os/persistentdata/persistentstorage/sql/SQLite/func.c
author sl@SLION-WIN7.fritz.box
Fri, 15 Jun 2012 03:10:57 +0200
changeset 0 bde4ae8d615e
permissions -rw-r--r--
First public contribution.
sl@0
     1
/*
sl@0
     2
** 2002 February 23
sl@0
     3
**
sl@0
     4
** The author disclaims copyright to this source code.  In place of
sl@0
     5
** a legal notice, here is a blessing:
sl@0
     6
**
sl@0
     7
**    May you do good and not evil.
sl@0
     8
**    May you find forgiveness for yourself and forgive others.
sl@0
     9
**    May you share freely, never taking more than you give.
sl@0
    10
**
sl@0
    11
*************************************************************************
sl@0
    12
** This file contains the C functions that implement various SQL
sl@0
    13
** functions of SQLite.  
sl@0
    14
**
sl@0
    15
** There is only one exported symbol in this file - the function
sl@0
    16
** sqliteRegisterBuildinFunctions() found at the bottom of the file.
sl@0
    17
** All other code has file scope.
sl@0
    18
**
sl@0
    19
** $Id: func.c,v 1.196 2008/07/28 19:34:53 drh Exp $
sl@0
    20
*/
sl@0
    21
#include "sqliteInt.h"
sl@0
    22
#include <ctype.h>
sl@0
    23
#include <stdlib.h>
sl@0
    24
#include <assert.h>
sl@0
    25
#include "vdbeInt.h"
sl@0
    26
sl@0
    27
sl@0
    28
/*
sl@0
    29
** Return the collating function associated with a function.
sl@0
    30
*/
sl@0
    31
static CollSeq *sqlite3GetFuncCollSeq(sqlite3_context *context){
sl@0
    32
  return context->pColl;
sl@0
    33
}
sl@0
    34
sl@0
    35
/*
sl@0
    36
** Implementation of the non-aggregate min() and max() functions
sl@0
    37
*/
sl@0
    38
static void minmaxFunc(
sl@0
    39
  sqlite3_context *context,
sl@0
    40
  int argc,
sl@0
    41
  sqlite3_value **argv
sl@0
    42
){
sl@0
    43
  int i;
sl@0
    44
  int mask;    /* 0 for min() or 0xffffffff for max() */
sl@0
    45
  int iBest;
sl@0
    46
  CollSeq *pColl;
sl@0
    47
sl@0
    48
  if( argc==0 ) return;
sl@0
    49
  mask = sqlite3_user_data(context)==0 ? 0 : -1;
sl@0
    50
  pColl = sqlite3GetFuncCollSeq(context);
sl@0
    51
  assert( pColl );
sl@0
    52
  assert( mask==-1 || mask==0 );
sl@0
    53
  iBest = 0;
sl@0
    54
  if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
sl@0
    55
  for(i=1; i<argc; i++){
sl@0
    56
    if( sqlite3_value_type(argv[i])==SQLITE_NULL ) return;
sl@0
    57
    if( (sqlite3MemCompare(argv[iBest], argv[i], pColl)^mask)>=0 ){
sl@0
    58
      iBest = i;
sl@0
    59
    }
sl@0
    60
  }
sl@0
    61
  sqlite3_result_value(context, argv[iBest]);
