one_page(pPager, pPager->jfd, pPager->journalOff, 1);
sl@0
  1493
      if( rc!=SQLITE_OK ){
sl@0
  1494
        if( rc==SQLITE_DONE ){
sl@0
  1495
          rc = SQLITE_OK;
sl@0
  1496
          pPager->journalOff = szJ;
sl@0
  1497
          break;
sl@0
  1498
        }else{
sl@0
  1499
          /* If we are unable to rollback, then the database is probably
sl@0
  1500
          ** going to end up being corrupt.  It is corrupt to us, anyhow.
sl@0
  1501
          ** Perhaps the next process to come along can fix it....
sl@0
  1502
          */
sl@0
  1503
          rc = SQLITE_CORRUPT_BKPT;
sl@0
  1504
          goto end_playback;
sl@0
  1505
        }
sl@0
  1506
      }
sl@0
  1507
    }
sl@0
  1508
  }
sl@0
  1509
  /*NOTREACHED*/
sl@0
  1510
  assert( 0 );
sl@0
  1511
sl@0
  1512
end_playback:
sl@0
  1513
  if( rc==SQLITE_OK ){
sl@0
  1514
    zMaster = pPager->pTmpSpace;
sl@0
  1515
    rc = readMasterJournal(pPager->jfd, zMaster, pPager->pVfs->mxPathname+1);
sl@0
  1516
  }
sl@0
  1517
  if( rc==SQLITE_OK ){
sl@0
  1518
    rc = pager_end_transaction(pPager, zMaster[0]!='\0');
sl@0
  1519
  }
sl@0
  1520
  if( rc==SQLITE_OK && zMaster[0] ){
sl@0
  1521
    /* If there was a master journal and this routine will return success,
sl@0
  1522
    ** see if it is possible to delete the master journal.
sl@0
  1523
    */
sl@0
  1524
    rc = pager_delmaster(pPager, zMaster);
sl@0
  1525
  }
sl@0
  1526
sl@0
  1527
  /* The Pager.sectorSize variable may have been updated while rolling
sl@0
  1528
  ** back a journal created by a process with a different sector size
sl@0
  1529
  ** value. Reset it to the correct value for this process.
sl@0
  1530
  */
sl@0
  1531
  setSectorSize(pPager);
sl@0
  1532
  return rc;
sl@0
  1533
}
sl@0
  1534
sl@0
  1535
/*
sl@0
  1536
** Playback the statement journal.
sl@0
  1537
**
sl@0
  1538
** This is similar to playing back the transaction journal but with
sl@0
  1539
** a few extra twists.
sl@0
  1540
**
sl@0
  1541
**    (1)  The number of pages in the database file at the start of
sl@0
  1542
**         the statement is stored in pPager->stmtSize, not in the
sl@0
  1543
**         journal file itself.
sl@0
  1544
**
sl@0
  1545
**    (2)  In addition to playing back the statement journal, also
sl@0
  1546
**         playback all pages of the transaction journal beginning
sl@0
  1547
**         at offset pPager->stmtJSize.
sl@0
  1548
*/
sl@0
  1549
static int pager_stmt_playback(Pager *pPager){
sl@0
  1550
  i64 szJ;                 /* Size of the full journal */
sl@0
  1551
  i64 hdrOff;
sl@0
  1552
  int nRec;                /* Number of Records */
sl@0
  1553
  int i;                   /* Loop counter */
sl@0
  1554
  int rc;
sl@0
  1555
sl@0
  1556
  szJ = pPager->journalOff;
sl@0
  1557
sl@0
  1558
  /* Set hdrOff to be the offset just after the end of the last journal
sl@0
  1559
  ** page written before the first journal-header for this statement
sl@0
  1560
  ** transaction was written, or the end of the file if no journal
sl@0
  1561
  ** header was written.
sl@0
  1562
  */
sl@0
  1563
  hdrOff = pPager->stmtHdrOff;
sl@0
  1564
  assert( pPager->fullSync || !hdrOff );
sl@0
  1565
  if( !hdrOff ){
sl@0
  1566
    hdrOff = szJ;
sl@0
  1567
  }
sl@0
  1568
  
sl@0
  1569
  /* Truncate the database back to its original size.
sl@0
  1570
  */
sl@0
  1571
  rc = pager_truncate(pPager, pPager->stmtSize);
sl@0
  1572
  assert( pPager->state>=PAGER_SHARED );
sl@0
  1573
sl@0
  1574
  /* Figure out how many records are in the statement journal.
sl@0
  1575
  */
sl@0
  1576
  assert( pPager->stmtInUse && pPager->journalOpen );
sl@0
  1577
  nRec = pPager->stmtNRec;
sl@0
  1578
  
sl@0
  1579
  /* Copy original pages out of the statement journal and back into the
sl@0
  1580
  ** database file.  Note that the statement journal omits checksums from
sl@0
  1581
  ** each record since power-failure recovery is not important to statement
sl@0
  1582
  ** journals.
sl@0
  1583
  */
sl@0
  1584
  for(i=0; i<nRec; i++){
sl@0
  1585
    i64 offset = i*(4+pPager->pageSize);
sl@0
  1586
    rc = pager_playback_one_page(pPager, pPager->stfd, offset, 0);
sl@0
  1587
    assert( rc!=SQLITE_DONE );
sl@0
  1588
    if( rc!=SQLITE_OK ) goto end_stmt_playback;
sl@0
  1589
  }
sl@0
  1590
sl@0
  1591
  /* Now roll some pages back from the transaction journal. Pager.stmtJSize
sl@0
  1592
  ** was the size of the journal file when this statement was started, so
sl@0
  1593
  ** everything after that needs to be rolled back, either into the
sl@0
  1594
  ** database, the memory cache, or both.
sl@0
  1595
  **
sl@0
  1596
  ** If it is not zero, then Pager.stmtHdrOff is the offset to the start
sl@0
  1597
  ** of the first journal header written during this statement transaction.
sl@0
  1598
  */
sl@0
  1599
  pPager->journalOff = pPager->stmtJSize;
sl@0
  1600
  pPager->cksumInit = pPager->stmtCksum;
sl@0
  1601
  while( pPager->journalOff < hdrOff ){
sl@0
  1602
    rc = pager_playback_one_page(pPager, pPager->jfd, pPager->journalOff, 1);
sl@0
  1603
    assert( rc!=SQLITE_DONE );
sl@0
  1604
    if( rc!=SQLITE_OK ) goto end_stmt_playback;
sl@0
  1605
  }
sl@0
  1606
sl@0
  1607
  while( pPager->journalOff < szJ ){
sl@0
  1608
    u32 nJRec;         /* Number of Journal Records */
sl@0
  1609
    u32 dummy;
sl@0
  1610
    rc = readJournalHdr(pPager, szJ, &nJRec, &dummy);
sl@0
  1611
    if( rc!=SQLITE_OK ){
sl@0
  1612
      assert( rc!=SQLITE_DONE );
sl@0
  1613
      goto end_stmt_playback;
sl@0
  1614
    }
sl@0
  1615
    if( nJRec==0 ){
sl@0
  1616
      nJRec = (szJ - pPager->journalOff) / (pPager->pageSize+8);
sl@0
  1617
    }
sl@0
  1618
    for(i=nJRec-1; i>=0 && pPager->journalOff < szJ; i--){
sl@0
  1619
      rc = pager_playback_one_page(pPager, pPager->jfd, pPager->journalOff, 1);
sl@0
  1620
      assert( rc!=SQLITE_DONE );
sl@0
  1621
      if( rc!=SQLITE_OK ) goto end_stmt_playback;
sl@0
  1622
    }
sl@0
  1623
  }
sl@0
  1624
sl@0
  1625
  pPager->journalOff = szJ;
sl@0
  1626
  
sl@0
  1627
end_stmt_playback:
sl@0
  1628
  if( rc==SQLITE_OK) {
sl@0
  1629
    pPager->journalOff = szJ;
sl@0
  1630
    /* pager_reload_cache(pPager); */
sl@0
  1631
  }
sl@0
  1632
  return rc;
sl@0
  1633
}
sl@0
  1634
sl@0
  1635
/*
sl@0
  1636
** Change the maximum number of in-memory pages that are allowed.
sl@0
  1637
*/
sl@0
  1638
void sqlite3PagerSetCachesize(Pager *pPager, int mxPage){
sl@0
  1639
  sqlite3PcacheSetCachesize(pPager->pPCache, mxPage);
sl@0
  1640
}
sl@0
  1641
sl@0
  1642
/*
sl@0
  1643
** Adjust the robustness of the database to damage due to OS crashes
sl@0
  1644
** or power failures by changing the number of syncs()s when writing
sl@0
  1645
** the rollback journal.  There are three levels:
sl@0
  1646
**
sl@0
  1647
**    OFF       sqlite3OsSync() is never called.  This is the default
sl@0
  1648
**              for temporary and transient files.
sl@0
  1649
**
sl@0
  1650
**    NORMAL    The journal is synced once before writes begin on the
sl@0
  1651
**              database.  This is normally adequate protection, but
sl@0
  1652
**              it is theoretically possible, though very unlikely,
sl@0
  1653
**              that an inopertune power failure could leave the journal
sl@0
  1654
**              in a state which would cause damage to the database
sl@0
  1655
**              when it is rolled back.
sl@0
  1656
**
sl@0
  1657
**    FULL      The journal is synced twice before writes begin on the
sl@0
  1658
**              database (with some additional information - the nRec field
sl@0
  1659
**              of the journal header - being written in between the two
sl@0
  1660
**              syncs).  If we assume that writing a
sl@0
  1661
**              single disk sector is atomic, then this mode provides
sl@0
  1662
**              assurance that the journal will not be corrupted to the
sl@0
  1663
**              point of causing damage to the database during rollback.
sl@0
  1664
**
sl@0
  1665
** Numeric values associated with these states are OFF==1, NORMAL=2,
sl@0
  1666
** and FULL=3.
sl@0
  1667
*/
sl@0
  1668
#ifndef SQLITE_OMIT_PAGER_PRAGMAS
sl@0
  1669
void sqlite3PagerSetSafetyLevel(Pager *pPager, int level, int bFullFsync){
sl@0
  1670
  pPager->noSync =  level==1 || pPager->tempFile || MEMDB;
sl@0
  1671
  pPager->fullSync = level==3 && !pPager->tempFile;
sl@0
  1672
  pPager->sync_flags = (bFullFsync?SQLITE_SYNC_FULL:SQLITE_SYNC_NORMAL);
sl@0
  1673
  if( pPager->noSync ) pPager->needSync = 0;
sl@0
  1674
}
sl@0
  1675
#endif
sl@0
  1676
sl@0
  1677
/*
sl@0
  1678
** The following global variable is incremented whenever the library
sl@0
  1679
** attempts to open a temporary file.  This information is used for
sl@0
  1680
** testing and analysis only.  
sl@0
  1681
*/
sl@0
  1682
#ifdef SQLITE_TEST
sl@0
  1683
int sqlite3_opentemp_count = 0;
sl@0
  1684
#endif
sl@0
  1685
sl@0
  1686
/*
sl@0
  1687
** Open a temporary file. 
sl@0
  1688
**
sl@0
  1689
** Write the file descriptor into *fd.  Return SQLITE_OK on success or some
sl@0
  1690
** other error code if we fail. The OS will automatically delete the temporary
sl@0
  1691
** file when it is closed.
sl@0
  1692
*/
sl@0
  1693
static int sqlite3PagerOpentemp(
sl@0
  1694
  Pager *pPager,        /* The pager object */
sl@0
  1695
  sqlite3_file *pFile,  /* Write the file descriptor here */
sl@0
  1696
  int vfsFlags          /* Flags passed through to the VFS */
sl@0
  1697
){
sl@0
  1698
  int rc;
sl@0
  1699
sl@0
  1700
#ifdef SQLITE_TEST
sl@0
  1701
  sqlite3_opentemp_count++;  /* Used for testing and analysis only */
sl@0
  1702
#endif
sl@0
  1703
sl@0
  1704
  vfsFlags |=  SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE |
sl@0
  1705
            SQLITE_OPEN_EXCLUSIVE | SQLITE_OPEN_DELETEONCLOSE;
sl@0
  1706
  rc = sqlite3OsOpen(pPager->pVfs, 0, pFile, vfsFlags, 0);
sl@0
  1707
  assert( rc!=SQLITE_OK || pFile->pMethods );
sl@0
  1708
  return rc;
sl@0
  1709
}
sl@0
  1710
sl@0
  1711
static int pagerStress(void *,PgHdr *);
sl@0
  1712
sl@0
  1713
/*
sl@0
  1714
** Create a new page cache and put a pointer to the page cache in *ppPager.
sl@0
  1715
** The file to be cached need not exist.  The file is not locked until
sl@0
  1716
** the first call to sqlite3PagerGet() and is only held open until the
sl@0
  1717
** last page is released using sqlite3PagerUnref().
sl@0
  1718
**
sl@0
  1719
** If zFilename is NULL then a randomly-named temporary file is created
sl@0
  1720
** and used as the file to be cached.  The file will be deleted
sl@0
  1721
** automatically when it is closed.
sl@0
  1722
**
sl@0
  1723
** If zFilename is ":memory:" then all information is held in cache.
sl@0
  1724
** It is never written to disk.  This can be used to implement an
sl@0
  1725
** in-memory database.
sl@0
  1726
*/
sl@0
  1727
int sqlite3PagerOpen(
sl@0
  1728
  sqlite3_vfs *pVfs,       /* The virtual file system to use */
sl@0
  1729
  Pager **ppPager,         /* Return the Pager structure here */
sl@0
  1730
  const char *zFilename,   /* Name of the database file to open */
sl@0
  1731
  int nExtra,              /* Extra bytes append to each in-memory page */
sl@0
  1732
  int flags,               /* flags controlling this file */
sl@0
  1733
  int vfsFlags             /* flags passed through to sqlite3_vfs.xOpen() */
sl@0
  1734
){
sl@0
  1735
  u8 *pPtr;
sl@0
  1736
  Pager *pPager = 0;
sl@0
  1737
  int rc = SQLITE_OK;
sl@0
  1738
  int i;
sl@0
  1739
  int tempFile = 0;
sl@0
  1740
  int memDb = 0;
sl@0
  1741
  int readOnly = 0;
sl@0
  1742
  int useJournal = (flags & PAGER_OMIT_JOURNAL)==0;
sl@0
  1743
  int noReadlock = (flags & PAGER_NO_READLOCK)!=0;
sl@0
  1744
  int journalFileSize = sqlite3JournalSize(pVfs);
sl@0
  1745
  int pcacheSize = sqlite3PcacheSize();
sl@0
  1746
  int szPageDflt = SQLITE_DEFAULT_PAGE_SIZE;
sl@0
  1747
  char *zPathname = 0;
sl@0
  1748
  int nPathname = 0;
sl@0
  1749
sl@0
  1750
  /* The default return is a NULL pointer */
sl@0
  1751
  *ppPager = 0;
sl@0
  1752
sl@0
  1753
  /* Compute and store the full pathname in an allocated buffer pointed
sl@0
  1754
  ** to by zPathname, length nPathname. Or, if this is a temporary file,
sl@0
  1755
  ** leave both nPathname and zPathname set to 0.
sl@0
  1756
  */
sl@0
  1757
  if( zFilename && zFilename[0] ){
sl@0
  1758
    nPathname = pVfs->mxPathname+1;
sl@0
  1759
    zPathname = sqlite3Malloc(nPathname*2);
sl@0
  1760
    if( zPathname==0 ){
sl@0
  1761
      return SQLITE_NOMEM;
sl@0
  1762
    }
sl@0
  1763
#ifndef SQLITE_OMIT_MEMORYDB
sl@0
  1764
    if( strcmp(zFilename,":memory:")==0 ){
sl@0
  1765
      memDb = 1;
sl@0
  1766
      zPathname[0] = 0;
sl@0
  1767
      useJournal = 0;
sl@0
  1768
    }else
sl@0
  1769
#endif
sl@0
  1770
    {
sl@0
  1771
      rc = sqlite3OsFullPathname(pVfs, zFilename, nPathname, zPathname);
sl@0
  1772
    }
sl@0
  1773
    if( rc!=SQLITE_OK ){
sl@0
  1774
      sqlite3_free(zPathname);
sl@0
  1775
      return rc;
sl@0
  1776
    }
sl@0
  1777
    nPathname = strlen(zPathname);
sl@0
  1778
  }
sl@0
  1779
sl@0
  1780
  /* Allocate memory for the pager structure */
sl@0
  1781
  pPager = sqlite3MallocZero(
sl@0
  1782
    sizeof(*pPager) +           /* Pager structure */
sl@0
  1783
    pcacheSize      +           /* PCache object */
sl@0
  1784
    journalFileSize +           /* The journal file structure */ 
sl@0
  1785
    pVfs->szOsFile * 3 +        /* The main db and two journal files */ 
sl@0
  1786
    3*nPathname + 40            /* zFilename, zDirectory, zJournal */
sl@0
  1787
  );
sl@0
  1788
  if( !pPager ){
sl@0
  1789
    sqlite3_free(zPathname);
sl@0
  1790
    return SQLITE_NOMEM;
sl@0
  1791
  }
sl@0
  1792
  pPager->pPCache = (PCache *)&pPager[1];
sl@0
  1793
  pPtr = ((u8 *)&pPager[1]) + pcacheSize;
sl@0
  1794
  pPager->vfsFlags = vfsFlags;
sl@0
  1795
  pPager->fd = (sqlite3_file*)&pPtr[pVfs->szOsFile*0];
sl@0
  1796
  pPager->stfd = (sqlite3_file*)&pPtr[pVfs->szOsFile*1];
sl@0
  1797
  pPager->jfd = (sqlite3_file*)&pPtr[pVfs->szOsFile*2];
sl@0
  1798
  pPager->zFilename = (char*)&pPtr[pVfs->szOsFile*2+journalFileSize];
sl@0
  1799
  pPager->zDirectory = &pPager->zFilename[nPathname+1];
sl@0
  1800
  pPager->zJournal = &pPager->zDirectory[nPathname+1];
sl@0
  1801
  pPager->pVfs = pVfs;
sl@0
  1802
  if( zPathname ){
sl@0
  1803
    memcpy(pPager->zFilename, zPathname, nPathname+1);
sl@0
  1804
    sqlite3_free(zPathname);
sl@0
  1805
  }
sl@0
  1806
sl@0
  1807
  /* Open the pager file.
sl@0
  1808
  */
sl@0
  1809
  if( zFilename && zFilename[0] && !memDb ){
sl@0
  1810
    if( nPathname>(pVfs->mxPathname - sizeof("-journal")) ){
sl@0
  1811
      rc = SQLITE_CANTOPEN;
sl@0
  1812
    }else{
sl@0
  1813
      int fout = 0;
sl@0
  1814
      rc = sqlite3OsOpen(pVfs, pPager->zFilename, pPager->fd,
sl@0
  1815
                         pPager->vfsFlags, &fout);
sl@0
  1816
      readOnly = (fout&SQLITE_OPEN_READONLY);
sl@0
  1817
sl@0
  1818
      /* If the file was successfully opened for read/write access,
sl@0
  1819
      ** choose a default page size in case we have to create the
sl@0
  1820
      ** database file. The default page size is the maximum of:
sl@0
  1821
      **
sl@0
  1822
      **    + SQLITE_DEFAULT_PAGE_SIZE,
sl@0
  1823
      **    + The value returned by sqlite3OsSectorSize()
sl@0
  1824
      **    + The largest page size that can be written atomically.
sl@0
  1825
      */
sl@0
  1826
      if( rc==SQLITE_OK && !readOnly ){
sl@0
  1827
        int iSectorSize = sqlite3OsSectorSize(pPager->fd);
sl@0
  1828
        if( szPageDflt<iSectorSize ){
sl@0
  1829
          szPageDflt = iSectorSize;
sl@0
  1830
        }
sl@0
  1831
#ifdef SQLITE_ENABLE_ATOMIC_WRITE
sl@0
  1832
        {
sl@0
  1833
          int iDc = sqlite3OsDeviceCharacteristics(pPager->fd);
sl@0
  1834
          int ii;
sl@0
  1835
          assert(SQLITE_IOCAP_ATOMIC512==(512>>8));
sl@0
  1836
          assert(SQLITE_IOCAP_ATOMIC64K==(65536>>8));
sl@0
  1837
          assert(SQLITE_MAX_DEFAULT_PAGE_SIZE<=65536);
sl@0
  1838
          for(ii=szPageDflt; ii<=SQLITE_MAX_DEFAULT_PAGE_SIZE; ii=ii*2){
sl@0
  1839
            if( iDc&(SQLITE_IOCAP_ATOMIC|(ii>>8)) ) szPageDflt = ii;
sl@0
  1840
          }
sl@0
  1841
        }
sl@0
  1842
#endif
sl@0
  1843
        if( szPageDflt>SQLITE_MAX_DEFAULT_PAGE_SIZE ){
sl@0
  1844
          szPageDflt = SQLITE_MAX_DEFAULT_PAGE_SIZE;
sl@0
  1845
        }
sl@0
  1846
      }
sl@0
  1847
    }
sl@0
  1848
  }else if( !memDb ){
sl@0
  1849
    /* If a temporary file is requested, it is not opened immediately.
