os/persistentdata/persistentstorage/sql/SQLite364/sqliteInt.h
author sl@SLION-WIN7.fritz.box
Fri, 15 Jun 2012 03:10:57 +0200
changeset 0 bde4ae8d615e
permissions -rw-r--r--
First public contribution.
sl@0
     1
/*
sl@0
     2
** 2001 September 15
sl@0
     3
**
sl@0
     4
** The author disclaims copyright to this source code.  In place of
sl@0
     5
** a legal notice, here is a blessing:
sl@0
     6
**
sl@0
     7
**    May you do good and not evil.
sl@0
     8
**    May you find forgiveness for yourself and forgive others.
sl@0
     9
**    May you share freely, never taking more than you give.
sl@0
    10
**
sl@0
    11
*************************************************************************
sl@0
    12
** Internal interface definitions for SQLite.
sl@0
    13
**
sl@0
    14
** @(#) $Id: sqliteInt.h,v 1.784 2008/10/13 15:35:09 drh Exp $
sl@0
    15
*/
sl@0
    16
#ifndef _SQLITEINT_H_
sl@0
    17
#define _SQLITEINT_H_
sl@0
    18
sl@0
    19
/*
sl@0
    20
** Include the configuration header output by 'configure' if we're using the
sl@0
    21
** autoconf-based build
sl@0
    22
*/
sl@0
    23
#ifdef _HAVE_SQLITE_CONFIG_H
sl@0
    24
#include "config.h"
sl@0
    25
#endif
sl@0
    26
sl@0
    27
#include "sqliteLimit.h"
sl@0
    28
sl@0
    29
/* Disable nuisance warnings on Borland compilers */
sl@0
    30
#if defined(__BORLANDC__)
sl@0
    31
#pragma warn -rch /* unreachable code */
sl@0
    32
#pragma warn -ccc /* Condition is always true or false */
sl@0
    33
#pragma warn -aus /* Assigned value is never used */
sl@0
    34
#pragma warn -csu /* Comparing signed and unsigned */
sl@0
    35
#pragma warn -spa /* Suspicous pointer arithmetic */
sl@0
    36
#endif
sl@0
    37
sl@0
    38
/* Needed for various definitions... */
sl@0
    39
#ifndef _GNU_SOURCE
sl@0
    40
# define _GNU_SOURCE
sl@0
    41
#endif
sl@0
    42
sl@0
    43
/*
sl@0
    44
** Include standard header files as necessary
sl@0
    45
*/
sl@0
    46
#ifdef HAVE_STDINT_H
sl@0
    47
#include <stdint.h>
sl@0
    48
#endif
sl@0
    49
#ifdef HAVE_INTTYPES_H
sl@0
    50
#include <inttypes.h>
sl@0
    51
#endif
sl@0
    52
sl@0
    53
/*
sl@0
    54
** A macro used to aid in coverage testing.  When doing coverage
sl@0
    55
** testing, the condition inside the argument must be evaluated 
sl@0
    56
** both true and false in order to get full branch coverage.
sl@0
    57
** This macro can be inserted to ensure adequate test coverage
sl@0
    58
** in places where simple condition/decision coverage is inadequate.
sl@0
    59
*/
sl@0
    60
#ifdef SQLITE_COVERAGE_TEST
sl@0
    61
  void sqlite3Coverage(int);
sl@0
    62
# define testcase(X)  if( X ){ sqlite3Coverage(__LINE__); }
sl@0
    63
#else
sl@0
    64
# define testcase(X)
sl@0
    65
#endif
sl@0
    66
sl@0
    67
/*
sl@0
    68
** The ALWAYS and NEVER macros surround boolean expressions which 
sl@0
    69
** are intended to always be true or false, respectively.  Such
sl@0
    70
** expressions could be omitted from the code completely.  But they
sl@0
    71
** are included in a few cases in order to enhance the resilience
sl@0
    72
** of SQLite to unexpected behavior - to make the code "self-healing"
sl@0
    73
** or "ductile" rather than being "brittle" and crashing at the first
sl@0
    74
** hint of unplanned behavior.
sl@0
    75
**
sl@0
    76
** When doing coverage testing ALWAYS and NEVER are hard-coded to
sl@0
    77
** be true and false so that the unreachable code then specify will
sl@0
    78
** not be counted as untested code.
sl@0
    79
*/
sl@0
    80
#ifdef SQLITE_COVERAGE_TEST
sl@0
    81
# define ALWAYS(X)      (1)
sl@0
    82
# define NEVER(X)       (0)
sl@0
    83
#else
sl@0
    84
# define ALWAYS(X)      (X)
sl@0
    85
# define NEVER(X)       (X)
sl@0
    86
#endif
sl@0
    87
sl@0
    88
/*
sl@0
    89
** The macro unlikely() is a hint that surrounds a boolean
sl@0
    90
** expression that is usually false.  Macro likely() surrounds
sl@0
    91
** a boolean expression that is usually true.  GCC is able to
sl@0
    92
** use these hints to generate better code, sometimes.
sl@0
    93
*/
sl@0
    94
#if defined(__GNUC__) && 0
sl@0
    95
# define likely(X)    __builtin_expect((X),1)
sl@0
    96
# define unlikely(X)  __builtin_expect((X),0)
sl@0
    97
#else
sl@0
    98
# define likely(X)    !!(X)
sl@0
    99
# define unlikely(X)  !!(X)
sl@0
   100
#endif
sl@0
   101
sl@0
   102
/*
sl@0
   103
 * This macro is used to "hide" some ugliness in casting an int
sl@0
   104
 * value to a ptr value under the MSVC 64-bit compiler.   Casting
sl@0
   105
 * non 64-bit values to ptr types results in a "hard" error with 
sl@0
   106
 * the MSVC 64-bit compiler which this attempts to avoid.  
sl@0
   107
 *
sl@0
   108
 * A simple compiler pragma or casting sequence could not be found
sl@0
   109
 * to correct this in all situations, so this macro was introduced.
sl@0
   110
 *
sl@0
   111
 * It could be argued that the intptr_t type could be used in this
sl@0
   112
 * case, but that type is not available on all compilers, or 
sl@0
   113
 * requires the #include of specific headers which differs between
sl@0
   114
 * platforms.
sl@0
   115
 */
sl@0
   116
#define SQLITE_INT_TO_PTR(X)   ((void*)&((char*)0)[X])
sl@0
   117
#define SQLITE_PTR_TO_INT(X)   ((int)(((char*)X)-(char*)0))
sl@0
   118
sl@0
   119
/*
sl@0
   120
** These #defines should enable >2GB file support on Posix if the
sl@0
   121
** underlying operating system supports it.  If the OS lacks
sl@0
   122
** large file support, or if the OS is windows, these should be no-ops.
sl@0
   123
**
sl@0
   124
** Ticket #2739:  The _LARGEFILE_SOURCE macro must appear before any
sl@0
   125
** system #includes.  Hence, this block of code must be the very first
sl@0
   126
** code in all source files.
sl@0
   127
**
sl@0
   128
** Large file support can be disabled using the -DSQLITE_DISABLE_LFS switch
sl@0
   129
** on the compiler command line.  This is necessary if you are compiling
sl@0
   130
** on a recent machine (ex: RedHat 7.2) but you want your code to work
sl@0
   131
** on an older machine (ex: RedHat 6.0).  If you compile on RedHat 7.2
sl@0
   132
** without this option, LFS is enable.  But LFS does not exist in the kernel
sl@0
   133
** in RedHat 6.0, so the code won't work.  Hence, for maximum binary
sl@0
   134
** portability you should omit LFS.
sl@0
   135
**
sl@0
   136
** Similar is true for MacOS.  LFS is only supported on MacOS 9 and later.
sl@0
   137
*/
sl@0
   138
#ifndef SQLITE_DISABLE_LFS
sl@0
   139
# define _LARGE_FILE       1
sl@0
   140
# ifndef _FILE_OFFSET_BITS
sl@0
   141
#   define _FILE_OFFSET_BITS 64
sl@0
   142
# endif
sl@0
   143
# define _LARGEFILE_SOURCE 1
sl@0
   144
#endif
sl@0
   145
sl@0
   146
sl@0
   147
/*
sl@0
   148
** The SQLITE_THREADSAFE macro must be defined as either 0 or 1.
sl@0
   149
** Older versions of SQLite used an optional THREADSAFE macro.
sl@0
   150
** We support that for legacy
sl@0
   151
*/
sl@0
   152
#if !defined(SQLITE_THREADSAFE)
sl@0
   153
#if defined(THREADSAFE)
sl@0
   154
# define SQLITE_THREADSAFE THREADSAFE
sl@0
   155
#else
sl@0
   156
# define SQLITE_THREADSAFE 1
sl@0
   157
#endif
sl@0
   158
#endif
sl@0
   159
sl@0
   160
/*
sl@0
   161
** The SQLITE_DEFAULT_MEMSTATUS macro must be defined as either 0 or 1.
sl@0
   162
** It determines whether or not the features related to 
sl@0
   163
** SQLITE_CONFIG_MEMSTATUS are availabe by default or not. This value can
sl@0
   164
** be overridden at runtime using the sqlite3_config() API.
sl@0
   165
*/
sl@0
   166
#if !defined(SQLITE_DEFAULT_MEMSTATUS)
sl@0
   167
# define SQLITE_DEFAULT_MEMSTATUS 1
sl@0
   168
#endif
sl@0
   169
sl@0
   170
/*
sl@0
   171
** Exactly one of the following macros must be defined in order to
sl@0
   172
** specify which memory allocation subsystem to use.
sl@0
   173
**
sl@0
   174
**     SQLITE_SYSTEM_MALLOC          // Use normal system malloc()
sl@0
   175
**     SQLITE_MEMDEBUG               // Debugging version of system malloc()
sl@0
   176
**     SQLITE_MEMORY_SIZE            // internal allocator #1
sl@0
   177
**     SQLITE_MMAP_HEAP_SIZE         // internal mmap() allocator
sl@0
   178
**     SQLITE_POW2_MEMORY_SIZE       // internal power-of-two allocator
sl@0
   179
**
sl@0
   180
** If none of the above are defined, then set SQLITE_SYSTEM_MALLOC as
sl@0
   181
** the default.
sl@0
   182
*/
sl@0
   183
#if defined(SQLITE_SYSTEM_MALLOC)+defined(SQLITE_MEMDEBUG)+\
sl@0
   184
    defined(SQLITE_MEMORY_SIZE)+defined(SQLITE_MMAP_HEAP_SIZE)+\
sl@0
   185
    defined(SQLITE_POW2_MEMORY_SIZE)>1
sl@0
   186
# error "At most one of the following compile-time configuration options\
sl@0
   187
 is allows: SQLITE_SYSTEM_MALLOC, SQLITE_MEMDEBUG, SQLITE_MEMORY_SIZE,\
sl@0
   188
 SQLITE_MMAP_HEAP_SIZE, SQLITE_POW2_MEMORY_SIZE"
sl@0
   189
#endif
sl@0
   190
#if defined(SQLITE_SYSTEM_MALLOC)+defined(SQLITE_MEMDEBUG)+\
sl@0
   191
    defined(SQLITE_MEMORY_SIZE)+defined(SQLITE_MMAP_HEAP_SIZE)+\
sl@0
   192
    defined(SQLITE_POW2_MEMORY_SIZE)==0
sl@0
   193
# define SQLITE_SYSTEM_MALLOC 1
sl@0
   194
#endif
sl@0
   195
sl@0
   196
/*
sl@0
   197
** If SQLITE_MALLOC_SOFT_LIMIT is defined, then try to keep the
sl@0
   198
** sizes of memory allocations below this value where possible.
sl@0
   199
*/
sl@0
   200
#if defined(SQLITE_POW2_MEMORY_SIZE) && !defined(SQLITE_MALLOC_SOFT_LIMIT)
sl@0
   201
# define SQLITE_MALLOC_SOFT_LIMIT 1024
sl@0
   202
#endif
sl@0
   203
sl@0
   204
/*
sl@0
   205
** We need to define _XOPEN_SOURCE as follows in order to enable
sl@0
   206
** recursive mutexes on most unix systems.  But Mac OS X is different.
sl@0
   207
** The _XOPEN_SOURCE define causes problems for Mac OS X we are told,
sl@0
   208
** so it is omitted there.  See ticket #2673.
sl@0
   209
**
sl@0
   210
** Later we learn that _XOPEN_SOURCE is poorly or incorrectly
sl@0
   211
** implemented on some systems.  So we avoid defining it at all
sl@0
   212
** if it is already defined or if it is unneeded because we are
sl@0
   213
** not doing a threadsafe build.  Ticket #2681.
sl@0
   214
**
sl@0
   215
** See also ticket #2741.
sl@0
   216
*/
sl@0
   217
#if !defined(_XOPEN_SOURCE) && !defined(__DARWIN__) && !defined(__APPLE__) && SQLITE_THREADSAFE
sl@0
   218
#  define _XOPEN_SOURCE 500  /* Needed to enable pthread recursive mutexes */
sl@0
   219
#endif
sl@0
   220
sl@0
   221
/*
sl@0
   222
** The TCL headers are only needed when compiling the TCL bindings.
sl@0
   223
*/
sl@0
   224
#if defined(SQLITE_TCL) || defined(TCLSH)
sl@0
   225
# include <tcl.h>
sl@0
   226
#endif
sl@0
   227
sl@0
   228
/*
sl@0
   229
** Many people are failing to set -DNDEBUG=1 when compiling SQLite.
sl@0
   230
** Setting NDEBUG makes the code smaller and run faster.  So the following
sl@0
   231
** lines are added to automatically set NDEBUG unless the -DSQLITE_DEBUG=1
sl@0
   232
** option is set.  Thus NDEBUG becomes an opt-in rather than an opt-out
sl@0
   233
** feature.
sl@0
   234
*/
sl@0
   235
#if !defined(NDEBUG) && !defined(SQLITE_DEBUG) 
sl@0
   236
# define NDEBUG 1
sl@0
   237
#endif
sl@0
   238
sl@0
   239
#include "sqlite3.h"
sl@0
   240
#include "hash.h"
sl@0
   241
#include "parse.h"
sl@0
   242
#include <stdio.h>
sl@0
   243
#include <stdlib.h>
sl@0
   244
#include <string.h>
sl@0
   245
#include <assert.h>
sl@0
   246
#include <stddef.h>
sl@0
   247
sl@0
   248
/*
sl@0
   249
** If compiling for a processor that lacks floating point support,
sl@0
   250
** substitute integer for floating-point
sl@0
   251
*/
sl@0
   252
#ifdef SQLITE_OMIT_FLOATING_POINT
sl@0
   253
# define double sqlite_int64
sl@0
   254
# define LONGDOUBLE_TYPE sqlite_int64
sl@0
   255
# ifndef SQLITE_BIG_DBL
sl@0
   256
#   define SQLITE_BIG_DBL (0x7fffffffffffffff)
sl@0
   257
# endif
sl@0
   258
# define SQLITE_OMIT_DATETIME_FUNCS 1
sl@0
   259
# define SQLITE_OMIT_TRACE 1
sl@0
   260
# undef SQLITE_MIXED_ENDIAN_64BIT_FLOAT
sl@0
   261
#endif
sl@0
   262
#ifndef SQLITE_BIG_DBL
sl@0
   263
# define SQLITE_BIG_DBL (1e99)
sl@0
   264
#endif
sl@0
   265
sl@0
   266
/*
sl@0
   267
** OMIT_TEMPDB is set to 1 if SQLITE_OMIT_TEMPDB is defined, or 0
sl@0
   268
** afterward. Having this macro allows us to cause the C compiler 
sl@0
   269
** to omit code used by TEMP tables without messy #ifndef statements.
sl@0
   270
*/
sl@0
   271
#ifdef SQLITE_OMIT_TEMPDB
sl@0
   272
#define OMIT_TEMPDB 1
sl@0
   273
#else
sl@0
   274
#define OMIT_TEMPDB 0
sl@0
   275
#endif
sl@0
   276
sl@0
   277
/*
sl@0
   278
** If the following macro is set to 1, then NULL values are considered
sl@0
   279
** distinct when determining whether or not two entries are the same
sl@0
   280
** in a UNIQUE index.  This is the way PostgreSQL, Oracle, DB2, MySQL,
sl@0
   281
** OCELOT, and Firebird all work.  The SQL92 spec explicitly says this
sl@0
   282
** is the way things are suppose to work.
sl@0
   283
**
sl@0
   284
** If the following macro is set to 0, the NULLs are indistinct for
sl@0
   285
** a UNIQUE index.  In this mode, you can only have a single NULL entry
sl@0
   286
** for a column declared UNIQUE.  This is the way Informix and SQL Server
sl@0
   287
** work.
sl@0
   288
*/
sl@0
   289
#define NULL_DISTINCT_FOR_UNIQUE 1
sl@0
   290
sl@0
   291
/*
sl@0
   292
** The "file format" number is an integer that is incremented whenever
sl@0
   293
** the VDBE-level file format changes.  The following macros define the
sl@0
   294
** the default file format for new databases and the maximum file format
sl@0
   295
** that the library can read.
sl@0
   296
*/
sl@0
   297
#define SQLITE_MAX_FILE_FORMAT 4
sl@0
   298
#ifndef SQLITE_DEFAULT_FILE_FORMAT
sl@0
   299
# define SQLITE_DEFAULT_FILE_FORMAT 1
sl@0
   300
#endif
sl@0
   301
sl@0
   302
/*
sl@0
   303
** Provide a default value for SQLITE_TEMP_STORE in case it is not specified
sl@0
   304
** on the command-line
sl@0
   305
*/
sl@0
   306
#ifndef SQLITE_TEMP_STORE
sl@0
   307
# define SQLITE_TEMP_STORE 1
sl@0
   308
#endif
sl@0
   309
sl@0
   310
/*
sl@0
   311
** GCC does not define the offsetof() macro so we'll have to do it
sl@0
   312
** ourselves.
sl@0
   313
*/
sl@0
   314
#ifndef offsetof
sl@0
   315
#define offsetof(STRUCTURE,FIELD) ((int)((char*)&((STRUCTURE*)0)->FIELD))
sl@0
   316
#endif
sl@0
   317
sl@0
   318
/*
sl@0
   319
** Check to see if this machine uses EBCDIC.  (Yes, believe it or
sl@0
   320
** not, there are still machines out there that use EBCDIC.)
sl@0
   321
*/
sl@0
   322
#if 'A' == '\301'
