os/persistentdata/persistentstorage/sql/SQLite364/expr.c
author sl@SLION-WIN7.fritz.box
Fri, 15 Jun 2012 03:10:57 +0200
changeset 0 bde4ae8d615e
permissions -rw-r--r--
First public contribution.
sl@0
     1
/*
sl@0
     2
** 2001 September 15
sl@0
     3
**
sl@0
     4
** The author disclaims copyright to this source code.  In place of
sl@0
     5
** a legal notice, here is a blessing:
sl@0
     6
**
sl@0
     7
**    May you do good and not evil.
sl@0
     8
**    May you find forgiveness for yourself and forgive others.
sl@0
     9
**    May you share freely, never taking more than you give.
sl@0
    10
**
sl@0
    11
*************************************************************************
sl@0
    12
** This file contains routines used for analyzing expressions and
sl@0
    13
** for generating VDBE code that evaluates expressions in SQLite.
sl@0
    14
**
sl@0
    15
** $Id: expr.c,v 1.399 2008/10/11 16:47:36 drh Exp $
sl@0
    16
*/
sl@0
    17
#include "sqliteInt.h"
sl@0
    18
#include <ctype.h>
sl@0
    19
sl@0
    20
/*
sl@0
    21
** Return the 'affinity' of the expression pExpr if any.
sl@0
    22
**
sl@0
    23
** If pExpr is a column, a reference to a column via an 'AS' alias,
sl@0
    24
** or a sub-select with a column as the return value, then the 
sl@0
    25
** affinity of that column is returned. Otherwise, 0x00 is returned,
sl@0
    26
** indicating no affinity for the expression.
sl@0
    27
**
sl@0
    28
** i.e. the WHERE clause expresssions in the following statements all
sl@0
    29
** have an affinity:
sl@0
    30
**
sl@0
    31
** CREATE TABLE t1(a);
sl@0
    32
** SELECT * FROM t1 WHERE a;
sl@0
    33
** SELECT a AS b FROM t1 WHERE b;
sl@0
    34
** SELECT * FROM t1 WHERE (select a from t1);
sl@0
    35
*/
sl@0
    36
char sqlite3ExprAffinity(Expr *pExpr){
sl@0
    37
  int op = pExpr->op;
sl@0
    38
  if( op==TK_SELECT ){
sl@0
    39
    return sqlite3ExprAffinity(pExpr->pSelect->pEList->a[0].pExpr);
sl@0
    40
  }
sl@0
    41
#ifndef SQLITE_OMIT_CAST
sl@0
    42
  if( op==TK_CAST ){
sl@0
    43
    return sqlite3AffinityType(&pExpr->token);
sl@0
    44
  }
sl@0
    45
#endif
sl@0
    46
  if( (op==TK_COLUMN || op==TK_REGISTER) && pExpr->pTab!=0 ){
sl@0
    47
    /* op==TK_REGISTER && pExpr->pTab!=0 happens when pExpr was originally
sl@0
    48
    ** a TK_COLUMN but was previously evaluated and cached in a register */
sl@0
    49
    int j = pExpr->iColumn;
sl@0
    50
    if( j<0 ) return SQLITE_AFF_INTEGER;
sl@0
    51
    assert( pExpr->pTab && j<pExpr->pTab->nCol );
sl@0
    52
    return pExpr->pTab->aCol[j].affinity;
sl@0
    53
  }
sl@0
    54
  return pExpr->affinity;
sl@0
    55
}
sl@0
    56
sl@0
    57
/*
sl@0
    58
** Set the collating sequence for expression pExpr to be the collating
sl@0
    59
** sequence named by pToken.   Return a pointer to the revised expression.
sl@0
    60
** The collating sequence is marked as "explicit" using the EP_ExpCollate
sl@0
    61
** flag.  An explicit collating sequence will override implicit
sl@0
    62
** collating sequences.
sl@0
    63
*/
sl@0
    64
Expr *sqlite3ExprSetColl(Parse *pParse, Expr *pExpr, Token *pCollName){
sl@0
    65
  char *zColl = 0;            /* Dequoted name of collation sequence */
sl@0
    66
  CollSeq *pColl;
sl@0
    67
  sqlite3 *db = pParse->db;
sl@0
    68
  zColl = sqlite3NameFromToken(db, pCollName);
sl@0
    69
  if( pExpr && zColl ){
sl@0
    70
    pColl = sqlite3LocateCollSeq(pParse, zColl, -1);
sl@0
    71
    if( pColl ){
sl@0
    72
      pExpr->pColl = pColl;
sl@0
    73
      pExpr->flags |= EP_ExpCollate;
sl@0
    74
    }
sl@0
    75
  }
sl@0
    76
  sqlite3DbFree(db, zColl);
sl@0
    77
  return pExpr;
sl@0
    78
}
sl@0
    79
sl@0
    80
/*
sl@0
    81
** Return the default collation sequence for the expression pExpr. If
sl@0
    82
** there is no default collation type, return 0.
sl@0
    83
*/
sl@0
    84
CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){
sl@0
    85
  CollSeq *pColl = 0;
sl@0
    86
  Expr *p = pExpr;
sl@0
    87
  while( p ){
sl@0
    88
    int op;
sl@0
    89
    pColl = p->pColl;
sl@0
    90
    if( pColl ) break;
sl@0
    91
    op = p->op;
sl@0
    92
    if( (op==TK_COLUMN || op==TK_REGISTER) && p->pTab!=0 ){
sl@0
    93
      /* op==TK_REGISTER && p->pTab!=0 happens when pExpr was originally
sl@0
    94
      ** a TK_COLUMN but was previously evaluated and cached in a register */
sl@0
    95
      const char *zColl;
sl@0
    96
      int j = p->iColumn;
sl@0
    97
      if( j>=0 ){
sl@0
    98
        sqlite3 *db = pParse->db;
sl@0
    99
        zColl = p->pTab->aCol[j].zColl;
sl@0
   100
        pColl = sqlite3FindCollSeq(db, ENC(db), zColl, -1, 0);
sl@0
   101
        pExpr->pColl = pColl;
sl@0
   102
      }
sl@0
   103
      break;
sl@0
   104
    }
sl@0
   105
    if( op!=TK_CAST && op!=TK_UPLUS ){
sl@0
   106
      break;
sl@0
   107
    }
sl@0
   108
    p = p->pLeft;
sl@0
   109
  }
sl@0
   110
  if( sqlite3CheckCollSeq(pParse, pColl) ){ 
sl@0
   111
    pColl = 0;
sl@0
   112
  }
sl@0
   113
  return pColl;
sl@0
   114
}
sl@0
   115
sl@0
   116
/*
sl@0
   117
** pExpr is an operand of a comparison operator.  aff2 is the
sl@0
   118
** type affinity of the other operand.  This routine returns the
sl@0
   119
** type affinity that should be used for the comparison operator.
sl@0
   120
*/
sl@0
   121
char sqlite3CompareAffinity(Expr *pExpr, char aff2){
sl@0
   122
  char aff1 = sqlite3ExprAffinity(pExpr);
sl@0
   123
  if( aff1 && aff2 ){
sl@0
   124
    /* Both sides of the comparison are columns. If one has numeric
sl@0
   125
    ** affinity, use that. Otherwise use no affinity.
sl@0
   126
    */
sl@0
   127
    if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){
sl@0
   128
      return SQLITE_AFF_NUMERIC;
sl@0
   129
    }else{
sl@0
   130
      return SQLITE_AFF_NONE;
sl@0
   131
    }
sl@0
   132
  }else if( !aff1 && !aff2 ){
sl@0
   133
    /* Neither side of the comparison is a column.  Compare the
sl@0
   134
    ** results directly.
sl@0
   135
    */
sl@0
   136
    return SQLITE_AFF_NONE;
sl@0
   137
  }else{
sl@0
   138
    /* One side is a column, the other is not. Use the columns affinity. */
sl@0
   139
    assert( aff1==0 || aff2==0 );
sl@0
   140
    return (aff1 + aff2);
sl@0
   141
  }
sl@0
   142
}
sl@0
   143
sl@0
   144
/*
sl@0
   145
** pExpr is a comparison operator.  Return the type affinity that should
sl@0
   146
** be applied to both operands prior to doing the comparison.
sl@0
   147
*/
sl@0
   148
static char comparisonAffinity(Expr *pExpr){
sl@0
   149
  char aff;
sl@0
   150
  assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT ||
sl@0
   151
          pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE ||
sl@0
   152
          pExpr->op==TK_NE );
sl@0
   153
  assert( pExpr->pLeft );
sl@0
   154
  aff = sqlite3ExprAffinity(pExpr->pLeft);
sl@0
   155
  if( pExpr->pRight ){
sl@0
   156
    aff = sqlite3CompareAffinity(pExpr->pRight, aff);
sl@0
   157
  }
sl@0
   158
  else if( pExpr->pSelect ){
sl@0
   159
    aff = sqlite3CompareAffinity(pExpr->pSelect->pEList->a[0].pExpr, aff);
sl@0
   160
  }
sl@0
   161
  else if( !aff ){
sl@0
   162
    aff = SQLITE_AFF_NONE;
sl@0
   163
  }
sl@0
   164
  return aff;
sl@0
   165
}
sl@0
   166
sl@0
   167
/*
sl@0
   168
** pExpr is a comparison expression, eg. '=', '<', IN(...) etc.
sl@0
   169
** idx_affinity is the affinity of an indexed column. Return true
sl@0
   170
** if the index with affinity idx_affinity may be used to implement
sl@0
   171
** the comparison in pExpr.
sl@0
   172
*/
sl@0
   173
int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){
sl@0
   174
  char aff = comparisonAffinity(pExpr);
sl@0
   175
  switch( aff ){
sl@0
   176
    case SQLITE_AFF_NONE:
sl@0
   177
      return 1;
sl@0
   178
    case SQLITE_AFF_TEXT:
sl@0
   179
      return idx_affinity==SQLITE_AFF_TEXT;
sl@0
   180
    default:
sl@0
   181
      return sqlite3IsNumericAffinity(idx_affinity);
sl@0
   182
  }
sl@0
   183
}
sl@0
   184
sl@0
   185
/*
sl@0
   186
** Return the P5 value that should be used for a binary comparison
sl@0
   187
** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2.
sl@0
   188
*/
sl@0
   189
static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){
sl@0
   190
  u8 aff = (char)sqlite3ExprAffinity(pExpr2);
sl@0
   191
  aff = sqlite3CompareAffinity(pExpr1, aff) | jumpIfNull;
sl@0
   192
  return aff;
sl@0
   193
}
sl@0
   194
sl@0
   195
/*
sl@0
   196
** Return a pointer to the collation sequence that should be used by
sl@0
   197
** a binary comparison operator comparing pLeft and pRight.
sl@0
   198
**
sl@0
   199
** If the left hand expression has a collating sequence type, then it is
sl@0
   200
** used. Otherwise the collation sequence for the right hand expression
sl@0
   201
** is used, or the default (BINARY) if neither expression has a collating
sl@0
   202
** type.
sl@0
   203
**
sl@0
   204
** Argument pRight (but not pLeft) may be a null pointer. In this case,
sl@0
   205
** it is not considered.
sl@0
   206
*/
sl@0
   207
CollSeq *sqlite3BinaryCompareCollSeq(
sl@0
   208
  Parse *pParse, 
sl@0
   209
  Expr *pLeft, 
sl@0
   210
  Expr *pRight
sl@0
   211
){
sl@0
   212
  CollSeq *pColl;
sl@0
   213
  assert( pLeft );
sl@0
   214
  if( pLeft->flags & EP_ExpCollate ){
sl@0
   215
    assert( pLeft->pColl );
sl@0
   216
    pColl = pLeft->pColl;
sl@0
   217
  }else if( pRight && pRight->flags & EP_ExpCollate ){
sl@0
   218
    assert( pRight->pColl );
sl@0
   219
    pColl = pRight->pColl;
sl@0
   220
  }else{
sl@0
   221
    pColl = sqlite3ExprCollSeq(pParse, pLeft);
sl@0
   222
    if( !pColl ){
sl@0
   223
      pColl = sqlite3ExprCollSeq(pParse, pRight);
sl@0
   224
    }
sl@0
   225
  }
sl@0
   226
  return pColl;
sl@0
   227
}
sl@0
   228
sl@0
   229
/*
sl@0
   230
** Generate the operands for a comparison operation.  Before
sl@0
   231
** generating the code for each operand, set the EP_AnyAff
sl@0
   232
** flag on the expression so that it will be able to used a
sl@0
   233
** cached column value that has previously undergone an
sl@0
   234
** affinity change.
sl@0
   235
*/
sl@0
   236
static void codeCompareOperands(
sl@0
   237
  Parse *pParse,    /* Parsing and code generating context */
sl@0
   238
  Expr *pLeft,      /* The left operand */
sl@0
   239
  int *pRegLeft,    /* Register where left operand is stored */
sl@0
   240
  int *pFreeLeft,   /* Free this register when done */
sl@0
   241
  Expr *pRight,     /* The right operand */
sl@0
   242
  int *pRegRight,   /* Register where right operand is stored */
sl@0
   243
  int *pFreeRight   /* Write temp register for right operand there */
sl@0
   244
){
sl@0
   245
  while( pLeft->op==TK_UPLUS ) pLeft = pLeft->pLeft;
sl@0
   246
  pLeft->flags |= EP_AnyAff;
sl@0
   247
  *pRegLeft = sqlite3ExprCodeTemp(pParse, pLeft, pFreeLeft);
sl@0
   248
  while( pRight->op==TK_UPLUS ) pRight = pRight->pLeft;
sl@0
   249
  pRight->flags |= EP_AnyAff;
sl@0
   250
  *pRegRight = sqlite3ExprCodeTemp(pParse, pRight, pFreeRight);
sl@0
   251
}
sl@0
   252
sl@0
   253
/*
sl@0
   254
** Generate code for a comparison operator.
sl@0
   255
*/
sl@0
   256
static int codeCompare(
sl@0
   257
  Parse *pParse,    /* The parsing (and code generating) context */
sl@0
   258
  Expr *pLeft,      /* The left operand */
sl@0
   259
  Expr *pRight,     /* The right operand */
sl@0
   260
  int opcode,       /* The comparison opcode */
sl@0
   261
  int in1, int in2, /* Register holding operands */
sl@0
   262
  int dest,         /* Jump here if true.  */
sl@0
   263
  int jumpIfNull    /* If true, jump if either operand is NULL */
sl@0
   264
){
sl@0
   265
  int p5;
sl@0
   266
  int addr;
sl@0
   267
  CollSeq *p4;
sl@0
   268
sl@0
   269
  p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight);
sl@0
   270
  p5 = binaryCompareP5(pLeft, pRight, jumpIfNull);
sl@0
   271
  addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1,
sl@0
   272
                           (void*)p4, P4_COLLSEQ);
sl@0
   273
  sqlite3VdbeChangeP5(pParse->pVdbe, p5);
sl@0
   274
  if( (p5 & SQLITE_AFF_MASK)!=SQLITE_AFF_NONE ){
sl@0
   275
    sqlite3ExprCacheAffinityChange(pParse, in1, 1);
sl@0
   276
    sqlite3ExprCacheAffinityChange(pParse, in2, 1);
sl@0
   277
  }
sl@0
   278
  return addr;
sl@0
   279
}
sl@0
   280
sl@0
   281
#if SQLITE_MAX_EXPR_DEPTH>0
sl@0
   282
/*
sl@0
   283
** Check that argument nHeight is less than or equal to the maximum
sl@0
   284
** expression depth allowed. If it is not, leave an error message in
sl@0
   285
** pParse.
sl@0
   286
*/
sl@0
   287
int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){
sl@0
   288
  int rc = SQLITE_OK;
sl@0
   289
  int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH];
sl@0
   290
  if( nHeight>mxHeight ){
sl@0
   291
    sqlite3ErrorMsg(pParse, 
sl@0
   292
       "Expression tree is too large (maximum depth %d)", mxHeight
sl@0
   293
    );
sl@0
   294
    rc = SQLITE_ERROR;
sl@0
   295
  }
sl@0
   296
  return rc;
sl@0
   297
}
sl@0
   298
sl@0
   299
/* The following three functions, heightOfExpr(), heightOfExprList()
sl@0
   300
** and heightOfSelect(), are used to determine the maximum height
sl@0
   301
** of any expression tree referenced by the structure passed as the
sl@0
   302
** first argument.
sl@0
   303
**
sl@0
   304
** If this maximum height is greater than the current value pointed
sl@0
   305
** to by pnHeight, the second parameter, then set *pnHeight to that
sl@0
   306
** value.
sl@0
   307
*/
sl@0
   308
static void heightOfExpr(Expr *p, int *pnHeight){
sl@0
   309
  if( p ){
sl@0
   310
    if( p->nHeight>*pnHeight ){
sl@0
   311
      *pnHeight = p->nHeight;
sl@0
   312
    }
sl@0
   313
  }
sl@0
   314
}
sl@0
   315
static void heightOfExprList(ExprList *p, int *pnHeight){
sl@0
   316
  if( p ){
sl@0
   317
    int i;
sl@0
   318
    for(i=0; i<p->nExpr; i++){
sl@0
   319
      heightOfExpr(p->a[i].pExpr, pnHeight);
sl@0
   320
    }
sl@0
   321
  }
sl@0
   322
}
sl@0
   323
static void heightOfSelect(Select *p, int *pnHeight){
sl@0
   324
  if( p ){
sl@0
   325
    heightOfExpr(p->pWhere, pnHeight);
sl@0
   326
    heightOfExpr(p->pHaving, pnHeight);
sl@0
   327
    heightOfExpr(p->pLimit, pnHeight);
sl@0
   328
    heightOfExpr(p->pOffset, pnHeight);
sl@0
   329
    heightOfExprList(p->pEList, pnHeight);
sl@0
   330
    heightOfExprList(p->pGroupBy, pnHeight);
sl@0
   331
    heightOfExprList(p->pOrderBy, pnHeight);
sl@0
   332
    heightOfSelect(p->pPrior, pnHeight);
sl@0
   333
  }
sl@0
   334
}
sl@0
   335
sl@0
   336
/*
sl@0
   337
** Set the Expr.nHeight variable in the structure passed as an 
sl@0
   338
** argument. An expression with no children, Expr.pList or 
sl@0
   339
** Expr.pSelect member has a height of 1. Any other expression
sl@0
   340
** has a height equal to the maximum height of any other 
sl@0
   341
** referenced Expr plus one.
sl@0
   342
*/
sl@0
   343
static void exprSetHeight(Expr *p){
sl@0
   344
  int nHeight = 0;
sl@0
   345
  heightOfExpr(p->pLeft, &nHeight);
sl@0
   346
  heightOfExpr(p->pRight, &nHeight);
sl@0
   347
  heightOfExprList(p->pList, &nHeight);
sl@0
   348
  heightOfSelect(p->pSelect, &nHeight);
sl@0
   349
  p->nHeight = nHeight + 1;
sl@0
   350
}
sl@0
   351
sl@0
   352
/*
sl@0
   353
** Set the Expr.nHeight variable using the exprSetHeight() function. If
sl@0
   354
** the height is greater than the maximum allowed expression depth,
sl@0
   355
** leave an error in pParse.
sl@0
   356
*/
sl@0
   357
void sqlite3ExprSetHeight(Parse *pParse, Expr *p){
sl@0
   358
  exprSetHeight(p);
sl@0
   359
  sqlite3ExprCheckHeight(pParse, p->nHeight);
sl@0
   360
}
sl@0
   361
sl@0
   362
/*
sl@0
   363
** Return the maximum height of any expression tree referenced
sl@0
   364
** by the select statement passed as an argument.
sl@0
   365
*/
sl@0
   366
int sqlite3SelectExprHeight(Select *p){
sl@0
   367
  int nHeight = 0;
sl@0
   368
  heightOfSelect(p, &nHeight);
sl@0
   369
  return nHeight;
sl@0
   370
}
sl@0
   371
#else
sl@0
   372
  #define exprSetHeight(y)
sl@0
   373
#endif /* SQLITE_MAX_EXPR_DEPTH>0 */
sl@0
   374
sl@0
   375
/*
sl@0
   376
** Construct a new expression node and return a pointer to it.  Memory
sl@0
   377
** for this node is obtained from sqlite3_malloc().  The calling function
sl@0
   378
** is responsible for making sure the node eventually gets freed.
sl@0
   379
*/
sl@0
   380
Expr *sqlite3Expr(
sl@0
   381
  sqlite3 *db,            /* Handle for sqlite3DbMallocZero() (may be null) */
sl@0
   382
  int op,                 /* Expression opcode */
sl@0
   383
  Expr *pLeft,            /* Left operand */
sl@0
   384
  Expr *pRight,           /* Right operand */
sl@0
   385
  const Token *pToken     /* Argument token */
sl@0
   386
){
sl@0
   387
  Expr *pNew;
sl@0
   388
  pNew = sqlite3DbMallocZero(db, sizeof(Expr));
