os/persistentdata/persistentstorage/sql/SQLite364/vdbeaux.c
author sl@SLION-WIN7.fritz.box
Fri, 15 Jun 2012 03:10:57 +0200
changeset 0 bde4ae8d615e
permissions -rw-r--r--
First public contribution.
sl@0
     1
/*
sl@0
     2
** 2003 September 6
sl@0
     3
**
sl@0
     4
** The author disclaims copyright to this source code.  In place of
sl@0
     5
** a legal notice, here is a blessing:
sl@0
     6
**
sl@0
     7
**    May you do good and not evil.
sl@0
     8
**    May you find forgiveness for yourself and forgive others.
sl@0
     9
**    May you share freely, never taking more than you give.
sl@0
    10
**
sl@0
    11
*************************************************************************
sl@0
    12
** This file contains code used for creating, destroying, and populating
sl@0
    13
** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.)  Prior
sl@0
    14
** to version 2.8.7, all this code was combined into the vdbe.c source file.
sl@0
    15
** But that file was getting too big so this subroutines were split out.
sl@0
    16
**
sl@0
    17
** $Id: vdbeaux.c,v 1.412 2008/10/11 17:51:39 danielk1977 Exp $
sl@0
    18
*/
sl@0
    19
#include "sqliteInt.h"
sl@0
    20
#include <ctype.h>
sl@0
    21
#include "vdbeInt.h"
sl@0
    22
sl@0
    23
sl@0
    24
sl@0
    25
/*
sl@0
    26
** When debugging the code generator in a symbolic debugger, one can
sl@0
    27
** set the sqlite3VdbeAddopTrace to 1 and all opcodes will be printed
sl@0
    28
** as they are added to the instruction stream.
sl@0
    29
*/
sl@0
    30
#ifdef SQLITE_DEBUG
sl@0
    31
int sqlite3VdbeAddopTrace = 0;
sl@0
    32
#endif
sl@0
    33
sl@0
    34
sl@0
    35
/*
sl@0
    36
** Create a new virtual database engine.
sl@0
    37
*/
sl@0
    38
Vdbe *sqlite3VdbeCreate(sqlite3 *db){
sl@0
    39
  Vdbe *p;
sl@0
    40
  p = sqlite3DbMallocZero(db, sizeof(Vdbe) );
sl@0
    41
  if( p==0 ) return 0;
sl@0
    42
  p->db = db;
sl@0
    43
  if( db->pVdbe ){
sl@0
    44
    db->pVdbe->pPrev = p;
sl@0
    45
  }
sl@0
    46
  p->pNext = db->pVdbe;
sl@0
    47
  p->pPrev = 0;
sl@0
    48
  db->pVdbe = p;
sl@0
    49
  p->magic = VDBE_MAGIC_INIT;
sl@0
    50
  return p;
sl@0
    51
}
sl@0
    52
sl@0
    53
/*
sl@0
    54
** Remember the SQL string for a prepared statement.
sl@0
    55
*/
sl@0
    56
void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n){
sl@0
    57
  if( p==0 ) return;
sl@0
    58
  assert( p->zSql==0 );
sl@0
    59
  p->zSql = sqlite3DbStrNDup(p->db, z, n);
sl@0
    60
}
sl@0
    61
sl@0
    62
/*
sl@0
    63
** Return the SQL associated with a prepared statement
sl@0
    64
*/
sl@0
    65
const char *sqlite3_sql(sqlite3_stmt *pStmt){
sl@0
    66
  return ((Vdbe *)pStmt)->zSql;
sl@0
    67
}
sl@0
    68
sl@0
    69
/*
sl@0
    70
** Swap all content between two VDBE structures.
sl@0
    71
*/
sl@0
    72
void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){
sl@0
    73
  Vdbe tmp, *pTmp;
sl@0
    74
  char *zTmp;
sl@0
    75
  int nTmp;
sl@0
    76
  tmp = *pA;
sl@0
    77
  *pA = *pB;
sl@0
    78
  *pB = tmp;
sl@0
    79
  pTmp = pA->pNext;
sl@0
    80
  pA->pNext = pB->pNext;
sl@0
    81
  pB->pNext = pTmp;
sl@0
    82
  pTmp = pA->pPrev;
sl@0
    83
  pA->pPrev = pB->pPrev;
sl@0
    84
  pB->pPrev = pTmp;
sl@0
    85
  zTmp = pA->zSql;
sl@0
    86
  pA->zSql = pB->zSql;
sl@0
    87
  pB->zSql = zTmp;
sl@0
    88
  nTmp = pA->nSql;
sl@0
    89
  pA->nSql = pB->nSql;
sl@0
    90
  pB->nSql = nTmp;
sl@0
    91
}
sl@0
    92
sl@0
    93
#ifdef SQLITE_DEBUG
sl@0
    94
/*
sl@0
    95
** Turn tracing on or off
sl@0
    96
*/
sl@0
    97
void sqlite3VdbeTrace(Vdbe *p, FILE *trace){
sl@0
    98
  p->trace = trace;
sl@0
    99
}
sl@0
   100
#endif
sl@0
   101
sl@0
   102
/*
sl@0
   103
** Resize the Vdbe.aOp array so that it contains at least N
sl@0
   104
** elements.
sl@0
   105
**
sl@0
   106
** If an out-of-memory error occurs while resizing the array,
sl@0
   107
** Vdbe.aOp and Vdbe.nOpAlloc remain unchanged (this is so that
sl@0
   108
** any opcodes already allocated can be correctly deallocated
sl@0
   109
** along with the rest of the Vdbe).
sl@0
   110
*/
sl@0
   111
static void resizeOpArray(Vdbe *p, int N){
sl@0
   112
  VdbeOp *pNew;
sl@0
   113
  pNew = sqlite3DbRealloc(p->db, p->aOp, N*sizeof(Op));
sl@0
   114
  if( pNew ){
sl@0
   115
    p->nOpAlloc = N;
sl@0
   116
    p->aOp = pNew;
sl@0
   117
  }
sl@0
   118
}
sl@0
   119
sl@0
   120
/*
sl@0
   121
** Add a new instruction to the list of instructions current in the
sl@0
   122
** VDBE.  Return the address of the new instruction.
sl@0
   123
**
sl@0
   124
** Parameters:
sl@0
   125
**
sl@0
   126
**    p               Pointer to the VDBE
sl@0
   127
**
sl@0
   128
**    op              The opcode for this instruction
sl@0
   129
**
sl@0
   130
**    p1, p2, p3      Operands
sl@0
   131
**
sl@0
   132
** Use the sqlite3VdbeResolveLabel() function to fix an address and
sl@0
   133
** the sqlite3VdbeChangeP4() function to change the value of the P4
sl@0
   134
** operand.
sl@0
   135
*/
sl@0
   136
int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){
sl@0
   137
  int i;
sl@0
   138
  VdbeOp *pOp;
sl@0
   139
sl@0
   140
  i = p->nOp;
sl@0
   141
  assert( p->magic==VDBE_MAGIC_INIT );
sl@0
   142
  if( p->nOpAlloc<=i ){
sl@0
   143
    resizeOpArray(p, p->nOpAlloc ? p->nOpAlloc*2 : 1024/sizeof(Op));
sl@0
   144
    if( p->db->mallocFailed ){
sl@0
   145
      return 0;
sl@0
   146
    }
sl@0
   147
  }
sl@0
   148
  p->nOp++;
sl@0
   149
  pOp = &p->aOp[i];
sl@0
   150
  pOp->opcode = op;
sl@0
   151
  pOp->p5 = 0;
sl@0
   152
  pOp->p1 = p1;
sl@0
   153
  pOp->p2 = p2;
sl@0
   154
  pOp->p3 = p3;
sl@0
   155
  pOp->p4.p = 0;
sl@0
   156
  pOp->p4type = P4_NOTUSED;
sl@0
   157
  p->expired = 0;
sl@0
   158
#ifdef SQLITE_DEBUG
sl@0
   159
  pOp->zComment = 0;
sl@0
   160
  if( sqlite3VdbeAddopTrace ) sqlite3VdbePrintOp(0, i, &p->aOp[i]);
sl@0
   161
#endif
sl@0
   162
#ifdef VDBE_PROFILE
sl@0
   163
  pOp->cycles = 0;
sl@0
   164
  pOp->cnt = 0;
sl@0
   165
#endif
sl@0
   166
  return i;
sl@0
   167
}
sl@0
   168
int sqlite3VdbeAddOp0(Vdbe *p, int op){
sl@0
   169
  return sqlite3VdbeAddOp3(p, op, 0, 0, 0);
sl@0
   170
}
sl@0
   171
int sqlite3VdbeAddOp1(Vdbe *p, int op, int p1){
sl@0
   172
  return sqlite3VdbeAddOp3(p, op, p1, 0, 0);
sl@0
   173
}
sl@0
   174
int sqlite3VdbeAddOp2(Vdbe *p, int op, int p1, int p2){
sl@0
   175
  return sqlite3VdbeAddOp3(p, op, p1, p2, 0);
sl@0
   176
}
sl@0
   177
sl@0
   178
sl@0
   179
/*
sl@0
   180
** Add an opcode that includes the p4 value as a pointer.
sl@0
   181
*/
sl@0
   182
int sqlite3VdbeAddOp4(
sl@0
   183
  Vdbe *p,            /* Add the opcode to this VM */
sl@0
   184
  int op,             /* The new opcode */
sl@0
   185
  int p1,             /* The P1 operand */
sl@0
   186
  int p2,             /* The P2 operand */
sl@0
   187
  int p3,             /* The P3 operand */
sl@0
   188
  const char *zP4,    /* The P4 operand */
sl@0
   189
  int p4type          /* P4 operand type */
sl@0
   190
){
sl@0
   191
  int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
sl@0
   192
  sqlite3VdbeChangeP4(p, addr, zP4, p4type);
sl@0
   193
  return addr;
sl@0
   194
}
sl@0
   195
sl@0
   196
/*
sl@0
   197
** Create a new symbolic label for an instruction that has yet to be
sl@0
   198
** coded.  The symbolic label is really just a negative number.  The
sl@0
   199
** label can be used as the P2 value of an operation.  Later, when
sl@0
   200
** the label is resolved to a specific address, the VDBE will scan
sl@0
   201
** through its operation list and change all values of P2 which match
sl@0
   202
** the label into the resolved address.
sl@0
   203
**
sl@0
   204
** The VDBE knows that a P2 value is a label because labels are
sl@0
   205
** always negative and P2 values are suppose to be non-negative.
sl@0
   206
** Hence, a negative P2 value is a label that has yet to be resolved.
sl@0
   207
**
sl@0
   208
** Zero is returned if a malloc() fails.
sl@0
   209
*/
sl@0
   210
int sqlite3VdbeMakeLabel(Vdbe *p){
sl@0
   211
  int i;
sl@0
   212
  i = p->nLabel++;
sl@0
   213
  assert( p->magic==VDBE_MAGIC_INIT );
sl@0
   214
  if( i>=p->nLabelAlloc ){
sl@0
   215
    p->nLabelAlloc = p->nLabelAlloc*2 + 10;
sl@0
   216
    p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel,
sl@0
   217
                                    p->nLabelAlloc*sizeof(p->aLabel[0]));
sl@0
   218
  }
sl@0
   219
  if( p->aLabel ){
sl@0
   220
    p->aLabel[i] = -1;
sl@0
   221
  }
sl@0
   222
  return -1-i;
sl@0
   223
}
sl@0
   224
sl@0
   225
/*
sl@0
   226
** Resolve label "x" to be the address of the next instruction to
sl@0
   227
** be inserted.  The parameter "x" must have been obtained from
sl@0
   228
** a prior call to sqlite3VdbeMakeLabel().
sl@0
   229
*/
sl@0
   230
void sqlite3VdbeResolveLabel(Vdbe *p, int x){
sl@0
   231
  int j = -1-x;
sl@0
   232
  assert( p->magic==VDBE_MAGIC_INIT );
sl@0
   233
  assert( j>=0 && j<p->nLabel );
sl@0
   234
  if( p->aLabel ){
sl@0
   235
    p->aLabel[j] = p->nOp;
sl@0
   236
  }
sl@0
   237
}
sl@0
   238
sl@0
   239
/*
sl@0
   240
** Loop through the program looking for P2 values that are negative
sl@0
   241
** on jump instructions.  Each such value is a label.  Resolve the
sl@0
   242
** label by setting the P2 value to its correct non-zero value.
sl@0
   243
**
sl@0
   244
** This routine is called once after all opcodes have been inserted.
sl@0
   245
**
sl@0
   246
** Variable *pMaxFuncArgs is set to the maximum value of any P2 argument 
sl@0
   247
** to an OP_Function, OP_AggStep or OP_VFilter opcode. This is used by 
sl@0
   248
** sqlite3VdbeMakeReady() to size the Vdbe.apArg[] array.
sl@0
   249
**
sl@0
   250
** This routine also does the following optimization:  It scans for
sl@0
   251
** instructions that might cause a statement rollback.  Such instructions
sl@0
   252
** are:
sl@0
   253
**
sl@0
   254
**   *  OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
sl@0
   255
**   *  OP_Destroy
sl@0
   256
**   *  OP_VUpdate
sl@0
   257
**   *  OP_VRename
sl@0
   258
**
sl@0
   259
** If no such instruction is found, then every Statement instruction 
sl@0
   260
** is changed to a Noop.  In this way, we avoid creating the statement 
sl@0
   261
** journal file unnecessarily.
sl@0
   262
*/
sl@0
   263
static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){
sl@0
   264
  int i;
sl@0
   265
  int nMaxArgs = 0;
sl@0
   266
  Op *pOp;
sl@0
   267
  int *aLabel = p->aLabel;
sl@0
   268
  int doesStatementRollback = 0;
sl@0
   269
  int hasStatementBegin = 0;
sl@0
   270
  for(pOp=p->aOp, i=p->nOp-1; i>=0; i--, pOp++){
sl@0
   271
    u8 opcode = pOp->opcode;
sl@0
   272
sl@0
   273
    if( opcode==OP_Function || opcode==OP_AggStep ){
sl@0
   274
      if( pOp->p5>nMaxArgs ) nMaxArgs = pOp->p5;
sl@0
   275
#ifndef SQLITE_OMIT_VIRTUALTABLE
sl@0
   276
    }else if( opcode==OP_VUpdate ){
sl@0
   277
      if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2;
sl@0
   278
#endif
sl@0
   279
    }
sl@0
   280
    if( opcode==OP_Halt ){
sl@0
   281
      if( pOp->p1==SQLITE_CONSTRAINT && pOp->p2==OE_Abort ){
sl@0
   282
        doesStatementRollback = 1;
sl@0
   283
      }
sl@0
   284
    }else if( opcode==OP_Statement ){
sl@0
   285
      hasStatementBegin = 1;
sl@0
   286
    }else if( opcode==OP_Destroy ){
sl@0
   287
      doesStatementRollback = 1;
sl@0
   288
#ifndef SQLITE_OMIT_VIRTUALTABLE
sl@0
   289
    }else if( opcode==OP_VUpdate || opcode==OP_VRename ){
sl@0
   290
      doesStatementRollback = 1;
sl@0
   291
    }else if( opcode==OP_VFilter ){
sl@0
   292
      int n;
sl@0
   293
      assert( p->nOp - i >= 3 );
sl@0
   294
      assert( pOp[-1].opcode==OP_Integer );
sl@0
   295
      n = pOp[-1].p1;
sl@0
   296
      if( n>nMaxArgs ) nMaxArgs = n;
sl@0
   297
#endif
sl@0
   298
    }
sl@0
   299
sl@0
   300
    if( sqlite3VdbeOpcodeHasProperty(opcode, OPFLG_JUMP) && pOp->p2<0 ){
sl@0
   301
      assert( -1-pOp->p2<p->nLabel );
sl@0
   302
      pOp->p2 = aLabel[-1-pOp->p2];
sl@0
   303
    }
sl@0
   304
  }
sl@0
   305
  sqlite3DbFree(p->db, p->aLabel);
sl@0
   306
  p->aLabel = 0;
sl@0
   307
sl@0
   308
  *pMaxFuncArgs = nMaxArgs;
sl@0
   309
sl@0
   310
  /* If we never rollback a statement transaction, then statement
sl@0
   311
  ** transactions are not needed.  So change every OP_Statement
sl@0
   312
  ** opcode into an OP_Noop.  This avoid a call to sqlite3OsOpenExclusive()
sl@0
   313
  ** which can be expensive on some platforms.
sl@0
   314
  */
sl@0
   315
  if( hasStatementBegin && !doesStatementRollback ){
sl@0
   316
    for(pOp=p->aOp, i=p->nOp-1; i>=0; i--, pOp++){
sl@0
   317
      if( pOp->opcode==OP_Statement ){
sl@0
   318
        pOp->opcode = OP_Noop;
sl@0
   319
      }
sl@0
   320
    }
sl@0
   321
  }
sl@0
   322
}
sl@0
   323
sl@0
   324
/*
sl@0
   325
** Return the address of the next instruction to be inserted.
sl@0
   326
*/
sl@0
   327
int sqlite3VdbeCurrentAddr(Vdbe *p){
sl@0
   328
  assert( p->magic==VDBE_MAGIC_INIT );
sl@0
   329
  return p->nOp;