sl@0
    62
}
sl@0
    63
sl@0
    64
/*
sl@0
    65
** Return the type of the argument.
sl@0
    66
*/
sl@0
    67
static void typeofFunc(
sl@0
    68
  sqlite3_context *context,
sl@0
    69
  int argc,
sl@0
    70
  sqlite3_value **argv
sl@0
    71
){
sl@0
    72
  const char *z = 0;
sl@0
    73
  switch( sqlite3_value_type(argv[0]) ){
sl@0
    74
    case SQLITE_NULL:    z = "null";    break;
sl@0
    75
    case SQLITE_INTEGER: z = "integer"; break;
sl@0
    76
    case SQLITE_TEXT:    z = "text";    break;
sl@0
    77
    case SQLITE_FLOAT:   z = "real";    break;
sl@0
    78
    case SQLITE_BLOB:    z = "blob";    break;
sl@0
    79
  }
sl@0
    80
  sqlite3_result_text(context, z, -1, SQLITE_STATIC);
sl@0
    81
}
sl@0
    82
sl@0
    83
sl@0
    84
/*
sl@0
    85
** Implementation of the length() function
sl@0
    86
*/
sl@0
    87
static void lengthFunc(
sl@0
    88
  sqlite3_context *context,
sl@0
    89
  int argc,
sl@0
    90
  sqlite3_value **argv
sl@0
    91
){
sl@0
    92
  int len;
sl@0
    93
sl@0
    94
  assert( argc==1 );
sl@0
    95
  switch( sqlite3_value_type(argv[0]) ){
sl@0
    96
    case SQLITE_BLOB:
sl@0
    97
    case SQLITE_INTEGER:
sl@0
    98
    case SQLITE_FLOAT: {
sl@0
    99
      sqlite3_result_int(context, sqlite3_value_bytes(argv[0]));
sl@0
   100
      break;
sl@0
   101
    }
sl@0
   102
    case SQLITE_TEXT: {
sl@0
   103
      const unsigned char *z = sqlite3_value_text(argv[0]);
sl@0
   104
      if( z==0 ) return;
sl@0
   105
      len = 0;
sl@0
   106
      while( *z ){
sl@0
   107
        len++;
sl@0
   108
        SQLITE_SKIP_UTF8(z);
sl@0
   109
      }
sl@0
   110
      sqlite3_result_int(context, len);
sl@0
   111
      break;
sl@0
   112
    }
sl@0
   113
    default: {
sl@0
   114
      sqlite3_result_null(context);
sl@0
   115
      break;
sl@0
   116
    }
sl@0
   117
  }
sl@0
   118
}
sl@0
   119
sl@0
   120
/*
sl@0
   121
** Implementation of the abs() function
sl@0
   122
*/
sl@0
   123
static void absFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
sl@0
   124
  assert( argc==1 );
sl@0
   125
  switch( sqlite3_value_type(argv[0]) ){
sl@0
   126
    case SQLITE_INTEGER: {
sl@0
   127
      i64 iVal = sqlite3_value_int64(argv[0]);
sl@0
   128
      if( iVal<0 ){
sl@0
   129
        if( (iVal<<1)==0 ){
sl@0
   130
          sqlite3_result_error(context, "integer overflow", -1);
sl@0
   131
          return;
sl@0
   132
        }
sl@0
   133
        iVal = -iVal;
sl@0
   134
      } 
sl@0
   135
      sqlite3_result_int64(context, iVal);
sl@0
   136
      break;
sl@0
   137
    }
sl@0
   138
    case SQLITE_NULL: {
sl@0
   139
      sqlite3_result_null(context);
sl@0
   140
      break;
sl@0
   141
    }
sl@0
   142
    default: {
sl@0
   143
      double rVal = sqlite3_value_double(argv[0]);
sl@0
   144
      if( rVal<0 ) rVal = -rVal;
sl@0
   145
      sqlite3_result_double(context, rVal);
sl@0
   146
      break;