sl@0
   323
# define SQLITE_EBCDIC 1
sl@0
   324
#else
sl@0
   325
# define SQLITE_ASCII 1
sl@0
   326
#endif
sl@0
   327
sl@0
   328
/*
sl@0
   329
** Integers of known sizes.  These typedefs might change for architectures
sl@0
   330
** where the sizes very.  Preprocessor macros are available so that the
sl@0
   331
** types can be conveniently redefined at compile-type.  Like this:
sl@0
   332
**
sl@0
   333
**         cc '-DUINTPTR_TYPE=long long int' ...
sl@0
   334
*/
sl@0
   335
#ifndef UINT32_TYPE
sl@0
   336
# ifdef HAVE_UINT32_T
sl@0
   337
#  define UINT32_TYPE uint32_t
sl@0
   338
# else
sl@0
   339
#  define UINT32_TYPE unsigned int
sl@0
   340
# endif
sl@0
   341
#endif
sl@0
   342
#ifndef UINT16_TYPE
sl@0
   343
# ifdef HAVE_UINT16_T
sl@0
   344
#  define UINT16_TYPE uint16_t
sl@0
   345
# else
sl@0
   346
#  define UINT16_TYPE unsigned short int
sl@0
   347
# endif
sl@0
   348
#endif
sl@0
   349
#ifndef INT16_TYPE
sl@0
   350
# ifdef HAVE_INT16_T
sl@0
   351
#  define INT16_TYPE int16_t
sl@0
   352
# else
sl@0
   353
#  define INT16_TYPE short int
sl@0
   354
# endif
sl@0
   355
#endif
sl@0
   356
#ifndef UINT8_TYPE
sl@0
   357
# ifdef HAVE_UINT8_T
sl@0
   358
#  define UINT8_TYPE uint8_t
sl@0
   359
# else
sl@0
   360
#  define UINT8_TYPE unsigned char
sl@0
   361
# endif
sl@0
   362
#endif
sl@0
   363
#ifndef INT8_TYPE
sl@0
   364
# ifdef HAVE_INT8_T
sl@0
   365
#  define INT8_TYPE int8_t
sl@0
   366
# else
sl@0
   367
#  define INT8_TYPE signed char
sl@0
   368
# endif
sl@0
   369
#endif
sl@0
   370
#ifndef LONGDOUBLE_TYPE
sl@0
   371
# define LONGDOUBLE_TYPE long double
sl@0
   372
#endif
sl@0
   373
typedef sqlite_int64 i64;          /* 8-byte signed integer */
sl@0
   374
typedef sqlite_uint64 u64;         /* 8-byte unsigned integer */
sl@0
   375
typedef UINT32_TYPE u32;           /* 4-byte unsigned integer */
sl@0
   376
typedef UINT16_TYPE u16;           /* 2-byte unsigned integer */
sl@0
   377
typedef INT16_TYPE i16;            /* 2-byte signed integer */
sl@0
   378
typedef UINT8_TYPE u8;             /* 1-byte unsigned integer */
sl@0
   379
typedef INT8_TYPE i8;              /* 1-byte signed integer */
sl@0
   380
sl@0
   381
/*
sl@0
   382
** Macros to determine whether the machine is big or little endian,
sl@0
   383
** evaluated at runtime.
sl@0
   384
*/
sl@0
   385
#ifdef SQLITE_AMALGAMATION
sl@0
   386
const int sqlite3one;
sl@0
   387
#else
sl@0
   388
extern const int sqlite3one;
sl@0
   389
#endif
sl@0
   390
#if defined(i386) || defined(__i386__) || defined(_M_IX86)\
sl@0
   391
                             || defined(__x86_64) || defined(__x86_64__)
sl@0
   392
# define SQLITE_BIGENDIAN    0
sl@0
   393
# define SQLITE_LITTLEENDIAN 1
sl@0
   394
# define SQLITE_UTF16NATIVE  SQLITE_UTF16LE
sl@0
   395
#else
sl@0
   396
# define SQLITE_BIGENDIAN    (*(char *)(&sqlite3one)==0)
sl@0
   397
# define SQLITE_LITTLEENDIAN (*(char *)(&sqlite3one)==1)
sl@0
   398
# define SQLITE_UTF16NATIVE (SQLITE_BIGENDIAN?SQLITE_UTF16BE:SQLITE_UTF16LE)
sl@0
   399
#endif
sl@0
   400
sl@0
   401
/*
sl@0
   402
** Constants for the largest and smallest possible 64-bit signed integers.
sl@0
   403
** These macros are designed to work correctly on both 32-bit and 64-bit
sl@0
   404
** compilers.
sl@0
   405
*/
sl@0
   406
#define LARGEST_INT64  (0xffffffff|(((i64)0x7fffffff)<<32))
sl@0
   407
#define SMALLEST_INT64 (((i64)-1) - LARGEST_INT64)
sl@0
   408
sl@0
   409
/*
sl@0
   410
** An instance of the following structure is used to store the busy-handler
sl@0
   411
** callback for a given sqlite handle. 
sl@0
   412
**
sl@0
   413
** The sqlite.busyHandler member of the sqlite struct contains the busy
sl@0
   414
** callback for the database handle. Each pager opened via the sqlite
sl@0
   415
** handle is passed a pointer to sqlite.busyHandler. The busy-handler
sl@0
   416
** callback is currently invoked only from within pager.c.
sl@0
   417
*/
sl@0
   418
typedef struct BusyHandler BusyHandler;
sl@0
   419
struct BusyHandler {
sl@0
   420
  int (*xFunc)(void *,int);  /* The busy callback */
sl@0
   421
  void *pArg;                /* First arg to busy callback */
sl@0
   422
  int nBusy;                 /* Incremented with each busy call */
sl@0
   423
};
sl@0
   424
sl@0
   425
/*
sl@0
   426
** Name of the master database table.  The master database table
sl@0
   427
** is a special table that holds the names and attributes of all
sl@0
   428
** user tables and indices.
sl@0
   429
*/
sl@0
   430
#define MASTER_NAME       "sqlite_master"
sl@0
   431
#define TEMP_MASTER_NAME  "sqlite_temp_master"
sl@0
   432
sl@0
   433
/*
sl@0
   434
** The root-page of the master database table.
sl@0
   435
*/
sl@0
   436
#define MASTER_ROOT       1
sl@0
   437
sl@0
   438
/*
sl@0
   439
** The name of the schema table.
sl@0
   440
*/
sl@0
   441
#define SCHEMA_TABLE(x)  ((!OMIT_TEMPDB)&&(x==1)?TEMP_MASTER_NAME:MASTER_NAME)
sl@0
   442
sl@0
   443
/*
sl@0
   444
** A convenience macro that returns the number of elements in
sl@0
   445
** an array.
sl@0
   446
*/
sl@0
   447
#define ArraySize(X)    (sizeof(X)/sizeof(X[0]))
sl@0
   448
sl@0
   449
/*
sl@0
   450
** The following value as a destructor means to use sqlite3DbFree().
sl@0
   451
** This is an internal extension to SQLITE_STATIC and SQLITE_TRANSIENT.
sl@0
   452
*/
sl@0
   453
#define SQLITE_DYNAMIC   ((sqlite3_destructor_type)sqlite3DbFree)
sl@0
   454
sl@0
   455
/*
sl@0
   456
** When SQLITE_OMIT_WSD is defined, it means that the target platform does
sl@0
   457
** not support Writable Static Data (WSD) such as global and static variables.
sl@0
   458
** All variables must either be on the stack or dynamically allocated from
sl@0
   459
** the heap.  When WSD is unsupported, the variable declarations scattered
sl@0
   460
** throughout the SQLite code must become constants instead.  The SQLITE_WSD
sl@0
   461
** macro is used for this purpose.  And instead of referencing the variable
sl@0
   462
** directly, we use its constant as a key to lookup the run-time allocated
sl@0
   463
** buffer that holds real variable.  The constant is also the initializer
sl@0
   464
** for the run-time allocated buffer.
sl@0
   465
**
sl@0
   466
** In the usually case where WSD is supported, the SQLITE_WSD and GLOBAL
sl@0
   467
** macros become no-ops and have zero performance impact.
sl@0
   468
*/
sl@0
   469
#ifdef SQLITE_OMIT_WSD
sl@0
   470
  #define SQLITE_WSD const
sl@0
   471
  #define GLOBAL(t,v) (*(t*)sqlite3_wsd_find((void*)&(v), sizeof(v)))
sl@0
   472
  #define sqlite3GlobalConfig GLOBAL(struct Sqlite3Config, sqlite3Config)
sl@0
   473
  int sqlite3_wsd_init(int N, int J);
sl@0
   474
  void *sqlite3_wsd_find(void *K, int L);
sl@0
   475
#else
sl@0
   476
  #define SQLITE_WSD 
sl@0
   477
  #define GLOBAL(t,v) v
sl@0
   478
  #define sqlite3GlobalConfig sqlite3Config
sl@0
   479
#endif
sl@0
   480
sl@0
   481
/*
sl@0
   482
** Forward references to structures
sl@0
   483
*/
sl@0
   484
typedef struct AggInfo AggInfo;
sl@0
   485
typedef struct AuthContext AuthContext;
sl@0
   486
typedef struct Bitvec Bitvec;
sl@0
   487
typedef struct CollSeq CollSeq;
sl@0
   488
typedef struct Column Column;
sl@0
   489
typedef struct Db Db;
sl@0
   490
typedef struct Schema Schema;
sl@0
   491
typedef struct Expr Expr;
sl@0
   492
typedef struct ExprList ExprList;
sl@0
   493
typedef struct FKey FKey;
sl@0
   494
typedef struct FuncDef FuncDef;
sl@0
   495
typedef struct FuncDefHash FuncDefHash;
sl@0
   496
typedef struct IdList IdList;
sl@0
   497
typedef struct Index Index;
sl@0
   498
typedef struct KeyClass KeyClass;
sl@0
   499
typedef struct KeyInfo KeyInfo;
sl@0
   500
typedef struct Lookaside Lookaside;
sl@0
   501
typedef struct LookasideSlot LookasideSlot;
sl@0
   502
typedef struct Module Module;
sl@0
   503
typedef struct NameContext NameContext;
sl@0
   504
typedef struct Parse Parse;
sl@0
   505
typedef struct Select Select;
sl@0
   506
typedef struct SrcList SrcList;
sl@0
   507
typedef struct StrAccum StrAccum;
sl@0
   508
typedef struct Table Table;
sl@0
   509
typedef struct TableLock TableLock;
sl@0
   510
typedef struct Token Token;
sl@0
   511
typedef struct TriggerStack TriggerStack;
sl@0
   512
typedef struct TriggerStep TriggerStep;
sl@0
   513
typedef struct Trigger Trigger;
sl@0
   514
typedef struct UnpackedRecord UnpackedRecord;
sl@0
   515
typedef struct Walker Walker;
sl@0
   516
typedef struct WhereInfo WhereInfo;
sl@0
   517
typedef struct WhereLevel WhereLevel;
sl@0
   518
sl@0
   519
/*
sl@0
   520
** Defer sourcing vdbe.h and btree.h until after the "u8" and 
sl@0
   521
** "BusyHandler" typedefs. vdbe.h also requires a few of the opaque
sl@0
   522
** pointer types (i.e. FuncDef) defined above.
sl@0
   523
*/
sl@0
   524
#include "btree.h"
sl@0
   525
#include "vdbe.h"
sl@0
   526
#include "pager.h"
sl@0
   527
#include "pcache.h"
sl@0
   528
sl@0
   529
#include "os.h"
sl@0
   530
#include "mutex.h"
sl@0
   531
sl@0
   532
sl@0
   533
/*
sl@0
   534
** Each database file to be accessed by the system is an instance
sl@0
   535
** of the following structure.  There are normally two of these structures
sl@0
   536
** in the sqlite.aDb[] array.  aDb[0] is the main database file and
sl@0
   537
** aDb[1] is the database file used to hold temporary tables.  Additional
sl@0
   538
** databases may be attached.
sl@0
   539
*/
sl@0
   540
struct Db {
sl@0
   541
  char *zName;         /* Name of this database */
sl@0
   542
  Btree *pBt;          /* The B*Tree structure for this database file */
sl@0
   543
  u8 inTrans;          /* 0: not writable.  1: Transaction.  2: Checkpoint */
sl@0
   544
  u8 safety_level;     /* How aggressive at synching data to disk */
sl@0
   545
  void *pAux;               /* Auxiliary data.  Usually NULL */
sl@0
   546
  void (*xFreeAux)(void*);  /* Routine to free pAux */
sl@0
   547
  Schema *pSchema;     /* Pointer to database schema (possibly shared) */
sl@0
   548
};
sl@0
   549
sl@0
   550
/*
sl@0
   551
** An instance of the following structure stores a database schema.
sl@0
   552
**
sl@0
   553
** If there are no virtual tables configured in this schema, the
sl@0
   554
** Schema.db variable is set to NULL. After the first virtual table
sl@0
   555
** has been added, it is set to point to the database connection 
sl@0
   556
** used to create the connection. Once a virtual table has been
sl@0
   557
** added to the Schema structure and the Schema.db variable populated, 
sl@0
   558
** only that database connection may use the Schema to prepare 
sl@0
   559
** statements.
sl@0
   560
*/
sl@0
   561
struct Schema {
sl@0
   562
  int schema_cookie;   /* Database schema version number for this file */
sl@0
   563
  Hash tblHash;        /* All tables indexed by name */
sl@0
   564
  Hash idxHash;        /* All (named) indices indexed by name */
sl@0
   565
  Hash trigHash;       /* All triggers indexed by name */
sl@0
   566
  Hash aFKey;          /* Foreign keys indexed by to-table */
sl@0
   567
  Table *pSeqTab;      /* The sqlite_sequence table used by AUTOINCREMENT */
sl@0
   568
  u8 file_format;      /* Schema format version for this file */
sl@0
   569
  u8 enc;              /* Text encoding used by this database */
sl@0
   570
  u16 flags;           /* Flags associated with this schema */
sl@0
   571
  int cache_size;      /* Number of pages to use in the cache */
sl@0
   572
#ifndef SQLITE_OMIT_VIRTUALTABLE
sl@0
   573
  sqlite3 *db;         /* "Owner" connection. See comment above */
sl@0
   574
#endif
sl@0
   575
};
sl@0
   576
sl@0
   577
/*
sl@0
   578
** These macros can be used to test, set, or clear bits in the 
sl@0
   579
** Db.flags field.
sl@0
   580
*/
sl@0
   581
#define DbHasProperty(D,I,P)     (((D)->aDb[I].pSchema->flags&(P))==(P))
sl@0
   582
#define DbHasAnyProperty(D,I,P)  (((D)->aDb[I].pSchema->flags&(P))!=0)
sl@0
   583
#define DbSetProperty(D,I,P)     (D)->aDb[I].pSchema->flags|=(P)
sl@0
   584
#define DbClearProperty(D,I,P)   (D)->aDb[I].pSchema->flags&=~(P)
sl@0
   585
sl@0
   586
/*
sl@0
   587
** Allowed values for the DB.flags field.
sl@0
   588
**
sl@0
   589
** The DB_SchemaLoaded flag is set after the database schema has been
sl@0
   590
** read into internal hash tables.
sl@0
   591
**
sl@0
   592
** DB_UnresetViews means that one or more views have column names that
sl@0
   593
** have been filled out.  If the schema changes, these column names might
sl@0
   594
** changes and so the view will need to be reset.
sl@0
   595
*/
sl@0
   596
#define DB_SchemaLoaded    0x0001  /* The schema has been loaded */
sl@0
   597
#define DB_UnresetViews    0x0002  /* Some views have defined column names */
sl@0
   598
#define DB_Empty           0x0004  /* The file is empty (length 0 bytes) */
sl@0
   599
sl@0
   600
/*
sl@0
   601
** The number of different kinds of things that can be limited
sl@0
   602
** using the sqlite3_limit() interface.
sl@0
   603
*/
sl@0
   604
#define SQLITE_N_LIMIT (SQLITE_LIMIT_VARIABLE_NUMBER+1)
sl@0
   605
sl@0
   606
/*
sl@0
   607
** Lookaside malloc is a set of fixed-size buffers that can be used
sl@0
   608
** to satisify small transient memory allocation requests for objects
sl@0
   609
** associated with a particular database connection.  The use of
sl@0
   610
** lookaside malloc provides a significant performance enhancement
sl@0
   611
** (approx 10%) by avoiding numerous malloc/free requests while parsing
sl@0
   612
** SQL statements.
sl@0
   613
**
sl@0
   614
** The Lookaside structure holds configuration information about the
sl@0
   615
** lookaside malloc subsystem.  Each available memory allocation in
sl@0
   616
** the lookaside subsystem is stored on a linked list of LookasideSlot
sl@0
   617
** objects.
sl@0
   618
*/
sl@0
   619
struct Lookaside {
sl@0
   620
  u16 sz;                 /* Size of each buffer in bytes */
sl@0
   621
  u8 bEnabled;            /* True if use lookaside.  False to ignore it */
sl@0
   622
  u8 bMalloced;           /* True if pStart obtained from sqlite3_malloc() */
sl@0
   623
  int nOut;               /* Number of buffers currently checked out */
sl@0
   624
  int mxOut;              /* Highwater mark for nOut */
sl@0
   625
  LookasideSlot *pFree;   /* List of available buffers */
sl@0
   626
  void *pStart;           /* First byte of available memory space */
sl@0
   627
  void *pEnd;             /* First byte past end of available space */
sl@0
   628
};
sl@0
   629
struct LookasideSlot {
sl@0
   630
  LookasideSlot *pNext;    /* Next buffer in the list of free buffers */
sl@0
   631
};
sl@0
   632
sl@0
   633
/*
sl@0
   634
** A hash table for function definitions.
sl@0
   635
**
sl@0
   636
** Hash each FuncDef structure into one of the FuncDefHash.a[] slots.
sl@0
   637
** Collisions are on the FuncDef.pHash chain.
sl@0
   638
*/
sl@0
   639
struct FuncDefHash {
sl@0
   640
  FuncDef *a[23];       /* Hash table for functions */
sl@0
   641
};
sl@0
   642
sl@0
   643
/*
sl@0
   644
** Each database is an instance of the following structure.
sl@0
   645
**
sl@0
   646
** The sqlite.lastRowid records the last insert rowid generated by an
sl@0
   647
** insert statement.  Inserts on views do not affect its value.  Each
sl@0
   648
** trigger has its own context, so that lastRowid can be updated inside
sl@0
   649
** triggers as usual.  The previous value will be restored once the trigger
sl@0
   650
** exits.  Upon entering a before or instead of trigger, lastRowid is no
sl@0
   651
** longer (since after version 2.8.12) reset to -1.
sl@0
   652
**
sl@0
   653
** The sqlite.nChange does not count changes within triggers and keeps no
sl@0
   654
** context.  It is reset at start of sqlite3_exec.
sl@0
   655
** The sqlite.lsChange represents the number of changes made by the last
sl@0
   656
** insert, update, or delete statement.  It remains constant throughout the
sl@0
   657
** length of a statement and is then updated by OP_SetCounts.  It keeps a
sl@0
   658
** context stack just like lastRowid so that the count of changes
sl@0
   659
** within a trigger is not seen outside the trigger.  Changes to views do not
sl@0
   660
** affect the value of lsChange.
sl@0
   661
** The sqlite.csChange keeps track of the number of current changes (since
sl@0
   662
** the last statement) and is used to update sqlite_lsChange.
sl@0
   663
**
sl@0
   664
** The member variables sqlite.errCode, sqlite.zErrMsg and sqlite.zErrMsg16
sl@0
   665
** store the most recent error code and, if applicable, string. The
sl@0
   666
** internal function sqlite3Error() is used to set these variables
sl@0
   667
** consistently.
sl@0
   668
*/
sl@0
   669
struct sqlite3 {
sl@0
   670
  sqlite3_vfs *pVfs;            /* OS Interface */
sl@0
   671
  int nDb;                      /* Number of backends currently in use */
sl@0
   672
  Db *aDb;                      /* All backends */
sl@0
   673
  int flags;                    /* Miscellanous flags. See below */
sl@0
   674
  int openFlags;                /* Flags passed to sqlite3_vfs.xOpen() */
sl@0
   675
  int errCode;                  /* Most recent error code (SQLITE_*) */
sl@0
   676
  int errMask;                  /* & result codes with this before returning */
sl@0
   677
  u8 autoCommit;                /* The auto-commit flag. */
sl@0
   678
  u8 temp_store;                /* 1: file 2: memory 0: default */
sl@0
   679
  u8 mallocFailed;              /* True if we have seen a malloc failure */
sl@0
   680
  u8 dfltLockMode;              /* Default locking-mode for attached dbs */
sl@0
   681
  u8 dfltJournalMode;           /* Default journal mode for attached dbs */
sl@0
   682
  signed char nextAutovac;      /* Autovac setting after VACUUM if >=0 */
sl@0
   683
  int nextPagesize;             /* Pagesize after VACUUM if >0 */
sl@0
   684
  int nTable;                   /* Number of tables in the database */
sl@0
   685
  CollSeq *pDfltColl;           /* The default collating sequence (BINARY) */
sl@0
   686
  i64 lastRowid;                /* ROWID of most recent insert (see above) */
sl@0
   687
  i64 priorNewRowid;            /* Last randomly generated ROWID */
sl@0
   688
  int magic;                    /* Magic number for detect library misuse */
sl@0
   689
  int nChange;                  /* Value returned by sqlite3_changes() */
sl@0
   690
  int nTotalChange;             /* Value returned by sqlite3_total_changes() */
sl@0
   691
  sqlite3_mutex *mutex;         /* Connection mutex */
sl@0
   692
  int aLimit[SQLITE_N_LIMIT];   /* Limits */
sl@0
   693
  struct sqlite3InitInfo {      /* Information used during initialization */
sl@0
   694
    int iDb;                    /* When back is being initialized */
sl@0
   695
    int newTnum;                /* Rootpage of table being initialized */
sl@0
   696
    u8 busy;                    /* TRUE if currently initializing */
sl@0
   697
  } init;
sl@0
   698
  int nExtension;               /* Number of loaded extensions */
sl@0
   699
  void **aExtension;            /* Array of shared libraray handles */
sl@0
   700
  struct Vdbe *pVdbe;           /* List of active virtual machines */
sl@0
   701
  int activeVdbeCnt;            /* Number of vdbes currently executing */
sl@0
   702
  void (*xTrace)(void*,const char*);        /* Trace function */
sl@0
   703
  void *pTraceArg;                          /* Argument to the trace function */
sl@0
   704
  void (*xProfile)(void*,const char*,u64);  /* Profiling function */
sl@0
   705
  void *pProfileArg;                        /* Argument to profile function */
sl@0
   706
  void *pCommitArg;                 /* Argument to xCommitCallback() */   
sl@0
   707
  int (*xCommitCallback)(void*);    /* Invoked at every commit. */
sl@0
   708
  void *pRollbackArg;               /* Argument to xRollbackCallback() */   
sl@0
   709
  void (*xRollbackCallback)(void*); /* Invoked at every commit. */
sl@0
   710
  void *pUpdateArg;
sl@0
   711
  void (*xUpdateCallback)(void*,int, const char*,const char*,sqlite_int64);
sl@0
   712
  void(*xCollNeeded)(void*,sqlite3*,int eTextRep,const char*);
sl@0
   713
  void(*xCollNeeded16)(void*,sqlite3*,int eTextRep,const void*);
sl@0
   714
  void *pCollNeededArg;
sl@0
   715
  sqlite3_value *pErr;          /* Most recent error message */
sl@0
   716
  char *zErrMsg;                /* Most recent error message (UTF-8 encoded) */
sl@0
   717
  char *zErrMsg16;              /* Most recent error message (UTF-16 encoded) */
sl@0
   718
  union {
sl@0
   719
    volatile int isInterrupted; /* True if sqlite3_interrupt has been called */
sl@0
   720
    double notUsed1;            /* Spacer */
sl@0
   721
  } u1;
sl@0
   722
  Lookaside lookaside;          /* Lookaside malloc configuration */
sl@0
   723
#ifndef SQLITE_OMIT_AUTHORIZATION
sl@0
   724
  int (*xAuth)(void*,int,const char*,const char*,const char*,const char*);
sl@0
   725
                                /* Access authorization function */
sl@0
   726
  void *pAuthArg;               /* 1st argument to the access auth function */
sl@0
   727
#endif
sl@0
   728
#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
sl@0
   729
  int (*xProgress)(void *);     /* The progress callback */
sl@0
   730
  void *pProgressArg;           /* Argument to the progress callback */
sl@0
   731
  int nProgressOps;             /* Number of opcodes for progress callback */
sl@0
   732
#endif
sl@0
   733
#ifndef SQLITE_OMIT_VIRTUALTABLE
sl@0
   734
  Hash aModule;                 /* populated by sqlite3_create_module() */
sl@0
   735
  Table *pVTab;                 /* vtab with active Connect/Create method */
sl@0
   736
  sqlite3_vtab **aVTrans;       /* Virtual tables with open transactions */
sl@0
   737
  int nVTrans;                  /* Allocated size of aVTrans */
sl@0
   738
#endif
sl@0
   739
  FuncDefHash aFunc;            /* Hash table of connection functions */
sl@0
   740
  Hash aCollSeq;                /* All collating sequences */
sl@0
   741
  BusyHandler busyHandler;      /* Busy callback */
sl@0
   742
  int busyTimeout;              /* Busy handler timeout, in msec */
sl@0
   743
  Db aDbStatic[2];              /* Static space for the 2 default backends */
sl@0
   744
#ifdef SQLITE_SSE
sl@0
   745
  sqlite3_stmt *pFetch;         /* Used by SSE to fetch stored statements */
sl@0
   746
#endif
sl@0
   747
};