sl@0
   330
}
sl@0
   331
sl@0
   332
/*
sl@0
   333
** Add a whole list of operations to the operation stack.  Return the
sl@0
   334
** address of the first operation added.
sl@0
   335
*/
sl@0
   336
int sqlite3VdbeAddOpList(Vdbe *p, int nOp, VdbeOpList const *aOp){
sl@0
   337
  int addr;
sl@0
   338
  assert( p->magic==VDBE_MAGIC_INIT );
sl@0
   339
  if( p->nOp + nOp > p->nOpAlloc ){
sl@0
   340
    resizeOpArray(p, p->nOpAlloc ? p->nOpAlloc*2 : 1024/sizeof(Op));
sl@0
   341
    assert( p->nOp+nOp<=p->nOpAlloc || p->db->mallocFailed );
sl@0
   342
  }
sl@0
   343
  if( p->db->mallocFailed ){
sl@0
   344
    return 0;
sl@0
   345
  }
sl@0
   346
  addr = p->nOp;
sl@0
   347
  if( nOp>0 ){
sl@0
   348
    int i;
sl@0
   349
    VdbeOpList const *pIn = aOp;
sl@0
   350
    for(i=0; i<nOp; i++, pIn++){
sl@0
   351
      int p2 = pIn->p2;
sl@0
   352
      VdbeOp *pOut = &p->aOp[i+addr];
sl@0
   353
      pOut->opcode = pIn->opcode;
sl@0
   354
      pOut->p1 = pIn->p1;
sl@0
   355
      if( p2<0 && sqlite3VdbeOpcodeHasProperty(pOut->opcode, OPFLG_JUMP) ){
sl@0
   356
        pOut->p2 = addr + ADDR(p2);
sl@0
   357
      }else{
sl@0
   358
        pOut->p2 = p2;
sl@0
   359
      }
sl@0
   360
      pOut->p3 = pIn->p3;
sl@0
   361
      pOut->p4type = P4_NOTUSED;
sl@0
   362
      pOut->p4.p = 0;
sl@0
   363
      pOut->p5 = 0;
sl@0
   364
#ifdef SQLITE_DEBUG
sl@0
   365
      pOut->zComment = 0;
sl@0
   366
      if( sqlite3VdbeAddopTrace ){
sl@0
   367
        sqlite3VdbePrintOp(0, i+addr, &p->aOp[i+addr]);
sl@0
   368
      }
sl@0
   369
#endif
sl@0
   370
    }
sl@0
   371
    p->nOp += nOp;
sl@0
   372
  }
sl@0
   373
  return addr;
sl@0
   374
}
sl@0
   375
sl@0
   376
/*
sl@0
   377
** Change the value of the P1 operand for a specific instruction.
sl@0
   378
** This routine is useful when a large program is loaded from a
sl@0
   379
** static array using sqlite3VdbeAddOpList but we want to make a
sl@0
   380
** few minor changes to the program.
sl@0
   381
*/
sl@0
   382
void sqlite3VdbeChangeP1(Vdbe *p, int addr, int val){
sl@0
   383
  assert( p==0 || p->magic==VDBE_MAGIC_INIT );
sl@0
   384
  if( p && addr>=0 && p->nOp>addr && p->aOp ){
sl@0
   385
    p->aOp[addr].p1 = val;
sl@0
   386
  }
sl@0
   387
}
sl@0
   388
sl@0
   389
/*
sl@0
   390
** Change the value of the P2 operand for a specific instruction.
sl@0
   391
** This routine is useful for setting a jump destination.
sl@0
   392
*/
sl@0
   393
void sqlite3VdbeChangeP2(Vdbe *p, int addr, int val){
sl@0
   394
  assert( p==0 || p->magic==VDBE_MAGIC_INIT );
sl@0
   395
  if( p && addr>=0 && p->nOp>addr && p->aOp ){
sl@0
   396
    p->aOp[addr].p2 = val;
sl@0
   397
  }
sl@0
   398
}
sl@0
   399
sl@0
   400
/*
sl@0
   401
** Change the value of the P3 operand for a specific instruction.
sl@0
   402
*/
sl@0
   403
void sqlite3VdbeChangeP3(Vdbe *p, int addr, int val){
sl@0
   404
  assert( p==0 || p->magic==VDBE_MAGIC_INIT );
sl@0
   405
  if( p && addr>=0 && p->nOp>addr && p->aOp ){
sl@0
   406
    p->aOp[addr].p3 = val;
sl@0
   407
  }
sl@0
   408
}
sl@0
   409
sl@0
   410
/*
sl@0
   411
** Change the value of the P5 operand for the most recently
sl@0
   412
** added operation.
sl@0
   413
*/
sl@0
   414
void sqlite3VdbeChangeP5(Vdbe *p, u8 val){
sl@0
   415
  assert( p==0 || p->magic==VDBE_MAGIC_INIT );
sl@0
   416
  if( p && p->aOp ){
sl@0
   417
    assert( p->nOp>0 );
sl@0
   418
    p->aOp[p->nOp-1].p5 = val;
sl@0
   419
  }
sl@0
   420
}
sl@0
   421
sl@0
   422
/*
sl@0
   423
** Change the P2 operand of instruction addr so that it points to
sl@0
   424
** the address of the next instruction to be coded.
sl@0
   425
*/
sl@0
   426
void sqlite3VdbeJumpHere(Vdbe *p, int addr){
sl@0
   427
  sqlite3VdbeChangeP2(p, addr, p->nOp);
sl@0
   428
}
sl@0
   429
sl@0
   430
sl@0
   431
/*
sl@0
   432
** If the input FuncDef structure is ephemeral, then free it.  If
sl@0
   433
** the FuncDef is not ephermal, then do nothing.
sl@0
   434
*/
sl@0
   435
static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef){
sl@0
   436
  if( pDef && (pDef->flags & SQLITE_FUNC_EPHEM)!=0 ){
sl@0
   437
    sqlite3DbFree(db, pDef);
sl@0
   438
  }
sl@0
   439
}
sl@0
   440
sl@0
   441
/*
sl@0
   442
** Delete a P4 value if necessary.
sl@0
   443
*/
sl@0
   444
static void freeP4(sqlite3 *db, int p4type, void *p4){
sl@0
   445
  if( p4 ){
sl@0
   446
    switch( p4type ){
sl@0
   447
      case P4_REAL:
sl@0
   448
      case P4_INT64:
sl@0
   449
      case P4_MPRINTF:
sl@0
   450
      case P4_DYNAMIC:
sl@0
   451
      case P4_KEYINFO:
sl@0
   452
      case P4_INTARRAY:
sl@0
   453
      case P4_KEYINFO_HANDOFF: {
sl@0
   454
        sqlite3DbFree(db, p4);
sl@0
   455
        break;
sl@0
   456
      }
sl@0
   457
      case P4_VDBEFUNC: {
sl@0
   458
        VdbeFunc *pVdbeFunc = (VdbeFunc *)p4;
sl@0
   459
        freeEphemeralFunction(db, pVdbeFunc->pFunc);
sl@0
   460
        sqlite3VdbeDeleteAuxData(pVdbeFunc, 0);
sl@0
   461
        sqlite3DbFree(db, pVdbeFunc);
sl@0
   462
        break;
sl@0
   463
      }
sl@0
   464
      case P4_FUNCDEF: {
sl@0
   465
        freeEphemeralFunction(db, (FuncDef*)p4);
sl@0
   466
        break;
sl@0
   467
      }
sl@0
   468
      case P4_MEM: {
sl@0
   469
        sqlite3ValueFree((sqlite3_value*)p4);
sl@0
   470
        break;
sl@0
   471
      }
sl@0
   472
    }
sl@0
   473
  }
sl@0
   474
}
sl@0
   475
sl@0
   476
sl@0
   477
/*
sl@0
   478
** Change N opcodes starting at addr to No-ops.
sl@0
   479
*/
sl@0
   480
void sqlite3VdbeChangeToNoop(Vdbe *p, int addr, int N){
sl@0
   481
  if( p && p->aOp ){
sl@0
   482
    VdbeOp *pOp = &p->aOp[addr];
sl@0
   483
    sqlite3 *db = p->db;
sl@0
   484
    while( N-- ){
sl@0
   485
      freeP4(db, pOp->p4type, pOp->p4.p);
sl@0
   486
      memset(pOp, 0, sizeof(pOp[0]));
sl@0
   487
      pOp->opcode = OP_Noop;
sl@0
   488
      pOp++;
sl@0
   489
    }
sl@0
   490
  }
sl@0
   491
}
sl@0
   492
sl@0
   493
/*
sl@0
   494
** Change the value of the P4 operand for a specific instruction.
sl@0
   495
** This routine is useful when a large program is loaded from a
sl@0
   496
** static array using sqlite3VdbeAddOpList but we want to make a
sl@0
   497
** few minor changes to the program.
sl@0
   498
**
sl@0
   499
** If n>=0 then the P4 operand is dynamic, meaning that a copy of
sl@0
   500
** the string is made into memory obtained from sqlite3_malloc().
sl@0
   501
** A value of n==0 means copy bytes of zP4 up to and including the
sl@0
   502
** first null byte.  If n>0 then copy n+1 bytes of zP4.
sl@0
   503
**
sl@0
   504
** If n==P4_KEYINFO it means that zP4 is a pointer to a KeyInfo structure.
sl@0
   505
** A copy is made of the KeyInfo structure into memory obtained from
sl@0
   506
** sqlite3_malloc, to be freed when the Vdbe is finalized.
sl@0
   507
** n==P4_KEYINFO_HANDOFF indicates that zP4 points to a KeyInfo structure
sl@0
   508
** stored in memory that the caller has obtained from sqlite3_malloc. The 
sl@0
   509
** caller should not free the allocation, it will be freed when the Vdbe is
sl@0
   510
** finalized.
sl@0
   511
** 
sl@0
   512
** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points
sl@0
   513
** to a string or structure that is guaranteed to exist for the lifetime of
sl@0
   514
** the Vdbe. In these cases we can just copy the pointer.
sl@0
   515
**
sl@0
   516
** If addr<0 then change P4 on the most recently inserted instruction.
sl@0
   517
*/
sl@0
   518
void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){
sl@0
   519
  Op *pOp;
sl@0
   520
  sqlite3 *db;
sl@0
   521
  assert( p!=0 );
sl@0
   522
  db = p->db;
sl@0
   523
  assert( p->magic==VDBE_MAGIC_INIT );
sl@0
   524
  if( p->aOp==0 || db->mallocFailed ){
sl@0
   525
    if (n != P4_KEYINFO) {
sl@0
   526
      freeP4(db, n, (void*)*(char**)&zP4);
sl@0
   527
    }
sl@0
   528
    return;
sl@0
   529
  }
sl@0
   530
  assert( addr<p->nOp );
sl@0
   531
  if( addr<0 ){
sl@0
   532
    addr = p->nOp - 1;
sl@0
   533
    if( addr<0 ) return;
sl@0
   534
  }
sl@0
   535
  pOp = &p->aOp[addr];
sl@0
   536
  freeP4(db, pOp->p4type, pOp->p4.p);
sl@0
   537
  pOp->p4.p = 0;
sl@0
   538
  if( n==P4_INT32 ){
sl@0
   539
    /* Note: this cast is safe, because the origin data point was an int
sl@0
   540
    ** that was cast to a (const char *). */
sl@0
   541
    pOp->p4.i = SQLITE_PTR_TO_INT(zP4);
sl@0
   542
    pOp->p4type = n;
sl@0
   543
  }else if( zP4==0 ){
sl@0
   544
    pOp->p4.p = 0;
sl@0
   545
    pOp->p4type = P4_NOTUSED;
sl@0
   546
  }else if( n==P4_KEYINFO ){
sl@0
   547
    KeyInfo *pKeyInfo;
sl@0
   548
    int nField, nByte;
sl@0
   549
sl@0
   550
    nField = ((KeyInfo*)zP4)->nField;
sl@0
   551
    nByte = sizeof(*pKeyInfo) + (nField-1)*sizeof(pKeyInfo->aColl[0]) + nField;
sl@0
   552
    pKeyInfo = sqlite3Malloc( nByte );
sl@0
   553
    pOp->p4.pKeyInfo = pKeyInfo;
sl@0
   554
    if( pKeyInfo ){
sl@0
   555
      u8 *aSortOrder;
sl@0
   556
      memcpy(pKeyInfo, zP4, nByte);
sl@0
   557
      aSortOrder = pKeyInfo->aSortOrder;
sl@0
   558
      if( aSortOrder ){
sl@0
   559
        pKeyInfo->aSortOrder = (unsigned char*)&pKeyInfo->aColl[nField];
sl@0
   560
        memcpy(pKeyInfo->aSortOrder, aSortOrder, nField);
sl@0
   561
      }
sl@0
   562
      pOp->p4type = P4_KEYINFO;
sl@0
   563
    }else{
sl@0
   564
      p->db->mallocFailed = 1;
sl@0
   565
      pOp->p4type = P4_NOTUSED;
sl@0
   566
    }
sl@0
   567
  }else if( n==P4_KEYINFO_HANDOFF ){
sl@0
   568
    pOp->p4.p = (void*)zP4;
sl@0
   569
    pOp->p4type = P4_KEYINFO;
sl@0
   570
  }else if( n<0 ){
sl@0
   571
    pOp->p4.p = (void*)zP4;
sl@0
   572
    pOp->p4type = n;
sl@0
   573
  }else{
sl@0
   574
    if( n==0 ) n = strlen(zP4);
sl@0
   575
    pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n);
sl@0
   576
    pOp->p4type = P4_DYNAMIC;
sl@0
   577
  }
sl@0
   578
}
sl@0
   579
sl@0
   580
#ifndef NDEBUG
sl@0
   581
/*
sl@0
   582
** Change the comment on the the most recently coded instruction.  Or
sl@0
   583
** insert a No-op and add the comment to that new instruction.  This
sl@0
   584
** makes the code easier to read during debugging.  None of this happens
sl@0
   585
** in a production build.
sl@0
   586
*/
sl@0
   587
void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){
sl@0
   588
  va_list ap;
sl@0
   589
  assert( p->nOp>0 || p->aOp==0 );
sl@0
   590
  assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed );
sl@0
   591
  if( p->nOp ){
sl@0
   592
    char **pz = &p->aOp[p->nOp-1].zComment;
sl@0
   593
    va_start(ap, zFormat);
sl@0
   594
    sqlite3DbFree(p->db, *pz);
sl@0
   595
    *pz = sqlite3VMPrintf(p->db, zFormat, ap);
sl@0
   596
    va_end(ap);
sl@0
   597
  }
sl@0
   598
}
sl@0
   599
void sqlite3VdbeNoopComment(Vdbe *p, const char *zFormat, ...){
sl@0
   600
  va_list ap;
sl@0
   601
  sqlite3VdbeAddOp0(p, OP_Noop);
sl@0
   602
  assert( p->nOp>0 || p->aOp==0 );
sl@0
   603
  assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed );
sl@0
   604
  if( p->nOp ){
sl@0
   605
    char **pz = &p->aOp[p->nOp-1].zComment;
sl@0
   606
    va_start(ap, zFormat);
sl@0
   607
    sqlite3DbFree(p->db, *pz);
sl@0
   608
    *pz = sqlite3VMPrintf(p->db, zFormat, ap);
sl@0
   609
    va_end(ap);
sl@0
   610
  }
sl@0
   611
}
sl@0
   612
#endif  /* NDEBUG */
sl@0
   613
sl@0
   614
/*
sl@0
   615
** Return the opcode for a given address.
sl@0
   616
*/
sl@0
   617
VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){
sl@0
   618
  assert( p->magic==VDBE_MAGIC_INIT );
sl@0
   619
  assert( (addr>=0 && addr<p->nOp) || p->db->mallocFailed );
sl@0
   620
  return ((addr>=0 && addr<p->nOp)?(&p->aOp[addr]):0);