sl@0
   147
    }
sl@0
   148
  }
sl@0
   149
}
sl@0
   150
sl@0
   151
/*
sl@0
   152
** Implementation of the substr() function.
sl@0
   153
**
sl@0
   154
** substr(x,p1,p2)  returns p2 characters of x[] beginning with p1.
sl@0
   155
** p1 is 1-indexed.  So substr(x,1,1) returns the first character
sl@0
   156
** of x.  If x is text, then we actually count UTF-8 characters.
sl@0
   157
** If x is a blob, then we count bytes.
sl@0
   158
**
sl@0
   159
** If p1 is negative, then we begin abs(p1) from the end of x[].
sl@0
   160
*/
sl@0
   161
static void substrFunc(
sl@0
   162
  sqlite3_context *context,
sl@0
   163
  int argc,
sl@0
   164
  sqlite3_value **argv
sl@0
   165
){
sl@0
   166
  const unsigned char *z;
sl@0
   167
  const unsigned char *z2;
sl@0
   168
  int len;
sl@0
   169
  int p0type;
sl@0
   170
  i64 p1, p2;
sl@0
   171
sl@0
   172
  assert( argc==3 || argc==2 );
sl@0
   173
  p0type = sqlite3_value_type(argv[0]);
sl@0
   174
  if( p0type==SQLITE_BLOB ){
sl@0
   175
    len = sqlite3_value_bytes(argv[0]);
sl@0
   176
    z = sqlite3_value_blob(argv[0]);
sl@0
   177
    if( z==0 ) return;
sl@0
   178
    assert( len==sqlite3_value_bytes(argv[0]) );
sl@0
   179
  }else{
sl@0
   180
    z = sqlite3_value_text(argv[0]);
sl@0
   181
    if( z==0 ) return;
sl@0
   182
    len = 0;
sl@0
   183
    for(z2=z; *z2; len++){
sl@0
   184
      SQLITE_SKIP_UTF8(z2);
sl@0
   185
    }
sl@0
   186
  }
sl@0
   187
  p1 = sqlite3_value_int(argv[1]);
sl@0
   188
  if( argc==3 ){
sl@0
   189
    p2 = sqlite3_value_int(argv[2]);
sl@0
   190
  }else{
sl@0
   191
    p2 = sqlite3_context_db_handle(context)->aLimit[SQLITE_LIMIT_LENGTH];
sl@0
   192
  }
sl@0
   193
  if( p1<0 ){
sl@0
   194
    p1 += len;
sl@0
   195
    if( p1<0 ){
sl@0
   196
      p2 += p1;
sl@0
   197
      p1 = 0;
sl@0
   198
    }
sl@0
   199
  }else if( p1>0 ){
sl@0
   200
    p1--;
sl@0
   201
  }
sl@0
   202
  if( p1+p2>len ){
sl@0
   203
    p2 = len-p1;
sl@0
   204
  }
sl@0
   205
  if( p0type!=SQLITE_BLOB ){
sl@0
   206
    while( *z && p1 ){
sl@0
   207
      SQLITE_SKIP_UTF8(z);
sl@0
   208
      p1--;
sl@0
   209
    }
sl@0
   210
    for(z2=z; *z2 && p2; p2--){
sl@0
   211
      SQLITE_SKIP_UTF8(z2);
sl@0
   212
    }
sl@0
   213
    sqlite3_result_text(context, (char*)z, z2-z, SQLITE_TRANSIENT);
sl@0
   214
  }else{
sl@0
   215
    if( p2<0 ) p2 = 0;
sl@0
   216
    sqlite3_result_blob(context, (char*)&z[p1], p2, SQLITE_TRANSIENT);
sl@0
   217
  }
sl@0
   218
}
sl@0
   219
sl@0
   220
/*
sl@0
   221
** Implementation of the round() function
sl@0
   222
*/
sl@0
   223
static void roundFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
sl@0
   224
  int n = 0;
sl@0
   225
  double r;
sl@0
   226
  char zBuf[500];  /* larger than the %f representation of the largest double */
sl@0
   227
  assert( argc==1 || argc==2 );
sl@0
   228
  if( argc==2 ){
sl@0
   229
    if( SQLITE_NULL==sqlite3_value_type(argv[1]) ) return;
sl@0
   230
    n = sqlite3_value_int(argv[1]);
sl@0
   231
    if( n>30 ) n = 30;
sl@0
   232
    if( n<0 ) n = 0;
sl@0
   233
  }
sl@0
   234
  if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
sl@0
   235
  r = sqlite3_value_double(argv[0]);
sl@0
   236
  sqlite3_snprintf(sizeof(zBuf),zBuf,"%.*f",n,r);
sl@0
   237
  sqlite3AtoF(zBuf, &r);
sl@0
   238
  sqlite3_result_double(context, r);
sl@0
   239
}
sl@0
   240
sl@0
   241
/*
sl@0
   242
** Allocate nByte bytes of space using sqlite3_malloc(). If the
sl@0
   243
** allocation fails, call sqlite3_result_error_nomem() to notify
sl@0
   244
** the database handle that malloc() has failed.
sl@0
   245
*/
sl@0
   246
static void *contextMalloc(sqlite3_context *context, i64 nByte){
sl@0
   247
  char *z;
sl@0
   248
  if( nByte>sqlite3_context_db_handle(context)->aLimit[SQLITE_LIMIT_LENGTH] ){
sl@0
   249
    sqlite3_result_error_toobig(context);
sl@0
   250
    z = 0;
sl@0
   251
  }else{
sl@0
   252
    z = sqlite3Malloc(nByte);
sl@0
   253
    if( !z && nByte>0 ){
sl@0
   254
      sqlite3_result_error_nomem(context);
sl@0
   255
    }
sl@0
   256
  }
sl@0
   257
  return z;