sl@0
   748
sl@0
   749
/*
sl@0
   750
** A macro to discover the encoding of a database.
sl@0
   751
*/
sl@0
   752
#define ENC(db) ((db)->aDb[0].pSchema->enc)
sl@0
   753
sl@0
   754
/*
sl@0
   755
** Possible values for the sqlite.flags and or Db.flags fields.
sl@0
   756
**
sl@0
   757
** On sqlite.flags, the SQLITE_InTrans value means that we have
sl@0
   758
** executed a BEGIN.  On Db.flags, SQLITE_InTrans means a statement
sl@0
   759
** transaction is active on that particular database file.
sl@0
   760
*/
sl@0
   761
#define SQLITE_VdbeTrace      0x00000001  /* True to trace VDBE execution */
sl@0
   762
#define SQLITE_InTrans        0x00000008  /* True if in a transaction */
sl@0
   763
#define SQLITE_InternChanges  0x00000010  /* Uncommitted Hash table changes */
sl@0
   764
#define SQLITE_FullColNames   0x00000020  /* Show full column names on SELECT */
sl@0
   765
#define SQLITE_ShortColNames  0x00000040  /* Show short columns names */
sl@0
   766
#define SQLITE_CountRows      0x00000080  /* Count rows changed by INSERT, */
sl@0
   767
                                          /*   DELETE, or UPDATE and return */
sl@0
   768
                                          /*   the count using a callback. */
sl@0
   769
#define SQLITE_NullCallback   0x00000100  /* Invoke the callback once if the */
sl@0
   770
                                          /*   result set is empty */
sl@0
   771
#define SQLITE_SqlTrace       0x00000200  /* Debug print SQL as it executes */
sl@0
   772
#define SQLITE_VdbeListing    0x00000400  /* Debug listings of VDBE programs */
sl@0
   773
#define SQLITE_WriteSchema    0x00000800  /* OK to update SQLITE_MASTER */
sl@0
   774
#define SQLITE_NoReadlock     0x00001000  /* Readlocks are omitted when 
sl@0
   775
                                          ** accessing read-only databases */
sl@0
   776
#define SQLITE_IgnoreChecks   0x00002000  /* Do not enforce check constraints */
sl@0
   777
#define SQLITE_ReadUncommitted 0x00004000 /* For shared-cache mode */
sl@0
   778
#define SQLITE_LegacyFileFmt  0x00008000  /* Create new databases in format 1 */
sl@0
   779
#define SQLITE_FullFSync      0x00010000  /* Use full fsync on the backend */
sl@0
   780
#define SQLITE_LoadExtension  0x00020000  /* Enable load_extension */
sl@0
   781
sl@0
   782
#define SQLITE_RecoveryMode   0x00040000  /* Ignore schema errors */
sl@0
   783
#define SQLITE_SharedCache    0x00080000  /* Cache sharing is enabled */
sl@0
   784
#define SQLITE_Vtab           0x00100000  /* There exists a virtual table */
sl@0
   785
sl@0
   786
/*
sl@0
   787
** Possible values for the sqlite.magic field.
sl@0
   788
** The numbers are obtained at random and have no special meaning, other
sl@0
   789
** than being distinct from one another.
sl@0
   790
*/
sl@0
   791
#define SQLITE_MAGIC_OPEN     0xa029a697  /* Database is open */
sl@0
   792
#define SQLITE_MAGIC_CLOSED   0x9f3c2d33  /* Database is closed */
sl@0
   793
#define SQLITE_MAGIC_SICK     0x4b771290  /* Error and awaiting close */
sl@0
   794
#define SQLITE_MAGIC_BUSY     0xf03b7906  /* Database currently in use */
sl@0
   795
#define SQLITE_MAGIC_ERROR    0xb5357930  /* An SQLITE_MISUSE error occurred */
sl@0
   796
sl@0
   797
/*
sl@0
   798
** Each SQL function is defined by an instance of the following
sl@0
   799
** structure.  A pointer to this structure is stored in the sqlite.aFunc
sl@0
   800
** hash table.  When multiple functions have the same name, the hash table
sl@0
   801
** points to a linked list of these structures.
sl@0
   802
*/
sl@0
   803
struct FuncDef {
sl@0
   804
  i16 nArg;            /* Number of arguments.  -1 means unlimited */
sl@0
   805
  u8 iPrefEnc;         /* Preferred text encoding (SQLITE_UTF8, 16LE, 16BE) */
sl@0
   806
  u8 flags;            /* Some combination of SQLITE_FUNC_* */
sl@0
   807
  void *pUserData;     /* User data parameter */
sl@0
   808
  FuncDef *pNext;      /* Next function with same name */
sl@0
   809
  void (*xFunc)(sqlite3_context*,int,sqlite3_value**); /* Regular function */
sl@0
   810
  void (*xStep)(sqlite3_context*,int,sqlite3_value**); /* Aggregate step */
sl@0
   811
  void (*xFinalize)(sqlite3_context*);                /* Aggregate finializer */
sl@0
   812
  char *zName;         /* SQL name of the function. */
sl@0
   813
  FuncDef *pHash;      /* Next with a different name but the same hash */
sl@0
   814
};
sl@0
   815
sl@0
   816
/*
sl@0
   817
** Possible values for FuncDef.flags
sl@0
   818
*/
sl@0
   819
#define SQLITE_FUNC_LIKE     0x01 /* Candidate for the LIKE optimization */
sl@0
   820
#define SQLITE_FUNC_CASE     0x02 /* Case-sensitive LIKE-type function */
sl@0
   821
#define SQLITE_FUNC_EPHEM    0x04 /* Ephermeral.  Delete with VDBE */
sl@0
   822
#define SQLITE_FUNC_NEEDCOLL 0x08 /* sqlite3GetFuncCollSeq() might be called */
sl@0
   823
sl@0
   824
/*
sl@0
   825
** The following three macros, FUNCTION(), LIKEFUNC() and AGGREGATE() are
sl@0
   826
** used to create the initializers for the FuncDef structures.
sl@0
   827
**
sl@0
   828
**   FUNCTION(zName, nArg, iArg, bNC, xFunc)
sl@0
   829
**     Used to create a scalar function definition of a function zName 
sl@0
   830
**     implemented by C function xFunc that accepts nArg arguments. The
sl@0
   831
**     value passed as iArg is cast to a (void*) and made available
sl@0
   832
**     as the user-data (sqlite3_user_data()) for the function. If 
sl@0
   833
**     argument bNC is true, then the FuncDef.needCollate flag is set.
sl@0
   834
**
sl@0
   835
**   AGGREGATE(zName, nArg, iArg, bNC, xStep, xFinal)
sl@0
   836
**     Used to create an aggregate function definition implemented by
sl@0
   837
**     the C functions xStep and xFinal. The first four parameters
sl@0
   838
**     are interpreted in the same way as the first 4 parameters to
sl@0
   839
**     FUNCTION().
sl@0
   840
**
sl@0
   841
**   LIKEFUNC(zName, nArg, pArg, flags)
sl@0
   842
**     Used to create a scalar function definition of a function zName 
sl@0
   843
**     that accepts nArg arguments and is implemented by a call to C 
sl@0
   844
**     function likeFunc. Argument pArg is cast to a (void *) and made
sl@0
   845
**     available as the function user-data (sqlite3_user_data()). The
sl@0
   846
**     FuncDef.flags variable is set to the value passed as the flags
sl@0
   847
**     parameter.
sl@0
   848
*/
sl@0
   849
#define FUNCTION(zName, nArg, iArg, bNC, xFunc) \
sl@0
   850
  {nArg, SQLITE_UTF8, bNC*8, SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, #zName}
sl@0
   851
#define STR_FUNCTION(zName, nArg, pArg, bNC, xFunc) \
sl@0
   852
  {nArg, SQLITE_UTF8, bNC*8, pArg, 0, xFunc, 0, 0, #zName}
sl@0
   853
#define LIKEFUNC(zName, nArg, arg, flags) \
sl@0
   854
  {nArg, SQLITE_UTF8, flags, (void *)arg, 0, likeFunc, 0, 0, #zName}
sl@0
   855
#define AGGREGATE(zName, nArg, arg, nc, xStep, xFinal) \
sl@0
   856
  {nArg, SQLITE_UTF8, nc*8, SQLITE_INT_TO_PTR(arg), 0, 0, xStep,xFinal, #zName}
sl@0
   857
sl@0
   858
sl@0
   859
/*
sl@0
   860
** Each SQLite module (virtual table definition) is defined by an
sl@0
   861
** instance of the following structure, stored in the sqlite3.aModule
sl@0
   862
** hash table.
sl@0
   863
*/
sl@0
   864
struct Module {
sl@0
   865
  const sqlite3_module *pModule;       /* Callback pointers */
sl@0
   866
  const char *zName;                   /* Name passed to create_module() */
sl@0
   867
  void *pAux;                          /* pAux passed to create_module() */
sl@0
   868
  void (*xDestroy)(void *);            /* Module destructor function */
sl@0
   869
};
sl@0
   870
sl@0
   871
/*
sl@0
   872
** information about each column of an SQL table is held in an instance
sl@0
   873
** of this structure.
sl@0
   874
*/
sl@0
   875
struct Column {
sl@0
   876
  char *zName;     /* Name of this column */
sl@0
   877
  Expr *pDflt;     /* Default value of this column */
sl@0
   878
  char *zType;     /* Data type for this column */
sl@0
   879
  char *zColl;     /* Collating sequence.  If NULL, use the default */
sl@0
   880
  u8 notNull;      /* True if there is a NOT NULL constraint */
sl@0
   881
  u8 isPrimKey;    /* True if this column is part of the PRIMARY KEY */
sl@0
   882
  char affinity;   /* One of the SQLITE_AFF_... values */
sl@0
   883
#ifndef SQLITE_OMIT_VIRTUALTABLE
sl@0
   884
  u8 isHidden;     /* True if this column is 'hidden' */
sl@0
   885
#endif
sl@0
   886
};
sl@0
   887
sl@0
   888
/*
sl@0
   889
** A "Collating Sequence" is defined by an instance of the following
sl@0
   890
** structure. Conceptually, a collating sequence consists of a name and
sl@0
   891
** a comparison routine that defines the order of that sequence.
sl@0
   892
**
sl@0
   893
** There may two seperate implementations of the collation function, one
sl@0
   894
** that processes text in UTF-8 encoding (CollSeq.xCmp) and another that
sl@0
   895
** processes text encoded in UTF-16 (CollSeq.xCmp16), using the machine
sl@0
   896
** native byte order. When a collation sequence is invoked, SQLite selects
sl@0
   897
** the version that will require the least expensive encoding
sl@0
   898
** translations, if any.
sl@0
   899
**
sl@0
   900
** The CollSeq.pUser member variable is an extra parameter that passed in
sl@0
   901
** as the first argument to the UTF-8 comparison function, xCmp.
sl@0
   902
** CollSeq.pUser16 is the equivalent for the UTF-16 comparison function,
sl@0
   903
** xCmp16.
sl@0
   904
**
sl@0
   905
** If both CollSeq.xCmp and CollSeq.xCmp16 are NULL, it means that the
sl@0
   906
** collating sequence is undefined.  Indices built on an undefined
sl@0
   907
** collating sequence may not be read or written.
sl@0
   908
*/
sl@0
   909
struct CollSeq {
sl@0
   910
  char *zName;          /* Name of the collating sequence, UTF-8 encoded */
sl@0
   911
  u8 enc;               /* Text encoding handled by xCmp() */
sl@0
   912
  u8 type;              /* One of the SQLITE_COLL_... values below */
sl@0
   913
  void *pUser;          /* First argument to xCmp() */
sl@0
   914
  int (*xCmp)(void*,int, const void*, int, const void*);
sl@0
   915
  void (*xDel)(void*);  /* Destructor for pUser */
sl@0
   916
};
sl@0
   917
sl@0
   918
/*
sl@0
   919
** Allowed values of CollSeq.type:
sl@0
   920
*/
sl@0
   921
#define SQLITE_COLL_BINARY  1  /* The default memcmp() collating sequence */
sl@0
   922
#define SQLITE_COLL_NOCASE  2  /* The built-in NOCASE collating sequence */
sl@0
   923
#define SQLITE_COLL_REVERSE 3  /* The built-in REVERSE collating sequence */
sl@0
   924
#define SQLITE_COLL_USER    0  /* Any other user-defined collating sequence */
sl@0
   925
sl@0
   926
/*
sl@0
   927
** A sort order can be either ASC or DESC.
sl@0
   928
*/
sl@0
   929
#define SQLITE_SO_ASC       0  /* Sort in ascending order */
sl@0
   930
#define SQLITE_SO_DESC      1  /* Sort in ascending order */
sl@0
   931
sl@0
   932
/*
sl@0
   933
** Column affinity types.
sl@0
   934
**
sl@0
   935
** These used to have mnemonic name like 'i' for SQLITE_AFF_INTEGER and
sl@0
   936
** 't' for SQLITE_AFF_TEXT.  But we can save a little space and improve
sl@0
   937
** the speed a little by numbering the values consecutively.  
sl@0
   938
**
sl@0
   939
** But rather than start with 0 or 1, we begin with 'a'.  That way,
sl@0
   940
** when multiple affinity types are concatenated into a string and
sl@0
   941
** used as the P4 operand, they will be more readable.
sl@0
   942
**
sl@0
   943
** Note also that the numeric types are grouped together so that testing
sl@0
   944
** for a numeric type is a single comparison.
sl@0
   945
*/
sl@0
   946
#define SQLITE_AFF_TEXT     'a'
sl@0
   947
#define SQLITE_AFF_NONE     'b'
sl@0
   948
#define SQLITE_AFF_NUMERIC  'c'
sl@0
   949
#define SQLITE_AFF_INTEGER  'd'
sl@0
   950
#define SQLITE_AFF_REAL     'e'
sl@0
   951
sl@0
   952
#define sqlite3IsNumericAffinity(X)  ((X)>=SQLITE_AFF_NUMERIC)
sl@0
   953
sl@0
   954
/*
sl@0
   955
** The SQLITE_AFF_MASK values masks off the significant bits of an
sl@0
   956
** affinity value. 
sl@0
   957
*/
sl@0
   958
#define SQLITE_AFF_MASK     0x67
sl@0
   959
sl@0
   960
/*
sl@0
   961
** Additional bit values that can be ORed with an affinity without
sl@0
   962
** changing the affinity.
sl@0
   963
*/
sl@0
   964
#define SQLITE_JUMPIFNULL   0x08  /* jumps if either operand is NULL */
sl@0
   965
#define SQLITE_STOREP2      0x10  /* Store result in reg[P2] rather than jump */
sl@0
   966
sl@0
   967
/*
sl@0
   968
** Each SQL table is represented in memory by an instance of the
sl@0
   969
** following structure.
sl@0
   970
**
sl@0
   971
** Table.zName is the name of the table.  The case of the original
sl@0
   972
** CREATE TABLE statement is stored, but case is not significant for
sl@0
   973
** comparisons.
sl@0
   974
**
sl@0
   975
** Table.nCol is the number of columns in this table.  Table.aCol is a
sl@0
   976
** pointer to an array of Column structures, one for each column.
sl@0
   977
**
sl@0
   978
** If the table has an INTEGER PRIMARY KEY, then Table.iPKey is the index of
sl@0
   979
** the column that is that key.   Otherwise Table.iPKey is negative.  Note
sl@0
   980
** that the datatype of the PRIMARY KEY must be INTEGER for this field to
sl@0
   981
** be set.  An INTEGER PRIMARY KEY is used as the rowid for each row of
sl@0
   982
** the table.  If a table has no INTEGER PRIMARY KEY, then a random rowid
sl@0
   983
** is generated for each row of the table.  TF_HasPrimaryKey is set if
sl@0
   984
** the table has any PRIMARY KEY, INTEGER or otherwise.
sl@0
   985
**
sl@0
   986
** Table.tnum is the page number for the root BTree page of the table in the
sl@0
   987
** database file.  If Table.iDb is the index of the database table backend
sl@0
   988
** in sqlite.aDb[].  0 is for the main database and 1 is for the file that
sl@0
   989
** holds temporary tables and indices.  If TF_Ephemeral is set
sl@0
   990
** then the table is stored in a file that is automatically deleted
sl@0
   991
** when the VDBE cursor to the table is closed.  In this case Table.tnum 
sl@0
   992
** refers VDBE cursor number that holds the table open, not to the root
sl@0
   993
** page number.  Transient tables are used to hold the results of a
sl@0
   994
** sub-query that appears instead of a real table name in the FROM clause 
sl@0
   995
** of a SELECT statement.
sl@0
   996
*/
sl@0
   997
struct Table {
sl@0
   998
  sqlite3 *db;         /* Associated database connection.  Might be NULL. */
sl@0
   999
  char *zName;         /* Name of the table or view */
sl@0
  1000
  int iPKey;           /* If not negative, use aCol[iPKey] as the primary key */
sl@0
  1001
  int nCol;            /* Number of columns in this table */
sl@0
  1002
  Column *aCol;        /* Information about each column */
sl@0
  1003
  Index *pIndex;       /* List of SQL indexes on this table. */
sl@0
  1004
  int tnum;            /* Root BTree node for this table (see note above) */
sl@0
  1005
  Select *pSelect;     /* NULL for tables.  Points to definition if a view. */
sl@0
  1006
  u16 nRef;            /* Number of pointers to this Table */
sl@0
  1007
  u8 tabFlags;         /* Mask of TF_* values */
sl@0
  1008
  u8 keyConf;          /* What to do in case of uniqueness conflict on iPKey */
sl@0
  1009
  Trigger *pTrigger;   /* List of SQL triggers on this table */
sl@0
  1010
  FKey *pFKey;         /* Linked list of all foreign keys in this table */
sl@0
  1011
  char *zColAff;       /* String defining the affinity of each column */
sl@0
  1012
#ifndef SQLITE_OMIT_CHECK
sl@0
  1013
  Expr *pCheck;        /* The AND of all CHECK constraints */
sl@0
  1014
#endif
sl@0
  1015
#ifndef SQLITE_OMIT_ALTERTABLE
sl@0
  1016
  int addColOffset;    /* Offset in CREATE TABLE stmt to add a new column */
sl@0
  1017
#endif
sl@0
  1018
#ifndef SQLITE_OMIT_VIRTUALTABLE
sl@0
  1019
  Module *pMod;        /* Pointer to the implementation of the module */
sl@0
  1020
  sqlite3_vtab *pVtab; /* Pointer to the module instance */
sl@0
  1021
  int nModuleArg;      /* Number of arguments to the module */
sl@0
  1022
  char **azModuleArg;  /* Text of all module args. [0] is module name */
sl@0
  1023
#endif
sl@0
  1024
  Schema *pSchema;     /* Schema that contains this table */
sl@0
  1025
  Table *pNextZombie;  /* Next on the Parse.pZombieTab list */
sl@0
  1026
};