sl@0
   621
}
sl@0
   622
sl@0
   623
#if !defined(SQLITE_OMIT_EXPLAIN) || !defined(NDEBUG) \
sl@0
   624
     || defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
sl@0
   625
/*
sl@0
   626
** Compute a string that describes the P4 parameter for an opcode.
sl@0
   627
** Use zTemp for any required temporary buffer space.
sl@0
   628
*/
sl@0
   629
static char *displayP4(Op *pOp, char *zTemp, int nTemp){
sl@0
   630
  char *zP4 = zTemp;
sl@0
   631
  assert( nTemp>=20 );
sl@0
   632
  switch( pOp->p4type ){
sl@0
   633
    case P4_KEYINFO_STATIC:
sl@0
   634
    case P4_KEYINFO: {
sl@0
   635
      int i, j;
sl@0
   636
      KeyInfo *pKeyInfo = pOp->p4.pKeyInfo;
sl@0
   637
      sqlite3_snprintf(nTemp, zTemp, "keyinfo(%d", pKeyInfo->nField);
sl@0
   638
      i = strlen(zTemp);
sl@0
   639
      for(j=0; j<pKeyInfo->nField; j++){
sl@0
   640
        CollSeq *pColl = pKeyInfo->aColl[j];
sl@0
   641
        if( pColl ){
sl@0
   642
          int n = strlen(pColl->zName);
sl@0
   643
          if( i+n>nTemp-6 ){
sl@0
   644
            memcpy(&zTemp[i],",...",4);
sl@0
   645
            break;
sl@0
   646
          }
sl@0
   647
          zTemp[i++] = ',';
sl@0
   648
          if( pKeyInfo->aSortOrder && pKeyInfo->aSortOrder[j] ){
sl@0
   649
            zTemp[i++] = '-';
sl@0
   650
          }
sl@0
   651
          memcpy(&zTemp[i], pColl->zName,n+1);
sl@0
   652
          i += n;
sl@0
   653
        }else if( i+4<nTemp-6 ){
sl@0
   654
          memcpy(&zTemp[i],",nil",4);
sl@0
   655
          i += 4;
sl@0
   656
        }
sl@0
   657
      }
sl@0
   658
      zTemp[i++] = ')';
sl@0
   659
      zTemp[i] = 0;
sl@0
   660
      assert( i<nTemp );
sl@0
   661
      break;
sl@0
   662
    }
sl@0
   663
    case P4_COLLSEQ: {
sl@0
   664
      CollSeq *pColl = pOp->p4.pColl;
sl@0
   665
      sqlite3_snprintf(nTemp, zTemp, "collseq(%.20s)", pColl->zName);
sl@0
   666
      break;
sl@0
   667
    }
sl@0
   668
    case P4_FUNCDEF: {
sl@0
   669
      FuncDef *pDef = pOp->p4.pFunc;
sl@0
   670
      sqlite3_snprintf(nTemp, zTemp, "%s(%d)", pDef->zName, pDef->nArg);
sl@0
   671
      break;
sl@0
   672
    }
sl@0
   673
    case P4_INT64: {
sl@0
   674
      sqlite3_snprintf(nTemp, zTemp, "%lld", *pOp->p4.pI64);
sl@0
   675
      break;
sl@0
   676
    }
sl@0
   677
    case P4_INT32: {
sl@0
   678
      sqlite3_snprintf(nTemp, zTemp, "%d", pOp->p4.i);
sl@0
   679
      break;
sl@0
   680
    }
sl@0
   681
    case P4_REAL: {
sl@0
   682
      sqlite3_snprintf(nTemp, zTemp, "%.16g", *pOp->p4.pReal);
sl@0
   683
      break;
sl@0
   684
    }
sl@0
   685
    case P4_MEM: {
sl@0
   686
      Mem *pMem = pOp->p4.pMem;
sl@0
   687
      assert( (pMem->flags & MEM_Null)==0 );
sl@0
   688
      if( pMem->flags & MEM_Str ){
sl@0
   689
        zP4 = pMem->z;
sl@0
   690
      }else if( pMem->flags & MEM_Int ){
sl@0
   691
        sqlite3_snprintf(nTemp, zTemp, "%lld", pMem->u.i);
sl@0
   692
      }else if( pMem->flags & MEM_Real ){
sl@0
   693
        sqlite3_snprintf(nTemp, zTemp, "%.16g", pMem->r);
sl@0
   694
      }
sl@0
   695
      break;
sl@0
   696
    }
sl@0
   697
#ifndef SQLITE_OMIT_VIRTUALTABLE
sl@0
   698
    case P4_VTAB: {
sl@0
   699
      sqlite3_vtab *pVtab = pOp->p4.pVtab;
sl@0
   700
      sqlite3_snprintf(nTemp, zTemp, "vtab:%p:%p", pVtab, pVtab->pModule);
sl@0
   701
      break;
sl@0
   702
    }
sl@0
   703
#endif
sl@0
   704
    case P4_INTARRAY: {
sl@0
   705
      sqlite3_snprintf(nTemp, zTemp, "intarray");
sl@0
   706
      break;
sl@0
   707
    }
sl@0
   708
    default: {
sl@0
   709
      zP4 = pOp->p4.z;
sl@0
   710
      if( zP4==0 ){
sl@0
   711
        zP4 = zTemp;
sl@0
   712
        zTemp[0] = 0;
sl@0
   713
      }
sl@0
   714
    }
sl@0
   715
  }
sl@0
   716
  assert( zP4!=0 );
sl@0
   717
  return zP4;
sl@0
   718
}
sl@0
   719
#endif
sl@0
   720
sl@0
   721
/*
sl@0
   722
** Declare to the Vdbe that the BTree object at db->aDb[i] is used.
sl@0
   723
**
sl@0
   724
*/
sl@0
   725
void sqlite3VdbeUsesBtree(Vdbe *p, int i){
sl@0
   726
  int mask;
sl@0
   727
  assert( i>=0 && i<p->db->nDb );
sl@0
   728
  assert( i<sizeof(p->btreeMask)*8 );
sl@0
   729
  mask = 1<<i;
sl@0
   730
  if( (p->btreeMask & mask)==0 ){
sl@0
   731
    p->btreeMask |= mask;
sl@0
   732
    sqlite3BtreeMutexArrayInsert(&p->aMutex, p->db->aDb[i].pBt);
sl@0
   733
  }
sl@0
   734
}
sl@0
   735
sl@0
   736
sl@0
   737
#if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
sl@0
   738
/*
sl@0
   739
** Print a single opcode.  This routine is used for debugging only.
sl@0
   740
*/
sl@0
   741
void sqlite3VdbePrintOp(FILE *pOut, int pc, Op *pOp){
sl@0
   742
  char *zP4;
sl@0
   743
  char zPtr[50];
sl@0
   744
  static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-4s %.2X %s\n";
sl@0
   745
  if( pOut==0 ) pOut = stdout;
sl@0
   746
  zP4 = displayP4(pOp, zPtr, sizeof(zPtr));
sl@0
   747
  fprintf(pOut, zFormat1, pc, 
sl@0
   748
      sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3, zP4, pOp->p5,
sl@0
   749
#ifdef SQLITE_DEBUG
sl@0
   750
      pOp->zComment ? pOp->zComment : ""
sl@0
   751
#else
sl@0
   752
      ""
sl@0
   753
#endif
sl@0
   754
  );
sl@0
   755
  fflush(pOut);
sl@0
   756
}
sl@0
   757
#endif
sl@0
   758
sl@0
   759
/*
sl@0
   760
** Release an array of N Mem elements
sl@0
   761
*/
sl@0
   762
static void releaseMemArray(Mem *p, int N){
sl@0
   763
  if( p && N ){
sl@0
   764
    Mem *pEnd;
sl@0
   765
    sqlite3 *db = p->db;
sl@0
   766
    int malloc_failed = db->mallocFailed;
sl@0
   767
    for(pEnd=&p[N]; p<pEnd; p++){
sl@0
   768
      assert( (&p[1])==pEnd || p[0].db==p[1].db );
sl@0
   769
sl@0
   770
      /* This block is really an inlined version of sqlite3VdbeMemRelease()
sl@0
   771
      ** that takes advantage of the fact that the memory cell value is 
sl@0
   772
      ** being set to NULL after releasing any dynamic resources.
sl@0
   773
      **
sl@0
   774
      ** The justification for duplicating code is that according to 
sl@0
   775
      ** callgrind, this causes a certain test case to hit the CPU 4.7 
sl@0
   776
      ** percent less (x86 linux, gcc version 4.1.2, -O6) than if 
sl@0
   777
      ** sqlite3MemRelease() were called from here. With -O2, this jumps
sl@0
   778
      ** to 6.6 percent. The test case is inserting 1000 rows into a table 
sl@0
   779
      ** with no indexes using a single prepared INSERT statement, bind() 
sl@0
   780
      ** and reset(). Inserts are grouped into a transaction.
sl@0
   781
      */
sl@0
   782
      if( p->flags&(MEM_Agg|MEM_Dyn) ){
sl@0
   783
        sqlite3VdbeMemRelease(p);
sl@0
   784
      }else if( p->zMalloc ){
sl@0
   785
        sqlite3DbFree(db, p->zMalloc);
sl@0
   786
        p->zMalloc = 0;
sl@0
   787
      }
sl@0
   788
sl@0
   789
      p->flags = MEM_Null;
sl@0
   790
    }
sl@0
   791
    db->mallocFailed = malloc_failed;
sl@0
   792
  }
sl@0
   793
}
sl@0
   794
sl@0
   795
#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
sl@0
   796
int sqlite3VdbeReleaseBuffers(Vdbe *p){
sl@0
   797
  int ii;
sl@0
   798
  int nFree = 0;
sl@0
   799
  assert( sqlite3_mutex_held(p->db->mutex) );
sl@0
   800
  for(ii=1; ii<=p->nMem; ii++){
sl@0
   801
    Mem *pMem = &p->aMem[ii];
sl@0
   802
    if( pMem->z && pMem->flags&MEM_Dyn ){
sl@0
   803
      assert( !pMem->xDel );
sl@0
   804
      nFree += sqlite3DbMallocSize(pMem->db, pMem->z);
sl@0
   805
      sqlite3VdbeMemRelease(pMem);
sl@0
   806
    }
sl@0
   807
  }
sl@0
   808
  return nFree;
sl@0
   809
}
sl@0
   810
#endif
sl@0
   811
sl@0
   812
#ifndef SQLITE_OMIT_EXPLAIN
sl@0
   813
/*
sl@0
   814
** Give a listing of the program in the virtual machine.
sl@0
   815
**
sl@0
   816
** The interface is the same as sqlite3VdbeExec().  But instead of
sl@0
   817
** running the code, it invokes the callback once for each instruction.
sl@0
   818
** This feature is used to implement "EXPLAIN".
sl@0
   819
**
sl@0
   820
** When p->explain==1, each instruction is listed.  When
sl@0
   821
** p->explain==2, only OP_Explain instructions are listed and these
sl@0
   822
** are shown in a different format.  p->explain==2 is used to implement
sl@0
   823
** EXPLAIN QUERY PLAN.
sl@0
   824
*/
sl@0
   825
int sqlite3VdbeList(
sl@0
   826
  Vdbe *p                   /* The VDBE */
sl@0
   827
){
sl@0
   828
  sqlite3 *db = p->db;
sl@0
   829
  int i;
sl@0
   830
  int rc = SQLITE_OK;
sl@0
   831
  Mem *pMem = p->pResultSet = &p->aMem[1];
sl@0
   832
sl@0
   833
  assert( p->explain );
sl@0
   834
  if( p->magic!=VDBE_MAGIC_RUN ) return SQLITE_MISUSE;
sl@0
   835
  assert( db->magic==SQLITE_MAGIC_BUSY );
sl@0
   836
  assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY );
sl@0
   837
sl@0
   838
  /* Even though this opcode does not use dynamic strings for
sl@0
   839
  ** the result, result columns may become dynamic if the user calls
sl@0
   840
  ** sqlite3_column_text16(), causing a translation to UTF-16 encoding.
sl@0
   841
  */
sl@0
   842
  releaseMemArray(pMem, p->nMem);
sl@0
   843
sl@0
   844
  do{
sl@0
   845
    i = p->pc++;
sl@0
   846
  }while( i<p->nOp && p->explain==2 && p->aOp[i].opcode!=OP_Explain );
sl@0
   847
  if( i>=p->nOp ){
sl@0
   848
    p->rc = SQLITE_OK;
sl@0
   849
    rc = SQLITE_DONE;
sl@0
   850
  }else if( db->u1.isInterrupted ){
sl@0
   851
    p->rc = SQLITE_INTERRUPT;
sl@0
   852
    rc = SQLITE_ERROR;
sl@0
   853
    sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(p->rc));
sl@0
   854
  }else{
sl@0
   855
    char *z;
sl@0
   856
    Op *pOp = &p->aOp[i];
sl@0
   857
    if( p->explain==1 ){
sl@0
   858
      pMem->flags = MEM_Int;
sl@0
   859
      pMem->type = SQLITE_INTEGER;
sl@0
   860
      pMem->u.i = i;                                /* Program counter */
sl@0
   861
      pMem++;
sl@0
   862
  
sl@0
   863
      pMem->flags = MEM_Static|MEM_Str|MEM_Term;
sl@0
   864
      pMem->z = (char*)sqlite3OpcodeName(pOp->opcode);  /* Opcode */
sl@0
   865
      assert( pMem->z!=0 );
sl@0
   866
      pMem->n = strlen(pMem->z);
sl@0
   867
      pMem->type = SQLITE_TEXT;
sl@0
   868
      pMem->enc = SQLITE_UTF8;
sl@0
   869
      pMem++;
sl@0
   870
    }
sl@0
   871
sl@0
   872
    pMem->flags = MEM_Int;
sl@0
   873
    pMem->u.i = pOp->p1;                          /* P1 */
sl@0
   874
    pMem->type = SQLITE_INTEGER;
sl@0
   875
    pMem++;
sl@0
   876
sl@0
   877
    pMem->flags = MEM_Int;
sl@0
   878
    pMem->u.i = pOp->p2;                          /* P2 */
sl@0
   879
    pMem->type = SQLITE_INTEGER;
sl@0
   880
    pMem++;
sl@0
   881
sl@0
   882
    if( p->explain==1 ){
sl@0
   883
      pMem->flags = MEM_Int;
sl@0
   884
      pMem->u.i = pOp->p3;                          /* P3 */
sl@0
   885
      pMem->type = SQLITE_INTEGER;
sl@0
   886
      pMem++;
sl@0
   887
    }
sl@0
   888
sl@0
   889
    if( sqlite3VdbeMemGrow(pMem, 32, 0) ){            /* P4 */
sl@0
   890
      p->db->mallocFailed = 1;
sl@0
   891
      return SQLITE_NOMEM;
sl@0
   892
    }
sl@0
   893
    pMem->flags = MEM_Dyn|MEM_Str|MEM_Term;
sl@0
   894
    z = displayP4(pOp, pMem->z, 32);
sl@0
   895
    if( z!=pMem->z ){
sl@0
   896
      sqlite3VdbeMemSetStr(pMem, z, -1, SQLITE_UTF8, 0);
sl@0
   897
    }else{
sl@0
   898
      assert( pMem->z!=0 );
sl@0
   899
      pMem->n = strlen(pMem->z);
sl@0
   900
      pMem->enc = SQLITE_UTF8;
sl@0
   901
    }
sl@0
   902
    pMem->type = SQLITE_TEXT;
sl@0
   903
    pMem++;
sl@0
   904
sl@0
   905
    if( p->explain==1 ){
sl@0
   906
      if( sqlite3VdbeMemGrow(pMem, 4, 0) ){
sl@0
   907
        p->db->mallocFailed = 1;
sl@0
   908
        return SQLITE_NOMEM;
sl@0
   909
      }
sl@0
   910
      pMem->flags = MEM_Dyn|MEM_Str|MEM_Term;
sl@0
   911
      pMem->n = 2;
sl@0
   912
      sqlite3_snprintf(3, pMem->z, "%.2x", pOp->p5);   /* P5 */
sl@0
   913
      pMem->type = SQLITE_TEXT;
sl@0
   914
      pMem->enc = SQLITE_UTF8;
sl@0
   915
      pMem++;
sl@0
   916
  
sl@0
   917
#ifdef SQLITE_DEBUG
sl@0
   918
      if( pOp->zComment ){
sl@0
   919
        pMem->flags = MEM_Str|MEM_Term;
sl@0
   920
        pMem->z = pOp->zComment;
sl@0
   921
        pMem->n = strlen(pMem->z);
sl@0
   922
        pMem->enc = SQLITE_UTF8;
sl@0
   923
        pMem->type = SQLITE_TEXT;
sl@0
   924
      }else
sl@0
   925
#endif
sl@0
   926
      {
sl@0
   927
        pMem->flags = MEM_Null;                       /* Comment */
sl@0
   928
        pMem->type = SQLITE_NULL;
sl@0
   929
      }
sl@0
   930
    }
sl@0
   931
sl@0
   932
    p->nResColumn = 8 - 5*(p->explain-1);
sl@0
   933
    p->rc = SQLITE_OK;
sl@0
   934
    rc = SQLITE_ROW;
sl@0
   935
  }
sl@0
   936
  return rc;
sl@0
   937
}
sl@0
   938
#endif /* SQLITE_OMIT_EXPLAIN */
sl@0
   939
sl@0
   940
#ifdef SQLITE_DEBUG
sl@0
   941
/*
sl@0
   942
** Print the SQL that was used to generate a VDBE program.
sl@0
   943
*/
sl@0
   944
void sqlite3VdbePrintSql(Vdbe *p){
sl@0
   945
  int nOp = p->nOp;
sl@0
   946
  VdbeOp *pOp;
sl@0
   947
  if( nOp<1 ) return;
sl@0
   948
  pOp = &p->aOp[0];
sl@0
   949
  if( pOp->opcode==OP_Trace && pOp->p4.z!=0 ){
sl@0
   950
    const char *z = pOp->p4.z;
sl@0
   951
    while( isspace(*(u8*)z) ) z++;
sl@0
   952
    printf("SQL: [%s]\n", z);
sl@0
   953
  }
sl@0
   954
}
sl@0
   955
#endif
sl@0
   956
sl@0
   957
#if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE)
sl@0
   958
/*
sl@0
   959
** Print an IOTRACE message showing SQL content.
sl@0
   960
*/
sl@0
   961
void sqlite3VdbeIOTraceSql(Vdbe *p){
sl@0
   962
  int nOp = p->nOp;
sl@0
   963
  VdbeOp *pOp;
sl@0
   964
  if( sqlite3IoTrace==0 ) return;
sl@0
   965
  if( nOp<1 ) return;
sl@0
   966
  pOp = &p->aOp[0];
sl@0
   967
  if( pOp->opcode==OP_Trace && pOp->p4.z!=0 ){
sl@0
   968
    int i, j;
sl@0
   969
    char z[1000];
sl@0
   970
    sqlite3_snprintf(sizeof(z), z, "%s", pOp->p4.z);
sl@0
   971
    for(i=0; isspace((unsigned char)z[i]); i++){}
sl@0
   972
    for(j=0; z[i]; i++){
sl@0
   973
      if( isspace((unsigned char)z[i]) ){
sl@0
   974
        if( z[i-1]!=' ' ){
sl@0
   975
          z[j++] = ' ';
sl@0
   976
        }
sl@0
   977
      }else{
sl@0
   978
        z[j++] = z[i];
sl@0
   979
      }
sl@0
   980
    }
sl@0
   981
    z[j] = 0;
sl@0
   982
    sqlite3IoTrace("SQL %s\n", z);
sl@0
   983
  }
sl@0
   984
}
sl@0
   985
#endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */
sl@0
   986
sl@0
   987
sl@0
   988
/*
sl@0
   989
** Prepare a virtual machine for execution.  This involves things such
sl@0
   990
** as allocating stack space and initializing the program counter.
sl@0
   991
** After the VDBE has be prepped, it can be executed by one or more
sl@0
   992
** calls to sqlite3VdbeExec().  
sl@0
   993
**
sl@0
   994
** This is the only way to move a VDBE from VDBE_MAGIC_INIT to
sl@0
   995
** VDBE_MAGIC_RUN.
sl@0
   996
*/
sl@0
   997
void sqlite3VdbeMakeReady(
sl@0
   998
  Vdbe *p,                       /* The VDBE */
sl@0
   999
  int nVar,                      /* Number of '?' see in the SQL statement */
sl@0
  1000
  int nMem,                      /* Number of memory cells to allocate */
sl@0
  1001
  int nCursor,                   /* Number of cursors to allocate */
sl@0
  1002
  int isExplain                  /* True if the EXPLAIN keywords is present */
sl@0
  1003
){
sl@0
  1004
  int n;
sl@0
  1005
  sqlite3 *db = p->db;
sl@0
  1006
sl@0
  1007
  assert( p!=0 );
sl@0
  1008
  assert( p->magic==VDBE_MAGIC_INIT );
sl@0
  1009
sl@0
  1010
  /* There should be at least one opcode.
