os/persistentdata/persistentstorage/sql/SQLite364/os_unix.c
author sl@SLION-WIN7.fritz.box
Fri, 15 Jun 2012 03:10:57 +0200
changeset 0 bde4ae8d615e
permissions -rw-r--r--
First public contribution.
sl@0
     1
/*
sl@0
     2
** 2004 May 22
sl@0
     3
**
sl@0
     4
** The author disclaims copyright to this source code.  In place of
sl@0
     5
** a legal notice, here is a blessing:
sl@0
     6
**
sl@0
     7
**    May you do good and not evil.
sl@0
     8
**    May you find forgiveness for yourself and forgive others.
sl@0
     9
**    May you share freely, never taking more than you give.
sl@0
    10
**
sl@0
    11
******************************************************************************
sl@0
    12
**
sl@0
    13
** This file contains code that is specific to Unix systems.
sl@0
    14
**
sl@0
    15
** $Id: os_unix.c,v 1.205 2008/10/14 17:58:38 drh Exp $
sl@0
    16
*/
sl@0
    17
#include "sqliteInt.h"
sl@0
    18
#if SQLITE_OS_UNIX              /* This file is used on unix only */
sl@0
    19
sl@0
    20
/*
sl@0
    21
** If SQLITE_ENABLE_LOCKING_STYLE is defined and is non-zero, then several
sl@0
    22
** alternative locking implementations are provided:
sl@0
    23
**
sl@0
    24
**   * POSIX locking (the default),
sl@0
    25
**   * No locking,
sl@0
    26
**   * Dot-file locking,
sl@0
    27
**   * flock() locking,
sl@0
    28
**   * AFP locking (OSX only).
sl@0
    29
**
sl@0
    30
** SQLITE_ENABLE_LOCKING_STYLE only works on a Mac. It is turned on by
sl@0
    31
** default on a Mac and disabled on all other posix platforms.
sl@0
    32
*/
sl@0
    33
#if !defined(SQLITE_ENABLE_LOCKING_STYLE)
sl@0
    34
#  if defined(__DARWIN__)
sl@0
    35
#    define SQLITE_ENABLE_LOCKING_STYLE 1
sl@0
    36
#  else
sl@0
    37
#    define SQLITE_ENABLE_LOCKING_STYLE 0
sl@0
    38
#  endif
sl@0
    39
#endif
sl@0
    40
sl@0
    41
/*
sl@0
    42
** These #defines should enable >2GB file support on Posix if the
sl@0
    43
** underlying operating system supports it.  If the OS lacks
sl@0
    44
** large file support, these should be no-ops.
sl@0
    45
**
sl@0
    46
** Large file support can be disabled using the -DSQLITE_DISABLE_LFS switch
sl@0
    47
** on the compiler command line.  This is necessary if you are compiling
sl@0
    48
** on a recent machine (ex: RedHat 7.2) but you want your code to work
sl@0
    49
** on an older machine (ex: RedHat 6.0).  If you compile on RedHat 7.2
sl@0
    50
** without this option, LFS is enable.  But LFS does not exist in the kernel
sl@0
    51
** in RedHat 6.0, so the code won't work.  Hence, for maximum binary
sl@0
    52
** portability you should omit LFS.
sl@0
    53
*/
sl@0
    54
#ifndef SQLITE_DISABLE_LFS
sl@0
    55
# define _LARGE_FILE       1
sl@0
    56
# ifndef _FILE_OFFSET_BITS
sl@0
    57
#   define _FILE_OFFSET_BITS 64
sl@0
    58
# endif
sl@0
    59
# define _LARGEFILE_SOURCE 1
sl@0
    60
#endif
sl@0
    61
sl@0
    62
/*
sl@0
    63
** standard include files.
sl@0
    64
*/
sl@0
    65
#include <sys/types.h>
sl@0
    66
#include <sys/stat.h>
sl@0
    67
#include <fcntl.h>
sl@0
    68
#include <unistd.h>
sl@0
    69
#include <time.h>
sl@0
    70
#include <sys/time.h>
sl@0
    71
#include <errno.h>
sl@0
    72
sl@0
    73
#if SQLITE_ENABLE_LOCKING_STYLE
sl@0
    74
#include <sys/ioctl.h>
sl@0
    75
#include <sys/param.h>
sl@0
    76
#include <sys/mount.h>
sl@0
    77
#endif /* SQLITE_ENABLE_LOCKING_STYLE */
sl@0
    78
sl@0
    79
/*
sl@0
    80
** If we are to be thread-safe, include the pthreads header and define
sl@0
    81
** the SQLITE_UNIX_THREADS macro.
sl@0
    82
*/
sl@0
    83
#if SQLITE_THREADSAFE
sl@0
    84
# include <pthread.h>
sl@0
    85
# define SQLITE_UNIX_THREADS 1
sl@0
    86
#endif
sl@0
    87
sl@0
    88
/*
sl@0
    89
** Default permissions when creating a new file
sl@0
    90
*/
sl@0
    91
#ifndef SQLITE_DEFAULT_FILE_PERMISSIONS
sl@0
    92
# define SQLITE_DEFAULT_FILE_PERMISSIONS 0644
sl@0
    93
#endif
sl@0
    94
sl@0
    95
/*
sl@0
    96
** Maximum supported path-length.
sl@0
    97
*/
sl@0
    98
#define MAX_PATHNAME 512
sl@0
    99
sl@0
   100
sl@0
   101
/*
sl@0
   102
** The unixFile structure is subclass of sqlite3_file specific for the unix
sl@0
   103
** protability layer.
sl@0
   104
*/
sl@0
   105
typedef struct unixFile unixFile;
sl@0
   106
struct unixFile {
sl@0
   107
  sqlite3_io_methods const *pMethod;  /* Always the first entry */
sl@0
   108
#ifdef SQLITE_TEST
sl@0
   109
  /* In test mode, increase the size of this structure a bit so that 
sl@0
   110
  ** it is larger than the struct CrashFile defined in test6.c.
sl@0
   111
  */
sl@0
   112
  char aPadding[32];
sl@0
   113
#endif
sl@0
   114
  struct openCnt *pOpen;    /* Info about all open fd's on this inode */
sl@0
   115
  struct lockInfo *pLock;   /* Info about locks on this inode */
sl@0
   116
#if SQLITE_ENABLE_LOCKING_STYLE
sl@0
   117
  void *lockingContext;     /* Locking style specific state */
sl@0
   118
#endif
sl@0
   119
  int h;                    /* The file descriptor */
sl@0
   120
  unsigned char locktype;   /* The type of lock held on this fd */
sl@0
   121
  int dirfd;                /* File descriptor for the directory */
sl@0
   122
#if SQLITE_THREADSAFE
sl@0
   123
  pthread_t tid;            /* The thread that "owns" this unixFile */
sl@0
   124
#endif
sl@0
   125
  int lastErrno;            /* The unix errno from the last I/O error */
sl@0
   126
};
sl@0
   127
sl@0
   128
/*
sl@0
   129
** Include code that is common to all os_*.c files
sl@0
   130
*/
sl@0
   131
#include "os_common.h"
sl@0
   132
sl@0
   133
/*
sl@0
   134
** Define various macros that are missing from some systems.
sl@0
   135
*/
sl@0
   136
#ifndef O_LARGEFILE
sl@0
   137
# define O_LARGEFILE 0
sl@0
   138
#endif
sl@0
   139
#ifdef SQLITE_DISABLE_LFS
sl@0
   140
# undef O_LARGEFILE
sl@0
   141
# define O_LARGEFILE 0
sl@0
   142
#endif
sl@0
   143
#ifndef O_NOFOLLOW
sl@0
   144
# define O_NOFOLLOW 0
sl@0
   145
#endif
sl@0
   146
#ifndef O_BINARY
sl@0
   147
# define O_BINARY 0
sl@0
   148
#endif
sl@0
   149
sl@0
   150
/*
sl@0
   151
** The DJGPP compiler environment looks mostly like Unix, but it
sl@0
   152
** lacks the fcntl() system call.  So redefine fcntl() to be something
sl@0
   153
** that always succeeds.  This means that locking does not occur under
sl@0
   154
** DJGPP.  But it is DOS - what did you expect?
sl@0
   155
*/
sl@0
   156
#ifdef __DJGPP__
sl@0
   157
# define fcntl(A,B,C) 0
sl@0
   158
#endif
sl@0
   159
sl@0
   160
/*
sl@0
   161
** The threadid macro resolves to the thread-id or to 0.  Used for
sl@0
   162
** testing and debugging only.
sl@0
   163
*/
sl@0
   164
#if SQLITE_THREADSAFE
sl@0
   165
#define threadid pthread_self()
sl@0
   166
#else
sl@0
   167
#define threadid 0
sl@0
   168
#endif
sl@0
   169
sl@0
   170
/*
sl@0
   171
** Set or check the unixFile.tid field.  This field is set when an unixFile
sl@0
   172
** is first opened.  All subsequent uses of the unixFile verify that the
sl@0
   173
** same thread is operating on the unixFile.  Some operating systems do
sl@0
   174
** not allow locks to be overridden by other threads and that restriction
sl@0
   175
** means that sqlite3* database handles cannot be moved from one thread
sl@0
   176
** to another.  This logic makes sure a user does not try to do that
sl@0
   177
** by mistake.
sl@0
   178
**
sl@0
   179
** Version 3.3.1 (2006-01-15):  unixFile can be moved from one thread to
sl@0
   180
** another as long as we are running on a system that supports threads
sl@0
   181
** overriding each others locks (which now the most common behavior)
sl@0
   182
** or if no locks are held.  But the unixFile.pLock field needs to be
sl@0
   183
** recomputed because its key includes the thread-id.  See the 
sl@0
   184
** transferOwnership() function below for additional information
sl@0
   185
*/
sl@0
   186
#if SQLITE_THREADSAFE
sl@0
   187
# define SET_THREADID(X)   (X)->tid = pthread_self()
sl@0
   188
# define CHECK_THREADID(X) (threadsOverrideEachOthersLocks==0 && \
sl@0
   189
                            !pthread_equal((X)->tid, pthread_self()))
sl@0
   190
#else
sl@0
   191
# define SET_THREADID(X)
sl@0
   192
# define CHECK_THREADID(X) 0
sl@0
   193
#endif
sl@0
   194
sl@0
   195
/*
sl@0
   196
** Here is the dirt on POSIX advisory locks:  ANSI STD 1003.1 (1996)
sl@0
   197
** section 6.5.2.2 lines 483 through 490 specify that when a process
sl@0
   198
** sets or clears a lock, that operation overrides any prior locks set
sl@0
   199
** by the same process.  It does not explicitly say so, but this implies
sl@0
   200
** that it overrides locks set by the same process using a different
sl@0
   201
** file descriptor.  Consider this test case:
sl@0
   202
**       int fd2 = open("./file2", O_RDWR|O_CREAT, 0644);
sl@0
   203
**
sl@0
   204
** Suppose ./file1 and ./file2 are really the same file (because
sl@0
   205
** one is a hard or symbolic link to the other) then if you set
sl@0
   206
** an exclusive lock on fd1, then try to get an exclusive lock
sl@0
   207
** on fd2, it works.  I would have expected the second lock to
sl@0
   208
** fail since there was already a lock on the file due to fd1.
sl@0
   209
** But not so.  Since both locks came from the same process, the
sl@0
   210
** second overrides the first, even though they were on different
sl@0
   211
** file descriptors opened on different file names.
sl@0
   212
**
sl@0
   213
** Bummer.  If you ask me, this is broken.  Badly broken.  It means
sl@0
   214
** that we cannot use POSIX locks to synchronize file access among
sl@0
   215
** competing threads of the same process.  POSIX locks will work fine
sl@0
   216
** to synchronize access for threads in separate processes, but not
sl@0
   217
** threads within the same process.
sl@0
   218
**
sl@0
   219
** To work around the problem, SQLite has to manage file locks internally
sl@0
   220
** on its own.  Whenever a new database is opened, we have to find the
sl@0
   221
** specific inode of the database file (the inode is determined by the
sl@0
   222
** st_dev and st_ino fields of the stat structure that fstat() fills in)
sl@0
   223
** and check for locks already existing on that inode.  When locks are
sl@0
   224
** created or removed, we have to look at our own internal record of the
sl@0
   225
** locks to see if another thread has previously set a lock on that same
sl@0
   226
** inode.
sl@0
   227
**
sl@0
   228
** The sqlite3_file structure for POSIX is no longer just an integer file
sl@0
   229
** descriptor.  It is now a structure that holds the integer file
sl@0
   230
** descriptor and a pointer to a structure that describes the internal
sl@0
   231
** locks on the corresponding inode.  There is one locking structure
sl@0
   232
** per inode, so if the same inode is opened twice, both unixFile structures
sl@0
   233
** point to the same locking structure.  The locking structure keeps
sl@0
   234
** a reference count (so we will know when to delete it) and a "cnt"
sl@0
   235
** field that tells us its internal lock status.  cnt==0 means the
sl@0
   236
** file is unlocked.  cnt==-1 means the file has an exclusive lock.
sl@0
   237
** cnt>0 means there are cnt shared locks on the file.
sl@0
   238
**
sl@0
   239
** Any attempt to lock or unlock a file first checks the locking
sl@0
   240
** structure.  The fcntl() system call is only invoked to set a 
sl@0
   241
** POSIX lock if the internal lock structure transitions between
sl@0
   242
** a locked and an unlocked state.
sl@0
   243
**
sl@0
   244
** 2004-Jan-11:
sl@0
   245
** More recent discoveries about POSIX advisory locks.  (The more
sl@0
   246
** I discover, the more I realize the a POSIX advisory locks are
sl@0
   247
** an abomination.)
sl@0
   248
**
sl@0
   249
** If you close a file descriptor that points to a file that has locks,
sl@0
   250
** all locks on that file that are owned by the current process are
sl@0
   251
** released.  To work around this problem, each unixFile structure contains
sl@0
   252
** a pointer to an openCnt structure.  There is one openCnt structure
sl@0
   253
** per open inode, which means that multiple unixFile can point to a single
sl@0
   254
** openCnt.  When an attempt is made to close an unixFile, if there are
sl@0
   255
** other unixFile open on the same inode that are holding locks, the call
sl@0
   256
** to close() the file descriptor is deferred until all of the locks clear.
sl@0
   257
** The openCnt structure keeps a list of file descriptors that need to
sl@0
   258
** be closed and that list is walked (and cleared) when the last lock
sl@0
   259
** clears.
sl@0
   260
**
sl@0
   261
** First, under Linux threads, because each thread has a separate
sl@0
   262
** process ID, lock operations in one thread do not override locks
sl@0
   263
** to the same file in other threads.  Linux threads behave like
sl@0
   264
** separate processes in this respect.  But, if you close a file
sl@0
   265
** descriptor in linux threads, all locks are cleared, even locks
sl@0
   266
** on other threads and even though the other threads have different
sl@0
   267
** process IDs.  Linux threads is inconsistent in this respect.
sl@0
   268
** (I'm beginning to think that linux threads is an abomination too.)
sl@0
   269
** The consequence of this all is that the hash table for the lockInfo
sl@0
   270
** structure has to include the process id as part of its key because
sl@0
   271
** locks in different threads are treated as distinct.  But the 
sl@0
   272
** openCnt structure should not include the process id in its
sl@0
   273
** key because close() clears lock on all threads, not just the current
sl@0
   274
** thread.  Were it not for this goofiness in linux threads, we could
sl@0
   275
** combine the lockInfo and openCnt structures into a single structure.
sl@0
   276
**
sl@0
   277
** 2004-Jun-28:
sl@0
   278
** On some versions of linux, threads can override each others locks.
sl@0
   279
** On others not.  Sometimes you can change the behavior on the same
sl@0
   280
** system by setting the LD_ASSUME_KERNEL environment variable.  The
sl@0
   281
** POSIX standard is silent as to which behavior is correct, as far
sl@0
   282
** as I can tell, so other versions of unix might show the same
sl@0