sl@0
   389
  if( pNew==0 ){
sl@0
   390
    /* When malloc fails, delete pLeft and pRight. Expressions passed to 
sl@0
   391
    ** this function must always be allocated with sqlite3Expr() for this 
sl@0
   392
    ** reason. 
sl@0
   393
    */
sl@0
   394
    sqlite3ExprDelete(db, pLeft);
sl@0
   395
    sqlite3ExprDelete(db, pRight);
sl@0
   396
    return 0;
sl@0
   397
  }
sl@0
   398
  pNew->op = op;
sl@0
   399
  pNew->pLeft = pLeft;
sl@0
   400
  pNew->pRight = pRight;
sl@0
   401
  pNew->iAgg = -1;
sl@0
   402
  pNew->span.z = (u8*)"";
sl@0
   403
  if( pToken ){
sl@0
   404
    assert( pToken->dyn==0 );
sl@0
   405
    pNew->span = pNew->token = *pToken;
sl@0
   406
  }else if( pLeft ){
sl@0
   407
    if( pRight ){
sl@0
   408
      if( pRight->span.dyn==0 && pLeft->span.dyn==0 ){
sl@0
   409
        sqlite3ExprSpan(pNew, &pLeft->span, &pRight->span);
sl@0
   410
      }
sl@0
   411
      if( pRight->flags & EP_ExpCollate ){
sl@0
   412
        pNew->flags |= EP_ExpCollate;
sl@0
   413
        pNew->pColl = pRight->pColl;
sl@0
   414
      }
sl@0
   415
    }
sl@0
   416
    if( pLeft->flags & EP_ExpCollate ){
sl@0
   417
      pNew->flags |= EP_ExpCollate;
sl@0
   418
      pNew->pColl = pLeft->pColl;
sl@0
   419
    }
sl@0
   420
  }
sl@0
   421
sl@0
   422
  exprSetHeight(pNew);
sl@0
   423
  return pNew;
sl@0
   424
}
sl@0
   425
sl@0
   426
/*
sl@0
   427
** Works like sqlite3Expr() except that it takes an extra Parse*
sl@0
   428
** argument and notifies the associated connection object if malloc fails.
sl@0
   429
*/
sl@0
   430
Expr *sqlite3PExpr(
sl@0
   431
  Parse *pParse,          /* Parsing context */
sl@0
   432
  int op,                 /* Expression opcode */
sl@0
   433
  Expr *pLeft,            /* Left operand */
sl@0
   434
  Expr *pRight,           /* Right operand */
sl@0
   435
  const Token *pToken     /* Argument token */
sl@0
   436
){
sl@0
   437
  Expr *p = sqlite3Expr(pParse->db, op, pLeft, pRight, pToken);
sl@0
   438
  if( p ){
sl@0
   439
    sqlite3ExprCheckHeight(pParse, p->nHeight);
sl@0
   440
  }
sl@0
   441
  return p;
sl@0
   442
}
sl@0
   443
sl@0
   444
/*
sl@0
   445
** When doing a nested parse, you can include terms in an expression
sl@0
   446
** that look like this:   #1 #2 ...  These terms refer to registers
sl@0
   447
** in the virtual machine.  #N is the N-th register.
sl@0
   448
**
sl@0
   449
** This routine is called by the parser to deal with on of those terms.
sl@0
   450
** It immediately generates code to store the value in a memory location.
sl@0
   451
** The returns an expression that will code to extract the value from
sl@0
   452
** that memory location as needed.
sl@0
   453
*/
sl@0
   454
Expr *sqlite3RegisterExpr(Parse *pParse, Token *pToken){
sl@0
   455
  Vdbe *v = pParse->pVdbe;
sl@0
   456
  Expr *p;
sl@0
   457
  if( pParse->nested==0 ){
sl@0
   458
    sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", pToken);
sl@0
   459
    return sqlite3PExpr(pParse, TK_NULL, 0, 0, 0);
sl@0
   460
  }
sl@0
   461
  if( v==0 ) return 0;
sl@0
   462
  p = sqlite3PExpr(pParse, TK_REGISTER, 0, 0, pToken);
sl@0
   463
  if( p==0 ){
sl@0
   464
    return 0;  /* Malloc failed */
sl@0
   465
  }
sl@0
   466
  p->iTable = atoi((char*)&pToken->z[1]);
sl@0
   467
  return p;
sl@0
   468
}
sl@0
   469
sl@0
   470
/*
sl@0
   471
** Join two expressions using an AND operator.  If either expression is
sl@0
   472
** NULL, then just return the other expression.
sl@0
   473
*/
sl@0
   474
Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){
sl@0
   475
  if( pLeft==0 ){
sl@0
   476
    return pRight;
sl@0
   477
  }else if( pRight==0 ){
sl@0
   478
    return pLeft;
sl@0
   479
  }else{
sl@0
   480
    return sqlite3Expr(db, TK_AND, pLeft, pRight, 0);
sl@0
   481
  }
sl@0
   482
}
sl@0
   483
sl@0
   484
/*
sl@0
   485
** Set the Expr.span field of the given expression to span all
sl@0
   486
** text between the two given tokens.  Both tokens must be pointing
sl@0
   487
** at the same string.
sl@0
   488
*/
sl@0
   489
void sqlite3ExprSpan(Expr *pExpr, Token *pLeft, Token *pRight){
sl@0
   490
  assert( pRight!=0 );
sl@0
   491
  assert( pLeft!=0 );
sl@0
   492
  if( pExpr ){
sl@0
   493
    pExpr->span.z = pLeft->z;
sl@0
   494
    pExpr->span.n = pRight->n + (pRight->z - pLeft->z);
sl@0
   495
  }
sl@0
   496
}
sl@0
   497
sl@0
   498
/*
sl@0
   499
** Construct a new expression node for a function with multiple
sl@0
   500
** arguments.
sl@0
   501
*/
sl@0
   502
Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){
sl@0
   503
  Expr *pNew;
sl@0
   504
  sqlite3 *db = pParse->db;
sl@0
   505
  assert( pToken );
sl@0
   506
  pNew = sqlite3DbMallocZero(db, sizeof(Expr) );
sl@0
   507
  if( pNew==0 ){
sl@0
   508
    sqlite3ExprListDelete(db, pList); /* Avoid leaking memory when malloc fails */
sl@0
   509
    return 0;
sl@0
   510
  }
sl@0
   511
  pNew->op = TK_FUNCTION;
sl@0
   512
  pNew->pList = pList;
sl@0
   513
  assert( pToken->dyn==0 );
sl@0
   514
  pNew->token = *pToken;
sl@0
   515
  pNew->span = pNew->token;
sl@0
   516
sl@0
   517
  sqlite3ExprSetHeight(pParse, pNew);
sl@0
   518
  return pNew;
sl@0
   519
}
sl@0
   520
sl@0
   521
/*
sl@0
   522
** Assign a variable number to an expression that encodes a wildcard
sl@0
   523
** in the original SQL statement.  
sl@0
   524
**
sl@0
   525
** Wildcards consisting of a single "?" are assigned the next sequential
sl@0
   526
** variable number.
sl@0
   527
**
sl@0
   528
** Wildcards of the form "?nnn" are assigned the number "nnn".  We make
sl@0
   529
** sure "nnn" is not too be to avoid a denial of service attack when
sl@0
   530
** the SQL statement comes from an external source.
sl@0
   531
**
sl@0
   532
** Wildcards of the form ":aaa" or "$aaa" are assigned the same number
sl@0
   533
** as the previous instance of the same wildcard.  Or if this is the first
sl@0
   534
** instance of the wildcard, the next sequenial variable number is
sl@0
   535
** assigned.
sl@0
   536
*/
sl@0
   537
void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){
sl@0
   538
  Token *pToken;
sl@0
   539
  sqlite3 *db = pParse->db;
sl@0
   540
sl@0
   541
  if( pExpr==0 ) return;
sl@0
   542
  pToken = &pExpr->token;
sl@0
   543
  assert( pToken->n>=1 );
sl@0
   544
  assert( pToken->z!=0 );
sl@0
   545
  assert( pToken->z[0]!=0 );
sl@0
   546
  if( pToken->n==1 ){
sl@0
   547
    /* Wildcard of the form "?".  Assign the next variable number */
sl@0
   548
    pExpr->iTable = ++pParse->nVar;
sl@0
   549
  }else if( pToken->z[0]=='?' ){
sl@0
   550
    /* Wildcard of the form "?nnn".  Convert "nnn" to an integer and
sl@0
   551
    ** use it as the variable number */
sl@0
   552
    int i;
sl@0
   553
    pExpr->iTable = i = atoi((char*)&pToken->z[1]);
sl@0
   554
    testcase( i==0 );
sl@0
   555
    testcase( i==1 );
sl@0
   556
    testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 );
sl@0
   557
    testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] );
sl@0
   558
    if( i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
sl@0
   559
      sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",
sl@0
   560
          db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]);
sl@0
   561
    }
sl@0
   562
    if( i>pParse->nVar ){
sl@0
   563
      pParse->nVar = i;
sl@0
   564
    }
sl@0
   565
  }else{
sl@0
   566
    /* Wildcards of the form ":aaa" or "$aaa".  Reuse the same variable
sl@0
   567
    ** number as the prior appearance of the same name, or if the name
sl@0
   568
    ** has never appeared before, reuse the same variable number
sl@0
   569
    */
sl@0
   570
    int i, n;
sl@0
   571
    n = pToken->n;
sl@0
   572
    for(i=0; i<pParse->nVarExpr; i++){
sl@0
   573
      Expr *pE;
sl@0
   574
      if( (pE = pParse->apVarExpr[i])!=0
sl@0
   575
          && pE->token.n==n
sl@0
   576
          && memcmp(pE->token.z, pToken->z, n)==0 ){
sl@0
   577
        pExpr->iTable = pE->iTable;
sl@0
   578
        break;
sl@0
   579
      }
sl@0
   580
    }
sl@0
   581
    if( i>=pParse->nVarExpr ){
sl@0
   582
      pExpr->iTable = ++pParse->nVar;
sl@0
   583
      if( pParse->nVarExpr>=pParse->nVarExprAlloc-1 ){
sl@0
   584
        pParse->nVarExprAlloc += pParse->nVarExprAlloc + 10;
sl@0
   585
        pParse->apVarExpr =
sl@0
   586
            sqlite3DbReallocOrFree(
sl@0
   587
              db,
sl@0
   588
              pParse->apVarExpr,
sl@0
   589
              pParse->nVarExprAlloc*sizeof(pParse->apVarExpr[0])
sl@0
   590
            );
sl@0
   591
      }
sl@0
   592
      if( !db->mallocFailed ){
sl@0
   593
        assert( pParse->apVarExpr!=0 );
sl@0
   594
        pParse->apVarExpr[pParse->nVarExpr++] = pExpr;
sl@0
   595
      }
sl@0
   596
    }
sl@0
   597
  } 
sl@0
   598
  if( !pParse->nErr && pParse->nVar>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
sl@0
   599
    sqlite3ErrorMsg(pParse, "too many SQL variables");
sl@0
   600
  }
sl@0
   601
}
sl@0
   602
sl@0
   603
/*
sl@0
   604
** Clear an expression structure without deleting the structure itself.
sl@0
   605
** Substructure is deleted.
sl@0
   606
*/
sl@0
   607
void sqlite3ExprClear(sqlite3 *db, Expr *p){
sl@0
   608
  if( p->span.dyn ) sqlite3DbFree(db, (char*)p->span.z);
sl@0
   609
  if( p->token.dyn ) sqlite3DbFree(db, (char*)p->token.z);
sl@0
   610
  sqlite3ExprDelete(db, p->pLeft);
sl@0
   611
  sqlite3ExprDelete(db, p->pRight);
sl@0
   612
  sqlite3ExprListDelete(db, p->pList);
sl@0
   613
  sqlite3SelectDelete(db, p->pSelect);
sl@0
   614
}
sl@0
   615
sl@0
   616
/*
sl@0
   617
** Recursively delete an expression tree.
sl@0
   618
*/
sl@0
   619
void sqlite3ExprDelete(sqlite3 *db, Expr *p){
sl@0
   620
  if( p==0 ) return;
sl@0
   621
  sqlite3ExprClear(db, p);
sl@0
   622
  sqlite3DbFree(db, p);
sl@0
   623
}
sl@0
   624
sl@0
   625
/*
sl@0
   626
** The Expr.token field might be a string literal that is quoted.
sl@0
   627
** If so, remove the quotation marks.
sl@0
   628
*/
sl@0
   629
void sqlite3DequoteExpr(sqlite3 *db, Expr *p){
sl@0
   630
  if( ExprHasAnyProperty(p, EP_Dequoted) ){
sl@0
   631
    return;
sl@0
   632
  }
sl@0
   633
  ExprSetProperty(p, EP_Dequoted);
sl@0
   634
  if( p->token.dyn==0 ){
sl@0
   635
    sqlite3TokenCopy(db, &p->token, &p->token);
sl@0
   636
  }
sl@0
   637
  sqlite3Dequote((char*)p->token.z);
sl@0
   638
}
sl@0
   639
sl@0
   640
/*
sl@0
   641
** The following group of routines make deep copies of expressions,
sl@0
   642
** expression lists, ID lists, and select statements.  The copies can
sl@0
   643
** be deleted (by being passed to their respective ...Delete() routines)
sl@0
   644
** without effecting the originals.
sl@0
   645
**
sl@0
   646
** The expression list, ID, and source lists return by sqlite3ExprListDup(),
sl@0
   647
** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded 
sl@0
   648
** by subsequent calls to sqlite*ListAppend() routines.
sl@0
   649
**
sl@0
   650
** Any tables that the SrcList might point to are not duplicated.
sl@0
   651
*/
sl@0
   652
Expr *sqlite3ExprDup(sqlite3 *db, Expr *p){
sl@0
   653
  Expr *pNew;
sl@0
   654
  if( p==0 ) return 0;
sl@0
   655
  pNew = sqlite3DbMallocRaw(db, sizeof(*p) );
sl@0
   656
  if( pNew==0 ) return 0;
sl@0
   657
  memcpy(pNew, p, sizeof(*pNew));
sl@0
   658
  if( p->token.z!=0 ){
sl@0
   659
    pNew->token.z = (u8*)sqlite3DbStrNDup(db, (char*)p->token.z, p->token.n);
sl@0
   660
    pNew->token.dyn = 1;
sl@0
   661
  }else{
sl@0
   662
    assert( pNew->token.z==0 );
sl@0
   663
  }
sl@0
   664
  pNew->span.z = 0;
sl@0
   665
  pNew->pLeft = sqlite3ExprDup(db, p->pLeft);
sl@0
   666
  pNew->pRight = sqlite3ExprDup(db, p->pRight);
sl@0
   667
  pNew->pList = sqlite3ExprListDup(db, p->pList);
sl@0
   668
  pNew->pSelect = sqlite3SelectDup(db, p->pSelect);
sl@0
   669
  return pNew;
sl@0
   670
}
sl@0
   671
void sqlite3TokenCopy(sqlite3 *db, Token *pTo, Token *pFrom){
sl@0
   672
  if( pTo->dyn ) sqlite3DbFree(db, (char*)pTo->z);
sl@0
   673
  if( pFrom->z ){
sl@0
   674
    pTo->n = pFrom->n;
sl@0
   675
    pTo->z = (u8*)sqlite3DbStrNDup(db, (char*)pFrom->z, pFrom->n);
sl@0
   676
    pTo->dyn = 1;
sl@0
   677
  }else{
sl@0
   678
    pTo->z = 0;
sl@0
   679
  }
sl@0
   680
}
sl@0
   681
ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p){
sl@0
   682
  ExprList *pNew;
sl@0
   683
  struct ExprList_item *pItem, *pOldItem;
sl@0
   684
  int i;
sl@0
   685
  if( p==0 ) return 0;
sl@0
   686
  pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) );
sl@0
   687
  if( pNew==0 ) return 0;
sl@0
   688
  pNew->iECursor = 0;
sl@0
   689
  pNew->nExpr = pNew->nAlloc = p->nExpr;
sl@0
   690
  pNew->a = pItem = sqlite3DbMallocRaw(db,  p->nExpr*sizeof(p->a[0]) );
sl@0
   691
  if( pItem==0 ){
sl@0
   692
    sqlite3DbFree(db, pNew);
sl@0
   693
    return 0;
sl@0
   694
  } 
sl@0
   695
  pOldItem = p->a;
sl@0
   696
  for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){
sl@0
   697
    Expr *pNewExpr, *pOldExpr;
sl@0
   698
    pItem->pExpr = pNewExpr = sqlite3ExprDup(db, pOldExpr = pOldItem->pExpr);
sl@0
   699
    if( pOldExpr->span.z!=0 && pNewExpr ){
sl@0
   700
      /* Always make a copy of the span for top-level expressions in the
sl@0
   701
      ** expression list.  The logic in SELECT processing that determines
sl@0
   702
      ** the names of columns in the result set needs this information */
sl@0
   703
      sqlite3TokenCopy(db, &pNewExpr->span, &pOldExpr->span);
sl@0
   704
    }
sl@0
   705
    assert( pNewExpr==0 || pNewExpr->span.z!=0 
sl@0
   706
            || pOldExpr->span.z==0
sl@0
   707
            || db->mallocFailed );
sl@0
   708
    pItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
sl@0
   709
    pItem->sortOrder = pOldItem->sortOrder;
sl@0
   710
    pItem->done = 0;
sl@0
   711
    pItem->iCol = pOldItem->iCol;
sl@0
   712
    pItem->iAlias = pOldItem->iAlias;
sl@0
   713
  }
sl@0
   714
  return pNew;
sl@0
   715
}
sl@0
   716
sl@0
   717
/*
sl@0
   718
** If cursors, triggers, views and subqueries are all omitted from
sl@0
   719
** the build, then none of the following routines, except for 
sl@0
   720
** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes
sl@0
   721
** called with a NULL argument.
sl@0
   722
*/
sl@0
   723
#if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \
sl@0
   724
 || !defined(SQLITE_OMIT_SUBQUERY)
sl@0
   725
SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p){
sl@0
   726
  SrcList *pNew;
sl@0
   727
  int i;
sl@0
   728
  int nByte;
sl@0
   729
  if( p==0 ) return 0;
sl@0
   730
  nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);
sl@0
   731
  pNew = sqlite3DbMallocRaw(db, nByte );
sl@0
   732
  if( pNew==0 ) return 0;
sl@0
   733
  pNew->nSrc = pNew->nAlloc = p->nSrc;
sl@0
   734
  for(i=0; i<p->nSrc; i++){
sl@0
   735
    struct SrcList_item *pNewItem = &pNew->a[i];
sl@0
   736
    struct SrcList_item *pOldItem = &p->a[i];
sl@0
   737
    Table *pTab;
sl@0
   738
    pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase);
sl@0
   739
    pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
sl@0
   740
    pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias);
sl@0
   741
    pNewItem->jointype = pOldItem->jointype;
sl@0
   742
    pNewItem->iCursor = pOldItem->iCursor;
sl@0
   743
    pNewItem->isPopulated = pOldItem->isPopulated;
sl@0
   744
    pNewItem->zIndex = sqlite3DbStrDup(db, pOldItem->zIndex);
sl@0
   745
    pNewItem->notIndexed = pOldItem->notIndexed;
sl@0
   746
    pNewItem->pIndex = pOldItem->pIndex;
sl@0
   747
    pTab = pNewItem->pTab = pOldItem->pTab;
sl@0
   748
    if( pTab ){
sl@0
   749
      pTab->nRef++;
sl@0
   750
    }
sl@0
   751
    pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect);
sl@0
   752
    pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn);
sl@0
   753
    pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing);
sl@0
   754
    pNewItem->colUsed = pOldItem->colUsed;
sl@0
   755
  }
sl@0
   756
  return pNew;
sl@0
   757
}
sl@0
   758
IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){
sl@0
   759
  IdList *pNew;
sl@0
   760
  int i;
sl@0
   761
  if( p==0 ) return 0;
sl@0
   762
  pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) );
sl@0
   763
  if( pNew==0 ) return 0;
sl@0
   764
  pNew->nId = pNew->nAlloc = p->nId;
sl@0
   765
  pNew->a = sqlite3DbMallocRaw(db, p->nId*sizeof(p->a[0]) );
sl@0
   766
  if( pNew->a==0 ){
sl@0
   767
    sqlite3DbFree(db, pNew);
sl@0
   768
    return 0;
sl@0
   769
  }
sl@0
   770
  for(i=0; i<p->nId; i++){
sl@0
   771
    struct IdList_item *pNewItem = &pNew->a[i];
sl@0
   772
    struct IdList_item *pOldItem = &p->a[i];
sl@0
   773
    pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
sl@0
   774
    pNewItem->idx = pOldItem->idx;
sl@0
   775
  }
sl@0
   776
  return pNew;
sl@0
   777
}
sl@0
   778
Select *sqlite3SelectDup(sqlite3 *db, Select *p){
sl@0
   779
  Select *pNew;
sl@0
   780
  if( p==0 ) return 0;
sl@0
   781
  pNew = sqlite3DbMallocRaw(db, sizeof(*p) );
sl@0
   782
  if( pNew==0 ) return 0;
sl@0
   783
  pNew->pEList = sqlite3ExprListDup(db, p->pEList);
sl@0
   784
  pNew->pSrc = sqlite3SrcListDup(db, p->pSrc);
sl@0
   785
  pNew->pWhere = sqlite3ExprDup(db, p->pWhere);
sl@0
   786
  pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy);
sl@0
   787
  pNew->pHaving = sqlite3ExprDup(db, p->pHaving);
sl@0
   788
  pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy);
sl@0
   789
  pNew->op = p->op;
sl@0
   790
  pNew->pPrior = sqlite3SelectDup(db, p->pPrior);
sl@0
   791
  pNew->pLimit = sqlite3ExprDup(db, p->pLimit);
sl@0
   792
  pNew->pOffset = sqlite3ExprDup(db, p->pOffset);
sl@0
   793
  pNew->iLimit = 0;
sl@0
   794
  pNew->iOffset = 0;
sl@0
   795
  pNew->selFlags = p->selFlags & ~SF_UsesEphemeral;
sl@0
   796
  pNew->pRightmost = 0;
sl@0
   797
  pNew->addrOpenEphm[0] = -1;
sl@0
   798
  pNew->addrOpenEphm[1] = -1;
sl@0
   799
  pNew->addrOpenEphm[2] = -1;
sl@0
   800
  return pNew;
sl@0
   801
}
sl@0
   802
#else
sl@0
   803
Select *sqlite3SelectDup(sqlite3 *db, Select *p){
sl@0
   804
  assert( p==0 );
sl@0
   805
  return 0;