sl@0
   258
}
sl@0
   259
sl@0
   260
/*
sl@0
   261
** Implementation of the upper() and lower() SQL functions.
sl@0
   262
*/
sl@0
   263
static void upperFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
sl@0
   264
  char *z1;
sl@0
   265
  const char *z2;
sl@0
   266
  int i, n;
sl@0
   267
  if( argc<1 || SQLITE_NULL==sqlite3_value_type(argv[0]) ) return;
sl@0
   268
  z2 = (char*)sqlite3_value_text(argv[0]);
sl@0
   269
  n = sqlite3_value_bytes(argv[0]);
sl@0
   270
  /* Verify that the call to _bytes() does not invalidate the _text() pointer */
sl@0
   271
  assert( z2==(char*)sqlite3_value_text(argv[0]) );
sl@0
   272
  if( z2 ){
sl@0
   273
    z1 = contextMalloc(context, ((i64)n)+1);
sl@0
   274
    if( z1 ){
sl@0
   275
      memcpy(z1, z2, n+1);
sl@0
   276
      for(i=0; z1[i]; i++){
sl@0
   277
        z1[i] = toupper(z1[i]);
sl@0
   278
      }
sl@0
   279
      sqlite3_result_text(context, z1, -1, sqlite3_free);
sl@0
   280
    }
sl@0
   281
  }
sl@0
   282
}
sl@0
   283
static void lowerFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
sl@0
   284
  char *z1;
sl@0
   285
  const char *z2;
sl@0
   286
  int i, n;
sl@0
   287
  if( argc<1 || SQLITE_NULL==sqlite3_value_type(argv[0]) ) return;
sl@0
   288
  z2 = (char*)sqlite3_value_text(argv[0]);
sl@0
   289
  n = sqlite3_value_bytes(argv[0]);
sl@0
   290
  /* Verify that the call to _bytes() does not invalidate the _text() pointer */
sl@0
   291
  assert( z2==(char*)sqlite3_value_text(argv[0]) );
sl@0
   292
  if( z2 ){
sl@0
   293
    z1 = contextMalloc(context, ((i64)n)+1);
sl@0
   294
    if( z1 ){
sl@0
   295
      memcpy(z1, z2, n+1);
sl@0
   296
      for(i=0; z1[i]; i++){
sl@0
   297
        z1[i] = tolower(z1[i]);
sl@0
   298
      }
sl@0
   299
      sqlite3_result_text(context, z1, -1, sqlite3_free);
sl@0
   300
    }
sl@0
   301
  }
sl@0
   302
}
sl@0
   303
sl@0
   304
/*
sl@0
   305
** Implementation of the IFNULL(), NVL(), and COALESCE() functions.  
sl@0
   306
** All three do the same thing.  They return the first non-NULL
sl@0
   307
** argument.
sl@0
   308
*/
sl@0
   309
static void ifnullFunc(
sl@0
   310
  sqlite3_context *context,
sl@0
   311
  int argc,
sl@0
   312
  sqlite3_value **argv
sl@0
   313
){
sl@0
   314
  int i;
sl@0
   315
  for(i=0; i<argc; i++){
sl@0
   316
    if( SQLITE_NULL!=sqlite3_value_type(argv[i]) ){
sl@0
   317
      sqlite3_result_value(context, argv[i]);
sl@0
   318
      break;
sl@0
   319
    }
sl@0
   320
  }
sl@0
   321
}
sl@0
   322
sl@0
   323
/*
sl@0
   324
** Implementation of random().  Return a random integer.  
sl@0
   325
*/
sl@0
   326
static void randomFunc(
sl@0
   327
  sqlite3_context *context,
sl@0
   328
  int argc,
sl@0
   329
  sqlite3_value **argv
sl@0
   330
){
sl@0
   331
  sqlite_int64 r;
sl@0
   332
  sqlite3_randomness(sizeof(r), &r);
sl@0
   333
  if( (r<<1)==0 ) r = 0;  /* Prevent 0x8000.... as the result so that we */
sl@0
   334
                          /* can always do abs() of the result */
sl@0
   335
  sqlite3_result_int64(context, r);