   283
** inconsistency.  There is no little doubt in my mind that posix
sl@0
   284
** advisory locks and linux threads are profoundly broken.
sl@0
   285
**
sl@0
   286
** To work around the inconsistencies, we have to test at runtime 
sl@0
   287
** whether or not threads can override each others locks.  This test
sl@0
   288
** is run once, the first time any lock is attempted.  A static 
sl@0
   289
** variable is set to record the results of this test for future
sl@0
   290
** use.
sl@0
   291
*/
sl@0
   292
sl@0
   293
/*
sl@0
   294
** An instance of the following structure serves as the key used
sl@0
   295
** to locate a particular lockInfo structure given its inode.
sl@0
   296
**
sl@0
   297
** If threads cannot override each others locks, then we set the
sl@0
   298
** lockKey.tid field to the thread ID.  If threads can override
sl@0
   299
** each others locks then tid is always set to zero.  tid is omitted
sl@0
   300
** if we compile without threading support.
sl@0
   301
*/
sl@0
   302
struct lockKey {
sl@0
   303
  dev_t dev;       /* Device number */
sl@0
   304
  ino_t ino;       /* Inode number */
sl@0
   305
#if SQLITE_THREADSAFE
sl@0
   306
  pthread_t tid;   /* Thread ID or zero if threads can override each other */
sl@0
   307
#endif
sl@0
   308
};
sl@0
   309
sl@0
   310
/*
sl@0
   311
** An instance of the following structure is allocated for each open
sl@0
   312
** inode on each thread with a different process ID.  (Threads have
sl@0
   313
** different process IDs on linux, but not on most other unixes.)
sl@0
   314
**
sl@0
   315
** A single inode can have multiple file descriptors, so each unixFile
sl@0
   316
** structure contains a pointer to an instance of this object and this
sl@0
   317
** object keeps a count of the number of unixFile pointing to it.
sl@0
   318
*/
sl@0
   319
struct lockInfo {
sl@0
   320
  struct lockKey key;  /* The lookup key */
sl@0
   321
  int cnt;             /* Number of SHARED locks held */
sl@0
   322
  int locktype;        /* One of SHARED_LOCK, RESERVED_LOCK etc. */
sl@0
   323
  int nRef;            /* Number of pointers to this structure */
sl@0
   324
  struct lockInfo *pNext, *pPrev;   /* List of all lockInfo objects */
sl@0
   325
};
sl@0
   326
sl@0
   327
/*
sl@0
   328
** An instance of the following structure serves as the key used
sl@0
   329
** to locate a particular openCnt structure given its inode.  This
sl@0
   330
** is the same as the lockKey except that the thread ID is omitted.
sl@0
   331
*/
sl@0
   332
struct openKey {
sl@0
   333
  dev_t dev;   /* Device number */
sl@0
   334
  ino_t ino;   /* Inode number */
sl@0
   335
};
sl@0
   336
sl@0
   337
/*
sl@0
   338
** An instance of the following structure is allocated for each open
sl@0
   339
** inode.  This structure keeps track of the number of locks on that
sl@0
   340
** inode.  If a close is attempted against an inode that is holding
sl@0
   341
** locks, the close is deferred until all locks clear by adding the
sl@0
   342
** file descriptor to be closed to the pending list.
sl@0
   343
*/
sl@0
   344
struct openCnt {
sl@0
   345
  struct openKey key;   /* The lookup key */
sl@0
   346
  int nRef;             /* Number of pointers to this structure */
sl@0
   347
  int nLock;            /* Number of outstanding locks */
sl@0
   348
  int nPending;         /* Number of pending close() operations */
sl@0
   349
  int *aPending;        /* Malloced space holding fd's awaiting a close() */
sl@0
   350
  struct openCnt *pNext, *pPrev;   /* List of all openCnt objects */
sl@0
   351
};
sl@0
   352
sl@0
   353
/*
sl@0
   354
** List of all lockInfo and openCnt objects.  This used to be a hash
sl@0
   355
** table.  But the number of objects is rarely more than a dozen and
sl@0
   356
** never exceeds a few thousand.  And lookup is not on a critical
sl@0
   357
** path oo a simple linked list will suffice.
sl@0
   358
*/
sl@0
   359
static struct lockInfo *lockList = 0;
sl@0
   360
static struct openCnt *openList = 0;
sl@0
   361
sl@0
   362
/*
sl@0
   363
** The locking styles are associated with the different file locking
sl@0
   364
** capabilities supported by different file systems.  
sl@0
   365
**
sl@0
   366
** POSIX locking style fully supports shared and exclusive byte-range locks 
sl@0
   367
** AFP locking only supports exclusive byte-range locks
sl@0
   368
** FLOCK only supports a single file-global exclusive lock
sl@0
   369
** DOTLOCK isn't a true locking style, it refers to the use of a special
sl@0
   370
**   file named the same as the database file with a '.lock' extension, this
sl@0
   371
**   can be used on file systems that do not offer any reliable file locking
sl@0
   372
** NO locking means that no locking will be attempted, this is only used for
sl@0
   373
**   read-only file systems currently
sl@0
   374
** UNSUPPORTED means that no locking will be attempted, this is only used for
sl@0
   375
**   file systems that are known to be unsupported
sl@0
   376
*/
sl@0
   377
#define LOCKING_STYLE_POSIX        1
sl@0
   378
#define LOCKING_STYLE_NONE         2
sl@0
   379
#define LOCKING_STYLE_DOTFILE      3
sl@0
   380
#define LOCKING_STYLE_FLOCK        4
sl@0
   381
#define LOCKING_STYLE_AFP          5
sl@0
   382
sl@0
   383
/*
sl@0
   384
** Only set the lastErrno if the error code is a real error and not 
sl@0
   385
** a normal expected return code of SQLITE_BUSY or SQLITE_OK
sl@0
   386
*/
sl@0
   387
#define IS_LOCK_ERROR(x)  ((x != SQLITE_OK) && (x != SQLITE_BUSY))
sl@0
   388
sl@0
   389
/*
sl@0
   390
** Helper functions to obtain and relinquish the global mutex.
sl@0
   391
*/
sl@0
   392
static void enterMutex(void){
sl@0
   393
  sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER));
sl@0
   394
}
sl@0
   395
static void leaveMutex(void){
sl@0
   396
  sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER));
sl@0
   397
}
sl@0
   398
sl@0
   399
#if SQLITE_THREADSAFE
sl@0
   400
/*
sl@0
   401
** This variable records whether or not threads can override each others
sl@0
   402
** locks.
sl@0
   403
**
sl@0
   404
**    0:  No.  Threads cannot override each others locks.
sl@0
   405
**    1:  Yes.  Threads can override each others locks.
sl@0
   406
**   -1:  We don't know yet.
sl@0
   407
**
sl@0
   408
** On some systems, we know at compile-time if threads can override each
sl@0
   409
** others locks.  On those systems, the SQLITE_THREAD_OVERRIDE_LOCK macro
sl@0
   410
** will be set appropriately.  On other systems, we have to check at
sl@0
   411
** runtime.  On these latter systems, SQLTIE_THREAD_OVERRIDE_LOCK is
sl@0
   412
** undefined.
sl@0
   413
**
sl@0
   414
** This variable normally has file scope only.  But during testing, we make
sl@0
   415
** it a global so that the test code can change its value in order to verify
sl@0
   416
** that the right stuff happens in either case.
sl@0
   417
*/
sl@0
   418
#ifndef SQLITE_THREAD_OVERRIDE_LOCK
sl@0
   419
# define SQLITE_THREAD_OVERRIDE_LOCK -1
sl@0
   420
#endif
sl@0
   421
#ifdef SQLITE_TEST
sl@0
   422
int threadsOverrideEachOthersLocks = SQLITE_THREAD_OVERRIDE_LOCK;
sl@0
   423
#else
sl@0
   424
static int threadsOverrideEachOthersLocks = SQLITE_THREAD_OVERRIDE_LOCK;
sl@0
   425
#endif
sl@0
   426
sl@0
   427
/*
sl@0
   428
** This structure holds information passed into individual test
sl@0
   429
** threads by the testThreadLockingBehavior() routine.
sl@0
   430
*/
sl@0
   431
struct threadTestData {
sl@0
   432
  int fd;                /* File to be locked */
sl@0
   433
  struct flock lock;     /* The locking operation */
sl@0
   434
  int result;            /* Result of the locking operation */
sl@0
   435
};
sl@0
   436
sl@0
   437
#ifdef SQLITE_LOCK_TRACE
sl@0
   438
/*
sl@0
   439
** Print out information about all locking operations.
sl@0
   440
**
sl@0
   441
** This routine is used for troubleshooting locks on multithreaded
sl@0
   442
** platforms.  Enable by compiling with the -DSQLITE_LOCK_TRACE
sl@0
   443
** command-line option on the compiler.  This code is normally
sl@0
   444
** turned off.
sl@0
   445
*/
sl@0
   446
static int lockTrace(int fd, int op, struct flock *p){
sl@0
   447
  char *zOpName, *zType;
sl@0
   448
  int s;
sl@0
   449
  int savedErrno;
sl@0
   450
  if( op==F_GETLK ){
sl@0
   451
    zOpName = "GETLK";
sl@0
   452
  }else if( op==F_SETLK ){
sl@0
   453
    zOpName = "SETLK";
sl@0
   454
  }else{
sl@0
   455
    s = fcntl(fd, op, p);
sl@0
   456
    sqlite3DebugPrintf("fcntl unknown %d %d %d\n", fd, op, s);
sl@0
   457
    return s;
sl@0
   458
  }
sl@0
   459
  if( p->l_type==F_RDLCK ){
sl@0
   460
    zType = "RDLCK";
sl@0
   461
  }else if( p->l_type==F_WRLCK ){
sl@0
   462
    zType = "WRLCK";
sl@0
   463
  }else if( p->l_type==F_UNLCK ){
sl@0
   464
    zType = "UNLCK";
sl@0
   465
  }else{
sl@0
   466
    assert( 0 );
sl@0
   467
  }
sl@0
   468
  assert( p->l_whence==SEEK_SET );
sl@0
   469
  s = fcntl(fd, op, p);
sl@0
   470
  savedErrno = errno;
sl@0
   471
  sqlite3DebugPrintf("fcntl %d %d %s %s %d %d %d %d\n",
sl@0
   472
     threadid, fd, zOpName, zType, (int)p->l_start, (int)p->l_len,
sl@0
   473
     (int)p->l_pid, s);
sl@0
   474
  if( s==(-1) && op==F_SETLK && (p->l_type==F_RDLCK || p->l_type==F_WRLCK) ){
sl@0
   475
    struct flock l2;
sl@0
   476
    l2 = *p;
sl@0
   477
    fcntl(fd, F_GETLK, &l2);
sl@0
   478
    if( l2.l_type==F_RDLCK ){
sl@0
   479
      zType = "RDLCK";
sl@0
   480
    }else if( l2.l_type==F_WRLCK ){
sl@0
   481
      zType = "WRLCK";
sl@0
   482
    }else if( l2.l_type==F_UNLCK ){
sl@0
   483
      zType = "UNLCK";
sl@0
   484
    }else{
sl@0
   485
      assert( 0 );
sl@0
   486
    }
sl@0
   487
    sqlite3DebugPrintf("fcntl-failure-reason: %s %d %d %d\n",
sl@0
   488
       zType, (int)l2.l_start, (int)l2.l_len, (int)l2.l_pid);
sl@0
   489
  }
sl@0
   490
  errno = savedErrno;
sl@0
   491
  return s;
sl@0
   492
}
sl@0
   493
#define fcntl lockTrace
sl@0
   494
#endif /* SQLITE_LOCK_TRACE */
sl@0
   495
sl@0
   496
/*
sl@0
   497
** The testThreadLockingBehavior() routine launches two separate
sl@0
   498
** threads on this routine.  This routine attempts to lock a file
sl@0
   499
** descriptor then returns.  The success or failure of that attempt
sl@0
   500
** allows the testThreadLockingBehavior() procedure to determine
sl@0
   501
** whether or not threads can override each others locks.
sl@0
   502
*/
sl@0
   503
static void *threadLockingTest(void *pArg){
sl@0
   504
  struct threadTestData *pData = (struct threadTestData*)pArg;
sl@0
   505
  pData->result = fcntl(pData->fd, F_SETLK, &pData->lock);
sl@0
   506
  return pArg;
sl@0
   507
}
sl@0
   508
sl@0
   509
/*
sl@0
   510
** This procedure attempts to determine whether or not threads
sl@0
   511
** can override each others locks then sets the 
sl@0
   512
** threadsOverrideEachOthersLocks variable appropriately.
sl@0
   513
*/
sl@0
   514
static void testThreadLockingBehavior(int fd_orig){
sl@0
   515
  int fd;
sl@0
   516
  struct threadTestData d[2];
sl@0
   517
  pthread_t t[2];
sl@0
   518
sl@0
   519
  fd = dup(fd_orig);
sl@0
   520
  if( fd<0 ) return;
sl@0
   521
  memset(d, 0, sizeof(d));
sl@0
   522
  d[0].fd = fd;
sl@0
   523
  d[0].lock.l_type = F_RDLCK;
sl@0
   524
  d[0].lock.l_len = 1;
sl@0
   525
  d[0].lock.l_start = 0;
sl@0
   526
  d[0].lock.l_whence = SEEK_SET;
sl@0
   527
  d[1] = d[0];
sl@0
   528
  d[1].lock.l_type = F_WRLCK;
sl@0
   529
  pthread_create(&t[0], 0, threadLockingTest, &d[0]);
sl@0
   530
  pthread_create(&t[1], 0, threadLockingTest, &d[1]);
sl@0
   531
  pthread_join(t[0], 0);
sl@0
   532
  pthread_join(t[1], 0);
sl@0
   533
  close(fd);
sl@0
   534
  threadsOverrideEachOthersLocks =  d[0].result==0 && d[1].result==0;
sl@0
   535
}
sl@0
   536
#endif /* SQLITE_THREADSAFE */
sl@0
   537
sl@0
   538
/*
sl@0
   539
** Release a lockInfo structure previously allocated by findLockInfo().
sl@0
   540
*/
sl@0
   541
static void releaseLockInfo(struct lockInfo *pLock){
sl@0
   542
  if( pLock ){
sl@0
   543
    pLock->nRef--;
sl@0
   544
    if( pLock->nRef==0 ){
sl@0
   545
      if( pLock->pPrev ){
sl@0
   546
        assert( pLock->pPrev->pNext==pLock );
sl@0
   547
        pLock->pPrev->pNext = pLock->pNext;
sl@0
   548
      }else{
sl@0
   549
        assert( lockList==pLock );
sl@0
   550
        lockList = pLock->pNext;
sl@0
   551
      }
sl@0
   552
      if( pLock->pNext ){
sl@0
   553
        assert( pLock->pNext->pPrev==pLock );
sl@0
   554
        pLock->pNext->pPrev = pLock->pPrev;
sl@0
   555
      }
sl@0
   556
      sqlite3_free(pLock);
sl@0
   557
    }
sl@0
   558
  }
sl@0
   559
}
sl@0
   560
sl@0
   561
/*
sl@0
   562
** Release a openCnt structure previously allocated by findLockInfo().
sl@0
   563
*/
sl@0
   564
static void releaseOpenCnt(struct openCnt *pOpen){
sl@0
   565
  if( pOpen ){
sl@0
   566
    pOpen->nRef--;
sl@0
   567
    if( pOpen->nRef==0 ){
sl@0
   568
      if( pOpen->pPrev ){
sl@0
   569
        assert( pOpen->pPrev->pNext==pOpen );
sl@0
   570
        pOpen->pPrev->pNext = pOpen->pNext;
sl@0
   571
      }else{
sl@0
   572
        assert( openList==pOpen );
sl@0
   573
        openList = pOpen->pNext;
sl@0
   574
      }
sl@0
   575
      if( pOpen->pNext ){
sl@0
   576
        assert( pOpen->pNext->pPrev==pOpen );
sl@0
   577
        pOpen->pNext->pPrev = pOpen->pPrev;
sl@0
   578
      }
sl@0
   579
      sqlite3_free(pOpen->aPending);
sl@0
   580
      sqlite3_free(pOpen);
sl@0
   581
    }
sl@0
   582
  }
sl@0
   583
}
sl@0
   584
sl@0
   585
#if SQLITE_ENABLE_LOCKING_STYLE
sl@0
   586
/*
sl@0
   587
** Tests a byte-range locking query to see if byte range locks are 
sl@0
   588
** supported, if not we fall back to dotlockLockingStyle.
sl@0
   589
*/
sl@0
   590
static int testLockingStyle(int fd){
sl@0
   591
  struct flock lockInfo;
sl@0
   592
sl@0
   593
  /* Test byte-range lock using fcntl(). If the call succeeds, 
sl@0
   594
  ** assume that the file-system supports POSIX style locks. 
sl@0
   595
  */
sl@0
   596
  lockInfo.l_len = 1;
sl@0
   597
  lockInfo.l_start = 0;
sl@0
   598
  lockInfo.l_whence = SEEK_SET;
sl@0
   599
  lockInfo.l_type = F_RDLCK;
sl@0
   600
  if( fcntl(fd, F_GETLK, &lockInfo)!=-1 ) {
sl@0
   601
    return LOCKING_STYLE_POSIX;
sl@0
   602
  }
sl@0
   603
  