sl@0
  1011
  */
sl@0
  1012
  assert( p->nOp>0 );
sl@0
  1013
sl@0
  1014
  /* Set the magic to VDBE_MAGIC_RUN sooner rather than later. This
sl@0
  1015
   * is because the call to resizeOpArray() below may shrink the
sl@0
  1016
   * p->aOp[] array to save memory if called when in VDBE_MAGIC_RUN 
sl@0
  1017
   * state.
sl@0
  1018
   */
sl@0
  1019
  p->magic = VDBE_MAGIC_RUN;
sl@0
  1020
sl@0
  1021
  /* For each cursor required, also allocate a memory cell. Memory
sl@0
  1022
  ** cells (nMem+1-nCursor)..nMem, inclusive, will never be used by
sl@0
  1023
  ** the vdbe program. Instead they are used to allocate space for
sl@0
  1024
  ** Cursor/BtCursor structures. The blob of memory associated with 
sl@0
  1025
  ** cursor 0 is stored in memory cell nMem. Memory cell (nMem-1)
sl@0
  1026
  ** stores the blob of memory associated with cursor 1, etc.
sl@0
  1027
  **
sl@0
  1028
  ** See also: allocateCursor().
sl@0
  1029
  */
sl@0
  1030
  nMem += nCursor;
sl@0
  1031
sl@0
  1032
  /*
sl@0
  1033
  ** Allocation space for registers.
sl@0
  1034
  */
sl@0
  1035
  if( p->aMem==0 ){
sl@0
  1036
    int nArg;       /* Maximum number of args passed to a user function. */
sl@0
  1037
    resolveP2Values(p, &nArg);
sl@0
  1038
    /*resizeOpArray(p, p->nOp);*/
sl@0
  1039
    assert( nVar>=0 );
sl@0
  1040
    if( isExplain && nMem<10 ){
sl@0
  1041
      p->nMem = nMem = 10;
sl@0
  1042
    }
sl@0
  1043
    p->aMem = sqlite3DbMallocZero(db,
sl@0
  1044
        nMem*sizeof(Mem)               /* aMem */
sl@0
  1045
      + nVar*sizeof(Mem)               /* aVar */
sl@0
  1046
      + nArg*sizeof(Mem*)              /* apArg */
sl@0
  1047
      + nVar*sizeof(char*)             /* azVar */
sl@0
  1048
      + nCursor*sizeof(Cursor*) + 1    /* apCsr */
sl@0
  1049
    );
sl@0
  1050
    if( !db->mallocFailed ){
sl@0
  1051
      p->aMem--;             /* aMem[] goes from 1..nMem */
sl@0
  1052
      p->nMem = nMem;        /*       not from 0..nMem-1 */
sl@0
  1053
      p->aVar = &p->aMem[nMem+1];
sl@0
  1054
      p->nVar = nVar;
sl@0
  1055
      p->okVar = 0;
sl@0
  1056
      p->apArg = (Mem**)&p->aVar[nVar];
sl@0
  1057
      p->azVar = (char**)&p->apArg[nArg];
sl@0
  1058
      p->apCsr = (Cursor**)&p->azVar[nVar];
sl@0
  1059
      p->nCursor = nCursor;
sl@0
  1060
      for(n=0; n<nVar; n++){
sl@0
  1061
        p->aVar[n].flags = MEM_Null;
sl@0
  1062
        p->aVar[n].db = db;
sl@0
  1063
      }
sl@0
  1064
      for(n=1; n<=nMem; n++){
sl@0
  1065
        p->aMem[n].flags = MEM_Null;
sl@0
  1066
        p->aMem[n].db = db;
sl@0
  1067
      }
sl@0
  1068
    }
sl@0
  1069
  }
sl@0
  1070
#ifdef SQLITE_DEBUG
sl@0
  1071
  for(n=1; n<p->nMem; n++){
sl@0
  1072
    assert( p->aMem[n].db==db );
sl@0
  1073
  }
sl@0
  1074
#endif
sl@0
  1075
sl@0
  1076
  p->pc = -1;
sl@0
  1077
  p->rc = SQLITE_OK;
sl@0
  1078
  p->uniqueCnt = 0;
sl@0
  1079
  p->errorAction = OE_Abort;
sl@0
  1080
  p->explain |= isExplain;
sl@0
  1081
  p->magic = VDBE_MAGIC_RUN;
sl@0
  1082
  p->nChange = 0;
sl@0
  1083
  p->cacheCtr = 1;
sl@0
  1084
  p->minWriteFileFormat = 255;
sl@0
  1085
  p->openedStatement = 0;
sl@0
  1086
#ifdef VDBE_PROFILE
sl@0
  1087
  {
sl@0
  1088
    int i;
sl@0
  1089
    for(i=0; i<p->nOp; i++){
sl@0
  1090
      p->aOp[i].cnt = 0;
sl@0
  1091
      p->aOp[i].cycles = 0;
sl@0
  1092
    }
sl@0
  1093
  }
sl@0
  1094
#endif
sl@0
  1095
}
sl@0
  1096
sl@0
  1097
/*
sl@0
  1098
** Close a VDBE cursor and release all the resources that cursor 
sl@0
  1099
** happens to hold.
sl@0
  1100
*/
sl@0
  1101
void sqlite3VdbeFreeCursor(Vdbe *p, Cursor *pCx){
sl@0
  1102
  if( pCx==0 ){
sl@0
  1103
    return;
sl@0
  1104
  }
sl@0
  1105
  if( pCx->pBt ){
sl@0
  1106
    sqlite3BtreeClose(pCx->pBt);
sl@0
  1107
    /* The pCx->pCursor will be close automatically, if it exists, by
sl@0
  1108
    ** the call above. */
sl@0
  1109
  }else if( pCx->pCursor ){
sl@0
  1110
    sqlite3BtreeCloseCursor(pCx->pCursor);
sl@0
  1111
  }
sl@0
  1112
#ifndef SQLITE_OMIT_VIRTUALTABLE
sl@0
  1113
  if( pCx->pVtabCursor ){
sl@0
  1114
    sqlite3_vtab_cursor *pVtabCursor = pCx->pVtabCursor;
sl@0
  1115
    const sqlite3_module *pModule = pCx->pModule;
sl@0
  1116
    p->inVtabMethod = 1;
sl@0
  1117
    (void)sqlite3SafetyOff(p->db);
sl@0
  1118
    pModule->xClose(pVtabCursor);
sl@0
  1119
    (void)sqlite3SafetyOn(p->db);
sl@0
  1120
    p->inVtabMethod = 0;
sl@0
  1121
  }
sl@0
  1122
#endif
sl@0
  1123
  if( !pCx->ephemPseudoTable ){
sl@0
  1124
    sqlite3DbFree(p->db, pCx->pData);
sl@0
  1125
  }
sl@0
  1126
}
sl@0
  1127
sl@0
  1128
/*
sl@0
  1129
** Close all cursors except for VTab cursors that are currently
sl@0
  1130
** in use.
sl@0
  1131
*/
sl@0
  1132
static void closeAllCursorsExceptActiveVtabs(Vdbe *p){
sl@0
  1133
  int i;
sl@0
  1134
  if( p->apCsr==0 ) return;
sl@0
  1135
  for(i=0; i<p->nCursor; i++){
sl@0
  1136
    Cursor *pC = p->apCsr[i];
sl@0
  1137
    if( pC && (!p->inVtabMethod || !pC->pVtabCursor) ){
sl@0
  1138
      sqlite3VdbeFreeCursor(p, pC);
sl@0
  1139
      p->apCsr[i] = 0;
sl@0
  1140
    }
sl@0
  1141
  }
sl@0
  1142
}
sl@0
  1143
sl@0
  1144
/*
sl@0
  1145
** Clean up the VM after execution.
sl@0
  1146
**
sl@0
  1147
** This routine will automatically close any cursors, lists, and/or
sl@0
  1148
** sorters that were left open.  It also deletes the values of
sl@0
  1149
** variables in the aVar[] array.
sl@0
  1150
*/
sl@0
  1151
static void Cleanup(Vdbe *p){
sl@0
  1152
  int i;
sl@0
  1153
  sqlite3 *db = p->db;
sl@0
  1154
  closeAllCursorsExceptActiveVtabs(p);
sl@0
  1155
  for(i=1; i<=p->nMem; i++){
sl@0
  1156
    MemSetTypeFlag(&p->aMem[i], MEM_Null);
sl@0
  1157
  }
sl@0
  1158
  releaseMemArray(&p->aMem[1], p->nMem);
sl@0
  1159
  sqlite3VdbeFifoClear(&p->sFifo);
sl@0
  1160
  if( p->contextStack ){
sl@0
  1161
    for(i=0; i<p->contextStackTop; i++){
sl@0
  1162
      sqlite3VdbeFifoClear(&p->contextStack[i].sFifo);
sl@0
  1163
    }
sl@0
  1164
    sqlite3DbFree(db, p->contextStack);
sl@0
  1165
  }
sl@0
  1166
  p->contextStack = 0;
sl@0
  1167
  p->contextStackDepth = 0;
sl@0
  1168
  p->contextStackTop = 0;
sl@0
  1169
  sqlite3DbFree(db, p->zErrMsg);
sl@0
  1170
  p->zErrMsg = 0;
sl@0
  1171
  p->pResultSet = 0;
sl@0
  1172
}
sl@0
  1173
sl@0
  1174
/*
sl@0
  1175
** Set the number of result columns that will be returned by this SQL
sl@0
  1176
** statement. This is now set at compile time, rather than during
sl@0
  1177
** execution of the vdbe program so that sqlite3_column_count() can
sl@0
  1178
** be called on an SQL statement before sqlite3_step().
sl@0
  1179
*/
sl@0
  1180
void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){
sl@0
  1181
  Mem *pColName;
sl@0
  1182
  int n;
sl@0
  1183
  sqlite3 *db = p->db;
sl@0
  1184
sl@0
  1185
  releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
sl@0
  1186
  sqlite3DbFree(db, p->aColName);
sl@0
  1187
  n = nResColumn*COLNAME_N;
sl@0
  1188
  p->nResColumn = nResColumn;
sl@0
  1189
  p->aColName = pColName = (Mem*)sqlite3DbMallocZero(db, sizeof(Mem)*n );
sl@0
  1190
  if( p->aColName==0 ) return;
sl@0
  1191
  while( n-- > 0 ){
sl@0
  1192
    pColName->flags = MEM_Null;
sl@0
  1193
    pColName->db = p->db;
sl@0
  1194
    pColName++;
sl@0
  1195
  }
sl@0
  1196
}
sl@0
  1197
sl@0
  1198
/*
sl@0
  1199
** Set the name of the idx'th column to be returned by the SQL statement.
sl@0
  1200
** zName must be a pointer to a nul terminated string.
sl@0
  1201
**
sl@0
  1202
** This call must be made after a call to sqlite3VdbeSetNumCols().
sl@0
  1203
**
sl@0
  1204
** If N==P4_STATIC  it means that zName is a pointer to a constant static
sl@0
  1205
** string and we can just copy the pointer. If it is P4_DYNAMIC, then 
sl@0
  1206
** the string is freed using sqlite3DbFree(db, ) when the vdbe is finished with
sl@0
  1207
** it. Otherwise, N bytes of zName are copied.
sl@0
  1208
*/
sl@0
  1209
int sqlite3VdbeSetColName(Vdbe *p, int idx, int var, const char *zName, int N){
sl@0
  1210
  int rc;
sl@0
  1211
  Mem *pColName;
sl@0
  1212
  assert( idx<p->nResColumn );
sl@0
  1213
  assert( var<COLNAME_N );
sl@0
  1214
  if( p->db->mallocFailed ) return SQLITE_NOMEM;
sl@0
  1215
  assert( p->aColName!=0 );
sl@0
  1216
  pColName = &(p->aColName[idx+var*p->nResColumn]);
sl@0
  1217
  if( N==P4_DYNAMIC || N==P4_STATIC ){
sl@0
  1218
    rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, SQLITE_STATIC);
sl@0
  1219
  }else{
sl@0
  1220
    rc = sqlite3VdbeMemSetStr(pColName, zName, N, SQLITE_UTF8,SQLITE_TRANSIENT);
sl@0
  1221
  }
sl@0
  1222
  if( rc==SQLITE_OK && N==P4_DYNAMIC ){
sl@0
  1223
    pColName->flags &= (~MEM_Static);
sl@0
  1224
    pColName->zMalloc = pColName->z;
sl@0
  1225
  }
sl@0
  1226
  return rc;
sl@0
  1227
}
sl@0
  1228
sl@0
  1229
/*
sl@0
  1230
** A read or write transaction may or may not be active on database handle
sl@0
  1231
** db. If a transaction is active, commit it. If there is a
sl@0
  1232
** write-transaction spanning more than one database file, this routine
sl@0
  1233
** takes care of the master journal trickery.
sl@0
  1234
*/
sl@0
  1235
static int vdbeCommit(sqlite3 *db, Vdbe *p){
sl@0
  1236
  int i;
sl@0
  1237
  int nTrans = 0;  /* Number of databases with an active write-transaction */
sl@0
  1238
  int rc = SQLITE_OK;
sl@0
  1239
  int needXcommit = 0;
sl@0
  1240
sl@0
  1241
  /* Before doing anything else, call the xSync() callback for any
sl@0
  1242
  ** virtual module tables written in this transaction. This has to
sl@0
  1243
  ** be done before determining whether a master journal file is 
sl@0
  1244
  ** required, as an xSync() callback may add an attached database
sl@0
  1245
  ** to the transaction.
sl@0
  1246
  */
sl@0
  1247
  rc = sqlite3VtabSync(db, &p->zErrMsg);
sl@0
  1248
  if( rc!=SQLITE_OK ){
sl@0
  1249
    return rc;
sl@0
  1250
  }
sl@0
  1251
sl@0
  1252
  /* This loop determines (a) if the commit hook should be invoked and
sl@0
  1253
  ** (b) how many database files have open write transactions, not 
sl@0
  1254
  ** including the temp database. (b) is important because if more than 
sl@0
  1255
  ** one database file has an open write transaction, a master journal
sl@0
  1256
  ** file is required for an atomic commit.
sl@0
  1257
  */ 
sl@0
  1258
  for(i=0; i<db->nDb; i++){ 
sl@0
  1259
    Btree *pBt = db->aDb[i].pBt;
sl@0
  1260
    if( sqlite3BtreeIsInTrans(pBt) ){
sl@0
  1261
      needXcommit = 1;
sl@0
  1262
      if( i!=1 ) nTrans++;
sl@0
  1263
    }
sl@0
  1264
  }
sl@0
  1265
sl@0
  1266
  /* If there are any write-transactions at all, invoke the commit hook */
sl@0
  1267
  if( needXcommit && db->xCommitCallback ){
sl@0
  1268
    (void)sqlite3SafetyOff(db);
sl@0
  1269
    rc = db->xCommitCallback(db->pCommitArg);
sl@0
  1270
    (void)sqlite3SafetyOn(db);
sl@0
  1271
    if( rc ){
sl@0
  1272
      return SQLITE_CONSTRAINT;
sl@0
  1273
    }
sl@0
  1274
  }
sl@0
  1275
sl@0
  1276
  /* The simple case - no more than one database file (not counting the
sl@0
  1277
  ** TEMP database) has a transaction active.   There is no need for the
sl@0
  1278
  ** master-journal.
sl@0
  1279
  **
sl@0
  1280
  ** If the return value of sqlite3BtreeGetFilename() is a zero length
sl@0
  1281
  ** string, it means the main database is :memory: or a temp file.  In 
sl@0
  1282
  ** that case we do not support atomic multi-file commits, so use the 
sl@0
  1283
  ** simple case then too.
sl@0
  1284
  */
sl@0
  1285
  if( 0==strlen(sqlite3BtreeGetFilename(db->aDb[0].pBt)) || nTrans<=1 ){
sl@0
  1286
    for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 
sl@0
  1287
      Btree *pBt = db->aDb[i].pBt;
sl@0
  1288
      if( pBt ){
sl@0
  1289
        rc = sqlite3BtreeCommitPhaseOne(pBt, 0);
sl@0
  1290
      }
sl@0
  1291
    }
sl@0
  1292
sl@0
  1293
    /* Do the commit only if all databases successfully complete phase 1. 