sl@0
  1027
sl@0
  1028
/*
sl@0
  1029
** Allowed values for Tabe.tabFlags.
sl@0
  1030
*/
sl@0
  1031
#define TF_Readonly        0x01    /* Read-only system table */
sl@0
  1032
#define TF_Ephemeral       0x02    /* An emphermal table */
sl@0
  1033
#define TF_HasPrimaryKey   0x04    /* Table has a primary key */
sl@0
  1034
#define TF_Autoincrement   0x08    /* Integer primary key is autoincrement */
sl@0
  1035
#define TF_Virtual         0x10    /* Is a virtual table */
sl@0
  1036
#define TF_NeedMetadata    0x20    /* aCol[].zType and aCol[].pColl missing */
sl@0
  1037
sl@0
  1038
sl@0
  1039
sl@0
  1040
/*
sl@0
  1041
** Test to see whether or not a table is a virtual table.  This is
sl@0
  1042
** done as a macro so that it will be optimized out when virtual
sl@0
  1043
** table support is omitted from the build.
sl@0
  1044
*/
sl@0
  1045
#ifndef SQLITE_OMIT_VIRTUALTABLE
sl@0
  1046
#  define IsVirtual(X)      (((X)->tabFlags & TF_Virtual)!=0)
sl@0
  1047
#  define IsHiddenColumn(X) ((X)->isHidden)
sl@0
  1048
#else
sl@0
  1049
#  define IsVirtual(X)      0
sl@0
  1050
#  define IsHiddenColumn(X) 0
sl@0
  1051
#endif
sl@0
  1052
sl@0
  1053
/*
sl@0
  1054
** Each foreign key constraint is an instance of the following structure.
sl@0
  1055
**
sl@0
  1056
** A foreign key is associated with two tables.  The "from" table is
sl@0
  1057
** the table that contains the REFERENCES clause that creates the foreign
sl@0
  1058
** key.  The "to" table is the table that is named in the REFERENCES clause.
sl@0
  1059
** Consider this example:
sl@0
  1060
**
sl@0
  1061
**     CREATE TABLE ex1(
sl@0
  1062
**       a INTEGER PRIMARY KEY,
sl@0
  1063
**       b INTEGER CONSTRAINT fk1 REFERENCES ex2(x)
sl@0
  1064
**     );
sl@0
  1065
**
sl@0
  1066
** For foreign key "fk1", the from-table is "ex1" and the to-table is "ex2".
sl@0
  1067
**
sl@0
  1068
** Each REFERENCES clause generates an instance of the following structure
sl@0
  1069
** which is attached to the from-table.  The to-table need not exist when
sl@0
  1070
** the from-table is created.  The existance of the to-table is not checked
sl@0
  1071
** until an attempt is made to insert data into the from-table.
sl@0
  1072
**
sl@0
  1073
** The sqlite.aFKey hash table stores pointers to this structure
sl@0
  1074
** given the name of a to-table.  For each to-table, all foreign keys
sl@0
  1075
** associated with that table are on a linked list using the FKey.pNextTo
sl@0
  1076
** field.
sl@0
  1077
*/
sl@0
  1078
struct FKey {
sl@0
  1079
  Table *pFrom;     /* The table that constains the REFERENCES clause */
sl@0
  1080
  FKey *pNextFrom;  /* Next foreign key in pFrom */
sl@0
  1081
  char *zTo;        /* Name of table that the key points to */
sl@0
  1082
  FKey *pNextTo;    /* Next foreign key that points to zTo */
sl@0
  1083
  int nCol;         /* Number of columns in this key */
sl@0
  1084
  struct sColMap {  /* Mapping of columns in pFrom to columns in zTo */
sl@0
  1085
    int iFrom;         /* Index of column in pFrom */
sl@0
  1086
    char *zCol;        /* Name of column in zTo.  If 0 use PRIMARY KEY */
sl@0
  1087
  } *aCol;          /* One entry for each of nCol column s */
sl@0
  1088
  u8 isDeferred;    /* True if constraint checking is deferred till COMMIT */
sl@0
  1089
  u8 updateConf;    /* How to resolve conflicts that occur on UPDATE */
sl@0
  1090
  u8 deleteConf;    /* How to resolve conflicts that occur on DELETE */
sl@0
  1091
  u8 insertConf;    /* How to resolve conflicts that occur on INSERT */
sl@0
  1092
};
sl@0
  1093
sl@0
  1094
/*
sl@0
  1095
** SQLite supports many different ways to resolve a constraint
sl@0
  1096
** error.  ROLLBACK processing means that a constraint violation
sl@0
  1097
** causes the operation in process to fail and for the current transaction
sl@0
  1098
** to be rolled back.  ABORT processing means the operation in process
sl@0
  1099
** fails and any prior changes from that one operation are backed out,
sl@0
  1100
** but the transaction is not rolled back.  FAIL processing means that
sl@0
  1101
** the operation in progress stops and returns an error code.  But prior
sl@0
  1102
** changes due to the same operation are not backed out and no rollback
sl@0
  1103
** occurs.  IGNORE means that the particular row that caused the constraint
sl@0
  1104
** error is not inserted or updated.  Processing continues and no error
sl@0
  1105
** is returned.  REPLACE means that preexisting database rows that caused
sl@0
  1106
** a UNIQUE constraint violation are removed so that the new insert or
sl@0
  1107
** update can proceed.  Processing continues and no error is reported.
sl@0
  1108
**
sl@0
  1109
** RESTRICT, SETNULL, and CASCADE actions apply only to foreign keys.
sl@0
  1110
** RESTRICT is the same as ABORT for IMMEDIATE foreign keys and the
sl@0
  1111
** same as ROLLBACK for DEFERRED keys.  SETNULL means that the foreign
sl@0
  1112
** key is set to NULL.  CASCADE means that a DELETE or UPDATE of the
sl@0
  1113
** referenced table row is propagated into the row that holds the
sl@0
  1114
** foreign key.
sl@0
  1115
** 
sl@0
  1116
** The following symbolic values are used to record which type
sl@0
  1117
** of action to take.
sl@0
  1118
*/
sl@0
  1119
#define OE_None     0   /* There is no constraint to check */
sl@0
  1120
#define OE_Rollback 1   /* Fail the operation and rollback the transaction */
sl@0
  1121
#define OE_Abort    2   /* Back out changes but do no rollback transaction */
sl@0
  1122
#define OE_Fail     3   /* Stop the operation but leave all prior changes */
sl@0
  1123
#define OE_Ignore   4   /* Ignore the error. Do not do the INSERT or UPDATE */
sl@0
  1124
#define OE_Replace  5   /* Delete existing record, then do INSERT or UPDATE */
sl@0
  1125
sl@0
  1126
#define OE_Restrict 6   /* OE_Abort for IMMEDIATE, OE_Rollback for DEFERRED */
sl@0
  1127
#define OE_SetNull  7   /* Set the foreign key value to NULL */
sl@0
  1128
#define OE_SetDflt  8   /* Set the foreign key value to its default */
sl@0
  1129
#define OE_Cascade  9   /* Cascade the changes */
sl@0
  1130
sl@0
  1131
#define OE_Default  99  /* Do whatever the default action is */
sl@0
  1132
sl@0
  1133
sl@0
  1134
/*
sl@0
  1135
** An instance of the following structure is passed as the first
sl@0
  1136
** argument to sqlite3VdbeKeyCompare and is used to control the 
sl@0
  1137
** comparison of the two index keys.
sl@0
  1138
*/
sl@0
  1139
struct KeyInfo {
sl@0
  1140
  sqlite3 *db;        /* The database connection */
sl@0
  1141
  u8 enc;             /* Text encoding - one of the TEXT_Utf* values */
sl@0
  1142
  u16 nField;         /* Number of entries in aColl[] */
sl@0
  1143
  u8 *aSortOrder;     /* If defined an aSortOrder[i] is true, sort DESC */
sl@0
  1144
  CollSeq *aColl[1];  /* Collating sequence for each term of the key */
sl@0
  1145
};
sl@0
  1146
sl@0
  1147
/*
sl@0
  1148
** An instance of the following structure holds information about a
sl@0
  1149
** single index record that has already been parsed out into individual
sl@0
  1150
** values.
sl@0
  1151
**
sl@0
  1152
** A record is an object that contains one or more fields of data.
sl@0
  1153
** Records are used to store the content of a table row and to store
sl@0
  1154
** the key of an index.  A blob encoding of a record is created by
sl@0
  1155
** the OP_MakeRecord opcode of the VDBE and is disassemblied by the
sl@0
  1156
** OP_Column opcode.
sl@0
  1157
**
sl@0
  1158
** This structure holds a record that has already been disassembled
sl@0
  1159
** into its constitutent fields.
sl@0
  1160
*/
sl@0
  1161
struct UnpackedRecord {
sl@0
  1162
  KeyInfo *pKeyInfo;  /* Collation and sort-order information */
sl@0
  1163
  u16 nField;         /* Number of entries in apMem[] */
sl@0
  1164
  u16 flags;          /* Boolean settings.  UNPACKED_... below */
sl@0
  1165
  Mem *aMem;          /* Values */
sl@0
  1166
};
sl@0
  1167
sl@0
  1168
/*
sl@0
  1169
** Allowed values of UnpackedRecord.flags
sl@0
  1170
*/
sl@0
  1171
#define UNPACKED_NEED_FREE     0x0001  /* Memory is from sqlite3Malloc() */
sl@0
  1172
#define UNPACKED_NEED_DESTROY  0x0002  /* apMem[]s should all be destroyed */
sl@0
  1173
#define UNPACKED_IGNORE_ROWID  0x0004  /* Ignore trailing rowid on key1 */
sl@0
  1174
#define UNPACKED_INCRKEY       0x0008  /* Make this key an epsilon larger */
sl@0
  1175
#define UNPACKED_PREFIX_MATCH  0x0010  /* A prefix match is considered OK */
sl@0
  1176
sl@0
  1177
/*
sl@0
  1178
** Each SQL index is represented in memory by an
sl@0
  1179
** instance of the following structure.
sl@0
  1180
**
sl@0
  1181
** The columns of the table that are to be indexed are described
sl@0
  1182
** by the aiColumn[] field of this structure.  For example, suppose
sl@0
  1183
** we have the following table and index:
sl@0
  1184
**
sl@0
  1185
**     CREATE TABLE Ex1(c1 int, c2 int, c3 text);
sl@0
  1186
**     CREATE INDEX Ex2 ON Ex1(c3,c1);
sl@0
  1187
**
sl@0
  1188
** In the Table structure describing Ex1, nCol==3 because there are
sl@0
  1189
** three columns in the table.  In the Index structure describing
sl@0
  1190
** Ex2, nColumn==2 since 2 of the 3 columns of Ex1 are indexed.
sl@0
  1191
** The value of aiColumn is {2, 0}.  aiColumn[0]==2 because the 
sl@0
  1192
** first column to be indexed (c3) has an index of 2 in Ex1.aCol[].
sl@0
  1193
** The second column to be indexed (c1) has an index of 0 in
sl@0
  1194
** Ex1.aCol[], hence Ex2.aiColumn[1]==0.
sl@0
  1195
**
sl@0
  1196
** The Index.onError field determines whether or not the indexed columns
sl@0
  1197
** must be unique and what to do if they are not.  When Index.onError=OE_None,
sl@0
  1198
** it means this is not a unique index.  Otherwise it is a unique index
sl@0
  1199
** and the value of Index.onError indicate the which conflict resolution 
sl@0
  1200
** algorithm to employ whenever an attempt is made to insert a non-unique
sl@0
  1201
** element.
sl@0
  1202
*/
sl@0
  1203
struct Index {
sl@0
  1204
  char *zName;     /* Name of this index */
sl@0
  1205
  int nColumn;     /* Number of columns in the table used by this index */
sl@0
  1206
  int *aiColumn;   /* Which columns are used by this index.  1st is 0 */
sl@0
  1207
  unsigned *aiRowEst; /* Result of ANALYZE: Est. rows selected by each column */
sl@0
  1208
  Table *pTable;   /* The SQL table being indexed */
sl@0
  1209
  int tnum;        /* Page containing root of this index in database file */
sl@0
  1210
  u8 onError;      /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
sl@0
  1211
  u8 autoIndex;    /* True if is automatically created (ex: by UNIQUE) */
sl@0
  1212
  char *zColAff;   /* String defining the affinity of each column */
sl@0
  1213
  Index *pNext;    /* The next index associated with the same table */
sl@0
  1214
  Schema *pSchema; /* Schema containing this index */
sl@0
  1215
  u8 *aSortOrder;  /* Array of size Index.nColumn. True==DESC, False==ASC */
sl@0
  1216
  char **azColl;   /* Array of collation sequence names for index */
sl@0
  1217
};
sl@0
  1218
sl@0
  1219
/*
sl@0
  1220
** Each token coming out of the lexer is an instance of
sl@0
  1221
** this structure.  Tokens are also used as part of an expression.
sl@0
  1222
**
sl@0
  1223
** Note if Token.z==0 then Token.dyn and Token.n are undefined and
sl@0
  1224
** may contain random values.  Do not make any assuptions about Token.dyn
sl@0
  1225
** and Token.n when Token.z==0.
sl@0
  1226
*/
sl@0
  1227
struct Token {
sl@0
  1228
  const unsigned char *z; /* Text of the token.  Not NULL-terminated! */
sl@0
  1229
  unsigned dyn  : 1;      /* True for malloced memory, false for static */
sl@0
  1230
  unsigned n    : 31;     /* Number of characters in this token */
sl@0
  1231
};
sl@0
  1232
sl@0
  1233
/*
sl@0
  1234
** An instance of this structure contains information needed to generate
sl@0
  1235
** code for a SELECT that contains aggregate functions.
sl@0
  1236
**
sl@0
  1237
** If Expr.op==TK_AGG_COLUMN or TK_AGG_FUNCTION then Expr.pAggInfo is a
sl@0
  1238
** pointer to this structure.  The Expr.iColumn field is the index in
sl@0
  1239
** AggInfo.aCol[] or AggInfo.aFunc[] of information needed to generate
sl@0
  1240
** code for that node.
sl@0
  1241
**
sl@0
  1242
** AggInfo.pGroupBy and AggInfo.aFunc.pExpr point to fields within the
sl@0
  1243
** original Select structure that describes the SELECT statement.  These
sl@0
  1244
** fields do not need to be freed when deallocating the AggInfo structure.
sl@0
  1245
*/
sl@0
  1246
struct AggInfo {
sl@0
  1247
  u8 directMode;          /* Direct rendering mode means take data directly
sl@0
  1248
                          ** from source tables rather than from accumulators */
sl@0
  1249
  u8 useSortingIdx;       /* In direct mode, reference the sorting index rather
sl@0
  1250
                          ** than the source table */
sl@0
  1251
  int sortingIdx;         /* Cursor number of the sorting index */
sl@0
  1252
  ExprList *pGroupBy;     /* The group by clause */
sl@0
  1253
  int nSortingColumn;     /* Number of columns in the sorting index */
sl@0
  1254
  struct AggInfo_col {    /* For each column used in source tables */
sl@0
  1255
    Table *pTab;             /* Source table */
sl@0
  1256
    int iTable;              /* Cursor number of the source table */
sl@0
  1257
    int iColumn;             /* Column number within the source table */
sl@0
  1258
    int iSorterColumn;       /* Column number in the sorting index */
sl@0
  1259
    int iMem;                /* Memory location that acts as accumulator */
sl@0
  1260
    Expr *pExpr;             /* The original expression */
sl@0
  1261
  } *aCol;
sl@0
  1262
  int nColumn;            /* Number of used entries in aCol[] */
sl@0
  1263
  int nColumnAlloc;       /* Number of slots allocated for aCol[] */
sl@0
  1264
  int nAccumulator;       /* Number of columns that show through to the output.
sl@0
  1265
                          ** Additional columns are used only as parameters to
sl@0
  1266
                          ** aggregate functions */
sl@0
  1267
  struct AggInfo_func {   /* For each aggregate function */
sl@0
  1268
    Expr *pExpr;             /* Expression encoding the function */
sl@0
  1269
    FuncDef *pFunc;          /* The aggregate function implementation */
sl@0
  1270
    int iMem;                /* Memory location that acts as accumulator */
sl@0
  1271
    int iDistinct;           /* Ephermeral table used to enforce DISTINCT */
sl@0
  1272
  } *aFunc;
sl@0
  1273
  int nFunc;              /* Number of entries in aFunc[] */
sl@0
  1274
  int nFuncAlloc;         /* Number of slots allocated for aFunc[] */
sl@0
  1275
};
sl@0
  1276
sl@0
  1277
/*
sl@0
  1278
** Each node of an expression in the parse tree is an instance
sl@0
  1279
** of this structure.
sl@0
  1280
**
sl@0
  1281
** Expr.op is the opcode.  The integer parser token codes are reused
sl@0
  1282
** as opcodes here.  For example, the parser defines TK_GE to be an integer
sl@0
  1283
** code representing the ">=" operator.  This same integer code is reused
sl@0
  1284
** to represent the greater-than-or-equal-to operator in the expression
sl@0
  1285
** tree.
sl@0
  1286
**
sl@0
  1287
** Expr.pRight and Expr.pLeft are subexpressions.  Expr.pList is a list
sl@0
  1288
** of argument if the expression is a function.
sl@0
  1289
**
sl@0
  1290
** Expr.token is the operator token for this node.  For some expressions
sl@0
  1291
** that have subexpressions, Expr.token can be the complete text that gave
sl@0
  1292
** rise to the Expr.  In the latter case, the token is marked as being
sl@0
  1293
** a compound token.
sl@0
  1294
**
sl@0
  1295
** An expression of the form ID or ID.ID refers to a column in a table.
sl@0
  1296
** For such expressions, Expr.op is set to TK_COLUMN and Expr.iTable is
sl@0
  1297
** the integer cursor number of a VDBE cursor pointing to that table and
sl@0
  1298
** Expr.iColumn is the column number for the specific column.  If the
sl@0
  1299
** expression is used as a result in an aggregate SELECT, then the
sl@0
  1300
** value is also stored in the Expr.iAgg column in the aggregate so that
sl@0
  1301
** it can be accessed after all aggregates are computed.
sl@0
  1302
**
sl@0
  1303
** If the expression is a function, the Expr.iTable is an integer code
sl@0
  1304
** representing which function.  If the expression is an unbound variable
sl@0
  1305
** marker (a question mark character '?' in the original SQL) then the
sl@0
  1306
** Expr.iTable holds the index number for that variable.
sl@0
  1307
**
sl@0
  1308
** If the expression is a subquery then Expr.iColumn holds an integer
sl@0
  1309
** register number containing the result of the subquery.  If the
sl@0
  1310
** subquery gives a constant result, then iTable is -1.  If the subquery
sl@0
  1311
** gives a different answer at different times during statement processing
sl@0
  1312
** then iTable is the address of a subroutine that computes the subquery.
sl@0
  1313
**
sl@0
  1314
** The Expr.pSelect field points to a SELECT statement.  The SELECT might
sl@0
  1315
** be the right operand of an IN operator.  Or, if a scalar SELECT appears
sl@0
  1316
** in an expression the opcode is TK_SELECT and Expr.pSelect is the only
sl@0
  1317
** operand.
sl@0
  1318
**
sl@0
  1319
** If the Expr is of type OP_Column, and the table it is selecting from
sl@0
  1320
** is a disk table or the "old.*" pseudo-table, then pTab points to the
sl@0
  1321
** corresponding table definition.
sl@0
  1322
*/
sl@0
  1323
struct Expr {
sl@0
  1324
  u8 op;                 /* Operation performed by this node */
sl@0
  1325
  char affinity;         /* The affinity of the column or 0 if not a column */
sl@0
  1326
  u16 flags;             /* Various flags.  See below */
sl@0
  1327
  CollSeq *pColl;        /* The collation type of the column or 0 */
sl@0
  1328
  Expr *pLeft, *pRight;  /* Left and right subnodes */
sl@0
  1329
  ExprList *pList;       /* A list of expressions used as function arguments
sl@0
  1330
                         ** or in "<expr> IN (<expr-list)" */
sl@0
  1331
  Token token;           /* An operand token */
sl@0
  1332
  Token span;            /* Complete text of the expression */
sl@0
  1333
  int iTable, iColumn;   /* When op==TK_COLUMN, then this expr node means the
sl@0
  1334
                         ** iColumn-th field of the iTable-th table. */
sl@0
  1335
  AggInfo *pAggInfo;     /* Used by TK_AGG_COLUMN and TK_AGG_FUNCTION */
sl@0
  1336
  int iAgg;              /* Which entry in pAggInfo->aCol[] or ->aFunc[] */
sl@0
  1337
  int iRightJoinTable;   /* If EP_FromJoin, the right table of the join */
sl@0
  1338
  Select *pSelect;       /* When the expression is a sub-select.  Also the
sl@0
  1339
                         ** right side of "<expr> IN (<select>)" */
sl@0
  1340
  Table *pTab;           /* Table for TK_COLUMN expressions. */
sl@0
  1341
#if SQLITE_MAX_EXPR_DEPTH>0
sl@0
  1342
  int nHeight;           /* Height of the tree headed by this node */
sl@0
  1343
#endif
sl@0
  1344
};