sl@0
   806
}
sl@0
   807
#endif
sl@0
   808
sl@0
   809
sl@0
   810
/*
sl@0
   811
** Add a new element to the end of an expression list.  If pList is
sl@0
   812
** initially NULL, then create a new expression list.
sl@0
   813
*/
sl@0
   814
ExprList *sqlite3ExprListAppend(
sl@0
   815
  Parse *pParse,          /* Parsing context */
sl@0
   816
  ExprList *pList,        /* List to which to append. Might be NULL */
sl@0
   817
  Expr *pExpr,            /* Expression to be appended */
sl@0
   818
  Token *pName            /* AS keyword for the expression */
sl@0
   819
){
sl@0
   820
  sqlite3 *db = pParse->db;
sl@0
   821
  if( pList==0 ){
sl@0
   822
    pList = sqlite3DbMallocZero(db, sizeof(ExprList) );
sl@0
   823
    if( pList==0 ){
sl@0
   824
      goto no_mem;
sl@0
   825
    }
sl@0
   826
    assert( pList->nAlloc==0 );
sl@0
   827
  }
sl@0
   828
  if( pList->nAlloc<=pList->nExpr ){
sl@0
   829
    struct ExprList_item *a;
sl@0
   830
    int n = pList->nAlloc*2 + 4;
sl@0
   831
    a = sqlite3DbRealloc(db, pList->a, n*sizeof(pList->a[0]));
sl@0
   832
    if( a==0 ){
sl@0
   833
      goto no_mem;
sl@0
   834
    }
sl@0
   835
    pList->a = a;
sl@0
   836
    pList->nAlloc = n;
sl@0
   837
  }
sl@0
   838
  assert( pList->a!=0 );
sl@0
   839
  if( pExpr || pName ){
sl@0
   840
    struct ExprList_item *pItem = &pList->a[pList->nExpr++];
sl@0
   841
    memset(pItem, 0, sizeof(*pItem));
sl@0
   842
    pItem->zName = sqlite3NameFromToken(db, pName);
sl@0
   843
    pItem->pExpr = pExpr;
sl@0
   844
    pItem->iAlias = 0;
sl@0
   845
  }
sl@0
   846
  return pList;
sl@0
   847
sl@0
   848
no_mem:     
sl@0
   849
  /* Avoid leaking memory if malloc has failed. */
sl@0
   850
  sqlite3ExprDelete(db, pExpr);
sl@0
   851
  sqlite3ExprListDelete(db, pList);
sl@0
   852
  return 0;
sl@0
   853
}
sl@0
   854
sl@0
   855
/*
sl@0
   856
** If the expression list pEList contains more than iLimit elements,
sl@0
   857
** leave an error message in pParse.
sl@0
   858
*/
sl@0
   859
void sqlite3ExprListCheckLength(
sl@0
   860
  Parse *pParse,
sl@0
   861
  ExprList *pEList,
sl@0
   862
  const char *zObject
sl@0
   863
){
sl@0
   864
  int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN];
sl@0
   865
  testcase( pEList && pEList->nExpr==mx );
sl@0
   866
  testcase( pEList && pEList->nExpr==mx+1 );
sl@0
   867
  if( pEList && pEList->nExpr>mx ){
sl@0
   868
    sqlite3ErrorMsg(pParse, "too many columns in %s", zObject);
sl@0
   869
  }
sl@0
   870
}
sl@0
   871
sl@0
   872
/*
sl@0
   873
** Delete an entire expression list.
sl@0
   874
*/
sl@0
   875
void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){
sl@0
   876
  int i;
sl@0
   877
  struct ExprList_item *pItem;
sl@0
   878
  if( pList==0 ) return;
sl@0
   879
  assert( pList->a!=0 || (pList->nExpr==0 && pList->nAlloc==0) );
sl@0
   880
  assert( pList->nExpr<=pList->nAlloc );
sl@0
   881
  for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
sl@0
   882
    sqlite3ExprDelete(db, pItem->pExpr);
sl@0
   883
    sqlite3DbFree(db, pItem->zName);
sl@0
   884
  }
sl@0
   885
  sqlite3DbFree(db, pList->a);
sl@0
   886
  sqlite3DbFree(db, pList);
sl@0
   887
}
sl@0
   888
sl@0
   889
/*
sl@0
   890
** These routines are Walker callbacks.  Walker.u.pi is a pointer
sl@0
   891
** to an integer.  These routines are checking an expression to see
sl@0
   892
** if it is a constant.  Set *Walker.u.pi to 0 if the expression is
sl@0
   893
** not constant.
sl@0
   894
**
sl@0
   895
** These callback routines are used to implement the following:
sl@0
   896
**
sl@0
   897
**     sqlite3ExprIsConstant()
sl@0
   898
**     sqlite3ExprIsConstantNotJoin()
sl@0
   899
**     sqlite3ExprIsConstantOrFunction()
sl@0
   900
**
sl@0
   901
*/
sl@0
   902
static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){
sl@0
   903
sl@0
   904
  /* If pWalker->u.i is 3 then any term of the expression that comes from
sl@0
   905
  ** the ON or USING clauses of a join disqualifies the expression
sl@0
   906
  ** from being considered constant. */
sl@0
   907
  if( pWalker->u.i==3 && ExprHasAnyProperty(pExpr, EP_FromJoin) ){
sl@0
   908
    pWalker->u.i = 0;
sl@0
   909
    return WRC_Abort;
sl@0
   910
  }
sl@0
   911
sl@0
   912
  switch( pExpr->op ){
sl@0
   913
    /* Consider functions to be constant if all their arguments are constant
sl@0
   914
    ** and pWalker->u.i==2 */
sl@0
   915
    case TK_FUNCTION:
sl@0
   916
      if( pWalker->u.i==2 ) return 0;
sl@0
   917
      /* Fall through */
sl@0
   918
    case TK_ID:
sl@0
   919
    case TK_COLUMN:
sl@0
   920
    case TK_DOT:
sl@0
   921
    case TK_AGG_FUNCTION:
sl@0
   922
    case TK_AGG_COLUMN:
sl@0
   923
#ifndef SQLITE_OMIT_SUBQUERY
sl@0
   924
    case TK_SELECT:
sl@0
   925
    case TK_EXISTS:
sl@0
   926
      testcase( pExpr->op==TK_SELECT );
sl@0
   927
      testcase( pExpr->op==TK_EXISTS );
sl@0
   928
#endif
sl@0
   929
      testcase( pExpr->op==TK_ID );
sl@0
   930
      testcase( pExpr->op==TK_COLUMN );
sl@0
   931
      testcase( pExpr->op==TK_DOT );
sl@0
   932
      testcase( pExpr->op==TK_AGG_FUNCTION );
sl@0
   933
      testcase( pExpr->op==TK_AGG_COLUMN );
sl@0
   934
      pWalker->u.i = 0;
sl@0
   935
      return WRC_Abort;
sl@0
   936
    default:
sl@0
   937
      return WRC_Continue;
sl@0
   938
  }
sl@0
   939
}
sl@0
   940
static int selectNodeIsConstant(Walker *pWalker, Select *pSelect){
sl@0
   941
  pWalker->u.i = 0;
sl@0
   942
  return WRC_Abort;
sl@0
   943
}
sl@0
   944
static int exprIsConst(Expr *p, int initFlag){
sl@0
   945
  Walker w;
sl@0
   946
  w.u.i = initFlag;
sl@0
   947
  w.xExprCallback = exprNodeIsConstant;
sl@0
   948
  w.xSelectCallback = selectNodeIsConstant;
sl@0
   949
  sqlite3WalkExpr(&w, p);
sl@0
   950
  return w.u.i;
sl@0
   951
}
sl@0
   952
sl@0
   953
/*
sl@0
   954
** Walk an expression tree.  Return 1 if the expression is constant
sl@0
   955
** and 0 if it involves variables or function calls.
sl@0
   956
**
sl@0
   957
** For the purposes of this function, a double-quoted string (ex: "abc")
sl@0
   958
** is considered a variable but a single-quoted string (ex: 'abc') is
sl@0
   959
** a constant.
sl@0
   960
*/
sl@0
   961
int sqlite3ExprIsConstant(Expr *p){
sl@0
   962
  return exprIsConst(p, 1);
sl@0
   963
}
sl@0
   964
sl@0
   965
/*
sl@0
   966
** Walk an expression tree.  Return 1 if the expression is constant
sl@0
   967
** that does no originate from the ON or USING clauses of a join.
sl@0
   968
** Return 0 if it involves variables or function calls or terms from
sl@0
   969
** an ON or USING clause.
sl@0
   970
*/
sl@0
   971
int sqlite3ExprIsConstantNotJoin(Expr *p){
sl@0
   972
  return exprIsConst(p, 3);
sl@0
   973
}
sl@0
   974
sl@0
   975
/*
sl@0
   976
** Walk an expression tree.  Return 1 if the expression is constant
sl@0
   977
** or a function call with constant arguments.  Return and 0 if there
sl@0
   978
** are any variables.
sl@0
   979
**
sl@0
   980
** For the purposes of this function, a double-quoted string (ex: "abc")
sl@0
   981
** is considered a variable but a single-quoted string (ex: 'abc') is
sl@0
   982
** a constant.
sl@0
   983
*/
sl@0
   984
int sqlite3ExprIsConstantOrFunction(Expr *p){
sl@0
   985
  return exprIsConst(p, 2);
sl@0
   986
}
sl@0
   987
sl@0
   988
/*
sl@0
   989
** If the expression p codes a constant integer that is small enough
sl@0
   990
** to fit in a 32-bit integer, return 1 and put the value of the integer
sl@0
   991
** in *pValue.  If the expression is not an integer or if it is too big
sl@0
   992
** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
sl@0
   993
*/
sl@0
   994
int sqlite3ExprIsInteger(Expr *p, int *pValue){
sl@0
   995
  int rc = 0;
sl@0
   996
  if( p->flags & EP_IntValue ){
sl@0
   997
    *pValue = p->iTable;
sl@0
   998
    return 1;
sl@0
   999
  }
sl@0
  1000
  switch( p->op ){
sl@0
  1001
    case TK_INTEGER: {
sl@0
  1002
      rc = sqlite3GetInt32((char*)p->token.z, pValue);
sl@0
  1003
      break;
sl@0
  1004
    }
sl@0
  1005
    case TK_UPLUS: {
sl@0
  1006
      rc = sqlite3ExprIsInteger(p->pLeft, pValue);
sl@0
  1007
      break;
sl@0
  1008
    }
sl@0
  1009
    case TK_UMINUS: {
sl@0
  1010
      int v;
sl@0
  1011
      if( sqlite3ExprIsInteger(p->pLeft, &v) ){
sl@0
  1012
        *pValue = -v;
sl@0
  1013
        rc = 1;
sl@0
  1014
      }
sl@0
  1015
      break;
sl@0
  1016
    }
sl@0
  1017
    default: break;
sl@0
  1018
  }
sl@0
  1019
  if( rc ){
sl@0
  1020
    p->op = TK_INTEGER;
sl@0
  1021
    p->flags |= EP_IntValue;
sl@0
  1022
    p->iTable = *pValue;
sl@0
  1023
  }
sl@0
  1024
  return rc;
sl@0
  1025
}
sl@0
  1026
sl@0
  1027
/*
sl@0
  1028
** Return TRUE if the given string is a row-id column name.
sl@0
  1029
*/
sl@0
  1030
int sqlite3IsRowid(const char *z){
sl@0
  1031
  if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1;
sl@0
  1032
  if( sqlite3StrICmp(z, "ROWID")==0 ) return 1;
sl@0
  1033
  if( sqlite3StrICmp(z, "OID")==0 ) return 1;
sl@0
  1034
  return 0;
sl@0
  1035
}
sl@0
  1036
sl@0
  1037
#ifdef SQLITE_TEST
sl@0
  1038
  int sqlite3_enable_in_opt = 1;
sl@0
  1039
#else
sl@0
  1040
  #define sqlite3_enable_in_opt 1
sl@0
  1041
#endif
sl@0
  1042
sl@0
  1043
/*
sl@0
  1044
** Return true if the IN operator optimization is enabled and
sl@0
  1045
** the SELECT statement p exists and is of the
sl@0
  1046
** simple form:
sl@0
  1047
**
sl@0
  1048
**     SELECT <column> FROM <table>
sl@0
  1049
**
sl@0
  1050
** If this is the case, it may be possible to use an existing table
sl@0
  1051
** or index instead of generating an epheremal table.
sl@0
  1052
*/
sl@0
  1053
#ifndef SQLITE_OMIT_SUBQUERY
sl@0
  1054
static int isCandidateForInOpt(Select *p){
sl@0
  1055
  SrcList *pSrc;
sl@0
  1056
  ExprList *pEList;
sl@0
  1057
  Table *pTab;
sl@0
  1058
  if( !sqlite3_enable_in_opt ) return 0; /* IN optimization must be enabled */
sl@0
  1059
  if( p==0 ) return 0;                   /* right-hand side of IN is SELECT */
sl@0
  1060
  if( p->pPrior ) return 0;              /* Not a compound SELECT */
sl@0
  1061
  if( p->selFlags & (SF_Distinct|SF_Aggregate) ){
sl@0
  1062
      return 0; /* No DISTINCT keyword and no aggregate functions */
sl@0
  1063
  }
sl@0
  1064
  if( p->pGroupBy ) return 0;            /* Has no GROUP BY clause */
sl@0
  1065
  if( p->pLimit ) return 0;              /* Has no LIMIT clause */
sl@0
  1066
  if( p->pOffset ) return 0;
sl@0
  1067
  if( p->pWhere ) return 0;              /* Has no WHERE clause */
sl@0
  1068
  pSrc = p->pSrc;
sl@0
  1069
  if( pSrc==0 ) return 0;                /* A single table in the FROM clause */
sl@0
  1070
  if( pSrc->nSrc!=1 ) return 0;
sl@0
  1071
  if( pSrc->a[0].pSelect ) return 0;     /* FROM clause is not a subquery */
sl@0
  1072
  pTab = pSrc->a[0].pTab;
sl@0
  1073
  if( pTab==0 ) return 0;
sl@0
  1074
  if( pTab->pSelect ) return 0;          /* FROM clause is not a view */
sl@0
  1075
  if( IsVirtual(pTab) ) return 0;        /* FROM clause not a virtual table */
sl@0
  1076
  pEList = p->pEList;
sl@0
  1077
  if( pEList->nExpr!=1 ) return 0;       /* One column in the result set */
sl@0
  1078
  if( pEList->a[0].pExpr->op!=TK_COLUMN ) return 0; /* Result is a column */
sl@0
  1079
  return 1;
sl@0
  1080
}
sl@0
  1081
#endif /* SQLITE_OMIT_SUBQUERY */
sl@0
  1082
sl@0
  1083
/*
sl@0
  1084
** This function is used by the implementation of the IN (...) operator.
sl@0
  1085
** It's job is to find or create a b-tree structure that may be used
sl@0
  1086
** either to test for membership of the (...) set or to iterate through
sl@0
  1087
** its members, skipping duplicates.
sl@0
  1088
**
sl@0
  1089
** The cursor opened on the structure (database table, database index 
sl@0
  1090
** or ephermal table) is stored in pX->iTable before this function returns.
sl@0
  1091
** The returned value indicates the structure type, as follows:
sl@0
  1092
**
sl@0
  1093
**   IN_INDEX_ROWID - The cursor was opened on a database table.
sl@0
  1094
**   IN_INDEX_INDEX - The cursor was opened on a database index.
sl@0
  1095
**   IN_INDEX_EPH -   The cursor was opened on a specially created and
sl@0
  1096
**                    populated epheremal table.
sl@0
  1097
**
sl@0
  1098
** An existing structure may only be used if the SELECT is of the simple
sl@0
  1099
** form:
sl@0
  1100
**
sl@0
  1101
**     SELECT <column> FROM <table>
sl@0
  1102
**
sl@0
  1103
** If prNotFound parameter is 0, then the structure will be used to iterate
sl@0
  1104
** through the set members, skipping any duplicates. In this case an
sl@0
  1105
** epheremal table must be used unless the selected <column> is guaranteed
sl@0
  1106
** to be unique - either because it is an INTEGER PRIMARY KEY or it
sl@0
  1107
** is unique by virtue of a constraint or implicit index.
sl@0
  1108
**
sl@0
  1109
** If the prNotFound parameter is not 0, then the structure will be used 
sl@0
  1110
** for fast set membership tests. In this case an epheremal table must 
sl@0
  1111
** be used unless <column> is an INTEGER PRIMARY KEY or an index can 
sl@0
  1112
** be found with <column> as its left-most column.
sl@0
  1113
**
sl@0
  1114
** When the structure is being used for set membership tests, the user
sl@0
  1115
** needs to know whether or not the structure contains an SQL NULL 
sl@0
  1116
** value in order to correctly evaluate expressions like "X IN (Y, Z)".
sl@0
  1117
** If there is a chance that the structure may contain a NULL value at
sl@0
  1118
** runtime, then a register is allocated and the register number written
sl@0
  1119
** to *prNotFound. If there is no chance that the structure contains a
sl@0
  1120
** NULL value, then *prNotFound is left unchanged.
sl@0
  1121
**
sl@0
  1122
** If a register is allocated and its location stored in *prNotFound, then
sl@0
  1123
** its initial value is NULL. If the structure does not remain constant
sl@0
  1124
** for the duration of the query (i.e. the set is a correlated sub-select), 
sl@0
  1125
** the value of the allocated register is reset to NULL each time the 
sl@0
  1126
** structure is repopulated. This allows the caller to use vdbe code 
sl@0
  1127
** equivalent to the following:
sl@0
  1128
**
sl@0
  1129
**   if( register==NULL ){
sl@0
  1130
**     has_null = <test if data structure contains null>
sl@0
  1131
**     register = 1
sl@0
  1132
**   }
sl@0
  1133
**
sl@0
  1134
** in order to avoid running the <test if data structure contains null>
sl@0
  1135
** test more often than is necessary.
sl@0
  1136
*/
sl@0
  1137
#ifndef SQLITE_OMIT_SUBQUERY
sl@0
  1138
int sqlite3FindInIndex(Parse *pParse, Expr *pX, int *prNotFound){
sl@0
  1139
  Select *p;
sl@0
  1140
  int eType = 0;
sl@0
  1141
  int iTab = pParse->nTab++;
sl@0
  1142
  int mustBeUnique = !prNotFound;
sl@0
  1143
sl@0
  1144
  /* The follwing if(...) expression is true if the SELECT is of the 
sl@0
  1145
  ** simple form:
sl@0
  1146
  **
sl@0
  1147
  **     SELECT <column> FROM <table>
sl@0
  1148
  **
sl@0
  1149
  ** If this is the case, it may be possible to use an existing table
sl@0
  1150
  ** or index instead of generating an epheremal table.
sl@0
  1151
  */
sl@0
  1152
  p = pX->pSelect;
sl@0
  1153
  if( isCandidateForInOpt(p) ){
sl@0
  1154
    sqlite3 *db = pParse->db;
sl@0
  1155
    Index *pIdx;
sl@0
  1156
    Expr *pExpr = p->pEList->a[0].pExpr;
sl@0
  1157
    int iCol = pExpr->iColumn;
sl@0
  1158
    Vdbe *v = sqlite3GetVdbe(pParse);
sl@0
  1159
sl@0
  1160
    /* This function is only called from two places. In both cases the vdbe
sl@0
  1161
    ** has already been allocated. So assume sqlite3GetVdbe() is always
sl@0
  1162
    ** successful here.
sl@0
  1163
    */
sl@0
  1164
    assert(v);
sl@0
  1165
    if( iCol<0 ){
sl@0
  1166
      int iMem = ++pParse->nMem;
sl@0
  1167
      int iAddr;
sl@0
  1168
      Table *pTab = p->pSrc->a[0].pTab;
sl@0
  1169
      int iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
sl@0
  1170
      sqlite3VdbeUsesBtree(v, iDb);
sl@0
  1171
sl@0
  1172
      iAddr = sqlite3VdbeAddOp1(v, OP_If, iMem);
sl@0
  1173
      sqlite3VdbeAddOp2(v, OP_Integer, 1, iMem);
sl@0
  1174
sl@0
  1175
      sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
sl@0
  1176
      eType = IN_INDEX_ROWID;
sl@0
  1177
sl@0
  1178
      sqlite3VdbeJumpHere(v, iAddr);
sl@0
  1179
    }else{
sl@0
  1180
      /* The collation sequence used by the comparison. If an index is to 
sl@0
  1181
      ** be used in place of a temp-table, it must be ordered according
sl@0
  1182
      ** to this collation sequence.
sl@0
  1183
      */
sl@0
  1184
      CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pExpr);