sl@0
   604
  /* Testing for flock() can give false positives.  So if if the above 
sl@0
   605
  ** test fails, then we fall back to using dot-file style locking.
sl@0
   606
  */  
sl@0
   607
  return LOCKING_STYLE_DOTFILE;
sl@0
   608
}
sl@0
   609
#endif
sl@0
   610
sl@0
   611
/* 
sl@0
   612
** If SQLITE_ENABLE_LOCKING_STYLE is defined, this function Examines the 
sl@0
   613
** f_fstypename entry in the statfs structure as returned by stat() for 
sl@0
   614
** the file system hosting the database file and selects  the appropriate
sl@0
   615
** locking style based on its value.  These values and assignments are 
sl@0
   616
** based on Darwin/OSX behavior and have not been thoroughly tested on 
sl@0
   617
** other systems.
sl@0
   618
**
sl@0
   619
** If SQLITE_ENABLE_LOCKING_STYLE is not defined, this function always
sl@0
   620
** returns LOCKING_STYLE_POSIX.
sl@0
   621
*/
sl@0
   622
static int detectLockingStyle(
sl@0
   623
  sqlite3_vfs *pVfs,
sl@0
   624
  const char *filePath, 
sl@0
   625
  int fd
sl@0
   626
){
sl@0
   627
#if SQLITE_ENABLE_LOCKING_STYLE
sl@0
   628
  struct Mapping {
sl@0
   629
    const char *zFilesystem;
sl@0
   630
    int eLockingStyle;
sl@0
   631
  } aMap[] = {
sl@0
   632
    { "hfs",    LOCKING_STYLE_POSIX },
sl@0
   633
    { "ufs",    LOCKING_STYLE_POSIX },
sl@0
   634
    { "afpfs",  LOCKING_STYLE_AFP },
sl@0
   635
#ifdef SQLITE_ENABLE_AFP_LOCKING_SMB
sl@0
   636
    { "smbfs",  LOCKING_STYLE_AFP },
sl@0
   637
#else
sl@0
   638
    { "smbfs",  LOCKING_STYLE_FLOCK },
sl@0
   639
#endif
sl@0
   640
    { "msdos",  LOCKING_STYLE_DOTFILE },
sl@0
   641
    { "webdav", LOCKING_STYLE_NONE },
sl@0
   642
    { 0, 0 }
sl@0
   643
  };
sl@0
   644
  int i;
sl@0
   645
  struct statfs fsInfo;
sl@0
   646
sl@0
   647
  if( !filePath ){
sl@0
   648
    return LOCKING_STYLE_NONE;
sl@0
   649
  }
sl@0
   650
  if( pVfs->pAppData ){
sl@0
   651
    return SQLITE_PTR_TO_INT(pVfs->pAppData);
sl@0
   652
  }
sl@0
   653
sl@0
   654
  if( statfs(filePath, &fsInfo) != -1 ){
sl@0
   655
    if( fsInfo.f_flags & MNT_RDONLY ){
sl@0
   656
      return LOCKING_STYLE_NONE;
sl@0
   657
    }
sl@0
   658
    for(i=0; aMap[i].zFilesystem; i++){
sl@0
   659
      if( strcmp(fsInfo.f_fstypename, aMap[i].zFilesystem)==0 ){
sl@0
   660
        return aMap[i].eLockingStyle;
sl@0
   661
      }
sl@0
   662
    }
sl@0
   663
  }
sl@0
   664
sl@0
   665
  /* Default case. Handles, amongst others, "nfs". */
sl@0
   666
  return testLockingStyle(fd);  
sl@0
   667
#endif
sl@0
   668
  return LOCKING_STYLE_POSIX;
sl@0
   669
}
sl@0
   670
sl@0
   671
/*
sl@0
   672
** Given a file descriptor, locate lockInfo and openCnt structures that
sl@0
   673
** describes that file descriptor.  Create new ones if necessary.  The
sl@0
   674
** return values might be uninitialized if an error occurs.
sl@0
   675
**
sl@0
   676
** Return an appropriate error code.
sl@0
   677
*/
sl@0
   678
static int findLockInfo(
sl@0
   679
  int fd,                      /* The file descriptor used in the key */
sl@0
   680
  struct lockInfo **ppLock,    /* Return the lockInfo structure here */
sl@0
   681
  struct openCnt **ppOpen      /* Return the openCnt structure here */
sl@0
   682
){
sl@0
   683
  int rc;
sl@0
   684
  struct lockKey key1;
sl@0
   685
  struct openKey key2;
sl@0
   686
  struct stat statbuf;
sl@0
   687
  struct lockInfo *pLock;
sl@0
   688
  struct openCnt *pOpen;
sl@0
   689
  rc = fstat(fd, &statbuf);
sl@0
   690
  if( rc!=0 ){
sl@0
   691
#ifdef EOVERFLOW
sl@0
   692
    if( errno==EOVERFLOW ) return SQLITE_NOLFS;
sl@0
   693
#endif
sl@0
   694
    return SQLITE_IOERR;
sl@0
   695
  }
sl@0
   696
sl@0
   697
  /* On OS X on an msdos filesystem, the inode number is reported
sl@0
   698
  ** incorrectly for zero-size files.  See ticket #3260.  To work
sl@0
   699
  ** around this problem (we consider it a bug in OS X, not SQLite)
sl@0
   700
  ** we always increase the file size to 1 by writing a single byte
sl@0
   701
  ** prior to accessing the inode number.  The one byte written is
sl@0
   702
  ** an ASCII 'S' character which also happens to be the first byte
sl@0
   703
  ** in the header of every SQLite database.  In this way, if there
sl@0
   704
  ** is a race condition such that another thread has already populated
sl@0
   705
  ** the first page of the database, no damage is done.
sl@0
   706
  */
sl@0
   707
  if( statbuf.st_size==0 ){
sl@0
   708
    write(fd, "S", 1);
sl@0
   709
    rc = fstat(fd, &statbuf);
sl@0
   710
    if( rc!=0 ){
sl@0
   711
      return SQLITE_IOERR;
sl@0
   712
    }
sl@0
   713
  }
sl@0
   714
sl@0
   715
  memset(&key1, 0, sizeof(key1));
sl@0
   716
  key1.dev = statbuf.st_dev;
sl@0
   717
  key1.ino = statbuf.st_ino;
sl@0
   718
#if SQLITE_THREADSAFE
sl@0
   719
  if( threadsOverrideEachOthersLocks<0 ){
sl@0
   720
    testThreadLockingBehavior(fd);
sl@0
   721
  }
sl@0
   722
  key1.tid = threadsOverrideEachOthersLocks ? 0 : pthread_self();
sl@0
   723
#endif
sl@0
   724
  memset(&key2, 0, sizeof(key2));
sl@0
   725
  key2.dev = statbuf.st_dev;
sl@0
   726
  key2.ino = statbuf.st_ino;
sl@0
   727
  pLock = lockList;
sl@0
   728
  while( pLock && memcmp(&key1, &pLock->key, sizeof(key1)) ){
sl@0
   729
    pLock = pLock->pNext;
sl@0
   730
  }
sl@0
   731
  if( pLock==0 ){
sl@0
   732
    pLock = sqlite3_malloc( sizeof(*pLock) );
sl@0
   733
    if( pLock==0 ){
sl@0
   734
      rc = SQLITE_NOMEM;
sl@0
   735
      goto exit_findlockinfo;
sl@0
   736
    }
sl@0
   737
    pLock->key = key1;
sl@0
   738
    pLock->nRef = 1;
sl@0
   739
    pLock->cnt = 0;
sl@0
   740
    pLock->locktype = 0;
sl@0
   741
    pLock->pNext = lockList;
sl@0
   742
    pLock->pPrev = 0;
sl@0
   743
    if( lockList ) lockList->pPrev = pLock;
sl@0
   744
    lockList = pLock;
sl@0
   745
  }else{
sl@0
   746
    pLock->nRef++;
sl@0
   747
  }
sl@0
   748
  *ppLock = pLock;
sl@0
   749
  if( ppOpen!=0 ){
sl@0
   750
    pOpen = openList;
sl@0
   751
    while( pOpen && memcmp(&key2, &pOpen->key, sizeof(key2)) ){
sl@0
   752
      pOpen = pOpen->pNext;
sl@0
   753
    }
sl@0
   754
    if( pOpen==0 ){
sl@0
   755
      pOpen = sqlite3_malloc( sizeof(*pOpen) );
sl@0
   756
      if( pOpen==0 ){
sl@0
   757
        releaseLockInfo(pLock);
sl@0
   758
        rc = SQLITE_NOMEM;
sl@0
   759
        goto exit_findlockinfo;
sl@0
   760
      }
sl@0
   761
      pOpen->key = key2;
sl@0
   762
      pOpen->nRef = 1;
sl@0
   763
      pOpen->nLock = 0;
sl@0
   764
      pOpen->nPending = 0;
sl@0
   765
      pOpen->aPending = 0;
sl@0
   766
      pOpen->pNext = openList;
sl@0
   767
      pOpen->pPrev = 0;
sl@0
   768
      if( openList ) openList->pPrev = pOpen;
sl@0
   769
      openList = pOpen;
sl@0
   770
    }else{
sl@0
   771
      pOpen->nRef++;
sl@0
   772
    }
sl@0
   773
    *ppOpen = pOpen;
sl@0
   774
  }
sl@0
   775
sl@0
   776
exit_findlockinfo:
sl@0
   777
  return rc;
sl@0
   778
}
sl@0
   779
sl@0
   780
#ifdef SQLITE_DEBUG
sl@0
   781
/*
sl@0
   782
** Helper function for printing out trace information from debugging
sl@0
   783
** binaries. This returns the string represetation of the supplied
sl@0
   784
** integer lock-type.
sl@0
   785
*/
sl@0
   786
static const char *locktypeName(int locktype){
sl@0
   787
  switch( locktype ){
sl@0
   788
  case NO_LOCK: return "NONE";
sl@0
   789
  case SHARED_LOCK: return "SHARED";
sl@0
   790
  case RESERVED_LOCK: return "RESERVED";
sl@0
   791
  case PENDING_LOCK: return "PENDING";
sl@0
   792
  case EXCLUSIVE_LOCK: return "EXCLUSIVE";
sl@0
   793
  }
sl@0
   794
  return "ERROR";
sl@0
   795
}
sl@0
   796
#endif
sl@0
   797
sl@0
   798
/*
sl@0
   799
** If we are currently in a different thread than the thread that the
sl@0
   800
** unixFile argument belongs to, then transfer ownership of the unixFile
sl@0
   801
** over to the current thread.
sl@0
   802
**
sl@0
   803
** A unixFile is only owned by a thread on systems where one thread is
sl@0
   804
** unable to override locks created by a different thread.  RedHat9 is
sl@0
   805
** an example of such a system.
sl@0
   806
**
sl@0
   807
** Ownership transfer is only allowed if the unixFile is currently unlocked.
sl@0
   808
** If the unixFile is locked and an ownership is wrong, then return
sl@0
   809
** SQLITE_MISUSE.  SQLITE_OK is returned if everything works.
sl@0
   810
*/
sl@0
   811
#if SQLITE_THREADSAFE
sl@0
   812
static int transferOwnership(unixFile *pFile){
sl@0
   813
  int rc;
sl@0
   814
  pthread_t hSelf;
sl@0
   815
  if( threadsOverrideEachOthersLocks ){
sl@0
   816
    /* Ownership transfers not needed on this system */
sl@0
   817
    return SQLITE_OK;
sl@0
   818
  }
sl@0
   819
  hSelf = pthread_self();
sl@0
   820
  if( pthread_equal(pFile->tid, hSelf) ){
sl@0
   821
    /* We are still in the same thread */
sl@0
   822
    OSTRACE1("No-transfer, same thread\n");
sl@0
   823
    return SQLITE_OK;
sl@0
   824
  }
sl@0
   825
  if( pFile->locktype!=NO_LOCK ){
sl@0
   826
    /* We cannot change ownership while we are holding a lock! */
sl@0
   827
    return SQLITE_MISUSE;
sl@0
   828
  }
sl@0
   829
  OSTRACE4("Transfer ownership of %d from %d to %d\n",
sl@0
   830
            pFile->h, pFile->tid, hSelf);
sl@0
   831
  pFile->tid = hSelf;
sl@0
   832
  if (pFile->pLock != NULL) {
sl@0
   833
    releaseLockInfo(pFile->pLock);
sl@0
   834
    rc = findLockInfo(pFile->h, &pFile->pLock, 0);
sl@0
   835
    OSTRACE5("LOCK    %d is now %s(%s,%d)\n", pFile->h,
sl@0
   836
           locktypeName(pFile->locktype),
sl@0
   837
           locktypeName(pFile->pLock->locktype), pFile->pLock->cnt);
sl@0
   838
    return rc;
sl@0
   839
  } else {
sl@0
   840
    return SQLITE_OK;
sl@0
   841
  }
sl@0
   842
}
sl@0
   843
#else
sl@0
   844
  /* On single-threaded builds, ownership transfer is a no-op */
sl@0
   845
# define transferOwnership(X) SQLITE_OK
sl@0
   846
#endif
sl@0
   847
sl@0
   848
/*
sl@0
   849
** Seek to the offset passed as the second argument, then read cnt 
sl@0
   850
** bytes into pBuf. Return the number of bytes actually read.
sl@0
   851
**
sl@0
   852
** NB:  If you define USE_PREAD or USE_PREAD64, then it might also
sl@0
   853
** be necessary to define _XOPEN_SOURCE to be 500.  This varies from
sl@0
   854
** one system to another.  Since SQLite does not define USE_PREAD
sl@0
   855
** any any form by default, we will not attempt to define _XOPEN_SOURCE.
sl@0
   856
** See tickets #2741 and #2681.
sl@0
   857
*/
sl@0
   858
static int seekAndRead(unixFile *id, sqlite3_int64 offset, void *pBuf, int cnt){
sl@0
   859
  int got;
sl@0
   860
  i64 newOffset;
sl@0
   861
  TIMER_START;
sl@0
   862
#if defined(USE_PREAD)
sl@0
   863
  got = pread(id->h, pBuf, cnt, offset);
sl@0
   864
  SimulateIOError( got = -1 );
sl@0
   865
#elif defined(USE_PREAD64)
sl@0
   866
  got = pread64(id->h, pBuf, cnt, offset);
sl@0
   867
  SimulateIOError( got = -1 );
sl@0
   868
#else
sl@0
   869
  newOffset = lseek(id->h, offset, SEEK_SET);
sl@0
   870
  SimulateIOError( newOffset-- );
sl@0
   871
  if( newOffset!=offset ){
sl@0
   872
    return -1;
sl@0
   873
  }
sl@0
   874
  got = read(id->h, pBuf, cnt);
sl@0
   875
#endif
sl@0
   876
  TIMER_END;
sl@0
   877
  OSTRACE5("READ    %-3d %5d %7lld %llu\n", id->h, got, offset, TIMER_ELAPSED);
sl@0
   878
  return got;
sl@0
   879
}
sl@0
   880
sl@0
   881
/*
sl@0
   882
** Read data from a file into a buffer.  Return SQLITE_OK if all
sl@0
   883
** bytes were read successfully and SQLITE_IOERR if anything goes
sl@0
   884
** wrong.
sl@0
   885
*/
sl@0
   886
static int unixRead(
sl@0
   887
  sqlite3_file *id, 
sl@0
   888
  void *pBuf, 
sl@0
   889
  int amt,
sl@0
   890
  sqlite3_int64 offset
sl@0
   891
){
sl@0
   892
  int got;
sl@0
   893
  assert( id );
sl@0
   894
  got = seekAndRead((unixFile*)id, offset, pBuf, amt);
sl@0
   895
  if( got==amt ){
sl@0
   896
    return SQLITE_OK;
sl@0
   897
  }else if( got<0 ){
sl@0
   898
    return SQLITE_IOERR_READ;
sl@0
   899
  }else{
sl@0
   900
    memset(&((char*)pBuf)[got], 0, amt-got);
sl@0
   901
    return SQLITE_IOERR_SHORT_READ;
sl@0
   902
  }
sl@0
   903
}
sl@0
   904
sl@0
   905
/*
sl@0
   906
** Seek to the offset in id->offset then read cnt bytes into pBuf.
sl@0
   907
** Return the number of bytes actually read.  Update the offset.
sl@0
   908
*/
sl@0
   909
static int seekAndWrite(unixFile *id, i64 offset, const void *pBuf, int cnt){
sl@0
   910
  int got;
sl@0
   911
  i64 newOffset;
sl@0
   912
  TIMER_START;
sl@0
   913
#if defined(USE_PREAD)
sl@0
   914
  got = pwrite(id->h, pBuf, cnt, offset);
sl@0
   915
#elif defined(USE_PREAD64)
sl@0
   916
  got = pwrite64(id->h, pBuf, cnt, offset);
sl@0
   917
#else
sl@0
   918
  newOffset = lseek(id->h, offset, SEEK_SET);
sl@0
   919
  if( newOffset!=offset ){
sl@0
   920
    return -1;
sl@0
   921
  }
sl@0
   922
  got = write(id->h, pBuf, cnt);
sl@0
   923
#endif
sl@0
   924
  TIMER_END;
sl@0
   925
  OSTRACE5("WRITE   %-3d %5d %7lld %llu\n", id->h, got, offset, TIMER_ELAPSED);
sl@0
   926
  return got;
sl@0
   927
}
sl@0
   928
sl@0
   929
sl@0
   930
/*
sl@0
   931
** Write data from a buffer into a file.  Return SQLITE_OK on success
sl@0
   932
** or some other error code on failure.
sl@0
   933
*/
sl@0
   934
static int unixWrite(
sl@0
   935
  sqlite3_file *id, 
sl@0
   936
  const void *pBuf, 
sl@0
   937
  int amt,
sl@0
   938
  sqlite3_int64 offset 
sl@0
   939
){
sl@0
   940
  int wrote = 0;
sl@0
   941
  assert( id );
sl@0
   942
  assert( amt>0 );
sl@0
   943
  while( amt>0 && (wrote = seekAndWrite((unixFile*)id, offset, pBuf, amt))>0 ){
sl@0
   944
    amt -= wrote;
sl@0
   945
    offset += wrote;
sl@0
   946
    pBuf = &((char*)pBuf)[wrote];
sl@0
   947
  }
sl@0
   948
  SimulateIOError(( wrote=(-1), amt=1 ));
sl@0
   949
  SimulateDiskfullError(( wrote=0, amt=1 ));
sl@0
   950
  if( amt>0 ){
sl@0
   951
    if( wrote<0 ){
sl@0
   952
      return SQLITE_IOERR_WRITE;
sl@0
   953
    }else{
sl@0
   954
      return SQLITE_FULL;
sl@0
   955
    }
sl@0
   956
  }
sl@0
   957
  return SQLITE_OK;
sl@0
   958
}
sl@0
   959
sl@0
   960
#ifdef SQLITE_TEST
sl@0
   961
/*
sl@0
   962
** Count the number of fullsyncs and normal syncs.  This is used to test
sl@0
   963
** that syncs and fullsyncs are occuring at the right times.
sl@0
   964
*/
sl@0
   965
int sqlite3_sync_count = 0;
sl@0
   966
int sqlite3_fullsync_count = 0;
sl@0
   967
#endif
sl@0
   968
sl@0
   969
/*
sl@0
   970
** Use the fdatasync() API only if the HAVE_FDATASYNC macro is defined.
sl@0
   971
** Otherwise use fsync() in its place.
sl@0
   972
*/
sl@0
   973
#ifndef HAVE_FDATASYNC
sl@0
   974
# define fdatasync fsync
sl@0
   975
#endif
sl@0
   976
sl@0
   977
/*
sl@0
   978
** Define HAVE_FULLFSYNC to 0 or 1 depending on whether or not
sl@0
   979
** the F_FULLFSYNC macro is defined.  F_FULLFSYNC is currently
sl@0
   980
** only available on Mac OS X.  But that could change.
sl@0
   981
*/
sl@0
   982
#ifdef F_FULLFSYNC
sl@0
   983
# define HAVE_FULLFSYNC 1
sl@0
   984
#else
sl@0
   985
# define HAVE_FULLFSYNC 0
sl@0
   986
#endif
sl@0
   987
sl@0
   988
sl@0
   989
/*
sl@0
   990
** The fsync() system call does not work as advertised on many
sl@0
   991
** unix systems.  The following procedure is an attempt to make
sl@0
   992
** it work better.
sl@0
   993
**
sl@0
   994
** The SQLITE_NO_SYNC macro disables all fsync()s.  This is useful
sl@0
   995
** for testing when we want to run through the test suite quickly.
sl@0
   996
** You are strongly advised *not* to deploy with SQLITE_NO_SYNC
sl@0
   997
** enabled, however, since with SQLITE_NO_SYNC enabled, an OS crash
sl@0
   998
** or power failure will likely corrupt the database file.
sl@0
   999
*/
sl@0
  1000
static int full_fsync(int fd, int fullSync, int dataOnly){
sl@0
  1001
  int rc;
sl@0
  1002
sl@0
  1003
  /* Record the number of times that we do a normal fsync() and 
sl@0
  1004
  ** FULLSYNC.  This is used during testing to verify that this procedure
sl@0
  1005
  ** gets called with the correct arguments.
sl@0
  1006
  */
sl@0
  1007
#ifdef SQLITE_TEST
sl@0
  1008
  if( fullSync ) sqlite3_fullsync_count++;
sl@0
  1009
  sqlite3_sync_count++;
sl@0
  1010
#endif
sl@0
  1011
sl@0
  1012
  /* If we compiled with the SQLITE_NO_SYNC flag, then syncing is a
sl@0
  1013
  ** no-op
sl@0
  1014
  */
sl@0
  1015
#ifdef SQLITE_NO_SYNC
sl@0
  1016
  rc = SQLITE_OK;
sl@0
  1017
#else
sl@0
  1018
sl@0
  1019
#if HAVE_FULLFSYNC
sl@0
  1020
  if( fullSync ){
sl@0
  1021
    rc = fcntl(fd, F_FULLFSYNC, 0);
sl@0
  1022
  }else{
sl@0
  1023
    rc = 1;
sl@0
  1024
  }
sl@0
  1025
  /* If the FULLFSYNC failed, fall back to attempting an fsync().
sl@0
  1026
   * It shouldn't be possible for fullfsync to fail on the local 
sl@0
  1027
   * file system (on OSX), so failure indicates that FULLFSYNC
sl@0
  1028
   * isn't supported for this file system. So, attempt an fsync 
sl@0
  1029
   * and (for now) ignore the overhead of a superfluous fcntl call.  
sl@0
  1030
   * It'd be better to detect fullfsync support once and avoid 
sl@0
  1031
   * the fcntl call every time sync is called.
sl@0
  1032
   */
sl@0
  1033
  if( rc ) rc = fsync(fd);
sl@0
  1034
sl@0
  1035
#else 
sl@0
  1036
  if( dataOnly ){
sl@0
  1037
    rc = fdatasync(fd);
sl@0
  1038
  }else{
sl@0
  1039
    rc = fsync(fd);
sl@0
  1040
  }
sl@0
  1041
#endif /* HAVE_FULLFSYNC */
sl@0
  1042
#endif /* defined(SQLITE_NO_SYNC) */
sl@0
  1043
sl@0
  1044
  return rc;
sl@0
  1045
}
sl@0
  1046
sl@0
  1047
/*
sl@0
  1048
** Make sure all writes to a particular file are committed to disk.
sl@0
  1049
**
sl@0
  1050
** If dataOnly==0 then both the file itself and its metadata (file
sl@0
  1051
** size, access time, etc) are synced.  If dataOnly!=0 then only the
sl@0
  1052
** file data is synced.
sl@0
  1053
**
sl@0
  1054
** Under Unix, also make sure that the directory entry for the file
sl@0
  1055
** has been created by fsync-ing the directory that contains the file.
sl@0
  1056
** If we do not do this and we encounter a power failure, the directory
sl@0
  1057
** entry for the journal might not exist after we reboot.  The next
sl@0
  1058
** SQLite to access the file will not know that the journal exists (because
sl@0
  1059
** the directory entry for the journal was never created) and the transaction
sl@0
  1060
** will not roll back - possibly leading to database corruption.
sl@0
  1061
*/
sl@0
  1062
static int unixSync(sqlite3_file *id, int flags){
sl@0
  1063
  int rc;
sl@0
  1064
  unixFile *pFile = (unixFile*)id;
sl@0
  1065
sl@0
  1066
  int isDataOnly = (flags&SQLITE_SYNC_DATAONLY);
sl@0
  1067
  int isFullsync = (flags&0x0F)==SQLITE_SYNC_FULL;
sl@0
  1068
sl@0
  1069
  /* Check that one of SQLITE_SYNC_NORMAL or FULL was passed */
sl@0
  1070
  assert((flags&0x0F)==SQLITE_SYNC_NORMAL
sl@0
  1071
      || (flags&0x0F)==SQLITE_SYNC_FULL
sl@0
  1072
  );
sl@0
  1073
sl@0
  1074
  /* Unix cannot, but some systems may return SQLITE_FULL from here. This
sl@0
  1075
  ** line is to test that doing so does not cause any problems.
sl@0
  1076
  */
sl@0
  1077
  SimulateDiskfullError( return SQLITE_FULL );
sl@0
  1078
sl@0
  1079
  assert( pFile );
sl@0
  1080
  OSTRACE2("SYNC    %-3d\n", pFile->h);
sl@0
  1081
  rc = full_fsync(pFile->h, isFullsync, isDataOnly);
sl@0
  1082
  SimulateIOError( rc=1 );
sl@0
  1083
  if( rc ){
sl@0
  1084
    return SQLITE_IOERR_FSYNC;
sl@0
  1085
  }
sl@0
  1086
  if( pFile->dirfd>=0 ){
sl@0
  1087
    OSTRACE4("DIRSYNC %-3d (have_fullfsync=%d fullsync=%d)\n", pFile->dirfd,
sl@0
  1088
            HAVE_FULLFSYNC, isFullsync);
sl@0
  1089
#ifndef SQLITE_DISABLE_DIRSYNC
sl@0
  1090
    /* The directory sync is only attempted if full_fsync is
sl@0
  1091
    ** turned off or unavailable.  If a full_fsync occurred above,
sl@0
  1092
    ** then the directory sync is superfluous.
sl@0
  1093
    */
sl@0
  1094
    if( (!HAVE_FULLFSYNC || !isFullsync) && full_fsync(pFile->dirfd,0,0) ){
sl@0
  1095
       /*
sl@0
  1096
       ** We have received multiple reports of fsync() returning
sl@0
  1097
       ** errors when applied to directories on certain file systems.
sl@0
  1098
       ** A failed directory sync is not a big deal.  So it seems
sl@0
  1099
       ** better to ignore the error.  Ticket #1657
sl@0
  1100
       */
sl@0
  1101
       /* return SQLITE_IOERR; */
sl@0
  1102
    }
sl@0
  1103
#endif
sl@0
  1104
    close(pFile->dirfd);  /* Only need to sync once, so close the directory */
sl@0
  1105
    pFile->dirfd = -1;    /* when we are done. */
sl@0
  1106
  }
sl@0
  1107
  return SQLITE_OK;
sl@0
  1108
}
sl@0
  1109
sl@0
  1110
/*
sl@0
  1111
** Truncate an open file to a specified size
sl@0
  1112
*/
sl@0
  1113
static int unixTruncate(sqlite3_file *id, i64 nByte){
sl@0
  1114
  int rc;
sl@0
  1115
  assert( id );
sl@0
  1116
  SimulateIOError( return SQLITE_IOERR_TRUNCATE );
sl@0
  1117
  rc = ftruncate(((unixFile*)id)->h, (off_t)nByte);
sl@0
  1118
  if( rc ){
sl@0
  1119
    return SQLITE_IOERR_TRUNCATE;
sl@0
  1120
  }else{
sl@0
  1121
    return SQLITE_OK;
sl@0
  1122
  }
sl@0
  1123
}
sl@0
  1124
sl@0
  1125
/*
sl@0
  1126
** Determine the current size of a file in bytes
sl@0
  1127
*/
sl@0
  1128
static int unixFileSize(sqlite3_file *id, i64 *pSize){
sl@0
  1129
  int rc;
sl@0
  1130
  struct stat buf;
sl@0
  1131
  assert( id );
sl@0
  1132
  rc = fstat(((unixFile*)id)->h, &buf);
sl@0
  1133
  SimulateIOError( rc=1 );
sl@0
  1134
  if( rc!=0 ){
sl@0
  1135
    return SQLITE_IOERR_FSTAT;
sl@0
  1136
  }
sl@0
  1137
  *pSize = buf.st_size;
sl@0
  1138
sl@0
  1139
  /* When opening a zero-size database, the findLockInfo() procedure
sl@0
  1140
  ** writes a single byte into that file in order to work around a bug
sl@0
  1141
  ** in the OS-X msdos filesystem.  In order to avoid problems with upper
sl@0
  1142
  ** layers, we need to report this file size as zero even though it is
sl@0
  1143
  ** really 1.   Ticket #3260.
sl@0
  1144
  */
sl@0
  1145
  if( *pSize==1 ) *pSize = 0;
sl@0
  1146
sl@0
  1147
sl@0
  1148
  return SQLITE_OK;
sl@0
  1149
}
sl@0
  1150
sl@0
  1151
/*
sl@0
  1152
** This routine translates a standard POSIX errno code into something
sl@0
  1153
** useful to the clients of the sqlite3 functions.  Specifically, it is
sl@0
  1154
** intended to translate a variety of "try again" errors into SQLITE_BUSY
sl@0
  1155
** and a variety of "please close the file descriptor NOW" errors into 
sl@0
  1156
** SQLITE_IOERR
sl@0
  1157
** 
sl@0
  1158
** Errors during initialization of locks, or file system support for locks,
sl@0
  1159
** should handle ENOLCK, ENOTSUP, EOPNOTSUPP separately.
sl@0
  1160
*/
sl@0
  1161
static int sqliteErrorFromPosixError(int posixError, int sqliteIOErr) {
sl@0
  1162
  switch (posixError) {
sl@0
  1163
  case 0: 
sl@0
  1164
    return SQLITE_OK;
sl@0
  1165
    