sl@0
  1294
    ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an
sl@0
  1295
    ** IO error while deleting or truncating a journal file. It is unlikely,
sl@0
  1296
    ** but could happen. In this case abandon processing and return the error.
sl@0
  1297
    */
sl@0
  1298
    for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
sl@0
  1299
      Btree *pBt = db->aDb[i].pBt;
sl@0
  1300
      if( pBt ){
sl@0
  1301
        rc = sqlite3BtreeCommitPhaseTwo(pBt);
sl@0
  1302
      }
sl@0
  1303
    }
sl@0
  1304
    if( rc==SQLITE_OK ){
sl@0
  1305
      sqlite3VtabCommit(db);
sl@0
  1306
    }
sl@0
  1307
  }
sl@0
  1308
sl@0
  1309
  /* The complex case - There is a multi-file write-transaction active.
sl@0
  1310
  ** This requires a master journal file to ensure the transaction is
sl@0
  1311
  ** committed atomicly.
sl@0
  1312
  */
sl@0
  1313
#ifndef SQLITE_OMIT_DISKIO
sl@0
  1314
  else{
sl@0
  1315
    sqlite3_vfs *pVfs = db->pVfs;
sl@0
  1316
    int needSync = 0;
sl@0
  1317
    char *zMaster = 0;   /* File-name for the master journal */
sl@0
  1318
    char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt);
sl@0
  1319
    sqlite3_file *pMaster = 0;
sl@0
  1320
    i64 offset = 0;
sl@0
  1321
    int res;
sl@0
  1322
sl@0
  1323
    /* Select a master journal file name */
sl@0
  1324
    do {
sl@0
  1325
      u32 random;
sl@0
  1326
      sqlite3DbFree(db, zMaster);
sl@0
  1327
      sqlite3_randomness(sizeof(random), &random);
sl@0
  1328
      zMaster = sqlite3MPrintf(db, "%s-mj%08X", zMainFile, random&0x7fffffff);
sl@0
  1329
      if( !zMaster ){
sl@0
  1330
        return SQLITE_NOMEM;
sl@0
  1331
      }
sl@0
  1332
      rc = sqlite3OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS, &res);
sl@0
  1333
    }while( rc==SQLITE_OK && res );
sl@0
  1334
    if( rc==SQLITE_OK ){
sl@0
  1335
      /* Open the master journal. */
sl@0
  1336
      rc = sqlite3OsOpenMalloc(pVfs, zMaster, &pMaster, 
sl@0
  1337
          SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|
sl@0
  1338
          SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_MASTER_JOURNAL, 0
sl@0
  1339
      );
sl@0
  1340
    }
sl@0
  1341
    if( rc!=SQLITE_OK ){
sl@0
  1342
      sqlite3DbFree(db, zMaster);
sl@0
  1343
      return rc;
sl@0
  1344
    }
sl@0
  1345
 
sl@0
  1346
    /* Write the name of each database file in the transaction into the new
sl@0
  1347
    ** master journal file. If an error occurs at this point close
sl@0
  1348
    ** and delete the master journal file. All the individual journal files
sl@0
  1349
    ** still have 'null' as the master journal pointer, so they will roll
sl@0
  1350
    ** back independently if a failure occurs.
sl@0
  1351
    */
sl@0
  1352
    for(i=0; i<db->nDb; i++){
sl@0
  1353
      Btree *pBt = db->aDb[i].pBt;
sl@0
  1354
      if( i==1 ) continue;   /* Ignore the TEMP database */
sl@0
  1355
      if( sqlite3BtreeIsInTrans(pBt) ){
sl@0
  1356
        char const *zFile = sqlite3BtreeGetJournalname(pBt);
sl@0
  1357
        if( zFile[0]==0 ) continue;  /* Ignore :memory: databases */
sl@0
  1358
        if( !needSync && !sqlite3BtreeSyncDisabled(pBt) ){
sl@0
  1359
          needSync = 1;
sl@0
  1360
        }
sl@0
  1361
        rc = sqlite3OsWrite(pMaster, zFile, strlen(zFile)+1, offset);
sl@0
  1362
        offset += strlen(zFile)+1;
sl@0
  1363
        if( rc!=SQLITE_OK ){
sl@0
  1364
          sqlite3OsCloseFree(pMaster);
sl@0
  1365
          sqlite3OsDelete(pVfs, zMaster, 0);
sl@0
  1366
          sqlite3DbFree(db, zMaster);
sl@0
  1367
          return rc;
sl@0
  1368
        }
sl@0
  1369
      }
sl@0
  1370
    }
sl@0
  1371
sl@0
  1372
    /* Sync the master journal file. If the IOCAP_SEQUENTIAL device
sl@0
  1373
    ** flag is set this is not required.
sl@0
  1374
    */
sl@0
  1375
    zMainFile = sqlite3BtreeGetDirname(db->aDb[0].pBt);
sl@0
  1376
    if( (needSync 
sl@0
  1377
     && (0==(sqlite3OsDeviceCharacteristics(pMaster)&SQLITE_IOCAP_SEQUENTIAL))
sl@0
  1378
     && (rc=sqlite3OsSync(pMaster, SQLITE_SYNC_NORMAL))!=SQLITE_OK) ){
sl@0
  1379
      sqlite3OsCloseFree(pMaster);
sl@0
  1380
      sqlite3OsDelete(pVfs, zMaster, 0);
sl@0
  1381
      sqlite3DbFree(db, zMaster);
sl@0
  1382
      return rc;
sl@0
  1383
    }
sl@0
  1384
sl@0
  1385
    /* Sync all the db files involved in the transaction. The same call
sl@0
  1386
    ** sets the master journal pointer in each individual journal. If
sl@0
  1387
    ** an error occurs here, do not delete the master journal file.
sl@0
  1388
    **
sl@0
  1389
    ** If the error occurs during the first call to
sl@0
  1390
    ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the
sl@0
  1391
    ** master journal file will be orphaned. But we cannot delete it,
sl@0
  1392
    ** in case the master journal file name was written into the journal
sl@0
  1393
    ** file before the failure occured.
sl@0
  1394
    */
sl@0
  1395
    for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 
sl@0
  1396
      Btree *pBt = db->aDb[i].pBt;
sl@0
  1397
      if( pBt ){
sl@0
  1398
        rc = sqlite3BtreeCommitPhaseOne(pBt, zMaster);
sl@0
  1399
      }
sl@0
  1400
    }
sl@0
  1401
    sqlite3OsCloseFree(pMaster);
sl@0
  1402
    if( rc!=SQLITE_OK ){
sl@0
  1403
      sqlite3DbFree(db, zMaster);
sl@0
  1404
      return rc;
sl@0
  1405
    }
sl@0
  1406
sl@0
  1407
    /* Delete the master journal file. This commits the transaction. After
sl@0
  1408
    ** doing this the directory is synced again before any individual
sl@0
  1409
    ** transaction files are deleted.
sl@0
  1410
    */
sl@0
  1411
    rc = sqlite3OsDelete(pVfs, zMaster, 1);
sl@0
  1412
    sqlite3DbFree(db, zMaster);
sl@0
  1413
    zMaster = 0;
sl@0
  1414
    if( rc ){
sl@0
  1415
      return rc;
sl@0
  1416
    }
sl@0
  1417
sl@0
  1418
    /* All files and directories have already been synced, so the following
sl@0
  1419
    ** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and
sl@0
  1420
    ** deleting or truncating journals. If something goes wrong while
sl@0
  1421
    ** this is happening we don't really care. The integrity of the
sl@0
  1422
    ** transaction is already guaranteed, but some stray 'cold' journals
sl@0
  1423
    ** may be lying around. Returning an error code won't help matters.
sl@0
  1424
    */
sl@0
  1425
    disable_simulated_io_errors();
sl@0
  1426
    sqlite3BeginBenignMalloc();
sl@0
  1427
    for(i=0; i<db->nDb; i++){ 
sl@0
  1428
      Btree *pBt = db->aDb[i].pBt;
sl@0
  1429
      if( pBt ){
sl@0
  1430
        sqlite3BtreeCommitPhaseTwo(pBt);
sl@0
  1431
      }
sl@0
  1432
    }
sl@0
  1433
    sqlite3EndBenignMalloc();
sl@0
  1434
    enable_simulated_io_errors();
sl@0
  1435
sl@0
  1436
    sqlite3VtabCommit(db);
sl@0
  1437
  }
sl@0
  1438
#endif
sl@0
  1439
sl@0
  1440
  return rc;
sl@0
  1441
}
sl@0
  1442
sl@0
  1443
/* 
sl@0
  1444
** This routine checks that the sqlite3.activeVdbeCnt count variable
sl@0
  1445
** matches the number of vdbe's in the list sqlite3.pVdbe that are
sl@0
  1446
** currently active. An assertion fails if the two counts do not match.
sl@0
  1447
** This is an internal self-check only - it is not an essential processing
sl@0
  1448
** step.
sl@0
  1449
**
sl@0
  1450
** This is a no-op if NDEBUG is defined.
sl@0
  1451
*/
sl@0
  1452
#ifndef NDEBUG
sl@0
  1453
static void checkActiveVdbeCnt(sqlite3 *db){
sl@0
  1454
  Vdbe *p;
sl@0
  1455
  int cnt = 0;
sl@0
  1456
  p = db->pVdbe;
sl@0
  1457
  while( p ){
sl@0
  1458
    if( p->magic==VDBE_MAGIC_RUN && p->pc>=0 ){
sl@0
  1459
      cnt++;
sl@0
  1460
    }
sl@0
  1461
    p = p->pNext;
sl@0
  1462
  }
sl@0
  1463
  assert( cnt==db->activeVdbeCnt );
sl@0
  1464
}
sl@0
  1465
#else
sl@0
  1466
#define checkActiveVdbeCnt(x)
sl@0
  1467
#endif
sl@0
  1468
sl@0
  1469
/*
sl@0
  1470
** For every Btree that in database connection db which 
sl@0
  1471
** has been modified, "trip" or invalidate each cursor in
sl@0
  1472
** that Btree might have been modified so that the cursor
sl@0
  1473
** can never be used again.  This happens when a rollback
sl@0
  1474
*** occurs.  We have to trip all the other cursors, even
sl@0
  1475
** cursor from other VMs in different database connections,
sl@0
  1476
** so that none of them try to use the data at which they
sl@0
  1477
** were pointing and which now may have been changed due
sl@0
  1478
** to the rollback.
sl@0
  1479
**
sl@0
  1480
** Remember that a rollback can delete tables complete and
sl@0
  1481
** reorder rootpages.  So it is not sufficient just to save
sl@0
  1482
** the state of the cursor.  We have to invalidate the cursor
sl@0
  1483
** so that it is never used again.
sl@0
  1484
*/
sl@0
  1485
static void invalidateCursorsOnModifiedBtrees(sqlite3 *db){
sl@0
  1486
  int i;
sl@0
  1487
  for(i=0; i<db->nDb; i++){
sl@0
  1488
    Btree *p = db->aDb[i].pBt;
sl@0
  1489
    if( p && sqlite3BtreeIsInTrans(p) ){
sl@0
  1490
      sqlite3BtreeTripAllCursors(p, SQLITE_ABORT);
sl@0
  1491
    }
sl@0
  1492
  }
sl@0
  1493
}
sl@0
  1494
sl@0
  1495
/*
sl@0
  1496
** This routine is called the when a VDBE tries to halt.  If the VDBE
sl@0
  1497
** has made changes and is in autocommit mode, then commit those
sl@0
  1498
** changes.  If a rollback is needed, then do the rollback.
sl@0
  1499
**
sl@0
  1500
** This routine is the only way to move the state of a VM from
sl@0
  1501
** SQLITE_MAGIC_RUN to SQLITE_MAGIC_HALT.  It is harmless to
sl@0
  1502
** call this on a VM that is in the SQLITE_MAGIC_HALT state.
sl@0
  1503
**
sl@0
  1504
** Return an error code.  If the commit could not complete because of
sl@0
  1505
** lock contention, return SQLITE_BUSY.  If SQLITE_BUSY is returned, it
sl@0
  1506
** means the close did not happen and needs to be repeated.
sl@0
  1507
*/
sl@0
  1508
int sqlite3VdbeHalt(Vdbe *p){
sl@0
  1509
  sqlite3 *db = p->db;
sl@0
  1510
  int i;
sl@0
  1511
  int (*xFunc)(Btree *pBt) = 0;  /* Function to call on each btree backend */
sl@0
  1512
  int isSpecialError;            /* Set to true if SQLITE_NOMEM or IOERR */
sl@0
  1513
sl@0
  1514
  /* This function contains the logic that determines if a statement or
sl@0
  1515
  ** transaction will be committed or rolled back as a result of the
sl@0
  1516
  ** execution of this virtual machine. 
sl@0
  1517
  **
sl@0
  1518
  ** If any of the following errors occur:
sl@0
  1519
  **
sl@0
  1520
  **     SQLITE_NOMEM
sl@0
  1521
  **     SQLITE_IOERR
sl@0
  1522
  **     SQLITE_FULL
sl@0
  1523
  **     SQLITE_INTERRUPT
sl@0
  1524
  **
sl@0
  1525
  ** Then the internal cache might have been left in an inconsistent
sl@0
  1526
  ** state.  We need to rollback the statement transaction, if there is
sl@0
  1527
  ** one, or the complete transaction if there is no statement transaction.
sl@0
  1528
  */
sl@0
  1529
sl@0
  1530
  if( p->db->mallocFailed ){
sl@0
  1531
    p->rc = SQLITE_NOMEM;
sl@0
  1532
  }
sl@0
  1533
  closeAllCursorsExceptActiveVtabs(p);
sl@0
  1534
  if( p->magic!=VDBE_MAGIC_RUN ){
sl@0
  1535
    return SQLITE_OK;
sl@0
  1536
  }
sl@0
  1537
  checkActiveVdbeCnt(db);
sl@0
  1538
sl@0
  1539
  /* No commit or rollback needed if the program never started */
sl@0
  1540
  if( p->pc>=0 ){
sl@0
  1541
    int mrc;   /* Primary error code from p->rc */
sl@0
  1542
sl@0
  1543
    /* Lock all btrees used by the statement */
sl@0
  1544
    sqlite3BtreeMutexArrayEnter(&p->aMutex);
sl@0
  1545
sl@0
  1546
    /* Check for one of the special errors */
sl@0
  1547
    mrc = p->rc & 0xff;
sl@0
  1548
    isSpecialError = mrc==SQLITE_NOMEM || mrc==SQLITE_IOERR
sl@0
  1549
                     || mrc==SQLITE_INTERRUPT || mrc==SQLITE_FULL;
sl@0
  1550
    if( isSpecialError ){
sl@0
  1551
      /* This loop does static analysis of the query to see which of the
sl@0
  1552
      ** following three categories it falls into:
sl@0
  1553
      **
sl@0
  1554
      **     Read-only
sl@0
  1555
      **     Query with statement journal
sl@0
  1556
      **     Query without statement journal
sl@0
  1557
      **
sl@0
  1558
      ** We could do something more elegant than this static analysis (i.e.
sl@0
  1559
      ** store the type of query as part of the compliation phase), but 
sl@0
  1560
      ** handling malloc() or IO failure is a fairly obscure edge case so 
sl@0
  1561
      ** this is probably easier. Todo: Might be an opportunity to reduce 
sl@0
  1562
      ** code size a very small amount though...
sl@0
  1563
      */
sl@0
  1564
      int notReadOnly = 0;
sl@0
  1565
      int isStatement = 0;
sl@0
  1566
      assert(p->aOp || p->nOp==0);
sl@0
  1567
      for(i=0; i<p->nOp; i++){ 
sl@0
  1568
        switch( p->aOp[i].opcode ){
sl@0
  1569
          case OP_Transaction:
sl@0
  1570
            notReadOnly |= p->aOp[i].p2;
sl@0
  1571
            break;
sl@0
  1572
          case OP_Statement:
sl@0
  1573
            isStatement = 1;
sl@0
  1574
            break;
sl@0
  1575
        }
sl@0
  1576
      }
sl@0
  1577
sl@0
  1578
   