sl@0
  1185
sl@0
  1186
      /* Check that the affinity that will be used to perform the 
sl@0
  1187
      ** comparison is the same as the affinity of the column. If
sl@0
  1188
      ** it is not, it is not possible to use any index.
sl@0
  1189
      */
sl@0
  1190
      Table *pTab = p->pSrc->a[0].pTab;
sl@0
  1191
      char aff = comparisonAffinity(pX);
sl@0
  1192
      int affinity_ok = (pTab->aCol[iCol].affinity==aff||aff==SQLITE_AFF_NONE);
sl@0
  1193
sl@0
  1194
      for(pIdx=pTab->pIndex; pIdx && eType==0 && affinity_ok; pIdx=pIdx->pNext){
sl@0
  1195
        if( (pIdx->aiColumn[0]==iCol)
sl@0
  1196
         && (pReq==sqlite3FindCollSeq(db, ENC(db), pIdx->azColl[0], -1, 0))
sl@0
  1197
         && (!mustBeUnique || (pIdx->nColumn==1 && pIdx->onError!=OE_None))
sl@0
  1198
        ){
sl@0
  1199
          int iDb;
sl@0
  1200
          int iMem = ++pParse->nMem;
sl@0
  1201
          int iAddr;
sl@0
  1202
          char *pKey;
sl@0
  1203
  
sl@0
  1204
          pKey = (char *)sqlite3IndexKeyinfo(pParse, pIdx);
sl@0
  1205
          iDb = sqlite3SchemaToIndex(db, pIdx->pSchema);
sl@0
  1206
          sqlite3VdbeUsesBtree(v, iDb);
sl@0
  1207
sl@0
  1208
          iAddr = sqlite3VdbeAddOp1(v, OP_If, iMem);
sl@0
  1209
          sqlite3VdbeAddOp2(v, OP_Integer, 1, iMem);
sl@0
  1210
  
sl@0
  1211
          sqlite3VdbeAddOp2(v, OP_SetNumColumns, 0, pIdx->nColumn);
sl@0
  1212
          sqlite3VdbeAddOp4(v, OP_OpenRead, iTab, pIdx->tnum, iDb,
sl@0
  1213
                               pKey,P4_KEYINFO_HANDOFF);
sl@0
  1214
          VdbeComment((v, "%s", pIdx->zName));
sl@0
  1215
          eType = IN_INDEX_INDEX;
sl@0
  1216
sl@0
  1217
          sqlite3VdbeJumpHere(v, iAddr);
sl@0
  1218
          if( prNotFound && !pTab->aCol[iCol].notNull ){
sl@0
  1219
            *prNotFound = ++pParse->nMem;
sl@0
  1220
          }
sl@0
  1221
        }
sl@0
  1222
      }
sl@0
  1223
    }
sl@0
  1224
  }
sl@0
  1225
sl@0
  1226
  if( eType==0 ){
sl@0
  1227
    int rMayHaveNull = 0;
sl@0
  1228
    eType = IN_INDEX_EPH;
sl@0
  1229
    if( prNotFound ){
sl@0
  1230
      *prNotFound = rMayHaveNull = ++pParse->nMem;
sl@0
  1231
    }else if( pX->pLeft->iColumn<0 && pX->pSelect==0 ){
sl@0
  1232
      eType = IN_INDEX_ROWID;
sl@0
  1233
    }
sl@0
  1234
    sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID);
sl@0
  1235
  }else{
sl@0
  1236
    pX->iTable = iTab;
sl@0
  1237
  }
sl@0
  1238
  return eType;
sl@0
  1239
}
sl@0
  1240
#endif
sl@0
  1241
sl@0
  1242
/*
sl@0
  1243
** Generate code for scalar subqueries used as an expression
sl@0
  1244
** and IN operators.  Examples:
sl@0
  1245
**
sl@0
  1246
**     (SELECT a FROM b)          -- subquery
sl@0
  1247
**     EXISTS (SELECT a FROM b)   -- EXISTS subquery
sl@0
  1248
**     x IN (4,5,11)              -- IN operator with list on right-hand side
sl@0
  1249
**     x IN (SELECT a FROM b)     -- IN operator with subquery on the right
sl@0
  1250
**
sl@0
  1251
** The pExpr parameter describes the expression that contains the IN
sl@0
  1252
** operator or subquery.
sl@0
  1253
**
sl@0
  1254
** If parameter isRowid is non-zero, then expression pExpr is guaranteed
sl@0
  1255
** to be of the form "<rowid> IN (?, ?, ?)", where <rowid> is a reference
sl@0
  1256
** to some integer key column of a table B-Tree. In this case, use an
sl@0
  1257
** intkey B-Tree to store the set of IN(...) values instead of the usual
sl@0
  1258
** (slower) variable length keys B-Tree.
sl@0
  1259
*/
sl@0
  1260
#ifndef SQLITE_OMIT_SUBQUERY
sl@0
  1261
void sqlite3CodeSubselect(
sl@0
  1262
  Parse *pParse, 
sl@0
  1263
  Expr *pExpr, 
sl@0
  1264
  int rMayHaveNull,
sl@0
  1265
  int isRowid
sl@0
  1266
){
sl@0
  1267
  int testAddr = 0;                       /* One-time test address */
sl@0
  1268
  Vdbe *v = sqlite3GetVdbe(pParse);
sl@0
  1269
  if( v==0 ) return;
sl@0
  1270
sl@0
  1271
sl@0
  1272
  /* This code must be run in its entirety every time it is encountered
sl@0
  1273
  ** if any of the following is true:
sl@0
  1274
  **
sl@0
  1275
  **    *  The right-hand side is a correlated subquery
sl@0
  1276
  **    *  The right-hand side is an expression list containing variables
sl@0
  1277
  **    *  We are inside a trigger
sl@0
  1278
  **
sl@0
  1279
  ** If all of the above are false, then we can run this code just once
sl@0
  1280
  ** save the results, and reuse the same result on subsequent invocations.
sl@0
  1281
  */
sl@0
  1282
  if( !ExprHasAnyProperty(pExpr, EP_VarSelect) && !pParse->trigStack ){
sl@0
  1283
    int mem = ++pParse->nMem;
sl@0
  1284
    sqlite3VdbeAddOp1(v, OP_If, mem);
sl@0
  1285
    testAddr = sqlite3VdbeAddOp2(v, OP_Integer, 1, mem);
sl@0
  1286
    assert( testAddr>0 || pParse->db->mallocFailed );
sl@0
  1287
  }
sl@0
  1288
sl@0
  1289
  switch( pExpr->op ){
sl@0
  1290
    case TK_IN: {
sl@0
  1291
      char affinity;
sl@0
  1292
      KeyInfo keyInfo;
sl@0
  1293
      int addr;        /* Address of OP_OpenEphemeral instruction */
sl@0
  1294
      Expr *pLeft = pExpr->pLeft;
sl@0
  1295
sl@0
  1296
      if( rMayHaveNull ){
sl@0
  1297
        sqlite3VdbeAddOp2(v, OP_Null, 0, rMayHaveNull);
sl@0
  1298
      }
sl@0
  1299
sl@0
  1300
      affinity = sqlite3ExprAffinity(pLeft);
sl@0
  1301
sl@0
  1302
      /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)'
sl@0
  1303
      ** expression it is handled the same way. A virtual table is 
sl@0
  1304
      ** filled with single-field index keys representing the results
sl@0
  1305
      ** from the SELECT or the <exprlist>.
sl@0
  1306
      **
sl@0
  1307
      ** If the 'x' expression is a column value, or the SELECT...
sl@0
  1308
      ** statement returns a column value, then the affinity of that
sl@0
  1309
      ** column is used to build the index keys. If both 'x' and the
sl@0
  1310
      ** SELECT... statement are columns, then numeric affinity is used
sl@0
  1311
      ** if either column has NUMERIC or INTEGER affinity. If neither
sl@0
  1312
      ** 'x' nor the SELECT... statement are columns, then numeric affinity
sl@0
  1313
      ** is used.
sl@0
  1314
      */
sl@0
  1315
      pExpr->iTable = pParse->nTab++;
sl@0
  1316
      addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, !isRowid);
sl@0
  1317
      memset(&keyInfo, 0, sizeof(keyInfo));
sl@0
  1318
      keyInfo.nField = 1;
sl@0
  1319
sl@0
  1320
      if( pExpr->pSelect ){
sl@0
  1321
        /* Case 1:     expr IN (SELECT ...)
sl@0
  1322
        **
sl@0
  1323
        ** Generate code to write the results of the select into the temporary
sl@0
  1324
        ** table allocated and opened above.
sl@0
  1325
        */
sl@0
  1326
        SelectDest dest;
sl@0
  1327
        ExprList *pEList;
sl@0
  1328
sl@0
  1329
        assert( !isRowid );
sl@0
  1330
        sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable);
sl@0
  1331
        dest.affinity = (int)affinity;
sl@0
  1332
        assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable );
sl@0
  1333
        if( sqlite3Select(pParse, pExpr->pSelect, &dest) ){
sl@0
  1334
          return;
sl@0
  1335
        }
sl@0
  1336
        pEList = pExpr->pSelect->pEList;
sl@0
  1337
        if( pEList && pEList->nExpr>0 ){ 
sl@0
  1338
          keyInfo.aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft,
sl@0
  1339
              pEList->a[0].pExpr);
sl@0
  1340
        }
sl@0
  1341
      }else if( pExpr->pList ){
sl@0
  1342
        /* Case 2:     expr IN (exprlist)
sl@0
  1343
        **
sl@0
  1344
        ** For each expression, build an index key from the evaluation and
sl@0
  1345
        ** store it in the temporary table. If <expr> is a column, then use
sl@0
  1346
        ** that columns affinity when building index keys. If <expr> is not
sl@0
  1347
        ** a column, use numeric affinity.
sl@0
  1348
        */
sl@0
  1349
        int i;
sl@0
  1350
        ExprList *pList = pExpr->pList;
sl@0
  1351
        struct ExprList_item *pItem;
sl@0
  1352
        int r1, r2, r3;
sl@0
  1353
sl@0
  1354
        if( !affinity ){
sl@0
  1355
          affinity = SQLITE_AFF_NONE;
sl@0
  1356
        }
sl@0
  1357
        keyInfo.aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
sl@0
  1358
sl@0
  1359
        /* Loop through each expression in <exprlist>. */
sl@0
  1360
        r1 = sqlite3GetTempReg(pParse);
sl@0
  1361
        r2 = sqlite3GetTempReg(pParse);
sl@0
  1362
        sqlite3VdbeAddOp2(v, OP_Null, 0, r2);
sl@0
  1363
        for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){
sl@0
  1364
          Expr *pE2 = pItem->pExpr;
sl@0
  1365
sl@0
  1366
          /* If the expression is not constant then we will need to
sl@0
  1367
          ** disable the test that was generated above that makes sure
sl@0
  1368
          ** this code only executes once.  Because for a non-constant
sl@0
  1369
          ** expression we need to rerun this code each time.
sl@0
  1370
          */
sl@0
  1371
          if( testAddr && !sqlite3ExprIsConstant(pE2) ){
sl@0
  1372
            sqlite3VdbeChangeToNoop(v, testAddr-1, 2);
sl@0
  1373
            testAddr = 0;
sl@0
  1374
          }
sl@0
  1375
sl@0
  1376
          /* Evaluate the expression and insert it into the temp table */
sl@0
  1377
          pParse->disableColCache++;
sl@0
  1378
          r3 = sqlite3ExprCodeTarget(pParse, pE2, r1);
sl@0
  1379
          assert( pParse->disableColCache>0 );
sl@0
  1380
          pParse->disableColCache--;
sl@0
  1381
sl@0
  1382
          if( isRowid ){
sl@0
  1383
            sqlite3VdbeAddOp2(v, OP_MustBeInt, r3, sqlite3VdbeCurrentAddr(v)+2);
sl@0
  1384
            sqlite3VdbeAddOp3(v, OP_Insert, pExpr->iTable, r2, r3);
sl@0
  1385
          }else{
sl@0
  1386
            sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1);
sl@0
  1387
            sqlite3ExprCacheAffinityChange(pParse, r3, 1);
sl@0
  1388
            sqlite3VdbeAddOp2(v, OP_IdxInsert, pExpr->iTable, r2);
sl@0
  1389
          }
sl@0
  1390
        }
sl@0
  1391
        sqlite3ReleaseTempReg(pParse, r1);
sl@0
  1392
        sqlite3ReleaseTempReg(pParse, r2);
sl@0
  1393
      }
sl@0
  1394
      if( !isRowid ){
sl@0
  1395
        sqlite3VdbeChangeP4(v, addr, (void *)&keyInfo, P4_KEYINFO);
sl@0
  1396
      }
sl@0
  1397
      break;
sl@0
  1398
    }
sl@0
  1399
sl@0
  1400
    case TK_EXISTS:
sl@0
  1401
    case TK_SELECT: {
sl@0
  1402
      /* This has to be a scalar SELECT.  Generate code to put the
sl@0
  1403
      ** value of this select in a memory cell and record the number
sl@0
  1404
      ** of the memory cell in iColumn.
sl@0
  1405
      */
sl@0
  1406
      static const Token one = { (u8*)"1", 0, 1 };
sl@0
  1407
      Select *pSel;
sl@0
  1408
      SelectDest dest;
sl@0
  1409
sl@0
  1410
      pSel = pExpr->pSelect;
sl@0
  1411
      sqlite3SelectDestInit(&dest, 0, ++pParse->nMem);
sl@0
  1412
      if( pExpr->op==TK_SELECT ){
sl@0
  1413
        dest.eDest = SRT_Mem;
sl@0
  1414
        sqlite3VdbeAddOp2(v, OP_Null, 0, dest.iParm);
sl@0
  1415
        VdbeComment((v, "Init subquery result"));
sl@0
  1416
      }else{
sl@0
  1417
        dest.eDest = SRT_Exists;
sl@0
  1418
        sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iParm);
sl@0
  1419
        VdbeComment((v, "Init EXISTS result"));
sl@0
  1420
      }
sl@0
  1421
      sqlite3ExprDelete(pParse->db, pSel->pLimit);
sl@0
  1422
      pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, &one);
sl@0
  1423
      if( sqlite3Select(pParse, pSel, &dest) ){
sl@0
  1424
        return;
sl@0
  1425
      }
sl@0
  1426
      pExpr->iColumn = dest.iParm;
sl@0
  1427
      break;
sl@0
  1428
    }
sl@0
  1429
  }
sl@0
  1430
sl@0
  1431
  if( testAddr ){
sl@0
  1432
    sqlite3VdbeJumpHere(v, testAddr-1);
sl@0
  1433
  }
sl@0
  1434
sl@0
  1435
  return;
sl@0
  1436
}
sl@0
  1437
#endif /* SQLITE_OMIT_SUBQUERY */
sl@0
  1438
sl@0
  1439
/*
sl@0
  1440
** Duplicate an 8-byte value
sl@0
  1441
*/
sl@0
  1442
static char *dup8bytes(Vdbe *v, const char *in){
sl@0
  1443
  char *out = sqlite3DbMallocRaw(sqlite3VdbeDb(v), 8);
sl@0
  1444
  if( out ){
sl@0
  1445
    memcpy(out, in, 8);
sl@0
  1446
  }
sl@0
  1447
  return out;
sl@0
  1448
}
sl@0
  1449
sl@0
  1450
/*
sl@0
  1451
** Generate an instruction that will put the floating point
sl@0
  1452
** value described by z[0..n-1] into register iMem.
sl@0
  1453
**
sl@0
  1454
** The z[] string will probably not be zero-terminated.  But the 
sl@0
  1455
** z[n] character is guaranteed to be something that does not look
sl@0
  1456
** like the continuation of the number.
sl@0
  1457
*/
sl@0
  1458
static void codeReal(Vdbe *v, const char *z, int n, int negateFlag, int iMem){
sl@0
  1459
  assert( z || v==0 || sqlite3VdbeDb(v)->mallocFailed );
sl@0
  1460
  if( z ){
sl@0
  1461
    double value;
sl@0
  1462
    char *zV;
sl@0
  1463
    assert( !isdigit(z[n]) );
sl@0
  1464
    sqlite3AtoF(z, &value);
sl@0
  1465
    if( sqlite3IsNaN(value) ){
sl@0
  1466
      sqlite3VdbeAddOp2(v, OP_Null, 0, iMem);
sl@0
  1467
    }else{
sl@0
  1468
      if( negateFlag ) value = -value;
sl@0
  1469
      zV = dup8bytes(v, (char*)&value);
sl@0
  1470
      sqlite3VdbeAddOp4(v, OP_Real, 0, iMem, 0, zV, P4_REAL);
sl@0
  1471
    }
sl@0
  1472
  }
sl@0
  1473
}
sl@0
  1474
sl@0
  1475
sl@0
  1476
/*
sl@0
  1477
** Generate an instruction that will put the integer describe by
sl@0
  1478
** text z[0..n-1] into register iMem.
sl@0
  1479
**
sl@0
  1480
** The z[] string will probably not be zero-terminated.  But the 
sl@0
  1481
** z[n] character is guaranteed to be something that does not look
sl@0
  1482
** like the continuation of the number.
sl@0
  1483
*/
sl@0
  1484
static void codeInteger(Vdbe *v, Expr *pExpr, int negFlag, int iMem){
sl@0
  1485
  const char *z;
sl@0
  1486
  if( pExpr->flags & EP_IntValue ){
sl@0
  1487
    int i = pExpr->iTable;
sl@0
  1488
    if( negFlag ) i = -i;
sl@0
  1489
    sqlite3VdbeAddOp2(v, OP_Integer, i, iMem);
sl@0
  1490
  }else if( (z = (char*)pExpr->token.z)!=0 ){
sl@0
  1491
    int i;
sl@0
  1492
    int n = pExpr->token.n;
sl@0
  1493
    assert( !isdigit(z[n]) );
sl@0
  1494
    if( sqlite3GetInt32(z, &i) ){
sl@0
  1495
      if( negFlag ) i = -i;
sl@0
  1496
      sqlite3VdbeAddOp2(v, OP_Integer, i, iMem);
sl@0
  1497
    }else if( sqlite3FitsIn64Bits(z, negFlag) ){
sl@0
  1498
      i64 value;
sl@0
  1499
      char *zV;
sl@0
  1500
      sqlite3Atoi64(z, &value);
sl@0
  1501
      if( negFlag ) value = -value;
sl@0
  1502
      zV = dup8bytes(v, (char*)&value);
sl@0
  1503
      sqlite3VdbeAddOp4(v, OP_Int64, 0, iMem, 0, zV, P4_INT64);
sl@0
  1504
    }else{
sl@0
  1505
      codeReal(v, z, n, negFlag, iMem);
sl@0
  1506
    }
sl@0
  1507
  }
sl@0
  1508
}
sl@0
  1509
sl@0
  1510
sl@0
  1511
/*
sl@0
  1512
** Generate code that will extract the iColumn-th column from
sl@0
  1513
** table pTab and store the column value in a register.  An effort
sl@0
  1514
** is made to store the column value in register iReg, but this is
sl@0
  1515
** not guaranteed.  The location of the column value is returned.
sl@0
  1516
**
sl@0
  1517
** There must be an open cursor to pTab in iTable when this routine
sl@0
  1518
** is called.  If iColumn<0 then code is generated that extracts the rowid.
sl@0
  1519
**
sl@0
  1520
** This routine might attempt to reuse the value of the column that
sl@0
  1521
** has already been loaded into a register.  The value will always
sl@0
  1522
** be used if it has not undergone any affinity changes.  But if
sl@0
  1523
** an affinity change has occurred, then the cached value will only be
sl@0
  1524
** used if allowAffChng is true.
sl@0
  1525
*/
sl@0
  1526
int sqlite3ExprCodeGetColumn(
sl@0
  1527
  Parse *pParse,   /* Parsing and code generating context */
sl@0
  1528
  Table *pTab,     /* Description of the table we are reading from */
sl@0
  1529
  int iColumn,     /* Index of the table column */
sl@0
  1530
  int iTable,      /* The cursor pointing to the table */
sl@0
  1531
  int iReg,        /* Store results here */
sl@0
  1532
  int allowAffChng /* True if prior affinity changes are OK */
sl@0
  1533
){
sl@0
  1534
  Vdbe *v = pParse->pVdbe;
sl@0
  1535
  int i;
sl@0
  1536
  struct yColCache *p;
sl@0
  1537
sl@0
  1538
  for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){
sl@0
  1539
    if( p->iTable==iTable && p->iColumn==iColumn
sl@0
  1540
           && (!p->affChange || allowAffChng) ){
sl@0
  1541
#if 0
sl@0
  1542
      sqlite3VdbeAddOp0(v, OP_Noop);
sl@0
  1543
      VdbeComment((v, "OPT: tab%d.col%d -> r%d", iTable, iColumn, p->iReg));
sl@0
  1544
#endif
sl@0
  1545
      return p->iReg;
sl@0
  1546
    }
sl@0
  1547
  }  
sl@0
  1548
  assert( v!=0 );
sl@0
  1549
  if( iColumn<0 ){
sl@0
  1550
    int op = (pTab && IsVirtual(pTab)) ? OP_VRowid : OP_Rowid;
sl@0
  1551
    sqlite3VdbeAddOp2(v, op, iTable, iReg);
sl@0
  1552
  }else if( pTab==0 ){
sl@0
  1553
    sqlite3VdbeAddOp3(v, OP_Column, iTable, iColumn, iReg);
sl@0
  1554
  }else{
sl@0
  1555
    int op = IsVirtual(pTab) ? OP_VColumn : OP_Column;
sl@0
  1556
    sqlite3VdbeAddOp3(v, op, iTable, iColumn, iReg);
sl@0
  1557
    sqlite3ColumnDefault(v, pTab, iColumn);
sl@0
  1558
#ifndef SQLITE_OMIT_FLOATING_POINT
sl@0
  1559
    if( pTab->aCol[iColumn].affinity==SQLITE_AFF_REAL ){
sl@0
  1560
      sqlite3VdbeAddOp1(v, OP_RealAffinity, iReg);
sl@0
  1561
    }
sl@0
  1562
#endif
sl@0
  1563
  }
sl@0
  1564
  if( pParse->disableColCache==0 ){
sl@0
  1565
    i = pParse->iColCache;
sl@0
  1566
    p = &pParse->aColCache[i];
sl@0
  1567
    p->iTable = iTable;
sl@0
  1568
    p->iColumn = iColumn;
sl@0
  1569
    p->iReg = iReg;
sl@0
  1570
    p->affChange = 0;
sl@0
  1571
    i++;
sl@0
  1572
    if( i>=ArraySize(pParse->aColCache) ) i = 0;
sl@0
  1573
    if( i>pParse->nColCache ) pParse->nColCache = i;
sl@0
  1574
    pParse->iColCache = i;
sl@0
  1575
  }
sl@0
  1576
  return iReg;