sl@0
  1166
  case EAGAIN:
sl@0
  1167
  case ETIMEDOUT:
sl@0
  1168
  case EBUSY:
sl@0
  1169
  case EINTR:
sl@0
  1170
  case ENOLCK:  
sl@0
  1171
    /* random NFS retry error, unless during file system support 
sl@0
  1172
     * introspection, in which it actually means what it says */
sl@0
  1173
    return SQLITE_BUSY;
sl@0
  1174
    
sl@0
  1175
  case EACCES: 
sl@0
  1176
    /* EACCES is like EAGAIN during locking operations, but not any other time*/
sl@0
  1177
    if( (sqliteIOErr == SQLITE_IOERR_LOCK) || 
sl@0
  1178
	(sqliteIOErr == SQLITE_IOERR_UNLOCK) || 
sl@0
  1179
	(sqliteIOErr == SQLITE_IOERR_RDLOCK) ||
sl@0
  1180
	(sqliteIOErr == SQLITE_IOERR_CHECKRESERVEDLOCK) ){
sl@0
  1181
      return SQLITE_BUSY;
sl@0
  1182
    }
sl@0
  1183
    /* else fall through */
sl@0
  1184
  case EPERM: 
sl@0
  1185
    return SQLITE_PERM;
sl@0
  1186
    
sl@0
  1187
  case EDEADLK:
sl@0
  1188
    return SQLITE_IOERR_BLOCKED;
sl@0
  1189
    
sl@0
  1190
#if EOPNOTSUPP!=ENOTSUP
sl@0
  1191
  case EOPNOTSUPP: 
sl@0
  1192
    /* something went terribly awry, unless during file system support 
sl@0
  1193
     * introspection, in which it actually means what it says */
sl@0
  1194
#endif
sl@0
  1195
#ifdef ENOTSUP
sl@0
  1196
  case ENOTSUP: 
sl@0
  1197
    /* invalid fd, unless during file system support introspection, in which 
sl@0
  1198
     * it actually means what it says */
sl@0
  1199
#endif
sl@0
  1200
  case EIO:
sl@0
  1201
  case EBADF:
sl@0
  1202
  case EINVAL:
sl@0
  1203
  case ENOTCONN:
sl@0
  1204
  case ENODEV:
sl@0
  1205
  case ENXIO:
sl@0
  1206
  case ENOENT:
sl@0
  1207
  case ESTALE:
sl@0
  1208
  case ENOSYS:
sl@0
  1209
    /* these should force the client to close the file and reconnect */
sl@0
  1210
    
sl@0
  1211
  default: 
sl@0
  1212
    return sqliteIOErr;
sl@0
  1213
  }
sl@0
  1214
}
sl@0
  1215
sl@0
  1216
/*
sl@0
  1217
** This routine checks if there is a RESERVED lock held on the specified
sl@0
  1218
** file by this or any other process. If such a lock is held, set *pResOut
sl@0
  1219
** to a non-zero value otherwise *pResOut is set to zero.  The return value
sl@0
  1220
** is set to SQLITE_OK unless an I/O error occurs during lock checking.
sl@0
  1221
*/
sl@0
  1222
static int unixCheckReservedLock(sqlite3_file *id, int *pResOut){
sl@0
  1223
  int rc = SQLITE_OK;
sl@0
  1224
  int reserved = 0;
sl@0
  1225
  unixFile *pFile = (unixFile*)id;
sl@0
  1226
sl@0
  1227
  SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; );
sl@0
  1228
sl@0
  1229
  assert( pFile );
sl@0
  1230
  enterMutex(); /* Because pFile->pLock is shared across threads */
sl@0
  1231
sl@0
  1232
  /* Check if a thread in this process holds such a lock */
sl@0
  1233
  if( pFile->pLock->locktype>SHARED_LOCK ){
sl@0
  1234
    reserved = 1;
sl@0
  1235
  }
sl@0
  1236
sl@0
  1237
  /* Otherwise see if some other process holds it.
sl@0
  1238
  */
sl@0
  1239
  if( !reserved ){
sl@0
  1240
    struct flock lock;
sl@0
  1241
    lock.l_whence = SEEK_SET;
sl@0
  1242
    lock.l_start = RESERVED_BYTE;
sl@0
  1243
    lock.l_len = 1;
sl@0
  1244
    lock.l_type = F_WRLCK;
sl@0
  1245
    if (-1 == fcntl(pFile->h, F_GETLK, &lock)) {
sl@0
  1246
      int tErrno = errno;
sl@0
  1247
      rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_CHECKRESERVEDLOCK);
sl@0
  1248
      pFile->lastErrno = tErrno;
sl@0
  1249
    } else if( lock.l_type!=F_UNLCK ){
sl@0
  1250
      reserved = 1;
sl@0
  1251
    }
sl@0
  1252
  }
sl@0
  1253
  
sl@0
  1254
  leaveMutex();
sl@0
  1255
  OSTRACE4("TEST WR-LOCK %d %d %d\n", pFile->h, rc, reserved);
sl@0
  1256
sl@0
  1257
  *pResOut = reserved;
sl@0
  1258
  return rc;
sl@0
  1259
}
sl@0
  1260
sl@0
  1261
/*
sl@0
  1262
** Lock the file with the lock specified by parameter locktype - one
sl@0
  1263
** of the following:
sl@0
  1264
**
sl@0
  1265
**     (1) SHARED_LOCK
sl@0
  1266
**     (2) RESERVED_LOCK
sl@0
  1267
**     (3) PENDING_LOCK
sl@0
  1268
**     (4) EXCLUSIVE_LOCK
sl@0
  1269
**
sl@0
  1270
** Sometimes when requesting one lock state, additional lock states
sl@0
  1271
** are inserted in between.  The locking might fail on one of the later
sl@0
  1272
** transitions leaving the lock state different from what it started but
sl@0
  1273
** still short of its goal.  The following chart shows the allowed
sl@0
  1274
** transitions and the inserted intermediate states:
sl@0
  1275
**
sl@0
  1276
**    UNLOCKED -> SHARED
sl@0
  1277
**    SHARED -> RESERVED
sl@0
  1278
**    SHARED -> (PENDING) -> EXCLUSIVE
sl@0
  1279
**    RESERVED -> (PENDING) -> EXCLUSIVE
sl@0
  1280
**    PENDING -> EXCLUSIVE
sl@0
  1281
**
sl@0
  1282
** This routine will only increase a lock.  Use the sqlite3OsUnlock()
sl@0
  1283
** routine to lower a locking level.
sl@0
  1284
*/
sl@0
  1285
static int unixLock(sqlite3_file *id, int locktype){
sl@0
  1286
  /* The following describes the implementation of the various locks and
sl@0
  1287
  ** lock transitions in terms of the POSIX advisory shared and exclusive
sl@0
  1288
  ** lock primitives (called read-locks and write-locks below, to avoid
sl@0
  1289
  ** confusion with SQLite lock names). The algorithms are complicated
sl@0
  1290
  ** slightly in order to be compatible with windows systems simultaneously
sl@0
  1291
  ** accessing the same database file, in case that is ever required.
sl@0
  1292
  **
sl@0
  1293
  ** Symbols defined in os.h indentify the 'pending byte' and the 'reserved
sl@0
  1294
  ** byte', each single bytes at well known offsets, and the 'shared byte
sl@0
  1295
  ** range', a range of 510 bytes at a well known offset.
sl@0
  1296
  **
sl@0
  1297
  ** To obtain a SHARED lock, a read-lock is obtained on the 'pending
sl@0
  1298
  ** byte'.  If this is successful, a random byte from the 'shared byte
sl@0
  1299
  ** range' is read-locked and the lock on the 'pending byte' released.
sl@0
  1300
  **
sl@0
  1301
  ** A process may only obtain a RESERVED lock after it has a SHARED lock.
sl@0
  1302
  ** A RESERVED lock is implemented by grabbing a write-lock on the
sl@0
  1303
  ** 'reserved byte'. 
sl@0
  1304
  **
sl@0
  1305
  ** A process may only obtain a PENDING lock after it has obtained a
sl@0
  1306
  ** SHARED lock. A PENDING lock is implemented by obtaining a write-lock
sl@0
  1307
  ** on the 'pending byte'. This ensures that no new SHARED locks can be
sl@0
  1308
  ** obtained, but existing SHARED locks are allowed to persist. A process
sl@0
  1309
  ** does not have to obtain a RESERVED lock on the way to a PENDING lock.
sl@0
  1310
  ** This property is used by the algorithm for rolling back a journal file
sl@0
  1311
  ** after a crash.
sl@0
  1312
  **
sl@0
  1313
  ** An EXCLUSIVE lock, obtained after a PENDING lock is held, is
sl@0
  1314
  ** implemented by obtaining a write-lock on the entire 'shared byte
sl@0
  1315
  ** range'. Since all other locks require a read-lock on one of the bytes
sl@0
  1316
  ** within this range, this ensures that no other locks are held on the
sl@0
  1317
  ** database. 
sl@0
  1318
  **
sl@0
  1319
  ** The reason a single byte cannot be used instead of the 'shared byte
sl@0
  1320
  ** range' is that some versions of windows do not support read-locks. By
sl@0
  1321
  ** locking a random byte from a range, concurrent SHARED locks may exist
sl@0
  1322
  ** even if the locking primitive used is always a write-lock.
sl@0
  1323
  */
sl@0
  1324
  int rc = SQLITE_OK;
sl@0
  1325
  unixFile *pFile = (unixFile*)id;
sl@0
  1326
  struct lockInfo *pLock = pFile->pLock;
sl@0
  1327
  struct flock lock;
sl@0
  1328
  int s;
sl@0
  1329
sl@0
  1330
  assert( pFile );
sl@0
  1331
  OSTRACE7("LOCK    %d %s was %s(%s,%d) pid=%d\n", pFile->h,
sl@0
  1332
      locktypeName(locktype), locktypeName(pFile->locktype),
sl@0
  1333
      locktypeName(pLock->locktype), pLock->cnt , getpid());
sl@0
  1334
sl@0
  1335
  /* If there is already a lock of this type or more restrictive on the
sl@0
  1336
  ** unixFile, do nothing. Don't use the end_lock: exit path, as
sl@0
  1337
  ** enterMutex() hasn't been called yet.
sl@0
  1338
  */
sl@0
  1339
  if( pFile->locktype>=locktype ){
sl@0
  1340
    OSTRACE3("LOCK    %d %s ok (already held)\n", pFile->h,
sl@0
  1341
            locktypeName(locktype));
sl@0
  1342
    return SQLITE_OK;
sl@0
  1343
  }
sl@0
  1344
sl@0
  1345
  /* Make sure the locking sequence is correct
sl@0
  1346
  */
sl@0
  1347
  assert( pFile->locktype!=NO_LOCK || locktype==SHARED_LOCK );
sl@0
  1348
  assert( locktype!=PENDING_LOCK );
sl@0
  1349
  assert( locktype!=RESERVED_LOCK || pFile->locktype==SHARED_LOCK );
sl@0
  1350
sl@0
  1351
  /* This mutex is needed because pFile->pLock is shared across threads
sl@0
  1352
  */
sl@0
  1353
  enterMutex();
sl@0
  1354
sl@0
  1355
  /* Make sure the current thread owns the pFile.
sl@0
  1356
  */
sl@0
  1357
  rc = transferOwnership(pFile);
sl@0
  1358
  if( rc!=SQLITE_OK ){
sl@0
  1359
    leaveMutex();
sl@0
  1360
    return rc;
sl@0
  1361
  }
sl@0
  1362
  pLock = pFile->pLock;
sl@0
  1363
sl@0
  1364
  /* If some thread using this PID has a lock via a different unixFile*
sl@0
  1365
  ** handle that precludes the requested lock, return BUSY.
sl@0
  1366
  */
sl@0
  1367
  if( (pFile->locktype!=pLock->locktype && 
sl@0
  1368
          (pLock->locktype>=PENDING_LOCK || locktype>SHARED_LOCK))
sl@0
  1369
  ){
sl@0
  1370
    rc = SQLITE_BUSY;
sl@0
  1371
    goto end_lock;
sl@0
  1372
  }
sl@0
  1373
sl@0
  1374
  /* If a SHARED lock is requested, and some thread using this PID already
sl@0
  1375
  ** has a SHARED or RESERVED lock, then increment reference counts and
sl@0
  1376
  ** return SQLITE_OK.
sl@0
  1377
  */
sl@0
  1378
  if( locktype==SHARED_LOCK && 
sl@0
  1379
      (pLock->locktype==SHARED_LOCK || pLock->locktype==RESERVED_LOCK) ){
sl@0
  1380
    assert( locktype==SHARED_LOCK );
sl@0
  1381
    assert( pFile->locktype==0 );
sl@0
  1382
    assert( pLock->cnt>0 );
sl@0
  1383
    pFile->locktype = SHARED_LOCK;
sl@0
  1384
    pLock->cnt++;
sl@0
  1385
    pFile->pOpen->nLock++;
sl@0
  1386
    goto end_lock;
sl@0
  1387
  }
sl@0
  1388
sl@0
  1389
  lock.l_len = 1L;
sl@0
  1390
sl@0
  1391
  lock.l_whence = SEEK_SET;
sl@0
  1392
sl@0
  1393
  /* A PENDING lock is needed before acquiring a SHARED lock and before
sl@0
  1394
  ** acquiring an EXCLUSIVE lock.  For the SHARED lock, the PENDING will
sl@0
  1395
  ** be released.
sl@0
  1396
  */
sl@0
  1397
  if( locktype==SHARED_LOCK 
sl@0
  1398
      || (locktype==EXCLUSIVE_LOCK && pFile->locktype<PENDING_LOCK)
sl@0
  1399
  ){
sl@0
  1400
    lock.l_type = (locktype==SHARED_LOCK?F_RDLCK:F_WRLCK);
sl@0
  1401
    lock.l_start = PENDING_BYTE;
sl@0
  1402
    s = fcntl(pFile->h, F_SETLK, &lock);
sl@0
  1403
    if( s==(-1) ){
sl@0
  1404
      int tErrno = errno;
sl@0
  1405
      rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
sl@0
  1406
      if( IS_LOCK_ERROR(rc) ){
sl@0
  1407
        pFile->lastErrno = tErrno;
sl@0
  1408
      }
sl@0
  1409
      goto end_lock;
sl@0
  1410
    }
sl@0
  1411
  }
sl@0
  1412
sl@0
  1413
sl@0
  1414
  /* If control gets to this point, then actually go ahead and make
sl@0
  1415
  ** operating system calls for the specified lock.
sl@0
  1416
  */
sl@0
  1417
  if( locktype==SHARED_LOCK ){
sl@0
  1418
    int tErrno = 0;
sl@0
  1419
    assert( pLock->cnt==0 );
sl@0
  1420
    assert( pLock->locktype==0 );
sl@0
  1421
sl@0
  1422
    /* Now get the read-lock */
sl@0
  1423
    lock.l_start = SHARED_FIRST;
sl@0
  1424
    lock.l_len = SHARED_SIZE;
sl@0
  1425
    if( (s = fcntl(pFile->h, F_SETLK, &lock))==(-1) ){
sl@0
  1426
      tErrno = errno;
sl@0
  1427
    }
sl@0
  1428
    /* Drop the temporary PENDING lock */
sl@0
  1429
    lock.l_start = PENDING_BYTE;
sl@0
  1430
    lock.l_len = 1L;
sl@0
  1431
    lock.l_type = F_UNLCK;
sl@0
  1432
    if( fcntl(pFile->h, F_SETLK, &lock)!=0 ){
sl@0
  1433
      if( s != -1 ){
sl@0
  1434
        /* This could happen with a network mount */
sl@0
  1435
        tErrno = errno; 
sl@0
  1436
        rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_UNLOCK); 
sl@0
  1437
        if( IS_LOCK_ERROR(rc) ){
sl@0
  1438
          pFile->lastErrno = tErrno;
sl@0
  1439
        }
sl@0
  1440
        goto end_lock;
sl@0
  1441
      }
sl@0
  1442
    }
sl@0
  1443
    if( s==(-1) ){
sl@0
  1444
      rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
sl@0
  1445
      if( IS_LOCK_ERROR(rc) ){
sl@0
  1446
        pFile->lastErrno = tErrno;
sl@0
  1447
      }
sl@0
  1448
    }else{
sl@0
  1449
      pFile->locktype = SHARED_LOCK;
sl@0
  1450
      pFile->pOpen->nLock++;
sl@0
  1451
      pLock->cnt = 1;
sl@0
  1452
    }
sl@0
  1453
  }else if( locktype==EXCLUSIVE_LOCK && pLock->cnt>1 ){
sl@0
  1454
    /* We are trying for an exclusive lock but another thread in this
sl@0
  1455
    ** same process is still holding a shared lock. */
sl@0
  1456
    rc = SQLITE_BUSY;
sl@0
  1457
  }else{
sl@0
  1458
    /* The request was for a RESERVED or EXCLUSIVE lock.  It is
sl@0
  1459
    ** assumed that there is a SHARED or greater lock on the file
sl@0
  1460
    ** already.
sl@0
  1461
    */
sl@0
  1462
    assert( 0!=pFile->locktype );
sl@0
  1463
    lock.l_type = F_WRLCK;
sl@0
  1464
    switch( locktype ){
sl@0
  1465
      case RESERVED_LOCK:
sl@0
  1466
        lock.l_start = RESERVED_BYTE;
sl@0
  1467
        break;
sl@0
  1468
      case EXCLUSIVE_LOCK:
sl@0
  1469
        lock.l_start = SHARED_FIRST;
sl@0
  1470
        lock.l_len = SHARED_SIZE;
sl@0
  1471
        break;
sl@0
  1472
      default:
sl@0
  1473
        assert(0);
sl@0
  1474
    }
sl@0
  1475
    s = fcntl(pFile->h, F_SETLK, &lock);
sl@0
  1476
    if( s==(-1) ){
sl@0
  1477
      int tErrno = errno;
sl@0
  1478
      rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
sl@0
  1479
      if( IS_LOCK_ERROR(rc) ){
sl@0
  1480
        pFile->lastErrno = tErrno;
sl@0
  1481
      }
sl@0
  1482
    }
sl@0
  1483
  }
sl@0
  1484
  