sl@0
  1850
    ** In this case we accept the default page size and delay actually
sl@0
  1851
    ** opening the file until the first call to OsWrite().
sl@0
  1852
    */ 
sl@0
  1853
    tempFile = 1;
sl@0
  1854
    pPager->state = PAGER_EXCLUSIVE;
sl@0
  1855
  }
sl@0
  1856
sl@0
  1857
  if( pPager && rc==SQLITE_OK ){
sl@0
  1858
    pPager->pTmpSpace = sqlite3PageMalloc(szPageDflt);
sl@0
  1859
  }
sl@0
  1860
sl@0
  1861
  /* If an error occured in either of the blocks above.
sl@0
  1862
  ** Free the Pager structure and close the file.
sl@0
  1863
  ** Since the pager is not allocated there is no need to set 
sl@0
  1864
  ** any Pager.errMask variables.
sl@0
  1865
  */
sl@0
  1866
  if( !pPager || !pPager->pTmpSpace ){
sl@0
  1867
    sqlite3OsClose(pPager->fd);
sl@0
  1868
    sqlite3_free(pPager);
sl@0
  1869
    return ((rc==SQLITE_OK)?SQLITE_NOMEM:rc);
sl@0
  1870
  }
sl@0
  1871
  nExtra = FORCE_ALIGNMENT(nExtra);
sl@0
  1872
  sqlite3PcacheOpen(szPageDflt, nExtra, !memDb,
sl@0
  1873
                    !memDb?pagerStress:0, (void *)pPager, pPager->pPCache);
sl@0
  1874
sl@0
  1875
  PAGERTRACE3("OPEN %d %s\n", FILEHANDLEID(pPager->fd), pPager->zFilename);
sl@0
  1876
  IOTRACE(("OPEN %p %s\n", pPager, pPager->zFilename))
sl@0
  1877
sl@0
  1878
  /* Fill in Pager.zDirectory[] */
sl@0
  1879
  memcpy(pPager->zDirectory, pPager->zFilename, nPathname+1);
sl@0
  1880
  for(i=strlen(pPager->zDirectory); i>0 && pPager->zDirectory[i-1]!='/'; i--){}
sl@0
  1881
  if( i>0 ) pPager->zDirectory[i-1] = 0;
sl@0
  1882
sl@0
  1883
  /* Fill in Pager.zJournal[] */
sl@0
  1884
  if( zPathname ){
sl@0
  1885
    memcpy(pPager->zJournal, pPager->zFilename, nPathname);
sl@0
  1886
    memcpy(&pPager->zJournal[nPathname], "-journal", 9);
sl@0
  1887
  }else{
sl@0
  1888
    pPager->zJournal = 0;
sl@0
  1889
  }
sl@0
  1890
sl@0
  1891
  /* pPager->journalOpen = 0; */
sl@0
  1892
  pPager->useJournal = useJournal;
sl@0
  1893
  pPager->noReadlock = noReadlock && readOnly;
sl@0
  1894
  /* pPager->stmtOpen = 0; */
sl@0
  1895
  /* pPager->stmtInUse = 0; */
sl@0
  1896
  /* pPager->nRef = 0; */
sl@0
  1897
  pPager->dbSize = memDb-1;
sl@0
  1898
  pPager->pageSize = szPageDflt;
sl@0
  1899
  /* pPager->stmtSize = 0; */
sl@0
  1900
  /* pPager->stmtJSize = 0; */
sl@0
  1901
  /* pPager->nPage = 0; */
sl@0
  1902
  pPager->mxPage = 100;
sl@0
  1903
  pPager->mxPgno = SQLITE_MAX_PAGE_COUNT;
sl@0
  1904
  /* pPager->state = PAGER_UNLOCK; */
sl@0
  1905
  assert( pPager->state == (tempFile ? PAGER_EXCLUSIVE : PAGER_UNLOCK) );
sl@0
  1906
  /* pPager->errMask = 0; */
sl@0
  1907
  pPager->tempFile = tempFile;
sl@0
  1908
  assert( tempFile==PAGER_LOCKINGMODE_NORMAL 
sl@0
  1909
          || tempFile==PAGER_LOCKINGMODE_EXCLUSIVE );
sl@0
  1910
  assert( PAGER_LOCKINGMODE_EXCLUSIVE==1 );
sl@0
  1911
  pPager->exclusiveMode = tempFile; 
sl@0
  1912
  pPager->memDb = memDb;
sl@0
  1913
  pPager->readOnly = readOnly;
sl@0
  1914
  /* pPager->needSync = 0; */
sl@0
  1915
  pPager->noSync = pPager->tempFile || !useJournal;
sl@0
  1916
  pPager->fullSync = (pPager->noSync?0:1);
sl@0
  1917
  pPager->sync_flags = SQLITE_SYNC_NORMAL;
sl@0
  1918
  /* pPager->pFirst = 0; */
sl@0
  1919
  /* pPager->pFirstSynced = 0; */
sl@0
  1920
  /* pPager->pLast = 0; */
sl@0
  1921
  pPager->nExtra = nExtra;
sl@0
  1922
  pPager->journalSizeLimit = SQLITE_DEFAULT_JOURNAL_SIZE_LIMIT;
sl@0
  1923
  assert(pPager->fd->pMethods||memDb||tempFile);
sl@0
  1924
  if( !memDb ){
sl@0
  1925
    setSectorSize(pPager);
sl@0
  1926
  }
sl@0
  1927
  /* pPager->pBusyHandler = 0; */
sl@0
  1928
  /* memset(pPager->aHash, 0, sizeof(pPager->aHash)); */
sl@0
  1929
  *ppPager = pPager;
sl@0
  1930
  return SQLITE_OK;
sl@0
  1931
}
sl@0
  1932
sl@0
  1933
/*
sl@0
  1934
** Set the busy handler function.
sl@0
  1935
*/
sl@0
  1936
void sqlite3PagerSetBusyhandler(Pager *pPager, BusyHandler *pBusyHandler){
sl@0
  1937
  pPager->pBusyHandler = pBusyHandler;
sl@0
  1938
}
sl@0
  1939
sl@0
  1940
/*
sl@0
  1941
** Set the reinitializer for this pager.  If not NULL, the reinitializer
sl@0
  1942
** is called when the content of a page in cache is restored to its original
sl@0
  1943
** value as a result of a rollback.  The callback gives higher-level code
sl@0
  1944
** an opportunity to restore the EXTRA section to agree with the restored
sl@0
  1945
** page data.
sl@0
  1946
*/
sl@0
  1947
void sqlite3PagerSetReiniter(Pager *pPager, void (*xReinit)(DbPage*)){
sl@0
  1948
  pPager->xReiniter = xReinit;
sl@0
  1949
}
sl@0
  1950
sl@0
  1951
/*
sl@0
  1952
** Set the page size to *pPageSize. If the suggest new page size is
sl@0
  1953
** inappropriate, then an alternative page size is set to that
sl@0
  1954
** value before returning.
sl@0
  1955
*/
sl@0
  1956
int sqlite3PagerSetPagesize(Pager *pPager, u16 *pPageSize){
sl@0
  1957
  int rc = pPager->errCode;
sl@0
  1958
  if( rc==SQLITE_OK ){
sl@0
  1959
    u16 pageSize = *pPageSize;
sl@0
  1960
    assert( pageSize==0 || (pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE) );
sl@0
  1961
    if( pageSize && pageSize!=pPager->pageSize 
sl@0
  1962
     && (pPager->memDb==0 || pPager->dbSize==0)
sl@0
  1963
     && sqlite3PcacheRefCount(pPager->pPCache)==0 
sl@0
  1964
    ){
sl@0
  1965
      char *pNew = (char *)sqlite3PageMalloc(pageSize);
sl@0
  1966
      if( !pNew ){
sl@0
  1967
        rc = SQLITE_NOMEM;
sl@0
  1968
      }else{
sl@0
  1969
        pager_reset(pPager);
sl@0
  1970
        pPager->pageSize = pageSize;
sl@0
  1971
        if( !pPager->memDb ) setSectorSize(pPager);
sl@0
  1972
        sqlite3PageFree(pPager->pTmpSpace);
sl@0
  1973
        pPager->pTmpSpace = pNew;
sl@0
  1974
        sqlite3PcacheSetPageSize(pPager->pPCache, pageSize);
sl@0
  1975
      }
sl@0
  1976
    }
sl@0
  1977
    *pPageSize = pPager->pageSize;
sl@0
  1978
  }
sl@0
  1979
  return rc;
sl@0
  1980
}
sl@0
  1981
sl@0
  1982
/*
sl@0
  1983
** Return a pointer to the "temporary page" buffer held internally
sl@0
  1984
** by the pager.  This is a buffer that is big enough to hold the
sl@0
  1985
** entire content of a database page.  This buffer is used internally
sl@0
  1986
** during rollback and will be overwritten whenever a rollback
sl@0
  1987
** occurs.  But other modules are free to use it too, as long as
sl@0
  1988
** no rollbacks are happening.
sl@0
  1989
*/
sl@0
  1990
void *sqlite3PagerTempSpace(Pager *pPager){
sl@0
  1991
  return pPager->pTmpSpace;
sl@0
  1992
}
sl@0
  1993
sl@0
  1994
/*
sl@0
  1995
** Attempt to set the maximum database page count if mxPage is positive. 
sl@0
  1996
** Make no changes if mxPage is zero or negative.  And never reduce the
sl@0
  1997
** maximum page count below the current size of the database.
sl@0
  1998
**
sl@0
  1999
** Regardless of mxPage, return the current maximum page count.
sl@0
  2000
*/
sl@0
  2001
int sqlite3PagerMaxPageCount(Pager *pPager, int mxPage){
sl@0
  2002
  if( mxPage>0 ){
sl@0
  2003
    pPager->mxPgno = mxPage;
sl@0
  2004
  }
sl@0
  2005
  sqlite3PagerPagecount(pPager, 0);
sl@0
  2006
  return pPager->mxPgno;
sl@0
  2007
}
sl@0
  2008
sl@0
  2009
/*
sl@0
  2010
** The following set of routines are used to disable the simulated
sl@0
  2011
** I/O error mechanism.  These routines are used to avoid simulated
sl@0
  2012
** errors in places where we do not care about errors.
sl@0
  2013
**
sl@0
  2014
** Unless -DSQLITE_TEST=1 is used, these routines are all no-ops
sl@0
  2015
** and generate no code.
sl@0
  2016
*/
sl@0
  2017
#ifdef SQLITE_TEST
sl@0
  2018
extern int sqlite3_io_error_pending;
sl@0
  2019
extern int sqlite3_io_error_hit;
sl@0
  2020
static int saved_cnt;
sl@0
  2021
void disable_simulated_io_errors(void){
sl@0
  2022
  saved_cnt = sqlite3_io_error_pending;
sl@0
  2023
  sqlite3_io_error_pending = -1;
sl@0
  2024
}
sl@0
  2025
void enable_simulated_io_errors(void){
sl@0
  2026
  sqlite3_io_error_pending = saved_cnt;
sl@0
  2027
}
sl@0
  2028
#else
sl@0
  2029
# define disable_simulated_io_errors()
sl@0
  2030
# define enable_simulated_io_errors()
sl@0
  2031
#endif
sl@0
  2032
sl@0
  2033
/*
sl@0
  2034
** Read the first N bytes from the beginning of the file into memory
sl@0
  2035
** that pDest points to. 
sl@0
  2036
**
sl@0
  2037
** No error checking is done. The rational for this is that this function 
sl@0
  2038
** may be called even if the file does not exist or contain a header. In 
sl@0
  2039
** these cases sqlite3OsRead() will return an error, to which the correct 
sl@0
  2040
** response is to zero the memory at pDest and continue.  A real IO error 
sl@0
  2041
** will presumably recur and be picked up later (Todo: Think about this).
sl@0
  2042
*/
sl@0
  2043
int sqlite3PagerReadFileheader(Pager *pPager, int N, unsigned char *pDest){
sl@0
  2044
  int rc = SQLITE_OK;
sl@0
  2045
  memset(pDest, 0, N);
sl@0
  2046
  assert(MEMDB||pPager->fd->pMethods||pPager->tempFile);
sl@0
  2047
  if( pPager->fd->pMethods ){
sl@0
  2048
    IOTRACE(("DBHDR %p 0 %d\n", pPager, N))
sl@0
  2049
    rc = sqlite3OsRead(pPager->fd, pDest, N, 0);
sl@0
  2050
    if( rc==SQLITE_IOERR_SHORT_READ ){
sl@0
  2051
      rc = SQLITE_OK;
sl@0
  2052
    }
sl@0
  2053
  }
sl@0
  2054
  return rc;
sl@0
  2055
}
sl@0
  2056
sl@0
  2057
/*
sl@0
  2058
** Return the total number of pages in the disk file associated with
sl@0
  2059
** pPager. 
sl@0
  2060
**
sl@0
  2061
** If the PENDING_BYTE lies on the page directly after the end of the
sl@0
  2062
** file, then consider this page part of the file too. For example, if
sl@0
  2063
** PENDING_BYTE is byte 4096 (the first byte of page 5) and the size of the
sl@0
  2064
** file is 4096 bytes, 5 is returned instead of 4.
sl@0
  2065
*/
sl@0
  2066
int sqlite3PagerPagecount(Pager *pPager, int *pnPage){
sl@0
  2067
  i64 n = 0;
sl@0
  2068
  int rc;
sl@0
  2069
  assert( pPager!=0 );
sl@0
  2070
  if( pPager->errCode ){
sl@0
  2071
    rc = pPager->errCode;
sl@0
  2072
    return rc;
sl@0
  2073
  }
sl@0
  2074
  if( pPager->dbSize>=0 ){
sl@0
  2075
    n = pPager->dbSize;
sl@0
  2076
  } else {
sl@0
  2077
    assert(pPager->fd->pMethods||pPager->tempFile);
sl@0
  2078
    if( (pPager->fd->pMethods)
sl@0
  2079
     && (rc = sqlite3OsFileSize(pPager->fd, &n))!=SQLITE_OK ){
sl@0
  2080
      pager_error(pPager, rc);
sl@0
  2081
      return rc;
sl@0
  2082
    }
sl@0
  2083
    if( n>0 && n<pPager->pageSize ){
sl@0
  2084
      n = 1;
sl@0
  2085
    }else{
sl@0
  2086
      n /= pPager->pageSize;
sl@0
  2087
    }
sl@0
  2088
    if( pPager->state!=PAGER_UNLOCK ){
sl@0
  2089
      pPager->dbSize = n;
sl@0
  2090
    }
sl@0
  2091
  }
sl@0
  2092
  if( n==(PENDING_BYTE/pPager->pageSize) ){
sl@0
  2093
    n++;
sl@0
  2094
  }
sl@0
  2095
  if( n>pPager->mxPgno ){
sl@0
  2096
    pPager->mxPgno = n;
sl@0
  2097
  }
sl@0
  2098
  if( pnPage ){
sl@0
  2099
    *pnPage = n;
sl@0
  2100
  }
sl@0
  2101
  return SQLITE_OK;
sl@0
  2102
}
sl@0
  2103
sl@0
  2104
/*
sl@0
  2105
** Forward declaration
sl@0
  2106
*/
sl@0
  2107
static int syncJournal(Pager*);
sl@0
  2108
sl@0
  2109
/*
sl@0
  2110
** This routine is used to truncate the cache when a database
sl@0
  2111
** is truncated.  Drop from the cache all pages whose pgno is
sl@0
  2112
** larger than pPager->dbSize and is unreferenced.
sl@0
  2113
**
sl@0
  2114
** Referenced pages larger than pPager->dbSize are zeroed.
sl@0
  2115
**
sl@0
  2116
** Actually, at the point this routine is called, it would be
sl@0
  2117
** an error to have a referenced page.  But rather than delete
sl@0
  2118
** that page and guarantee a subsequent segfault, it seems better
sl@0
  2119
** to zero it and hope that we error out sanely.
sl@0
  2120
*/
sl@0
  2121
static void pager_truncate_cache(Pager *pPager){
sl@0
  2122
  sqlite3PcacheTruncate(pPager->pPCache, pPager->dbSize);
sl@0
  2123
}
sl@0
  2124
sl@0
  2125
/*
sl@0
  2126
** Try to obtain a lock on a file.  Invoke the busy callback if the lock
sl@0
  2127
** is currently not available.  Repeat until the busy callback returns
sl@0
  2128
** false or until the lock succeeds.
sl@0
  2129
**
sl@0
  2130
** Return SQLITE_OK on success and an error code if we cannot obtain
sl@0
  2131
** the lock.
sl@0
  2132
*/
sl@0
  2133
static int pager_wait_on_lock(Pager *pPager, int locktype){
sl@0
  2134
  int rc;
sl@0
  2135
sl@0
  2136
  /* The OS lock values must be the same as the Pager lock values */
sl@0
  2137
  assert( PAGER_SHARED==SHARED_LOCK );
sl@0
  2138
  assert( PAGER_RESERVED==RESERVED_LOCK );
sl@0
  2139
  assert( PAGER_EXCLUSIVE==EXCLUSIVE_LOCK );
sl@0
  2140
sl@0
  2141
  /* If the file is currently unlocked then the size must be unknown */
sl@0
  2142
  assert( pPager->state>=PAGER_SHARED || pPager->dbSize<0 || MEMDB );
sl@0
  2143
sl@0
  2144
  if( pPager->state>=locktype ){
sl@0
  2145
    rc = SQLITE_OK;
sl@0
  2146
  }else{
sl@0
  2147
    if( pPager->pBusyHandler ) pPager->pBusyHandler->nBusy = 0;
sl@0
  2148
    do {
sl@0
  2149
      rc = sqlite3OsLock(pPager->fd, locktype);
sl@0
  2150
    }while( rc==SQLITE_BUSY && sqlite3InvokeBusyHandler(pPager->pBusyHandler) );
sl@0
  2151
    if( rc==SQLITE_OK ){
sl@0
  2152
      pPager->state = locktype;
sl@0
  2153
      IOTRACE(("LOCK %p %d\n", pPager, locktype))
sl@0
  2154
    }
sl@0
  2155
  }
sl@0
  2156
  return rc;
sl@0
  2157
}
sl@0
  2158
sl@0
  2159
/*
sl@0
  2160
** Truncate the file to the number of pages specified.
sl@0
  2161
*/
sl@0
  2162
int sqlite3PagerTruncate(Pager *pPager, Pgno nPage){
sl@0
  2163
  int rc = SQLITE_OK;
sl@0
  2164
  assert( pPager->state>=PAGER_SHARED || MEMDB );
sl@0
  2165
sl@0
  2166
sl@0
  2167
  sqlite3PagerPagecount(pPager, 0);
sl@0
  2168
  if( pPager->errCode ){
sl@0
  2169
    rc = pPager->errCode;
sl@0
  2170
  }else if( nPage<(unsigned)pPager->dbSize ){
sl@0
  2171
    if( MEMDB ){
sl@0
  2172
      pPager->dbSize = nPage;
sl@0
  2173
      pager_truncate_cache(pPager);
sl@0
  2174
    }else{
sl@0
  2175
      rc = syncJournal(pPager);
sl@0
  2176
      if( rc==SQLITE_OK ){
sl@0
  2177
        /* Get an exclusive lock on the database before truncating. */
sl@0
  2178
        rc = pager_wait_on_lock(pPager, EXCLUSIVE_LOCK);
sl@0
  2179
      }
sl@0
  2180
      if( rc==SQLITE_OK ){
sl@0
  2181
        rc = pager_truncate(pPager, nPage);
sl@0
  2182
      }
sl@0
  2183
    }
sl@0
  2184
  }
sl@0
  2185
sl@0
  2186
  return rc;