sl@0
  1577
}
sl@0
  1578
sl@0
  1579
/*
sl@0
  1580
** Clear all column cache entries associated with the vdbe
sl@0
  1581
** cursor with cursor number iTable.
sl@0
  1582
*/
sl@0
  1583
void sqlite3ExprClearColumnCache(Parse *pParse, int iTable){
sl@0
  1584
  if( iTable<0 ){
sl@0
  1585
    pParse->nColCache = 0;
sl@0
  1586
    pParse->iColCache = 0;
sl@0
  1587
  }else{
sl@0
  1588
    int i;
sl@0
  1589
    for(i=0; i<pParse->nColCache; i++){
sl@0
  1590
      if( pParse->aColCache[i].iTable==iTable ){
sl@0
  1591
        testcase( i==pParse->nColCache-1 );
sl@0
  1592
        pParse->aColCache[i] = pParse->aColCache[--pParse->nColCache];
sl@0
  1593
        pParse->iColCache = pParse->nColCache;
sl@0
  1594
      }
sl@0
  1595
    }
sl@0
  1596
  }
sl@0
  1597
}
sl@0
  1598
sl@0
  1599
/*
sl@0
  1600
** Record the fact that an affinity change has occurred on iCount
sl@0
  1601
** registers starting with iStart.
sl@0
  1602
*/
sl@0
  1603
void sqlite3ExprCacheAffinityChange(Parse *pParse, int iStart, int iCount){
sl@0
  1604
  int iEnd = iStart + iCount - 1;
sl@0
  1605
  int i;
sl@0
  1606
  for(i=0; i<pParse->nColCache; i++){
sl@0
  1607
    int r = pParse->aColCache[i].iReg;
sl@0
  1608
    if( r>=iStart && r<=iEnd ){
sl@0
  1609
      pParse->aColCache[i].affChange = 1;
sl@0
  1610
    }
sl@0
  1611
  }
sl@0
  1612
}
sl@0
  1613
sl@0
  1614
/*
sl@0
  1615
** Generate code to move content from registers iFrom...iFrom+nReg-1
sl@0
  1616
** over to iTo..iTo+nReg-1. Keep the column cache up-to-date.
sl@0
  1617
*/
sl@0
  1618
void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){
sl@0
  1619
  int i;
sl@0
  1620
  if( iFrom==iTo ) return;
sl@0
  1621
  sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg);
sl@0
  1622
  for(i=0; i<pParse->nColCache; i++){
sl@0
  1623
    int x = pParse->aColCache[i].iReg;
sl@0
  1624
    if( x>=iFrom && x<iFrom+nReg ){
sl@0
  1625
      pParse->aColCache[i].iReg += iTo-iFrom;
sl@0
  1626
    }
sl@0
  1627
  }
sl@0
  1628
}
sl@0
  1629
sl@0
  1630
/*
sl@0
  1631
** Generate code to copy content from registers iFrom...iFrom+nReg-1
sl@0
  1632
** over to iTo..iTo+nReg-1.
sl@0
  1633
*/
sl@0
  1634
void sqlite3ExprCodeCopy(Parse *pParse, int iFrom, int iTo, int nReg){
sl@0
  1635
  int i;
sl@0
  1636
  if( iFrom==iTo ) return;
sl@0
  1637
  for(i=0; i<nReg; i++){
sl@0
  1638
    sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, iFrom+i, iTo+i);
sl@0
  1639
  }
sl@0
  1640
}
sl@0
  1641
sl@0
  1642
/*
sl@0
  1643
** Return true if any register in the range iFrom..iTo (inclusive)
sl@0
  1644
** is used as part of the column cache.
sl@0
  1645
*/
sl@0
  1646
static int usedAsColumnCache(Parse *pParse, int iFrom, int iTo){
sl@0
  1647
  int i;
sl@0
  1648
  for(i=0; i<pParse->nColCache; i++){
sl@0
  1649
    int r = pParse->aColCache[i].iReg;
sl@0
  1650
    if( r>=iFrom && r<=iTo ) return 1;
sl@0
  1651
  }
sl@0
  1652
  return 0;
sl@0
  1653
}
sl@0
  1654
sl@0
  1655
/*
sl@0
  1656
** Theres is a value in register iCurrent.  We ultimately want
sl@0
  1657
** the value to be in register iTarget.  It might be that
sl@0
  1658
** iCurrent and iTarget are the same register.
sl@0
  1659
**
sl@0
  1660
** We are going to modify the value, so we need to make sure it
sl@0
  1661
** is not a cached register.  If iCurrent is a cached register,
sl@0
  1662
** then try to move the value over to iTarget.  If iTarget is a
sl@0
  1663
** cached register, then clear the corresponding cache line.
sl@0
  1664
**
sl@0
  1665
** Return the register that the value ends up in.
sl@0
  1666
*/
sl@0
  1667
int sqlite3ExprWritableRegister(Parse *pParse, int iCurrent, int iTarget){
sl@0
  1668
  int i;
sl@0
  1669
  assert( pParse->pVdbe!=0 );
sl@0
  1670
  if( !usedAsColumnCache(pParse, iCurrent, iCurrent) ){
sl@0
  1671
    return iCurrent;
sl@0
  1672
  }
sl@0
  1673
  if( iCurrent!=iTarget ){
sl@0
  1674
    sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, iCurrent, iTarget);
sl@0
  1675
  }
sl@0
  1676
  for(i=0; i<pParse->nColCache; i++){
sl@0
  1677
    if( pParse->aColCache[i].iReg==iTarget ){
sl@0
  1678
      pParse->aColCache[i] = pParse->aColCache[--pParse->nColCache];
sl@0
  1679
      pParse->iColCache = pParse->nColCache;
sl@0
  1680
    }
sl@0
  1681
  }
sl@0
  1682
  return iTarget;
sl@0
  1683
}
sl@0
  1684
sl@0
  1685
/*
sl@0
  1686
** If the last instruction coded is an ephemeral copy of any of
sl@0
  1687
** the registers in the nReg registers beginning with iReg, then
sl@0
  1688
** convert the last instruction from OP_SCopy to OP_Copy.
sl@0
  1689
*/
sl@0
  1690
void sqlite3ExprHardCopy(Parse *pParse, int iReg, int nReg){
sl@0
  1691
  int addr;
sl@0
  1692
  VdbeOp *pOp;
sl@0
  1693
  Vdbe *v;
sl@0
  1694
sl@0
  1695
  v = pParse->pVdbe;
sl@0
  1696
  addr = sqlite3VdbeCurrentAddr(v);
sl@0
  1697
  pOp = sqlite3VdbeGetOp(v, addr-1);
sl@0
  1698
  assert( pOp || pParse->db->mallocFailed );
sl@0
  1699
  if( pOp && pOp->opcode==OP_SCopy && pOp->p1>=iReg && pOp->p1<iReg+nReg ){
sl@0
  1700
    pOp->opcode = OP_Copy;
sl@0
  1701
  }
sl@0
  1702
}
sl@0
  1703
sl@0
  1704
/*
sl@0
  1705
** Generate code to store the value of the iAlias-th alias in register
sl@0
  1706
** target.  The first time this is called, pExpr is evaluated to compute
sl@0
  1707
** the value of the alias.  The value is stored in an auxiliary register
sl@0
  1708
** and the number of that register is returned.  On subsequent calls,
sl@0
  1709
** the register number is returned without generating any code.
sl@0
  1710
**
sl@0
  1711
** Note that in order for this to work, code must be generated in the
sl@0
  1712
** same order that it is executed.
sl@0
  1713
**
sl@0
  1714
** Aliases are numbered starting with 1.  So iAlias is in the range
sl@0
  1715
** of 1 to pParse->nAlias inclusive.  
sl@0
  1716
**
sl@0
  1717
** pParse->aAlias[iAlias-1] records the register number where the value
sl@0
  1718
** of the iAlias-th alias is stored.  If zero, that means that the
sl@0
  1719
** alias has not yet been computed.
sl@0
  1720
*/
sl@0
  1721
static int codeAlias(Parse *pParse, int iAlias, Expr *pExpr, int target){
sl@0
  1722
  sqlite3 *db = pParse->db;
sl@0
  1723
  int iReg;
sl@0
  1724
  if( pParse->nAliasAlloc<pParse->nAlias ){
sl@0
  1725
    pParse->aAlias = sqlite3DbReallocOrFree(db, pParse->aAlias,
sl@0
  1726
                                  sizeof(pParse->aAlias[0])*pParse->nAlias );
sl@0
  1727
    testcase( db->mallocFailed && pParse->nAliasAlloc>0 );
sl@0
  1728
    if( db->mallocFailed ) return 0;
sl@0
  1729
    memset(&pParse->aAlias[pParse->nAliasAlloc], 0,
sl@0
  1730
           (pParse->nAlias-pParse->nAliasAlloc)*sizeof(pParse->aAlias[0]));
sl@0
  1731
    pParse->nAliasAlloc = pParse->nAlias;
sl@0
  1732
  }
sl@0
  1733
  assert( iAlias>0 && iAlias<=pParse->nAlias );
sl@0
  1734
  iReg = pParse->aAlias[iAlias-1];
sl@0
  1735
  if( iReg==0 ){
sl@0
  1736
    if( pParse->disableColCache ){
sl@0
  1737
      iReg = sqlite3ExprCodeTarget(pParse, pExpr, target);
sl@0
  1738
    }else{
sl@0
  1739
      iReg = ++pParse->nMem;
sl@0
  1740
      sqlite3ExprCode(pParse, pExpr, iReg);
sl@0
  1741
      pParse->aAlias[iAlias-1] = iReg;
sl@0
  1742
    }
sl@0
  1743
  }
sl@0
  1744
  return iReg;
sl@0
  1745
}
sl@0
  1746
sl@0
  1747
/*
sl@0
  1748
** Generate code into the current Vdbe to evaluate the given
sl@0
  1749
** expression.  Attempt to store the results in register "target".
sl@0
  1750
** Return the register where results are stored.
sl@0
  1751
**
sl@0
  1752
** With this routine, there is no guarantee that results will
sl@0
  1753
** be stored in target.  The result might be stored in some other
sl@0
  1754
** register if it is convenient to do so.  The calling function
sl@0
  1755
** must check the return code and move the results to the desired
sl@0
  1756
** register.
sl@0
  1757
*/
sl@0
  1758
int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
sl@0
  1759
  Vdbe *v = pParse->pVdbe;  /* The VM under construction */
sl@0
  1760
  int op;                   /* The opcode being coded */
sl@0
  1761
  int inReg = target;       /* Results stored in register inReg */
sl@0
  1762
  int regFree1 = 0;         /* If non-zero free this temporary register */
sl@0
  1763
  int regFree2 = 0;         /* If non-zero free this temporary register */
sl@0
  1764
  int r1, r2, r3, r4;       /* Various register numbers */
sl@0
  1765
  sqlite3 *db;
sl@0
  1766
sl@0
  1767
  db = pParse->db;
sl@0
  1768
  assert( v!=0 || db->mallocFailed );
sl@0
  1769
  assert( target>0 && target<=pParse->nMem );
sl@0
  1770
  if( v==0 ) return 0;
sl@0
  1771
sl@0
  1772
  if( pExpr==0 ){
sl@0
  1773
    op = TK_NULL;
sl@0
  1774
  }else{
sl@0
  1775
    op = pExpr->op;
sl@0
  1776
  }
sl@0
  1777
  switch( op ){
sl@0
  1778
    case TK_AGG_COLUMN: {
sl@0
  1779
      AggInfo *pAggInfo = pExpr->pAggInfo;
sl@0
  1780
      struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg];
sl@0
  1781
      if( !pAggInfo->directMode ){
sl@0
  1782
        assert( pCol->iMem>0 );
sl@0
  1783
        inReg = pCol->iMem;
sl@0
  1784
        break;
sl@0
  1785
      }else if( pAggInfo->useSortingIdx ){
sl@0
  1786
        sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdx,
sl@0
  1787
                              pCol->iSorterColumn, target);
sl@0
  1788
        break;
sl@0
  1789
      }
sl@0
  1790
      /* Otherwise, fall thru into the TK_COLUMN case */
sl@0
  1791
    }
sl@0
  1792
    case TK_COLUMN: {
sl@0
  1793
      if( pExpr->iTable<0 ){
sl@0
  1794
        /* This only happens when coding check constraints */
sl@0
  1795
        assert( pParse->ckBase>0 );
sl@0
  1796
        inReg = pExpr->iColumn + pParse->ckBase;
sl@0
  1797
      }else{
sl@0
  1798
        testcase( (pExpr->flags & EP_AnyAff)!=0 );
sl@0
  1799
        inReg = sqlite3ExprCodeGetColumn(pParse, pExpr->pTab,
sl@0
  1800
                                 pExpr->iColumn, pExpr->iTable, target,
sl@0
  1801
                                 pExpr->flags & EP_AnyAff);
sl@0
  1802
      }
sl@0
  1803
      break;
sl@0
  1804
    }
sl@0
  1805
    case TK_INTEGER: {
sl@0
  1806
      codeInteger(v, pExpr, 0, target);
sl@0
  1807
      break;
sl@0
  1808
    }
sl@0
  1809
    case TK_FLOAT: {
sl@0
  1810
      codeReal(v, (char*)pExpr->token.z, pExpr->token.n, 0, target);
sl@0
  1811
      break;
sl@0
  1812
    }
sl@0
  1813
    case TK_STRING: {
sl@0
  1814
      sqlite3DequoteExpr(db, pExpr);
sl@0
  1815
      sqlite3VdbeAddOp4(v,OP_String8, 0, target, 0,
sl@0
  1816
                        (char*)pExpr->token.z, pExpr->token.n);
sl@0
  1817
      break;
sl@0
  1818
    }
sl@0
  1819
    case TK_NULL: {
sl@0
  1820
      sqlite3VdbeAddOp2(v, OP_Null, 0, target);
sl@0
  1821
      break;
sl@0
  1822
    }
sl@0
  1823
#ifndef SQLITE_OMIT_BLOB_LITERAL
sl@0
  1824
    case TK_BLOB: {
sl@0
  1825
      int n;
sl@0
  1826
      const char *z;
sl@0
  1827
      char *zBlob;
sl@0
  1828
      assert( pExpr->token.n>=3 );
sl@0
  1829
      assert( pExpr->token.z[0]=='x' || pExpr->token.z[0]=='X' );
sl@0
  1830
      assert( pExpr->token.z[1]=='\'' );
sl@0
  1831
      assert( pExpr->token.z[pExpr->token.n-1]=='\'' );
sl@0
  1832
      n = pExpr->token.n - 3;
sl@0
  1833
      z = (char*)pExpr->token.z + 2;
sl@0
  1834
      zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n);
sl@0
  1835
      sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC);
sl@0
  1836
      break;
sl@0
  1837
    }
sl@0
  1838
#endif
sl@0
  1839
    case TK_VARIABLE: {
sl@0
  1840
      sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iTable, target);
sl@0
  1841
      if( pExpr->token.n>1 ){
sl@0
  1842
        sqlite3VdbeChangeP4(v, -1, (char*)pExpr->token.z, pExpr->token.n);
sl@0
  1843
      }
sl@0
  1844
      break;
sl@0
  1845
    }
sl@0
  1846
    case TK_REGISTER: {
sl@0
  1847
      inReg = pExpr->iTable;
sl@0
  1848
      break;
sl@0
  1849
    }
sl@0
  1850
    case TK_AS: {
sl@0
  1851
      inReg = codeAlias(pParse, pExpr->iTable, pExpr->pLeft, target);
sl@0
  1852
      break;
sl@0
  1853
    }
sl@0
  1854
#ifndef SQLITE_OMIT_CAST
sl@0
  1855
    case TK_CAST: {
sl@0
  1856
      /* Expressions of the form:   CAST(pLeft AS token) */
sl@0
  1857
      int aff, to_op;
sl@0
  1858
      inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
sl@0
  1859
      aff = sqlite3AffinityType(&pExpr->token);
sl@0
  1860
      to_op = aff - SQLITE_AFF_TEXT + OP_ToText;
sl@0
  1861
      assert( to_op==OP_ToText    || aff!=SQLITE_AFF_TEXT    );
sl@0
  1862
      assert( to_op==OP_ToBlob    || aff!=SQLITE_AFF_NONE    );
sl@0
  1863
      assert( to_op==OP_ToNumeric || aff!=SQLITE_AFF_NUMERIC );
sl@0
  1864
      assert( to_op==OP_ToInt     || aff!=SQLITE_AFF_INTEGER );
sl@0
  1865
      assert( to_op==OP_ToReal    || aff!=SQLITE_AFF_REAL    );
sl@0
  1866
      testcase( to_op==OP_ToText );
sl@0
  1867
      testcase( to_op==OP_ToBlob );
sl@0
  1868
      testcase( to_op==OP_ToNumeric );
sl@0
  1869
      testcase( to_op==OP_ToInt );
sl@0
  1870
      testcase( to_op==OP_ToReal );
sl@0
  1871
      if( inReg!=target ){
sl@0
  1872
        sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target);
sl@0
  1873
        inReg = target;
sl@0
  1874
      }
sl@0
  1875
      sqlite3VdbeAddOp1(v, to_op, inReg);
sl@0
  1876
      testcase( usedAsColumnCache(pParse, inReg, inReg) );
sl@0
  1877
      sqlite3ExprCacheAffinityChange(pParse, inReg, 1);
sl@0
  1878
      break;
sl@0
  1879
    }
sl@0
  1880
#endif /* SQLITE_OMIT_CAST */
sl@0
  1881
    case TK_LT:
sl@0
  1882
    case TK_LE:
sl@0
  1883
    case TK_GT:
sl@0
  1884
    case TK_GE:
sl@0
  1885
    case TK_NE:
sl@0
  1886
    case TK_EQ: {
sl@0
  1887
      assert( TK_LT==OP_Lt );
sl@0
  1888
      assert( TK_LE==OP_Le );
sl@0
  1889
      assert( TK_GT==OP_Gt );
sl@0
  1890
      assert( TK_GE==OP_Ge );
sl@0
  1891
      assert( TK_EQ==OP_Eq );
sl@0
  1892
      assert( TK_NE==OP_Ne );
sl@0
  1893
      testcase( op==TK_LT );
sl@0
  1894
      testcase( op==TK_LE );
sl@0
  1895
      testcase( op==TK_GT );
sl@0
  1896
      testcase( op==TK_GE );
sl@0
  1897
      testcase( op==TK_EQ );
sl@0
  1898
      testcase( op==TK_NE );
sl@0
  1899
      codeCompareOperands(pParse, pExpr->pLeft, &r1, &regFree1,
sl@0
  1900
                                  pExpr->pRight, &r2, &regFree2);
sl@0
  1901
      codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
sl@0
  1902
                  r1, r2, inReg, SQLITE_STOREP2);
sl@0
  1903
      testcase( regFree1==0 );
sl@0
  1904
      testcase( regFree2==0 );
sl@0
  1905
      break;
sl@0
  1906
    }
sl@0
  1907
    case TK_AND:
sl@0
  1908
    case TK_OR:
sl@0
  1909
    case TK_PLUS:
sl@0
  1910
    case TK_STAR:
sl@0
  1911
    case TK_MINUS:
sl@0
  1912
    case TK_REM:
sl@0
  1913
    case TK_BITAND:
sl@0
  1914
    case TK_BITOR:
sl@0
  1915
    case TK_SLASH:
sl@0
  1916
    case TK_LSHIFT:
sl@0
  1917
    case TK_RSHIFT: 
sl@0
  1918
    case TK_CONCAT: {
sl@0
  1919
      assert( TK_AND==OP_And );
sl@0
  1920
      assert( TK_OR==OP_Or );
sl@0
  1921
      assert( TK_PLUS==OP_Add );
sl@0
  1922
      assert( TK_MINUS==OP_Subtract );
sl@0
  1923
      assert( TK_REM==OP_Remainder );
sl@0
  1924
      assert( TK_BITAND==OP_BitAnd );
sl@0
  1925
      assert( TK_BITOR==OP_BitOr );
sl@0
  1926
      assert( TK_SLASH==OP_Divide );
sl@0
  1927
      assert( TK_LSHIFT==OP_ShiftLeft );
sl@0
  1928
      assert( TK_RSHIFT==OP_ShiftRight );
sl@0
  1929
      assert( TK_CONCAT==OP_Concat );
sl@0
  1930
      testcase( op==TK_AND );
sl@0
  1931
      testcase( op==TK_OR );
sl@0
  1932
      testcase( op==TK_PLUS );
sl@0
  1933
      testcase( op==TK_MINUS );
sl@0
  1934
      testcase( op==TK_REM );
sl@0
  1935
      testcase( op==TK_BITAND );
sl@0
  1936
      testcase( op==TK_BITOR );
sl@0
  1937
      testcase( op==TK_SLASH );
sl@0
  1938
      testcase( op==TK_LSHIFT );
sl@0
  1939
      testcase( op==TK_RSHIFT );
sl@0
  1940
      testcase( op==TK_CONCAT );
sl@0
  1941
      r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
sl@0
  1942
      r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
sl@0
  1943
      sqlite3VdbeAddOp3(v, op, r2, r1, target);
sl@0
  1944
      testcase( regFree1==0 );
sl@0
  1945
      testcase( regFree2==0 );
sl@0
  1946
      break;
sl@0
  1947
    }
sl@0
  1948
    case TK_UMINUS: {
sl@0
  1949
      Expr *pLeft = pExpr->pLeft;
sl@0
  1950
      assert( pLeft );
sl@0
  1951
      if( pLeft->op==TK_FLOAT || pLeft->op==TK_INTEGER ){
sl@0
  1952
        if( pLeft->op==TK_FLOAT ){
sl@0
  1953
          codeReal(v, (char*)pLeft->token.z, pLeft->token.n, 1, target);
sl@0
  1954
        }else{
sl@0
  1955
          codeInteger(v, pLeft, 1, target);
sl@0
  1956
        }
sl@0
  1957
      }else{
sl@0
  1958
        regFree1 = r1 = sqlite3GetTempReg(pParse);
sl@0
  1959
        sqlite3VdbeAddOp2(v, OP_Integer, 0, r1);
sl@0
  1960
        r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree2);
sl@0
  1961
        sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target);
sl@0
  1962
        testcase( regFree2==0 );
sl@0
  1963
      }
sl@0
  1964
      inReg = target;
sl@0
  1965
      break;
sl@0
  1966
    }
sl@0
  1967
    case TK_BITNOT:
sl@0
  1968
    case TK_NOT: {
sl@0
  1969
      assert( TK_BITNOT==OP_BitNot );
sl@0
  1970
      assert( TK_NOT==OP_Not );
sl@0
  1971
      testcase( op==TK_BITNOT );
sl@0
  1972
      testcase( op==TK_NOT );
sl@0
  1973
      r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
sl@0
  1974
      testcase( regFree1==0 );
sl@0
  1975
      inReg = target;
sl@0
  1976
      sqlite3VdbeAddOp2(v, op, r1, inReg);
sl@0
  1977
      break;
sl@0
  1978
    }
sl@0
  1979
    case TK_ISNULL:
sl@0
  1980
    case TK_NOTNULL: {
sl@0
  1981
      int addr;
sl@0
  1982
      assert( TK_ISNULL==OP_IsNull );
sl@0
  1983
      assert( TK_NOTNULL==OP_NotNull );
sl@0
  1984
      testcase( op==TK_ISNULL );
sl@0
  1985
      testcase( op==TK_NOTNULL );
sl@0
  1986
      sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
sl@0
  1987
      r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
sl@0
  1988
      testcase( regFree1==0 );
sl@0
  1989
      addr = sqlite3VdbeAddOp1(v, op, r1);
sl@0
  1990
      sqlite3VdbeAddOp2(v, OP_AddImm, target, -1);
sl@0
  1991
      sqlite3VdbeJumpHere(v, addr);
sl@0
  1992
      break;
sl@0
  1993
    }
sl@0
  1994
    case TK_AGG_FUNCTION: {
sl@0
  1995
      AggInfo *pInfo = pExpr->pAggInfo;
sl@0
  1996
      if( pInfo==0 ){
sl@0
  1997
        sqlite3ErrorMsg(pParse, "misuse of aggregate: %T",
sl@0
  1998
            &pExpr->span);
sl@0
  1999
      }else{
sl@0
  2000
        inReg = pInfo->aFunc[pExpr->iAgg].iMem;
sl@0
  2001
      }
sl@0
  2002
      break;
sl@0
  2003
    }
sl@0
  2004
    case TK_CONST_FUNC:
sl@0
  2005
    case TK_FUNCTION: {
sl@0
  2006
      ExprList *pList = pExpr->pList;
sl@0
  2007
      int nExpr = pList ? pList->nExpr : 0;
sl@0
  2008
      FuncDef *pDef;
sl@0
  2009
      int nId;
sl@0
  2010
      const char *zId;
sl@0
  2011
      int constMask = 0;
sl@0
  2012
      int i;
sl@0
  2013
      u8 enc = ENC(db);
sl@0
  2014
      CollSeq *pColl = 0;
sl@0
  2015
sl@0
  2016
      testcase( op==TK_CONST_FUNC );
sl@0
  2017
      testcase( op==TK_FUNCTION );
sl@0
  2018
      zId = (char*)pExpr->token.z;
sl@0
  2019
      nId = pExpr->token.n;
sl@0
  2020
      pDef = sqlite3FindFunction(db, zId, nId, nExpr, enc, 0);
sl@0
  2021
      assert( pDef!=0 );
sl@0
  2022
      if( pList ){
sl@0
  2023
        nExpr = pList->nExpr;
sl@0
  2024
        r1 = sqlite3GetTempRange(pParse, nExpr);
sl@0
  2025
        sqlite3ExprCodeExprList(pParse, pList, r1, 1);
sl@0
  2026
      }else{
sl@0
  2027
        nExpr = r1 = 0;