sl@0
  1345
sl@0
  1346
/*
sl@0
  1347
** The following are the meanings of bits in the Expr.flags field.
sl@0
  1348
*/
sl@0
  1349
#define EP_FromJoin   0x0001  /* Originated in ON or USING clause of a join */
sl@0
  1350
#define EP_Agg        0x0002  /* Contains one or more aggregate functions */
sl@0
  1351
#define EP_Resolved   0x0004  /* IDs have been resolved to COLUMNs */
sl@0
  1352
#define EP_Error      0x0008  /* Expression contains one or more errors */
sl@0
  1353
#define EP_Distinct   0x0010  /* Aggregate function with DISTINCT keyword */
sl@0
  1354
#define EP_VarSelect  0x0020  /* pSelect is correlated, not constant */
sl@0
  1355
#define EP_Dequoted   0x0040  /* True if the string has been dequoted */
sl@0
  1356
#define EP_InfixFunc  0x0080  /* True for an infix function: LIKE, GLOB, etc */
sl@0
  1357
#define EP_ExpCollate 0x0100  /* Collating sequence specified explicitly */
sl@0
  1358
#define EP_AnyAff     0x0200  /* Can take a cached column of any affinity */
sl@0
  1359
#define EP_FixedDest  0x0400  /* Result needed in a specific register */
sl@0
  1360
#define EP_IntValue   0x0800  /* Integer value contained in iTable */
sl@0
  1361
/*
sl@0
  1362
** These macros can be used to test, set, or clear bits in the 
sl@0
  1363
** Expr.flags field.
sl@0
  1364
*/
sl@0
  1365
#define ExprHasProperty(E,P)     (((E)->flags&(P))==(P))
sl@0
  1366
#define ExprHasAnyProperty(E,P)  (((E)->flags&(P))!=0)
sl@0
  1367
#define ExprSetProperty(E,P)     (E)->flags|=(P)
sl@0
  1368
#define ExprClearProperty(E,P)   (E)->flags&=~(P)
sl@0
  1369
sl@0
  1370
/*
sl@0
  1371
** A list of expressions.  Each expression may optionally have a
sl@0
  1372
** name.  An expr/name combination can be used in several ways, such
sl@0
  1373
** as the list of "expr AS ID" fields following a "SELECT" or in the
sl@0
  1374
** list of "ID = expr" items in an UPDATE.  A list of expressions can
sl@0
  1375
** also be used as the argument to a function, in which case the a.zName
sl@0
  1376
** field is not used.
sl@0
  1377
*/
sl@0
  1378
struct ExprList {
sl@0
  1379
  int nExpr;             /* Number of expressions on the list */
sl@0
  1380
  int nAlloc;            /* Number of entries allocated below */
sl@0
  1381
  int iECursor;          /* VDBE Cursor associated with this ExprList */
sl@0
  1382
  struct ExprList_item {
sl@0
  1383
    Expr *pExpr;           /* The list of expressions */
sl@0
  1384
    char *zName;           /* Token associated with this expression */
sl@0
  1385
    u8 sortOrder;          /* 1 for DESC or 0 for ASC */
sl@0
  1386
    u8 done;               /* A flag to indicate when processing is finished */
sl@0
  1387
    u16 iCol;              /* For ORDER BY, column number in result set */
sl@0
  1388
    u16 iAlias;            /* Index into Parse.aAlias[] for zName */
sl@0
  1389
  } *a;                  /* One entry for each expression */
sl@0
  1390
};
sl@0
  1391
sl@0
  1392
/*
sl@0
  1393
** An instance of this structure can hold a simple list of identifiers,
sl@0
  1394
** such as the list "a,b,c" in the following statements:
sl@0
  1395
**
sl@0
  1396
**      INSERT INTO t(a,b,c) VALUES ...;
sl@0
  1397
**      CREATE INDEX idx ON t(a,b,c);
sl@0
  1398
**      CREATE TRIGGER trig BEFORE UPDATE ON t(a,b,c) ...;
sl@0
  1399
**
sl@0
  1400
** The IdList.a.idx field is used when the IdList represents the list of
sl@0
  1401
** column names after a table name in an INSERT statement.  In the statement
sl@0
  1402
**
sl@0
  1403
**     INSERT INTO t(a,b,c) ...
sl@0
  1404
**
sl@0
  1405
** If "a" is the k-th column of table "t", then IdList.a[0].idx==k.
sl@0
  1406
*/
sl@0
  1407
struct IdList {
sl@0
  1408
  struct IdList_item {
sl@0
  1409
    char *zName;      /* Name of the identifier */
sl@0
  1410
    int idx;          /* Index in some Table.aCol[] of a column named zName */
sl@0
  1411
  } *a;
sl@0
  1412
  int nId;         /* Number of identifiers on the list */
sl@0
  1413
  int nAlloc;      /* Number of entries allocated for a[] below */
sl@0
  1414
};
sl@0
  1415
sl@0
  1416
/*
sl@0
  1417
** The bitmask datatype defined below is used for various optimizations.
sl@0
  1418
**
sl@0
  1419
** Changing this from a 64-bit to a 32-bit type limits the number of
sl@0
  1420
** tables in a join to 32 instead of 64.  But it also reduces the size
sl@0
  1421
** of the library by 738 bytes on ix86.
sl@0
  1422
*/
sl@0
  1423
typedef u64 Bitmask;
sl@0
  1424
sl@0
  1425
/*
sl@0
  1426
** The following structure describes the FROM clause of a SELECT statement.
sl@0
  1427
** Each table or subquery in the FROM clause is a separate element of
sl@0
  1428
** the SrcList.a[] array.
sl@0
  1429
**
sl@0
  1430
** With the addition of multiple database support, the following structure
sl@0
  1431
** can also be used to describe a particular table such as the table that
sl@0
  1432
** is modified by an INSERT, DELETE, or UPDATE statement.  In standard SQL,
sl@0
  1433
** such a table must be a simple name: ID.  But in SQLite, the table can
sl@0
  1434
** now be identified by a database name, a dot, then the table name: ID.ID.
sl@0
  1435
**
sl@0
  1436
** The jointype starts out showing the join type between the current table
sl@0
  1437
** and the next table on the list.  The parser builds the list this way.
sl@0
  1438
** But sqlite3SrcListShiftJoinType() later shifts the jointypes so that each
sl@0
  1439
** jointype expresses the join between the table and the previous table.
sl@0
  1440
*/
sl@0
  1441
struct SrcList {
sl@0
  1442
  i16 nSrc;        /* Number of tables or subqueries in the FROM clause */
sl@0
  1443
  i16 nAlloc;      /* Number of entries allocated in a[] below */
sl@0
  1444
  struct SrcList_item {
sl@0
  1445
    char *zDatabase;  /* Name of database holding this table */
sl@0
  1446
    char *zName;      /* Name of the table */
sl@0
  1447
    char *zAlias;     /* The "B" part of a "A AS B" phrase.  zName is the "A" */
sl@0
  1448
    Table *pTab;      /* An SQL table corresponding to zName */
sl@0
  1449
    Select *pSelect;  /* A SELECT statement used in place of a table name */
sl@0
  1450
    u8 isPopulated;   /* Temporary table associated with SELECT is populated */
sl@0
  1451
    u8 jointype;      /* Type of join between this able and the previous */
sl@0
  1452
    int iCursor;      /* The VDBE cursor number used to access this table */
sl@0
  1453
    Expr *pOn;        /* The ON clause of a join */
sl@0
  1454
    IdList *pUsing;   /* The USING clause of a join */
sl@0
  1455
    Bitmask colUsed;  /* Bit N (1<<N) set if column N or pTab is used */
sl@0
  1456
    u8 notIndexed;    /* True if there is a NOT INDEXED clause */
sl@0
  1457
    char *zIndex;     /* Identifier from "INDEXED BY <zIndex>" clause */
sl@0
  1458
    Index *pIndex;    /* Index structure corresponding to zIndex, if any */
sl@0
  1459
  } a[1];             /* One entry for each identifier on the list */
sl@0
  1460
};
sl@0
  1461
sl@0
  1462
/*
sl@0
  1463
** Permitted values of the SrcList.a.jointype field
sl@0
  1464
*/
sl@0
  1465
#define JT_INNER     0x0001    /* Any kind of inner or cross join */
sl@0
  1466
#define JT_CROSS     0x0002    /* Explicit use of the CROSS keyword */
sl@0
  1467
#define JT_NATURAL   0x0004    /* True for a "natural" join */
sl@0
  1468
#define JT_LEFT      0x0008    /* Left outer join */
sl@0
  1469
#define JT_RIGHT     0x0010    /* Right outer join */
sl@0
  1470
#define JT_OUTER     0x0020    /* The "OUTER" keyword is present */
sl@0
  1471
#define JT_ERROR     0x0040    /* unknown or unsupported join type */
sl@0
  1472
sl@0
  1473
/*
sl@0
  1474
** For each nested loop in a WHERE clause implementation, the WhereInfo
sl@0
  1475
** structure contains a single instance of this structure.  This structure
sl@0
  1476
** is intended to be private the the where.c module and should not be
sl@0
  1477
** access or modified by other modules.
sl@0
  1478
**
sl@0
  1479
** The pIdxInfo and pBestIdx fields are used to help pick the best
sl@0
  1480
** index on a virtual table.  The pIdxInfo pointer contains indexing
sl@0
  1481
** information for the i-th table in the FROM clause before reordering.
sl@0
  1482
** All the pIdxInfo pointers are freed by whereInfoFree() in where.c.
sl@0
  1483
** The pBestIdx pointer is a copy of pIdxInfo for the i-th table after
sl@0
  1484
** FROM clause ordering.  This is a little confusing so I will repeat
sl@0
  1485
** it in different words.  WhereInfo.a[i].pIdxInfo is index information 
sl@0
  1486
** for WhereInfo.pTabList.a[i].  WhereInfo.a[i].pBestInfo is the
sl@0
  1487
** index information for the i-th loop of the join.  pBestInfo is always
sl@0
  1488
** either NULL or a copy of some pIdxInfo.  So for cleanup it is 
sl@0
  1489
** sufficient to free all of the pIdxInfo pointers.
sl@0
  1490
** 
sl@0
  1491
*/
sl@0
  1492
struct WhereLevel {
sl@0
  1493
  int iFrom;            /* Which entry in the FROM clause */
sl@0
  1494
  int flags;            /* Flags associated with this level */
sl@0
  1495
  int iMem;             /* First memory cell used by this level */
sl@0
  1496
  int iLeftJoin;        /* Memory cell used to implement LEFT OUTER JOIN */
sl@0
  1497
  Index *pIdx;          /* Index used.  NULL if no index */
sl@0
  1498
  int iTabCur;          /* The VDBE cursor used to access the table */
sl@0
  1499
  int iIdxCur;          /* The VDBE cursor used to acesss pIdx */
sl@0
  1500
  int brk;              /* Jump here to break out of the loop */
sl@0
  1501
  int nxt;              /* Jump here to start the next IN combination */
sl@0
  1502
  int cont;             /* Jump here to continue with the next loop cycle */
sl@0
  1503
  int top;              /* First instruction of interior of the loop */
sl@0
  1504
  int op, p1, p2, p5;   /* Opcode used to terminate the loop */
sl@0
  1505
  int nEq;              /* Number of == or IN constraints on this loop */
sl@0
  1506
  int nIn;              /* Number of IN operators constraining this loop */
sl@0
  1507
  struct InLoop {
sl@0
  1508
    int iCur;              /* The VDBE cursor used by this IN operator */
sl@0
  1509
    int topAddr;           /* Top of the IN loop */
sl@0
  1510
  } *aInLoop;           /* Information about each nested IN operator */
sl@0
  1511
  sqlite3_index_info *pBestIdx;  /* Index information for this level */
sl@0
  1512
sl@0
  1513
  /* The following field is really not part of the current level.  But
sl@0
  1514
  ** we need a place to cache index information for each table in the
sl@0
  1515
  ** FROM clause and the WhereLevel structure is a convenient place.
sl@0
  1516
  */
sl@0
  1517
  sqlite3_index_info *pIdxInfo;  /* Index info for n-th source table */
sl@0
  1518
};
sl@0
  1519
sl@0
  1520
/*
sl@0
  1521
** Flags appropriate for the wflags parameter of sqlite3WhereBegin().
sl@0
  1522
*/
sl@0
  1523
#define WHERE_ORDERBY_NORMAL     0   /* No-op */
sl@0
  1524
#define WHERE_ORDERBY_MIN        1   /* ORDER BY processing for min() func */
sl@0
  1525
#define WHERE_ORDERBY_MAX        2   /* ORDER BY processing for max() func */
sl@0
  1526
#define WHERE_ONEPASS_DESIRED    4   /* Want to do one-pass UPDATE/DELETE */
sl@0
  1527
sl@0
  1528
/*
sl@0
  1529
** The WHERE clause processing routine has two halves.  The
sl@0
  1530
** first part does the start of the WHERE loop and the second
sl@0
  1531
** half does the tail of the WHERE loop.  An instance of
sl@0
  1532
** this structure is returned by the first half and passed
sl@0
  1533
** into the second half to give some continuity.
sl@0
  1534
*/
sl@0
  1535
struct WhereInfo {
sl@0
  1536
  Parse *pParse;       /* Parsing and code generating context */
sl@0
  1537
  u8 okOnePass;        /* Ok to use one-pass algorithm for UPDATE or DELETE */
sl@0
  1538
  SrcList *pTabList;   /* List of tables in the join */
sl@0
  1539
  int iTop;            /* The very beginning of the WHERE loop */
sl@0
  1540
  int iContinue;       /* Jump here to continue with next record */
sl@0
  1541
  int iBreak;          /* Jump here to break out of the loop */
sl@0
  1542
  int nLevel;          /* Number of nested loop */
sl@0
  1543
  sqlite3_index_info **apInfo;  /* Array of pointers to index info structures */
sl@0
  1544
  WhereLevel a[1];     /* Information about each nest loop in the WHERE */
sl@0
  1545
};
sl@0
  1546
sl@0
  1547
/*
sl@0
  1548
** A NameContext defines a context in which to resolve table and column
sl@0
  1549
** names.  The context consists of a list of tables (the pSrcList) field and
sl@0
  1550
** a list of named expression (pEList).  The named expression list may
sl@0
  1551
** be NULL.  The pSrc corresponds to the FROM clause of a SELECT or
sl@0
  1552
** to the table being operated on by INSERT, UPDATE, or DELETE.  The
sl@0
  1553
** pEList corresponds to the result set of a SELECT and is NULL for
sl@0
  1554
** other statements.
sl@0
  1555
**
sl@0
  1556
** NameContexts can be nested.  When resolving names, the inner-most 
sl@0
  1557
** context is searched first.  If no match is found, the next outer
sl@0
  1558
** context is checked.  If there is still no match, the next context
sl@0
  1559
** is checked.  This process continues until either a match is found
sl@0
  1560
** or all contexts are check.  When a match is found, the nRef member of
sl@0
  1561
** the context containing the match is incremented. 
sl@0
  1562
**
sl@0
  1563
** Each subquery gets a new NameContext.  The pNext field points to the
sl@0
  1564
** NameContext in the parent query.  Thus the process of scanning the
sl@0
  1565
** NameContext list corresponds to searching through successively outer
sl@0
  1566
** subqueries looking for a match.
sl@0
  1567
*/
sl@0
  1568
struct NameContext {
sl@0
  1569
  Parse *pParse;       /* The parser */
sl@0
  1570
  SrcList *pSrcList;   /* One or more tables used to resolve names */
sl@0
  1571
  ExprList *pEList;    /* Optional list of named expressions */
sl@0
  1572
  int nRef;            /* Number of names resolved by this context */
sl@0
  1573
  int nErr;            /* Number of errors encountered while resolving names */
sl@0
  1574
  u8 allowAgg;         /* Aggregate functions allowed here */
sl@0
  1575
  u8 hasAgg;           /* True if aggregates are seen */
sl@0
  1576
  u8 isCheck;          /* True if resolving names in a CHECK constraint */
sl@0
  1577
  int nDepth;          /* Depth of subquery recursion. 1 for no recursion */
sl@0
  1578
  AggInfo *pAggInfo;   /* Information about aggregates at this level */
sl@0
  1579
  NameContext *pNext;  /* Next outer name context.  NULL for outermost */
sl@0
  1580
};
sl@0
  1581
sl@0
  1582
/*
sl@0
  1583
** An instance of the following structure contains all information
sl@0
  1584
** needed to generate code for a single SELECT statement.
sl@0
  1585
**
sl@0
  1586
** nLimit is set to -1 if there is no LIMIT clause.  nOffset is set to 0.
sl@0
  1587
** If there is a LIMIT clause, the parser sets nLimit to the value of the
sl@0
  1588
** limit and nOffset to the value of the offset (or 0 if there is not
sl@0
  1589
** offset).  But later on, nLimit and nOffset become the memory locations
sl@0
  1590
** in the VDBE that record the limit and offset counters.
sl@0
  1591
**
sl@0
  1592
** addrOpenEphm[] entries contain the address of OP_OpenEphemeral opcodes.
sl@0
  1593
** These addresses must be stored so that we can go back and fill in
sl@0
  1594
** the P4_KEYINFO and P2 parameters later.  Neither the KeyInfo nor
sl@0
  1595
** the number of columns in P2 can be computed at the same time
sl@0
  1596
** as the OP_OpenEphm instruction is coded because not
sl@0
  1597
** enough information about the compound query is known at that point.
sl@0
  1598
** The KeyInfo for addrOpenTran[0] and [1] contains collating sequences
sl@0
  1599
** for the result set.  The KeyInfo for addrOpenTran[2] contains collating
sl@0
  1600
** sequences for the ORDER BY clause.
sl@0
  1601
*/
sl@0
  1602
struct Select {
sl@0
  1603
  ExprList *pEList;      /* The fields of the result */
sl@0
  1604
  u8 op;                 /* One of: TK_UNION TK_ALL TK_INTERSECT TK_EXCEPT */
sl@0
  1605
  char affinity;         /* MakeRecord with this affinity for SRT_Set */
sl@0
  1606
  u16 selFlags;          /* Various SF_* values */
sl@0
  1607
  SrcList *pSrc;         /* The FROM clause */
sl@0
  1608
  Expr *pWhere;          /* The WHERE clause */
sl@0
  1609
  ExprList *pGroupBy;    /* The GROUP BY clause */
sl@0
  1610
  Expr *pHaving;         /* The HAVING clause */
sl@0
  1611
  ExprList *pOrderBy;    /* The ORDER BY clause */
sl@0
  1612
  Select *pPrior;        /* Prior select in a compound select statement */
sl@0
  1613
  Select *pNext;         /* Next select to the left in a compound */
sl@0
  1614
  Select *pRightmost;    /* Right-most select in a compound select statement */
sl@0
  1615
  Expr *pLimit;          /* LIMIT expression. NULL means not used. */
sl@0
  1616
  Expr *pOffset;         /* OFFSET expression. NULL means not used. */
sl@0
  1617
  int iLimit, iOffset;   /* Memory registers holding LIMIT & OFFSET counters */
sl@0
  1618
  int addrOpenEphm[3];   /* OP_OpenEphem opcodes related to this select */
sl@0
  1619
};
sl@0
  1620
sl@0
  1621
/*
sl@0
  1622
** Allowed values for Select.selFlags.  The "SF" prefix stands for
sl@0
  1623
** "Select Flag".
sl@0
  1624
*/
sl@0
  1625
#define SF_Distinct        0x0001  /* Output should be DISTINCT */
sl@0
  1626
#define SF_Resolved        0x0002  /* Identifiers have been resolved */
sl@0
  1627
#define SF_Aggregate       0x0004  /* Contains aggregate functions */
sl@0
  1628
#define SF_UsesEphemeral   0x0008  /* Uses the OpenEphemeral opcode */
sl@0
  1629
#define SF_Expanded        0x0010  /* sqlite3SelectExpand() called on this */
sl@0
  1630
#define SF_HasTypeInfo     0x0020  /* FROM subqueries have Table metadata */
sl@0
  1631
sl@0
  1632
sl@0
  1633
/*
sl@0
  1634
** The results of a select can be distributed in several ways.  The
sl@0
  1635
** "SRT" prefix means "SELECT Result Type".
sl@0
  1636
*/
sl@0
  1637
#define SRT_Union        1  /* Store result as keys in an index */
sl@0
  1638
#define SRT_Except       2  /* Remove result from a UNION index */
sl@0
  1639
#define SRT_Exists       3  /* Store 1 if the result is not empty */
sl@0
  1640
#define SRT_Discard      4  /* Do not save the results anywhere */
sl@0
  1641
sl@0
  1642
/* The ORDER BY clause is ignored for all of the above */
sl@0
  1643
#define IgnorableOrderby(X) ((X->eDest)<=SRT_Discard)