sl@0
  2187
}
sl@0
  2188
sl@0
  2189
/*
sl@0
  2190
** Shutdown the page cache.  Free all memory and close all files.
sl@0
  2191
**
sl@0
  2192
** If a transaction was in progress when this routine is called, that
sl@0
  2193
** transaction is rolled back.  All outstanding pages are invalidated
sl@0
  2194
** and their memory is freed.  Any attempt to use a page associated
sl@0
  2195
** with this page cache after this function returns will likely
sl@0
  2196
** result in a coredump.
sl@0
  2197
**
sl@0
  2198
** This function always succeeds. If a transaction is active an attempt
sl@0
  2199
** is made to roll it back. If an error occurs during the rollback 
sl@0
  2200
** a hot journal may be left in the filesystem but no error is returned
sl@0
  2201
** to the caller.
sl@0
  2202
*/
sl@0
  2203
int sqlite3PagerClose(Pager *pPager){
sl@0
  2204
sl@0
  2205
  disable_simulated_io_errors();
sl@0
  2206
  sqlite3BeginBenignMalloc();
sl@0
  2207
  pPager->errCode = 0;
sl@0
  2208
  pPager->exclusiveMode = 0;
sl@0
  2209
  pager_reset(pPager);
sl@0
  2210
  pagerUnlockAndRollback(pPager);
sl@0
  2211
  enable_simulated_io_errors();
sl@0
  2212
  sqlite3EndBenignMalloc();
sl@0
  2213
  PAGERTRACE2("CLOSE %d\n", PAGERID(pPager));
sl@0
  2214
  IOTRACE(("CLOSE %p\n", pPager))
sl@0
  2215
  if( pPager->journalOpen ){
sl@0
  2216
    sqlite3OsClose(pPager->jfd);
sl@0
  2217
  }
sl@0
  2218
  sqlite3BitvecDestroy(pPager->pInJournal);
sl@0
  2219
  sqlite3BitvecDestroy(pPager->pAlwaysRollback);
sl@0
  2220
  if( pPager->stmtOpen ){
sl@0
  2221
    sqlite3OsClose(pPager->stfd);
sl@0
  2222
  }
sl@0
  2223
  sqlite3OsClose(pPager->fd);
sl@0
  2224
  /* Temp files are automatically deleted by the OS
sl@0
  2225
  ** if( pPager->tempFile ){
sl@0
  2226
  **   sqlite3OsDelete(pPager->zFilename);
sl@0
  2227
  ** }
sl@0
  2228
  */
sl@0
  2229
sl@0
  2230
  sqlite3PageFree(pPager->pTmpSpace);
sl@0
  2231
  sqlite3PcacheClose(pPager->pPCache);
sl@0
  2232
  sqlite3_free(pPager);
sl@0
  2233
  return SQLITE_OK;
sl@0
  2234
}
sl@0
  2235
sl@0
  2236
#if !defined(NDEBUG) || defined(SQLITE_TEST)
sl@0
  2237
/*
sl@0
  2238
** Return the page number for the given page data.
sl@0
  2239
*/
sl@0
  2240
Pgno sqlite3PagerPagenumber(DbPage *p){
sl@0
  2241
  return p->pgno;
sl@0
  2242
}
sl@0
  2243
#endif
sl@0
  2244
sl@0
  2245
/*
sl@0
  2246
** Increment the reference count for a page.  The input pointer is
sl@0
  2247
** a reference to the page data.
sl@0
  2248
*/
sl@0
  2249
int sqlite3PagerRef(DbPage *pPg){
sl@0
  2250
  sqlite3PcacheRef(pPg);
sl@0
  2251
  return SQLITE_OK;
sl@0
  2252
}
sl@0
  2253
sl@0
  2254
/*
sl@0
  2255
** Sync the journal.  In other words, make sure all the pages that have
sl@0
  2256
** been written to the journal have actually reached the surface of the
sl@0
  2257
** disk.  It is not safe to modify the original database file until after
sl@0
  2258
** the journal has been synced.  If the original database is modified before
sl@0
  2259
** the journal is synced and a power failure occurs, the unsynced journal
sl@0
  2260
** data would be lost and we would be unable to completely rollback the
sl@0
  2261
** database changes.  Database corruption would occur.
sl@0
  2262
** 
sl@0
  2263
** This routine also updates the nRec field in the header of the journal.
sl@0
  2264
** (See comments on the pager_playback() routine for additional information.)
sl@0
  2265
** If the sync mode is FULL, two syncs will occur.  First the whole journal
sl@0
  2266
** is synced, then the nRec field is updated, then a second sync occurs.
sl@0
  2267
**
sl@0
  2268
** For temporary databases, we do not care if we are able to rollback
sl@0
  2269
** after a power failure, so no sync occurs.
sl@0
  2270
**
sl@0
  2271
** If the IOCAP_SEQUENTIAL flag is set for the persistent media on which
sl@0
  2272
** the database is stored, then OsSync() is never called on the journal
sl@0
  2273
** file. In this case all that is required is to update the nRec field in
sl@0
  2274
** the journal header.
sl@0
  2275
**
sl@0
  2276
** This routine clears the needSync field of every page current held in
sl@0
  2277
** memory.
sl@0
  2278
*/
sl@0
  2279
static int syncJournal(Pager *pPager){
sl@0
  2280
  int rc = SQLITE_OK;
sl@0
  2281
sl@0
  2282
  /* Sync the journal before modifying the main database
sl@0
  2283
  ** (assuming there is a journal and it needs to be synced.)
sl@0
  2284
  */
sl@0
  2285
  if( pPager->needSync ){
sl@0
  2286
    if( !pPager->tempFile ){
sl@0
  2287
      int iDc = sqlite3OsDeviceCharacteristics(pPager->fd);
sl@0
  2288
      assert( pPager->journalOpen );
sl@0
  2289
sl@0
  2290
      if( 0==(iDc&SQLITE_IOCAP_SAFE_APPEND) ){
sl@0
  2291
        /* Write the nRec value into the journal file header. If in
sl@0
  2292
        ** full-synchronous mode, sync the journal first. This ensures that
sl@0
  2293
        ** all data has really hit the disk before nRec is updated to mark
sl@0
  2294
        ** it as a candidate for rollback.
sl@0
  2295
        **
sl@0
  2296
        ** This is not required if the persistent media supports the
sl@0
  2297
        ** SAFE_APPEND property. Because in this case it is not possible 
sl@0
  2298
        ** for garbage data to be appended to the file, the nRec field
sl@0
  2299
        ** is populated with 0xFFFFFFFF when the journal header is written
sl@0
  2300
        ** and never needs to be updated.
sl@0
  2301
        */
sl@0
  2302
        i64 jrnlOff;
sl@0
  2303
        if( pPager->fullSync && 0==(iDc&SQLITE_IOCAP_SEQUENTIAL) ){
sl@0
  2304
          PAGERTRACE2("SYNC journal of %d\n", PAGERID(pPager));
sl@0
  2305
          IOTRACE(("JSYNC %p\n", pPager))
sl@0
  2306
          rc = sqlite3OsSync(pPager->jfd, pPager->sync_flags);
sl@0
  2307
          if( rc!=0 ) return rc;
sl@0
  2308
        }
sl@0
  2309
sl@0
  2310
        jrnlOff = pPager->journalHdr + sizeof(aJournalMagic);
sl@0
  2311
        IOTRACE(("JHDR %p %lld %d\n", pPager, jrnlOff, 4));
sl@0
  2312
        rc = write32bits(pPager->jfd, jrnlOff, pPager->nRec);
sl@0
  2313
        if( rc ) return rc;
sl@0
  2314
      }
sl@0
  2315
      if( 0==(iDc&SQLITE_IOCAP_SEQUENTIAL) ){
sl@0
  2316
        PAGERTRACE2("SYNC journal of %d\n", PAGERID(pPager));
sl@0
  2317
        IOTRACE(("JSYNC %p\n", pPager))
sl@0
  2318
        rc = sqlite3OsSync(pPager->jfd, pPager->sync_flags| 
sl@0
  2319
          (pPager->sync_flags==SQLITE_SYNC_FULL?SQLITE_SYNC_DATAONLY:0)
sl@0
  2320
        );
sl@0
  2321
        if( rc!=0 ) return rc;
sl@0
  2322
      }
sl@0
  2323
      pPager->journalStarted = 1;
sl@0
  2324
    }
sl@0
  2325
    pPager->needSync = 0;
sl@0
  2326
sl@0
  2327
    /* Erase the needSync flag from every page.
sl@0
  2328
    */
sl@0
  2329
    sqlite3PcacheClearFlags(pPager->pPCache, PGHDR_NEED_SYNC);
sl@0
  2330
  }
sl@0
  2331
sl@0
  2332
#ifndef NDEBUG
sl@0
  2333
  /* If the Pager.needSync flag is clear then the PgHdr.needSync
sl@0
  2334
  ** flag must also be clear for all pages.  Verify that this
sl@0
  2335
  ** invariant is true.
sl@0
  2336
  */
sl@0
  2337
  else{
sl@0
  2338
    sqlite3PcacheAssertFlags(pPager->pPCache, 0, PGHDR_NEED_SYNC);
sl@0
  2339
  }
sl@0
  2340
#endif
sl@0
  2341
sl@0
  2342
  return rc;
sl@0
  2343
}
sl@0
  2344
sl@0
  2345
/*
sl@0
  2346
** Given a list of pages (connected by the PgHdr.pDirty pointer) write
sl@0
  2347
** every one of those pages out to the database file. No calls are made
sl@0
  2348
** to the page-cache to mark the pages as clean. It is the responsibility
sl@0
  2349
** of the caller to use PcacheCleanAll() or PcacheMakeClean() to mark
sl@0
  2350
** the pages as clean.
sl@0
  2351
*/
sl@0
  2352
static int pager_write_pagelist(PgHdr *pList){
sl@0
  2353
  Pager *pPager;
sl@0
  2354
  int rc;
sl@0
  2355
sl@0
  2356
  if( pList==0 ) return SQLITE_OK;
sl@0
  2357
  pPager = pList->pPager;
sl@0
  2358
sl@0
  2359
  /* At this point there may be either a RESERVED or EXCLUSIVE lock on the
sl@0
  2360
  ** database file. If there is already an EXCLUSIVE lock, the following
sl@0
  2361
  ** calls to sqlite3OsLock() are no-ops.
sl@0
  2362
  **
sl@0
  2363
  ** Moving the lock from RESERVED to EXCLUSIVE actually involves going
sl@0
  2364
  ** through an intermediate state PENDING.   A PENDING lock prevents new
sl@0
  2365
  ** readers from attaching to the database but is unsufficient for us to
sl@0
  2366
  ** write.  The idea of a PENDING lock is to prevent new readers from
sl@0
  2367
  ** coming in while we wait for existing readers to clear.
sl@0
  2368
  **
sl@0
  2369
  ** While the pager is in the RESERVED state, the original database file
sl@0
  2370
  ** is unchanged and we can rollback without having to playback the
sl@0
  2371
  ** journal into the original database file.  Once we transition to
sl@0
  2372
  ** EXCLUSIVE, it means the database file has been changed and any rollback
sl@0
  2373
  ** will require a journal playback.
sl@0
  2374
  */
sl@0
  2375
  rc = pager_wait_on_lock(pPager, EXCLUSIVE_LOCK);
sl@0
  2376
  if( rc!=SQLITE_OK ){
sl@0
  2377
    return rc;
sl@0
  2378
  }
sl@0
  2379
sl@0
  2380
  while( pList ){
sl@0
  2381
sl@0
  2382
    /* If the file has not yet been opened, open it now. */
sl@0
  2383
    if( !pPager->fd->pMethods ){
sl@0
  2384
      assert(pPager->tempFile);
sl@0
  2385
      rc = sqlite3PagerOpentemp(pPager, pPager->fd, pPager->vfsFlags);
sl@0
  2386
      if( rc ) return rc;
sl@0
  2387
    }
sl@0
  2388
sl@0
  2389
    /* If there are dirty pages in the page cache with page numbers greater
sl@0
  2390
    ** than Pager.dbSize, this means sqlite3PagerTruncate() was called to
sl@0
  2391
    ** make the file smaller (presumably by auto-vacuum code). Do not write
sl@0
  2392
    ** any such pages to the file.
sl@0
  2393
    */
sl@0
  2394
    if( pList->pgno<=pPager->dbSize && 0==(pList->flags&PGHDR_DONT_WRITE) ){
sl@0
  2395
      i64 offset = (pList->pgno-1)*(i64)pPager->pageSize;
sl@0
  2396
      char *pData = CODEC2(pPager, pList->pData, pList->pgno, 6);
sl@0
  2397
      PAGERTRACE4("STORE %d page %d hash(%08x)\n",
sl@0
  2398
                   PAGERID(pPager), pList->pgno, pager_pagehash(pList));
sl@0
  2399
      IOTRACE(("PGOUT %p %d\n", pPager, pList->pgno));
sl@0
  2400
      rc = sqlite3OsWrite(pPager->fd, pData, pPager->pageSize, offset);
sl@0
  2401
      PAGER_INCR(sqlite3_pager_writedb_count);
sl@0
  2402
      PAGER_INCR(pPager->nWrite);
sl@0
  2403
      if( pList->pgno==1 ){
sl@0
  2404
        memcpy(&pPager->dbFileVers, &pData[24], sizeof(pPager->dbFileVers));
sl@0
  2405
      }
sl@0
  2406
    }
sl@0
  2407
#ifndef NDEBUG
sl@0
  2408
    else{
sl@0
  2409
      PAGERTRACE3("NOSTORE %d page %d\n", PAGERID(pPager), pList->pgno);
sl@0
  2410
    }
sl@0
  2411
#endif
sl@0
  2412
    if( rc ) return rc;
sl@0
  2413
#ifdef SQLITE_CHECK_PAGES
sl@0
  2414
    pList->pageHash = pager_pagehash(pList);
sl@0
  2415
#endif
sl@0
  2416
    pList = pList->pDirty;
sl@0
  2417
  }
sl@0
  2418
sl@0
  2419
  return SQLITE_OK;
sl@0
  2420
}
sl@0
  2421
sl@0
  2422
/*
sl@0
  2423
** This function is called by the pcache layer when it has reached some
sl@0
  2424
** soft memory limit. The argument is a pointer to a purgeable Pager 
sl@0
  2425
** object. This function attempts to make a single dirty page that has no
sl@0
  2426
** outstanding references (if one exists) clean so that it can be recycled 
sl@0
  2427
** by the pcache layer.
sl@0
  2428
*/
sl@0
  2429
static int pagerStress(void *p, PgHdr *pPg){
sl@0
  2430
  Pager *pPager = (Pager *)p;
sl@0
  2431
  int rc = SQLITE_OK;
sl@0
  2432
sl@0
  2433
  if( pPager->doNotSync ){
sl@0
  2434
    return SQLITE_OK;
sl@0
  2435
  }
sl@0
  2436
sl@0
  2437
  assert( pPg->flags&PGHDR_DIRTY );
sl@0
  2438
  if( pPager->errCode==SQLITE_OK ){
sl@0
  2439
    if( pPg->flags&PGHDR_NEED_SYNC ){
sl@0
  2440
      rc = syncJournal(pPager);
sl@0
  2441
      if( rc==SQLITE_OK && pPager->fullSync && 
sl@0
  2442
        !(sqlite3OsDeviceCharacteristics(pPager->fd)&SQLITE_IOCAP_SAFE_APPEND)
sl@0
  2443
      ){
sl@0
  2444
        pPager->nRec = 0;
sl@0
  2445
        rc = writeJournalHdr(pPager);
sl@0
  2446
      }
sl@0
  2447
    }
sl@0
  2448
    if( rc==SQLITE_OK ){
sl@0
  2449
      pPg->pDirty = 0;
sl@0
  2450
      rc = pager_write_pagelist(pPg);
sl@0
  2451
    }
sl@0
  2452
    if( rc!=SQLITE_OK ){
sl@0
  2453
      pager_error(pPager, rc);
sl@0
  2454
    }
sl@0
  2455
  }
sl@0
  2456
sl@0
  2457
  if( rc==SQLITE_OK ){
sl@0
  2458
    sqlite3PcacheMakeClean(pPg);
sl@0
  2459
  }
sl@0
  2460
  return rc;
sl@0
  2461
}
sl@0
  2462
sl@0
  2463
sl@0
  2464
/*
sl@0
  2465
** Return 1 if there is a hot journal on the given pager.
sl@0
  2466
** A hot journal is one that needs to be played back.
sl@0
  2467
**
sl@0
  2468
** If the current size of the database file is 0 but a journal file
sl@0
  2469
** exists, that is probably an old journal left over from a prior
sl@0
  2470
** database with the same name.  Just delete the journal.
sl@0
  2471
**
sl@0
  2472
** Return negative if unable to determine the status of the journal.
sl@0
  2473
**
sl@0
  2474
** This routine does not open the journal file to examine its
sl@0
  2475
** content.  Hence, the journal might contain the name of a master
sl@0
  2476
** journal file that has been deleted, and hence not be hot.  Or
sl@0
  2477
** the header of the journal might be zeroed out.  This routine
sl@0
  2478
** does not discover these cases of a non-hot journal - if the
sl@0
  2479
** journal file exists and is not empty this routine assumes it
sl@0
  2480
** is hot.  The pager_playback() routine will discover that the
sl@0
  2481
** journal file is not really hot and will no-op.
sl@0
  2482
*/
sl@0
  2483
static int hasHotJournal(Pager *pPager, int *pExists){
sl@0
  2484
  sqlite3_vfs *pVfs = pPager->pVfs;
sl@0
  2485
  int rc = SQLITE_OK;
sl@0
  2486
  int exists;
sl@0
  2487
  int locked;
sl@0
  2488
  assert( pPager!=0 );
sl@0
  2489
  assert( pPager->useJournal );
sl@0
  2490
  assert( pPager->fd->pMethods );
sl@0
  2491
  *pExists = 0;
sl@0
  2492
  rc = sqlite3OsAccess(pVfs, pPager->zJournal, SQLITE_ACCESS_EXISTS, &exists);
sl@0
  2493
  if( rc==SQLITE_OK && exists ){
sl@0
  2494
    rc = sqlite3OsCheckReservedLock(pPager->fd, &locked);
sl@0
  2495
  }
sl@0
  2496
  if( rc==SQLITE_OK && exists && !locked ){
sl@0
  2497
    int nPage;
sl@0
  2498
    rc = sqlite3PagerPagecount(pPager, &nPage);
sl@0
  2499
    if( rc==SQLITE_OK ){
sl@0
  2500
     if( nPage==0 ){
sl@0
  2501
        sqlite3OsDelete(pVfs, pPager->zJournal, 0);
sl@0
  2502
      }else{
sl@0
  2503
        *pExists = 1;
sl@0
  2504
      }
sl@0
  2505
    }
sl@0
  2506
  }
sl@0
  2507
  return rc;
sl@0
  2508
}
sl@0
  2509
sl@0
  2510
/*
sl@0
  2511
** Read the content of page pPg out of the database file.
sl@0
  2512
*/
sl@0
  2513
static int readDbPage(Pager *pPager, PgHdr *pPg, Pgno pgno){
sl@0
  2514
  int rc;
sl@0
  2515
  i64 offset;
sl@0
  2516
  assert( MEMDB==0 );
sl@0
  2517
  assert(pPager->fd->pMethods||pPager->tempFile);
sl@0
  2518
  if( !pPager->fd->pMethods ){
sl@0
  2519
    return SQLITE_IOERR_SHORT_READ;
sl@0
  2520
  }
sl@0
  2521
  offset = (pgno-1)*(i64)pPager->pageSize;
sl@0
  2522
  rc = sqlite3OsRead(pPager->fd, pPg->pData, pPager->pageSize, offset);
sl@0
  2523
  PAGER_INCR(sqlite3_pager_readdb_count);
sl@0
  2524
  PAGER_INCR(pPager->nRead);
sl@0
  2525
  IOTRACE(("PGIN %p %d\n", pPager, pgno));
sl@0
  2526
  if( pgno==1 ){
sl@0
  2527
    memcpy(&pPager->dbFileVers, &((u8*)pPg->pData)[24],
sl@0
  2528
                                              sizeof(pPager->dbFileVers));
sl@0
  2529
  }
sl@0
  2530
  CODEC1(pPager, pPg->pData, pPg->pgno, 3);
sl@0
  2531
  PAGERTRACE4("FETCH %d page %d hash(%08x)\n",
sl@0
  2532
               PAGERID(pPager), pPg->pgno, pager_pagehash(pPg));
sl@0
  2533
  return rc;