sl@0
  1485
  if( rc==SQLITE_OK ){
sl@0
  1486
    pFile->locktype = locktype;
sl@0
  1487
    pLock->locktype = locktype;
sl@0
  1488
  }else if( locktype==EXCLUSIVE_LOCK ){
sl@0
  1489
    pFile->locktype = PENDING_LOCK;
sl@0
  1490
    pLock->locktype = PENDING_LOCK;
sl@0
  1491
  }
sl@0
  1492
sl@0
  1493
end_lock:
sl@0
  1494
  leaveMutex();
sl@0
  1495
  OSTRACE4("LOCK    %d %s %s\n", pFile->h, locktypeName(locktype), 
sl@0
  1496
      rc==SQLITE_OK ? "ok" : "failed");
sl@0
  1497
  return rc;
sl@0
  1498
}
sl@0
  1499
sl@0
  1500
/*
sl@0
  1501
** Lower the locking level on file descriptor pFile to locktype.  locktype
sl@0
  1502
** must be either NO_LOCK or SHARED_LOCK.
sl@0
  1503
**
sl@0
  1504
** If the locking level of the file descriptor is already at or below
sl@0
  1505
** the requested locking level, this routine is a no-op.
sl@0
  1506
*/
sl@0
  1507
static int unixUnlock(sqlite3_file *id, int locktype){
sl@0
  1508
  struct lockInfo *pLock;
sl@0
  1509
  struct flock lock;
sl@0
  1510
  int rc = SQLITE_OK;
sl@0
  1511
  unixFile *pFile = (unixFile*)id;
sl@0
  1512
  int h;
sl@0
  1513
sl@0
  1514
  assert( pFile );
sl@0
  1515
  OSTRACE7("UNLOCK  %d %d was %d(%d,%d) pid=%d\n", pFile->h, locktype,
sl@0
  1516
      pFile->locktype, pFile->pLock->locktype, pFile->pLock->cnt, getpid());
sl@0
  1517
sl@0
  1518
  assert( locktype<=SHARED_LOCK );
sl@0
  1519
  if( pFile->locktype<=locktype ){
sl@0
  1520
    return SQLITE_OK;
sl@0
  1521
  }
sl@0
  1522
  if( CHECK_THREADID(pFile) ){
sl@0
  1523
    return SQLITE_MISUSE;
sl@0
  1524
  }
sl@0
  1525
  enterMutex();
sl@0
  1526
  h = pFile->h;
sl@0
  1527
  pLock = pFile->pLock;
sl@0
  1528
  assert( pLock->cnt!=0 );
sl@0
  1529
  if( pFile->locktype>SHARED_LOCK ){
sl@0
  1530
    assert( pLock->locktype==pFile->locktype );
sl@0
  1531
    SimulateIOErrorBenign(1);
sl@0
  1532
    SimulateIOError( h=(-1) )
sl@0
  1533
    SimulateIOErrorBenign(0);
sl@0
  1534
    if( locktype==SHARED_LOCK ){
sl@0
  1535
      lock.l_type = F_RDLCK;
sl@0
  1536
      lock.l_whence = SEEK_SET;
sl@0
  1537
      lock.l_start = SHARED_FIRST;
sl@0
  1538
      lock.l_len = SHARED_SIZE;
sl@0
  1539
      if( fcntl(h, F_SETLK, &lock)==(-1) ){
sl@0
  1540
        int tErrno = errno;
sl@0
  1541
        rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_RDLOCK);
sl@0
  1542
        if( IS_LOCK_ERROR(rc) ){
sl@0
  1543
          pFile->lastErrno = tErrno;
sl@0
  1544
        }
sl@0
  1545
				goto end_unlock;
sl@0
  1546
      }
sl@0
  1547
    }
sl@0
  1548
    lock.l_type = F_UNLCK;
sl@0
  1549
    lock.l_whence = SEEK_SET;
sl@0
  1550
    lock.l_start = PENDING_BYTE;
sl@0
  1551
    lock.l_len = 2L;  assert( PENDING_BYTE+1==RESERVED_BYTE );
sl@0
  1552
    if( fcntl(h, F_SETLK, &lock)!=(-1) ){
sl@0
  1553
      pLock->locktype = SHARED_LOCK;
sl@0
  1554
    }else{
sl@0
  1555
      int tErrno = errno;
sl@0
  1556
      rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_UNLOCK);
sl@0
  1557
      if( IS_LOCK_ERROR(rc) ){
sl@0
  1558
        pFile->lastErrno = tErrno;
sl@0
  1559
      }
sl@0
  1560
			goto end_unlock;
sl@0
  1561
    }
sl@0
  1562
  }
sl@0
  1563
  if( locktype==NO_LOCK ){
sl@0
  1564
    struct openCnt *pOpen;
sl@0
  1565
sl@0
  1566
    /* Decrement the shared lock counter.  Release the lock using an
sl@0
  1567
    ** OS call only when all threads in this same process have released
sl@0
  1568
    ** the lock.
sl@0
  1569
    */
sl@0
  1570
    pLock->cnt--;
sl@0
  1571
    if( pLock->cnt==0 ){
sl@0
  1572
      lock.l_type = F_UNLCK;
sl@0
  1573
      lock.l_whence = SEEK_SET;
sl@0
  1574
      lock.l_start = lock.l_len = 0L;
sl@0
  1575
      SimulateIOErrorBenign(1);
sl@0
  1576
      SimulateIOError( h=(-1) )
sl@0
  1577
      SimulateIOErrorBenign(0);
sl@0
  1578
      if( fcntl(h, F_SETLK, &lock)!=(-1) ){
sl@0
  1579
        pLock->locktype = NO_LOCK;
sl@0
  1580
      }else{
sl@0
  1581
        int tErrno = errno;
sl@0
  1582
        rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_UNLOCK);
sl@0
  1583
        if( IS_LOCK_ERROR(rc) ){
sl@0
  1584
          pFile->lastErrno = tErrno;
sl@0
  1585
        }
sl@0
  1586
        pLock->cnt = 1;
sl@0
  1587
				goto end_unlock;
sl@0
  1588
      }
sl@0
  1589
    }
sl@0
  1590
sl@0
  1591
    /* Decrement the count of locks against this same file.  When the
sl@0
  1592
    ** count reaches zero, close any other file descriptors whose close
sl@0
  1593
    ** was deferred because of outstanding locks.
sl@0
  1594
    */
sl@0
  1595
    if( rc==SQLITE_OK ){
sl@0
  1596
      pOpen = pFile->pOpen;
sl@0
  1597
      pOpen->nLock--;
sl@0
  1598
      assert( pOpen->nLock>=0 );
sl@0
  1599
      if( pOpen->nLock==0 && pOpen->nPending>0 ){
sl@0
  1600
        int i;
sl@0
  1601
        for(i=0; i<pOpen->nPending; i++){
sl@0
  1602
          close(pOpen->aPending[i]);
sl@0
  1603
        }
sl@0
  1604
        sqlite3_free(pOpen->aPending);
sl@0
  1605
        pOpen->nPending = 0;
sl@0
  1606
        pOpen->aPending = 0;
sl@0
  1607
      }
sl@0
  1608
    }
sl@0
  1609
  }
sl@0
  1610
	
sl@0
  1611
end_unlock:
sl@0
  1612
  leaveMutex();
sl@0
  1613
  if( rc==SQLITE_OK ) pFile->locktype = locktype;
sl@0
  1614
  return rc;
sl@0
  1615
}
sl@0
  1616
sl@0
  1617
/*
sl@0
  1618
** This function performs the parts of the "close file" operation 
sl@0
  1619
** common to all locking schemes. It closes the directory and file
sl@0
  1620
** handles, if they are valid, and sets all fields of the unixFile
sl@0
  1621
** structure to 0.
sl@0
  1622
*/
sl@0
  1623
static int closeUnixFile(sqlite3_file *id){
sl@0
  1624
  unixFile *pFile = (unixFile*)id;
sl@0
  1625
  if( pFile ){
sl@0
  1626
    if( pFile->dirfd>=0 ){
sl@0
  1627
      close(pFile->dirfd);
sl@0
  1628
    }
sl@0
  1629
    if( pFile->h>=0 ){
sl@0
  1630
      close(pFile->h);
sl@0
  1631
    }
sl@0
  1632
    OSTRACE2("CLOSE   %-3d\n", pFile->h);
sl@0
  1633
    OpenCounter(-1);
sl@0
  1634
    memset(pFile, 0, sizeof(unixFile));
sl@0
  1635
  }
sl@0
  1636
  return SQLITE_OK;
sl@0
  1637
}
sl@0
  1638
sl@0
  1639
/*
sl@0
  1640
** Close a file.
sl@0
  1641
*/
sl@0
  1642
static int unixClose(sqlite3_file *id){
sl@0
  1643
  if( id ){
sl@0
  1644
    unixFile *pFile = (unixFile *)id;
sl@0
  1645
    unixUnlock(id, NO_LOCK);
sl@0
  1646
    enterMutex();
sl@0
  1647
    if( pFile->pOpen && pFile->pOpen->nLock ){
sl@0
  1648
      /* If there are outstanding locks, do not actually close the file just
sl@0
  1649
      ** yet because that would clear those locks.  Instead, add the file
sl@0
  1650
      ** descriptor to pOpen->aPending.  It will be automatically closed when
sl@0
  1651
      ** the last lock is cleared.
sl@0
  1652
      */
sl@0
  1653
      int *aNew;
sl@0
  1654
      struct openCnt *pOpen = pFile->pOpen;
sl@0
  1655
      aNew = sqlite3_realloc(pOpen->aPending, (pOpen->nPending+1)*sizeof(int) );
sl@0
  1656
      if( aNew==0 ){
sl@0
  1657
        /* If a malloc fails, just leak the file descriptor */
sl@0
  1658
      }else{
sl@0
  1659
        pOpen->aPending = aNew;
sl@0
  1660
        pOpen->aPending[pOpen->nPending] = pFile->h;
sl@0
  1661
        pOpen->nPending++;
sl@0
  1662
        pFile->h = -1;
sl@0
  1663
      }
sl@0
  1664
    }
sl@0
  1665
    releaseLockInfo(pFile->pLock);
sl@0
  1666
    releaseOpenCnt(pFile->pOpen);
sl@0
  1667
    closeUnixFile(id);
sl@0
  1668
    leaveMutex();
sl@0
  1669
  }
sl@0
  1670
  return SQLITE_OK;
sl@0
  1671
}
sl@0
  1672
sl@0
  1673
sl@0
  1674
#if SQLITE_ENABLE_LOCKING_STYLE
sl@0
  1675
#pragma mark AFP Support
sl@0
  1676
sl@0
  1677
/*
sl@0
  1678
 ** The afpLockingContext structure contains all afp lock specific state
sl@0
  1679
 */
sl@0
  1680
typedef struct afpLockingContext afpLockingContext;
sl@0
  1681
struct afpLockingContext {
sl@0
  1682
  unsigned long long sharedLockByte;
sl@0
  1683
  const char *filePath;
sl@0
  1684
};
sl@0
  1685
sl@0
  1686
struct ByteRangeLockPB2
sl@0
  1687
{
sl@0
  1688
  unsigned long long offset;        /* offset to first byte to lock */
sl@0
  1689
  unsigned long long length;        /* nbr of bytes to lock */
sl@0
  1690
  unsigned long long retRangeStart; /* nbr of 1st byte locked if successful */
sl@0
  1691
  unsigned char unLockFlag;         /* 1 = unlock, 0 = lock */
sl@0
  1692
  unsigned char startEndFlag;       /* 1=rel to end of fork, 0=rel to start */
sl@0
  1693
  int fd;                           /* file desc to assoc this lock with */
sl@0
  1694
};
sl@0
  1695
sl@0
  1696
#define afpfsByteRangeLock2FSCTL        _IOWR('z', 23, struct ByteRangeLockPB2)
sl@0
  1697
sl@0
  1698
/* 
sl@0
  1699
 ** Return SQLITE_OK on success, SQLITE_BUSY on failure.
sl@0
  1700
 */
sl@0
  1701
static int _AFPFSSetLock(
sl@0
  1702
  const char *path, 
sl@0
  1703
  unixFile *pFile, 
sl@0
  1704
  unsigned long long offset, 
sl@0
  1705
  unsigned long long length, 
sl@0
  1706
  int setLockFlag
sl@0
  1707
){
sl@0
  1708
  struct ByteRangeLockPB2       pb;
sl@0
  1709
  int                     err;
sl@0
  1710
  
sl@0
  1711
  pb.unLockFlag = setLockFlag ? 0 : 1;
sl@0
  1712
  pb.startEndFlag = 0;
sl@0
  1713
  pb.offset = offset;
sl@0
  1714
  pb.length = length; 
sl@0
  1715
  pb.fd = pFile->h;
sl@0
  1716
  OSTRACE5("AFPLOCK setting lock %s for %d in range %llx:%llx\n", 
sl@0
  1717
    (setLockFlag?"ON":"OFF"), pFile->h, offset, length);
sl@0
  1718
  err = fsctl(path, afpfsByteRangeLock2FSCTL, &pb, 0);
sl@0
  1719
  if ( err==-1 ) {
sl@0
  1720
    int rc;
sl@0
  1721
    int tErrno = errno;
sl@0
  1722
    OSTRACE4("AFPLOCK failed to fsctl() '%s' %d %s\n", path, tErrno, strerror(tErrno));
sl@0
  1723
    rc = sqliteErrorFromPosixError(tErrno, setLockFlag ? SQLITE_IOERR_LOCK : SQLITE_IOERR_UNLOCK); /* error */
sl@0
  1724
    if( IS_LOCK_ERROR(rc) ){
sl@0
  1725
      pFile->lastErrno = tErrno;
sl@0
  1726
    }
sl@0
  1727
    return rc;
sl@0
  1728
  } else {
sl@0
  1729
    return SQLITE_OK;
sl@0
  1730
  }
sl@0
  1731
}
sl@0
  1732
sl@0
  1733
/* AFP-style reserved lock checking following the behavior of 
sl@0
  1734
** unixCheckReservedLock, see the unixCheckReservedLock function comments */
sl@0
  1735
static int afpCheckReservedLock(sqlite3_file *id, int *pResOut){
sl@0
  1736
  int rc = SQLITE_OK;
sl@0
  1737
  int reserved = 0;
sl@0
  1738
  unixFile *pFile = (unixFile*)id;
sl@0
  1739
  
sl@0
  1740
  SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; );
sl@0
  1741
  
sl@0
  1742
  assert( pFile );
sl@0
  1743
  afpLockingContext *context = (afpLockingContext *) pFile->lockingContext;
sl@0
  1744
  
sl@0
  1745
  /* Check if a thread in this process holds such a lock */
sl@0
  1746
  if( pFile->locktype>SHARED_LOCK ){
sl@0
  1747
    reserved = 1;
sl@0
  1748
  }
sl@0
  1749
  
sl@0
  1750
  /* Otherwise see if some other process holds it.
sl@0
  1751
   */
sl@0
  1752
  if( !reserved ){
sl@0
  1753
    /* lock the RESERVED byte */
sl@0
  1754
    int lrc = _AFPFSSetLock(context->filePath, pFile, RESERVED_BYTE, 1,1);  
sl@0
  1755
    if( SQLITE_OK==lrc ){
sl@0
  1756
      /* if we succeeded in taking the reserved lock, unlock it to restore
sl@0
  1757
      ** the original state */
sl@0
  1758
      lrc = _AFPFSSetLock(context->filePath, pFile, RESERVED_BYTE, 1, 0);
sl@0
  1759
    } else {
sl@0
  1760
      /* if we failed to get the lock then someone else must have it */
sl@0
  1761
      reserved = 1;
sl@0
  1762
    }
sl@0
  1763
    if( IS_LOCK_ERROR(lrc) ){
sl@0
  1764
      rc=lrc;
sl@0
  1765
    }
sl@0
  1766
  }
sl@0
  1767
  
sl@0
  1768
  OSTRACE4("TEST WR-LOCK %d %d %d\n", pFile->h, rc, reserved);
sl@0
  1769
  
sl@0
  1770
  *pResOut = reserved;
sl@0
  1771
  return rc;
sl@0
  1772
}
sl@0
  1773
sl@0
  1774
/* AFP-style locking following the behavior of unixLock, see the unixLock 
sl@0
  1775
** function comments for details of lock management. */
sl@0
  1776
static int afpLock(sqlite3_file *id, int locktype){
sl@0
  1777
  int rc = SQLITE_OK;
sl@0
  1778
  unixFile *pFile = (unixFile*)id;
sl@0
  1779
  afpLockingContext *context = (afpLockingContext *) pFile->lockingContext;
sl@0
  1780
  
sl@0
  1781
  assert( pFile );
sl@0
  1782
  OSTRACE5("LOCK    %d %s was %s pid=%d\n", pFile->h,
sl@0
  1783
         locktypeName(locktype), locktypeName(pFile->locktype), getpid());
sl@0
  1784
sl@0
  1785
  /* If there is already a lock of this type or more restrictive on the
sl@0
  1786
  ** unixFile, do nothing. Don't use the afp_end_lock: exit path, as
sl@0
  1787
  ** enterMutex() hasn't been called yet.
sl@0
  1788
  */
sl@0
  1789
  if( pFile->locktype>=locktype ){
sl@0
  1790
    OSTRACE3("LOCK    %d %s ok (already held)\n", pFile->h,
sl@0
  1791
           locktypeName(locktype));
sl@0
  1792
    return SQLITE_OK;
sl@0
  1793
  }
sl@0
  1794
sl@0
  1795
  /* Make sure the locking sequence is correct
sl@0
  1796
  */
sl@0
  1797
  assert( pFile->locktype!=NO_LOCK || locktype==SHARED_LOCK );
sl@0
  1798
  assert( locktype!=PENDING_LOCK );
sl@0
  1799
  assert( locktype!=RESERVED_LOCK || pFile->locktype==SHARED_LOCK );
sl@0
  1800
  
sl@0
  1801
  /* This mutex is needed because pFile->pLock is shared across threads
sl@0
  1802
  */
sl@0
  1803
  enterMutex();
sl@0
  1804
sl@0
  1805
  /* Make sure the current thread owns the pFile.
sl@0
  1806
  */
sl@0
  1807
  rc = transferOwnership(pFile);
sl@0
  1808
  if( rc!=SQLITE_OK ){
sl@0
  1809
    leaveMutex();
sl@0
  1810
    return rc;
sl@0
  1811
  }
sl@0
  1812
    
sl@0
  1813
  /* A PENDING lock is needed before acquiring a SHARED lock and before
sl@0
  1814
  ** acquiring an EXCLUSIVE lock.  For the SHARED lock, the PENDING will
sl@0
  1815
  ** be released.
sl@0
  1816
  */
sl@0
  1817
  if( locktype==SHARED_LOCK 
sl@0
  1818
      || (locktype==EXCLUSIVE_LOCK && pFile->locktype<PENDING_LOCK)
sl@0
  1819
  ){
sl@0
  1820
    int failed;
sl@0
  1821
    failed = _AFPFSSetLock(context->filePath, pFile, PENDING_BYTE, 1, 1);
sl@0
  1822
    if (failed) {
sl@0
  1823
      rc = failed;
sl@0
  1824
      goto afp_end_lock;
sl@0
  1825
    }
sl@0
  1826
  }
sl@0
  1827
  
sl@0
  1828
  /* If control gets to this point, then actually go ahead and make
sl@0
  1829
  ** operating system calls for the specified lock.
sl@0
  1830
  */
sl@0
  1831
  if( locktype==SHARED_LOCK ){
sl@0
  1832
    int lk, lrc1, lrc2, lrc1Errno;
sl@0
  1833
    
sl@0
  1834
    /* Now get the read-lock SHARED_LOCK */
sl@0
  1835
    /* note that the quality of the randomness doesn't matter that much */
sl@0
  1836
    lk = random(); 
sl@0
  1837
    context->sharedLockByte = (lk & 0x7fffffff)%(SHARED_SIZE - 1);
sl@0
  1838
    lrc1 = _AFPFSSetLock(context->filePath, pFile, 
sl@0
  1839
          SHARED_FIRST+context->sharedLockByte, 1, 1);
sl@0
  1840
    if( IS_LOCK_ERROR(lrc1) ){
sl@0
  1841
      lrc1Errno = pFile->lastErrno;
sl@0
  1842
    }
sl@0
  1843
    /* Drop the temporary PENDING lock */
sl@0
  1844
    lrc2 = _AFPFSSetLock(context->filePath, pFile, PENDING_BYTE, 1, 0);
sl@0
  1845
    
sl@0
  1846
    if( IS_LOCK_ERROR(lrc1) ) {
sl@0
  1847
      pFile->lastErrno = lrc1Errno;
sl@0
  1848
      rc = lrc1;
sl@0
  1849
      goto afp_end_lock;
sl@0
  1850
    } else if( IS_LOCK_ERROR(lrc2) ){
sl@0
  1851
      rc = lrc2;
sl@0
  1852
      goto afp_end_lock;
sl@0
  1853
    } else if( lrc1 != SQLITE_OK ) {
sl@0
  1854
      rc = lrc1;
sl@0
  1855
    } else {
sl@0
  1856
      pFile->locktype = SHARED_LOCK;
sl@0
  1857
    }
sl@0
  1858
  }else{
sl@0
  1859
    /* The request was for a RESERVED or EXCLUSIVE lock.  It is
sl@0
  1860
    ** assumed that there is a SHARED or greater lock on the file
sl@0
  1861
    ** already.
sl@0
  1862
    */
sl@0
  1863
    int failed = 0;
sl@0
  1864
    assert( 0!=pFile->locktype );
sl@0
  1865
    if (locktype >= RESERVED_LOCK && pFile->locktype < RESERVED_LOCK) {
sl@0
  1866
        /* Acquire a RESERVED lock */
sl@0
  1867
        failed = _AFPFSSetLock(context->filePath, pFile, RESERVED_BYTE, 1,1);
sl@0
  1868
    }
sl@0
  1869
    if (!failed && locktype == EXCLUSIVE_LOCK) {
sl@0
  1870
      /* Acquire an EXCLUSIVE lock */
sl@0
  1871
        