sl@0
  1579
      /* If the query was read-only, we need do no rollback at all. Otherwise,
sl@0
  1580
      ** proceed with the special handling.
sl@0
  1581
      */
sl@0
  1582
      if( notReadOnly || mrc!=SQLITE_INTERRUPT ){
sl@0
  1583
        if( p->rc==SQLITE_IOERR_BLOCKED && isStatement ){
sl@0
  1584
          xFunc = sqlite3BtreeRollbackStmt;
sl@0
  1585
          p->rc = SQLITE_BUSY;
sl@0
  1586
        } else if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) && isStatement ){
sl@0
  1587
          xFunc = sqlite3BtreeRollbackStmt;
sl@0
  1588
        }else{
sl@0
  1589
          /* We are forced to roll back the active transaction. Before doing
sl@0
  1590
          ** so, abort any other statements this handle currently has active.
sl@0
  1591
          */
sl@0
  1592
          invalidateCursorsOnModifiedBtrees(db);
sl@0
  1593
          sqlite3RollbackAll(db);
sl@0
  1594
          db->autoCommit = 1;
sl@0
  1595
        }
sl@0
  1596
      }
sl@0
  1597
    }
sl@0
  1598
  
sl@0
  1599
    /* If the auto-commit flag is set and this is the only active vdbe, then
sl@0
  1600
    ** we do either a commit or rollback of the current transaction. 
sl@0
  1601
    **
sl@0
  1602
    ** Note: This block also runs if one of the special errors handled 
sl@0
  1603
    ** above has occured. 
sl@0
  1604
    */
sl@0
  1605
    if( db->autoCommit && db->activeVdbeCnt==1 ){
sl@0
  1606
      if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){
sl@0
  1607
        /* The auto-commit flag is true, and the vdbe program was 
sl@0
  1608
        ** successful or hit an 'OR FAIL' constraint. This means a commit 
sl@0
  1609
        ** is required.
sl@0
  1610
        */
sl@0
  1611
        int rc = vdbeCommit(db, p);
sl@0
  1612
        if( rc==SQLITE_BUSY ){
sl@0
  1613
          sqlite3BtreeMutexArrayLeave(&p->aMutex);
sl@0
  1614
          return SQLITE_BUSY;
sl@0
  1615
        }else if( rc!=SQLITE_OK ){
sl@0
  1616
          p->rc = rc;
sl@0
  1617
          sqlite3RollbackAll(db);
sl@0
  1618
        }else{
sl@0
  1619
          sqlite3CommitInternalChanges(db);
sl@0
  1620
        }
sl@0
  1621
      }else{
sl@0
  1622
        sqlite3RollbackAll(db);
sl@0
  1623
      }
sl@0
  1624
    }else if( !xFunc ){
sl@0
  1625
      if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){
sl@0
  1626
        if( p->openedStatement ){
sl@0
  1627
          xFunc = sqlite3BtreeCommitStmt;
sl@0
  1628
        } 
sl@0
  1629
      }else if( p->errorAction==OE_Abort ){
sl@0
  1630
        xFunc = sqlite3BtreeRollbackStmt;
sl@0
  1631
      }else{
sl@0
  1632
        invalidateCursorsOnModifiedBtrees(db);
sl@0
  1633
        sqlite3RollbackAll(db);
sl@0
  1634
        db->autoCommit = 1;
sl@0
  1635
      }
sl@0
  1636
    }
sl@0
  1637
  
sl@0
  1638
    /* If xFunc is not NULL, then it is one of sqlite3BtreeRollbackStmt or
sl@0
  1639
    ** sqlite3BtreeCommitStmt. Call it once on each backend. If an error occurs
sl@0
  1640
    ** and the return code is still SQLITE_OK, set the return code to the new
sl@0
  1641
    ** error value.
sl@0
  1642
    */
sl@0
  1643
    assert(!xFunc ||
sl@0
  1644
      xFunc==sqlite3BtreeCommitStmt ||
sl@0
  1645
      xFunc==sqlite3BtreeRollbackStmt
sl@0
  1646
    );
sl@0
  1647
    for(i=0; xFunc && i<db->nDb; i++){ 
sl@0
  1648
      int rc;
sl@0
  1649
      Btree *pBt = db->aDb[i].pBt;
sl@0
  1650
      if( pBt ){
sl@0
  1651
        rc = xFunc(pBt);
sl@0
  1652
        if( rc && (p->rc==SQLITE_OK || p->rc==SQLITE_CONSTRAINT) ){
sl@0
  1653
          p->rc = rc;
sl@0
  1654
          sqlite3DbFree(db, p->zErrMsg);
sl@0
  1655
          p->zErrMsg = 0;
sl@0
  1656
        }
sl@0
  1657
      }
sl@0
  1658
    }
sl@0
  1659
  
sl@0
  1660
    /* If this was an INSERT, UPDATE or DELETE and the statement was committed, 
sl@0
  1661
    ** set the change counter. 
sl@0
  1662
    */
sl@0
  1663
    if( p->changeCntOn && p->pc>=0 ){
sl@0
  1664
      if( !xFunc || xFunc==sqlite3BtreeCommitStmt ){
sl@0
  1665
        sqlite3VdbeSetChanges(db, p->nChange);
sl@0
  1666
      }else{
sl@0
  1667
        sqlite3VdbeSetChanges(db, 0);
sl@0
  1668
      }
sl@0
  1669
      p->nChange = 0;
sl@0
  1670
    }
sl@0
  1671
  
sl@0
  1672
    /* Rollback or commit any schema changes that occurred. */
sl@0
  1673
    if( p->rc!=SQLITE_OK && db->flags&SQLITE_InternChanges ){
sl@0
  1674
      sqlite3ResetInternalSchema(db, 0);
sl@0
  1675
      db->flags = (db->flags | SQLITE_InternChanges);
sl@0
  1676
    }
sl@0
  1677
sl@0
  1678
    /* Release the locks */
sl@0
  1679
    sqlite3BtreeMutexArrayLeave(&p->aMutex);
sl@0
  1680
  }
sl@0
  1681
sl@0
  1682
  /* We have successfully halted and closed the VM.  Record this fact. */
sl@0
  1683
  if( p->pc>=0 ){
sl@0
  1684
    db->activeVdbeCnt--;
sl@0
  1685
  }
sl@0
  1686
  p->magic = VDBE_MAGIC_HALT;
sl@0
  1687
  checkActiveVdbeCnt(db);
sl@0
  1688
  if( p->db->mallocFailed ){
sl@0
  1689
    p->rc = SQLITE_NOMEM;
sl@0
  1690
  }
sl@0
  1691
sl@0
  1692
  return SQLITE_OK;
sl@0
  1693
}
sl@0
  1694
sl@0
  1695
sl@0
  1696
/*
sl@0
  1697
** Each VDBE holds the result of the most recent sqlite3_step() call
sl@0
  1698
** in p->rc.  This routine sets that result back to SQLITE_OK.
sl@0
  1699
*/
sl@0
  1700
void sqlite3VdbeResetStepResult(Vdbe *p){
sl@0
  1701
  p->rc = SQLITE_OK;
sl@0
  1702
}
sl@0
  1703
sl@0
  1704
/*
sl@0
  1705
** Clean up a VDBE after execution but do not delete the VDBE just yet.
sl@0
  1706
** Write any error messages into *pzErrMsg.  Return the result code.
sl@0
  1707
**
sl@0
  1708
** After this routine is run, the VDBE should be ready to be executed
sl@0
  1709
** again.
sl@0
  1710
**
sl@0
  1711
** To look at it another way, this routine resets the state of the
sl@0
  1712
** virtual machine from VDBE_MAGIC_RUN or VDBE_MAGIC_HALT back to
sl@0
  1713
** VDBE_MAGIC_INIT.
sl@0
  1714
*/
sl@0
  1715
int sqlite3VdbeReset(Vdbe *p){
sl@0
  1716
  sqlite3 *db;
sl@0
  1717
  db = p->db;
sl@0
  1718
sl@0
  1719
  /* If the VM did not run to completion or if it encountered an
sl@0
  1720
  ** error, then it might not have been halted properly.  So halt
sl@0
  1721
  ** it now.
sl@0
  1722
  */
sl@0
  1723
  (void)sqlite3SafetyOn(db);
sl@0
  1724
  sqlite3VdbeHalt(p);
sl@0
  1725
  (void)sqlite3SafetyOff(db);
sl@0
  1726
sl@0
  1727
  /* If the VDBE has be run even partially, then transfer the error code
sl@0
  1728
  ** and error message from the VDBE into the main database structure.  But
sl@0
  1729
  ** if the VDBE has just been set to run but has not actually executed any
sl@0
  1730
  ** instructions yet, leave the main database error information unchanged.
sl@0
  1731
  */
sl@0
  1732
  if( p->pc>=0 ){
sl@0
  1733
    if( p->zErrMsg ){
sl@0
  1734
      sqlite3BeginBenignMalloc();
sl@0
  1735
      sqlite3ValueSetStr(db->pErr,-1,p->zErrMsg,SQLITE_UTF8,SQLITE_TRANSIENT);
sl@0
  1736
      sqlite3EndBenignMalloc();
sl@0
  1737
      db->errCode = p->rc;
sl@0
  1738
      sqlite3DbFree(db, p->zErrMsg);
sl@0
  1739
      p->zErrMsg = 0;
sl@0
  1740
    }else if( p->rc ){
sl@0
  1741
      sqlite3Error(db, p->rc, 0);
sl@0
  1742
    }else{
sl@0
  1743
      sqlite3Error(db, SQLITE_OK, 0);
sl@0
  1744
    }
sl@0
  1745
  }else if( p->rc && p->expired ){
sl@0
  1746
    /* The expired flag was set on the VDBE before the first call
sl@0
  1747
    ** to sqlite3_step(). For consistency (since sqlite3_step() was
sl@0
  1748
    ** called), set the database error in this case as well.
sl@0
  1749
    */
sl@0
  1750
    sqlite3Error(db, p->rc, 0);
sl@0
  1751
    sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT);
sl@0
  1752
    sqlite3DbFree(db, p->zErrMsg);
sl@0
  1753
    p->zErrMsg = 0;
sl@0
  1754
  }
sl@0
  1755
sl@0
  1756
  /* Reclaim all memory used by the VDBE
sl@0
  1757
  */
sl@0
  1758
  Cleanup(p);
sl@0
  1759
sl@0
  1760
  /* Save profiling information from this VDBE run.
sl@0
  1761
  */
sl@0
  1762
#ifdef VDBE_PROFILE
sl@0
  1763
  {
sl@0
  1764
    FILE *out = fopen("vdbe_profile.out", "a");
sl@0
  1765
    if( out ){
sl@0
  1766
      int i;
sl@0
  1767
      fprintf(out, "---- ");
sl@0
  1768
      for(i=0; i<p->nOp; i++){
sl@0
  1769
        fprintf(out, "%02x", p->aOp[i].opcode);
sl@0
  1770
      }
sl@0
  1771
      fprintf(out, "\n");
sl@0
  1772
      for(i=0; i<p->nOp; i++){
sl@0
  1773
        fprintf(out, "%6d %10lld %8lld ",
sl@0
  1774
           p->aOp[i].cnt,
sl@0
  1775
           p->aOp[i].cycles,
sl@0
  1776
           p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0
sl@0
  1777
        );
sl@0
  1778
        sqlite3VdbePrintOp(out, i, &p->aOp[i]);
sl@0
  1779
      }
sl@0
  1780
      fclose(out);
sl@0
  1781
    }
sl@0
  1782
  }
sl@0
  1783
#endif
sl@0
  1784
  p->magic = VDBE_MAGIC_INIT;
sl@0
  1785
  return p->rc & db->errMask;
sl@0
  1786
}
sl@0
  1787
 
sl@0
  1788
/*
sl@0
  1789
** Clean up and delete a VDBE after execution.  Return an integer which is
sl@0
  1790
** the result code.  Write any error message text into *pzErrMsg.
sl@0
  1791
*/
sl@0
  1792
int sqlite3VdbeFinalize(Vdbe *p){
sl@0
  1793
  int rc = SQLITE_OK;
sl@0
  1794
  if( p->magic==VDBE_MAGIC_RUN || p->magic==VDBE_MAGIC_HALT ){
sl@0
  1795
    rc = sqlite3VdbeReset(p);
sl@0
  1796
    assert( (rc & p->db->errMask)==rc );
sl@0
  1797
  }else if( p->magic!=VDBE_MAGIC_INIT ){
sl@0
  1798
    return SQLITE_MISUSE;
sl@0
  1799
  }
sl@0
  1800
  sqlite3VdbeDelete(p);
sl@0
  1801
  return rc;
sl@0
  1802
}
sl@0
  1803
sl@0
  1804
/*
sl@0
  1805
** Call the destructor for each auxdata entry in pVdbeFunc for which
sl@0
  1806
** the corresponding bit in mask is clear.  Auxdata entries beyond 31
sl@0
  1807
** are always destroyed.  To destroy all auxdata entries, call this
sl@0
  1808
** routine with mask==0.
sl@0
  1809
*/
sl@0
  1810
void sqlite3VdbeDeleteAuxData(VdbeFunc *pVdbeFunc, int mask){
sl@0
  1811
  int i;
sl@0
  1812
  for(i=0; i<pVdbeFunc->nAux; i++){
sl@0
  1813
    struct AuxData *pAux = &pVdbeFunc->apAux[i];
sl@0
  1814
    if( (i>31 || !(mask&(1<<i))) && pAux->pAux ){
sl@0
  1815
      if( pAux->xDelete ){
sl@0
  1816
        pAux->xDelete(pAux->pAux);
sl@0
  1817
      }
sl@0
  1818
      pAux->pAux = 0;
sl@0
  1819
    }
sl@0
  1820
  }
sl@0
  1821
}
sl@0
  1822
sl@0
  1823
/*
sl@0
  1824
** Delete an entire VDBE.
sl@0
  1825
*/
sl@0
  1826
void sqlite3VdbeDelete(Vdbe *p){
sl@0
  1827
  int i;
sl@0
  1828
  sqlite3 *db;
sl@0
  1829
sl@0
  1830
  if( p==0 ) return;
sl@0
  1831
  db = p->db;
sl@0
  1832
  if( p->pPrev ){
sl@0
  1833
    p->pPrev->pNext = p->pNext;
sl@0
  1834
  }else{
sl@0
  1835
    assert( db->pVdbe==p );
sl@0
  1836
    db->pVdbe = p->pNext;
sl@0
  1837
  }
sl@0
  1838
  if( p->pNext ){
sl@0
  1839
    p->pNext->pPrev = p->pPrev;
sl@0
  1840
  }
sl@0
  1841
  if( p->aOp ){
sl@0
  1842
    Op *pOp = p->aOp;
sl@0
  1843
    for(i=0; i<p->nOp; i++, pOp++){
sl@0
  1844
      freeP4(db, pOp->p4type, pOp->p4.p);
sl@0
  1845
#ifdef SQLITE_DEBUG
sl@0
  1846
      sqlite3DbFree(db, pOp->zComment);
sl@0
  1847
#endif     
sl@0
  1848
    }
sl@0
  1849
    sqlite3DbFree(db, p->aOp);
sl@0
  1850
  }
sl@0
  1851
  releaseMemArray(p->aVar, p->nVar);
sl@0
  1852
  sqlite3DbFree(db, p->aLabel);
sl@0
  1853
  if( p->aMem ){
sl@0
  1854
    sqlite3DbFree(db, &p->aMem[1]);
sl@0
  1855
  }
sl@0
  1856
  releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
sl@0
  1857
  sqlite3DbFree(db, p->aColName);
sl@0
  1858
  sqlite3DbFree(db, p->zSql);
sl@0
  1859
  p->magic = VDBE_MAGIC_DEAD;
sl@0
  1860
  sqlite3DbFree(db, p);
sl@0
  1861
}
sl@0
  1862
sl@0
  1863
/*
sl@0
  1864
** If a MoveTo operation is pending on the given cursor, then do that
sl@0
  1865
** MoveTo now.  Return an error code.  If no MoveTo is pending, this
sl@0
  1866
** routine does nothing and returns SQLITE_OK.
sl@0
  1867
*/
sl@0
  1868
int sqlite3VdbeCursorMoveto(Cursor *p){
sl@0
  1869
  if( p->deferredMoveto ){
sl@0
  1870
    int res, rc;
sl@0
  1871
#ifdef SQLITE_TEST
sl@0
  1872
    extern int sqlite3_search_count;
sl@0
  1873
#endif
sl@0
  1874
    assert( p->isTable );
sl@0
  1875
    rc = sqlite3BtreeMovetoUnpacked(p->pCursor, 0, p->movetoTarget, 0, &res);
sl@0
  1876
    if( rc ) return rc;
sl@0
  1877
    p->lastRowid = keyToInt(p->movetoTarget);
sl@0
  1878
    p->rowidIsValid = res==0;
sl@0
  1879
    if( res<0 ){
sl@0
  1880
      rc = sqlite3BtreeNext(p->pCursor, &res);
sl@0
  1881
      if( rc ) return rc;
sl@0
  1882
    }
sl@0
  1883
#ifdef SQLITE_TEST
sl@0
  1884
    sqlite3_search_count++;
sl@0
  1885
#endif
sl@0
  1886
    p->deferredMoveto = 0;
sl@0
  1887
    p->cacheStatus = CACHE_STALE;
sl@0
  1888
  }else if( p->pCursor ){
sl@0
  1889
    int hasMoved;
sl@0
  1890
    int rc = sqlite3BtreeCursorHasMoved(p->pCursor, &hasMoved);
sl@0
  1891
    if( rc ) return rc;
sl@0
  1892
    if( hasMoved ){
sl@0
  1893
      p->cacheStatus = CACHE_STALE;
sl@0
  1894
      p->nullRow = 1;
sl@0
  1895
    }
sl@0
  1896
  }
sl@0
  1897
  return SQLITE_OK;