sl@0
  2534
}
sl@0
  2535
sl@0
  2536
sl@0
  2537
/*
sl@0
  2538
** This function is called to obtain the shared lock required before
sl@0
  2539
** data may be read from the pager cache. If the shared lock has already
sl@0
  2540
** been obtained, this function is a no-op.
sl@0
  2541
**
sl@0
  2542
** Immediately after obtaining the shared lock (if required), this function
sl@0
  2543
** checks for a hot-journal file. If one is found, an emergency rollback
sl@0
  2544
** is performed immediately.
sl@0
  2545
*/
sl@0
  2546
static int pagerSharedLock(Pager *pPager){
sl@0
  2547
  int rc = SQLITE_OK;
sl@0
  2548
  int isErrorReset = 0;
sl@0
  2549
sl@0
  2550
  /* If this database is opened for exclusive access, has no outstanding 
sl@0
  2551
  ** page references and is in an error-state, now is the chance to clear
sl@0
  2552
  ** the error. Discard the contents of the pager-cache and treat any
sl@0
  2553
  ** open journal file as a hot-journal.
sl@0
  2554
  */
sl@0
  2555
  if( !MEMDB && pPager->exclusiveMode 
sl@0
  2556
   && sqlite3PcacheRefCount(pPager->pPCache)==0 && pPager->errCode 
sl@0
  2557
  ){
sl@0
  2558
    if( pPager->journalOpen ){
sl@0
  2559
      isErrorReset = 1;
sl@0
  2560
    }
sl@0
  2561
    pPager->errCode = SQLITE_OK;
sl@0
  2562
    pager_reset(pPager);
sl@0
  2563
  }
sl@0
  2564
sl@0
  2565
  /* If the pager is still in an error state, do not proceed. The error 
sl@0
  2566
  ** state will be cleared at some point in the future when all page 
sl@0
  2567
  ** references are dropped and the cache can be discarded.
sl@0
  2568
  */
sl@0
  2569
  if( pPager->errCode && pPager->errCode!=SQLITE_FULL ){
sl@0
  2570
    return pPager->errCode;
sl@0
  2571
  }
sl@0
  2572
sl@0
  2573
  if( pPager->state==PAGER_UNLOCK || isErrorReset ){
sl@0
  2574
    sqlite3_vfs *pVfs = pPager->pVfs;
sl@0
  2575
    if( !MEMDB ){
sl@0
  2576
      int isHotJournal;
sl@0
  2577
      assert( sqlite3PcacheRefCount(pPager->pPCache)==0 );
sl@0
  2578
      if( !pPager->noReadlock ){
sl@0
  2579
        rc = pager_wait_on_lock(pPager, SHARED_LOCK);
sl@0
  2580
        if( rc!=SQLITE_OK ){
sl@0
  2581
          assert( pPager->state==PAGER_UNLOCK );
sl@0
  2582
          return pager_error(pPager, rc);
sl@0
  2583
        }
sl@0
  2584
        assert( pPager->state>=SHARED_LOCK );
sl@0
  2585
      }
sl@0
  2586
  
sl@0
  2587
      /* If a journal file exists, and there is no RESERVED lock on the
sl@0
  2588
      ** database file, then it either needs to be played back or deleted.
sl@0
  2589
      */
sl@0
  2590
      if( !isErrorReset ){
sl@0
  2591
        rc = hasHotJournal(pPager, &isHotJournal);
sl@0
  2592
        if( rc!=SQLITE_OK ){
sl@0
  2593
          goto failed;
sl@0
  2594
        }
sl@0
  2595
      }
sl@0
  2596
      if( isErrorReset || isHotJournal ){
sl@0
  2597
        /* Get an EXCLUSIVE lock on the database file. At this point it is
sl@0
  2598
        ** important that a RESERVED lock is not obtained on the way to the
sl@0
  2599
        ** EXCLUSIVE lock. If it were, another process might open the
sl@0
  2600
        ** database file, detect the RESERVED lock, and conclude that the
sl@0
  2601
        ** database is safe to read while this process is still rolling it 
sl@0
  2602
        ** back.
sl@0
  2603
        ** 
sl@0
  2604
        ** Because the intermediate RESERVED lock is not requested, the
sl@0
  2605
        ** second process will get to this point in the code and fail to
sl@0
  2606
        ** obtain its own EXCLUSIVE lock on the database file.
sl@0
  2607
        */
sl@0
  2608
        if( pPager->state<EXCLUSIVE_LOCK ){
sl@0
  2609
          rc = sqlite3OsLock(pPager->fd, EXCLUSIVE_LOCK);
sl@0
  2610
          if( rc!=SQLITE_OK ){
sl@0
  2611
            rc = pager_error(pPager, rc);
sl@0
  2612
            goto failed;
sl@0
  2613
          }
sl@0
  2614
          pPager->state = PAGER_EXCLUSIVE;
sl@0
  2615
        }
sl@0
  2616
 
sl@0
  2617
        /* Open the journal for read/write access. This is because in 
sl@0
  2618
        ** exclusive-access mode the file descriptor will be kept open and
sl@0
  2619
        ** possibly used for a transaction later on. On some systems, the
sl@0
  2620
        ** OsTruncate() call used in exclusive-access mode also requires
sl@0
  2621
        ** a read/write file handle.
sl@0
  2622
        */
sl@0
  2623
        if( !isErrorReset && pPager->journalOpen==0 ){
sl@0
  2624
          int res;
sl@0
  2625
          rc = sqlite3OsAccess(pVfs,pPager->zJournal,SQLITE_ACCESS_EXISTS,&res);
sl@0
  2626
          if( rc==SQLITE_OK ){
sl@0
  2627
            if( res ){
sl@0
  2628
              int fout = 0;
sl@0
  2629
              int f = SQLITE_OPEN_READWRITE|SQLITE_OPEN_MAIN_JOURNAL;
sl@0
  2630
              assert( !pPager->tempFile );
sl@0
  2631
              rc = sqlite3OsOpen(pVfs, pPager->zJournal, pPager->jfd, f, &fout);
sl@0
  2632
              assert( rc!=SQLITE_OK || pPager->jfd->pMethods );
sl@0
  2633
              if( fout&SQLITE_OPEN_READONLY ){
sl@0
  2634
                rc = SQLITE_BUSY;
sl@0
  2635
                sqlite3OsClose(pPager->jfd);
sl@0
  2636
              }
sl@0
  2637
            }else{
sl@0
  2638
              /* If the journal does not exist, that means some other process
sl@0
  2639
              ** has already rolled it back */
sl@0
  2640
              rc = SQLITE_BUSY;
sl@0
  2641
            }
sl@0
  2642
          }
sl@0
  2643
        }
sl@0
  2644
        if( rc!=SQLITE_OK ){
sl@0
  2645
          if( rc!=SQLITE_NOMEM && rc!=SQLITE_IOERR_UNLOCK 
sl@0
  2646
           && rc!=SQLITE_IOERR_NOMEM 
sl@0
  2647
          ){
sl@0
  2648
            rc = SQLITE_BUSY;
sl@0
  2649
          }
sl@0
  2650
          goto failed;
sl@0
  2651
        }
sl@0
  2652
        pPager->journalOpen = 1;
sl@0
  2653
        pPager->journalStarted = 0;
sl@0
  2654
        pPager->journalOff = 0;
sl@0
  2655
        pPager->setMaster = 0;
sl@0
  2656
        pPager->journalHdr = 0;
sl@0
  2657
 
sl@0
  2658
        /* Playback and delete the journal.  Drop the database write
sl@0
  2659
        ** lock and reacquire the read lock.
sl@0
  2660
        */
sl@0
  2661
        rc = pager_playback(pPager, 1);
sl@0
  2662
        if( rc!=SQLITE_OK ){
sl@0
  2663
          rc = pager_error(pPager, rc);
sl@0
  2664
          goto failed;
sl@0
  2665
        }
sl@0
  2666
        assert(pPager->state==PAGER_SHARED || 
sl@0
  2667
            (pPager->exclusiveMode && pPager->state>PAGER_SHARED)
sl@0
  2668
        );
sl@0
  2669
      }
sl@0
  2670
sl@0
  2671
      if( sqlite3PcachePagecount(pPager->pPCache)>0 ){
sl@0
  2672
        /* The shared-lock has just been acquired on the database file
sl@0
  2673
        ** and there are already pages in the cache (from a previous
sl@0
  2674
        ** read or write transaction).  Check to see if the database
sl@0
  2675
        ** has been modified.  If the database has changed, flush the
sl@0
  2676
        ** cache.
sl@0
  2677
        **
sl@0
  2678
        ** Database changes is detected by looking at 15 bytes beginning
sl@0
  2679
        ** at offset 24 into the file.  The first 4 of these 16 bytes are
sl@0
  2680
        ** a 32-bit counter that is incremented with each change.  The
sl@0
  2681
        ** other bytes change randomly with each file change when
sl@0
  2682
        ** a codec is in use.
sl@0
  2683
        ** 
sl@0
  2684
        ** There is a vanishingly small chance that a change will not be 
sl@0
  2685
        ** detected.  The chance of an undetected change is so small that
sl@0
  2686
        ** it can be neglected.
sl@0
  2687
        */
sl@0
  2688
        char dbFileVers[sizeof(pPager->dbFileVers)];
sl@0
  2689
        sqlite3PagerPagecount(pPager, 0);
sl@0
  2690
sl@0
  2691
        if( pPager->errCode ){
sl@0
  2692
          rc = pPager->errCode;
sl@0
  2693
          goto failed;
sl@0
  2694
        }
sl@0
  2695
sl@0
  2696
        if( pPager->dbSize>0 ){
sl@0
  2697
          IOTRACE(("CKVERS %p %d\n", pPager, sizeof(dbFileVers)));
sl@0
  2698
          rc = sqlite3OsRead(pPager->fd, &dbFileVers, sizeof(dbFileVers), 24);
sl@0
  2699
          if( rc!=SQLITE_OK ){
sl@0
  2700
            goto failed;
sl@0
  2701
          }
sl@0
  2702
        }else{
sl@0
  2703
          memset(dbFileVers, 0, sizeof(dbFileVers));
sl@0
  2704
        }
sl@0
  2705
sl@0
  2706
        if( memcmp(pPager->dbFileVers, dbFileVers, sizeof(dbFileVers))!=0 ){
sl@0
  2707
          pager_reset(pPager);
sl@0
  2708
        }
sl@0
  2709
      }
sl@0
  2710
    }
sl@0
  2711
    assert( pPager->exclusiveMode || pPager->state<=PAGER_SHARED );
sl@0
  2712
    if( pPager->state==PAGER_UNLOCK ){
sl@0
  2713
      pPager->state = PAGER_SHARED;
sl@0
  2714
    }
sl@0
  2715
  }
sl@0
  2716
sl@0
  2717
 failed:
sl@0
  2718
  if( rc!=SQLITE_OK ){
sl@0
  2719
    /* pager_unlock() is a no-op for exclusive mode and in-memory databases. */
sl@0
  2720
    pager_unlock(pPager);
sl@0
  2721
  }
sl@0
  2722
  return rc;
sl@0
  2723
}
sl@0
  2724
sl@0
  2725
/*
sl@0
  2726
** Make sure we have the content for a page.  If the page was
sl@0
  2727
** previously acquired with noContent==1, then the content was
sl@0
  2728
** just initialized to zeros instead of being read from disk.
sl@0
  2729
** But now we need the real data off of disk.  So make sure we
sl@0
  2730
** have it.  Read it in if we do not have it already.
sl@0
  2731
*/
sl@0
  2732
static int pager_get_content(PgHdr *pPg){
sl@0
  2733
  if( pPg->flags&PGHDR_NEED_READ ){
sl@0
  2734
    int rc = readDbPage(pPg->pPager, pPg, pPg->pgno);
sl@0
  2735
    if( rc==SQLITE_OK ){
sl@0
  2736
      pPg->flags &= ~PGHDR_NEED_READ;
sl@0
  2737
    }else{
sl@0
  2738
      return rc;
sl@0
  2739
    }
sl@0
  2740
  }
sl@0
  2741
  return SQLITE_OK;
sl@0
  2742
}
sl@0
  2743
sl@0
  2744
/*
sl@0
  2745
** If the reference count has reached zero, and the pager is not in the
sl@0
  2746
** middle of a write transaction or opened in exclusive mode, unlock it.
sl@0
  2747
*/ 
sl@0
  2748
static void pagerUnlockIfUnused(Pager *pPager){
sl@0
  2749
  if( (sqlite3PcacheRefCount(pPager->pPCache)==0)
sl@0
  2750
    && (!pPager->exclusiveMode || pPager->journalOff>0) 
sl@0
  2751
  ){
sl@0
  2752
    pagerUnlockAndRollback(pPager);
sl@0
  2753
  }
sl@0
  2754
}
sl@0
  2755
sl@0
  2756
/*
sl@0
  2757
** Drop a page from the cache using sqlite3PcacheDrop().
sl@0
  2758
**
sl@0
  2759
** If this means there are now no pages with references to them, a rollback
sl@0
  2760
** occurs and the lock on the database is removed.
sl@0
  2761
*/
sl@0
  2762
static void pagerDropPage(DbPage *pPg){
sl@0
  2763
  Pager *pPager = pPg->pPager;
sl@0
  2764
  sqlite3PcacheDrop(pPg);
sl@0
  2765
  pagerUnlockIfUnused(pPager);
sl@0
  2766
}
sl@0
  2767
sl@0
  2768
/*
sl@0
  2769
** Acquire a page.
sl@0
  2770
**
sl@0
  2771
** A read lock on the disk file is obtained when the first page is acquired. 
sl@0
  2772
** This read lock is dropped when the last page is released.
sl@0
  2773
**
sl@0
  2774
** This routine works for any page number greater than 0.  If the database
sl@0
  2775
** file is smaller than the requested page, then no actual disk
sl@0
  2776
** read occurs and the memory image of the page is initialized to
sl@0
  2777
** all zeros.  The extra data appended to a page is always initialized
sl@0
  2778
** to zeros the first time a page is loaded into memory.
sl@0
  2779
**
sl@0
  2780
** The acquisition might fail for several reasons.  In all cases,
sl@0
  2781
** an appropriate error code is returned and *ppPage is set to NULL.
sl@0
  2782
**
sl@0
  2783
** See also sqlite3PagerLookup().  Both this routine and Lookup() attempt
sl@0
  2784
** to find a page in the in-memory cache first.  If the page is not already
sl@0
  2785
** in memory, this routine goes to disk to read it in whereas Lookup()
sl@0
  2786
** just returns 0.  This routine acquires a read-lock the first time it
sl@0
  2787
** has to go to disk, and could also playback an old journal if necessary.
sl@0
  2788
** Since Lookup() never goes to disk, it never has to deal with locks
sl@0
  2789
** or journal files.
sl@0
  2790
**
sl@0
  2791
** If noContent is false, the page contents are actually read from disk.
sl@0
  2792
** If noContent is true, it means that we do not care about the contents
sl@0
  2793
** of the page at this time, so do not do a disk read.  Just fill in the
sl@0
  2794
** page content with zeros.  But mark the fact that we have not read the
sl@0
  2795
** content by setting the PgHdr.needRead flag.  Later on, if 
sl@0
  2796
** sqlite3PagerWrite() is called on this page or if this routine is
sl@0
  2797
** called again with noContent==0, that means that the content is needed
sl@0
  2798
** and the disk read should occur at that point.
sl@0
  2799
*/
sl@0
  2800
int sqlite3PagerAcquire(
sl@0
  2801
  Pager *pPager,      /* The pager open on the database file */
sl@0
  2802
  Pgno pgno,          /* Page number to fetch */
sl@0
  2803
  DbPage **ppPage,    /* Write a pointer to the page here */
sl@0
  2804
  int noContent       /* Do not bother reading content from disk if true */
sl@0
  2805
){
sl@0
  2806
  PgHdr *pPg = 0;
sl@0
  2807
  int rc;
sl@0
  2808
sl@0
  2809
  assert( pPager->state==PAGER_UNLOCK 
sl@0
  2810
       || sqlite3PcacheRefCount(pPager->pPCache)>0 
sl@0
  2811
       || pgno==1 
sl@0
  2812
  );
sl@0
  2813
sl@0
  2814
  /* The maximum page number is 2^31. Return SQLITE_CORRUPT if a page
sl@0
  2815
  ** number greater than this, or zero, is requested.
sl@0
  2816
  */
sl@0
  2817
  if( pgno>PAGER_MAX_PGNO || pgno==0 || pgno==PAGER_MJ_PGNO(pPager) ){
sl@0
  2818
    return SQLITE_CORRUPT_BKPT;
sl@0
  2819
  }
sl@0
  2820
sl@0
  2821
  /* Make sure we have not hit any critical errors.