sl@0
  2028
      }
sl@0
  2029
#ifndef SQLITE_OMIT_VIRTUALTABLE
sl@0
  2030
      /* Possibly overload the function if the first argument is
sl@0
  2031
      ** a virtual table column.
sl@0
  2032
      **
sl@0
  2033
      ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the
sl@0
  2034
      ** second argument, not the first, as the argument to test to
sl@0
  2035
      ** see if it is a column in a virtual table.  This is done because
sl@0
  2036
      ** the left operand of infix functions (the operand we want to
sl@0
  2037
      ** control overloading) ends up as the second argument to the
sl@0
  2038
      ** function.  The expression "A glob B" is equivalent to 
sl@0
  2039
      ** "glob(B,A).  We want to use the A in "A glob B" to test
sl@0
  2040
      ** for function overloading.  But we use the B term in "glob(B,A)".
sl@0
  2041
      */
sl@0
  2042
      if( nExpr>=2 && (pExpr->flags & EP_InfixFunc) ){
sl@0
  2043
        pDef = sqlite3VtabOverloadFunction(db, pDef, nExpr, pList->a[1].pExpr);
sl@0
  2044
      }else if( nExpr>0 ){
sl@0
  2045
        pDef = sqlite3VtabOverloadFunction(db, pDef, nExpr, pList->a[0].pExpr);
sl@0
  2046
      }
sl@0
  2047
#endif
sl@0
  2048
      for(i=0; i<nExpr && i<32; i++){
sl@0
  2049
        if( sqlite3ExprIsConstant(pList->a[i].pExpr) ){
sl@0
  2050
          constMask |= (1<<i);
sl@0
  2051
        }
sl@0
  2052
        if( (pDef->flags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){
sl@0
  2053
          pColl = sqlite3ExprCollSeq(pParse, pList->a[i].pExpr);
sl@0
  2054
        }
sl@0
  2055
      }
sl@0
  2056
      if( pDef->flags & SQLITE_FUNC_NEEDCOLL ){
sl@0
  2057
        if( !pColl ) pColl = db->pDfltColl; 
sl@0
  2058
        sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
sl@0
  2059
      }
sl@0
  2060
      sqlite3VdbeAddOp4(v, OP_Function, constMask, r1, target,
sl@0
  2061
                        (char*)pDef, P4_FUNCDEF);
sl@0
  2062
      sqlite3VdbeChangeP5(v, nExpr);
sl@0
  2063
      if( nExpr ){
sl@0
  2064
        sqlite3ReleaseTempRange(pParse, r1, nExpr);
sl@0
  2065
      }
sl@0
  2066
      sqlite3ExprCacheAffinityChange(pParse, r1, nExpr);
sl@0
  2067
      break;
sl@0
  2068
    }
sl@0
  2069
#ifndef SQLITE_OMIT_SUBQUERY
sl@0
  2070
    case TK_EXISTS:
sl@0
  2071
    case TK_SELECT: {
sl@0
  2072
      testcase( op==TK_EXISTS );
sl@0
  2073
      testcase( op==TK_SELECT );
sl@0
  2074
      if( pExpr->iColumn==0 ){
sl@0
  2075
        sqlite3CodeSubselect(pParse, pExpr, 0, 0);
sl@0
  2076
      }
sl@0
  2077
      inReg = pExpr->iColumn;
sl@0
  2078
      break;
sl@0
  2079
    }
sl@0
  2080
    case TK_IN: {
sl@0
  2081
      int rNotFound = 0;
sl@0
  2082
      int rMayHaveNull = 0;
sl@0
  2083
      int j2, j3, j4, j5;
sl@0
  2084
      char affinity;
sl@0
  2085
      int eType;
sl@0
  2086
sl@0
  2087
      VdbeNoopComment((v, "begin IN expr r%d", target));
sl@0
  2088
      eType = sqlite3FindInIndex(pParse, pExpr, &rMayHaveNull);
sl@0
  2089
      if( rMayHaveNull ){
sl@0
  2090
        rNotFound = ++pParse->nMem;
sl@0
  2091
      }
sl@0
  2092
sl@0
  2093
      /* Figure out the affinity to use to create a key from the results
sl@0
  2094
      ** of the expression. affinityStr stores a static string suitable for
sl@0
  2095
      ** P4 of OP_MakeRecord.
sl@0
  2096
      */
sl@0
  2097
      affinity = comparisonAffinity(pExpr);
sl@0
  2098
sl@0
  2099
sl@0
  2100
      /* Code the <expr> from "<expr> IN (...)". The temporary table
sl@0
  2101
      ** pExpr->iTable contains the values that make up the (...) set.
sl@0
  2102
      */
sl@0
  2103
      pParse->disableColCache++;
sl@0
  2104
      sqlite3ExprCode(pParse, pExpr->pLeft, target);
sl@0
  2105
      pParse->disableColCache--;
sl@0
  2106
      j2 = sqlite3VdbeAddOp1(v, OP_IsNull, target);
sl@0
  2107
      if( eType==IN_INDEX_ROWID ){
sl@0
  2108
        j3 = sqlite3VdbeAddOp1(v, OP_MustBeInt, target);
sl@0
  2109
        j4 = sqlite3VdbeAddOp3(v, OP_NotExists, pExpr->iTable, 0, target);
sl@0
  2110
        sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
sl@0
  2111
        j5 = sqlite3VdbeAddOp0(v, OP_Goto);
sl@0
  2112
        sqlite3VdbeJumpHere(v, j3);
sl@0
  2113
        sqlite3VdbeJumpHere(v, j4);
sl@0
  2114
        sqlite3VdbeAddOp2(v, OP_Integer, 0, target);
sl@0
  2115
      }else{
sl@0
  2116
        r2 = regFree2 = sqlite3GetTempReg(pParse);
sl@0
  2117
sl@0
  2118
        /* Create a record and test for set membership. If the set contains
sl@0
  2119
        ** the value, then jump to the end of the test code. The target
sl@0
  2120
        ** register still contains the true (1) value written to it earlier.
sl@0
  2121
        */
sl@0
  2122
        sqlite3VdbeAddOp4(v, OP_MakeRecord, target, 1, r2, &affinity, 1);
sl@0
  2123
        sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
sl@0
  2124
        j5 = sqlite3VdbeAddOp3(v, OP_Found, pExpr->iTable, 0, r2);
sl@0
  2125
sl@0
  2126
        /* If the set membership test fails, then the result of the 
sl@0
  2127
        ** "x IN (...)" expression must be either 0 or NULL. If the set
sl@0
  2128
        ** contains no NULL values, then the result is 0. If the set 
sl@0
  2129
        ** contains one or more NULL values, then the result of the
sl@0
  2130
        ** expression is also NULL.
sl@0
  2131
        */
sl@0
  2132
        if( rNotFound==0 ){
sl@0
  2133
          /* This branch runs if it is known at compile time (now) that 
sl@0
  2134
          ** the set contains no NULL values. This happens as the result
sl@0
  2135
          ** of a "NOT NULL" constraint in the database schema. No need
sl@0
  2136
          ** to test the data structure at runtime in this case.
sl@0
  2137
          */
sl@0
  2138
          sqlite3VdbeAddOp2(v, OP_Integer, 0, target);
sl@0
  2139
        }else{
sl@0
  2140
          /* This block populates the rNotFound register with either NULL
sl@0
  2141
          ** or 0 (an integer value). If the data structure contains one
sl@0
  2142
          ** or more NULLs, then set rNotFound to NULL. Otherwise, set it
sl@0
  2143
          ** to 0. If register rMayHaveNull is already set to some value
sl@0
  2144
          ** other than NULL, then the test has already been run and 
sl@0
  2145
          ** rNotFound is already populated.
sl@0
  2146
          */
sl@0
  2147
          static const char nullRecord[] = { 0x02, 0x00 };
sl@0
  2148
          j3 = sqlite3VdbeAddOp1(v, OP_NotNull, rMayHaveNull);
sl@0
  2149
          sqlite3VdbeAddOp2(v, OP_Null, 0, rNotFound);
sl@0
  2150
          sqlite3VdbeAddOp4(v, OP_Blob, 2, rMayHaveNull, 0, 
sl@0
  2151
                             nullRecord, P4_STATIC);
sl@0
  2152
          j4 = sqlite3VdbeAddOp3(v, OP_Found, pExpr->iTable, 0, rMayHaveNull);
sl@0
  2153
          sqlite3VdbeAddOp2(v, OP_Integer, 0, rNotFound);
sl@0
  2154
          sqlite3VdbeJumpHere(v, j4);
sl@0
  2155
          sqlite3VdbeJumpHere(v, j3);
sl@0
  2156
sl@0
  2157
          /* Copy the value of register rNotFound (which is either NULL or 0)
sl@0
  2158
          ** into the target register. This will be the result of the
sl@0
  2159
          ** expression.
sl@0
  2160
          */
sl@0
  2161
          sqlite3VdbeAddOp2(v, OP_Copy, rNotFound, target);
sl@0
  2162
        }
sl@0
  2163
      }
sl@0
  2164
      sqlite3VdbeJumpHere(v, j2);
sl@0
  2165
      sqlite3VdbeJumpHere(v, j5);
sl@0
  2166
      VdbeComment((v, "end IN expr r%d", target));
sl@0
  2167
      break;
sl@0
  2168
    }
sl@0
  2169
#endif
sl@0
  2170
    /*
sl@0
  2171
    **    x BETWEEN y AND z
sl@0
  2172
    **
sl@0
  2173
    ** This is equivalent to
sl@0
  2174
    **
sl@0
  2175
    **    x>=y AND x<=z
sl@0
  2176
    **
sl@0
  2177
    ** X is stored in pExpr->pLeft.
sl@0
  2178
    ** Y is stored in pExpr->pList->a[0].pExpr.
sl@0
  2179
    ** Z is stored in pExpr->pList->a[1].pExpr.
sl@0
  2180
    */
sl@0
  2181
    case TK_BETWEEN: {
sl@0
  2182
      Expr *pLeft = pExpr->pLeft;
sl@0
  2183
      struct ExprList_item *pLItem = pExpr->pList->a;
sl@0
  2184
      Expr *pRight = pLItem->pExpr;
sl@0
  2185
sl@0
  2186
      codeCompareOperands(pParse, pLeft, &r1, &regFree1,
sl@0
  2187
                                  pRight, &r2, &regFree2);
sl@0
  2188
      testcase( regFree1==0 );
sl@0
  2189
      testcase( regFree2==0 );
sl@0
  2190
      r3 = sqlite3GetTempReg(pParse);
sl@0
  2191
      r4 = sqlite3GetTempReg(pParse);
sl@0
  2192
      codeCompare(pParse, pLeft, pRight, OP_Ge,
sl@0
  2193
                  r1, r2, r3, SQLITE_STOREP2);
sl@0
  2194
      pLItem++;
sl@0
  2195
      pRight = pLItem->pExpr;
sl@0
  2196
      sqlite3ReleaseTempReg(pParse, regFree2);
sl@0
  2197
      r2 = sqlite3ExprCodeTemp(pParse, pRight, &regFree2);
sl@0
  2198
      testcase( regFree2==0 );
sl@0
  2199
      codeCompare(pParse, pLeft, pRight, OP_Le, r1, r2, r4, SQLITE_STOREP2);
sl@0
  2200
      sqlite3VdbeAddOp3(v, OP_And, r3, r4, target);
sl@0
  2201
      sqlite3ReleaseTempReg(pParse, r3);
sl@0
  2202
      sqlite3ReleaseTempReg(pParse, r4);
sl@0
  2203
      break;
sl@0
  2204
    }
sl@0
  2205
    case TK_UPLUS: {
sl@0
  2206
      inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
sl@0
  2207
      break;
sl@0
  2208
    }
sl@0
  2209
sl@0
  2210
    /*
sl@0
  2211
    ** Form A:
sl@0
  2212
    **   CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
sl@0
  2213
    **
sl@0
  2214
    ** Form B:
sl@0
  2215
    **   CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
sl@0
  2216
    **
sl@0
  2217
    ** Form A is can be transformed into the equivalent form B as follows:
sl@0
  2218
    **   CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ...
sl@0
  2219
    **        WHEN x=eN THEN rN ELSE y END
sl@0
  2220
    **
sl@0
  2221
    ** X (if it exists) is in pExpr->pLeft.
sl@0
  2222
    ** Y is in pExpr->pRight.  The Y is also optional.  If there is no
sl@0
  2223
    ** ELSE clause and no other term matches, then the result of the
sl@0
  2224
    ** exprssion is NULL.
sl@0
  2225
    ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1].
sl@0
  2226
    **
sl@0
  2227
    ** The result of the expression is the Ri for the first matching Ei,
sl@0
  2228
    ** or if there is no matching Ei, the ELSE term Y, or if there is
sl@0
  2229
    ** no ELSE term, NULL.
sl@0
  2230
    */
sl@0
  2231
    case TK_CASE: {
sl@0
  2232
      int endLabel;                     /* GOTO label for end of CASE stmt */
sl@0
  2233
      int nextCase;                     /* GOTO label for next WHEN clause */
sl@0
  2234
      int nExpr;                        /* 2x number of WHEN terms */
sl@0
  2235
      int i;                            /* Loop counter */
sl@0
  2236
      ExprList *pEList;                 /* List of WHEN terms */
sl@0
  2237
      struct ExprList_item *aListelem;  /* Array of WHEN terms */
sl@0
  2238
      Expr opCompare;                   /* The X==Ei expression */
sl@0
  2239
      Expr cacheX;                      /* Cached expression X */
sl@0
  2240
      Expr *pX;                         /* The X expression */
sl@0
  2241
      Expr *pTest;                      /* X==Ei (form A) or just Ei (form B) */
sl@0
  2242
sl@0
  2243
      assert(pExpr->pList);
sl@0
  2244
      assert((pExpr->pList->nExpr % 2) == 0);
sl@0
  2245
      assert(pExpr->pList->nExpr > 0);
sl@0
  2246
      pEList = pExpr->pList;
sl@0
  2247
      aListelem = pEList->a;
sl@0
  2248
      nExpr = pEList->nExpr;
sl@0
  2249
      endLabel = sqlite3VdbeMakeLabel(v);
sl@0
  2250
      if( (pX = pExpr->pLeft)!=0 ){
sl@0
  2251
        cacheX = *pX;
sl@0
  2252
        testcase( pX->op==TK_COLUMN || pX->op==TK_REGISTER );
sl@0
  2253
        cacheX.iTable = sqlite3ExprCodeTemp(pParse, pX, &regFree1);
sl@0
  2254
        testcase( regFree1==0 );
sl@0
  2255
        cacheX.op = TK_REGISTER;
sl@0
  2256
        opCompare.op = TK_EQ;
sl@0
  2257
        opCompare.pLeft = &cacheX;
sl@0
  2258
        pTest = &opCompare;
sl@0
  2259
      }
sl@0
  2260
      pParse->disableColCache++;
sl@0
  2261
      for(i=0; i<nExpr; i=i+2){
sl@0
  2262
        if( pX ){
sl@0
  2263
          opCompare.pRight = aListelem[i].pExpr;
sl@0
  2264
        }else{
sl@0
  2265
          pTest = aListelem[i].pExpr;
sl@0
  2266
        }
sl@0
  2267
        nextCase = sqlite3VdbeMakeLabel(v);
sl@0
  2268
        testcase( pTest->op==TK_COLUMN || pTest->op==TK_REGISTER );
sl@0
  2269
        sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL);
sl@0
  2270
        testcase( aListelem[i+1].pExpr->op==TK_COLUMN );
sl@0
  2271
        testcase( aListelem[i+1].pExpr->op==TK_REGISTER );
sl@0
  2272
        sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target);
sl@0
  2273
        sqlite3VdbeAddOp2(v, OP_Goto, 0, endLabel);
sl@0
  2274
        sqlite3VdbeResolveLabel(v, nextCase);
sl@0
  2275
      }
sl@0
  2276
      if( pExpr->pRight ){
sl@0
  2277
        sqlite3ExprCode(pParse, pExpr->pRight, target);
sl@0
  2278
      }else{
sl@0
  2279
        sqlite3VdbeAddOp2(v, OP_Null, 0, target);
sl@0
  2280
      }
sl@0
  2281
      sqlite3VdbeResolveLabel(v, endLabel);
sl@0
  2282
      assert( pParse->disableColCache>0 );
sl@0
  2283
      pParse->disableColCache--;
sl@0
  2284
      break;
sl@0
  2285
    }
sl@0
  2286
#ifndef SQLITE_OMIT_TRIGGER
sl@0
  2287
    case TK_RAISE: {
sl@0
  2288
      if( !pParse->trigStack ){
sl@0
  2289
        sqlite3ErrorMsg(pParse,
sl@0
  2290
                       "RAISE() may only be used within a trigger-program");
sl@0
  2291
        return 0;
sl@0
  2292
      }
sl@0
  2293
      if( pExpr->iColumn!=OE_Ignore ){
sl@0
  2294
         assert( pExpr->iColumn==OE_Rollback ||
sl@0
  2295
                 pExpr->iColumn == OE_Abort ||
sl@0
  2296
                 pExpr->iColumn == OE_Fail );
sl@0
  2297
         sqlite3DequoteExpr(db, pExpr);
sl@0
  2298
         sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, pExpr->iColumn, 0,
sl@0
  2299
                        (char*)pExpr->token.z, pExpr->token.n);
sl@0
  2300
      } else {
sl@0
  2301
         assert( pExpr->iColumn == OE_Ignore );
sl@0
  2302
         sqlite3VdbeAddOp2(v, OP_ContextPop, 0, 0);
sl@0
  2303
         sqlite3VdbeAddOp2(v, OP_Goto, 0, pParse->trigStack->ignoreJump);
sl@0
  2304
         VdbeComment((v, "raise(IGNORE)"));
sl@0
  2305
      }
sl@0
  2306
      break;
sl@0
  2307
    }
sl@0
  2308
#endif
sl@0
  2309
  }
sl@0
  2310
  sqlite3ReleaseTempReg(pParse, regFree1);
sl@0
  2311
  sqlite3ReleaseTempReg(pParse, regFree2);
sl@0
  2312
  return inReg;