sl@0
   336
}
sl@0
   337
sl@0
   338
/*
sl@0
   339
** Implementation of randomblob(N).  Return a random blob
sl@0
   340
** that is N bytes long.
sl@0
   341
*/
sl@0
   342
static void randomBlob(
sl@0
   343
  sqlite3_context *context,
sl@0
   344
  int argc,
sl@0
   345
  sqlite3_value **argv
sl@0
   346
){
sl@0
   347
  int n;
sl@0
   348
  unsigned char *p;
sl@0
   349
  assert( argc==1 );
sl@0
   350
  n = sqlite3_value_int(argv[0]);
sl@0
   351
  if( n<1 ){
sl@0
   352
    n = 1;
sl@0
   353
  }
sl@0
   354
  p = contextMalloc(context, n);
sl@0
   355
  if( p ){
sl@0
   356
    sqlite3_randomness(n, p);
sl@0
   357
    sqlite3_result_blob(context, (char*)p, n, sqlite3_free);
sl@0
   358
  }
sl@0
   359
}
sl@0
   360
sl@0
   361
/*
sl@0
   362
** Implementation of the last_insert_rowid() SQL function.  The return
sl@0
   363
** value is the same as the sqlite3_last_insert_rowid() API function.
sl@0
   364
*/
sl@0
   365
static void last_insert_rowid(
sl@0
   366
  sqlite3_context *context, 
sl@0
   367
  int arg, 
sl@0
   368
  sqlite3_value **argv
sl@0
   369
){
sl@0
   370
  sqlite3 *db = sqlite3_context_db_handle(context);
sl@0
   371
  sqlite3_result_int64(context, sqlite3_last_insert_rowid(db));
sl@0
   372
}
sl@0
   373
sl@0
   374
/*
sl@0
   375
** Implementation of the changes() SQL function.  The return value is the
sl@0
   376
** same as the sqlite3_changes() API function.
sl@0
   377
*/
sl@0
   378
static void changes(
sl@0
   379
  sqlite3_context *context,
sl@0
   380
  int arg,
sl@0
   381
  sqlite3_value **argv
sl@0
   382
){
sl@0
   383
  sqlite3 *db = sqlite3_context_db_handle(context);
sl@0
   384
  sqlite3_result_int(context, sqlite3_changes(db));
sl@0
   385
}
sl@0
   386
sl@0
   387
/*
sl@0
   388
** Implementation of the total_changes() SQL function.  The return value is
sl@0
   389
** the same as the sqlite3_total_changes() API function.
sl@0
   390
*/
sl@0
   391
static void total_changes(
sl@0
   392
  sqlite3_context *context,
sl@0
   393
  int arg,
sl@0
   394
  sqlite3_value **argv
sl@0
   395
){
sl@0
   396
  sqlite3 *db = sqlite3_context_db_handle(context);
sl@0
   397
  sqlite3_result_int(context, sqlite3_total_changes(db));
sl@0
   398
}
sl@0
   399
sl@0
   400
/*
sl@0
   401
** A structure defining how to do GLOB-style comparisons.
sl@0
   402
*/
sl@0
   403
struct compareInfo {
sl@0
   404
  u8 matchAll;
sl@0
   405
  u8 matchOne;
sl@0
   406
  u8 matchSet;
sl@0
   407
  u8 noCase;
sl@0
   408
};
sl@0
   409
sl@0
   410
/*
sl@0
   411
** For LIKE and GLOB matching on EBCDIC machines, assume that every
sl@0
   412
** character is exactly one byte in size.  Also, all characters are
sl@0
   413
** able to participate in upper-case-to-lower-case mappings in EBCDIC
sl@0
   414
** whereas only characters less than 0x80 do in ASCII.
sl@0
   415
*/
sl@0
   416
#if defined(SQLITE_EBCDIC)
sl@0
   417
# define sqlite3Utf8Read(A,B,C)  (*(A++))
sl@0
   418
# define GlogUpperToLower(A)     A = sqlite3UpperToLower[A]
sl@0
   419
#else
sl@0
   420
# define GlogUpperToLower(A)     if( A<0x80 ){ A = sqlite3UpperToLower[A]; }
sl@0
   421
#endif
sl@0
   422
sl@0
   423
static const struct compareInfo globInfo = { '*', '?', '[', 0 };
sl@0
   424
/* The correct SQL-92 behavior is for the LIKE operator to ignore
sl@0
   425
** case.  Thus  'a' LIKE 'A' would be true. */
sl@0
   426
static const struct compareInfo likeInfoNorm = { '%', '_',   0, 1 };
sl@0
   427
/* If SQLITE_CASE_SENSITIVE_LIKE is defined, then the LIKE operator
sl@0
   428
** is case sensitive causing 'a' LIKE 'A' to be false */
sl@0
   429
static const struct compareInfo likeInfoAlt = { '%', '_',   0, 0 };