sl@0
  2822
  */ 
sl@0
  2823
  assert( pPager!=0 );
sl@0
  2824
  *ppPage = 0;
sl@0
  2825
sl@0
  2826
  /* If this is the first page accessed, then get a SHARED lock
sl@0
  2827
  ** on the database file. pagerSharedLock() is a no-op if 
sl@0
  2828
  ** a database lock is already held.
sl@0
  2829
  */
sl@0
  2830
  rc = pagerSharedLock(pPager);
sl@0
  2831
  if( rc!=SQLITE_OK ){
sl@0
  2832
    return rc;
sl@0
  2833
  }
sl@0
  2834
  assert( pPager->state!=PAGER_UNLOCK );
sl@0
  2835
sl@0
  2836
  rc = sqlite3PcacheFetch(pPager->pPCache, pgno, 1, &pPg);
sl@0
  2837
  if( rc!=SQLITE_OK ){
sl@0
  2838
    return rc;
sl@0
  2839
  }
sl@0
  2840
  if( pPg->pPager==0 ){
sl@0
  2841
    /* The pager cache has created a new page. Its content needs to 
sl@0
  2842
    ** be initialized.
sl@0
  2843
    */
sl@0
  2844
    int nMax;
sl@0
  2845
    PAGER_INCR(pPager->nMiss);
sl@0
  2846
    pPg->pPager = pPager;
sl@0
  2847
    if( sqlite3BitvecTest(pPager->pInJournal, pgno) ){
sl@0
  2848
      assert( !MEMDB );
sl@0
  2849
      pPg->flags |= PGHDR_IN_JOURNAL;
sl@0
  2850
    }
sl@0
  2851
    memset(pPg->pExtra, 0, pPager->nExtra);
sl@0
  2852
sl@0
  2853
    rc = sqlite3PagerPagecount(pPager, &nMax);
sl@0
  2854
    if( rc!=SQLITE_OK ){
sl@0
  2855
      sqlite3PagerUnref(pPg);
sl@0
  2856
      return rc;
sl@0
  2857
    }
sl@0
  2858
sl@0
  2859
    if( nMax<(int)pgno || MEMDB || noContent ){
sl@0
  2860
      if( pgno>pPager->mxPgno ){
sl@0
  2861
        sqlite3PagerUnref(pPg);
sl@0
  2862
        return SQLITE_FULL;
sl@0
  2863
      }
sl@0
  2864
      memset(pPg->pData, 0, pPager->pageSize);
sl@0
  2865
      if( noContent ){
sl@0
  2866
        pPg->flags |= PGHDR_NEED_READ;
sl@0
  2867
      }
sl@0
  2868
      IOTRACE(("ZERO %p %d\n", pPager, pgno));
sl@0
  2869
    }else{
sl@0
  2870
      rc = readDbPage(pPager, pPg, pgno);
sl@0
  2871
      if( rc!=SQLITE_OK && rc!=SQLITE_IOERR_SHORT_READ ){
sl@0
  2872
        /* sqlite3PagerUnref(pPg); */
sl@0
  2873
        pagerDropPage(pPg);
sl@0
  2874
        return rc;
sl@0
  2875
      }
sl@0
  2876
    }
sl@0
  2877
#ifdef SQLITE_CHECK_PAGES
sl@0
  2878
    pPg->pageHash = pager_pagehash(pPg);
sl@0
  2879
#endif
sl@0
  2880
  }else{
sl@0
  2881
    /* The requested page is in the page cache. */
sl@0
  2882
    assert(sqlite3PcacheRefCount(pPager->pPCache)>0 || pgno==1);
sl@0
  2883
    PAGER_INCR(pPager->nHit);
sl@0
  2884
    if( !noContent ){
sl@0
  2885
      rc = pager_get_content(pPg);
sl@0
  2886
      if( rc ){
sl@0
  2887
        sqlite3PagerUnref(pPg);
sl@0
  2888
        return rc;
sl@0
  2889
      }
sl@0
  2890
    }
sl@0
  2891
  }
sl@0
  2892
sl@0
  2893
  *ppPage = pPg;
sl@0
  2894
  return SQLITE_OK;
sl@0
  2895
}
sl@0
  2896
sl@0
  2897
/*
sl@0
  2898
** Acquire a page if it is already in the in-memory cache.  Do
sl@0
  2899
** not read the page from disk.  Return a pointer to the page,
sl@0
  2900
** or 0 if the page is not in cache.
sl@0
  2901
**
sl@0
  2902
** See also sqlite3PagerGet().  The difference between this routine
sl@0
  2903
** and sqlite3PagerGet() is that _get() will go to the disk and read
sl@0
  2904
** in the page if the page is not already in cache.  This routine
sl@0
  2905
** returns NULL if the page is not in cache or if a disk I/O error 
sl@0
  2906
** has ever happened.
sl@0
  2907
*/
sl@0
  2908
DbPage *sqlite3PagerLookup(Pager *pPager, Pgno pgno){
sl@0
  2909
  PgHdr *pPg = 0;
sl@0
  2910
  assert( pPager!=0 );
sl@0
  2911
  assert( pgno!=0 );
sl@0
  2912
sl@0
  2913
  if( (pPager->state!=PAGER_UNLOCK)
sl@0
  2914
   && (pPager->errCode==SQLITE_OK || pPager->errCode==SQLITE_FULL)
sl@0
  2915
  ){
sl@0
  2916
    sqlite3PcacheFetch(pPager->pPCache, pgno, 0, &pPg);
sl@0
  2917
  }
sl@0
  2918
sl@0
  2919
  return pPg;
sl@0
  2920
}
sl@0
  2921
sl@0
  2922
/*
sl@0
  2923
** Release a page.
sl@0
  2924
**
sl@0
  2925
** If the number of references to the page drop to zero, then the
sl@0
  2926
** page is added to the LRU list.  When all references to all pages
sl@0
  2927
** are released, a rollback occurs and the lock on the database is
sl@0
  2928
** removed.
sl@0
  2929
*/
sl@0
  2930
int sqlite3PagerUnref(DbPage *pPg){
sl@0
  2931
  if( pPg ){
sl@0
  2932
    Pager *pPager = pPg->pPager;
sl@0
  2933
    sqlite3PcacheRelease(pPg);
sl@0
  2934
    pagerUnlockIfUnused(pPager);
sl@0
  2935
  }
sl@0
  2936
  return SQLITE_OK;
sl@0
  2937
}
sl@0
  2938
sl@0
  2939
/*
sl@0
  2940
** Create a journal file for pPager.  There should already be a RESERVED
sl@0
  2941
** or EXCLUSIVE lock on the database file when this routine is called.
sl@0
  2942
**
sl@0
  2943
** Return SQLITE_OK if everything.  Return an error code and release the
sl@0
  2944
** write lock if anything goes wrong.
sl@0
  2945
*/
sl@0
  2946
static int pager_open_journal(Pager *pPager){
sl@0
  2947
  sqlite3_vfs *pVfs = pPager->pVfs;
sl@0
  2948
  int flags = (SQLITE_OPEN_READWRITE|SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_CREATE);
sl@0
  2949
sl@0
  2950
  int rc;
sl@0
  2951
  assert( !MEMDB );
sl@0
  2952
  assert( pPager->state>=PAGER_RESERVED );
sl@0
  2953
  assert( pPager->useJournal );
sl@0
  2954
  assert( pPager->pInJournal==0 );
sl@0
  2955
  sqlite3PagerPagecount(pPager, 0);
sl@0
  2956
  pPager->pInJournal = sqlite3BitvecCreate(pPager->dbSize);
sl@0
  2957
  if( pPager->pInJournal==0 ){
sl@0
  2958
    rc = SQLITE_NOMEM;
sl@0
  2959
    goto failed_to_open_journal;
sl@0
  2960
  }
sl@0
  2961
sl@0
  2962
  if( pPager->journalOpen==0 ){
sl@0
  2963
    if( pPager->tempFile ){
sl@0
  2964
      flags |= (SQLITE_OPEN_DELETEONCLOSE|SQLITE_OPEN_TEMP_JOURNAL);
sl@0
  2965
    }else{
sl@0
  2966
      flags |= (SQLITE_OPEN_MAIN_JOURNAL);
sl@0
  2967
    }
sl@0
  2968
#ifdef SQLITE_ENABLE_ATOMIC_WRITE
sl@0
  2969
    rc = sqlite3JournalOpen(
sl@0
  2970
        pVfs, pPager->zJournal, pPager->jfd, flags, jrnlBufferSize(pPager)
sl@0
  2971
    );
sl@0
  2972
#else
sl@0
  2973
    rc = sqlite3OsOpen(pVfs, pPager->zJournal, pPager->jfd, flags, 0);
sl@0
  2974
#endif
sl@0
  2975
    assert( rc!=SQLITE_OK || pPager->jfd->pMethods );
sl@0
  2976
    pPager->journalOff = 0;
sl@0
  2977
    pPager->setMaster = 0;
sl@0
  2978
    pPager->journalHdr = 0;
sl@0
  2979
    if( rc!=SQLITE_OK ){
sl@0
  2980
      if( rc==SQLITE_NOMEM ){
sl@0
  2981
        sqlite3OsDelete(pVfs, pPager->zJournal, 0);
sl@0
  2982
      }
sl@0
  2983
      goto failed_to_open_journal;
sl@0
  2984
    }
sl@0
  2985
  }
sl@0
  2986
  pPager->journalOpen = 1;
sl@0
  2987
  pPager->journalStarted = 0;
sl@0
  2988
  pPager->needSync = 0;
sl@0
  2989
  pPager->nRec = 0;
sl@0
  2990
  if( pPager->errCode ){
sl@0
  2991
    rc = pPager->errCode;
sl@0
  2992
    goto failed_to_open_journal;
sl@0
  2993
  }
sl@0
  2994
  pPager->origDbSize = pPager->dbSize;
sl@0
  2995
sl@0
  2996
  rc = writeJournalHdr(pPager);
sl@0
  2997
sl@0
  2998
  if( pPager->stmtAutoopen && rc==SQLITE_OK ){
sl@0
  2999
    rc = sqlite3PagerStmtBegin(pPager);
sl@0
  3000
  }
sl@0
  3001
  if( rc!=SQLITE_OK && rc!=SQLITE_NOMEM && rc!=SQLITE_IOERR_NOMEM ){
sl@0
  3002
    rc = pager_end_transaction(pPager, 0);
sl@0
  3003
    if( rc==SQLITE_OK ){
sl@0
  3004
      rc = SQLITE_FULL;
sl@0
  3005
    }
sl@0
  3006
  }
sl@0
  3007
  return rc;
sl@0
  3008
sl@0
  3009
failed_to_open_journal:
sl@0
  3010
  sqlite3BitvecDestroy(pPager->pInJournal);
sl@0
  3011
  pPager->pInJournal = 0;
sl@0
  3012
  return rc;
sl@0
  3013
}
sl@0
  3014
sl@0
  3015
/*
sl@0
  3016
** Acquire a write-lock on the database.  The lock is removed when
sl@0
  3017
** the any of the following happen:
sl@0
  3018
**
sl@0
  3019
**   *  sqlite3PagerCommitPhaseTwo() is called.
sl@0
  3020
**   *  sqlite3PagerRollback() is called.
sl@0
  3021
**   *  sqlite3PagerClose() is called.
sl@0
  3022
**   *  sqlite3PagerUnref() is called to on every outstanding page.
sl@0
  3023
**
sl@0
  3024
** The first parameter to this routine is a pointer to any open page of the
sl@0
  3025
** database file.  Nothing changes about the page - it is used merely to
sl@0
  3026
** acquire a pointer to the Pager structure and as proof that there is
sl@0
  3027
** already a read-lock on the database.
sl@0
  3028
**
sl@0
  3029
** The second parameter indicates how much space in bytes to reserve for a
sl@0
  3030
** master journal file-name at the start of the journal when it is created.
sl@0
  3031
**
sl@0
  3032
** A journal file is opened if this is not a temporary file.  For temporary
sl@0
  3033
** files, the opening of the journal file is deferred until there is an
sl@0
  3034
** actual need to write to the journal.
sl@0
  3035
**
sl@0
  3036
** If the database is already reserved for writing, this routine is a no-op.
sl@0
  3037
**
sl@0
  3038
** If exFlag is true, go ahead and get an EXCLUSIVE lock on the file
sl@0
  3039
** immediately instead of waiting until we try to flush the cache.  The
sl@0
  3040
** exFlag is ignored if a transaction is already active.
sl@0
  3041
*/
sl@0
  3042
int sqlite3PagerBegin(DbPage *pPg, int exFlag){
sl@0
  3043
  Pager *pPager = pPg->pPager;
sl@0
  3044
  int rc = SQLITE_OK;
sl@0
  3045
  assert( pPg->nRef>0 );
sl@0
  3046
  assert( pPager->state!=PAGER_UNLOCK );
sl@0
  3047
  if( pPager->state==PAGER_SHARED ){
sl@0
  3048
    assert( pPager->pInJournal==0 );
sl@0
  3049
    sqlite3PcacheAssertFlags(pPager->pPCache, 0, PGHDR_IN_JOURNAL);
sl@0
  3050
    if( MEMDB ){
sl@0
  3051
      pPager->state = PAGER_EXCLUSIVE;
sl@0
  3052
      pPager->origDbSize = pPager->dbSize;
sl@0
  3053
    }else{
sl@0
  3054
      rc = sqlite3OsLock(pPager->fd, RESERVED_LOCK);
sl@0
  3055
      if( rc==SQLITE_OK ){
sl@0
  3056
        pPager->state = PAGER_RESERVED;
sl@0
  3057
        if( exFlag ){
sl@0
  3058
          rc = pager_wait_on_lock(pPager, EXCLUSIVE_LOCK);
sl@0
  3059
        }
sl@0
  3060
      }
sl@0
  3061
      if( rc!=SQLITE_OK ){
sl@0
  3062
        return rc;
sl@0
  3063
      }
sl@0
  3064
      pPager->dirtyCache = 0;
sl@0
  3065
      PAGERTRACE2("TRANSACTION %d\n", PAGERID(pPager));
sl@0
  3066
      if( pPager->useJournal && !pPager->tempFile
sl@0
  3067
             && pPager->journalMode!=PAGER_JOURNALMODE_OFF ){
sl@0
  3068
        rc = pager_open_journal(pPager);
sl@0
  3069
      }
sl@0
  3070
    }
sl@0
  3071
  }else if( pPager->journalOpen && pPager->journalOff==0 ){
sl@0
  3072
    /* This happens when the pager was in exclusive-access mode the last
sl@0
  3073
    ** time a (read or write) transaction was successfully concluded
sl@0
  3074
    ** by this connection. Instead of deleting the journal file it was 
sl@0
  3075
    ** kept open and either was truncated to 0 bytes or its header was
sl@0
  3076
    ** overwritten with zeros.
sl@0
  3077
    */
sl@0
  3078
    assert( pPager->nRec==0 );
sl@0
  3079
    assert( pPager->origDbSize==0 );
sl@0
  3080
    assert( pPager->pInJournal==0 );
sl@0
  3081
    sqlite3PagerPagecount(pPager, 0);
sl@0
  3082
    pPager->pInJournal = sqlite3BitvecCreate( pPager->dbSize );
sl@0
  3083
    if( !pPager->pInJournal ){
sl@0
  3084
      rc = SQLITE_NOMEM;
sl@0
  3085
    }else{
sl@0
  3086
      pPager->origDbSize = pPager->dbSize;
sl@0
  3087
      rc = writeJournalHdr(pPager);
sl@0
  3088
    }
sl@0
  3089
  }
sl@0
  3090
  assert( !pPager->journalOpen || pPager->journalOff>0 || rc!=SQLITE_OK );
sl@0
  3091
  return rc;
sl@0
  3092
}
sl@0
  3093
sl@0
  3094
/*
sl@0
  3095
** Make a page dirty.  Set its dirty flag and add it to the dirty
sl@0
  3096
** page list.
sl@0
  3097
*/
sl@0
  3098
static void makeDirty(PgHdr *pPg){
sl@0
  3099
  sqlite3PcacheMakeDirty(pPg);
sl@0
  3100
}
sl@0
  3101
sl@0
  3102
/*
sl@0
  3103
** Make a page clean.  Clear its dirty bit and remove it from the
sl@0
  3104
** dirty page list.
sl@0
  3105
*/
sl@0
  3106
static void makeClean(PgHdr *pPg){
sl@0
  3107
  sqlite3PcacheMakeClean(pPg);
sl@0
  3108
}
sl@0
  3109
sl@0
  3110
sl@0
  3111
/*
sl@0
  3112
** Mark a data page as writeable.  The page is written into the journal 
sl@0
  3113
** if it is not there already.  This routine must be called before making
sl@0
  3114
** changes to a page.
sl@0
  3115
**
sl@0
  3116
** The first time this routine is called, the pager creates a new
sl@0
  3117
** journal and acquires a RESERVED lock on the database.  If the RESERVED
sl@0
  3118
** lock could not be acquired, this routine returns SQLITE_BUSY.  The
sl@0
  3119
** calling routine must check for that return value and be careful not to
sl@0
  3120
** change any page data until this routine returns SQLITE_OK.
sl@0
  3121
**
sl@0
  3122
** If the journal file could not be written because the disk is full,
sl@0
  3123
** then this routine returns SQLITE_FULL and does an immediate rollback.
sl@0
  3124
** All subsequent write attempts also return SQLITE_FULL until there
sl@0
  3125
** is a call to sqlite3PagerCommit() or sqlite3PagerRollback() to
sl@0
  3126
** reset.
sl@0
  3127
*/
sl@0
  3128
static int pager_write(PgHdr *pPg){
sl@0
  3129
  void *pData = pPg->pData;
sl@0
  3130
  Pager *pPager = pPg->pPager;
sl@0
  3131
  int rc = SQLITE_OK;
sl@0
  3132
sl@0
  3133
  /* Check for errors
sl@0
  3134
  */
sl@0
  3135
  if( pPager->errCode ){ 
sl@0
  3136
    return pPager->errCode;
sl@0
  3137
  }
sl@0
  3138
  if( pPager->readOnly ){
sl@0
  3139
    return SQLITE_PERM;
sl@0
  3140
  }
sl@0
  3141
sl@0
  3142
  assert( !pPager->setMaster );
sl@0
  3143
sl@0
  3144
  CHECK_PAGE(pPg);
sl@0
  3145
sl@0
  3146
  /* If this page was previously acquired with noContent==1, that means
sl@0
  3147
  ** we didn't really read in the content of the page.  This can happen
sl@0
  3148
  ** (for example) when the page is being moved to the freelist.  But
sl@0
  3149
  ** now we are (perhaps) moving the page off of the freelist for
sl@0
  3150
  ** reuse and we need to know its original content so that content
sl@0
  3151
  ** can be stored in the rollback journal.  So do the read at this
sl@0
  3152
  ** time.
sl@0
  3153
  */
sl@0
  3154
  rc = pager_get_content(pPg);
sl@0
  3155
  if( rc ){
sl@0
  3156
    return rc;
sl@0
  3157
  }
sl@0
  3158
sl@0
  3159
  /* Mark the page as dirty.  If the page has already been written
sl@0
  3160
  ** to the journal then we can return right away.
sl@0
  3161
  */
sl@0
  3162
  makeDirty(pPg);
sl@0
  3163
  if( (pPg->flags&PGHDR_IN_JOURNAL)
sl@0
  3164
   && (pageInStatement(pPg) || pPager->stmtInUse==0) 
sl@0
  3165
  ){
sl@0
  3166
    pPager->dirtyCache = 1;
sl@0
  3167
    pPager->dbModified = 1;
sl@0
  3168
  }else{
sl@0
  3169
sl@0
  3170
    /* If we get this far, it means that the page needs to be
sl@0
  3171
    ** written to the transaction journal or the ckeckpoint journal
sl@0
  3172
    ** or both.
sl@0
  3173
    **
sl@0
  3174
    ** First check to see that the transaction journal exists and
sl@0
  3175
    ** create it if it does not.
sl@0
  3176
    */
sl@0
  3177
    assert( pPager->state!=PAGER_UNLOCK );
sl@0
  3178
    rc = sqlite3PagerBegin(pPg, 0);
sl@0
  3179
    if( rc!=SQLITE_OK ){
sl@0
  3180
      return rc;
sl@0
  3181
    }
sl@0
  3182
    assert( pPager->state>=PAGER_RESERVED );
sl@0
  3183
    if( !pPager->journalOpen && pPager->useJournal
sl@0
  3184
          && pPager->journalMode!=PAGER_JOURNALMODE_OFF ){
sl@0
  3185
      rc = pager_open_journal(pPager);
sl@0
  3186
      if( rc!=SQLITE_OK ) return rc;
sl@0
  3187
    }
sl@0
  3188
    pPager->dirtyCache = 1;
sl@0
  3189
    pPager->dbModified = 1;
sl@0
  3190
  
sl@0
  3191
    /* The transaction journal now exists and we have a RESERVED or an
sl@0
  3192
    ** EXCLUSIVE lock on the main database file.  Write the current page to
sl@0
  3193
    ** the transaction journal if it is not there already.
sl@0
  3194
    */
sl@0
  3195
    if( !(pPg->flags&PGHDR_IN_JOURNAL) && (pPager->journalOpen || MEMDB) ){
sl@0
  3196
      if( (int)pPg->pgno <= pPager->origDbSize ){
sl@0
  3197
        if( MEMDB ){
sl@0
  3198
          PAGERTRACE3("JOURNAL %d page %d\n", PAGERID(pPager), pPg->pgno);
sl@0
  3199
          rc = sqlite3PcachePreserve(pPg, 0);
sl@0
  3200
          if( rc!=SQLITE_OK ){
sl@0
  3201
            return rc;
sl@0
  3202
          }
sl@0
  3203
        }else{
sl@0
  3204
          u32 cksum;
sl@0
  3205
          char *pData2;
sl@0
  3206
sl@0
  3207
          /* We should never write to the journal file the page that
sl@0
  3208
          ** contains the database locks.  The following assert verifies
sl@0
  3209
          ** that we do not. */
sl@0
  3210
          assert( pPg->pgno!=PAGER_MJ_PGNO(pPager) );
sl@0
  3211
          pData2 = CODEC2(pPager, pData, pPg->pgno, 7);
sl@0
  3212
          cksum = pager_cksum(pPager, (u8*)pData2);
sl@0
  3213
          rc = write32bits(pPager->jfd, pPager->journalOff, pPg->pgno);
sl@0
  3214
          if( rc==SQLITE_OK ){
sl@0
  3215
            rc = sqlite3OsWrite(pPager->jfd, pData2, pPager->pageSize,
sl@0
  3216
                                pPager->journalOff + 4);
sl@0
  3217
            pPager->journalOff += pPager->pageSize+4;
sl@0
  3218
          }
sl@0
  3219
          if( rc==SQLITE_OK ){
sl@0
  3220
            rc = write32bits(pPager->jfd, pPager->journalOff, cksum);
sl@0
  3221
            pPager->journalOff += 4;
sl@0
  3222
          }
sl@0
  3223
          IOTRACE(("JOUT %p %d %lld %d\n", pPager, pPg->pgno, 
sl@0
  3224
                   pPager->journalOff, pPager->pageSize));
sl@0
  3225
          PAGER_INCR(sqlite3_pager_writej_count);
sl@0
  3226
          PAGERTRACE5("JOURNAL %d page %d needSync=%d hash(%08x)\n",
sl@0
  3227
               PAGERID(pPager), pPg->pgno, 
sl@0
  3228
               ((pPg->flags&PGHDR_NEED_SYNC)?1:0), pager_pagehash(pPg));