sl@0
  1872
      /* Remove the shared lock before trying the range.  we'll need to 
sl@0
  1873
      ** reestablish the shared lock if we can't get the  afpUnlock
sl@0
  1874
      */
sl@0
  1875
      if (!(failed = _AFPFSSetLock(context->filePath, pFile, SHARED_FIRST +
sl@0
  1876
                         context->sharedLockByte, 1, 0))) {
sl@0
  1877
        /* now attemmpt to get the exclusive lock range */
sl@0
  1878
        failed = _AFPFSSetLock(context->filePath, pFile, SHARED_FIRST, 
sl@0
  1879
                               SHARED_SIZE, 1);
sl@0
  1880
        if (failed && (failed = _AFPFSSetLock(context->filePath, pFile, 
sl@0
  1881
                       SHARED_FIRST + context->sharedLockByte, 1, 1))) {
sl@0
  1882
          rc = failed;
sl@0
  1883
        }
sl@0
  1884
      } else {
sl@0
  1885
        rc = failed; 
sl@0
  1886
      }
sl@0
  1887
    }
sl@0
  1888
    if( failed ){
sl@0
  1889
      rc = failed;
sl@0
  1890
    }
sl@0
  1891
  }
sl@0
  1892
  
sl@0
  1893
  if( rc==SQLITE_OK ){
sl@0
  1894
    pFile->locktype = locktype;
sl@0
  1895
  }else if( locktype==EXCLUSIVE_LOCK ){
sl@0
  1896
    pFile->locktype = PENDING_LOCK;
sl@0
  1897
  }
sl@0
  1898
  
sl@0
  1899
afp_end_lock:
sl@0
  1900
  leaveMutex();
sl@0
  1901
  OSTRACE4("LOCK    %d %s %s\n", pFile->h, locktypeName(locktype), 
sl@0
  1902
         rc==SQLITE_OK ? "ok" : "failed");
sl@0
  1903
  return rc;
sl@0
  1904
}
sl@0
  1905
sl@0
  1906
/*
sl@0
  1907
** Lower the locking level on file descriptor pFile to locktype.  locktype
sl@0
  1908
** must be either NO_LOCK or SHARED_LOCK.
sl@0
  1909
**
sl@0
  1910
** If the locking level of the file descriptor is already at or below
sl@0
  1911
** the requested locking level, this routine is a no-op.
sl@0
  1912
*/
sl@0
  1913
static int afpUnlock(sqlite3_file *id, int locktype) {
sl@0
  1914
  int rc = SQLITE_OK;
sl@0
  1915
  unixFile *pFile = (unixFile*)id;
sl@0
  1916
  afpLockingContext *context = (afpLockingContext *) pFile->lockingContext;
sl@0
  1917
sl@0
  1918
  assert( pFile );
sl@0
  1919
  OSTRACE5("UNLOCK  %d %d was %d pid=%d\n", pFile->h, locktype,
sl@0
  1920
         pFile->locktype, getpid());
sl@0
  1921
sl@0
  1922
  assert( locktype<=SHARED_LOCK );
sl@0
  1923
  if( pFile->locktype<=locktype ){
sl@0
  1924
    return SQLITE_OK;
sl@0
  1925
  }
sl@0
  1926
  if( CHECK_THREADID(pFile) ){
sl@0
  1927
    return SQLITE_MISUSE;
sl@0
  1928
  }
sl@0
  1929
  enterMutex();
sl@0
  1930
  int failed = SQLITE_OK;
sl@0
  1931
  if( pFile->locktype>SHARED_LOCK ){
sl@0
  1932
    if( locktype==SHARED_LOCK ){
sl@0
  1933
sl@0
  1934
      /* unlock the exclusive range - then re-establish the shared lock */
sl@0
  1935
      if (pFile->locktype==EXCLUSIVE_LOCK) {
sl@0
  1936
        failed = _AFPFSSetLock(context->filePath, pFile, SHARED_FIRST, 
sl@0
  1937
                                 SHARED_SIZE, 0);
sl@0
  1938
        if (!failed) {
sl@0
  1939
          /* successfully removed the exclusive lock */
sl@0
  1940
          if ((failed = _AFPFSSetLock(context->filePath, pFile, SHARED_FIRST+
sl@0
  1941
                            context->sharedLockByte, 1, 1))) {
sl@0
  1942
            /* failed to re-establish our shared lock */
sl@0
  1943
            rc = failed;
sl@0
  1944
          }
sl@0
  1945
        } else {
sl@0
  1946
          rc = failed;
sl@0
  1947
        } 
sl@0
  1948
      }
sl@0
  1949
    }
sl@0
  1950
    if (rc == SQLITE_OK && pFile->locktype>=PENDING_LOCK) {
sl@0
  1951
      if ((failed = _AFPFSSetLock(context->filePath, pFile, 
sl@0
  1952
                                  PENDING_BYTE, 1, 0))){
sl@0
  1953
        /* failed to release the pending lock */
sl@0
  1954
        rc = failed; 
sl@0
  1955
      }
sl@0
  1956
    } 
sl@0
  1957
    if (rc == SQLITE_OK && pFile->locktype>=RESERVED_LOCK) {
sl@0
  1958
      if ((failed = _AFPFSSetLock(context->filePath, pFile, 
sl@0
  1959
                                  RESERVED_BYTE, 1, 0))) {
sl@0
  1960
        /* failed to release the reserved lock */
sl@0
  1961
        rc = failed;  
sl@0
  1962
      }
sl@0
  1963
    } 
sl@0
  1964
  }
sl@0
  1965
  if( locktype==NO_LOCK ){
sl@0
  1966
    int failed = _AFPFSSetLock(context->filePath, pFile, 
sl@0
  1967
                               SHARED_FIRST + context->sharedLockByte, 1, 0);
sl@0
  1968
    if (failed) {
sl@0
  1969
      rc = failed;  
sl@0
  1970
    }
sl@0
  1971
  }
sl@0
  1972
  if (rc == SQLITE_OK)
sl@0
  1973
    pFile->locktype = locktype;
sl@0
  1974
  leaveMutex();
sl@0
  1975
  return rc;
sl@0
  1976
}
sl@0
  1977
sl@0
  1978
/*
sl@0
  1979
** Close a file & cleanup AFP specific locking context 
sl@0
  1980
*/
sl@0
  1981
static int afpClose(sqlite3_file *id) {
sl@0
  1982
  if( id ){
sl@0
  1983
    unixFile *pFile = (unixFile*)id;
sl@0
  1984
    afpUnlock(id, NO_LOCK);
sl@0
  1985
    sqlite3_free(pFile->lockingContext);
sl@0
  1986
  }
sl@0
  1987
  return closeUnixFile(id);
sl@0
  1988
}
sl@0
  1989
sl@0
  1990
sl@0
  1991
#pragma mark flock() style locking
sl@0
  1992
sl@0
  1993
/*
sl@0
  1994
** The flockLockingContext is not used
sl@0
  1995
*/
sl@0
  1996
typedef void flockLockingContext;
sl@0
  1997
sl@0
  1998
/* flock-style reserved lock checking following the behavior of 
sl@0
  1999
 ** unixCheckReservedLock, see the unixCheckReservedLock function comments */
sl@0
  2000
static int flockCheckReservedLock(sqlite3_file *id, int *pResOut){
sl@0
  2001
  int rc = SQLITE_OK;
sl@0
  2002
  int reserved = 0;
sl@0
  2003
  unixFile *pFile = (unixFile*)id;
sl@0
  2004
  
sl@0
  2005
  SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; );
sl@0
  2006
  
sl@0
  2007
  assert( pFile );
sl@0
  2008
  
sl@0
  2009
  /* Check if a thread in this process holds such a lock */
sl@0
  2010
  if( pFile->locktype>SHARED_LOCK ){
sl@0
  2011
    reserved = 1;
sl@0
  2012
  }
sl@0
  2013
  
sl@0
  2014
  /* Otherwise see if some other process holds it. */
sl@0
  2015
  if( !reserved ){
sl@0
  2016
    /* attempt to get the lock */
sl@0
  2017
    int lrc = flock(pFile->h, LOCK_EX | LOCK_NB);
sl@0
  2018
    if( !lrc ){
sl@0
  2019
      /* got the lock, unlock it */
sl@0
  2020
      lrc = flock(pFile->h, LOCK_UN);
sl@0
  2021
      if ( lrc ) {
sl@0
  2022
        int tErrno = errno;
sl@0
  2023
        /* unlock failed with an error */
sl@0
  2024
        lrc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_UNLOCK); 
sl@0
  2025
        if( IS_LOCK_ERROR(lrc) ){
sl@0
  2026
          pFile->lastErrno = tErrno;
sl@0
  2027
          rc = lrc;
sl@0
  2028
        }
sl@0
  2029
      }
sl@0
  2030
    } else {
sl@0
  2031
      int tErrno = errno;
sl@0
  2032
      reserved = 1;
sl@0
  2033
      /* someone else might have it reserved */
sl@0
  2034
      lrc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK); 
sl@0
  2035
      if( IS_LOCK_ERROR(lrc) ){
sl@0
  2036
        pFile->lastErrno = tErrno;
sl@0
  2037
        rc = lrc;
sl@0
  2038
      }
sl@0
  2039
    }
sl@0
  2040
  }
sl@0
  2041
  OSTRACE4("TEST WR-LOCK %d %d %d\n", pFile->h, rc, reserved);
sl@0
  2042
sl@0
  2043
  *pResOut = reserved;
sl@0
  2044
  return rc;
sl@0
  2045
}
sl@0
  2046
sl@0
  2047
static int flockLock(sqlite3_file *id, int locktype) {
sl@0
  2048
  int rc = SQLITE_OK;
sl@0
  2049
  unixFile *pFile = (unixFile*)id;
sl@0
  2050
sl@0
  2051
  assert( pFile );
sl@0
  2052
sl@0
  2053
  /* if we already have a lock, it is exclusive.  
sl@0
  2054
  ** Just adjust level and punt on outta here. */
sl@0
  2055
  if (pFile->locktype > NO_LOCK) {
sl@0
  2056
    pFile->locktype = locktype;
sl@0
  2057
    return SQLITE_OK;
sl@0
  2058
  }
sl@0
  2059
  
sl@0
  2060
  /* grab an exclusive lock */
sl@0
  2061
  
sl@0
  2062
  if (flock(pFile->h, LOCK_EX | LOCK_NB)) {
sl@0
  2063
    int tErrno = errno;
sl@0
  2064
    /* didn't get, must be busy */
sl@0
  2065
    rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
sl@0
  2066
    if( IS_LOCK_ERROR(rc) ){
sl@0
  2067
      pFile->lastErrno = tErrno;
sl@0
  2068
    }
sl@0
  2069
  } else {
sl@0
  2070
    /* got it, set the type and return ok */
sl@0
  2071
    pFile->locktype = locktype;
sl@0
  2072
  }
sl@0
  2073
  OSTRACE4("LOCK    %d %s %s\n", pFile->h, locktypeName(locktype), 
sl@0
  2074
           rc==SQLITE_OK ? "ok" : "failed");
sl@0
  2075
  return rc;
sl@0
  2076
}
sl@0
  2077
sl@0
  2078
static int flockUnlock(sqlite3_file *id, int locktype) {
sl@0
  2079
  unixFile *pFile = (unixFile*)id;
sl@0
  2080
  
sl@0
  2081
  assert( pFile );
sl@0
  2082
  OSTRACE5("UNLOCK  %d %d was %d pid=%d\n", pFile->h, locktype,
sl@0
  2083
           pFile->locktype, getpid());
sl@0
  2084
  assert( locktype<=SHARED_LOCK );
sl@0
  2085
  
sl@0
  2086
  /* no-op if possible */
sl@0
  2087
  if( pFile->locktype==locktype ){
sl@0
  2088
    return SQLITE_OK;
sl@0
  2089
  }
sl@0
  2090
  
sl@0
  2091
  /* shared can just be set because we always have an exclusive */
sl@0
  2092
  if (locktype==SHARED_LOCK) {
sl@0
  2093
    pFile->locktype = locktype;
sl@0
  2094
    return SQLITE_OK;
sl@0
  2095
  }
sl@0
  2096
  
sl@0
  2097
  /* no, really, unlock. */
sl@0
  2098
  int rc = flock(pFile->h, LOCK_UN);
sl@0
  2099
  if (rc) {
sl@0
  2100
    int r, tErrno = errno;
sl@0
  2101
    r = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_UNLOCK);
sl@0
  2102
    if( IS_LOCK_ERROR(r) ){
sl@0
  2103
      pFile->lastErrno = tErrno;
sl@0
  2104
    }
sl@0
  2105
    return r;
sl@0
  2106
  } else {
sl@0
  2107
    pFile->locktype = NO_LOCK;
sl@0
  2108
    return SQLITE_OK;
sl@0
  2109
  }
sl@0
  2110
}
sl@0
  2111
sl@0
  2112
/*
sl@0
  2113
** Close a file.
sl@0
  2114
*/
sl@0
  2115
static int flockClose(sqlite3_file *id) {
sl@0
  2116
  if( id ){
sl@0
  2117
    flockUnlock(id, NO_LOCK);
sl@0
  2118
  }
sl@0
  2119
  return closeUnixFile(id);
sl@0
  2120
}
sl@0
  2121
sl@0
  2122
#pragma mark Old-School .lock file based locking
sl@0
  2123
sl@0
  2124
/* Dotlock-style reserved lock checking following the behavior of 
sl@0
  2125
** unixCheckReservedLock, see the unixCheckReservedLock function comments */
sl@0
  2126
static int dotlockCheckReservedLock(sqlite3_file *id, int *pResOut) {
sl@0
  2127
  int rc = SQLITE_OK;
sl@0
  2128
  int reserved = 0;
sl@0
  2129
  unixFile *pFile = (unixFile*)id;
sl@0
  2130
sl@0
  2131
  SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; );
sl@0
  2132
  
sl@0
  2133
  assert( pFile );
sl@0
  2134
sl@0
  2135
  /* Check if a thread in this process holds such a lock */
sl@0
  2136
  if( pFile->locktype>SHARED_LOCK ){
sl@0
  2137
    reserved = 1;
sl@0
  2138
  }
sl@0
  2139
  
sl@0
  2140
  /* Otherwise see if some other process holds it. */
sl@0
  2141
  if( !reserved ){
sl@0
  2142
    char *zLockFile = (char *)pFile->lockingContext;
sl@0
  2143
    struct stat statBuf;
sl@0
  2144
    
sl@0
  2145
    if( lstat(zLockFile, &statBuf)==0 ){
sl@0
  2146
      /* file exists, someone else has the lock */
sl@0
  2147
      reserved = 1;
sl@0
  2148
    }else{
sl@0
  2149
      /* file does not exist, we could have it if we want it */
sl@0
  2150
			int tErrno = errno;
sl@0
  2151
      if( ENOENT != tErrno ){
sl@0
  2152
        rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_CHECKRESERVEDLOCK);
sl@0
  2153
        pFile->lastErrno = tErrno;
sl@0
  2154
      }
sl@0
  2155
    }
sl@0
  2156
  }
sl@0
  2157
  OSTRACE4("TEST WR-LOCK %d %d %d\n", pFile->h, rc, reserved);
sl@0
  2158
sl@0
  2159
  *pResOut = reserved;
sl@0
  2160
  return rc;
sl@0
  2161
}
sl@0
  2162
sl@0
  2163
static int dotlockLock(sqlite3_file *id, int locktype) {
sl@0
  2164
  unixFile *pFile = (unixFile*)id;
sl@0
  2165
  int fd;
sl@0
  2166
  char *zLockFile = (char *)pFile->lockingContext;
sl@0
  2167
  int rc=SQLITE_OK;
sl@0
  2168
sl@0
  2169
  /* if we already have a lock, it is exclusive.  
sl@0
  2170
  ** Just adjust level and punt on outta here. */
sl@0
  2171
  if (pFile->locktype > NO_LOCK) {
sl@0
  2172
    pFile->locktype = locktype;
sl@0
  2173
    
sl@0
  2174
    /* Always update the timestamp on the old file */
sl@0
  2175
    utimes(zLockFile, NULL);
sl@0
  2176
    rc = SQLITE_OK;
sl@0
  2177
    goto dotlock_end_lock;
sl@0
  2178
  }
sl@0
  2179
  
sl@0
  2180
  /* check to see if lock file already exists */
sl@0
  2181
  struct stat statBuf;
sl@0
  2182
  if (lstat(zLockFile,&statBuf) == 0){
sl@0
  2183
    rc = SQLITE_BUSY; /* it does, busy */
sl@0
  2184
    goto dotlock_end_lock;
sl@0
  2185
  }
sl@0
  2186
  
sl@0
  2187
  /* grab an exclusive lock */
sl@0
  2188
  fd = open(zLockFile,O_RDONLY|O_CREAT|O_EXCL,0600);
sl@0
  2189
  if( fd<0 ){
sl@0
  2190
    /* failed to open/create the file, someone else may have stolen the lock */
sl@0
  2191
    int tErrno = errno;
sl@0
  2192
    if( EEXIST == tErrno ){
sl@0
  2193
      rc = SQLITE_BUSY;
sl@0
  2194
    } else {
sl@0
  2195
      rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
sl@0
  2196
      if( IS_LOCK_ERROR(rc) ){
sl@0
  2197
	pFile->lastErrno = tErrno;
sl@0
  2198
      }
sl@0
  2199
    }
sl@0
  2200
    goto dotlock_end_lock;
sl@0
  2201
  } 
sl@0
  2202
  close(fd);
sl@0
  2203
  
sl@0
  2204
  /* got it, set the type and return ok */
sl@0
  2205
  pFile->locktype = locktype;
sl@0
  2206
sl@0
  2207
 dotlock_end_lock:
sl@0
  2208
  return rc;
sl@0
  2209
}
sl@0
  2210
sl@0
  2211
static int dotlockUnlock(sqlite3_file *id, int locktype) {
sl@0
  2212
  unixFile *pFile = (unixFile*)id;
sl@0
  2213
  char *zLockFile = (char *)pFile->lockingContext;
sl@0
  2214
sl@0
  2215
  assert( pFile );
sl@0
  2216
  OSTRACE5("UNLOCK  %d %d was %d pid=%d\n", pFile->h, locktype,
sl@0
  2217
	   pFile->locktype, getpid());
sl@0
  2218
  assert( locktype<=SHARED_LOCK );
sl@0
  2219
  
sl@0
  2220
  /* no-op if possible */
sl@0
  2221
  if( pFile->locktype==locktype ){
sl@0
  2222
    return SQLITE_OK;
sl@0
  2223
  }
sl@0
  2224
  
sl@0
  2225
  /* shared can just be set because we always have an exclusive */
sl@0
  2226
  if (locktype==SHARED_LOCK) {
sl@0
  2227
    pFile->locktype = locktype;
sl@0
  2228
    return SQLITE_OK;
sl@0
  2229
  }
sl@0
  2230
  