sl@0
  1644
sl@0
  1645
#define SRT_Output       5  /* Output each row of result */
sl@0
  1646
#define SRT_Mem          6  /* Store result in a memory cell */
sl@0
  1647
#define SRT_Set          7  /* Store results as keys in an index */
sl@0
  1648
#define SRT_Table        8  /* Store result as data with an automatic rowid */
sl@0
  1649
#define SRT_EphemTab     9  /* Create transient tab and store like SRT_Table */
sl@0
  1650
#define SRT_Coroutine   10  /* Generate a single row of result */
sl@0
  1651
sl@0
  1652
/*
sl@0
  1653
** A structure used to customize the behaviour of sqlite3Select(). See
sl@0
  1654
** comments above sqlite3Select() for details.
sl@0
  1655
*/
sl@0
  1656
typedef struct SelectDest SelectDest;
sl@0
  1657
struct SelectDest {
sl@0
  1658
  u8 eDest;         /* How to dispose of the results */
sl@0
  1659
  u8 affinity;      /* Affinity used when eDest==SRT_Set */
sl@0
  1660
  int iParm;        /* A parameter used by the eDest disposal method */
sl@0
  1661
  int iMem;         /* Base register where results are written */
sl@0
  1662
  int nMem;         /* Number of registers allocated */
sl@0
  1663
};
sl@0
  1664
sl@0
  1665
/*
sl@0
  1666
** An SQL parser context.  A copy of this structure is passed through
sl@0
  1667
** the parser and down into all the parser action routine in order to
sl@0
  1668
** carry around information that is global to the entire parse.
sl@0
  1669
**
sl@0
  1670
** The structure is divided into two parts.  When the parser and code
sl@0
  1671
** generate call themselves recursively, the first part of the structure
sl@0
  1672
** is constant but the second part is reset at the beginning and end of
sl@0
  1673
** each recursion.
sl@0
  1674
**
sl@0
  1675
** The nTableLock and aTableLock variables are only used if the shared-cache 
sl@0
  1676
** feature is enabled (if sqlite3Tsd()->useSharedData is true). They are
sl@0
  1677
** used to store the set of table-locks required by the statement being
sl@0
  1678
** compiled. Function sqlite3TableLock() is used to add entries to the
sl@0
  1679
** list.
sl@0
  1680
*/
sl@0
  1681
struct Parse {
sl@0
  1682
  sqlite3 *db;         /* The main database structure */
sl@0
  1683
  int rc;              /* Return code from execution */
sl@0
  1684
  char *zErrMsg;       /* An error message */
sl@0
  1685
  Vdbe *pVdbe;         /* An engine for executing database bytecode */
sl@0
  1686
  u8 colNamesSet;      /* TRUE after OP_ColumnName has been issued to pVdbe */
sl@0
  1687
  u8 nameClash;        /* A permanent table name clashes with temp table name */
sl@0
  1688
  u8 checkSchema;      /* Causes schema cookie check after an error */
sl@0
  1689
  u8 nested;           /* Number of nested calls to the parser/code generator */
sl@0
  1690
  u8 parseError;       /* True after a parsing error.  Ticket #1794 */
sl@0
  1691
  u8 nTempReg;         /* Number of temporary registers in aTempReg[] */
sl@0
  1692
  u8 nTempInUse;       /* Number of aTempReg[] currently checked out */
sl@0
  1693
  int aTempReg[8];     /* Holding area for temporary registers */
sl@0
  1694
  int nRangeReg;       /* Size of the temporary register block */
sl@0
  1695
  int iRangeReg;       /* First register in temporary register block */
sl@0
  1696
  int nErr;            /* Number of errors seen */
sl@0
  1697
  int nTab;            /* Number of previously allocated VDBE cursors */
sl@0
  1698
  int nMem;            /* Number of memory cells used so far */
sl@0
  1699
  int nSet;            /* Number of sets used so far */
sl@0
  1700
  int ckBase;          /* Base register of data during check constraints */
sl@0
  1701
  int disableColCache; /* True to disable adding to column cache */
sl@0
  1702
  int nColCache;       /* Number of entries in the column cache */
sl@0
  1703
  int iColCache;       /* Next entry of the cache to replace */
sl@0
  1704
  struct yColCache {
sl@0
  1705
    int iTable;           /* Table cursor number */
sl@0
  1706
    int iColumn;          /* Table column number */
sl@0
  1707
    char affChange;       /* True if this register has had an affinity change */
sl@0
  1708
    int iReg;             /* Register holding value of this column */
sl@0
  1709
  } aColCache[10];     /* One for each valid column cache entry */
sl@0
  1710
  u32 writeMask;       /* Start a write transaction on these databases */
sl@0
  1711
  u32 cookieMask;      /* Bitmask of schema verified databases */
sl@0
  1712
  int cookieGoto;      /* Address of OP_Goto to cookie verifier subroutine */
sl@0
  1713
  int cookieValue[SQLITE_MAX_ATTACHED+2];  /* Values of cookies to verify */
sl@0
  1714
#ifndef SQLITE_OMIT_SHARED_CACHE
sl@0
  1715
  int nTableLock;        /* Number of locks in aTableLock */
sl@0
  1716
  TableLock *aTableLock; /* Required table locks for shared-cache mode */
sl@0
  1717
#endif
sl@0
  1718
  int regRowid;        /* Register holding rowid of CREATE TABLE entry */
sl@0
  1719
  int regRoot;         /* Register holding root page number for new objects */
sl@0
  1720
sl@0
  1721
  /* Above is constant between recursions.  Below is reset before and after
sl@0
  1722
  ** each recursion */
sl@0
  1723
sl@0
  1724
  int nVar;            /* Number of '?' variables seen in the SQL so far */
sl@0
  1725
  int nVarExpr;        /* Number of used slots in apVarExpr[] */
sl@0
  1726
  int nVarExprAlloc;   /* Number of allocated slots in apVarExpr[] */
sl@0
  1727
  Expr **apVarExpr;    /* Pointers to :aaa and $aaaa wildcard expressions */
sl@0
  1728
  int nAlias;          /* Number of aliased result set columns */
sl@0
  1729
  int nAliasAlloc;     /* Number of allocated slots for aAlias[] */
sl@0
  1730
  int *aAlias;         /* Register used to hold aliased result */
sl@0
  1731
  u8 explain;          /* True if the EXPLAIN flag is found on the query */
sl@0
  1732
  Token sErrToken;     /* The token at which the error occurred */
sl@0
  1733
  Token sNameToken;    /* Token with unqualified schema object name */
sl@0
  1734
  Token sLastToken;    /* The last token parsed */
sl@0
  1735
  const char *zSql;    /* All SQL text */
sl@0
  1736
  const char *zTail;   /* All SQL text past the last semicolon parsed */
sl@0
  1737
  Table *pNewTable;    /* A table being constructed by CREATE TABLE */
sl@0
  1738
  Trigger *pNewTrigger;     /* Trigger under construct by a CREATE TRIGGER */
sl@0
  1739
  TriggerStack *trigStack;  /* Trigger actions being coded */
sl@0
  1740
  const char *zAuthContext; /* The 6th parameter to db->xAuth callbacks */
sl@0
  1741
#ifndef SQLITE_OMIT_VIRTUALTABLE
sl@0
  1742
  Token sArg;                /* Complete text of a module argument */
sl@0
  1743
  u8 declareVtab;            /* True if inside sqlite3_declare_vtab() */
sl@0
  1744
  int nVtabLock;             /* Number of virtual tables to lock */
sl@0
  1745
  Table **apVtabLock;        /* Pointer to virtual tables needing locking */
sl@0
  1746
#endif
sl@0
  1747
  int nHeight;            /* Expression tree height of current sub-select */
sl@0
  1748
  Table *pZombieTab;      /* List of Table objects to delete after code gen */
sl@0
  1749
};
sl@0
  1750
sl@0
  1751
#ifdef SQLITE_OMIT_VIRTUALTABLE
sl@0
  1752
  #define IN_DECLARE_VTAB 0
sl@0
  1753
#else
sl@0
  1754
  #define IN_DECLARE_VTAB (pParse->declareVtab)
sl@0
  1755
#endif
sl@0
  1756
sl@0
  1757
/*
sl@0
  1758
** An instance of the following structure can be declared on a stack and used
sl@0
  1759
** to save the Parse.zAuthContext value so that it can be restored later.
sl@0
  1760
*/
sl@0
  1761
struct AuthContext {
sl@0
  1762
  const char *zAuthContext;   /* Put saved Parse.zAuthContext here */
sl@0
  1763
  Parse *pParse;              /* The Parse structure */
sl@0
  1764
};
sl@0
  1765
sl@0
  1766
/*
sl@0
  1767
** Bitfield flags for P2 value in OP_Insert and OP_Delete
sl@0
  1768
*/
sl@0
  1769
#define OPFLAG_NCHANGE   1    /* Set to update db->nChange */
sl@0
  1770
#define OPFLAG_LASTROWID 2    /* Set to update db->lastRowid */
sl@0
  1771
#define OPFLAG_ISUPDATE  4    /* This OP_Insert is an sql UPDATE */
sl@0
  1772
#define OPFLAG_APPEND    8    /* This is likely to be an append */
sl@0
  1773
sl@0
  1774
/*
sl@0
  1775
 * Each trigger present in the database schema is stored as an instance of
sl@0
  1776
 * struct Trigger. 
sl@0
  1777
 *
sl@0
  1778
 * Pointers to instances of struct Trigger are stored in two ways.
sl@0
  1779
 * 1. In the "trigHash" hash table (part of the sqlite3* that represents the 
sl@0
  1780
 *    database). This allows Trigger structures to be retrieved by name.
sl@0
  1781
 * 2. All triggers associated with a single table form a linked list, using the
sl@0
  1782
 *    pNext member of struct Trigger. A pointer to the first element of the
sl@0
  1783
 *    linked list is stored as the "pTrigger" member of the associated
sl@0
  1784
 *    struct Table.
sl@0
  1785
 *
sl@0
  1786
 * The "step_list" member points to the first element of a linked list
sl@0
  1787
 * containing the SQL statements specified as the trigger program.
sl@0
  1788
 */
sl@0
  1789
struct Trigger {
sl@0
  1790
  char *name;             /* The name of the trigger                        */
sl@0
  1791
  char *table;            /* The table or view to which the trigger applies */
sl@0
  1792
  u8 op;                  /* One of TK_DELETE, TK_UPDATE, TK_INSERT         */
sl@0
  1793
  u8 tr_tm;               /* One of TRIGGER_BEFORE, TRIGGER_AFTER */
sl@0
  1794
  Expr *pWhen;            /* The WHEN clause of the expresion (may be NULL) */
sl@0
  1795
  IdList *pColumns;       /* If this is an UPDATE OF <column-list> trigger,
sl@0
  1796
                             the <column-list> is stored here */
sl@0
  1797
  Token nameToken;        /* Token containing zName. Use during parsing only */
sl@0
  1798
  Schema *pSchema;        /* Schema containing the trigger */
sl@0
  1799
  Schema *pTabSchema;     /* Schema containing the table */
sl@0
  1800
  TriggerStep *step_list; /* Link list of trigger program steps             */
sl@0
  1801
  Trigger *pNext;         /* Next trigger associated with the table */
sl@0
  1802
};
sl@0
  1803
sl@0
  1804
/*
sl@0
  1805
** A trigger is either a BEFORE or an AFTER trigger.  The following constants
sl@0
  1806
** determine which. 
sl@0
  1807
**
sl@0
  1808
** If there are multiple triggers, you might of some BEFORE and some AFTER.
sl@0
  1809
** In that cases, the constants below can be ORed together.
sl@0
  1810
*/
sl@0
  1811
#define TRIGGER_BEFORE  1
sl@0
  1812
#define TRIGGER_AFTER   2
sl@0
  1813
sl@0
  1814
/*
sl@0
  1815
 * An instance of struct TriggerStep is used to store a single SQL statement
sl@0
  1816
 * that is a part of a trigger-program. 
sl@0
  1817
 *
sl@0
  1818
 * Instances of struct TriggerStep are stored in a singly linked list (linked
sl@0
  1819
 * using the "pNext" member) referenced by the "step_list" member of the 
sl@0
  1820
 * associated struct Trigger instance. The first element of the linked list is
sl@0
  1821
 * the first step of the trigger-program.
sl@0
  1822
 * 
sl@0
  1823
 * The "op" member indicates whether this is a "DELETE", "INSERT", "UPDATE" or
sl@0
  1824
 * "SELECT" statement. The meanings of the other members is determined by the 
sl@0
  1825
 * value of "op" as follows:
sl@0
  1826
 *
sl@0
  1827
 * (op == TK_INSERT)
sl@0
  1828
 * orconf    -> stores the ON CONFLICT algorithm
sl@0
  1829
 * pSelect   -> If this is an INSERT INTO ... SELECT ... statement, then
sl@0
  1830
 *              this stores a pointer to the SELECT statement. Otherwise NULL.
sl@0
  1831
 * target    -> A token holding the name of the table to insert into.
sl@0
  1832
 * pExprList -> If this is an INSERT INTO ... VALUES ... statement, then
sl@0
  1833
 *              this stores values to be inserted. Otherwise NULL.
sl@0
  1834
 * pIdList   -> If this is an INSERT INTO ... (<column-names>) VALUES ... 
sl@0
  1835
 *              statement, then this stores the column-names to be
sl@0
  1836
 *              inserted into.
sl@0
  1837
 *
sl@0
  1838
 * (op == TK_DELETE)
sl@0
  1839
 * target    -> A token holding the name of the table to delete from.
sl@0
  1840
 * pWhere    -> The WHERE clause of the DELETE statement if one is specified.
sl@0
  1841
 *              Otherwise NULL.
sl@0
  1842
 * 
sl@0
  1843
 * (op == TK_UPDATE)
sl@0
  1844
 * target    -> A token holding the name of the table to update rows of.
sl@0
  1845
 * pWhere    -> The WHERE clause of the UPDATE statement if one is specified.
sl@0
  1846
 *              Otherwise NULL.
sl@0
  1847
 * pExprList -> A list of the columns to update and the expressions to update
sl@0
  1848
 *              them to. See sqlite3Update() documentation of "pChanges"
sl@0
  1849
 *              argument.
sl@0
  1850
 * 
sl@0
  1851
 */
sl@0
  1852
struct TriggerStep {
sl@0
  1853
  int op;              /* One of TK_DELETE, TK_UPDATE, TK_INSERT, TK_SELECT */
sl@0
  1854
  int orconf;          /* OE_Rollback etc. */
sl@0
  1855
  Trigger *pTrig;      /* The trigger that this step is a part of */
sl@0
  1856
sl@0
  1857
  Select *pSelect;     /* Valid for SELECT and sometimes 
sl@0
  1858
                          INSERT steps (when pExprList == 0) */
sl@0
  1859
  Token target;        /* Valid for DELETE, UPDATE, INSERT steps */
sl@0
  1860
  Expr *pWhere;        /* Valid for DELETE, UPDATE steps */
sl@0
  1861
  ExprList *pExprList; /* Valid for UPDATE statements and sometimes 
sl@0
  1862
                           INSERT steps (when pSelect == 0)         */
sl@0
  1863
  IdList *pIdList;     /* Valid for INSERT statements only */
sl@0
  1864
  TriggerStep *pNext;  /* Next in the link-list */
sl@0
  1865
  TriggerStep *pLast;  /* Last element in link-list. Valid for 1st elem only */
sl@0
  1866
};
sl@0
  1867
sl@0
  1868
/*
sl@0
  1869
 * An instance of struct TriggerStack stores information required during code
sl@0
  1870
 * generation of a single trigger program. While the trigger program is being
sl@0
  1871
 * coded, its associated TriggerStack instance is pointed to by the
sl@0
  1872
 * "pTriggerStack" member of the Parse structure.
sl@0
  1873
 *
sl@0
  1874
 * The pTab member points to the table that triggers are being coded on. The 
sl@0
  1875
 * newIdx member contains the index of the vdbe cursor that points at the temp
sl@0
  1876
 * table that stores the new.* references. If new.* references are not valid
sl@0
  1877
 * for the trigger being coded (for example an ON DELETE trigger), then newIdx
sl@0
  1878
 * is set to -1. The oldIdx member is analogous to newIdx, for old.* references.
sl@0
  1879
 *
sl@0
  1880
 * The ON CONFLICT policy to be used for the trigger program steps is stored 
sl@0
  1881
 * as the orconf member. If this is OE_Default, then the ON CONFLICT clause 
sl@0
  1882
 * specified for individual triggers steps is used.
sl@0
  1883
 *
sl@0
  1884
 * struct TriggerStack has a "pNext" member, to allow linked lists to be
sl@0
  1885
 * constructed. When coding nested triggers (triggers fired by other triggers)
sl@0
  1886
 * each nested trigger stores its parent trigger's TriggerStack as the "pNext" 
sl@0
  1887
 * pointer. Once the nested trigger has been coded, the pNext value is restored
sl@0
  1888
 * to the pTriggerStack member of the Parse stucture and coding of the parent
sl@0
  1889
 * trigger continues.
sl@0
  1890
 *
sl@0
  1891
 * Before a nested trigger is coded, the linked list pointed to by the 
sl@0
  1892
 * pTriggerStack is scanned to ensure that the trigger is not about to be coded
sl@0
  1893
 * recursively. If this condition is detected, the nested trigger is not coded.
sl@0
  1894
 */
sl@0
  1895
struct TriggerStack {
sl@0
  1896
  Table *pTab;         /* Table that triggers are currently being coded on */
sl@0
  1897
  int newIdx;          /* Index of vdbe cursor to "new" temp table */
sl@0
  1898
  int oldIdx;          /* Index of vdbe cursor to "old" temp table */
sl@0
  1899
  u32 newColMask;
sl@0
  1900
  u32 oldColMask;
sl@0
  1901
  int orconf;          /* Current orconf policy */
sl@0
  1902
  int ignoreJump;      /* where to jump to for a RAISE(IGNORE) */
sl@0
  1903
  Trigger *pTrigger;   /* The trigger currently being coded */
sl@0
  1904
  TriggerStack *pNext; /* Next trigger down on the trigger stack */
sl@0
  1905
};
sl@0
  1906
sl@0
  1907
/*
sl@0
  1908
** The following structure contains information used by the sqliteFix...
sl@0
  1909
** routines as they walk the parse tree to make database references
sl@0
  1910
** explicit.  
sl@0
  1911
*/
sl@0
  1912
typedef struct DbFixer DbFixer;
sl@0
  1913
struct DbFixer {
sl@0
  1914
  Parse *pParse;      /* The parsing context.  Error messages written here */
sl@0
  1915
  const char *zDb;    /* Make sure all objects are contained in this database */
sl@0
  1916
  const char *zType;  /* Type of the container - used for error messages */
sl@0
  1917
  const Token *pName; /* Name of the container - used for error messages */
sl@0
  1918
};
sl@0
  1919
sl@0
  1920
/*
sl@0
  1921
** An objected used to accumulate the text of a string where we
sl@0
  1922
** do not necessarily know how big the string will be in the end.
sl@0
  1923
*/
sl@0
  1924
struct StrAccum {
sl@0
  1925
  sqlite3 *db;         /* Optional database for lookaside.  Can be NULL */
sl@0
  1926
  char *zBase;         /* A base allocation.  Not from malloc. */
sl@0
  1927
  char *zText;         /* The string collected so far */
sl@0
  1928
  int  nChar;          /* Length of the string so far */
sl@0
  1929
  int  nAlloc;         /* Amount of space allocated in zText */
sl@0
  1930
  int  mxAlloc;        /* Maximum allowed string length */
sl@0
  1931
  u8   mallocFailed;   /* Becomes true if any memory allocation fails */
sl@0
  1932
  u8   useMalloc;      /* True if zText is enlargable using realloc */
sl@0
  1933
  u8   tooBig;         /* Becomes true if string size exceeds limits */
sl@0
  1934
};
sl@0
  1935
sl@0
  1936
/*
sl@0
  1937
** A pointer to this structure is used to communicate information
sl@0
  1938
** from sqlite3Init and OP_ParseSchema into the sqlite3InitCallback.
sl@0
  1939
*/
sl@0
  1940
typedef struct {
sl@0
  1941
  sqlite3 *db;        /* The database being initialized */
sl@0
  1942
  int iDb;            /* 0 for main database.  1 for TEMP, 2.. for ATTACHed */
sl@0
  1943
  char **pzErrMsg;    /* Error message stored here */
sl@0
  1944
  int rc;             /* Result code stored here */
sl@0
  1945
} InitData;
sl@0
  1946
sl@0
  1947
/*
sl@0
  1948
** Structure containing global configuration data for the SQLite library.
sl@0
  1949
**
sl@0
  1950
** This structure also contains some state information.
sl@0
  1951
*/
sl@0
  1952
struct Sqlite3Config {
sl@0
  1953
  int bMemstat;                     /* True to enable memory status */
sl@0
  1954
  int bCoreMutex;                   /* True to enable core mutexing */
sl@0
  1955
  int bFullMutex;                   /* True to enable full mutexing */
sl@0
  1956
  int mxStrlen;                     /* Maximum string length */
sl@0
  1957
  int szLookaside;                  /* Default lookaside buffer size */
sl@0
  1958
  int nLookaside;                   /* Default lookaside buffer count */
sl@0
  1959
  sqlite3_mem_methods m;            /* Low-level memory allocation interface */
sl@0
  1960
  sqlite3_mutex_methods mutex;      /* Low-level mutex interface */
sl@0
  1961
  void *pHeap;                      /* Heap storage space */
sl@0
  1962
  int nHeap;                        /* Size of pHeap[] */
sl@0
  1963
  int mnReq, mxReq;                 /* Min and max heap requests sizes */
sl@0
  1964
  void *pScratch;                   /* Scratch memory */
sl@0
  1965
  int szScratch;                    /* Size of each scratch buffer */
sl@0
  1966
  int nScratch;                     /* Number of scratch buffers */
sl@0
  1967
  void *pPage;                      /* Page cache memory */
sl@0
  1968
  int szPage;                       /* Size of each page in pPage[] */
sl@0
  1969
  int nPage;                        /* Number of pages in pPage[] */
sl@0
  1970
  int isInit;                       /* True after initialization has finished */
sl@0
  1971
  int inProgress;                   /* True while initialization in progress */
sl@0
  1972
  int isMallocInit;                 /* True after malloc is initialized */
sl@0
  1973
  sqlite3_mutex *pInitMutex;        /* Mutex used by sqlite3_initialize() */
sl@0
  1974
  int nRefInitMutex;                /* Number of users of pInitMutex */
sl@0
  1975
  int nSmall;                       /* alloc size threshold used by mem6.c */
sl@0
  1976
  int mxParserStack;                /* maximum depth of the parser stack */
sl@0
  1977
  int sharedCacheEnabled;           /* true if shared-cache mode enabled */
sl@0
  1978
};