sl@0
  3229
sl@0
  3230
          /* An error has occured writing to the journal file. The 
sl@0
  3231
          ** transaction will be rolled back by the layer above.
sl@0
  3232
          */
sl@0
  3233
          if( rc!=SQLITE_OK ){
sl@0
  3234
            return rc;
sl@0
  3235
          }
sl@0
  3236
sl@0
  3237
          pPager->nRec++;
sl@0
  3238
          assert( pPager->pInJournal!=0 );
sl@0
  3239
          sqlite3BitvecSet(pPager->pInJournal, pPg->pgno);
sl@0
  3240
          if( !pPager->noSync ){
sl@0
  3241
            pPg->flags |= PGHDR_NEED_SYNC;
sl@0
  3242
          }
sl@0
  3243
          if( pPager->stmtInUse ){
sl@0
  3244
            sqlite3BitvecSet(pPager->pInStmt, pPg->pgno);
sl@0
  3245
          }
sl@0
  3246
        }
sl@0
  3247
      }else{
sl@0
  3248
        if( !pPager->journalStarted && !pPager->noSync ){
sl@0
  3249
          pPg->flags |= PGHDR_NEED_SYNC;
sl@0
  3250
        }
sl@0
  3251
        PAGERTRACE4("APPEND %d page %d needSync=%d\n",
sl@0
  3252
                PAGERID(pPager), pPg->pgno,
sl@0
  3253
               ((pPg->flags&PGHDR_NEED_SYNC)?1:0));
sl@0
  3254
      }
sl@0
  3255
      if( pPg->flags&PGHDR_NEED_SYNC ){
sl@0
  3256
        pPager->needSync = 1;
sl@0
  3257
      }
sl@0
  3258
      pPg->flags |= PGHDR_IN_JOURNAL;
sl@0
  3259
    }
sl@0
  3260
  
sl@0
  3261
    /* If the statement journal is open and the page is not in it,
sl@0
  3262
    ** then write the current page to the statement journal.  Note that
sl@0
  3263
    ** the statement journal format differs from the standard journal format
sl@0
  3264
    ** in that it omits the checksums and the header.
sl@0
  3265
    */
sl@0
  3266
    if( pPager->stmtInUse 
sl@0
  3267
     && !pageInStatement(pPg) 
sl@0
  3268
     && (int)pPg->pgno<=pPager->stmtSize 
sl@0
  3269
    ){
sl@0
  3270
      assert( (pPg->flags&PGHDR_IN_JOURNAL) 
sl@0
  3271
                 || (int)pPg->pgno>pPager->origDbSize );
sl@0
  3272
      if( MEMDB ){
sl@0
  3273
        rc = sqlite3PcachePreserve(pPg, 1);
sl@0
  3274
        if( rc!=SQLITE_OK ){
sl@0
  3275
          return rc;
sl@0
  3276
        }
sl@0
  3277
        PAGERTRACE3("STMT-JOURNAL %d page %d\n", PAGERID(pPager), pPg->pgno);
sl@0
  3278
      }else{
sl@0
  3279
        i64 offset = pPager->stmtNRec*(4+pPager->pageSize);
sl@0
  3280
        char *pData2 = CODEC2(pPager, pData, pPg->pgno, 7);
sl@0
  3281
        rc = write32bits(pPager->stfd, offset, pPg->pgno);
sl@0
  3282
        if( rc==SQLITE_OK ){
sl@0
  3283
          rc = sqlite3OsWrite(pPager->stfd, pData2, pPager->pageSize, offset+4);
sl@0
  3284
        }
sl@0
  3285
        PAGERTRACE3("STMT-JOURNAL %d page %d\n", PAGERID(pPager), pPg->pgno);
sl@0
  3286
        if( rc!=SQLITE_OK ){
sl@0
  3287
          return rc;
sl@0
  3288
        }
sl@0
  3289
        pPager->stmtNRec++;
sl@0
  3290
        assert( pPager->pInStmt!=0 );
sl@0
  3291
        sqlite3BitvecSet(pPager->pInStmt, pPg->pgno);
sl@0
  3292
      }
sl@0
  3293
    }
sl@0
  3294
  }
sl@0
  3295
sl@0
  3296
  /* Update the database size and return.
sl@0
  3297
  */
sl@0
  3298
  assert( pPager->state>=PAGER_SHARED );
sl@0
  3299
  if( pPager->dbSize<(int)pPg->pgno ){
sl@0
  3300
    pPager->dbSize = pPg->pgno;
sl@0
  3301
    if( !MEMDB && pPager->dbSize==PENDING_BYTE/pPager->pageSize ){
sl@0
  3302
      pPager->dbSize++;
sl@0
  3303
    }
sl@0
  3304
  }
sl@0
  3305
  return rc;
sl@0
  3306
}
sl@0
  3307
sl@0
  3308
/*
sl@0
  3309
** This function is used to mark a data-page as writable. It uses 
sl@0
  3310
** pager_write() to open a journal file (if it is not already open)
sl@0
  3311
** and write the page *pData to the journal.
sl@0
  3312
**
sl@0
  3313
** The difference between this function and pager_write() is that this
sl@0
  3314
** function also deals with the special case where 2 or more pages
sl@0
  3315
** fit on a single disk sector. In this case all co-resident pages
sl@0
  3316
** must have been written to the journal file before returning.
sl@0
  3317
*/
sl@0
  3318
int sqlite3PagerWrite(DbPage *pDbPage){
sl@0
  3319
  int rc = SQLITE_OK;
sl@0
  3320
sl@0
  3321
  PgHdr *pPg = pDbPage;
sl@0
  3322
  Pager *pPager = pPg->pPager;
sl@0
  3323
  Pgno nPagePerSector = (pPager->sectorSize/pPager->pageSize);
sl@0
  3324
sl@0
  3325
  if( !MEMDB && nPagePerSector>1 ){
sl@0
  3326
    Pgno nPageCount;          /* Total number of pages in database file */
sl@0
  3327
    Pgno pg1;                 /* First page of the sector pPg is located on. */
sl@0
  3328
    int nPage;                /* Number of pages starting at pg1 to journal */
sl@0
  3329
    int ii;
sl@0
  3330
    int needSync = 0;
sl@0
  3331
sl@0
  3332
    /* Set the doNotSync flag to 1. This is because we cannot allow a journal
sl@0
  3333
    ** header to be written between the pages journaled by this function.
sl@0
  3334
    */
sl@0
  3335
    assert( pPager->doNotSync==0 );
sl@0
  3336
    pPager->doNotSync = 1;
sl@0
  3337
sl@0
  3338
    /* This trick assumes that both the page-size and sector-size are
sl@0
  3339
    ** an integer power of 2. It sets variable pg1 to the identifier
sl@0
  3340
    ** of the first page of the sector pPg is located on.
sl@0
  3341
    */
sl@0
  3342
    pg1 = ((pPg->pgno-1) & ~(nPagePerSector-1)) + 1;
sl@0
  3343
sl@0
  3344
    sqlite3PagerPagecount(pPager, (int *)&nPageCount);
sl@0
  3345
    if( pPg->pgno>nPageCount ){
sl@0
  3346
      nPage = (pPg->pgno - pg1)+1;
sl@0
  3347
    }else if( (pg1+nPagePerSector-1)>nPageCount ){
sl@0
  3348
      nPage = nPageCount+1-pg1;
sl@0
  3349
    }else{
sl@0
  3350
      nPage = nPagePerSector;
sl@0
  3351
    }
sl@0
  3352
    assert(nPage>0);
sl@0
  3353
    assert(pg1<=pPg->pgno);
sl@0
  3354
    assert((pg1+nPage)>pPg->pgno);
sl@0
  3355
sl@0
  3356
    for(ii=0; ii<nPage && rc==SQLITE_OK; ii++){
sl@0
  3357
      Pgno pg = pg1+ii;
sl@0
  3358
      PgHdr *pPage;
sl@0
  3359
      if( pg==pPg->pgno || !sqlite3BitvecTest(pPager->pInJournal, pg) ){
sl@0
  3360
        if( pg!=PAGER_MJ_PGNO(pPager) ){
sl@0
  3361
          rc = sqlite3PagerGet(pPager, pg, &pPage);
sl@0
  3362
          if( rc==SQLITE_OK ){
sl@0
  3363
            rc = pager_write(pPage);
sl@0
  3364
            if( pPage->flags&PGHDR_NEED_SYNC ){
sl@0
  3365
              needSync = 1;
sl@0
  3366
            }
sl@0
  3367
            sqlite3PagerUnref(pPage);
sl@0
  3368
          }
sl@0
  3369
        }
sl@0
  3370
      }else if( (pPage = pager_lookup(pPager, pg))!=0 ){
sl@0
  3371
        if( pPage->flags&PGHDR_NEED_SYNC ){
sl@0
  3372
          needSync = 1;
sl@0
  3373
        }
sl@0
  3374
        sqlite3PagerUnref(pPage);
sl@0
  3375
      }
sl@0
  3376
    }
sl@0
  3377
sl@0
  3378
    /* If the PgHdr.needSync flag is set for any of the nPage pages 
sl@0
  3379
    ** starting at pg1, then it needs to be set for all of them. Because
sl@0
  3380
    ** writing to any of these nPage pages may damage the others, the
sl@0
  3381
    ** journal file must contain sync()ed copies of all of them
sl@0
  3382
    ** before any of them can be written out to the database file.
sl@0
  3383
    */
sl@0
  3384
    if( needSync ){
sl@0
  3385
      assert( !MEMDB && pPager->noSync==0 );
sl@0
  3386
      for(ii=0; ii<nPage && needSync; ii++){
sl@0
  3387
        PgHdr *pPage = pager_lookup(pPager, pg1+ii);
sl@0
  3388
        if( pPage ) pPage->flags |= PGHDR_NEED_SYNC;
sl@0
  3389
        sqlite3PagerUnref(pPage);
sl@0
  3390
      }
sl@0
  3391
      assert(pPager->needSync);
sl@0
  3392
    }
sl@0
  3393
sl@0
  3394
    assert( pPager->doNotSync==1 );
sl@0
  3395
    pPager->doNotSync = 0;
sl@0
  3396
  }else{
sl@0
  3397
    rc = pager_write(pDbPage);
sl@0
  3398
  }
sl@0
  3399
  return rc;
sl@0
  3400
}
sl@0
  3401
sl@0
  3402
/*
sl@0
  3403
** Return TRUE if the page given in the argument was previously passed
sl@0
  3404
** to sqlite3PagerWrite().  In other words, return TRUE if it is ok
sl@0
  3405
** to change the content of the page.
sl@0
  3406
*/
sl@0
  3407
#ifndef NDEBUG
sl@0
  3408
int sqlite3PagerIswriteable(DbPage *pPg){
sl@0
  3409
  return pPg->flags&PGHDR_DIRTY;
sl@0
  3410
}
sl@0
  3411
#endif
sl@0
  3412
sl@0
  3413
/*
sl@0
  3414
** A call to this routine tells the pager that it is not necessary to
sl@0
  3415
** write the information on page pPg back to the disk, even though
sl@0
  3416
** that page might be marked as dirty.
sl@0
  3417
**
sl@0
  3418
** The overlying software layer calls this routine when all of the data
sl@0
  3419
** on the given page is unused.  The pager marks the page as clean so
sl@0
  3420
** that it does not get written to disk.
sl@0
  3421
**
sl@0
  3422
** Tests show that this optimization, together with the
sl@0
  3423
** sqlite3PagerDontRollback() below, more than double the speed
sl@0
  3424
** of large INSERT operations and quadruple the speed of large DELETEs.
sl@0
  3425
**
sl@0
  3426
** When this routine is called, set the alwaysRollback flag to true.
sl@0
  3427
** Subsequent calls to sqlite3PagerDontRollback() for the same page
sl@0
  3428
** will thereafter be ignored.  This is necessary to avoid a problem
sl@0
  3429
** where a page with data is added to the freelist during one part of
sl@0
  3430
** a transaction then removed from the freelist during a later part
sl@0
  3431
** of the same transaction and reused for some other purpose.  When it
sl@0
  3432
** is first added to the freelist, this routine is called.  When reused,
sl@0
  3433
** the sqlite3PagerDontRollback() routine is called.  But because the
sl@0
  3434
** page contains critical data, we still need to be sure it gets
sl@0
  3435
** rolled back in spite of the sqlite3PagerDontRollback() call.
sl@0
  3436
*/
sl@0
  3437
int sqlite3PagerDontWrite(DbPage *pDbPage){
sl@0
  3438
  PgHdr *pPg = pDbPage;
sl@0
  3439
  Pager *pPager = pPg->pPager;
sl@0
  3440
  int rc;
sl@0
  3441
sl@0
  3442
  if( MEMDB || pPg->pgno>pPager->origDbSize ){
sl@0
  3443
    return SQLITE_OK;
sl@0
  3444
  }
sl@0
  3445
  if( pPager->pAlwaysRollback==0 ){
sl@0
  3446
    assert( pPager->pInJournal );
sl@0
  3447
    pPager->pAlwaysRollback = sqlite3BitvecCreate(pPager->origDbSize);
sl@0
  3448
    if( !pPager->pAlwaysRollback ){
sl@0
  3449
      return SQLITE_NOMEM;
sl@0
  3450
    }
sl@0
  3451
  }
sl@0
  3452
  rc = sqlite3BitvecSet(pPager->pAlwaysRollback, pPg->pgno);
sl@0
  3453
sl@0
  3454
  if( rc==SQLITE_OK && (pPg->flags&PGHDR_DIRTY) && !pPager->stmtInUse ){
sl@0
  3455
    assert( pPager->state>=PAGER_SHARED );
sl@0
  3456
    if( pPager->dbSize==(int)pPg->pgno && pPager->origDbSize<pPager->dbSize ){
sl@0
  3457
      /* If this pages is the last page in the file and the file has grown
sl@0
  3458
      ** during the current transaction, then do NOT mark the page as clean.
sl@0
  3459
      ** When the database file grows, we must make sure that the last page
sl@0
  3460
      ** gets written at least once so that the disk file will be the correct
sl@0
  3461
      ** size. If you do not write this page and the size of the file
sl@0
  3462
      ** on the disk ends up being too small, that can lead to database
sl@0
  3463
      ** corruption during the next transaction.
sl@0
  3464
      */
sl@0
  3465
    }else{
sl@0
  3466
      PAGERTRACE3("DONT_WRITE page %d of %d\n", pPg->pgno, PAGERID(pPager));
sl@0
  3467
      IOTRACE(("CLEAN %p %d\n", pPager, pPg->pgno))
sl@0
  3468
      pPg->flags |= PGHDR_DONT_WRITE;
sl@0
  3469
#ifdef SQLITE_CHECK_PAGES
sl@0
  3470
      pPg->pageHash = pager_pagehash(pPg);
sl@0
  3471
#endif
sl@0
  3472
    }
sl@0
  3473
  }
sl@0
  3474
  return rc;
sl@0
  3475
}
sl@0
  3476
sl@0
  3477
/*
sl@0
  3478
** A call to this routine tells the pager that if a rollback occurs,
sl@0
  3479
** it is not necessary to restore the data on the given page.  This
sl@0
  3480
** means that the pager does not have to record the given page in the
sl@0
  3481
** rollback journal.
sl@0
  3482
**
sl@0
  3483
** If we have not yet actually read the content of this page (if
sl@0
  3484
** the PgHdr.needRead flag is set) then this routine acts as a promise
sl@0
  3485
** that we will never need to read the page content in the future.
sl@0
  3486
** so the needRead flag can be cleared at this point.
sl@0
  3487
*/
sl@0
  3488
void sqlite3PagerDontRollback(DbPage *pPg){
sl@0
  3489
  Pager *pPager = pPg->pPager;
sl@0
  3490
sl@0
  3491
  assert( pPager->state>=PAGER_RESERVED );
sl@0
  3492
sl@0
  3493
  /* If the journal file is not open, or DontWrite() has been called on
sl@0
  3494
  ** this page (DontWrite() sets the alwaysRollback flag), then this
sl@0
  3495
  ** function is a no-op.
sl@0
  3496
  */
sl@0
  3497
  if( pPager->journalOpen==0 
sl@0
  3498
   || sqlite3BitvecTest(pPager->pAlwaysRollback, pPg->pgno)
sl@0
  3499
   || pPg->pgno>pPager->origDbSize
sl@0
  3500
  ){
sl@0
  3501
    return;
sl@0
  3502
  }
sl@0
  3503
  assert( !MEMDB );    /* For a memdb, pPager->journalOpen is always 0 */
sl@0
  3504
sl@0
  3505
#ifdef SQLITE_SECURE_DELETE
sl@0
  3506
  if( (pPg->flags & PGHDR_IN_JOURNAL)!=0 || (int)pPg->pgno>pPager->origDbSize ){
sl@0
  3507
    return;
sl@0
  3508
  }
sl@0
  3509
#endif
sl@0
  3510
sl@0
  3511
  /* If SECURE_DELETE is disabled, then there is no way that this
sl@0
  3512
  ** routine can be called on a page for which sqlite3PagerDontWrite()
sl@0
  3513
  ** has not been previously called during the same transaction.
sl@0
  3514
  ** And if DontWrite() has previously been called, the following
sl@0
  3515
  ** conditions must be met.
sl@0
  3516
  **
sl@0
  3517
  ** (Later:)  Not true.  If the database is corrupted by having duplicate
sl@0
  3518
  ** pages on the freelist (ex: corrupt9.test) then the following is not
sl@0
  3519
  ** necessarily true:
sl@0
  3520
  */
sl@0
  3521
  /* assert( !pPg->inJournal && (int)pPg->pgno <= pPager->origDbSize ); */
sl@0
  3522
sl@0
  3523
  assert( pPager->pInJournal!=0 );
sl@0
  3524
  sqlite3BitvecSet(pPager->pInJournal, pPg->pgno);
sl@0
  3525
  pPg->flags |= PGHDR_IN_JOURNAL;
sl@0
  3526
  pPg->flags &= ~PGHDR_NEED_READ;
sl@0
  3527
  if( pPager->stmtInUse ){
sl@0
  3528
    assert( pPager->stmtSize >= pPager->origDbSize );
sl@0
  3529
    sqlite3BitvecSet(pPager->pInStmt, pPg->pgno);
sl@0
  3530
  }
sl@0
  3531
  PAGERTRACE3("DONT_ROLLBACK page %d of %d\n", pPg->pgno, PAGERID(pPager));
sl@0
  3532
  IOTRACE(("GARBAGE %p %d\n", pPager, pPg->pgno))
sl@0
  3533
}
sl@0
  3534
sl@0
  3535
sl@0
  3536
/*
sl@0
  3537
** This routine is called to increment the database file change-counter,
sl@0
  3538
** stored at byte 24 of the pager file.
sl@0
  3539
*/
sl@0
  3540
static int pager_incr_changecounter(Pager *pPager, int isDirect){
sl@0
  3541
  PgHdr *pPgHdr;
sl@0
  3542
  u32 change_counter;
sl@0
  3543
  int rc = SQLITE_OK;
sl@0
  3544
sl@0
  3545
#ifndef SQLITE_ENABLE_ATOMIC_WRITE
sl@0
  3546
  assert( isDirect==0 );  /* isDirect is only true for atomic writes */
sl@0
  3547
#endif
sl@0
  3548
  if( !pPager->changeCountDone ){
sl@0
  3549
    /* Open page 1 of the file for writing. */
sl@0
  3550
    rc = sqlite3PagerGet(pPager, 1, &pPgHdr);
sl@0
  3551
    if( rc!=SQLITE_OK ) return rc;
sl@0
  3552
sl@0
  3553
    if( !isDirect ){
sl@0
  3554
      rc = sqlite3PagerWrite(pPgHdr);
sl@0
  3555
      if( rc!=SQLITE_OK ){
sl@0
  3556
        sqlite3PagerUnref(pPgHdr);
sl@0
  3557
        return rc;
sl@0
  3558
      }
sl@0
  3559
    }
sl@0
  3560
sl@0
  3561
    /* Increment the value just read and write it back to byte 24. */
sl@0
  3562
    change_counter = sqlite3Get4byte((u8*)pPager->dbFileVers);
sl@0
  3563
    change_counter++;
sl@0
  3564
    put32bits(((char*)pPgHdr->pData)+24, change_counter);
sl@0
  3565
sl@0
  3566
#ifdef SQLITE_ENABLE_ATOMIC_WRITE
sl@0
  3567
    if( isDirect && pPager->fd->pMethods ){
sl@0
  3568
      const void *zBuf = pPgHdr->pData;
sl@0
  3569
      rc = sqlite3OsWrite(pPager->fd, zBuf, pPager->pageSize, 0);
sl@0
  3570
    }
sl@0
  3571
#endif
sl@0
  3572
sl@0
  3573
    /* Release the page reference. */
sl@0
  3574
    sqlite3PagerUnref(pPgHdr);
sl@0
  3575
    pPager->changeCountDone = 1;
sl@0
  3576
  }
sl@0
  3577
  return rc;