sl@0
  2313
}
sl@0
  2314
sl@0
  2315
/*
sl@0
  2316
** Generate code to evaluate an expression and store the results
sl@0
  2317
** into a register.  Return the register number where the results
sl@0
  2318
** are stored.
sl@0
  2319
**
sl@0
  2320
** If the register is a temporary register that can be deallocated,
sl@0
  2321
** then write its number into *pReg.  If the result register is not
sl@0
  2322
** a temporary, then set *pReg to zero.
sl@0
  2323
*/
sl@0
  2324
int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){
sl@0
  2325
  int r1 = sqlite3GetTempReg(pParse);
sl@0
  2326
  int r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
sl@0
  2327
  if( r2==r1 ){
sl@0
  2328
    *pReg = r1;
sl@0
  2329
  }else{
sl@0
  2330
    sqlite3ReleaseTempReg(pParse, r1);
sl@0
  2331
    *pReg = 0;
sl@0
  2332
  }
sl@0
  2333
  return r2;
sl@0
  2334
}
sl@0
  2335
sl@0
  2336
/*
sl@0
  2337
** Generate code that will evaluate expression pExpr and store the
sl@0
  2338
** results in register target.  The results are guaranteed to appear
sl@0
  2339
** in register target.
sl@0
  2340
*/
sl@0
  2341
int sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){
sl@0
  2342
  int inReg;
sl@0
  2343
sl@0
  2344
  assert( target>0 && target<=pParse->nMem );
sl@0
  2345
  inReg = sqlite3ExprCodeTarget(pParse, pExpr, target);
sl@0
  2346
  assert( pParse->pVdbe || pParse->db->mallocFailed );
sl@0
  2347
  if( inReg!=target && pParse->pVdbe ){
sl@0
  2348
    sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target);
sl@0
  2349
  }
sl@0
  2350
  return target;
sl@0
  2351
}
sl@0
  2352
sl@0
  2353
/*
sl@0
  2354
** Generate code that evalutes the given expression and puts the result
sl@0
  2355
** in register target.
sl@0
  2356
**
sl@0
  2357
** Also make a copy of the expression results into another "cache" register
sl@0
  2358
** and modify the expression so that the next time it is evaluated,
sl@0
  2359
** the result is a copy of the cache register.
sl@0
  2360
**
sl@0
  2361
** This routine is used for expressions that are used multiple 
sl@0
  2362
** times.  They are evaluated once and the results of the expression
sl@0
  2363
** are reused.
sl@0
  2364
*/
sl@0
  2365
int sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){
sl@0
  2366
  Vdbe *v = pParse->pVdbe;
sl@0
  2367
  int inReg;
sl@0
  2368
  inReg = sqlite3ExprCode(pParse, pExpr, target);
sl@0
  2369
  assert( target>0 );
sl@0
  2370
  if( pExpr->op!=TK_REGISTER ){  
sl@0
  2371
    int iMem;
sl@0
  2372
    iMem = ++pParse->nMem;
sl@0
  2373
    sqlite3VdbeAddOp2(v, OP_Copy, inReg, iMem);
sl@0
  2374
    pExpr->iTable = iMem;
sl@0
  2375
    pExpr->op = TK_REGISTER;
sl@0
  2376
  }
sl@0
  2377
  return inReg;
sl@0
  2378
}
sl@0
  2379
sl@0
  2380
/*
sl@0
  2381
** Return TRUE if pExpr is an constant expression that is appropriate
sl@0
  2382
** for factoring out of a loop.  Appropriate expressions are:
sl@0
  2383
**
sl@0
  2384
**    *  Any expression that evaluates to two or more opcodes.
sl@0
  2385
**
sl@0
  2386
**    *  Any OP_Integer, OP_Real, OP_String, OP_Blob, OP_Null, 
sl@0
  2387
**       or OP_Variable that does not need to be placed in a 
sl@0
  2388
**       specific register.
sl@0
  2389
**
sl@0
  2390
** There is no point in factoring out single-instruction constant
sl@0
  2391
** expressions that need to be placed in a particular register.  
sl@0
  2392
** We could factor them out, but then we would end up adding an
sl@0
  2393
** OP_SCopy instruction to move the value into the correct register
sl@0
  2394
** later.  We might as well just use the original instruction and
sl@0
  2395
** avoid the OP_SCopy.
sl@0
  2396
*/
sl@0
  2397
static int isAppropriateForFactoring(Expr *p){
sl@0
  2398
  if( !sqlite3ExprIsConstantNotJoin(p) ){
sl@0
  2399
    return 0;  /* Only constant expressions are appropriate for factoring */
sl@0
  2400
  }
sl@0
  2401
  if( (p->flags & EP_FixedDest)==0 ){
sl@0
  2402
    return 1;  /* Any constant without a fixed destination is appropriate */
sl@0
  2403
  }
sl@0
  2404
  while( p->op==TK_UPLUS ) p = p->pLeft;
sl@0
  2405
  switch( p->op ){
sl@0
  2406
#ifndef SQLITE_OMIT_BLOB_LITERAL
sl@0
  2407
    case TK_BLOB:
sl@0
  2408
#endif
sl@0
  2409
    case TK_VARIABLE:
sl@0
  2410
    case TK_INTEGER:
sl@0
  2411
    case TK_FLOAT:
sl@0
  2412
    case TK_NULL:
sl@0
  2413
    case TK_STRING: {
sl@0
  2414
      testcase( p->op==TK_BLOB );
sl@0
  2415
      testcase( p->op==TK_VARIABLE );
sl@0
  2416
      testcase( p->op==TK_INTEGER );
sl@0
  2417
      testcase( p->op==TK_FLOAT );
sl@0
  2418
      testcase( p->op==TK_NULL );
sl@0
  2419
      testcase( p->op==TK_STRING );
sl@0
  2420
      /* Single-instruction constants with a fixed destination are
sl@0
  2421
      ** better done in-line.  If we factor them, they will just end
sl@0
  2422
      ** up generating an OP_SCopy to move the value to the destination
sl@0
  2423
      ** register. */
sl@0
  2424
      return 0;
sl@0
  2425
    }
sl@0
  2426
    case TK_UMINUS: {
sl@0
  2427
       if( p->pLeft->op==TK_FLOAT || p->pLeft->op==TK_INTEGER ){
sl@0
  2428
         return 0;
sl@0
  2429
       }
sl@0
  2430
       break;
sl@0
  2431
    }
sl@0
  2432
    default: {
sl@0
  2433
      break;
sl@0
  2434
    }
sl@0
  2435
  }
sl@0
  2436
  return 1;
sl@0
  2437
}
sl@0
  2438
sl@0
  2439
/*
sl@0
  2440
** If pExpr is a constant expression that is appropriate for
sl@0
  2441
** factoring out of a loop, then evaluate the expression
sl@0
  2442
** into a register and convert the expression into a TK_REGISTER
sl@0
  2443
** expression.
sl@0
  2444
*/
sl@0
  2445
static int evalConstExpr(Walker *pWalker, Expr *pExpr){
sl@0
  2446
  Parse *pParse = pWalker->pParse;
sl@0
  2447
  switch( pExpr->op ){
sl@0
  2448
    case TK_REGISTER: {
sl@0
  2449
      return 1;
sl@0
  2450
    }
sl@0
  2451
    case TK_FUNCTION:
sl@0
  2452
    case TK_AGG_FUNCTION:
sl@0
  2453
    case TK_CONST_FUNC: {
sl@0
  2454
      /* The arguments to a function have a fixed destination.
sl@0
  2455
      ** Mark them this way to avoid generated unneeded OP_SCopy
sl@0
  2456
      ** instructions. 
sl@0
  2457
      */
sl@0
  2458
      ExprList *pList = pExpr->pList;
sl@0
  2459
      if( pList ){
sl@0
  2460
        int i = pList->nExpr;
sl@0
  2461
        struct ExprList_item *pItem = pList->a;
sl@0
  2462
        for(; i>0; i--, pItem++){
sl@0
  2463
          if( pItem->pExpr ) pItem->pExpr->flags |= EP_FixedDest;
sl@0
  2464
        }
sl@0
  2465
      }
sl@0
  2466
      break;
sl@0
  2467
    }
sl@0
  2468
  }
sl@0
  2469
  if( isAppropriateForFactoring(pExpr) ){
sl@0
  2470
    int r1 = ++pParse->nMem;
sl@0
  2471
    int r2;
sl@0
  2472
    r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
sl@0
  2473
    if( r1!=r2 ) sqlite3ReleaseTempReg(pParse, r1);
sl@0
  2474
    pExpr->op = TK_REGISTER;
sl@0
  2475
    pExpr->iTable = r2;
sl@0
  2476
    return WRC_Prune;
sl@0
  2477
  }
sl@0
  2478
  return WRC_Continue;
sl@0
  2479
}
sl@0
  2480
sl@0
  2481
/*
sl@0
  2482
** Preevaluate constant subexpressions within pExpr and store the
sl@0
  2483
** results in registers.  Modify pExpr so that the constant subexpresions
sl@0
  2484
** are TK_REGISTER opcodes that refer to the precomputed values.
sl@0
  2485
*/
sl@0
  2486
void sqlite3ExprCodeConstants(Parse *pParse, Expr *pExpr){
sl@0
  2487
  Walker w;
sl@0
  2488
  w.xExprCallback = evalConstExpr;
sl@0
  2489
  w.xSelectCallback = 0;
sl@0
  2490
  w.pParse = pParse;
sl@0
  2491
  sqlite3WalkExpr(&w, pExpr);
sl@0
  2492
}
sl@0
  2493
sl@0
  2494
sl@0
  2495
/*
sl@0
  2496
** Generate code that pushes the value of every element of the given
sl@0
  2497
** expression list into a sequence of registers beginning at target.
sl@0
  2498
**
sl@0
  2499
** Return the number of elements evaluated.
sl@0
  2500
*/
sl@0
  2501
int sqlite3ExprCodeExprList(
sl@0
  2502
  Parse *pParse,     /* Parsing context */
sl@0
  2503
  ExprList *pList,   /* The expression list to be coded */
sl@0
  2504
  int target,        /* Where to write results */
sl@0
  2505
  int doHardCopy     /* Make a hard copy of every element */
sl@0
  2506
){
sl@0
  2507
  struct ExprList_item *pItem;
sl@0
  2508
  int i, n;
sl@0
  2509
  assert( pList!=0 );
sl@0
  2510
  assert( target>0 );
sl@0
  2511
  n = pList->nExpr;
sl@0
  2512
  for(pItem=pList->a, i=0; i<n; i++, pItem++){
sl@0
  2513
    if( pItem->iAlias ){
sl@0
  2514
      int iReg = codeAlias(pParse, pItem->iAlias, pItem->pExpr, target);
sl@0
  2515
      Vdbe *v = sqlite3GetVdbe(pParse);
sl@0
  2516
      if( iReg!=target+i ){
sl@0
  2517
        sqlite3VdbeAddOp2(v, OP_SCopy, iReg, target+i);
sl@0
  2518
      }
sl@0
  2519
    }else{
sl@0
  2520
      sqlite3ExprCode(pParse, pItem->pExpr, target+i);
sl@0
  2521
    }
sl@0
  2522
    if( doHardCopy ){
sl@0
  2523
      sqlite3ExprHardCopy(pParse, target, n);
sl@0
  2524
    }
sl@0
  2525
  }
sl@0
  2526
  return n;
sl@0
  2527
}
sl@0
  2528
sl@0
  2529
/*
sl@0
  2530
** Generate code for a boolean expression such that a jump is made
sl@0
  2531
** to the label "dest" if the expression is true but execution
sl@0
  2532
** continues straight thru if the expression is false.
sl@0
  2533
**
sl@0
  2534
** If the expression evaluates to NULL (neither true nor false), then
sl@0
  2535
** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL.
sl@0
  2536
**
sl@0
  2537
** This code depends on the fact that certain token values (ex: TK_EQ)
sl@0
  2538
** are the same as opcode values (ex: OP_Eq) that implement the corresponding
sl@0
  2539
** operation.  Special comments in vdbe.c and the mkopcodeh.awk script in
sl@0
  2540
** the make process cause these values to align.  Assert()s in the code
sl@0
  2541
** below verify that the numbers are aligned correctly.
sl@0
  2542
*/
sl@0
  2543
void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
sl@0
  2544
  Vdbe *v = pParse->pVdbe;
sl@0
  2545
  int op = 0;
sl@0
  2546
  int regFree1 = 0;
sl@0
  2547
  int regFree2 = 0;
sl@0
  2548
  int r1, r2;
sl@0
  2549
sl@0
  2550
  assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
sl@0
  2551
  if( v==0 || pExpr==0 ) return;
sl@0
  2552
  op = pExpr->op;
sl@0
  2553
  switch( op ){
sl@0
  2554
    case TK_AND: {
sl@0
  2555
      int d2 = sqlite3VdbeMakeLabel(v);
sl@0
  2556
      testcase( jumpIfNull==0 );
sl@0
  2557
      testcase( pParse->disableColCache==0 );
sl@0
  2558
      sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL);
sl@0
  2559
      pParse->disableColCache++;
sl@0
  2560
      sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
sl@0
  2561
      assert( pParse->disableColCache>0 );
sl@0
  2562
      pParse->disableColCache--;
sl@0
  2563
      sqlite3VdbeResolveLabel(v, d2);
sl@0
  2564
      break;
sl@0
  2565
    }
sl@0
  2566
    case TK_OR: {
sl@0
  2567
      testcase( jumpIfNull==0 );
sl@0
  2568
      testcase( pParse->disableColCache==0 );
sl@0
  2569
      sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
sl@0
  2570
      pParse->disableColCache++;
sl@0
  2571
      sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
sl@0
  2572
      assert( pParse->disableColCache>0 );
sl@0
  2573
      pParse->disableColCache--;
sl@0
  2574
      break;
sl@0
  2575
    }
sl@0
  2576
    case TK_NOT: {
sl@0
  2577
      testcase( jumpIfNull==0 );
sl@0
  2578
      sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
sl@0
  2579
      break;
sl@0
  2580
    }
sl@0
  2581
    case TK_LT:
sl@0
  2582
    case TK_LE:
sl@0
  2583
    case TK_GT:
sl@0
  2584
    case TK_GE:
sl@0
  2585
    case TK_NE:
sl@0
  2586
    case TK_EQ: {
sl@0
  2587
      assert( TK_LT==OP_Lt );
sl@0
  2588
      assert( TK_LE==OP_Le );
sl@0
  2589
      assert( TK_GT==OP_Gt );
sl@0
  2590
      assert( TK_GE==OP_Ge );
sl@0
  2591
      assert( TK_EQ==OP_Eq );
sl@0
  2592
      assert( TK_NE==OP_Ne );
sl@0
  2593
      testcase( op==TK_LT );
sl@0
  2594
      testcase( op==TK_LE );
sl@0
  2595
      testcase( op==TK_GT );
sl@0
  2596
      testcase( op==TK_GE );
sl@0
  2597
      testcase( op==TK_EQ );
sl@0
  2598
      testcase( op==TK_NE );
sl@0
  2599
      testcase( jumpIfNull==0 );
sl@0
  2600
      codeCompareOperands(pParse, pExpr->pLeft, &r1, &regFree1,
sl@0
  2601
                                  pExpr->pRight, &r2, &regFree2);
sl@0
  2602
      codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
sl@0
  2603
                  r1, r2, dest, jumpIfNull);
sl@0
  2604
      testcase( regFree1==0 );
sl@0
  2605
      testcase( regFree2==0 );
sl@0
  2606
      break;
sl@0
  2607
    }
sl@0
  2608
    case TK_ISNULL:
sl@0
  2609
    case TK_NOTNULL: {
sl@0
  2610
      assert( TK_ISNULL==OP_IsNull );
sl@0
  2611
      assert( TK_NOTNULL==OP_NotNull );
sl@0
  2612
      testcase( op==TK_ISNULL );
sl@0
  2613
      testcase( op==TK_NOTNULL );
sl@0
  2614
      r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
sl@0
  2615
      sqlite3VdbeAddOp2(v, op, r1, dest);
sl@0
  2616
      testcase( regFree1==0 );
sl@0
  2617
      break;
sl@0
  2618
    }
sl@0
  2619
    case TK_BETWEEN: {
sl@0
  2620
      /*    x BETWEEN y AND z
sl@0
  2621
      **
sl@0
  2622
      ** Is equivalent to 
sl@0
  2623
      **
sl@0
  2624
      **    x>=y AND x<=z
sl@0
  2625
      **
sl@0
  2626
      ** Code it as such, taking care to do the common subexpression
sl@0
  2627
      ** elementation of x.
sl@0
  2628
      */
sl@0
  2629
      Expr exprAnd;
sl@0
  2630
      Expr compLeft;
sl@0
  2631
      Expr compRight;
sl@0
  2632
      Expr exprX;
sl@0
  2633
sl@0
  2634
      exprX = *pExpr->pLeft;
sl@0
  2635
      exprAnd.op = TK_AND;
sl@0
  2636
      exprAnd.pLeft = &compLeft;
sl@0
  2637
      exprAnd.pRight = &compRight;
sl@0
  2638
      compLeft.op = TK_GE;
sl@0
  2639
      compLeft.pLeft = &exprX;
sl@0
  2640
      compLeft.pRight = pExpr->pList->a[0].pExpr;
sl@0
  2641
      compRight.op = TK_LE;
sl@0
  2642
      compRight.pLeft = &exprX;
sl@0
  2643
      compRight.pRight = pExpr->pList->a[1].pExpr;
sl@0
  2644
      exprX.iTable = sqlite3ExprCodeTemp(pParse, &exprX, &regFree1);
sl@0
  2645
      testcase( regFree1==0 );
sl@0
  2646
      exprX.op = TK_REGISTER;
sl@0
  2647
      testcase( jumpIfNull==0 );
sl@0
  2648
      sqlite3ExprIfTrue(pParse, &exprAnd, dest, jumpIfNull);
sl@0
  2649
      break;
sl@0
  2650
    }
sl@0
  2651
    default: {
sl@0
  2652
      r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
sl@0
  2653
      sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0);
sl@0
  2654
      testcase( regFree1==0 );
sl@0
  2655
      testcase( jumpIfNull==0 );
sl@0
  2656
      break;
sl@0
  2657
    }
sl@0
  2658
  }
sl@0
  2659
  sqlite3ReleaseTempReg(pParse, regFree1);
sl@0
  2660
  sqlite3ReleaseTempReg(pParse, regFree2);  
sl@0
  2661
}
sl@0
  2662
sl@0
  2663
/*
sl@0
  2664
** Generate code for a boolean expression such that a jump is made
sl@0
  2665
** to the label "dest" if the expression is false but execution
sl@0
  2666
** continues straight thru if the expression is true.
sl@0
  2667
**
sl@0
  2668
** If the expression evaluates to NULL (neither true nor false) then
sl@0
  2669
** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull
sl@0
  2670
** is 0.
sl@0
  2671
*/
sl@0
  2672
void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
sl@0
  2673
  Vdbe *v = pParse->pVdbe;
sl@0
  2674
  int op = 0;
sl@0
  2675
  int regFree1 = 0;
sl@0
  2676
  int regFree2 = 0;
sl@0
  2677
  int r1, r2;
sl@0
  2678
sl@0
  2679
  assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
sl@0
  2680
  if( v==0 || pExpr==0 ) return;
sl@0
  2681
sl@0
  2682
  /* The value of pExpr->op and op are related as follows:
sl@0
  2683
  **
sl@0
  2684
  **       pExpr->op            op
sl@0
  2685
  **       ---------          ----------
sl@0
  2686
  **       TK_ISNULL          OP_NotNull
sl@0
  2687
  **       TK_NOTNULL         OP_IsNull
sl@0
  2688
  **       TK_NE              OP_Eq
sl@0
  2689
  **       TK_EQ              OP_Ne
sl@0
  2690
  **       TK_GT              OP_Le
sl@0
  2691
  **       TK_LE              OP_Gt
sl@0
  2692
  **       TK_GE              OP_Lt
sl@0
  2693
  **       TK_LT              OP_Ge
sl@0
  2694
  **
sl@0
  2695
  ** For other values of pExpr->op, op is undefined and unused.
sl@0
  2696
  ** The value of TK_ and OP_ constants are arranged such that we
sl@0
  2697
  ** can compute the mapping above using the following expression.
sl@0
  2698
  ** Assert()s verify that the computation is correct.
sl@0
  2699
  */
sl@0
  2700
  op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1);
sl@0
  2701
sl@0
  2702
  /* Verify correct alignment of TK_ and OP_ constants
sl@0
  2703
  */
sl@0
  2704
  assert( pExpr->op!=TK_ISNULL || op==OP_NotNull );
sl@0
  2705
  assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull );
sl@0
  2706
  assert( pExpr->op!=TK_NE || op==OP_Eq );
sl@0
  2707
  assert( pExpr->op!=TK_EQ || op==OP_Ne );
sl@0
  2708
  assert( pExpr->op!=TK_LT || op==OP_Ge );
sl@0
  2709
  assert( pExpr->op!=TK_LE || op==OP_Gt );
sl@0
  2710
  assert( pExpr->op!=TK_GT || op==OP_Le );
sl@0
  2711
  assert( pExpr->op!=TK_GE || op==OP_Lt );
sl@0
  2712
sl@0
  2713
  switch( pExpr->op ){
sl@0
  2714
    case TK_AND: {
sl@0
  2715
      testcase( jumpIfNull==0 );
sl@0
  2716
      testcase( pParse->disableColCache==0 );
sl@0
  2717
      sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
sl@0
  2718
      pParse->disableColCache++;
sl@0
  2719
      sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
sl@0
  2720
      assert( pParse->disableColCache>0 );
sl@0
  2721
      pParse->disableColCache--;
sl@0
  2722
      break;
sl@0
  2723
    }
sl@0
  2724
    case TK_OR: {
sl@0
  2725
      int d2 = sqlite3VdbeMakeLabel(v);
sl@0
  2726
      testcase( jumpIfNull==0 );
sl@0
  2727
      testcase( pParse->disableColCache==0 );
sl@0
  2728
      sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL);
sl@0
  2729
      pParse->disableColCache++;
sl@0
  2730
      sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
sl@0
  2731
      assert( pParse->disableColCache>0 );
sl@0
  2732
      pParse->disableColCache--;
sl@0
  2733
      sqlite3VdbeResolveLabel(v, d2);
sl@0
  2734
      break;
sl@0
  2735
    }
sl@0
  2736
    case TK_NOT: {
sl@0
  2737
      sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
sl@0
  2738
      break;
sl@0
  2739
    }
sl@0
  2740
    case TK_LT:
sl@0
  2741
    case TK_LE:
sl@0
  2742
    case TK_GT:
sl@0
  2743
    case TK_GE:
sl@0
  2744
    case TK_NE:
sl@0
  2745
    case TK_EQ: {
sl@0
  2746
      testcase( op==TK_LT );
sl@0
  2747
      testcase( op==TK_LE );
sl@0
  2748
      testcase( op==TK_GT );
sl@0
  2749
      testcase( op==TK_GE );
sl@0
  2750
      testcase( op==TK_EQ );
sl@0
  2751
      testcase( op==TK_NE );
sl@0
  2752
      testcase( jumpIfNull==0 );
sl@0
  2753
      codeCompareOperands(pParse, pExpr->pLeft, &r1, &regFree1,
sl@0
  2754
                                  pExpr->pRight, &r2, &regFree2);
sl@0
  2755
      codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
sl@0
  2756
                  r1, r2, dest, jumpIfNull);
sl@0
  2757
      testcase( regFree1==0 );
sl@0
  2758
      testcase( regFree2==0 );
sl@0
  2759
      break;
sl@0
  2760
    }
sl@0
  2761
    case TK_ISNULL:
sl@0
  2762
    case TK_NOTNULL: {
sl@0
  2763
      testcase( op==TK_ISNULL );
sl@0
  2764
      testcase( op==TK_NOTNULL );
sl@0
  2765
      r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
sl@0
  2766
      sqlite3VdbeAddOp2(v, op, r1, dest);
sl@0
  2767
      testcase( regFree1==0 );
sl@0
  2768
      break;
sl@0
  2769
    }
sl@0
  2770
    case TK_BETWEEN: {
sl@0
  2771
      /*    x BETWEEN y AND z
sl@0
  2772
      **
sl@0
  2773
      ** Is equivalent to 
sl@0
  2774
      **
sl@0
  2775
      **    x>=y AND x<=z
sl@0
  2776
      **
sl@0
  2777
      ** Code it as such, taking care to do the common subexpression
sl@0
  2778
      ** elementation of x.
sl@0
  2779
      */
sl@0
  2780
      Expr exprAnd;
sl@0
  2781
      Expr compLeft;
sl@0
  2782
      Expr compRight;
sl@0
  2783
      Expr exprX;
sl@0
  2784
sl@0
  2785
      exprX = *pExpr->pLeft;
sl@0
  2786
      exprAnd.op = TK_AND;
sl@0
  2787
      exprAnd.pLeft = &compLeft;
sl@0
  2788
      exprAnd.pRight = &compRight;
sl@0
  2789
      compLeft.op = TK_GE;
sl@0
  2790
      compLeft.pLeft = &exprX;
sl@0
  2791
      compLeft.pRight = pExpr->pList->a[0].pExpr;
sl@0
  2792
      compRight.op = TK_LE;
sl@0
  2793
      compRight.pLeft = &exprX;
sl@0
  2794
      compRight.pRight = pExpr->pList->a[1].pExpr;
sl@0
  2795
      exprX.iTable = sqlite3ExprCodeTemp(pParse, &exprX, &regFree1);
sl@0
  2796
      testcase( regFree1==0 );
sl@0
  2797
      exprX.op = TK_REGISTER;
sl@0
  2798
      testcase( jumpIfNull==0 );
sl@0
  2799
      sqlite3ExprIfFalse(pParse, &exprAnd, dest, jumpIfNull);
sl@0
  2800
      break;
sl@0
  2801
    }
sl@0
  2802
    default: {
sl@0
  2803
      r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
sl@0
  2804
      sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0);
sl@0
  2805
      testcase( regFree1==0 );
sl@0
  2806
      testcase( jumpIfNull==0 );
sl@0
  2807
      break;
sl@0
  2808
    }
sl@0
  2809
  }
sl@0
  2810
  sqlite3ReleaseTempReg(pParse, regFree1);
sl@0
  2811
  sqlite3ReleaseTempReg(pParse, regFree2);
sl@0
  2812
}
sl@0
  2813
sl@0
  2814
/*
sl@0
  2815
** Do a deep comparison of two expression trees.  Return TRUE (non-zero)
sl@0
  2816
** if they are identical and return FALSE if they differ in any way.
sl@0
  2817
**
sl@0
  2818
** Sometimes this routine will return FALSE even if the two expressions
sl@0
  2819
** really are equivalent.  If we cannot prove that the expressions are
sl@0
  2820
** identical, we return FALSE just to be safe.  So if this routine
sl@0
  2821
** returns false, then you do not really know for certain if the two
sl@0
  2822
** expressions are the same.  But if you get a TRUE return, then you
sl@0
  2823
** can be sure the expressions are the same.  In the places where
sl@0
  2824
** this routine is used, it does not hurt to get an extra FALSE - that
sl@0
  2825
** just might result in some slightly slower code.  But returning
sl@0
  2826
** an incorrect TRUE could lead to a malfunction.
sl@0
  2827
*/
sl@0
  2828
int sqlite3ExprCompare(Expr *pA, Expr *pB){
sl@0
  2829
  int i;
sl@0
  2830
  if( pA==0||pB==0 ){
sl@0
  2831
    return pB==pA;
sl@0
  2832
  }
sl@0
  2833
  if( pA->op!=pB->op ) return 0;
sl@0
  2834
  if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 0;
sl@0
  2835
  if( !sqlite3ExprCompare(pA->pLeft, pB->pLeft) ) return 0;
sl@0
  2836
  if( !sqlite3ExprCompare(pA->pRight, pB->pRight) ) return 0;
sl@0
  2837
  if( pA->pList ){
sl@0
  2838
    if( pB->pList==0 ) return 0;
sl@0
  2839
    if( pA->pList->nExpr!=pB->pList->nExpr ) return 0;
sl@0
  2840
    for(i=0; i<pA->pList->nExpr; i++){
sl@0
  2841
      if( !sqlite3ExprCompare(pA->pList->a[i].pExpr, pB->pList->a[i].pExpr) ){
sl@0
  2842
        return 0;
sl@0
  2843
      }
sl@0
  2844
    }
sl@0
  2845
  }else if( pB->pList ){
sl@0
  2846
    return 0;
sl@0
  2847
  }
sl@0
  2848
  if( pA->pSelect || pB->pSelect ) return 0;
sl@0
  2849
  if( pA->iTable!=pB->iTable || pA->iColumn!=pB->iColumn ) return 0;
sl@0
  2850
  if( pA->op!=TK_COLUMN && pA->token.z ){
sl@0
  2851
    if( pB->token.z==0 ) return 0;
sl@0
  2852
    if( pB->token.n!=pA->token.n ) return 0;
sl@0
  2853
    if( sqlite3StrNICmp((char*)pA->token.z,(char*)pB->token.z,pB->token.n)!=0 ){
sl@0
  2854
      return 0;
sl@0
  2855
    }
sl@0
  2856
  }
sl@0
  2857
  return 1;
sl@0
  2858
}
sl@0
  2859
sl@0
  2860
sl@0
  2861
/*
sl@0
  2862
** Add a new element to the pAggInfo->aCol[] array.  Return the index of
sl@0
  2863
** the new element.  Return a negative number if malloc fails.
sl@0
  2864
*/
sl@0
  2865
static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){
sl@0
  2866
  int i;
sl@0
  2867
  pInfo->aCol = sqlite3ArrayAllocate(
sl@0
  2868
       db,
sl@0
  2869
       pInfo->aCol,
sl@0
  2870
       sizeof(pInfo->aCol[0]),
sl@0
  2871
       3,
sl@0
  2872
       &pInfo->nColumn,
sl@0
  2873
       &pInfo->nColumnAlloc,
sl@0
  2874
       &i
sl@0
  2875
  );
sl@0
  2876
  return i;
sl@0
  2877
}    
sl@0
  2878
sl@0
  2879
/*
sl@0
  2880
** Add a new element to the pAggInfo->aFunc[] array.  Return the index of
sl@0
  2881
** the new element.  Return a negative number if malloc fails.
sl@0
  2882
*/
sl@0
  2883
static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){
sl@0
  2884
  int i;
sl@0
  2885
  pInfo->aFunc = sqlite3ArrayAllocate(
sl@0
  2886
       db, 
sl@0
  2887
       pInfo->aFunc,
sl@0
  2888
       sizeof(pInfo->aFunc[0]),
sl@0
  2889
       3,
sl@0
  2890
       &pInfo->nFunc,
sl@0
  2891
       &pInfo->nFuncAlloc,
sl@0
  2892
       &i
sl@0
  2893
  );
sl@0
  2894
  return i;
sl@0
  2895
}    
sl@0
  2896
sl@0
  2897
/*
sl@0
  2898
** This is the xExprCallback for a tree walker.  It is used to
sl@0
  2899
** implement sqlite3ExprAnalyzeAggregates().  See sqlite3ExprAnalyzeAggregates
sl@0
  2900
** for additional information.
sl@0
  2901
*/
sl@0
  2902
static int analyzeAggregate(Walker *pWalker, Expr *pExpr){
sl@0
  2903
  int i;
sl@0
  2904
  NameContext *pNC = pWalker->u.pNC;
sl@0
  2905
  Parse *pParse = pNC->pParse;
sl@0
  2906
  SrcList *pSrcList = pNC->pSrcList;
sl@0
  2907
  AggInfo *pAggInfo = pNC->pAggInfo;
sl@0
  2908
sl@0
  2909
  switch( pExpr->op ){
sl@0
  2910
    case TK_AGG_COLUMN:
sl@0
  2911
    case TK_COLUMN: {
sl@0
  2912
      testcase( pExpr->op==TK_AGG_COLUMN );
sl@0
  2913
      testcase( pExpr->op==TK_COLUMN );
sl@0
  2914
      /* Check to see if the column is in one of the tables in the FROM
sl@0
  2915
      ** clause of the aggregate query */
sl@0
  2916
      if( pSrcList ){
sl@0
  2917
        struct SrcList_item *pItem = pSrcList->a;
sl@0
  2918
        for(i=0; i<pSrcList->nSrc; i++, pItem++){
sl@0
  2919
          struct AggInfo_col *pCol;
sl@0
  2920
          if( pExpr->iTable==pItem->iCursor ){
sl@0
  2921
            /* If we reach this point, it means that pExpr refers to a table
sl@0
  2922
            ** that is in the FROM clause of the aggregate query.  
sl@0
  2923
            **
sl@0
  2924
            ** Make an entry for the column in pAggInfo->aCol[] if there
sl@0
  2925
            ** is not an entry there already.
sl@0
  2926
            */
sl@0
  2927
            int k;
sl@0
  2928
            pCol = pAggInfo->aCol;
sl@0
  2929
            for(k=0; k<pAggInfo->nColumn; k++, pCol++){
sl@0
  2930
              if( pCol->iTable==pExpr->iTable &&
sl@0
  2931
                  pCol->iColumn==pExpr->iColumn ){
sl@0
  2932
                break;
sl@0
  2933
              }
sl@0
  2934
            }
sl@0
  2935
            if( (k>=pAggInfo->nColumn)
sl@0
  2936
             && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0 
sl@0
  2937
            ){
sl@0
  2938
              pCol = &pAggInfo->aCol[k];
sl@0
  2939
              pCol->pTab = pExpr->pTab;
sl@0
  2940
              pCol->iTable = pExpr->iTable;
sl@0
  2941
              pCol->iColumn = pExpr->iColumn;
sl@0
  2942
              pCol->iMem = ++pParse->nMem;
sl@0
  2943
              pCol->iSorterColumn = -1;
sl@0
  2944
              pCol->pExpr = pExpr;
sl@0
  2945
              if( pAggInfo->pGroupBy ){
sl@0
  2946
                int j, n;
sl@0
  2947
                ExprList *pGB = pAggInfo->pGroupBy;
sl@0
  2948
                struct ExprList_item *pTerm = pGB->a;
sl@0
  2949
                n = pGB->nExpr;
sl@0
  2950
                for(j=0; j<n; j++, pTerm++){
sl@0
  2951
                  Expr *pE = pTerm->pExpr;
sl@0
  2952
                  if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable &&
sl@0
  2953
                      pE->iColumn==pExpr->iColumn ){
sl@0
  2954
                    pCol->iSorterColumn = j;
sl@0
  2955
                    break;
sl@0
  2956
                  }
sl@0
  2957
                }
sl@0
  2958
              }
sl@0
  2959
              if( pCol->iSorterColumn<0 ){
sl@0
  2960
                pCol->iSorterColumn = pAggInfo->nSortingColumn++;
sl@0
  2961
              }
sl@0
  2962
            }
sl@0
  2963
            /* There is now an entry for pExpr in pAggInfo->aCol[] (either
sl@0
  2964
            ** because it was there before or because we just created it).
sl@0
  2965
            ** Convert the pExpr to be a TK_AGG_COLUMN referring to that
sl@0
  2966
            ** pAggInfo->aCol[] entry.
sl@0
  2967
            */
sl@0
  2968
            pExpr->pAggInfo = pAggInfo;
sl@0
  2969
            pExpr->op = TK_AGG_COLUMN;
sl@0
  2970
            pExpr->iAgg = k;
sl@0
  2971
            break;
sl@0
  2972
          } /* endif pExpr->iTable==pItem->iCursor */
sl@0
  2973
        } /* end loop over pSrcList */
sl@0
  2974
      }
sl@0
  2975
      return WRC_Prune;
sl@0
  2976
    }
sl@0
  2977
    case TK_AGG_FUNCTION: {
sl@0
  2978
      /* The pNC->nDepth==0 test causes aggregate functions in subqueries
sl@0
  2979
      ** to be ignored */
sl@0
  2980
      if( pNC->nDepth==0 ){
sl@0
  2981
        /* Check to see if pExpr is a duplicate of another aggregate 
sl@0
  2982
        ** function that is already in the pAggInfo structure
sl@0
  2983
        */
sl@0
  2984
        struct AggInfo_func *pItem = pAggInfo->aFunc;
sl@0
  2985
        for(i=0; i<pAggInfo->nFunc; i++, pItem++){
sl@0
  2986
          if( sqlite3ExprCompare(pItem->pExpr, pExpr) ){
sl@0
  2987
            break;
sl@0
  2988
          }
sl@0
  2989
        }
sl@0
  2990
        if( i>=pAggInfo->nFunc ){
sl@0
  2991
          /* pExpr is original.  Make a new entry in pAggInfo->aFunc[]
sl@0
  2992
          */
sl@0
  2993
          u8 enc = ENC(pParse->db);
sl@0
  2994
          i = addAggInfoFunc(pParse->db, pAggInfo);
sl@0
  2995
          if( i>=0 ){
sl@0
  2996
            pItem = &pAggInfo->aFunc[i];
sl@0
  2997
            pItem->pExpr = pExpr;
sl@0
  2998
            pItem->iMem = ++pParse->nMem;
sl@0
  2999
            pItem->pFunc = sqlite3FindFunction(pParse->db,
sl@0
  3000
                   (char*)pExpr->token.z, pExpr->token.n,
sl@0
  3001
                   pExpr->pList ? pExpr->pList->nExpr : 0, enc, 0);
sl@0
  3002
            if( pExpr->flags & EP_Distinct ){
sl@0
  3003
              pItem->iDistinct = pParse->nTab++;
sl@0
  3004
            }else{
sl@0
  3005
              pItem->iDistinct = -1;
sl@0
  3006
            }
sl@0
  3007
          }
sl@0
  3008
        }
sl@0
  3009
        /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry
sl@0
  3010
        */
sl@0
  3011
        pExpr->iAgg = i;
sl@0
  3012
        pExpr->pAggInfo = pAggInfo;
sl@0
  3013
        return WRC_Prune;
sl@0
  3014
      }
sl@0
  3015
    }
sl@0
  3016
  }
sl@0
  3017
  return WRC_Continue;
sl@0
  3018
}
sl@0
  3019
static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){
sl@0
  3020
  NameContext *pNC = pWalker->u.pNC;
sl@0
  3021
  if( pNC->nDepth==0 ){
sl@0
  3022
    pNC->nDepth++;
sl@0
  3023
    sqlite3WalkSelect(pWalker, pSelect);
sl@0
  3024
    pNC->nDepth--;
sl@0
  3025
    return WRC_Prune;
sl@0
  3026
  }else{
sl@0
  3027
    return WRC_Continue;
sl@0
  3028
  }
sl@0
  3029
}
sl@0
  3030
sl@0
  3031
/*
sl@0
  3032
** Analyze the given expression looking for aggregate functions and
sl@0
  3033
** for variables that need to be added to the pParse->aAgg[] array.
sl@0
  3034
** Make additional entries to the pParse->aAgg[] array as necessary.
sl@0
  3035
**
sl@0
  3036
** This routine should only be called after the expression has been
sl@0
  3037
** analyzed by sqlite3ResolveExprNames().
sl@0
  3038
*/
sl@0
  3039
void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){
sl@0
  3040
  Walker w;
sl@0
  3041
  w.xExprCallback = analyzeAggregate;
sl@0
  3042
  w.xSelectCallback = analyzeAggregatesInSelect;
sl@0
  3043
  w.u.pNC = pNC;
sl@0
  3044
  sqlite3WalkExpr(&w, pExpr);
sl@0
  3045
}
sl@0
  3046
sl@0
  3047
/*
sl@0
  3048
** Call sqlite3ExprAnalyzeAggregates() for every expression in an
sl@0
  3049
** expression list.  Return the number of errors.
sl@0
  3050
**
sl@0
  3051
** If an error is found, the analysis is cut short.
sl@0
  3052
*/
sl@0
  3053
void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){
sl@0
  3054
  struct ExprList_item *pItem;
sl@0
  3055
  int i;
sl@0
  3056
  if( pList ){
sl@0
  3057
    for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
sl@0
  3058
      sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr);
sl@0
  3059
    }
sl@0
  3060
  }
sl@0
  3061
}
sl@0
  3062
sl@0
  3063
/*
sl@0
  3064
** Allocate or deallocate temporary use registers during code generation.
sl@0
  3065
*/
sl@0
  3066
int sqlite3GetTempReg(Parse *pParse){
sl@0
  3067
  if( pParse->nTempReg==0 ){
sl@0
  3068
    return ++pParse->nMem;
sl@0
  3069
  }
sl@0
  3070
  return pParse->aTempReg[--pParse->nTempReg];
sl@0
  3071
}
sl@0
  3072
void sqlite3ReleaseTempReg(Parse *pParse, int iReg){
sl@0
  3073
  if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){
sl@0
  3074
    sqlite3ExprWritableRegister(pParse, iReg, iReg);
sl@0
  3075
    pParse->aTempReg[pParse->nTempReg++] = iReg;
sl@0
  3076
  }
sl@0
  3077
}
sl@0
  3078
sl@0
  3079
/*
sl@0
  3080
** Allocate or deallocate a block of nReg consecutive registers
sl@0
  3081
*/
sl@0
  3082
int sqlite3GetTempRange(Parse *pParse, int nReg){
sl@0
  3083
  int i, n;
sl@0
  3084
  i = pParse->iRangeReg;
sl@0
  3085
  n = pParse->nRangeReg;
sl@0
  3086
  if( nReg<=n && !usedAsColumnCache(pParse, i, i+n-1) ){
sl@0
  3087
    pParse->iRangeReg += nReg;
sl@0
  3088
    pParse->nRangeReg -= nReg;
sl@0
  3089
  }else{
sl@0
  3090
    i = pParse->nMem+1;
sl@0
  3091
    pParse->nMem += nReg;
sl@0
  3092
  }
sl@0
  3093
  return i;
sl@0
  3094
}
sl@0
  3095
void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){
sl@0
  3096
  if( nReg>pParse->nRangeReg ){
sl@0
  3097
    pParse->nRangeReg = nReg;
sl@0
  3098
    pParse->iRangeReg = iReg;
sl@0
  3099
  }
sl@0
  3100
}