sl@0
  1979
sl@0
  1980
/*
sl@0
  1981
** Context pointer passed down through the tree-walk.
sl@0
  1982
*/
sl@0
  1983
struct Walker {
sl@0
  1984
  int (*xExprCallback)(Walker*, Expr*);     /* Callback for expressions */
sl@0
  1985
  int (*xSelectCallback)(Walker*,Select*);  /* Callback for SELECTs */
sl@0
  1986
  Parse *pParse;                            /* Parser context.  */
sl@0
  1987
  union {                                   /* Extra data for callback */
sl@0
  1988
    NameContext *pNC;                          /* Naming context */
sl@0
  1989
    int i;                                     /* Integer value */
sl@0
  1990
  } u;
sl@0
  1991
};
sl@0
  1992
sl@0
  1993
/* Forward declarations */
sl@0
  1994
int sqlite3WalkExpr(Walker*, Expr*);
sl@0
  1995
int sqlite3WalkExprList(Walker*, ExprList*);
sl@0
  1996
int sqlite3WalkSelect(Walker*, Select*);
sl@0
  1997
int sqlite3WalkSelectExpr(Walker*, Select*);
sl@0
  1998
int sqlite3WalkSelectFrom(Walker*, Select*);
sl@0
  1999
sl@0
  2000
/*
sl@0
  2001
** Return code from the parse-tree walking primitives and their
sl@0
  2002
** callbacks.
sl@0
  2003
*/
sl@0
  2004
#define WRC_Continue    0
sl@0
  2005
#define WRC_Prune       1
sl@0
  2006
#define WRC_Abort       2
sl@0
  2007
sl@0
  2008
/*
sl@0
  2009
** Assuming zIn points to the first byte of a UTF-8 character,
sl@0
  2010
** advance zIn to point to the first byte of the next UTF-8 character.
sl@0
  2011
*/
sl@0
  2012
#define SQLITE_SKIP_UTF8(zIn) {                        \
sl@0
  2013
  if( (*(zIn++))>=0xc0 ){                              \
sl@0
  2014
    while( (*zIn & 0xc0)==0x80 ){ zIn++; }             \
sl@0
  2015
  }                                                    \
sl@0
  2016
}
sl@0
  2017
sl@0
  2018
/*
sl@0
  2019
** The SQLITE_CORRUPT_BKPT macro can be either a constant (for production
sl@0
  2020
** builds) or a function call (for debugging).  If it is a function call,
sl@0
  2021
** it allows the operator to set a breakpoint at the spot where database
sl@0
  2022
** corruption is first detected.
sl@0
  2023
*/
sl@0
  2024
#ifdef SQLITE_DEBUG
sl@0
  2025
  int sqlite3Corrupt(void);
sl@0
  2026
# define SQLITE_CORRUPT_BKPT sqlite3Corrupt()
sl@0
  2027
#else
sl@0
  2028
# define SQLITE_CORRUPT_BKPT SQLITE_CORRUPT
sl@0
  2029
#endif
sl@0
  2030
sl@0
  2031
/*
sl@0
  2032
** Internal function prototypes
sl@0
  2033
*/
sl@0
  2034
int sqlite3StrICmp(const char *, const char *);
sl@0
  2035
int sqlite3StrNICmp(const char *, const char *, int);
sl@0
  2036
int sqlite3IsNumber(const char*, int*, u8);
sl@0
  2037
int sqlite3Strlen(sqlite3*, const char*);
sl@0
  2038
sl@0
  2039
int sqlite3MallocInit(void);
sl@0
  2040
void sqlite3MallocEnd(void);
sl@0
  2041
void *sqlite3Malloc(int);
sl@0
  2042
void *sqlite3MallocZero(int);
sl@0
  2043
void *sqlite3DbMallocZero(sqlite3*, int);
sl@0
  2044
void *sqlite3DbMallocRaw(sqlite3*, int);
sl@0
  2045
char *sqlite3DbStrDup(sqlite3*,const char*);
sl@0
  2046
char *sqlite3DbStrNDup(sqlite3*,const char*, int);
sl@0
  2047
void *sqlite3Realloc(void*, int);
sl@0
  2048
void *sqlite3DbReallocOrFree(sqlite3 *, void *, int);
sl@0
  2049
void *sqlite3DbRealloc(sqlite3 *, void *, int);
sl@0
  2050
void sqlite3DbFree(sqlite3*, void*);
sl@0
  2051
int sqlite3MallocSize(void*);
sl@0
  2052
int sqlite3DbMallocSize(sqlite3*, void*);
sl@0
  2053
void *sqlite3ScratchMalloc(int);
sl@0
  2054
void sqlite3ScratchFree(void*);
sl@0
  2055
void *sqlite3PageMalloc(int);
sl@0
  2056
void sqlite3PageFree(void*);
sl@0
  2057
void sqlite3MemSetDefault(void);
sl@0
  2058
const sqlite3_mem_methods *sqlite3MemGetDefault(void);
sl@0
  2059
const sqlite3_mem_methods *sqlite3MemGetMemsys5(void);
sl@0
  2060
const sqlite3_mem_methods *sqlite3MemGetMemsys3(void);
sl@0
  2061
const sqlite3_mem_methods *sqlite3MemGetMemsys6(void);
sl@0
  2062
void sqlite3BenignMallocHooks(void (*)(void), void (*)(void));
sl@0
  2063
int sqlite3MemoryAlarm(void (*)(void*, sqlite3_int64, int), void*, sqlite3_int64);
sl@0
  2064
sl@0
  2065
#ifndef SQLITE_MUTEX_OMIT
sl@0
  2066
  sqlite3_mutex_methods *sqlite3DefaultMutex(void);
sl@0
  2067
  sqlite3_mutex *sqlite3MutexAlloc(int);
sl@0
  2068
  int sqlite3MutexInit(void);
sl@0
  2069
  int sqlite3MutexEnd(void);
sl@0
  2070
#endif
sl@0
  2071
sl@0
  2072
int sqlite3StatusValue(int);
sl@0
  2073
void sqlite3StatusAdd(int, int);
sl@0
  2074
void sqlite3StatusSet(int, int);
sl@0
  2075
sl@0
  2076
int sqlite3IsNaN(double);
sl@0
  2077
sl@0
  2078
void sqlite3VXPrintf(StrAccum*, int, const char*, va_list);
sl@0
  2079
char *sqlite3MPrintf(sqlite3*,const char*, ...);
sl@0
  2080
char *sqlite3VMPrintf(sqlite3*,const char*, va_list);
sl@0
  2081
char *sqlite3MAppendf(sqlite3*,char*,const char*,...);
sl@0
  2082
#if defined(SQLITE_TEST) || defined(SQLITE_DEBUG)
sl@0
  2083
  void sqlite3DebugPrintf(const char*, ...);
sl@0
  2084
#endif
sl@0
  2085
#if defined(SQLITE_TEST)
sl@0
  2086
  void *sqlite3TestTextToPtr(const char*);
sl@0
  2087
#endif
sl@0
  2088
void sqlite3SetString(char **, sqlite3*, const char*, ...);
sl@0
  2089
void sqlite3ErrorMsg(Parse*, const char*, ...);
sl@0
  2090
void sqlite3ErrorClear(Parse*);
sl@0
  2091
void sqlite3Dequote(char*);
sl@0
  2092
void sqlite3DequoteExpr(sqlite3*, Expr*);
sl@0
  2093
int sqlite3KeywordCode(const unsigned char*, int);
sl@0
  2094
int sqlite3RunParser(Parse*, const char*, char **);
sl@0
  2095
void sqlite3FinishCoding(Parse*);
sl@0
  2096
int sqlite3GetTempReg(Parse*);
sl@0
  2097
void sqlite3ReleaseTempReg(Parse*,int);
sl@0
  2098
int sqlite3GetTempRange(Parse*,int);
sl@0
  2099
void sqlite3ReleaseTempRange(Parse*,int,int);
sl@0
  2100
Expr *sqlite3Expr(sqlite3*, int, Expr*, Expr*, const Token*);
sl@0
  2101
Expr *sqlite3PExpr(Parse*, int, Expr*, Expr*, const Token*);
sl@0
  2102
Expr *sqlite3RegisterExpr(Parse*,Token*);
sl@0
  2103
Expr *sqlite3ExprAnd(sqlite3*,Expr*, Expr*);
sl@0
  2104
void sqlite3ExprSpan(Expr*,Token*,Token*);
sl@0
  2105
Expr *sqlite3ExprFunction(Parse*,ExprList*, Token*);
sl@0
  2106
void sqlite3ExprAssignVarNumber(Parse*, Expr*);
sl@0
  2107
void sqlite3ExprClear(sqlite3*, Expr*);
sl@0
  2108
void sqlite3ExprDelete(sqlite3*, Expr*);
sl@0
  2109
ExprList *sqlite3ExprListAppend(Parse*,ExprList*,Expr*,Token*);
sl@0
  2110
void sqlite3ExprListDelete(sqlite3*, ExprList*);
sl@0
  2111
int sqlite3Init(sqlite3*, char**);
sl@0
  2112
int sqlite3InitCallback(void*, int, char**, char**);
sl@0
  2113
void sqlite3Pragma(Parse*,Token*,Token*,Token*,int);
sl@0
  2114
void sqlite3ResetInternalSchema(sqlite3*, int);
sl@0
  2115
void sqlite3BeginParse(Parse*,int);
sl@0
  2116
void sqlite3CommitInternalChanges(sqlite3*);
sl@0
  2117
Table *sqlite3ResultSetOfSelect(Parse*,Select*);
sl@0
  2118
void sqlite3OpenMasterTable(Parse *, int);
sl@0
  2119
void sqlite3StartTable(Parse*,Token*,Token*,int,int,int,int);
sl@0
  2120
void sqlite3AddColumn(Parse*,Token*);
sl@0
  2121
void sqlite3AddNotNull(Parse*, int);
sl@0
  2122
void sqlite3AddPrimaryKey(Parse*, ExprList*, int, int, int);
sl@0
  2123
void sqlite3AddCheckConstraint(Parse*, Expr*);
sl@0
  2124
void sqlite3AddColumnType(Parse*,Token*);
sl@0
  2125
void sqlite3AddDefaultValue(Parse*,Expr*);
sl@0
  2126
void sqlite3AddCollateType(Parse*, Token*);
sl@0
  2127
void sqlite3EndTable(Parse*,Token*,Token*,Select*);
sl@0
  2128
sl@0
  2129
Bitvec *sqlite3BitvecCreate(u32);
sl@0
  2130
int sqlite3BitvecTest(Bitvec*, u32);
sl@0
  2131
int sqlite3BitvecSet(Bitvec*, u32);
sl@0
  2132
void sqlite3BitvecClear(Bitvec*, u32);
sl@0
  2133
void sqlite3BitvecDestroy(Bitvec*);
sl@0
  2134
int sqlite3BitvecBuiltinTest(int,int*);
sl@0
  2135
sl@0
  2136
void sqlite3CreateView(Parse*,Token*,Token*,Token*,Select*,int,int);
sl@0
  2137
sl@0
  2138
#if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
sl@0
  2139
  int sqlite3ViewGetColumnNames(Parse*,Table*);
sl@0
  2140
#else
sl@0
  2141
# define sqlite3ViewGetColumnNames(A,B) 0
sl@0
  2142
#endif
sl@0
  2143
sl@0
  2144
void sqlite3DropTable(Parse*, SrcList*, int, int);
sl@0
  2145
void sqlite3DeleteTable(Table*);
sl@0
  2146
void sqlite3Insert(Parse*, SrcList*, ExprList*, Select*, IdList*, int);
sl@0
  2147
void *sqlite3ArrayAllocate(sqlite3*,void*,int,int,int*,int*,int*);
sl@0
  2148
IdList *sqlite3IdListAppend(sqlite3*, IdList*, Token*);
sl@0
  2149
int sqlite3IdListIndex(IdList*,const char*);
sl@0
  2150
SrcList *sqlite3SrcListAppend(sqlite3*, SrcList*, Token*, Token*);
sl@0
  2151
SrcList *sqlite3SrcListAppendFromTerm(Parse*, SrcList*, Token*, Token*,
sl@0
  2152
                                      Token*, Select*, Expr*, IdList*);
sl@0
  2153
void sqlite3SrcListIndexedBy(Parse *, SrcList *, Token *);
sl@0
  2154
int sqlite3IndexedByLookup(Parse *, struct SrcList_item *);
sl@0
  2155
void sqlite3SrcListShiftJoinType(SrcList*);
sl@0
  2156
void sqlite3SrcListAssignCursors(Parse*, SrcList*);
sl@0
  2157
void sqlite3IdListDelete(sqlite3*, IdList*);
sl@0
  2158
void sqlite3SrcListDelete(sqlite3*, SrcList*);
sl@0
  2159
void sqlite3CreateIndex(Parse*,Token*,Token*,SrcList*,ExprList*,int,Token*,
sl@0
  2160
                        Token*, int, int);
sl@0
  2161
void sqlite3DropIndex(Parse*, SrcList*, int);
sl@0
  2162
int sqlite3Select(Parse*, Select*, SelectDest*);
sl@0
  2163
Select *sqlite3SelectNew(Parse*,ExprList*,SrcList*,Expr*,ExprList*,
sl@0
  2164
                         Expr*,ExprList*,int,Expr*,Expr*);
sl@0
  2165
void sqlite3SelectDelete(sqlite3*, Select*);
sl@0
  2166
Table *sqlite3SrcListLookup(Parse*, SrcList*);
sl@0
  2167
int sqlite3IsReadOnly(Parse*, Table*, int);
sl@0
  2168
void sqlite3OpenTable(Parse*, int iCur, int iDb, Table*, int);
sl@0
  2169
#if defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) && !defined(SQLITE_OMIT_SUBQUERY)
sl@0
  2170
Expr *sqlite3LimitWhere(Parse *, SrcList *, Expr *, ExprList *, Expr *, Expr *, char *);
sl@0
  2171
#endif
sl@0
  2172
void sqlite3DeleteFrom(Parse*, SrcList*, Expr*);
sl@0
  2173
void sqlite3Update(Parse*, SrcList*, ExprList*, Expr*, int);
sl@0
  2174
WhereInfo *sqlite3WhereBegin(Parse*, SrcList*, Expr*, ExprList**, u8);
sl@0
  2175
void sqlite3WhereEnd(WhereInfo*);
sl@0
  2176
int sqlite3ExprCodeGetColumn(Parse*, Table*, int, int, int, int);
sl@0
  2177
void sqlite3ExprCodeMove(Parse*, int, int, int);
sl@0
  2178
void sqlite3ExprCodeCopy(Parse*, int, int, int);
sl@0
  2179
void sqlite3ExprClearColumnCache(Parse*, int);
sl@0
  2180
void sqlite3ExprCacheAffinityChange(Parse*, int, int);
sl@0
  2181
int sqlite3ExprWritableRegister(Parse*,int,int);
sl@0
  2182
void sqlite3ExprHardCopy(Parse*,int,int);
sl@0
  2183
int sqlite3ExprCode(Parse*, Expr*, int);
sl@0
  2184
int sqlite3ExprCodeTemp(Parse*, Expr*, int*);
sl@0
  2185
int sqlite3ExprCodeTarget(Parse*, Expr*, int);
sl@0
  2186
int sqlite3ExprCodeAndCache(Parse*, Expr*, int);
sl@0
  2187
void sqlite3ExprCodeConstants(Parse*, Expr*);
sl@0
  2188
int sqlite3ExprCodeExprList(Parse*, ExprList*, int, int);
sl@0
  2189
void sqlite3ExprIfTrue(Parse*, Expr*, int, int);
sl@0
  2190
void sqlite3ExprIfFalse(Parse*, Expr*, int, int);
sl@0
  2191
Table *sqlite3FindTable(sqlite3*,const char*, const char*);
sl@0
  2192
Table *sqlite3LocateTable(Parse*,int isView,const char*, const char*);
sl@0
  2193
Index *sqlite3FindIndex(sqlite3*,const char*, const char*);
sl@0
  2194
void sqlite3UnlinkAndDeleteTable(sqlite3*,int,const char*);
sl@0
  2195
void sqlite3UnlinkAndDeleteIndex(sqlite3*,int,const char*);
sl@0
  2196
void sqlite3Vacuum(Parse*);
sl@0
  2197
int sqlite3RunVacuum(char**, sqlite3*);
sl@0
  2198
char *sqlite3NameFromToken(sqlite3*, Token*);
sl@0
  2199
int sqlite3ExprCompare(Expr*, Expr*);
sl@0
  2200
void sqlite3ExprAnalyzeAggregates(NameContext*, Expr*);
sl@0
  2201
void sqlite3ExprAnalyzeAggList(NameContext*,ExprList*);
sl@0
  2202
Vdbe *sqlite3GetVdbe(Parse*);
sl@0
  2203
Expr *sqlite3CreateIdExpr(Parse *, const char*);
sl@0
  2204
void sqlite3PrngSaveState(void);
sl@0
  2205
void sqlite3PrngRestoreState(void);
sl@0
  2206
void sqlite3PrngResetState(void);
sl@0
  2207
void sqlite3RollbackAll(sqlite3*);
sl@0
  2208
void sqlite3CodeVerifySchema(Parse*, int);
sl@0
  2209
void sqlite3BeginTransaction(Parse*, int);
sl@0
  2210
void sqlite3CommitTransaction(Parse*);
sl@0
  2211
void sqlite3RollbackTransaction(Parse*);
sl@0
  2212
int sqlite3ExprIsConstant(Expr*);
sl@0
  2213
int sqlite3ExprIsConstantNotJoin(Expr*);
sl@0
  2214
int sqlite3ExprIsConstantOrFunction(Expr*);
sl@0
  2215
int sqlite3ExprIsInteger(Expr*, int*);
sl@0
  2216
int sqlite3IsRowid(const char*);
sl@0
  2217
void sqlite3GenerateRowDelete(Parse*, Table*, int, int, int);
sl@0
  2218
void sqlite3GenerateRowIndexDelete(Parse*, Table*, int, int*);
sl@0
  2219
int sqlite3GenerateIndexKey(Parse*, Index*, int, int, int);
sl@0
  2220
void sqlite3GenerateConstraintChecks(Parse*,Table*,int,int,
sl@0
  2221
                                     int*,int,int,int,int);
sl@0
  2222
void sqlite3CompleteInsertion(Parse*, Table*, int, int, int*,int,int,int,int);
sl@0
  2223
int sqlite3OpenTableAndIndices(Parse*, Table*, int, int);
sl@0
  2224
void sqlite3BeginWriteOperation(Parse*, int, int);
sl@0
  2225
Expr *sqlite3ExprDup(sqlite3*,Expr*);
sl@0
  2226
void sqlite3TokenCopy(sqlite3*,Token*, Token*);
sl@0
  2227
ExprList *sqlite3ExprListDup(sqlite3*,ExprList*);
sl@0
  2228
SrcList *sqlite3SrcListDup(sqlite3*,SrcList*);
sl@0
  2229
IdList *sqlite3IdListDup(sqlite3*,IdList*);
sl@0
  2230
Select *sqlite3SelectDup(sqlite3*,Select*);
sl@0
  2231
void sqlite3FuncDefInsert(FuncDefHash*, FuncDef*);
sl@0
  2232
FuncDef *sqlite3FindFunction(sqlite3*,const char*,int,int,u8,int);
sl@0
  2233
void sqlite3RegisterBuiltinFunctions(sqlite3*);
sl@0
  2234
void sqlite3RegisterDateTimeFunctions(void);
sl@0
  2235
void sqlite3RegisterGlobalFunctions(void);
sl@0
  2236
int sqlite3GetBuiltinFunction(const char *, int, FuncDef **);
sl@0
  2237
#ifdef SQLITE_DEBUG
sl@0
  2238
  int sqlite3SafetyOn(sqlite3*);
sl@0
  2239
  int sqlite3SafetyOff(sqlite3*);
sl@0
  2240
#else
sl@0
  2241
# define sqlite3SafetyOn(A) 0
sl@0
  2242
# define sqlite3SafetyOff(A) 0
sl@0
  2243
#endif
sl@0
  2244
int sqlite3SafetyCheckOk(sqlite3*);
sl@0
  2245
int sqlite3SafetyCheckSickOrOk(sqlite3*);
sl@0
  2246
void sqlite3ChangeCookie(Parse*, int);
sl@0
  2247
sl@0
  2248
#if !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER)
sl@0
  2249
void sqlite3MaterializeView(Parse*, Table*, Expr*, int);
sl@0
  2250
#endif
sl@0
  2251
sl@0
  2252
#ifndef SQLITE_OMIT_TRIGGER
sl@0
  2253
  void sqlite3BeginTrigger(Parse*, Token*,Token*,int,int,IdList*,SrcList*,
sl@0
  2254
                           Expr*,int, int);
sl@0
  2255
  void sqlite3FinishTrigger(Parse*, TriggerStep*, Token*);
sl@0
  2256
  void sqlite3DropTrigger(Parse*, SrcList*, int);
sl@0
  2257
  void sqlite3DropTriggerPtr(Parse*, Trigger*);
sl@0
  2258
  int sqlite3TriggersExist(Parse*, Table*, int, ExprList*);
sl@0
  2259
  int sqlite3CodeRowTrigger(Parse*, int, ExprList*, int, Table *, int, int, 
sl@0
  2260
                           int, int, u32*, u32*);
sl@0
  2261
  void sqliteViewTriggers(Parse*, Table*, Expr*, int, ExprList*);
sl@0
  2262
  void sqlite3DeleteTriggerStep(sqlite3*, TriggerStep*);
sl@0
  2263
  TriggerStep *sqlite3TriggerSelectStep(sqlite3*,Select*);
sl@0
  2264
  TriggerStep *sqlite3TriggerInsertStep(sqlite3*,Token*, IdList*,
sl@0
  2265
                                        ExprList*,Select*,int);
sl@0
  2266
  TriggerStep *sqlite3TriggerUpdateStep(sqlite3*,Token*,ExprList*, Expr*, int);
sl@0
  2267
  TriggerStep *sqlite3TriggerDeleteStep(sqlite3*,Token*, Expr*);
sl@0
  2268
  void sqlite3DeleteTrigger(sqlite3*, Trigger*);
sl@0
  2269
  void sqlite3UnlinkAndDeleteTrigger(sqlite3*,int,const char*);
sl@0
  2270
#else
sl@0
  2271
# define sqlite3TriggersExist(A,B,C,D,E,F) 0
sl@0
  2272
# define sqlite3DeleteTrigger(A,B)
sl@0
  2273
# define sqlite3DropTriggerPtr(A,B)
sl@0
  2274
# define sqlite3UnlinkAndDeleteTrigger(A,B,C)
sl@0
  2275
# define sqlite3CodeRowTrigger(A,B,C,D,E,F,G,H,I,J,K) 0
sl@0
  2276
#endif
sl@0
  2277
sl@0
  2278
int sqlite3JoinType(Parse*, Token*, Token*, Token*);
sl@0
  2279
void sqlite3CreateForeignKey(Parse*, ExprList*, Token*, ExprList*, int);
sl@0
  2280
void sqlite3DeferForeignKey(Parse*, int);
sl@0
  2281
#ifndef SQLITE_OMIT_AUTHORIZATION
sl@0
  2282
  void sqlite3AuthRead(Parse*,Expr*,Schema*,SrcList*);
sl@0
  2283
  int sqlite3AuthCheck(Parse*,int, const char*, const char*, const char*);
sl@0
  2284
  void sqlite3AuthContextPush(Parse*, AuthContext*, const char*);
sl@0
  2285
  void sqlite3AuthContextPop(AuthContext*);
sl@0
  2286
#else
sl@0
  2287
# define sqlite3AuthRead(a,b,c,d)
sl@0
  2288
# define sqlite3AuthCheck(a,b,c,d,e)    SQLITE_OK
sl@0
  2289
# define sqlite3AuthContextPush(a,b,c)
sl@0
  2290
# define sqlite3AuthContextPop(a)  ((void)(a))
sl@0
  2291
#endif
sl@0
  2292
void sqlite3Attach(Parse*, Expr*, Expr*, Expr*);
sl@0
  2293
void sqlite3Detach(Parse*, Expr*);
sl@0
  2294
int sqlite3BtreeFactory(const sqlite3 *db, const char *zFilename,
sl@0
  2295
                       int omitJournal, int nCache, int flags, Btree **ppBtree);
sl@0
  2296
int sqlite3FixInit(DbFixer*, Parse*, int, const char*, const Token*);
sl@0
  2297
int sqlite3FixSrcList(DbFixer*, SrcList*);
sl@0
  2298
int sqlite3FixSelect(DbFixer*, Select*);
sl@0
  2299
int sqlite3FixExpr(DbFixer*, Expr*);
sl@0
  2300
int sqlite3FixExprList(DbFixer*, ExprList*);
sl@0
  2301
int sqlite3FixTriggerStep(DbFixer*, TriggerStep*);
sl@0
  2302
int sqlite3AtoF(const char *z, double*);
sl@0
  2303
int sqlite3GetInt32(const char *, int*);
sl@0
  2304
int sqlite3FitsIn64Bits(const char *, int);
sl@0
  2305
int sqlite3Utf16ByteLen(const void *pData, int nChar);
sl@0
  2306
int sqlite3Utf8CharLen(const char *pData, int nByte);
sl@0
  2307
int sqlite3Utf8Read(const u8*, const u8*, const u8**);