sl@0
  3578
}
sl@0
  3579
sl@0
  3580
/*
sl@0
  3581
** Sync the pager file to disk.
sl@0
  3582
*/
sl@0
  3583
int sqlite3PagerSync(Pager *pPager){
sl@0
  3584
  int rc;
sl@0
  3585
  if( MEMDB ){
sl@0
  3586
    rc = SQLITE_OK;
sl@0
  3587
  }else{
sl@0
  3588
    rc = sqlite3OsSync(pPager->fd, pPager->sync_flags);
sl@0
  3589
  }
sl@0
  3590
  return rc;
sl@0
  3591
}
sl@0
  3592
sl@0
  3593
/*
sl@0
  3594
** Sync the database file for the pager pPager. zMaster points to the name
sl@0
  3595
** of a master journal file that should be written into the individual
sl@0
  3596
** journal file. zMaster may be NULL, which is interpreted as no master
sl@0
  3597
** journal (a single database transaction).
sl@0
  3598
**
sl@0
  3599
** This routine ensures that the journal is synced, all dirty pages written
sl@0
  3600
** to the database file and the database file synced. The only thing that
sl@0
  3601
** remains to commit the transaction is to delete the journal file (or
sl@0
  3602
** master journal file if specified).
sl@0
  3603
**
sl@0
  3604
** Note that if zMaster==NULL, this does not overwrite a previous value
sl@0
  3605
** passed to an sqlite3PagerCommitPhaseOne() call.
sl@0
  3606
**
sl@0
  3607
** If parameter nTrunc is non-zero, then the pager file is truncated to
sl@0
  3608
** nTrunc pages (this is used by auto-vacuum databases).
sl@0
  3609
**
sl@0
  3610
** If the final parameter - noSync - is true, then the database file itself
sl@0
  3611
** is not synced. The caller must call sqlite3PagerSync() directly to
sl@0
  3612
** sync the database file before calling CommitPhaseTwo() to delete the
sl@0
  3613
** journal file in this case.
sl@0
  3614
*/
sl@0
  3615
int sqlite3PagerCommitPhaseOne(
sl@0
  3616
  Pager *pPager, 
sl@0
  3617
  const char *zMaster, 
sl@0
  3618
  Pgno nTrunc,
sl@0
  3619
  int noSync
sl@0
  3620
){
sl@0
  3621
  int rc = SQLITE_OK;
sl@0
  3622
sl@0
  3623
  if( pPager->errCode ){
sl@0
  3624
    return pPager->errCode;
sl@0
  3625
  }
sl@0
  3626
sl@0
  3627
  /* If no changes have been made, we can leave the transaction early.
sl@0
  3628
  */
sl@0
  3629
  if( pPager->dbModified==0 &&
sl@0
  3630
        (pPager->journalMode!=PAGER_JOURNALMODE_DELETE ||
sl@0
  3631
          pPager->exclusiveMode!=0) ){
sl@0
  3632
    assert( pPager->dirtyCache==0 || pPager->journalOpen==0 );
sl@0
  3633
    return SQLITE_OK;
sl@0
  3634
  }
sl@0
  3635
sl@0
  3636
  PAGERTRACE4("DATABASE SYNC: File=%s zMaster=%s nTrunc=%d\n", 
sl@0
  3637
      pPager->zFilename, zMaster, nTrunc);
sl@0
  3638
sl@0
  3639
  /* If this is an in-memory db, or no pages have been written to, or this
sl@0
  3640
  ** function has already been called, it is a no-op.
sl@0
  3641
  */
sl@0
  3642
  if( pPager->state!=PAGER_SYNCED && !MEMDB && pPager->dirtyCache ){
sl@0
  3643
    PgHdr *pPg;
sl@0
  3644
sl@0
  3645
#ifdef SQLITE_ENABLE_ATOMIC_WRITE
sl@0
  3646
    /* The atomic-write optimization can be used if all of the
sl@0
  3647
    ** following are true:
sl@0
  3648
    **
sl@0
  3649
    **    + The file-system supports the atomic-write property for
sl@0
  3650
    **      blocks of size page-size, and
sl@0
  3651
    **    + This commit is not part of a multi-file transaction, and
sl@0
  3652
    **    + Exactly one page has been modified and store in the journal file.
sl@0
  3653
    **
sl@0
  3654
    ** If the optimization can be used, then the journal file will never
sl@0
  3655
    ** be created for this transaction.
sl@0
  3656
    */
sl@0
  3657
    int useAtomicWrite;
sl@0
  3658
    pPg = sqlite3PcacheDirtyList(pPager->pPCache);
sl@0
  3659
    useAtomicWrite = (
sl@0
  3660
        !zMaster && 
sl@0
  3661
        pPager->journalOpen &&
sl@0
  3662
        pPager->journalOff==jrnlBufferSize(pPager) && 
sl@0
  3663
        nTrunc==0 && 
sl@0
  3664
        (pPg==0 || pPg->pDirty==0)
sl@0
  3665
    );
sl@0
  3666
    assert( pPager->journalOpen || pPager->journalMode==PAGER_JOURNALMODE_OFF );
sl@0
  3667
    if( useAtomicWrite ){
sl@0
  3668
      /* Update the nRec field in the journal file. */
sl@0
  3669
      int offset = pPager->journalHdr + sizeof(aJournalMagic);
sl@0
  3670
      assert(pPager->nRec==1);
sl@0
  3671
      rc = write32bits(pPager->jfd, offset, pPager->nRec);
sl@0
  3672
sl@0
  3673
      /* Update the db file change counter. The following call will modify
sl@0
  3674
      ** the in-memory representation of page 1 to include the updated
sl@0
  3675
      ** change counter and then write page 1 directly to the database
sl@0
  3676
      ** file. Because of the atomic-write property of the host file-system, 
sl@0
  3677
      ** this is safe.
sl@0
  3678
      */
sl@0
  3679
      if( rc==SQLITE_OK ){
sl@0
  3680
        rc = pager_incr_changecounter(pPager, 1);
sl@0
  3681
      }
sl@0
  3682
    }else{
sl@0
  3683
      rc = sqlite3JournalCreate(pPager->jfd);
sl@0
  3684
    }
sl@0
  3685
sl@0
  3686
    if( !useAtomicWrite && rc==SQLITE_OK )
sl@0
  3687
#endif
sl@0
  3688
sl@0
  3689
    /* If a master journal file name has already been written to the
sl@0
  3690
    ** journal file, then no sync is required. This happens when it is
sl@0
  3691
    ** written, then the process fails to upgrade from a RESERVED to an
sl@0
  3692
    ** EXCLUSIVE lock. The next time the process tries to commit the
sl@0
  3693
    ** transaction the m-j name will have already been written.
sl@0
  3694
    */
sl@0
  3695
    if( !pPager->setMaster ){
sl@0
  3696
      rc = pager_incr_changecounter(pPager, 0);
sl@0
  3697
      if( rc!=SQLITE_OK ) goto sync_exit;
sl@0
  3698
      if( pPager->journalMode!=PAGER_JOURNALMODE_OFF ){
sl@0
  3699
#ifndef SQLITE_OMIT_AUTOVACUUM
sl@0
  3700
        if( nTrunc!=0 ){
sl@0
  3701
          /* If this transaction has made the database smaller, then all pages
sl@0
  3702
          ** being discarded by the truncation must be written to the journal
sl@0
  3703
          ** file.
sl@0
  3704
          */
sl@0
  3705
          Pgno i;
sl@0
  3706
          int iSkip = PAGER_MJ_PGNO(pPager);
sl@0
  3707
          for( i=nTrunc+1; i<=pPager->origDbSize; i++ ){
sl@0
  3708
            if( !sqlite3BitvecTest(pPager->pInJournal, i) && i!=iSkip ){
sl@0
  3709
              rc = sqlite3PagerGet(pPager, i, &pPg);
sl@0
  3710
              if( rc!=SQLITE_OK ) goto sync_exit;
sl@0
  3711
              rc = sqlite3PagerWrite(pPg);
sl@0
  3712
              sqlite3PagerUnref(pPg);
sl@0
  3713
              if( rc!=SQLITE_OK ) goto sync_exit;
sl@0
  3714
            }
sl@0
  3715
          } 
sl@0
  3716
        }
sl@0
  3717
#endif
sl@0
  3718
        rc = writeMasterJournal(pPager, zMaster);
sl@0
  3719
        if( rc!=SQLITE_OK ) goto sync_exit;
sl@0
  3720
        rc = syncJournal(pPager);
sl@0
  3721
      }
sl@0
  3722
    }
sl@0
  3723
    if( rc!=SQLITE_OK ) goto sync_exit;
sl@0
  3724
sl@0
  3725
#ifndef SQLITE_OMIT_AUTOVACUUM
sl@0
  3726
    if( nTrunc!=0 ){
sl@0
  3727
      rc = sqlite3PagerTruncate(pPager, nTrunc);
sl@0
  3728
      if( rc!=SQLITE_OK ) goto sync_exit;
sl@0
  3729
    }
sl@0
  3730
#endif
sl@0
  3731
sl@0
  3732
    /* Write all dirty pages to the database file */
sl@0
  3733
    pPg = sqlite3PcacheDirtyList(pPager->pPCache);
sl@0
  3734
    rc = pager_write_pagelist(pPg);
sl@0
  3735
    if( rc!=SQLITE_OK ){
sl@0
  3736
      assert( rc!=SQLITE_IOERR_BLOCKED );
sl@0
  3737
      /* The error might have left the dirty list all fouled up here,
sl@0
  3738
      ** but that does not matter because if the if the dirty list did
sl@0
  3739
      ** get corrupted, then the transaction will roll back and
sl@0
  3740
      ** discard the dirty list.  There is an assert in
sl@0
  3741
      ** pager_get_all_dirty_pages() that verifies that no attempt
sl@0
  3742
      ** is made to use an invalid dirty list.
sl@0
  3743
      */
sl@0
  3744
      goto sync_exit;
sl@0
  3745
    }
sl@0
  3746
    sqlite3PcacheCleanAll(pPager->pPCache);
sl@0
  3747
sl@0
  3748
    /* Sync the database file. */
sl@0
  3749
    if( !pPager->noSync && !noSync ){
sl@0
  3750
      rc = sqlite3OsSync(pPager->fd, pPager->sync_flags);
sl@0
  3751
    }
sl@0
  3752
    IOTRACE(("DBSYNC %p\n", pPager))
sl@0
  3753
sl@0
  3754
    pPager->state = PAGER_SYNCED;
sl@0
  3755
  }else if( MEMDB && nTrunc!=0 ){
sl@0
  3756
    rc = sqlite3PagerTruncate(pPager, nTrunc);
sl@0
  3757
  }
sl@0
  3758
sl@0
  3759
sync_exit:
sl@0
  3760
  if( rc==SQLITE_IOERR_BLOCKED ){
sl@0
  3761
    /* pager_incr_changecounter() may attempt to obtain an exclusive
sl@0
  3762
     * lock to spill the cache and return IOERR_BLOCKED. But since 
sl@0
  3763
     * there is no chance the cache is inconsistent, it is
sl@0
  3764
     * better to return SQLITE_BUSY.
sl@0
  3765
     */
sl@0
  3766
    rc = SQLITE_BUSY;
sl@0
  3767
  }
sl@0
  3768
  return rc;
sl@0
  3769
}
sl@0
  3770
sl@0
  3771
sl@0
  3772
/*
sl@0
  3773
** Commit all changes to the database and release the write lock.
sl@0
  3774
**
sl@0
  3775
** If the commit fails for any reason, a rollback attempt is made
sl@0
  3776
** and an error code is returned.  If the commit worked, SQLITE_OK
sl@0
  3777
** is returned.
sl@0
  3778
*/
sl@0
  3779
int sqlite3PagerCommitPhaseTwo(Pager *pPager){
sl@0
  3780
  int rc = SQLITE_OK;
sl@0
  3781
sl@0
  3782
  if( pPager->errCode ){
sl@0
  3783
    return pPager->errCode;
sl@0
  3784
  }
sl@0
  3785
  if( pPager->state<PAGER_RESERVED ){
sl@0
  3786
    return SQLITE_ERROR;
sl@0
  3787
  }
sl@0
  3788
  if( pPager->dbModified==0 &&
sl@0
  3789
        (pPager->journalMode!=PAGER_JOURNALMODE_DELETE ||
sl@0
  3790
          pPager->exclusiveMode!=0) ){
sl@0
  3791
    assert( pPager->dirtyCache==0 || pPager->journalOpen==0 );
sl@0
  3792
    return SQLITE_OK;
sl@0
  3793
  }
sl@0
  3794
  PAGERTRACE2("COMMIT %d\n", PAGERID(pPager));
sl@0
  3795
  if( MEMDB ){
sl@0
  3796
    sqlite3PcacheCommit(pPager->pPCache, 0);
sl@0
  3797
    sqlite3PcacheCleanAll(pPager->pPCache);
sl@0
  3798
    sqlite3PcacheAssertFlags(pPager->pPCache, 0, PGHDR_IN_JOURNAL);
sl@0
  3799
    pPager->state = PAGER_SHARED;
sl@0
  3800
  }else{
sl@0
  3801
    assert( pPager->state==PAGER_SYNCED || !pPager->dirtyCache );
sl@0
  3802
    rc = pager_end_transaction(pPager, pPager->setMaster);
sl@0
  3803
    rc = pager_error(pPager, rc);
sl@0
  3804
  }
sl@0
  3805
  return rc;
sl@0
  3806
}
sl@0
  3807
sl@0
  3808
/*
sl@0
  3809
** Rollback all changes.  The database falls back to PAGER_SHARED mode.
sl@0
  3810
** All in-memory cache pages revert to their original data contents.
sl@0
  3811
** The journal is deleted.
sl@0
  3812
**
sl@0
  3813
** This routine cannot fail unless some other process is not following
sl@0
  3814
** the correct locking protocol or unless some other
sl@0
  3815
** process is writing trash into the journal file (SQLITE_CORRUPT) or
sl@0
  3816
** unless a prior malloc() failed (SQLITE_NOMEM).  Appropriate error
sl@0
  3817
** codes are returned for all these occasions.  Otherwise,
sl@0
  3818
** SQLITE_OK is returned.
sl@0
  3819
*/
sl@0
  3820
int sqlite3PagerRollback(Pager *pPager){
sl@0
  3821
  int rc = SQLITE_OK;
sl@0
  3822
  PAGERTRACE2("ROLLBACK %d\n", PAGERID(pPager));
sl@0
  3823
  if( MEMDB ){
sl@0
  3824
    sqlite3PcacheRollback(pPager->pPCache, 1, pPager->xReiniter);
sl@0
  3825
    sqlite3PcacheRollback(pPager->pPCache, 0, pPager->xReiniter);
sl@0
  3826
    sqlite3PcacheCleanAll(pPager->pPCache);
sl@0
  3827
    sqlite3PcacheAssertFlags(pPager->pPCache, 0, PGHDR_IN_JOURNAL);
sl@0
  3828
    pPager->dbSize = pPager->origDbSize;
sl@0
  3829
    pager_truncate_cache(pPager);
sl@0
  3830
    pPager->stmtInUse = 0;
sl@0
  3831
    pPager->state = PAGER_SHARED;
sl@0
  3832
  }else if( !pPager->dirtyCache || !pPager->journalOpen ){
sl@0
  3833
    rc = pager_end_transaction(pPager, pPager->setMaster);
sl@0
  3834
  }else if( pPager->errCode && pPager->errCode!=SQLITE_FULL ){
sl@0
  3835
    if( pPager->state>=PAGER_EXCLUSIVE ){
sl@0
  3836
      pager_playback(pPager, 0);
sl@0
  3837
    }
sl@0
  3838
    rc = pPager->errCode;
sl@0
  3839
  }else{
sl@0
  3840
    if( pPager->state==PAGER_RESERVED ){
sl@0
  3841
      int rc2;
sl@0
  3842
      rc = pager_playback(pPager, 0);
sl@0
  3843
      rc2 = pager_end_transaction(pPager, pPager->setMaster);
sl@0
  3844
      if( rc==SQLITE_OK ){
sl@0
  3845
        rc = rc2;
sl@0
  3846
      }
sl@0
  3847
    }else{
sl@0
  3848
      rc = pager_playback(pPager, 0);
sl@0
  3849
    }
sl@0
  3850
sl@0
  3851
    pPager->dbSize = -1;
sl@0
  3852
sl@0
  3853
    /* If an error occurs during a ROLLBACK, we can no longer trust the pager
sl@0
  3854
    ** cache. So call pager_error() on the way out to make any error 
sl@0
  3855
    ** persistent.
sl@0
  3856
    */
sl@0
  3857
    rc = pager_error(pPager, rc);
sl@0
  3858
  }
sl@0
  3859
  return rc;
sl@0
  3860
}
sl@0
  3861
sl@0
  3862
/*
sl@0
  3863
** Return TRUE if the database file is opened read-only.  Return FALSE
sl@0
  3864
** if the database is (in theory) writable.
sl@0
  3865
*/
sl@0
  3866
int sqlite3PagerIsreadonly(Pager *pPager){
sl@0
  3867
  return pPager->readOnly;
sl@0
  3868
}
sl@0
  3869
sl@0
  3870
/*
sl@0
  3871
** Return the number of references to the pager.
sl@0
  3872
*/
sl@0
  3873
int sqlite3PagerRefcount(Pager *pPager){
sl@0
  3874
  return sqlite3PcacheRefCount(pPager->pPCache);
sl@0
  3875
}
sl@0
  3876
sl@0
  3877
/*
sl@0
  3878
** Return the number of references to the specified page.
sl@0
  3879
*/
sl@0
  3880
int sqlite3PagerPageRefcount(DbPage *pPage){
sl@0
  3881
  return sqlite3PcachePageRefcount(pPage);
sl@0
  3882
}
sl@0
  3883
sl@0
  3884
#ifdef SQLITE_TEST
sl@0
  3885
/*
sl@0
  3886
** This routine is used for testing and analysis only.
sl@0
  3887
*/
sl@0
  3888
int *sqlite3PagerStats(Pager *pPager){
sl@0
  3889
  static int a[11];
sl@0
  3890
  a[0] = sqlite3PcacheRefCount(pPager->pPCache);
sl@0
  3891
  a[1] = sqlite3PcachePagecount(pPager->pPCache);
sl@0
  3892
  a[2] = sqlite3PcacheGetCachesize(pPager->pPCache);
sl@0
  3893
  a[3] = pPager->dbSize;
sl@0
  3894
  a[4] = pPager->state;
sl@0
  3895
  a[5] = pPager->errCode;
sl@0
  3896
  a[6] = pPager->nHit;
sl@0
  3897
  a[7] = pPager->nMiss;
sl@0
  3898
  a[8] = 0;  /* Used to be pPager->nOvfl */
sl@0
  3899
  a[9] = pPager->nRead;
sl@0
  3900
  a[10] = pPager->nWrite;
sl@0
  3901
  return a;
sl@0
  3902
}
sl@0
  3903
int sqlite3PagerIsMemdb(Pager *pPager){
sl@0
  3904
  return MEMDB;