sl@0
  1898
}
sl@0
  1899
sl@0
  1900
/*
sl@0
  1901
** The following functions:
sl@0
  1902
**
sl@0
  1903
** sqlite3VdbeSerialType()
sl@0
  1904
** sqlite3VdbeSerialTypeLen()
sl@0
  1905
** sqlite3VdbeSerialLen()
sl@0
  1906
** sqlite3VdbeSerialPut()
sl@0
  1907
** sqlite3VdbeSerialGet()
sl@0
  1908
**
sl@0
  1909
** encapsulate the code that serializes values for storage in SQLite
sl@0
  1910
** data and index records. Each serialized value consists of a
sl@0
  1911
** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned
sl@0
  1912
** integer, stored as a varint.
sl@0
  1913
**
sl@0
  1914
** In an SQLite index record, the serial type is stored directly before
sl@0
  1915
** the blob of data that it corresponds to. In a table record, all serial
sl@0
  1916
** types are stored at the start of the record, and the blobs of data at
sl@0
  1917
** the end. Hence these functions allow the caller to handle the
sl@0
  1918
** serial-type and data blob seperately.
sl@0
  1919
**
sl@0
  1920
** The following table describes the various storage classes for data:
sl@0
  1921
**
sl@0
  1922
**   serial type        bytes of data      type
sl@0
  1923
**   --------------     ---------------    ---------------
sl@0
  1924
**      0                     0            NULL
sl@0
  1925
**      1                     1            signed integer
sl@0
  1926
**      2                     2            signed integer
sl@0
  1927
**      3                     3            signed integer
sl@0
  1928
**      4                     4            signed integer
sl@0
  1929
**      5                     6            signed integer
sl@0
  1930
**      6                     8            signed integer
sl@0
  1931
**      7                     8            IEEE float
sl@0
  1932
**      8                     0            Integer constant 0
sl@0
  1933
**      9                     0            Integer constant 1
sl@0
  1934
**     10,11                               reserved for expansion
sl@0
  1935
**    N>=12 and even       (N-12)/2        BLOB
sl@0
  1936
**    N>=13 and odd        (N-13)/2        text
sl@0
  1937
**
sl@0
  1938
** The 8 and 9 types were added in 3.3.0, file format 4.  Prior versions
sl@0
  1939
** of SQLite will not understand those serial types.
sl@0
  1940
*/
sl@0
  1941
sl@0
  1942
/*
sl@0
  1943
** Return the serial-type for the value stored in pMem.
sl@0
  1944
*/
sl@0
  1945
u32 sqlite3VdbeSerialType(Mem *pMem, int file_format){
sl@0
  1946
  int flags = pMem->flags;
sl@0
  1947
  int n;
sl@0
  1948
sl@0
  1949
  if( flags&MEM_Null ){
sl@0
  1950
    return 0;
sl@0
  1951
  }
sl@0
  1952
  if( flags&MEM_Int ){
sl@0
  1953
    /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */
sl@0
  1954
#   define MAX_6BYTE ((((i64)0x00008000)<<32)-1)
sl@0
  1955
    i64 i = pMem->u.i;
sl@0
  1956
    u64 u;
sl@0
  1957
    if( file_format>=4 && (i&1)==i ){
sl@0
  1958
      return 8+i;
sl@0
  1959
    }
sl@0
  1960
    u = i<0 ? -i : i;
sl@0
  1961
    if( u<=127 ) return 1;
sl@0
  1962
    if( u<=32767 ) return 2;
sl@0
  1963
    if( u<=8388607 ) return 3;
sl@0
  1964
    if( u<=2147483647 ) return 4;
sl@0
  1965
    if( u<=MAX_6BYTE ) return 5;
sl@0
  1966
    return 6;
sl@0
  1967
  }
sl@0
  1968
  if( flags&MEM_Real ){
sl@0
  1969
    return 7;
sl@0
  1970
  }
sl@0
  1971
  assert( flags&(MEM_Str|MEM_Blob) );
sl@0
  1972
  n = pMem->n;
sl@0
  1973
  if( flags & MEM_Zero ){
sl@0
  1974
    n += pMem->u.i;
sl@0
  1975
  }
sl@0
  1976
  assert( n>=0 );
sl@0
  1977
  return ((n*2) + 12 + ((flags&MEM_Str)!=0));
sl@0
  1978
}
sl@0
  1979
sl@0
  1980
/*
sl@0
  1981
** Return the length of the data corresponding to the supplied serial-type.
sl@0
  1982
*/
sl@0
  1983
int sqlite3VdbeSerialTypeLen(u32 serial_type){
sl@0
  1984
  if( serial_type>=12 ){
sl@0
  1985
    return (serial_type-12)/2;
sl@0
  1986
  }else{
sl@0
  1987
    static const u8 aSize[] = { 0, 1, 2, 3, 4, 6, 8, 8, 0, 0, 0, 0 };
sl@0
  1988
    return aSize[serial_type];
sl@0
  1989
  }
sl@0
  1990
}
sl@0
  1991
sl@0
  1992
/*
sl@0
  1993
** If we are on an architecture with mixed-endian floating 
sl@0
  1994
** points (ex: ARM7) then swap the lower 4 bytes with the 
sl@0
  1995
** upper 4 bytes.  Return the result.
sl@0
  1996
**
sl@0
  1997
** For most architectures, this is a no-op.
sl@0
  1998
**
sl@0
  1999
** (later):  It is reported to me that the mixed-endian problem
sl@0
  2000
** on ARM7 is an issue with GCC, not with the ARM7 chip.  It seems
sl@0
  2001
** that early versions of GCC stored the two words of a 64-bit
sl@0
  2002
** float in the wrong order.  And that error has been propagated
sl@0
  2003
** ever since.  The blame is not necessarily with GCC, though.
sl@0
  2004
** GCC might have just copying the problem from a prior compiler.
sl@0
  2005
** I am also told that newer versions of GCC that follow a different
sl@0
  2006
** ABI get the byte order right.
sl@0
  2007
**
sl@0
  2008
** Developers using SQLite on an ARM7 should compile and run their
sl@0
  2009
** application using -DSQLITE_DEBUG=1 at least once.  With DEBUG
sl@0
  2010
** enabled, some asserts below will ensure that the byte order of
sl@0
  2011
** floating point values is correct.
sl@0
  2012
**
sl@0
  2013
** (2007-08-30)  Frank van Vugt has studied this problem closely
sl@0
  2014
** and has send his findings to the SQLite developers.  Frank
sl@0
  2015
** writes that some Linux kernels offer floating point hardware
sl@0
  2016
** emulation that uses only 32-bit mantissas instead of a full 
sl@0
  2017
** 48-bits as required by the IEEE standard.  (This is the
sl@0
  2018
** CONFIG_FPE_FASTFPE option.)  On such systems, floating point
sl@0
  2019
** byte swapping becomes very complicated.  To avoid problems,
sl@0
  2020
** the necessary byte swapping is carried out using a 64-bit integer
sl@0
  2021
** rather than a 64-bit float.  Frank assures us that the code here
sl@0
  2022
** works for him.  We, the developers, have no way to independently
sl@0
  2023
** verify this, but Frank seems to know what he is talking about
sl@0
  2024
** so we trust him.
sl@0
  2025
*/
sl@0
  2026
#ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT
sl@0
  2027
static u64 floatSwap(u64 in){
sl@0
  2028
  union {
sl@0
  2029
    u64 r;
sl@0
  2030
    u32 i[2];
sl@0
  2031
  } u;
sl@0
  2032
  u32 t;
sl@0
  2033
sl@0
  2034
  u.r = in;
sl@0
  2035
  t = u.i[0];
sl@0
  2036
  u.i[0] = u.i[1];
sl@0
  2037
  u.i[1] = t;
sl@0
  2038
  return u.r;
sl@0
  2039
}
sl@0
  2040
# define swapMixedEndianFloat(X)  X = floatSwap(X)
sl@0
  2041
#else
sl@0
  2042
# define swapMixedEndianFloat(X)
sl@0
  2043
#endif
sl@0
  2044
sl@0
  2045
/*
sl@0
  2046
** Write the serialized data blob for the value stored in pMem into 
sl@0
  2047
** buf. It is assumed that the caller has allocated sufficient space.
sl@0
  2048
** Return the number of bytes written.
sl@0
  2049
**
sl@0
  2050
** nBuf is the amount of space left in buf[].  nBuf must always be
sl@0
  2051
** large enough to hold the entire field.  Except, if the field is
sl@0
  2052
** a blob with a zero-filled tail, then buf[] might be just the right
sl@0
  2053
** size to hold everything except for the zero-filled tail.  If buf[]
sl@0
  2054
** is only big enough to hold the non-zero prefix, then only write that
sl@0
  2055
** prefix into buf[].  But if buf[] is large enough to hold both the
sl@0
  2056
** prefix and the tail then write the prefix and set the tail to all
sl@0
  2057
** zeros.
sl@0
  2058
**
sl@0
  2059
** Return the number of bytes actually written into buf[].  The number
sl@0
  2060
** of bytes in the zero-filled tail is included in the return value only
sl@0
  2061
** if those bytes were zeroed in buf[].
sl@0
  2062
*/ 
sl@0
  2063
int sqlite3VdbeSerialPut(u8 *buf, int nBuf, Mem *pMem, int file_format){
sl@0
  2064
  u32 serial_type = sqlite3VdbeSerialType(pMem, file_format);
sl@0
  2065
  int len;
sl@0
  2066
sl@0
  2067
  /* Integer and Real */
sl@0
  2068
  if( serial_type<=7 && serial_type>0 ){
sl@0
  2069
    u64 v;
sl@0
  2070
    int i;
sl@0
  2071
    if( serial_type==7 ){
sl@0
  2072
      assert( sizeof(v)==sizeof(pMem->r) );
sl@0
  2073
      memcpy(&v, &pMem->r, sizeof(v));
sl@0
  2074
      swapMixedEndianFloat(v);
sl@0
  2075
    }else{
sl@0
  2076
      v = pMem->u.i;
sl@0
  2077
    }
sl@0
  2078
    len = i = sqlite3VdbeSerialTypeLen(serial_type);
sl@0
  2079
    assert( len<=nBuf );
sl@0
  2080
    while( i-- ){
sl@0
  2081
      buf[i] = (v&0xFF);
sl@0
  2082
      v >>= 8;
sl@0
  2083
    }
sl@0
  2084
    return len;
sl@0
  2085
  }
sl@0
  2086
sl@0
  2087
  /* String or blob */
sl@0
  2088
  if( serial_type>=12 ){
sl@0
  2089
    assert( pMem->n + ((pMem->flags & MEM_Zero)?pMem->u.i:0)
sl@0
  2090
             == sqlite3VdbeSerialTypeLen(serial_type) );
sl@0
  2091
    assert( pMem->n<=nBuf );
sl@0
  2092
    len = pMem->n;
sl@0
  2093
    memcpy(buf, pMem->z, len);
sl@0
  2094
    if( pMem->flags & MEM_Zero ){
sl@0
  2095
      len += pMem->u.i;
sl@0
  2096
      if( len>nBuf ){
sl@0
  2097
        len = nBuf;
sl@0
  2098
      }
sl@0
  2099
      memset(&buf[pMem->n], 0, len-pMem->n);
sl@0
  2100
    }
sl@0
  2101
    return len;
sl@0
  2102
  }
sl@0
  2103
sl@0
  2104
  /* NULL or constants 0 or 1 */
sl@0
  2105
  return 0;
sl@0
  2106
}
sl@0
  2107
sl@0
  2108
/*
sl@0
  2109
** Deserialize the data blob pointed to by buf as serial type serial_type
sl@0
  2110
** and store the result in pMem.  Return the number of bytes read.
sl@0
  2111
*/ 
sl@0
  2112
int sqlite3VdbeSerialGet(
sl@0
  2113
  const unsigned char *buf,     /* Buffer to deserialize from */
sl@0
  2114
  u32 serial_type,              /* Serial type to deserialize */
sl@0
  2115
  Mem *pMem                     /* Memory cell to write value into */
sl@0
  2116
){
sl@0
  2117
  switch( serial_type ){
sl@0
  2118
    case 10:   /* Reserved for future use */
sl@0
  2119
    case 11:   /* Reserved for future use */
sl@0
  2120
    case 0: {  /* NULL */
sl@0
  2121
      pMem->flags = MEM_Null;
sl@0
  2122
      break;
sl@0
  2123
    }
sl@0
  2124
    case 1: { /* 1-byte signed integer */
sl@0
  2125
      pMem->u.i = (signed char)buf[0];
sl@0
  2126
      pMem->flags = MEM_Int;
sl@0
  2127
      return 1;
sl@0
  2128
    }
sl@0
  2129
    case 2: { /* 2-byte signed integer */
sl@0
  2130
      pMem->u.i = (((signed char)buf[0])<<8) | buf[1];
sl@0
  2131
      pMem->flags = MEM_Int;
sl@0
  2132
      return 2;
sl@0
  2133
    }
sl@0
  2134
    case 3: { /* 3-byte signed integer */
sl@0
  2135
      pMem->u.i = (((signed char)buf[0])<<16) | (buf[1]<<8) | buf[2];
sl@0
  2136
      pMem->flags = MEM_Int;
sl@0
  2137
      return 3;
sl@0
  2138
    }
sl@0
  2139
    case 4: { /* 4-byte signed integer */
sl@0
  2140
      pMem->u.i = (buf[0]<<24) | (buf[1]<<16) | (buf[2]<<8) | buf[3];
sl@0
  2141
      pMem->flags = MEM_Int;
sl@0
  2142
      return 4;
sl@0
  2143
    }
sl@0
  2144
    case 5: { /* 6-byte signed integer */
sl@0
  2145
      u64 x = (((signed char)buf[0])<<8) | buf[1];
sl@0
  2146
      u32 y = (buf[2]<<24) | (buf[3]<<16) | (buf[4]<<8) | buf[5];
sl@0
  2147
      x = (x<<32) | y;
sl@0
  2148
      pMem->u.i = *(i64*)&x;
sl@0
  2149
      pMem->flags = MEM_Int;
sl@0
  2150
      return 6;
sl@0
  2151
    }
sl@0
  2152
    case 6:   /* 8-byte signed integer */
sl@0
  2153
    case 7: { /* IEEE floating point */
sl@0
  2154
      u64 x;
sl@0
  2155
      u32 y;
sl@0
  2156
#if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT)
sl@0
  2157
      /* Verify that integers and floating point values use the same
sl@0
  2158
      ** byte order.  Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is
sl@0
  2159
      ** defined that 64-bit floating point values really are mixed
sl@0
  2160
      ** endian.
sl@0
  2161
      */
sl@0
  2162
      static const u64 t1 = ((u64)0x3ff00000)<<32;
sl@0
  2163
      static const double r1 = 1.0;
sl@0
  2164
      u64 t2 = t1;
sl@0
  2165
      swapMixedEndianFloat(t2);
sl@0
  2166
      assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 );
sl@0
  2167
#endif
sl@0
  2168
sl@0
  2169
      x = (buf[0]<<24) | (buf[1]<<16) | (buf[2]<<8) | buf[3];
sl@0
  2170
      y = (buf[4]<<24) | (buf[5]<<16) | (buf[6]<<8) | buf[7];
sl@0
  2171
      x = (x<<32) | y;
sl@0
  2172
      if( serial_type==6 ){
sl@0
  2173
        pMem->u.i = *(i64*)&x;
sl@0
  2174
        pMem->flags = MEM_Int;
sl@0
  2175
      }else{
sl@0
  2176
        assert( sizeof(x)==8 && sizeof(pMem->r)==8 );
sl@0
  2177
        swapMixedEndianFloat(x);
sl@0
  2178
        memcpy(&pMem->r, &x, sizeof(x));
sl@0
  2179
        pMem->flags = sqlite3IsNaN(pMem->r) ? MEM_Null : MEM_Real;
sl@0
  2180
      }
sl@0
  2181
      return 8;
sl@0
  2182
    }
sl@0
  2183
    case 8:    /* Integer 0 */
sl@0
  2184
    case 9: {  /* Integer 1 */
sl@0
  2185
      pMem->u.i = serial_type-8;
sl@0
  2186
      pMem->flags = MEM_Int;
sl@0
  2187
      return 0;
sl@0
  2188
    }
sl@0
  2189
    default: {
sl@0
  2190
      int len = (serial_type-12)/2;
sl@0
  2191
      pMem->z = (char *)buf;
sl@0
  2192
      pMem->n = len;
sl@0
  2193
      pMem->xDel = 0;
sl@0
  2194
      if( serial_type&0x01 ){
sl@0
  2195
        pMem->flags = MEM_Str | MEM_Ephem;
sl@0
  2196
      }else{
sl@0
  2197
        pMem->flags = MEM_Blob | MEM_Ephem;
sl@0
  2198
      }
sl@0
  2199
      return len;
sl@0
  2200
    }
sl@0
  2201
  }
sl@0
  2202
  return 0;