sl@0
  2308
sl@0
  2309
/*
sl@0
  2310
** Routines to read and write variable-length integers.  These used to
sl@0
  2311
** be defined locally, but now we use the varint routines in the util.c
sl@0
  2312
** file.  Code should use the MACRO forms below, as the Varint32 versions
sl@0
  2313
** are coded to assume the single byte case is already handled (which 
sl@0
  2314
** the MACRO form does).
sl@0
  2315
*/
sl@0
  2316
int sqlite3PutVarint(unsigned char*, u64);
sl@0
  2317
int sqlite3PutVarint32(unsigned char*, u32);
sl@0
  2318
int sqlite3GetVarint(const unsigned char *, u64 *);
sl@0
  2319
int sqlite3GetVarint32(const unsigned char *, u32 *);
sl@0
  2320
int sqlite3VarintLen(u64 v);
sl@0
  2321
sl@0
  2322
/*
sl@0
  2323
** The header of a record consists of a sequence variable-length integers.
sl@0
  2324
** These integers are almost always small and are encoded as a single byte.
sl@0
  2325
** The following macros take advantage this fact to provide a fast encode
sl@0
  2326
** and decode of the integers in a record header.  It is faster for the common
sl@0
  2327
** case where the integer is a single byte.  It is a little slower when the
sl@0
  2328
** integer is two or more bytes.  But overall it is faster.
sl@0
  2329
**
sl@0
  2330
** The following expressions are equivalent:
sl@0
  2331
**
sl@0
  2332
**     x = sqlite3GetVarint32( A, &B );
sl@0
  2333
**     x = sqlite3PutVarint32( A, B );
sl@0
  2334
**
sl@0
  2335
**     x = getVarint32( A, B );
sl@0
  2336
**     x = putVarint32( A, B );
sl@0
  2337
**
sl@0
  2338
*/
sl@0
  2339
#define getVarint32(A,B)  ((*(A)<(unsigned char)0x80) ? ((B) = (u32)*(A)),1 : sqlite3GetVarint32((A), &(B)))
sl@0
  2340
#define putVarint32(A,B)  (((B)<(u32)0x80) ? (*(A) = (unsigned char)(B)),1 : sqlite3PutVarint32((A), (B)))
sl@0
  2341
#define getVarint    sqlite3GetVarint
sl@0
  2342
#define putVarint    sqlite3PutVarint
sl@0
  2343
sl@0
  2344
sl@0
  2345
void sqlite3IndexAffinityStr(Vdbe *, Index *);
sl@0
  2346
void sqlite3TableAffinityStr(Vdbe *, Table *);
sl@0
  2347
char sqlite3CompareAffinity(Expr *pExpr, char aff2);
sl@0
  2348
int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity);
sl@0
  2349
char sqlite3ExprAffinity(Expr *pExpr);
sl@0
  2350
int sqlite3Atoi64(const char*, i64*);
sl@0
  2351
void sqlite3Error(sqlite3*, int, const char*,...);
sl@0
  2352
void *sqlite3HexToBlob(sqlite3*, const char *z, int n);
sl@0
  2353
int sqlite3TwoPartName(Parse *, Token *, Token *, Token **);
sl@0
  2354
const char *sqlite3ErrStr(int);
sl@0
  2355
int sqlite3ReadSchema(Parse *pParse);
sl@0
  2356
CollSeq *sqlite3FindCollSeq(sqlite3*,u8 enc, const char *,int,int);
sl@0
  2357
CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName, int nName);
sl@0
  2358
CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr);
sl@0
  2359
Expr *sqlite3ExprSetColl(Parse *pParse, Expr *, Token *);
sl@0
  2360
int sqlite3CheckCollSeq(Parse *, CollSeq *);
sl@0
  2361
int sqlite3CheckObjectName(Parse *, const char *);
sl@0
  2362
void sqlite3VdbeSetChanges(sqlite3 *, int);
sl@0
  2363
sl@0
  2364
const void *sqlite3ValueText(sqlite3_value*, u8);
sl@0
  2365
int sqlite3ValueBytes(sqlite3_value*, u8);
sl@0
  2366
void sqlite3ValueSetStr(sqlite3_value*, int, const void *,u8, 
sl@0
  2367
                        void(*)(void*));
sl@0
  2368
void sqlite3ValueFree(sqlite3_value*);
sl@0
  2369
sqlite3_value *sqlite3ValueNew(sqlite3 *);
sl@0
  2370
char *sqlite3Utf16to8(sqlite3 *, const void*, int);
sl@0
  2371
int sqlite3ValueFromExpr(sqlite3 *, Expr *, u8, u8, sqlite3_value **);
sl@0
  2372
void sqlite3ValueApplyAffinity(sqlite3_value *, u8, u8);
sl@0
  2373
#ifndef SQLITE_AMALGAMATION
sl@0
  2374
extern const unsigned char sqlite3UpperToLower[];
sl@0
  2375
extern SQLITE_WSD struct Sqlite3Config sqlite3Config;
sl@0
  2376
extern SQLITE_WSD FuncDefHash sqlite3GlobalFunctions;
sl@0
  2377
#endif
sl@0
  2378
void sqlite3RootPageMoved(Db*, int, int);
sl@0
  2379
void sqlite3Reindex(Parse*, Token*, Token*);
sl@0
  2380
void sqlite3AlterFunctions(sqlite3*);
sl@0
  2381
void sqlite3AlterRenameTable(Parse*, SrcList*, Token*);
sl@0
  2382
int sqlite3GetToken(const unsigned char *, int *);
sl@0
  2383
void sqlite3NestedParse(Parse*, const char*, ...);
sl@0
  2384
void sqlite3ExpirePreparedStatements(sqlite3*);
sl@0
  2385
void sqlite3CodeSubselect(Parse *, Expr *, int, int);
sl@0
  2386
void sqlite3SelectPrep(Parse*, Select*, NameContext*);
sl@0
  2387
int sqlite3ResolveExprNames(NameContext*, Expr*);
sl@0
  2388
void sqlite3ResolveSelectNames(Parse*, Select*, NameContext*);
sl@0
  2389
int sqlite3ResolveOrderGroupBy(Parse*, Select*, ExprList*, const char*);
sl@0
  2390
void sqlite3ColumnDefault(Vdbe *, Table *, int);
sl@0
  2391
void sqlite3AlterFinishAddColumn(Parse *, Token *);
sl@0
  2392
void sqlite3AlterBeginAddColumn(Parse *, SrcList *);
sl@0
  2393
CollSeq *sqlite3GetCollSeq(sqlite3*, CollSeq *, const char *, int);
sl@0
  2394
char sqlite3AffinityType(const Token*);
sl@0
  2395
void sqlite3Analyze(Parse*, Token*, Token*);
sl@0
  2396
int sqlite3InvokeBusyHandler(BusyHandler*);
sl@0
  2397
int sqlite3FindDb(sqlite3*, Token*);
sl@0
  2398
int sqlite3AnalysisLoad(sqlite3*,int iDB);
sl@0
  2399
void sqlite3DefaultRowEst(Index*);
sl@0
  2400
void sqlite3RegisterLikeFunctions(sqlite3*, int);
sl@0
  2401
int sqlite3IsLikeFunction(sqlite3*,Expr*,int*,char*);
sl@0
  2402
void sqlite3AttachFunctions(sqlite3 *);
sl@0
  2403
void sqlite3MinimumFileFormat(Parse*, int, int);
sl@0
  2404
void sqlite3SchemaFree(void *);
sl@0
  2405
Schema *sqlite3SchemaGet(sqlite3 *, Btree *);
sl@0
  2406
int sqlite3SchemaToIndex(sqlite3 *db, Schema *);
sl@0
  2407
KeyInfo *sqlite3IndexKeyinfo(Parse *, Index *);
sl@0
  2408
int sqlite3CreateFunc(sqlite3 *, const char *, int, int, void *, 
sl@0
  2409
  void (*)(sqlite3_context*,int,sqlite3_value **),
sl@0
  2410
  void (*)(sqlite3_context*,int,sqlite3_value **), void (*)(sqlite3_context*));
sl@0
  2411
int sqlite3ApiExit(sqlite3 *db, int);
sl@0
  2412
int sqlite3OpenTempDatabase(Parse *);
sl@0
  2413
sl@0
  2414
void sqlite3StrAccumInit(StrAccum*, char*, int, int);
sl@0
  2415
void sqlite3StrAccumAppend(StrAccum*,const char*,int);
sl@0
  2416
char *sqlite3StrAccumFinish(StrAccum*);
sl@0
  2417
void sqlite3StrAccumReset(StrAccum*);
sl@0
  2418
void sqlite3SelectDestInit(SelectDest*,int,int);
sl@0
  2419
sl@0
  2420
/*
sl@0
  2421
** The interface to the LEMON-generated parser
sl@0
  2422
*/
sl@0
  2423
void *sqlite3ParserAlloc(void*(*)(size_t));
sl@0
  2424
void sqlite3ParserFree(void*, void(*)(void*));
sl@0
  2425
void sqlite3Parser(void*, int, Token, Parse*);
sl@0
  2426
#ifdef YYTRACKMAXSTACKDEPTH
sl@0
  2427
  int sqlite3ParserStackPeak(void*);
sl@0
  2428
#endif
sl@0
  2429
sl@0
  2430
int sqlite3AutoLoadExtensions(sqlite3*);
sl@0
  2431
#ifndef SQLITE_OMIT_LOAD_EXTENSION
sl@0
  2432
  void sqlite3CloseExtensions(sqlite3*);
sl@0
  2433
#else
sl@0
  2434
# define sqlite3CloseExtensions(X)
sl@0
  2435
#endif
sl@0
  2436
sl@0
  2437
#ifndef SQLITE_OMIT_SHARED_CACHE
sl@0
  2438
  void sqlite3TableLock(Parse *, int, int, u8, const char *);
sl@0
  2439
#else
sl@0
  2440
  #define sqlite3TableLock(v,w,x,y,z)
sl@0
  2441
#endif
sl@0
  2442
sl@0
  2443
#ifdef SQLITE_TEST
sl@0
  2444
  int sqlite3Utf8To8(unsigned char*);
sl@0
  2445
#endif
sl@0
  2446
sl@0
  2447
#ifdef SQLITE_OMIT_VIRTUALTABLE
sl@0
  2448
#  define sqlite3VtabClear(X)
sl@0
  2449
#  define sqlite3VtabSync(X,Y) SQLITE_OK
sl@0
  2450
#  define sqlite3VtabRollback(X)
sl@0
  2451
#  define sqlite3VtabCommit(X)
sl@0
  2452
#else
sl@0
  2453
   void sqlite3VtabClear(Table*);
sl@0
  2454
   int sqlite3VtabSync(sqlite3 *db, char **);
sl@0
  2455
   int sqlite3VtabRollback(sqlite3 *db);
sl@0
  2456
   int sqlite3VtabCommit(sqlite3 *db);
sl@0
  2457
#endif
sl@0
  2458
void sqlite3VtabMakeWritable(Parse*,Table*);
sl@0
  2459
void sqlite3VtabLock(sqlite3_vtab*);
sl@0
  2460
void sqlite3VtabUnlock(sqlite3*, sqlite3_vtab*);
sl@0
  2461
void sqlite3VtabBeginParse(Parse*, Token*, Token*, Token*);
sl@0
  2462
void sqlite3VtabFinishParse(Parse*, Token*);
sl@0
  2463
void sqlite3VtabArgInit(Parse*);
sl@0
  2464
void sqlite3VtabArgExtend(Parse*, Token*);
sl@0
  2465
int sqlite3VtabCallCreate(sqlite3*, int, const char *, char **);
sl@0
  2466
int sqlite3VtabCallConnect(Parse*, Table*);
sl@0
  2467
int sqlite3VtabCallDestroy(sqlite3*, int, const char *);
sl@0
  2468
int sqlite3VtabBegin(sqlite3 *, sqlite3_vtab *);
sl@0
  2469
FuncDef *sqlite3VtabOverloadFunction(sqlite3 *,FuncDef*, int nArg, Expr*);
sl@0
  2470
void sqlite3InvalidFunction(sqlite3_context*,int,sqlite3_value**);
sl@0
  2471
int sqlite3TransferBindings(sqlite3_stmt *, sqlite3_stmt *);
sl@0
  2472
int sqlite3Reprepare(Vdbe*);
sl@0
  2473
void sqlite3ExprListCheckLength(Parse*, ExprList*, const char*);
sl@0
  2474
CollSeq *sqlite3BinaryCompareCollSeq(Parse *, Expr *, Expr *);
sl@0
  2475
sl@0
  2476
sl@0
  2477
/*
sl@0
  2478
** Available fault injectors.  Should be numbered beginning with 0.
sl@0
  2479
*/
sl@0
  2480
#define SQLITE_FAULTINJECTOR_MALLOC     0
sl@0
  2481
#define SQLITE_FAULTINJECTOR_COUNT      1
sl@0
  2482
sl@0
  2483
/*
sl@0
  2484
** The interface to the code in fault.c used for identifying "benign"
sl@0
  2485
** malloc failures. This is only present if SQLITE_OMIT_BUILTIN_TEST
sl@0
  2486
** is not defined.
sl@0
  2487
*/
sl@0
  2488
#ifndef SQLITE_OMIT_BUILTIN_TEST
sl@0
  2489
  void sqlite3BeginBenignMalloc(void);
sl@0
  2490
  void sqlite3EndBenignMalloc(void);
sl@0
  2491
#else
sl@0
  2492
  #define sqlite3BeginBenignMalloc()
sl@0
  2493
  #define sqlite3EndBenignMalloc()
sl@0
  2494
#endif
sl@0
  2495
sl@0
  2496
#define IN_INDEX_ROWID           1
sl@0
  2497
#define IN_INDEX_EPH             2
sl@0
  2498
#define IN_INDEX_INDEX           3
sl@0
  2499
int sqlite3FindInIndex(Parse *, Expr *, int*);
sl@0
  2500
sl@0
  2501
#ifdef SQLITE_ENABLE_ATOMIC_WRITE
sl@0
  2502
  int sqlite3JournalOpen(sqlite3_vfs *, const char *, sqlite3_file *, int, int);
sl@0
  2503
  int sqlite3JournalSize(sqlite3_vfs *);
sl@0
  2504
  int sqlite3JournalCreate(sqlite3_file *);
sl@0
  2505
#else
sl@0
  2506
  #define sqlite3JournalSize(pVfs) ((pVfs)->szOsFile)
sl@0
  2507
#endif
sl@0
  2508
sl@0
  2509
#if SQLITE_MAX_EXPR_DEPTH>0
sl@0
  2510
  void sqlite3ExprSetHeight(Parse *pParse, Expr *p);
sl@0
  2511
  int sqlite3SelectExprHeight(Select *);
sl@0
  2512
  int sqlite3ExprCheckHeight(Parse*, int);
sl@0
  2513
#else
sl@0
  2514
  #define sqlite3ExprSetHeight(x,y)
sl@0
  2515
  #define sqlite3SelectExprHeight(x) 0
sl@0
  2516
  #define sqlite3ExprCheckHeight(x,y)
sl@0
  2517
#endif
sl@0
  2518
sl@0
  2519
u32 sqlite3Get4byte(const u8*);
sl@0
  2520
void sqlite3Put4byte(u8*, u32);
sl@0
  2521
sl@0
  2522
#ifdef SQLITE_SSE
sl@0
  2523
#include "sseInt.h"
sl@0
  2524
#endif
sl@0
  2525
sl@0
  2526
#ifdef SQLITE_DEBUG
sl@0
  2527
  void sqlite3ParserTrace(FILE*, char *);
sl@0
  2528
#endif
sl@0
  2529
sl@0
  2530
/*
sl@0
  2531
** If the SQLITE_ENABLE IOTRACE exists then the global variable
sl@0
  2532
** sqlite3IoTrace is a pointer to a printf-like routine used to
sl@0
  2533
** print I/O tracing messages. 
sl@0
  2534
*/
sl@0
  2535
#ifdef SQLITE_ENABLE_IOTRACE
sl@0
  2536
# define IOTRACE(A)  if( sqlite3IoTrace ){ sqlite3IoTrace A; }
sl@0
  2537
  void sqlite3VdbeIOTraceSql(Vdbe*);
sl@0
  2538
SQLITE_EXTERN void (*sqlite3IoTrace)(const char*,...);
sl@0
  2539
#else
sl@0
  2540
# define IOTRACE(A)
sl@0
  2541
# define sqlite3VdbeIOTraceSql(X)
sl@0
  2542
#endif
sl@0
  2543
sl@0
  2544
#endif