sl@0
  3905
}
sl@0
  3906
#endif
sl@0
  3907
sl@0
  3908
/*
sl@0
  3909
** Set the statement rollback point.
sl@0
  3910
**
sl@0
  3911
** This routine should be called with the transaction journal already
sl@0
  3912
** open.  A new statement journal is created that can be used to rollback
sl@0
  3913
** changes of a single SQL command within a larger transaction.
sl@0
  3914
*/
sl@0
  3915
static int pagerStmtBegin(Pager *pPager){
sl@0
  3916
  int rc;
sl@0
  3917
  assert( !pPager->stmtInUse );
sl@0
  3918
  assert( pPager->state>=PAGER_SHARED );
sl@0
  3919
  assert( pPager->dbSize>=0 );
sl@0
  3920
  PAGERTRACE2("STMT-BEGIN %d\n", PAGERID(pPager));
sl@0
  3921
  if( MEMDB ){
sl@0
  3922
    pPager->stmtInUse = 1;
sl@0
  3923
    pPager->stmtSize = pPager->dbSize;
sl@0
  3924
    return SQLITE_OK;
sl@0
  3925
  }
sl@0
  3926
  if( !pPager->journalOpen ){
sl@0
  3927
    pPager->stmtAutoopen = 1;
sl@0
  3928
    return SQLITE_OK;
sl@0
  3929
  }
sl@0
  3930
  assert( pPager->journalOpen );
sl@0
  3931
  assert( pPager->pInStmt==0 );
sl@0
  3932
  pPager->pInStmt = sqlite3BitvecCreate(pPager->dbSize);
sl@0
  3933
  if( pPager->pInStmt==0 ){
sl@0
  3934
    /* sqlite3OsLock(pPager->fd, SHARED_LOCK); */
sl@0
  3935
    return SQLITE_NOMEM;
sl@0
  3936
  }
sl@0
  3937
  pPager->stmtJSize = pPager->journalOff;
sl@0
  3938
  pPager->stmtSize = pPager->dbSize;
sl@0
  3939
  pPager->stmtHdrOff = 0;
sl@0
  3940
  pPager->stmtCksum = pPager->cksumInit;
sl@0
  3941
  if( !pPager->stmtOpen ){
sl@0
  3942
    rc = sqlite3PagerOpentemp(pPager, pPager->stfd, SQLITE_OPEN_SUBJOURNAL);
sl@0
  3943
    if( rc ){
sl@0
  3944
      goto stmt_begin_failed;
sl@0
  3945
    }
sl@0
  3946
    pPager->stmtOpen = 1;
sl@0
  3947
    pPager->stmtNRec = 0;
sl@0
  3948
  }
sl@0
  3949
  pPager->stmtInUse = 1;
sl@0
  3950
  return SQLITE_OK;
sl@0
  3951
 
sl@0
  3952
stmt_begin_failed:
sl@0
  3953
  if( pPager->pInStmt ){
sl@0
  3954
    sqlite3BitvecDestroy(pPager->pInStmt);
sl@0
  3955
    pPager->pInStmt = 0;
sl@0
  3956
  }
sl@0
  3957
  return rc;
sl@0
  3958
}
sl@0
  3959
int sqlite3PagerStmtBegin(Pager *pPager){
sl@0
  3960
  int rc;
sl@0
  3961
  rc = pagerStmtBegin(pPager);
sl@0
  3962
  return rc;
sl@0
  3963
}
sl@0
  3964
sl@0
  3965
/*
sl@0
  3966
** Commit a statement.
sl@0
  3967
*/
sl@0
  3968
int sqlite3PagerStmtCommit(Pager *pPager){
sl@0
  3969
  if( pPager->stmtInUse ){
sl@0
  3970
    PAGERTRACE2("STMT-COMMIT %d\n", PAGERID(pPager));
sl@0
  3971
    if( !MEMDB ){
sl@0
  3972
      sqlite3BitvecDestroy(pPager->pInStmt);
sl@0
  3973
      pPager->pInStmt = 0;
sl@0
  3974
    }else{
sl@0
  3975
      sqlite3PcacheCommit(pPager->pPCache, 1);
sl@0
  3976
    }
sl@0
  3977
    pPager->stmtNRec = 0;
sl@0
  3978
    pPager->stmtInUse = 0;
sl@0
  3979
  }
sl@0
  3980
  pPager->stmtAutoopen = 0;
sl@0
  3981
  return SQLITE_OK;
sl@0
  3982
}
sl@0
  3983
sl@0
  3984
/*
sl@0
  3985
** Rollback a statement.
sl@0
  3986
*/
sl@0
  3987
int sqlite3PagerStmtRollback(Pager *pPager){
sl@0
  3988
  int rc;
sl@0
  3989
  if( pPager->stmtInUse ){
sl@0
  3990
    PAGERTRACE2("STMT-ROLLBACK %d\n", PAGERID(pPager));
sl@0
  3991
    if( MEMDB ){
sl@0
  3992
      sqlite3PcacheRollback(pPager->pPCache, 1, pPager->xReiniter);
sl@0
  3993
      pPager->dbSize = pPager->stmtSize;
sl@0
  3994
      pager_truncate_cache(pPager);
sl@0
  3995
      rc = SQLITE_OK;
sl@0
  3996
    }else{
sl@0
  3997
      rc = pager_stmt_playback(pPager);
sl@0
  3998
    }
sl@0
  3999
    sqlite3PagerStmtCommit(pPager);
sl@0
  4000
  }else{
sl@0
  4001
    rc = SQLITE_OK;
sl@0
  4002
  }
sl@0
  4003
  pPager->stmtAutoopen = 0;
sl@0
  4004
  return rc;
sl@0
  4005
}
sl@0
  4006
sl@0
  4007
/*
sl@0
  4008
** Return the full pathname of the database file.
sl@0
  4009
*/
sl@0
  4010
const char *sqlite3PagerFilename(Pager *pPager){
sl@0
  4011
  return pPager->zFilename;
sl@0
  4012
}
sl@0
  4013
sl@0
  4014
/*
sl@0
  4015
** Return the VFS structure for the pager.
sl@0
  4016
*/
sl@0
  4017
const sqlite3_vfs *sqlite3PagerVfs(Pager *pPager){
sl@0
  4018
  return pPager->pVfs;
sl@0
  4019
}
sl@0
  4020
sl@0
  4021
/*
sl@0
  4022
** Return the file handle for the database file associated
sl@0
  4023
** with the pager.  This might return NULL if the file has
sl@0
  4024
** not yet been opened.
sl@0
  4025
*/
sl@0
  4026
sqlite3_file *sqlite3PagerFile(Pager *pPager){
sl@0
  4027
  return pPager->fd;
sl@0
  4028
}
sl@0
  4029
sl@0
  4030
/*
sl@0
  4031
** Return the directory of the database file.
sl@0
  4032
*/
sl@0
  4033
const char *sqlite3PagerDirname(Pager *pPager){
sl@0
  4034
  return pPager->zDirectory;
sl@0
  4035
}
sl@0
  4036
sl@0
  4037
/*
sl@0
  4038
** Return the full pathname of the journal file.
sl@0
  4039
*/
sl@0
  4040
const char *sqlite3PagerJournalname(Pager *pPager){
sl@0
  4041
  return pPager->zJournal;
sl@0
  4042
}
sl@0
  4043
sl@0
  4044
/*
sl@0
  4045
** Return true if fsync() calls are disabled for this pager.  Return FALSE
sl@0
  4046
** if fsync()s are executed normally.
sl@0
  4047
*/
sl@0
  4048
int sqlite3PagerNosync(Pager *pPager){
sl@0
  4049
  return pPager->noSync;
sl@0
  4050
}
sl@0
  4051
sl@0
  4052
#ifdef SQLITE_HAS_CODEC
sl@0
  4053
/*
sl@0
  4054
** Set the codec for this pager
sl@0
  4055
*/
sl@0
  4056
void sqlite3PagerSetCodec(
sl@0
  4057
  Pager *pPager,
sl@0
  4058
  void *(*xCodec)(void*,void*,Pgno,int),
sl@0
  4059
  void *pCodecArg
sl@0
  4060
){
sl@0
  4061
  pPager->xCodec = xCodec;
sl@0
  4062
  pPager->pCodecArg = pCodecArg;
sl@0
  4063
}
sl@0
  4064
#endif
sl@0
  4065
sl@0
  4066
#ifndef SQLITE_OMIT_AUTOVACUUM
sl@0
  4067
/*
sl@0
  4068
** Move the page pPg to location pgno in the file.
sl@0
  4069
**
sl@0
  4070
** There must be no references to the page previously located at
sl@0
  4071
** pgno (which we call pPgOld) though that page is allowed to be
sl@0
  4072
** in cache.  If the page previously located at pgno is not already
sl@0
  4073
** in the rollback journal, it is not put there by by this routine.
sl@0
  4074
**
sl@0
  4075
** References to the page pPg remain valid. Updating any
sl@0
  4076
** meta-data associated with pPg (i.e. data stored in the nExtra bytes
sl@0
  4077
** allocated along with the page) is the responsibility of the caller.
sl@0
  4078
**
sl@0
  4079
** A transaction must be active when this routine is called. It used to be
sl@0
  4080
** required that a statement transaction was not active, but this restriction
sl@0
  4081
** has been removed (CREATE INDEX needs to move a page when a statement
sl@0
  4082
** transaction is active).
sl@0
  4083
**
sl@0
  4084
** If the fourth argument, isCommit, is non-zero, then this page is being
sl@0
  4085
** moved as part of a database reorganization just before the transaction 
sl@0
  4086
** is being committed. In this case, it is guaranteed that the database page 
sl@0
  4087
** pPg refers to will not be written to again within this transaction.
sl@0
  4088
*/
sl@0
  4089
int sqlite3PagerMovepage(Pager *pPager, DbPage *pPg, Pgno pgno, int isCommit){
sl@0
  4090
  PgHdr *pPgOld;  /* The page being overwritten. */
sl@0
  4091
  Pgno needSyncPgno = 0;
sl@0
  4092
sl@0
  4093
  assert( pPg->nRef>0 );
sl@0
  4094
sl@0
  4095
  PAGERTRACE5("MOVE %d page %d (needSync=%d) moves to %d\n", 
sl@0
  4096
      PAGERID(pPager), pPg->pgno, (pPg->flags&PGHDR_NEED_SYNC)?1:0, pgno);
sl@0
  4097
  IOTRACE(("MOVE %p %d %d\n", pPager, pPg->pgno, pgno))
sl@0
  4098
sl@0
  4099
  pager_get_content(pPg);
sl@0
  4100
sl@0
  4101
  /* If the journal needs to be sync()ed before page pPg->pgno can
sl@0
  4102
  ** be written to, store pPg->pgno in local variable needSyncPgno.
sl@0
  4103
  **
sl@0
  4104
  ** If the isCommit flag is set, there is no need to remember that
sl@0
  4105
  ** the journal needs to be sync()ed before database page pPg->pgno 
sl@0
  4106
  ** can be written to. The caller has already promised not to write to it.
sl@0
  4107
  */
sl@0
  4108
  if( (pPg->flags&PGHDR_NEED_SYNC) && !isCommit ){
sl@0
  4109
    needSyncPgno = pPg->pgno;
sl@0
  4110
    assert( (pPg->flags&PGHDR_IN_JOURNAL) || (int)pgno>pPager->origDbSize );
sl@0
  4111
    assert( pPg->flags&PGHDR_DIRTY );
sl@0
  4112
    assert( pPager->needSync );
sl@0
  4113
  }
sl@0
  4114
sl@0
  4115
  /* If the cache contains a page with page-number pgno, remove it
sl@0
  4116
  ** from its hash chain. Also, if the PgHdr.needSync was set for 
sl@0
  4117
  ** page pgno before the 'move' operation, it needs to be retained 
sl@0
  4118
  ** for the page moved there.
sl@0
  4119
  */
sl@0
  4120
  pPg->flags &= ~(PGHDR_NEED_SYNC|PGHDR_IN_JOURNAL);
sl@0
  4121
  pPgOld = pager_lookup(pPager, pgno);
sl@0
  4122
  assert( !pPgOld || pPgOld->nRef==1 );
sl@0
  4123
  if( pPgOld ){
sl@0
  4124
    pPg->flags |= (pPgOld->flags&PGHDR_NEED_SYNC);
sl@0
  4125
  }
sl@0
  4126
  if( sqlite3BitvecTest(pPager->pInJournal, pgno) ){
sl@0
  4127
    assert( !MEMDB );
sl@0
  4128
    pPg->flags |= PGHDR_IN_JOURNAL;
sl@0
  4129
  }
sl@0
  4130
sl@0
  4131
  sqlite3PcacheMove(pPg, pgno);
sl@0
  4132
  if( pPgOld ){
sl@0
  4133
    sqlite3PcacheMove(pPgOld, 0);
sl@0
  4134
    sqlite3PcacheRelease(pPgOld);
sl@0
  4135
  }
sl@0
  4136
sl@0
  4137
  makeDirty(pPg);
sl@0
  4138
  pPager->dirtyCache = 1;
sl@0
  4139
  pPager->dbModified = 1;
sl@0
  4140
sl@0
  4141
  if( needSyncPgno ){
sl@0
  4142
    /* If needSyncPgno is non-zero, then the journal file needs to be 
sl@0
  4143
    ** sync()ed before any data is written to database file page needSyncPgno.
sl@0
  4144
    ** Currently, no such page exists in the page-cache and the 
sl@0
  4145
    ** "is journaled" bitvec flag has been set. This needs to be remedied by
sl@0
  4146
    ** loading the page into the pager-cache and setting the PgHdr.needSync 
sl@0
  4147
    ** flag.
sl@0
  4148
    **
sl@0
  4149
    ** If the attempt to load the page into the page-cache fails, (due
sl@0
  4150
    ** to a malloc() or IO failure), clear the bit in the pInJournal[]
sl@0
  4151
    ** array. Otherwise, if the page is loaded and written again in
sl@0
  4152
    ** this transaction, it may be written to the database file before
sl@0
  4153
    ** it is synced into the journal file. This way, it may end up in
sl@0
  4154
    ** the journal file twice, but that is not a problem.
sl@0
  4155
    **
sl@0
  4156
    ** The sqlite3PagerGet() call may cause the journal to sync. So make
sl@0
  4157
    ** sure the Pager.needSync flag is set too.
sl@0
  4158
    */
sl@0
  4159
    int rc;
sl@0
  4160
    PgHdr *pPgHdr;
sl@0
  4161
    assert( pPager->needSync );
sl@0
  4162
    rc = sqlite3PagerGet(pPager, needSyncPgno, &pPgHdr);
sl@0
  4163
    if( rc!=SQLITE_OK ){
sl@0
  4164
      if( pPager->pInJournal && (int)needSyncPgno<=pPager->origDbSize ){
sl@0
  4165
        sqlite3BitvecClear(pPager->pInJournal, needSyncPgno);
sl@0
  4166
      }
sl@0
  4167
      return rc;
sl@0
  4168
    }
sl@0
  4169
    pPager->needSync = 1;
sl@0
  4170
    assert( pPager->noSync==0 && !MEMDB );
sl@0
  4171
    pPgHdr->flags |= PGHDR_NEED_SYNC;
sl@0
  4172
    pPgHdr->flags |= PGHDR_IN_JOURNAL;
sl@0
  4173
    makeDirty(pPgHdr);
sl@0
  4174
    sqlite3PagerUnref(pPgHdr);
sl@0
  4175
  }
sl@0
  4176
sl@0
  4177
  return SQLITE_OK;
sl@0
  4178
}
sl@0
  4179
#endif
sl@0
  4180
sl@0
  4181
/*
sl@0
  4182
** Return a pointer to the data for the specified page.
sl@0
  4183
*/
sl@0
  4184
void *sqlite3PagerGetData(DbPage *pPg){
sl@0
  4185
  assert( pPg->nRef>0 || pPg->pPager->memDb );
sl@0
  4186
  return pPg->pData;
sl@0
  4187
}
sl@0
  4188
sl@0
  4189
/*
sl@0
  4190
** Return a pointer to the Pager.nExtra bytes of "extra" space 
sl@0
  4191
** allocated along with the specified page.
sl@0
  4192
*/
sl@0
  4193
void *sqlite3PagerGetExtra(DbPage *pPg){
sl@0
  4194
  Pager *pPager = pPg->pPager;
sl@0
  4195
  return (pPager?pPg->pExtra:0);
sl@0
  4196
}
sl@0
  4197
sl@0
  4198
/*
sl@0
  4199
** Get/set the locking-mode for this pager. Parameter eMode must be one
sl@0
  4200
** of PAGER_LOCKINGMODE_QUERY, PAGER_LOCKINGMODE_NORMAL or 
sl@0
  4201
** PAGER_LOCKINGMODE_EXCLUSIVE. If the parameter is not _QUERY, then
sl@0
  4202
** the locking-mode is set to the value specified.
sl@0
  4203
**
sl@0
  4204
** The returned value is either PAGER_LOCKINGMODE_NORMAL or
sl@0
  4205
** PAGER_LOCKINGMODE_EXCLUSIVE, indicating the current (possibly updated)
sl@0
  4206
** locking-mode.
sl@0
  4207
*/
sl@0
  4208
int sqlite3PagerLockingMode(Pager *pPager, int eMode){
sl@0
  4209
  assert( eMode==PAGER_LOCKINGMODE_QUERY
sl@0
  4210
            || eMode==PAGER_LOCKINGMODE_NORMAL
sl@0
  4211
            || eMode==PAGER_LOCKINGMODE_EXCLUSIVE );
sl@0
  4212
  assert( PAGER_LOCKINGMODE_QUERY<0 );
sl@0
  4213
  assert( PAGER_LOCKINGMODE_NORMAL>=0 && PAGER_LOCKINGMODE_EXCLUSIVE>=0 );
sl@0
  4214
  if( eMode>=0 && !pPager->tempFile ){
sl@0
  4215
    pPager->exclusiveMode = eMode;
sl@0
  4216
  }
sl@0
  4217
  return (int)pPager->exclusiveMode;
sl@0
  4218
}
sl@0
  4219
sl@0
  4220
/*
sl@0
  4221
** Get/set the journal-mode for this pager. Parameter eMode must be one of:
sl@0
  4222
**
sl@0
  4223
**    PAGER_JOURNALMODE_QUERY
sl@0
  4224
**    PAGER_JOURNALMODE_DELETE
sl@0
  4225
**    PAGER_JOURNALMODE_TRUNCATE
sl@0
  4226
**    PAGER_JOURNALMODE_PERSIST
sl@0
  4227
**    PAGER_JOURNALMODE_OFF
sl@0
  4228
**
sl@0
  4229
** If the parameter is not _QUERY, then the journal-mode is set to the
sl@0
  4230
** value specified.
sl@0
  4231
**
sl@0
  4232
** The returned indicate the current (possibly updated)
sl@0
  4233
** journal-mode.
sl@0
  4234
*/
sl@0
  4235
int sqlite3PagerJournalMode(Pager *pPager, int eMode){
sl@0
  4236
  assert( eMode==PAGER_JOURNALMODE_QUERY
sl@0
  4237
            || eMode==PAGER_JOURNALMODE_DELETE
sl@0
  4238
            || eMode==PAGER_JOURNALMODE_TRUNCATE
sl@0
  4239
            || eMode==PAGER_JOURNALMODE_PERSIST
sl@0
  4240
            || eMode==PAGER_JOURNALMODE_OFF );
sl@0
  4241
  assert( PAGER_JOURNALMODE_QUERY<0 );
sl@0
  4242
  if( eMode>=0 ){
sl@0
  4243
    pPager->journalMode = eMode;
sl@0
  4244
  }else{
sl@0
  4245
    assert( eMode==PAGER_JOURNALMODE_QUERY );
sl@0
  4246
  }
sl@0
  4247
  return (int)pPager->journalMode;
sl@0
  4248
}
sl@0
  4249
sl@0
  4250
/*
sl@0
  4251
** Get/set the size-limit used for persistent journal files.
sl@0
  4252
*/
sl@0
  4253
i64 sqlite3PagerJournalSizeLimit(Pager *pPager, i64 iLimit){
sl@0
  4254
  if( iLimit>=-1 ){
sl@0
  4255
    pPager->journalSizeLimit = iLimit;
sl@0
  4256
  }
sl@0
  4257
  return pPager->journalSizeLimit;
sl@0
  4258
}
sl@0
  4259
sl@0
  4260
#endif /* SQLITE_OMIT_DISKIO */