sl@0
  2203
}
sl@0
  2204
sl@0
  2205
sl@0
  2206
/*
sl@0
  2207
** Given the nKey-byte encoding of a record in pKey[], parse the
sl@0
  2208
** record into a UnpackedRecord structure.  Return a pointer to
sl@0
  2209
** that structure.
sl@0
  2210
**
sl@0
  2211
** The calling function might provide szSpace bytes of memory
sl@0
  2212
** space at pSpace.  This space can be used to hold the returned
sl@0
  2213
** VDbeParsedRecord structure if it is large enough.  If it is
sl@0
  2214
** not big enough, space is obtained from sqlite3_malloc().
sl@0
  2215
**
sl@0
  2216
** The returned structure should be closed by a call to
sl@0
  2217
** sqlite3VdbeDeleteUnpackedRecord().
sl@0
  2218
*/ 
sl@0
  2219
UnpackedRecord *sqlite3VdbeRecordUnpack(
sl@0
  2220
  KeyInfo *pKeyInfo,     /* Information about the record format */
sl@0
  2221
  int nKey,              /* Size of the binary record */
sl@0
  2222
  const void *pKey,      /* The binary record */
sl@0
  2223
  UnpackedRecord *pSpace,/* Space available to hold resulting object */
sl@0
  2224
  int szSpace            /* Size of pSpace[] in bytes */
sl@0
  2225
){
sl@0
  2226
  const unsigned char *aKey = (const unsigned char *)pKey;
sl@0
  2227
  UnpackedRecord *p;
sl@0
  2228
  int nByte;
sl@0
  2229
  int idx, d;
sl@0
  2230
  u16 u;                 /* Unsigned loop counter */
sl@0
  2231
  u32 szHdr;
sl@0
  2232
  Mem *pMem;
sl@0
  2233
  
sl@0
  2234
  assert( sizeof(Mem)>sizeof(*p) );
sl@0
  2235
  nByte = sizeof(Mem)*(pKeyInfo->nField+2);
sl@0
  2236
  if( nByte>szSpace ){
sl@0
  2237
    p = sqlite3DbMallocRaw(pKeyInfo->db, nByte);
sl@0
  2238
    if( p==0 ) return 0;
sl@0
  2239
    p->flags = UNPACKED_NEED_FREE | UNPACKED_NEED_DESTROY;
sl@0
  2240
  }else{
sl@0
  2241
    p = pSpace;
sl@0
  2242
    p->flags = UNPACKED_NEED_DESTROY;
sl@0
  2243
  }
sl@0
  2244
  p->pKeyInfo = pKeyInfo;
sl@0
  2245
  p->nField = pKeyInfo->nField + 1;
sl@0
  2246
  p->aMem = pMem = &((Mem*)p)[1];
sl@0
  2247
  idx = getVarint32(aKey, szHdr);
sl@0
  2248
  d = szHdr;
sl@0
  2249
  u = 0;
sl@0
  2250
  while( idx<szHdr && u<p->nField ){
sl@0
  2251
    u32 serial_type;
sl@0
  2252
sl@0
  2253
    idx += getVarint32( aKey+idx, serial_type);
sl@0
  2254
    if( d>=nKey && sqlite3VdbeSerialTypeLen(serial_type)>0 ) break;
sl@0
  2255
    pMem->enc = pKeyInfo->enc;
sl@0
  2256
    pMem->db = pKeyInfo->db;
sl@0
  2257
    pMem->flags = 0;
sl@0
  2258
    pMem->zMalloc = 0;
sl@0
  2259
    d += sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem);
sl@0
  2260
    pMem++;
sl@0
  2261
    u++;
sl@0
  2262
  }
sl@0
  2263
  assert( u<=pKeyInfo->nField + 1 );
sl@0
  2264
  p->nField = u;
sl@0
  2265
  return (void*)p;
sl@0
  2266
}
sl@0
  2267
sl@0
  2268
/*
sl@0
  2269
** This routine destroys a UnpackedRecord object
sl@0
  2270
*/
sl@0
  2271
void sqlite3VdbeDeleteUnpackedRecord(UnpackedRecord *p){
sl@0
  2272
  if( p ){
sl@0
  2273
    if( p->flags & UNPACKED_NEED_DESTROY ){
sl@0
  2274
      int i;
sl@0
  2275
      Mem *pMem;
sl@0
  2276
      for(i=0, pMem=p->aMem; i<p->nField; i++, pMem++){
sl@0
  2277
        if( pMem->zMalloc ){
sl@0
  2278
          sqlite3VdbeMemRelease(pMem);
sl@0
  2279
        }
sl@0
  2280
      }
sl@0
  2281
    }
sl@0
  2282
    if( p->flags & UNPACKED_NEED_FREE ){
sl@0
  2283
      sqlite3DbFree(p->pKeyInfo->db, p);
sl@0
  2284
    }
sl@0
  2285
  }
sl@0
  2286
}
sl@0
  2287
sl@0
  2288
/*
sl@0
  2289
** This function compares the two table rows or index records
sl@0
  2290
** specified by {nKey1, pKey1} and pPKey2.  It returns a negative, zero
sl@0
  2291
** or positive integer if key1 is less than, equal to or 
sl@0
  2292
** greater than key2.  The {nKey1, pKey1} key must be a blob
sl@0
  2293
** created by th OP_MakeRecord opcode of the VDBE.  The pPKey2
sl@0
  2294
** key must be a parsed key such as obtained from
sl@0
  2295
** sqlite3VdbeParseRecord.
sl@0
  2296
**
sl@0
  2297
** Key1 and Key2 do not have to contain the same number of fields.
sl@0
  2298
** The key with fewer fields is usually compares less than the 
sl@0
  2299
** longer key.  However if the UNPACKED_INCRKEY flags in pPKey2 is set
sl@0
  2300
** and the common prefixes are equal, then key1 is less than key2.
sl@0
  2301
** Or if the UNPACKED_MATCH_PREFIX flag is set and the prefixes are
sl@0
  2302
** equal, then the keys are considered to be equal and
sl@0
  2303
** the parts beyond the common prefix are ignored.
sl@0
  2304
**
sl@0
  2305
** If the UNPACKED_IGNORE_ROWID flag is set, then the last byte of
sl@0
  2306
** the header of pKey1 is ignored.  It is assumed that pKey1 is
sl@0
  2307
** an index key, and thus ends with a rowid value.  The last byte
sl@0
  2308
** of the header will therefore be the serial type of the rowid:
sl@0
  2309
** one of 1, 2, 3, 4, 5, 6, 8, or 9 - the integer serial types.
sl@0
  2310
** The serial type of the final rowid will always be a single byte.
sl@0
  2311
** By ignoring this last byte of the header, we force the comparison
sl@0
  2312
** to ignore the rowid at the end of key1.
sl@0
  2313
*/
sl@0
  2314
int sqlite3VdbeRecordCompare(
sl@0
  2315
  int nKey1, const void *pKey1, /* Left key */
sl@0
  2316
  UnpackedRecord *pPKey2        /* Right key */
sl@0
  2317
){
sl@0
  2318
  u32 d1;            /* Offset into aKey[] of next data element */
sl@0
  2319
  u32 idx1;          /* Offset into aKey[] of next header element */
sl@0
  2320
  u32 szHdr1;        /* Number of bytes in header */
sl@0
  2321
  int i = 0;
sl@0
  2322
  int nField;
sl@0
  2323
  int rc = 0;
sl@0
  2324
  const unsigned char *aKey1 = (const unsigned char *)pKey1;
sl@0
  2325
  KeyInfo *pKeyInfo;
sl@0
  2326
  Mem mem1;
sl@0
  2327
sl@0
  2328
  pKeyInfo = pPKey2->pKeyInfo;
sl@0
  2329
  mem1.enc = pKeyInfo->enc;
sl@0
  2330
  mem1.db = pKeyInfo->db;
sl@0
  2331
  mem1.flags = 0;
sl@0
  2332
  mem1.zMalloc = 0;
sl@0
  2333
  
sl@0
  2334
  idx1 = getVarint32(aKey1, szHdr1);
sl@0
  2335
  d1 = szHdr1;
sl@0
  2336
  if( pPKey2->flags & UNPACKED_IGNORE_ROWID ){
sl@0
  2337
    szHdr1--;
sl@0
  2338
  }
sl@0
  2339
  nField = pKeyInfo->nField;
sl@0
  2340
  while( idx1<szHdr1 && i<pPKey2->nField ){
sl@0
  2341
    u32 serial_type1;
sl@0
  2342
sl@0
  2343
    /* Read the serial types for the next element in each key. */
sl@0
  2344
    idx1 += getVarint32( aKey1+idx1, serial_type1 );
sl@0
  2345
    if( d1>=nKey1 && sqlite3VdbeSerialTypeLen(serial_type1)>0 ) break;
sl@0
  2346
sl@0
  2347
    /* Extract the values to be compared.
sl@0
  2348
    */
sl@0
  2349
    d1 += sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1);
sl@0
  2350
sl@0
  2351
    /* Do the comparison
sl@0
  2352
    */
sl@0
  2353
    rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i],
sl@0
  2354
                           i<nField ? pKeyInfo->aColl[i] : 0);
sl@0
  2355
    if( rc!=0 ){
sl@0
  2356
      break;
sl@0
  2357
    }
sl@0
  2358
    i++;
sl@0
  2359
  }
sl@0
  2360
  if( mem1.zMalloc ) sqlite3VdbeMemRelease(&mem1);
sl@0
  2361
sl@0
  2362
  if( rc==0 ){
sl@0
  2363
    /* rc==0 here means that one of the keys ran out of fields and
sl@0
  2364
    ** all the fields up to that point were equal. If the UNPACKED_INCRKEY
sl@0
  2365
    ** flag is set, then break the tie by treating key2 as larger.
sl@0
  2366
    ** If the UPACKED_PREFIX_MATCH flag is set, then keys with common prefixes
sl@0
  2367
    ** are considered to be equal.  Otherwise, the longer key is the 
sl@0
  2368
    ** larger.  As it happens, the pPKey2 will always be the longer
sl@0
  2369
    ** if there is a difference.
sl@0
  2370
    */
sl@0
  2371
    if( pPKey2->flags & UNPACKED_INCRKEY ){
sl@0
  2372
      rc = -1;
sl@0
  2373
    }else if( pPKey2->flags & UNPACKED_PREFIX_MATCH ){
sl@0
  2374
      /* Leave rc==0 */
sl@0
  2375
    }else if( idx1<szHdr1 ){
sl@0
  2376
      rc = 1;
sl@0
  2377
    }
sl@0
  2378
  }else if( pKeyInfo->aSortOrder && i<pKeyInfo->nField
sl@0
  2379
               && pKeyInfo->aSortOrder[i] ){
sl@0
  2380
    rc = -rc;
sl@0
  2381
  }
sl@0
  2382
sl@0
  2383
  return rc;
sl@0
  2384
}
sl@0
  2385
 
sl@0
  2386
sl@0
  2387
/*
sl@0
  2388
** pCur points at an index entry created using the OP_MakeRecord opcode.
sl@0
  2389
** Read the rowid (the last field in the record) and store it in *rowid.
sl@0
  2390
** Return SQLITE_OK if everything works, or an error code otherwise.
sl@0
  2391
*/
sl@0
  2392
int sqlite3VdbeIdxRowid(BtCursor *pCur, i64 *rowid){
sl@0
  2393
  i64 nCellKey = 0;
sl@0
  2394
  int rc;
sl@0
  2395
  u32 szHdr;        /* Size of the header */
sl@0
  2396
  u32 typeRowid;    /* Serial type of the rowid */
sl@0
  2397
  u32 lenRowid;     /* Size of the rowid */
sl@0
  2398
  Mem m, v;
sl@0
  2399
sl@0
  2400
  sqlite3BtreeKeySize(pCur, &nCellKey);
sl@0
  2401
  if( nCellKey<=0 ){
sl@0
  2402
    return SQLITE_CORRUPT_BKPT;
sl@0
  2403
  }
sl@0
  2404
  m.flags = 0;
sl@0
  2405
  m.db = 0;
sl@0
  2406
  m.zMalloc = 0;
sl@0
  2407
  rc = sqlite3VdbeMemFromBtree(pCur, 0, nCellKey, 1, &m);
sl@0
  2408
  if( rc ){
sl@0
  2409
    return rc;
sl@0
  2410
  }
sl@0
  2411
  (void)getVarint32((u8*)m.z, szHdr);
sl@0
  2412
  (void)getVarint32((u8*)&m.z[szHdr-1], typeRowid);
sl@0
  2413
  lenRowid = sqlite3VdbeSerialTypeLen(typeRowid);
sl@0
  2414
  sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v);
sl@0
  2415
  *rowid = v.u.i;
sl@0
  2416
  sqlite3VdbeMemRelease(&m);
sl@0
  2417
  return SQLITE_OK;
sl@0
  2418
}
sl@0
  2419
sl@0
  2420
/*
sl@0
  2421
** Compare the key of the index entry that cursor pC is point to against
sl@0
  2422
** the key string in pKey (of length nKey).  Write into *pRes a number
sl@0
  2423
** that is negative, zero, or positive if pC is less than, equal to,
sl@0
  2424
** or greater than pKey.  Return SQLITE_OK on success.
sl@0
  2425
**
sl@0
  2426
** pKey is either created without a rowid or is truncated so that it
sl@0
  2427
** omits the rowid at the end.  The rowid at the end of the index entry
sl@0
  2428
** is ignored as well.  Hence, this routine only compares the prefixes 
sl@0
  2429
** of the keys prior to the final rowid, not the entire key.
sl@0
  2430
**
sl@0
  2431
** pUnpacked may be an unpacked version of pKey,nKey.  If pUnpacked is
sl@0
  2432
** supplied it is used in place of pKey,nKey.
sl@0
  2433
*/
sl@0
  2434
int sqlite3VdbeIdxKeyCompare(
sl@0
  2435
  Cursor *pC,                 /* The cursor to compare against */
sl@0
  2436
  UnpackedRecord *pUnpacked,  /* Unpacked version of pKey and nKey */
sl@0
  2437
  int *res                    /* Write the comparison result here */
sl@0
  2438
){
sl@0
  2439
  i64 nCellKey = 0;
sl@0
  2440
  int rc;
sl@0
  2441
  BtCursor *pCur = pC->pCursor;
sl@0
  2442
  Mem m;
sl@0
  2443
sl@0
  2444
  sqlite3BtreeKeySize(pCur, &nCellKey);
sl@0
  2445
  if( nCellKey<=0 ){
sl@0
  2446
    *res = 0;
sl@0
  2447
    return SQLITE_OK;
sl@0
  2448
  }
sl@0
  2449
  m.db = 0;
sl@0
  2450
  m.flags = 0;
sl@0
  2451
  m.zMalloc = 0;
sl@0
  2452
  rc = sqlite3VdbeMemFromBtree(pC->pCursor, 0, nCellKey, 1, &m);
sl@0
  2453
  if( rc ){
sl@0
  2454
    return rc;
sl@0
  2455
  }
sl@0
  2456
  assert( pUnpacked->flags & UNPACKED_IGNORE_ROWID );
sl@0
  2457
  *res = sqlite3VdbeRecordCompare(m.n, m.z, pUnpacked);
sl@0
  2458
  sqlite3VdbeMemRelease(&m);
sl@0
  2459
  return SQLITE_OK;
sl@0
  2460
}
sl@0
  2461
sl@0
  2462
/*
sl@0
  2463
** This routine sets the value to be returned by subsequent calls to
sl@0
  2464
** sqlite3_changes() on the database handle 'db'. 
sl@0
  2465
*/
sl@0
  2466
void sqlite3VdbeSetChanges(sqlite3 *db, int nChange){
sl@0
  2467
  assert( sqlite3_mutex_held(db->mutex) );
sl@0
  2468
  db->nChange = nChange;
sl@0
  2469
  db->nTotalChange += nChange;
sl@0
  2470
}
sl@0
  2471
sl@0
  2472
/*
sl@0
  2473
** Set a flag in the vdbe to update the change counter when it is finalised
sl@0
  2474
** or reset.
sl@0
  2475
*/
sl@0
  2476
void sqlite3VdbeCountChanges(Vdbe *v){
sl@0
  2477
  v->changeCntOn = 1;
sl@0
  2478
}
sl@0
  2479
sl@0
  2480
/*
sl@0
  2481
** Mark every prepared statement associated with a database connection
sl@0
  2482
** as expired.
sl@0
  2483
**
sl@0
  2484
** An expired statement means that recompilation of the statement is
sl@0
  2485
** recommend.  Statements expire when things happen that make their
sl@0
  2486
** programs obsolete.  Removing user-defined functions or collating
sl@0
  2487
** sequences, or changing an authorization function are the types of
sl@0
  2488
** things that make prepared statements obsolete.
sl@0
  2489
*/
sl@0
  2490
void sqlite3ExpirePreparedStatements(sqlite3 *db){
sl@0
  2491
  Vdbe *p;
sl@0
  2492
  for(p = db->pVdbe; p; p=p->pNext){
sl@0
  2493
    p->expired = 1;
sl@0
  2494
  }
sl@0
  2495
}
sl@0
  2496
sl@0
  2497
/*
sl@0
  2498
** Return the database associated with the Vdbe.
sl@0
  2499
*/
sl@0
  2500
sqlite3 *sqlite3VdbeDb(Vdbe *v){
sl@0
  2501
  return v->db;
sl@0
  2502
}