sl@0
  2231
  /* no, really, unlock. */
sl@0
  2232
  if (unlink(zLockFile) ) {
sl@0
  2233
    int rc, tErrno = errno;
sl@0
  2234
    if( ENOENT != tErrno ){
sl@0
  2235
      rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_UNLOCK);
sl@0
  2236
    }
sl@0
  2237
    if( IS_LOCK_ERROR(rc) ){
sl@0
  2238
      pFile->lastErrno = tErrno;
sl@0
  2239
    }
sl@0
  2240
    return rc; 
sl@0
  2241
  }
sl@0
  2242
  pFile->locktype = NO_LOCK;
sl@0
  2243
  return SQLITE_OK;
sl@0
  2244
}
sl@0
  2245
sl@0
  2246
/*
sl@0
  2247
 ** Close a file.
sl@0
  2248
 */
sl@0
  2249
static int dotlockClose(sqlite3_file *id) {
sl@0
  2250
  if( id ){
sl@0
  2251
    unixFile *pFile = (unixFile*)id;
sl@0
  2252
    dotlockUnlock(id, NO_LOCK);
sl@0
  2253
    sqlite3_free(pFile->lockingContext);
sl@0
  2254
  }
sl@0
  2255
  return closeUnixFile(id);
sl@0
  2256
}
sl@0
  2257
sl@0
  2258
sl@0
  2259
#endif /* SQLITE_ENABLE_LOCKING_STYLE */
sl@0
  2260
sl@0
  2261
/*
sl@0
  2262
** The nolockLockingContext is void
sl@0
  2263
*/
sl@0
  2264
typedef void nolockLockingContext;
sl@0
  2265
sl@0
  2266
static int nolockCheckReservedLock(sqlite3_file *id, int *pResOut) {
sl@0
  2267
  *pResOut = 0;
sl@0
  2268
  return SQLITE_OK;
sl@0
  2269
}
sl@0
  2270
sl@0
  2271
static int nolockLock(sqlite3_file *id, int locktype) {
sl@0
  2272
  return SQLITE_OK;
sl@0
  2273
}
sl@0
  2274
sl@0
  2275
static int nolockUnlock(sqlite3_file *id, int locktype) {
sl@0
  2276
  return SQLITE_OK;
sl@0
  2277
}
sl@0
  2278
sl@0
  2279
/*
sl@0
  2280
** Close a file.
sl@0
  2281
*/
sl@0
  2282
static int nolockClose(sqlite3_file *id) {
sl@0
  2283
  return closeUnixFile(id);
sl@0
  2284
}
sl@0
  2285
sl@0
  2286
sl@0
  2287
/*
sl@0
  2288
** Information and control of an open file handle.
sl@0
  2289
*/
sl@0
  2290
static int unixFileControl(sqlite3_file *id, int op, void *pArg){
sl@0
  2291
  switch( op ){
sl@0
  2292
    case SQLITE_FCNTL_LOCKSTATE: {
sl@0
  2293
      *(int*)pArg = ((unixFile*)id)->locktype;
sl@0
  2294
      return SQLITE_OK;
sl@0
  2295
    }
sl@0
  2296
  }
sl@0
  2297
  return SQLITE_ERROR;
sl@0
  2298
}
sl@0
  2299
sl@0
  2300
/*
sl@0
  2301
** Return the sector size in bytes of the underlying block device for
sl@0
  2302
** the specified file. This is almost always 512 bytes, but may be
sl@0
  2303
** larger for some devices.
sl@0
  2304
**
sl@0
  2305
** SQLite code assumes this function cannot fail. It also assumes that
sl@0
  2306
** if two files are created in the same file-system directory (i.e.
sl@0
  2307
** a database and its journal file) that the sector size will be the
sl@0
  2308
** same for both.
sl@0
  2309
*/
sl@0
  2310
static int unixSectorSize(sqlite3_file *id){
sl@0
  2311
  return SQLITE_DEFAULT_SECTOR_SIZE;
sl@0
  2312
}
sl@0
  2313
sl@0
  2314
/*
sl@0
  2315
** Return the device characteristics for the file. This is always 0.
sl@0
  2316
*/
sl@0
  2317
static int unixDeviceCharacteristics(sqlite3_file *id){
sl@0
  2318
  return 0;
sl@0
  2319
}
sl@0
  2320
sl@0
  2321
/*
sl@0
  2322
** Initialize the contents of the unixFile structure pointed to by pId.
sl@0
  2323
**
sl@0
  2324
** When locking extensions are enabled, the filepath and locking style 
sl@0
  2325
** are needed to determine the unixFile pMethod to use for locking operations.
sl@0
  2326
** The locking-style specific lockingContext data structure is created 
sl@0
  2327
** and assigned here also.
sl@0
  2328
*/
sl@0
  2329
static int fillInUnixFile(
sl@0
  2330
  sqlite3_vfs *pVfs,      /* Pointer to vfs object */
sl@0
  2331
  int h,                  /* Open file descriptor of file being opened */
sl@0
  2332
  int dirfd,              /* Directory file descriptor */
sl@0
  2333
  sqlite3_file *pId,      /* Write to the unixFile structure here */
sl@0
  2334
  const char *zFilename,  /* Name of the file being opened */
sl@0
  2335
  int noLock              /* Omit locking if true */
sl@0
  2336
){
sl@0
  2337
  int eLockingStyle;
sl@0
  2338
  unixFile *pNew = (unixFile *)pId;
sl@0
  2339
  int rc = SQLITE_OK;
sl@0
  2340
sl@0
  2341
  /* Macro to define the static contents of an sqlite3_io_methods 
sl@0
  2342
  ** structure for a unix backend file. Different locking methods
sl@0
  2343
  ** require different functions for the xClose, xLock, xUnlock and
sl@0
  2344
  ** xCheckReservedLock methods.
sl@0
  2345
  */
sl@0
  2346
  #define IOMETHODS(xClose, xLock, xUnlock, xCheckReservedLock) {    \
sl@0
  2347
    1,                          /* iVersion */                           \
sl@0
  2348
    xClose,                     /* xClose */                             \
sl@0
  2349
    unixRead,                   /* xRead */                              \
sl@0
  2350
    unixWrite,                  /* xWrite */                             \
sl@0
  2351
    unixTruncate,               /* xTruncate */                          \
sl@0
  2352
    unixSync,                   /* xSync */                              \
sl@0
  2353
    unixFileSize,               /* xFileSize */                          \
sl@0
  2354
    xLock,                      /* xLock */                              \
sl@0
  2355
    xUnlock,                    /* xUnlock */                            \
sl@0
  2356
    xCheckReservedLock,         /* xCheckReservedLock */                 \
sl@0
  2357
    unixFileControl,            /* xFileControl */                       \
sl@0
  2358
    unixSectorSize,             /* xSectorSize */                        \
sl@0
  2359
    unixDeviceCharacteristics   /* xDeviceCapabilities */                \
sl@0
  2360
  }
sl@0
  2361
  static sqlite3_io_methods aIoMethod[] = {
sl@0
  2362
    IOMETHODS(unixClose, unixLock, unixUnlock, unixCheckReservedLock) 
sl@0
  2363
   ,IOMETHODS(nolockClose, nolockLock, nolockUnlock, nolockCheckReservedLock)
sl@0
  2364
#if SQLITE_ENABLE_LOCKING_STYLE
sl@0
  2365
   ,IOMETHODS(dotlockClose, dotlockLock, dotlockUnlock,dotlockCheckReservedLock)
sl@0
  2366
   ,IOMETHODS(flockClose, flockLock, flockUnlock, flockCheckReservedLock)
sl@0
  2367
   ,IOMETHODS(afpClose, afpLock, afpUnlock, afpCheckReservedLock)
sl@0
  2368
#endif
sl@0
  2369
  };
sl@0
  2370
  /* The order of the IOMETHODS macros above is important.  It must be the
sl@0
  2371
  ** same order as the LOCKING_STYLE numbers
sl@0
  2372
  */
sl@0
  2373
  assert(LOCKING_STYLE_POSIX==1);
sl@0
  2374
  assert(LOCKING_STYLE_NONE==2);
sl@0
  2375
  assert(LOCKING_STYLE_DOTFILE==3);
sl@0
  2376
  assert(LOCKING_STYLE_FLOCK==4);
sl@0
  2377
  assert(LOCKING_STYLE_AFP==5);
sl@0
  2378
sl@0
  2379
  assert( pNew->pLock==NULL );
sl@0
  2380
  assert( pNew->pOpen==NULL );
sl@0
  2381
sl@0
  2382
  OSTRACE3("OPEN    %-3d %s\n", h, zFilename);    
sl@0
  2383
  pNew->h = h;
sl@0
  2384
  pNew->dirfd = dirfd;
sl@0
  2385
  SET_THREADID(pNew);
sl@0
  2386
sl@0
  2387
  if( noLock ){
sl@0
  2388
    eLockingStyle = LOCKING_STYLE_NONE;
sl@0
  2389
  }else{
sl@0
  2390
    eLockingStyle = detectLockingStyle(pVfs, zFilename, h);
sl@0
  2391
  }
sl@0
  2392
sl@0
  2393
  switch( eLockingStyle ){
sl@0
  2394
sl@0
  2395
    case LOCKING_STYLE_POSIX: {
sl@0
  2396
      enterMutex();
sl@0
  2397
      rc = findLockInfo(h, &pNew->pLock, &pNew->pOpen);
sl@0
  2398
      leaveMutex();
sl@0
  2399
      break;
sl@0
  2400
    }
sl@0
  2401
sl@0
  2402
#if SQLITE_ENABLE_LOCKING_STYLE
sl@0
  2403
    case LOCKING_STYLE_AFP: {
sl@0
  2404
      /* AFP locking uses the file path so it needs to be included in
sl@0
  2405
      ** the afpLockingContext.
sl@0
  2406
      */
sl@0
  2407
      afpLockingContext *pCtx;
sl@0
  2408
      pNew->lockingContext = pCtx = sqlite3_malloc( sizeof(*pCtx) );
sl@0
  2409
      if( pCtx==0 ){
sl@0
  2410
        rc = SQLITE_NOMEM;
sl@0
  2411
      }else{
sl@0
  2412
        /* NB: zFilename exists and remains valid until the file is closed
sl@0
  2413
        ** according to requirement F11141.  So we do not need to make a
sl@0
  2414
        ** copy of the filename. */
sl@0
  2415
        pCtx->filePath = zFilename;
sl@0
  2416
        srandomdev();
sl@0
  2417
      }
sl@0
  2418
      break;
sl@0
  2419
    }
sl@0
  2420
sl@0
  2421
    case LOCKING_STYLE_DOTFILE: {
sl@0
  2422
      /* Dotfile locking uses the file path so it needs to be included in
sl@0
  2423
      ** the dotlockLockingContext 
sl@0
  2424
      */
sl@0
  2425
      char *zLockFile;
sl@0
  2426
      int nFilename;
sl@0
  2427
      nFilename = strlen(zFilename) + 6;
sl@0
  2428
      zLockFile = (char *)sqlite3_malloc(nFilename);
sl@0
  2429
      if( zLockFile==0 ){
sl@0
  2430
        rc = SQLITE_NOMEM;
sl@0
  2431
      }else{
sl@0
  2432
        sqlite3_snprintf(nFilename, zLockFile, "%s.lock", zFilename);
sl@0
  2433
      }
sl@0
  2434
      pNew->lockingContext = zLockFile;
sl@0
  2435
      break;
sl@0
  2436
    }
sl@0
  2437
sl@0
  2438
    case LOCKING_STYLE_FLOCK: 
sl@0
  2439
    case LOCKING_STYLE_NONE: 
sl@0
  2440
      break;
sl@0
  2441
#endif
sl@0
  2442
  }
sl@0
  2443
  
sl@0
  2444
  pNew->lastErrno = 0;
sl@0
  2445
  if( rc!=SQLITE_OK ){
sl@0
  2446
    if( dirfd>=0 ) close(dirfd);
sl@0
  2447
    close(h);
sl@0
  2448
  }else{
sl@0
  2449
    pNew->pMethod = &aIoMethod[eLockingStyle-1];
sl@0
  2450
    OpenCounter(+1);
sl@0
  2451
  }
sl@0
  2452
  return rc;
sl@0
  2453
}
sl@0
  2454
sl@0
  2455
/*
sl@0
  2456
** Open a file descriptor to the directory containing file zFilename.
sl@0
  2457
** If successful, *pFd is set to the opened file descriptor and
sl@0
  2458
** SQLITE_OK is returned. If an error occurs, either SQLITE_NOMEM
sl@0
  2459
** or SQLITE_CANTOPEN is returned and *pFd is set to an undefined
sl@0
  2460
** value.
sl@0
  2461
**
sl@0
  2462
** If SQLITE_OK is returned, the caller is responsible for closing
sl@0
  2463
** the file descriptor *pFd using close().
sl@0
  2464
*/
sl@0
  2465
static int openDirectory(const char *zFilename, int *pFd){
sl@0
  2466
  int ii;
sl@0
  2467
  int fd = -1;
sl@0
  2468
  char zDirname[MAX_PATHNAME+1];
sl@0
  2469
sl@0
  2470
  sqlite3_snprintf(MAX_PATHNAME, zDirname, "%s", zFilename);
sl@0
  2471
  for(ii=strlen(zDirname); ii>=0 && zDirname[ii]!='/'; ii--);
sl@0
  2472
  if( ii>0 ){
sl@0
  2473
    zDirname[ii] = '\0';
sl@0
  2474
    fd = open(zDirname, O_RDONLY|O_BINARY, 0);
sl@0
  2475
    if( fd>=0 ){
sl@0
  2476
#ifdef FD_CLOEXEC
sl@0
  2477
      fcntl(fd, F_SETFD, fcntl(fd, F_GETFD, 0) | FD_CLOEXEC);
sl@0
  2478
#endif
sl@0
  2479
      OSTRACE3("OPENDIR %-3d %s\n", fd, zDirname);
sl@0
  2480
    }
sl@0
  2481
  }
sl@0
  2482
  *pFd = fd;
sl@0
  2483
  return (fd>=0?SQLITE_OK:SQLITE_CANTOPEN);
sl@0
  2484
}
sl@0
  2485
sl@0
  2486
/*
sl@0
  2487
** Create a temporary file name in zBuf.  zBuf must be allocated
sl@0
  2488
** by the calling process and must be big enough to hold at least
sl@0
  2489
** pVfs->mxPathname bytes.
sl@0
  2490
*/
sl@0
  2491
static int getTempname(int nBuf, char *zBuf){
sl@0
  2492
  static const char *azDirs[] = {
sl@0
  2493
     0,
sl@0
  2494
     "/var/tmp",
sl@0
  2495
     "/usr/tmp",
sl@0
  2496
     "/tmp",
sl@0
  2497
     ".",
sl@0
  2498
  };
sl@0
  2499
  static const unsigned char zChars[] =
sl@0
  2500
    "abcdefghijklmnopqrstuvwxyz"
sl@0
  2501
    "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
sl@0
  2502
    "0123456789";
sl@0
  2503
  int i, j;
sl@0
  2504
  struct stat buf;
sl@0
  2505
  const char *zDir = ".";
sl@0
  2506
sl@0
  2507
  /* It's odd to simulate an io-error here, but really this is just
sl@0
  2508
  ** using the io-error infrastructure to test that SQLite handles this
sl@0
  2509
  ** function failing. 
sl@0
  2510
  */
sl@0
  2511
  SimulateIOError( return SQLITE_IOERR );
sl@0
  2512
sl@0
  2513
  azDirs[0] = sqlite3_temp_directory;
sl@0
  2514
  for(i=0; i<sizeof(azDirs)/sizeof(azDirs[0]); i++){
sl@0
  2515
    if( azDirs[i]==0 ) continue;
sl@0
  2516
    if( stat(azDirs[i], &buf) ) continue;
sl@0
  2517
    if( !S_ISDIR(buf.st_mode) ) continue;
sl@0
  2518
    if( access(azDirs[i], 07) ) continue;
sl@0
  2519
    zDir = azDirs[i];
sl@0
  2520
    break;
sl@0
  2521
  }
sl@0
  2522
sl@0
  2523
  /* Check that the output buffer is large enough for the temporary file 
sl@0
  2524
  ** name. If it is not, return SQLITE_ERROR.
sl@0
  2525
  */
sl@0
  2526
  if( (strlen(zDir) + strlen(SQLITE_TEMP_FILE_PREFIX) + 17) >= nBuf ){
sl@0
  2527
    return SQLITE_ERROR;
sl@0
  2528
  }
sl@0
  2529
sl@0
  2530
  do{
sl@0
  2531
    sqlite3_snprintf(nBuf-17, zBuf, "%s/"SQLITE_TEMP_FILE_PREFIX, zDir);
sl@0
  2532
    j = strlen(zBuf);
sl@0
  2533
    sqlite3_randomness(15, &zBuf[j]);
sl@0
  2534
    for(i=0; i<15; i++, j++){
sl@0
  2535
      zBuf[j] = (char)zChars[ ((unsigned char)zBuf[j])%(sizeof(zChars)-1) ];
sl@0
  2536
    }
sl@0
  2537
    zBuf[j] = 0;
sl@0
  2538
  }while( access(zBuf,0)==0 );
sl@0
  2539
  return SQLITE_OK;
sl@0
  2540
}
sl@0
  2541
sl@0
  2542
sl@0
  2543
/*
sl@0
  2544
** Open the file zPath.
sl@0
  2545
** 
sl@0
  2546
** Previously, the SQLite OS layer used three functions in place of this
sl@0
  2547
** one:
sl@0
  2548
**
sl@0
  2549
**     sqlite3OsOpenReadWrite();
sl@0
  2550
**     sqlite3OsOpenReadOnly();
sl@0
  2551
**     sqlite3OsOpenExclusive();
sl@0
  2552
**
sl@0
  2553
** These calls correspond to the following combinations of flags:
sl@0
  2554
**
sl@0
  2555
**     ReadWrite() ->     (READWRITE | CREATE)
sl@0
  2556
**     ReadOnly()  ->     (READONLY) 
sl@0
  2557
**     OpenExclusive() -> (READWRITE | CREATE | EXCLUSIVE)
sl@0
  2558
**
sl@0
  2559
** The old OpenExclusive() accepted a boolean argument - "delFlag". If
sl@0
  2560
** true, the file was configured to be automatically deleted when the
sl@0
  2561
** file handle closed. To achieve the same effect using this new 
sl@0
  2562
** interface, add the DELETEONCLOSE flag to those specified above for 
sl@0
  2563
** OpenExclusive().
sl@0
  2564
*/
sl@0
  2565
static int unixOpen(
sl@0
  2566
  sqlite3_vfs *pVfs, 
sl@0
  2567
  const char *zPath, 
sl@0
  2568
  sqlite3_file *pFile,
sl@0
  2569
  int flags,
sl@0
  2570
  int *pOutFlags
sl@0
  2571
){
sl@0
  2572
  int fd = 0;                    /* File descriptor returned by open() */
sl@0
  2573
  int dirfd = -1;                /* Directory file descriptor */
sl@0
  2574
  int oflags = 0;                /* Flags to pass to open() */
sl@0
  2575
  int eType = flags&0xFFFFFF00;  /* Type of file to open */
sl@0
  2576
  int noLock;                    /* True to omit locking primitives */
sl@0
  2577
sl@0
  2578
  int isExclusive  = (flags & SQLITE_OPEN_EXCLUSIVE);
sl@0
  2579
  int isDelete     = (flags & SQLITE_OPEN_DELETEONCLOSE);
sl@0
  2580
  int isCreate     = (flags & SQLITE_OPEN_CREATE);
sl@0
  2581
  int isReadonly   = (flags & SQLITE_OPEN_READONLY);
sl@0
  2582
  int isReadWrite  = (flags & SQLITE_OPEN_READWRITE);
sl@0
  2583
sl@0
  2584
  /* If creating a master or main-file journal, this function will open
sl@0
  2585
  ** a file-descriptor on the directory too. The first time unixSync()
sl@0
  2586
  ** is called the directory file descriptor will be fsync()ed and close()d.
sl@0
  2587
  */
sl@0
  2588
  int isOpenDirectory = (isCreate && 
sl@0
  2589
      (eType==SQLITE_OPEN_MASTER_JOURNAL || eType==SQLITE_OPEN_MAIN_JOURNAL)
sl@0
  2590
  );
sl@0
  2591
sl@0
  2592
  /* If argument zPath is a NULL pointer, this function is required to open
sl@0
  2593
  ** a temporary file. Use this buffer to store the file name in.
sl@0
  2594
  */
sl@0
  2595
  char zTmpname[MAX_PATHNAME+1];
sl@0
  2596
  const char *zName = zPath;
sl@0
  2597
sl@0
  2598
  /* Check the following statements are true: 
sl@0
  2599
  **
sl@0
  2600
  **   (a) Exactly one of the READWRITE and READONLY flags must be set, and 
sl@0
  2601
  **   (b) if CREATE is set, then READWRITE must also be set, and
sl@0
  2602
  **   (c) if EXCLUSIVE is set, then CREATE must also be set.
sl@0
  2603
  **   (d) if DELETEONCLOSE is set, then CREATE must also be set.
sl@0
  2604
  */
sl@0
  2605
  assert((isReadonly==0 || isReadWrite==0) && (isReadWrite || isReadonly));
sl@0
  2606
  assert(isCreate==0 || isReadWrite);
sl@0
  2607
  assert(isExclusive==0 || isCreate);
sl@0
  2608
  assert(isDelete==0 || isCreate);
sl@0
  2609
sl@0
  2610
  /* The main DB, main journal, and master journal are never automatically
sl@0
  2611
  ** deleted
sl@0
  2612
  */
sl@0
  2613
  assert( eType!=SQLITE_OPEN_MAIN_DB || !isDelete );
sl@0
  2614
  assert( eType!=SQLITE_OPEN_MAIN_JOURNAL || !isDelete );
sl@0
  2615
  assert( eType!=SQLITE_OPEN_MASTER_JOURNAL || !isDelete );
sl@0
  2616
sl@0
  2617
  /* Assert that the upper layer has set one of the "file-type" flags. */
sl@0
  2618
  assert( eType==SQLITE_OPEN_MAIN_DB      || eType==SQLITE_OPEN_TEMP_DB 
sl@0
  2619
       || eType==SQLITE_OPEN_MAIN_JOURNAL || eType==SQLITE_OPEN_TEMP_JOURNAL 
sl@0
  2620
       || eType==SQLITE_OPEN_SUBJOURNAL   || eType==SQLITE_OPEN_MASTER_JOURNAL 
sl@0
  2621
       || eType==SQLITE_OPEN_TRANSIENT_DB
sl@0
  2622
  );
sl@0
  2623
sl@0
  2624
  memset(pFile, 0, sizeof(unixFile));
sl@0
  2625
sl@0
  2626
  if( !zName ){
sl@0
  2627
    int rc;
sl@0
  2628
    assert(isDelete && !isOpenDirectory);
sl@0
  2629
    rc = getTempname(MAX_PATHNAME+1, zTmpname);
sl@0
  2630
    if( rc!=SQLITE_OK ){
sl@0
  2631
      return rc;
sl@0
  2632
    }
sl@0
  2633
    zName = zTmpname;
sl@0
  2634
  }
sl@0
  2635
sl@0
  2636
  if( isReadonly )  oflags |= O_RDONLY;
sl@0
  2637
  if( isReadWrite ) oflags |= O_RDWR;
sl@0
  2638
  if( isCreate )    oflags |= O_CREAT;
sl@0
  2639
  if( isExclusive ) oflags |= (O_EXCL|O_NOFOLLOW);
sl@0
  2640
  oflags |= (O_LARGEFILE|O_BINARY);
sl@0
  2641
sl@0
  2642
  fd = open(zName, oflags, isDelete?0600:SQLITE_DEFAULT_FILE_PERMISSIONS);
sl@0
  2643
  if( fd<0 && errno!=EISDIR && isReadWrite && !isExclusive ){
sl@0
  2644
    /* Failed to open the file for read/write access. Try read-only. */
sl@0
  2645
    flags &= ~(SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE);
sl@0
  2646
    flags |= SQLITE_OPEN_READONLY;
sl@0
  2647
    return unixOpen(pVfs, zPath, pFile, flags, pOutFlags);
sl@0
  2648
  }
sl@0
  2649
  if( fd<0 ){
sl@0
  2650
    return SQLITE_CANTOPEN;
sl@0
  2651
  }
sl@0
  2652
  if( isDelete ){
sl@0
  2653
    unlink(zName);
sl@0
  2654
  }
sl@0
  2655
  if( pOutFlags ){
sl@0
  2656
    *pOutFlags = flags;
sl@0
  2657
  }
sl@0
  2658
sl@0
  2659
  assert(fd!=0);
sl@0
  2660
  if( isOpenDirectory ){
sl@0
  2661
    int rc = openDirectory(zPath, &dirfd);
sl@0
  2662
    if( rc!=SQLITE_OK ){
sl@0
  2663
      close(fd);
sl@0
  2664
      return rc;
sl@0
  2665
    }
sl@0
  2666
  }
sl@0
  2667
sl@0
  2668
#ifdef FD_CLOEXEC
sl@0
  2669
  fcntl(fd, F_SETFD, fcntl(fd, F_GETFD, 0) | FD_CLOEXEC);
sl@0
  2670
#endif
sl@0
  2671
sl@0
  2672
  noLock = eType!=SQLITE_OPEN_MAIN_DB;
sl@0
  2673
  return fillInUnixFile(pVfs, fd, dirfd, pFile, zPath, noLock);
sl@0
  2674
}
sl@0
  2675
sl@0
  2676
/*
sl@0
  2677
** Delete the file at zPath. If the dirSync argument is true, fsync()
sl@0
  2678
** the directory after deleting the file.
sl@0
  2679
*/
sl@0
  2680
static int unixDelete(sqlite3_vfs *pVfs, const char *zPath, int dirSync){
sl@0
  2681
  int rc = SQLITE_OK;
sl@0
  2682
  SimulateIOError(return SQLITE_IOERR_DELETE);
sl@0
  2683
  unlink(zPath);
sl@0
  2684
  if( dirSync ){
sl@0
  2685
    int fd;
sl@0
  2686
    rc = openDirectory(zPath, &fd);
sl@0
  2687
    if( rc==SQLITE_OK ){
sl@0
  2688
      if( fsync(fd) ){
sl@0
  2689
        rc = SQLITE_IOERR_DIR_FSYNC;
sl@0
  2690
      }
sl@0
  2691
      close(fd);
sl@0
  2692
    }
sl@0
  2693
  }
sl@0
  2694
  return rc;
sl@0
  2695
}
sl@0
  2696
sl@0
  2697
/*
sl@0
  2698
** Test the existance of or access permissions of file zPath. The
sl@0
  2699
** test performed depends on the value of flags:
sl@0
  2700
**
sl@0
  2701
**     SQLITE_ACCESS_EXISTS: Return 1 if the file exists
sl@0
  2702
**     SQLITE_ACCESS_READWRITE: Return 1 if the file is read and writable.
sl@0
  2703
**     SQLITE_ACCESS_READONLY: Return 1 if the file is readable.
sl@0
  2704
**
sl@0
  2705
** Otherwise return 0.
sl@0
  2706
*/
sl@0
  2707
static int unixAccess(
sl@0
  2708
  sqlite3_vfs *pVfs, 
sl@0
  2709
  const char *zPath, 
sl@0
  2710
  int flags, 
sl@0
  2711
  int *pResOut
sl@0
  2712
){
sl@0
  2713
  int amode = 0;
sl@0
  2714
  SimulateIOError( return SQLITE_IOERR_ACCESS; );
sl@0
  2715
  switch( flags ){
sl@0
  2716
    case SQLITE_ACCESS_EXISTS:
sl@0
  2717
      amode = F_OK;
sl@0
  2718
      break;
sl@0
  2719
    case SQLITE_ACCESS_READWRITE:
sl@0
  2720
      amode = W_OK|R_OK;
sl@0
  2721
      break;
sl@0
  2722
    case SQLITE_ACCESS_READ:
sl@0
  2723
      amode = R_OK;
sl@0
  2724
      break;
sl@0
  2725
sl@0
  2726
    default:
sl@0
  2727
      assert(!"Invalid flags argument");
sl@0
  2728
  }
sl@0
  2729
  *pResOut = (access(zPath, amode)==0);
sl@0
  2730
  return SQLITE_OK;
sl@0
  2731
}
sl@0
  2732
sl@0
  2733
sl@0
  2734
/*
sl@0
  2735
** Turn a relative pathname into a full pathname. The relative path
sl@0
  2736
** is stored as a nul-terminated string in the buffer pointed to by
sl@0
  2737
** zPath. 
sl@0
  2738
**
sl@0
  2739
** zOut points to a buffer of at least sqlite3_vfs.mxPathname bytes 
sl@0
  2740
** (in this case, MAX_PATHNAME bytes). The full-path is written to
sl@0
  2741
** this buffer before returning.
sl@0
  2742
*/
sl@0
  2743
static int unixFullPathname(
sl@0
  2744
  sqlite3_vfs *pVfs,            /* Pointer to vfs object */
sl@0
  2745
  const char *zPath,            /* Possibly relative input path */
sl@0
  2746
  int nOut,                     /* Size of output buffer in bytes */
sl@0
  2747
  char *zOut                    /* Output buffer */
sl@0
  2748
){
sl@0
  2749
sl@0
  2750
  /* It's odd to simulate an io-error here, but really this is just
sl@0
  2751
  ** using the io-error infrastructure to test that SQLite handles this
sl@0
  2752
  ** function failing. This function could fail if, for example, the
sl@0
  2753
  ** current working directly has been unlinked.
sl@0
  2754
  */
sl@0
  2755
  SimulateIOError( return SQLITE_ERROR );
sl@0
  2756
sl@0
  2757
  assert( pVfs->mxPathname==MAX_PATHNAME );
sl@0
  2758
  zOut[nOut-1] = '\0';
sl@0
  2759
  if( zPath[0]=='/' ){
sl@0
  2760
    sqlite3_snprintf(nOut, zOut, "%s", zPath);
sl@0
  2761
  }else{
sl@0
  2762
    int nCwd;
sl@0
  2763
    if( getcwd(zOut, nOut-1)==0 ){
sl@0
  2764
      return SQLITE_CANTOPEN;
sl@0
  2765
    }
sl@0
  2766
    nCwd = strlen(zOut);
sl@0
  2767
    sqlite3_snprintf(nOut-nCwd, &zOut[nCwd], "/%s", zPath);
sl@0
  2768
  }
sl@0
  2769
  return SQLITE_OK;
sl@0
  2770
sl@0
  2771
#if 0
sl@0
  2772
  /*
sl@0
  2773
  ** Remove "/./" path elements and convert "/A/./" path elements
sl@0
  2774
  ** to just "/".
sl@0
  2775
  */
sl@0
  2776
  if( zFull ){
sl@0
  2777
    int i, j;
sl@0
  2778
    for(i=j=0; zFull[i]; i++){
sl@0
  2779
      if( zFull[i]=='/' ){
sl@0
  2780
        if( zFull[i+1]=='/' ) continue;
sl@0
  2781
        if( zFull[i+1]=='.' && zFull[i+2]=='/' ){
sl@0
  2782
          i += 1;
sl@0
  2783
          continue;
sl@0
  2784
        }
sl@0
  2785
        if( zFull[i+1]=='.' && zFull[i+2]=='.' && zFull[i+3]=='/' ){
sl@0
  2786
          while( j>0 && zFull[j-1]!='/' ){ j--; }
sl@0
  2787
          i += 3;
sl@0
  2788
          continue;
sl@0
  2789
        }
sl@0
  2790
      }
sl@0
  2791
      zFull[j++] = zFull[i];
sl@0
  2792
    }
sl@0
  2793
    zFull[j] = 0;
sl@0
  2794
  }
sl@0
  2795
#endif
sl@0
  2796
}
sl@0
  2797
sl@0
  2798
sl@0
  2799
#ifndef SQLITE_OMIT_LOAD_EXTENSION
sl@0
  2800
/*
sl@0
  2801
** Interfaces for opening a shared library, finding entry points
sl@0
  2802
** within the shared library, and closing the shared library.
sl@0
  2803
*/
sl@0
  2804
#include <dlfcn.h>
sl@0
  2805
static void *unixDlOpen(sqlite3_vfs *pVfs, const char *zFilename){
sl@0
  2806
  return dlopen(zFilename, RTLD_NOW | RTLD_GLOBAL);
sl@0
  2807
}
sl@0
  2808
sl@0
  2809
/*
sl@0
  2810
** SQLite calls this function immediately after a call to unixDlSym() or
sl@0
  2811
** unixDlOpen() fails (returns a null pointer). If a more detailed error
sl@0
  2812
** message is available, it is written to zBufOut. If no error message
sl@0
  2813
** is available, zBufOut is left unmodified and SQLite uses a default
sl@0
  2814
** error message.
sl@0
  2815
*/
sl@0
  2816
static void unixDlError(sqlite3_vfs *pVfs, int nBuf, char *zBufOut){
sl@0
  2817
  char *zErr;
sl@0
  2818
  enterMutex();
sl@0
  2819
  zErr = dlerror();
sl@0
  2820
  if( zErr ){
sl@0
  2821
    sqlite3_snprintf(nBuf, zBufOut, "%s", zErr);
sl@0
  2822
  }
sl@0
  2823
  leaveMutex();
sl@0
  2824
}
sl@0
  2825
static void *unixDlSym(sqlite3_vfs *pVfs, void *pHandle, const char *zSymbol){
sl@0
  2826
  return dlsym(pHandle, zSymbol);
sl@0
  2827
}
sl@0
  2828
static void unixDlClose(sqlite3_vfs *pVfs, void *pHandle){
sl@0
  2829
  dlclose(pHandle);
sl@0
  2830
}
sl@0
  2831
#else /* if SQLITE_OMIT_LOAD_EXTENSION is defined: */
sl@0
  2832
  #define unixDlOpen  0
sl@0
  2833
  #define unixDlError 0
sl@0
  2834
  #define unixDlSym   0
sl@0
  2835
  #define unixDlClose 0
sl@0
  2836
#endif
sl@0
  2837
sl@0
  2838
/*
sl@0
  2839
** Write nBuf bytes of random data to the supplied buffer zBuf.
sl@0
  2840
*/
sl@0
  2841
static int unixRandomness(sqlite3_vfs *pVfs, int nBuf, char *zBuf){
sl@0
  2842
sl@0
  2843
  assert(nBuf>=(sizeof(time_t)+sizeof(int)));
sl@0
  2844
sl@0
  2845
  /* We have to initialize zBuf to prevent valgrind from reporting
sl@0
  2846
  ** errors.  The reports issued by valgrind are incorrect - we would
sl@0
  2847
  ** prefer that the randomness be increased by making use of the
sl@0
  2848
  ** uninitialized space in zBuf - but valgrind errors tend to worry
sl@0
  2849
  ** some users.  Rather than argue, it seems easier just to initialize
sl@0
  2850
  ** the whole array and silence valgrind, even if that means less randomness
sl@0
  2851
  ** in the random seed.
sl@0
  2852
  **
sl@0
  2853
  ** When testing, initializing zBuf[] to zero is all we do.  That means
sl@0
  2854
  ** that we always use the same random number sequence.  This makes the
sl@0
  2855
  ** tests repeatable.
sl@0
  2856
  */
sl@0
  2857
  memset(zBuf, 0, nBuf);
sl@0
  2858
#if !defined(SQLITE_TEST)
sl@0
  2859
  {
sl@0
  2860
    int pid, fd;
sl@0
  2861
    fd = open("/dev/urandom", O_RDONLY);
sl@0
  2862
    if( fd<0 ){
sl@0
  2863
      time_t t;
sl@0
  2864
      time(&t);
sl@0
  2865
      memcpy(zBuf, &t, sizeof(t));
sl@0
  2866
      pid = getpid();
sl@0
  2867
      memcpy(&zBuf[sizeof(t)], &pid, sizeof(pid));
sl@0
  2868
      assert( sizeof(t)+sizeof(pid)<=nBuf );
sl@0
  2869
      nBuf = sizeof(t) + sizeof(pid);
sl@0
  2870
    }else{
sl@0
  2871
      nBuf = read(fd, zBuf, nBuf);
sl@0
  2872
      close(fd);
sl@0
  2873
    }
sl@0
  2874
  }
sl@0
  2875
#endif
sl@0
  2876
  return nBuf;
sl@0
  2877
}
sl@0
  2878
sl@0
  2879
sl@0
  2880
/*
sl@0
  2881
** Sleep for a little while.  Return the amount of time slept.
sl@0
  2882
** The argument is the number of microseconds we want to sleep.
sl@0
  2883
** The return value is the number of microseconds of sleep actually
sl@0
  2884
** requested from the underlying operating system, a number which
sl@0
  2885
** might be greater than or equal to the argument, but not less
sl@0
  2886
** than the argument.
sl@0
  2887
*/
sl@0
  2888
static int unixSleep(sqlite3_vfs *pVfs, int microseconds){
sl@0
  2889
#if defined(HAVE_USLEEP) && HAVE_USLEEP
sl@0
  2890
  usleep(microseconds);
sl@0
  2891
  return microseconds;
sl@0
  2892
#else
sl@0
  2893
  int seconds = (microseconds+999999)/1000000;
sl@0
  2894
  sleep(seconds);
sl@0
  2895
  return seconds*1000000;
sl@0
  2896
#endif
sl@0
  2897
}
sl@0
  2898
sl@0
  2899
/*
sl@0
  2900
** The following variable, if set to a non-zero value, becomes the result
sl@0
  2901
** returned from sqlite3OsCurrentTime().  This is used for testing.
sl@0
  2902
*/
sl@0
  2903
#ifdef SQLITE_TEST
sl@0
  2904
int sqlite3_current_time = 0;
sl@0
  2905
#endif
sl@0
  2906
sl@0
  2907
/*
sl@0
  2908
** Find the current time (in Universal Coordinated Time).  Write the
sl@0
  2909
** current time and date as a Julian Day number into *prNow and
sl@0
  2910
** return 0.  Return 1 if the time and date cannot be found.
sl@0
  2911
*/
sl@0
  2912
static int unixCurrentTime(sqlite3_vfs *pVfs, double *prNow){
sl@0
  2913
#ifdef NO_GETTOD
sl@0
  2914
  time_t t;
sl@0
  2915
  time(&t);
sl@0
  2916
  *prNow = t/86400.0 + 2440587.5;
sl@0
  2917
#else
sl@0
  2918
  struct timeval sNow;
sl@0
  2919
  gettimeofday(&sNow, 0);
sl@0
  2920
  *prNow = 2440587.5 + sNow.tv_sec/86400.0 + sNow.tv_usec/86400000000.0;
sl@0
  2921
#endif
sl@0
  2922
#ifdef SQLITE_TEST
sl@0
  2923
  if( sqlite3_current_time ){
sl@0
  2924
    *prNow = sqlite3_current_time/86400.0 + 2440587.5;
sl@0
  2925
  }
sl@0
  2926
#endif
sl@0
  2927
  return 0;
sl@0
  2928
}
sl@0
  2929
sl@0
  2930
static int unixGetLastError(sqlite3_vfs *pVfs, int nBuf, char *zBuf){
sl@0
  2931
  return 0;
sl@0
  2932
}
sl@0
  2933
sl@0
  2934
/*
sl@0
  2935
** Initialize the operating system interface.
sl@0
  2936
*/
sl@0
  2937
int sqlite3_os_init(void){ 
sl@0
  2938
  /* Macro to define the static contents of an sqlite3_vfs structure for
sl@0
  2939
  ** the unix backend. The two parameters are the values to use for
sl@0
  2940
  ** the sqlite3_vfs.zName and sqlite3_vfs.pAppData fields, respectively.
sl@0
  2941
  ** 
sl@0
  2942
  */
sl@0
  2943
  #define UNIXVFS(zVfsName, pVfsAppData) {                  \
sl@0
  2944
    1,                    /* iVersion */                    \
sl@0
  2945
    sizeof(unixFile),     /* szOsFile */                    \
sl@0
  2946
    MAX_PATHNAME,         /* mxPathname */                  \
sl@0
  2947
    0,                    /* pNext */                       \
sl@0
  2948
    zVfsName,             /* zName */                       \
sl@0
  2949
    (void *)pVfsAppData,  /* pAppData */                    \
sl@0
  2950
    unixOpen,             /* xOpen */                       \
sl@0
  2951
    unixDelete,           /* xDelete */                     \
sl@0
  2952
    unixAccess,           /* xAccess */                     \
sl@0
  2953
    unixFullPathname,     /* xFullPathname */               \
sl@0
  2954
    unixDlOpen,           /* xDlOpen */                     \
sl@0
  2955
    unixDlError,          /* xDlError */                    \
sl@0
  2956
    unixDlSym,            /* xDlSym */                      \
sl@0
  2957
    unixDlClose,          /* xDlClose */                    \
sl@0
  2958
    unixRandomness,       /* xRandomness */                 \
sl@0
  2959
    unixSleep,            /* xSleep */                      \
sl@0
  2960
    unixCurrentTime,      /* xCurrentTime */                \
sl@0
  2961
    unixGetLastError      /* xGetLastError */               \
sl@0
  2962
  }
sl@0
  2963
sl@0
  2964
  static sqlite3_vfs unixVfs = UNIXVFS("unix", 0);
sl@0
  2965
#if SQLITE_ENABLE_LOCKING_STYLE
sl@0
  2966
  int i;
sl@0
  2967
  static sqlite3_vfs aVfs[] = {
sl@0
  2968
    UNIXVFS("unix-posix",   LOCKING_STYLE_POSIX), 
sl@0
  2969
    UNIXVFS("unix-afp",     LOCKING_STYLE_AFP), 
sl@0
  2970
    UNIXVFS("unix-flock",   LOCKING_STYLE_FLOCK), 
sl@0
  2971
    UNIXVFS("unix-dotfile", LOCKING_STYLE_DOTFILE), 
sl@0
  2972
    UNIXVFS("unix-none",    LOCKING_STYLE_NONE)
sl@0
  2973
  };
sl@0
  2974
  for(i=0; i<(sizeof(aVfs)/sizeof(sqlite3_vfs)); i++){
sl@0
  2975
    sqlite3_vfs_register(&aVfs[i], 0);
sl@0
  2976
  }
sl@0
  2977
#endif
sl@0
  2978
  sqlite3_vfs_register(&unixVfs, 1);
sl@0
  2979
  return SQLITE_OK; 
sl@0
  2980
}
sl@0
  2981
sl@0
  2982
/*
sl@0
  2983
** Shutdown the operating system interface. This is a no-op for unix.
sl@0
  2984
*/
sl@0
  2985
int sqlite3_os_end(void){ 
sl@0
  2986
  return SQLITE_OK; 
sl@0
  2987
}
sl@0
  2988
 
sl@0
  2989
#endif /* SQLITE_OS_UNIX */