sl@0
   430
sl@0
   431
/*
sl@0
   432
** Compare two UTF-8 strings for equality where the first string can
sl@0
   433
** potentially be a "glob" expression.  Return true (1) if they
sl@0
   434
** are the same and false (0) if they are different.
sl@0
   435
**
sl@0
   436
** Globbing rules:
sl@0
   437
**
sl@0
   438
**      '*'       Matches any sequence of zero or more characters.
sl@0
   439
**
sl@0
   440
**      '?'       Matches exactly one character.
sl@0
   441
**
sl@0
   442
**     [...]      Matches one character from the enclosed list of
sl@0
   443
**                characters.
sl@0
   444
**
sl@0
   445
**     [^...]     Matches one character not in the enclosed list.
sl@0
   446
**
sl@0
   447
** With the [...] and [^...] matching, a ']' character can be included
sl@0
   448
** in the list by making it the first character after '[' or '^'.  A
sl@0
   449
** range of characters can be specified using '-'.  Example:
sl@0
   450
** "[a-z]" matches any single lower-case letter.  To match a '-', make
sl@0
   451
** it the last character in the list.
sl@0
   452
**
sl@0
   453
** This routine is usually quick, but can be N**2 in the worst case.
sl@0
   454
**
sl@0
   455
** Hints: to match '*' or '?', put them in "[]".  Like this:
sl@0
   456
**
sl@0
   457
**         abc[*]xyz        Matches "abc*xyz" only
sl@0
   458
*/
sl@0
   459
static int patternCompare(
sl@0
   460
  const u8 *zPattern,              /* The glob pattern */
sl@0
   461
  const u8 *zString,               /* The string to compare against the glob */
sl@0
   462
  const struct compareInfo *pInfo, /* Information about how to do the compare */
sl@0
   463
  const int esc                    /* The escape character */
sl@0
   464
){
sl@0
   465
  int c, c2;
sl@0
   466
  int invert;
sl@0
   467
  int seen;
sl@0
   468
  u8 matchOne = pInfo->matchOne;
sl@0
   469
  u8 matchAll = pInfo->matchAll;
sl@0
   470
  u8 matchSet = pInfo->matchSet;
sl@0
   471
  u8 noCase = pInfo->noCase; 
sl@0
   472
  int prevEscape = 0;     /* True if the previous character was 'escape' */
sl@0
   473
sl@0
   474
  while( (c = sqlite3Utf8Read(zPattern,0,&zPattern))!=0 ){
sl@0
   475
    if( !prevEscape && c==matchAll ){
sl@0
   476
      while( (c=sqlite3Utf8Read(zPattern,0,&zPattern)) == matchAll
sl@0
   477
               || c == matchOne ){
sl@0
   478
        if( c==matchOne && sqlite3Utf8Read(zString, 0, &zString)==0 ){
sl@0
   479
          return 0;
sl@0
   480
        }
sl@0
   481
      }
sl@0
   482
      if( c==0 ){
sl@0
   483
        return 1;
sl@0
   484
      }else if( c==esc ){
sl@0
   485
        c = sqlite3Utf8Read(zPattern, 0, &zPattern);
sl@0
   486
        if( c==0 ){
sl@0
   487
          return 0;
sl@0
   488
        }
sl@0
   489
      }else if( c==matchSet ){
sl@0
   490
        assert( esc==0 );         /* This is GLOB, not LIKE */
sl@0
   491
        assert( matchSet<0x80 );  /* '[' is a single-byte character */
sl@0
   492
        while( *zString && patternCompare(&zPattern[-1],zString,pInfo,esc)==0 ){
sl@0
   493
          SQLITE_SKIP_UTF8(zString);
sl@0
   494
        }
sl@0
   495
        return *zString!=0;
sl@0
   496
      }
sl@0
   497
      while( (c2 = sqlite3Utf8Read(zString,0,&zString))!=0 ){
sl@0
   498
        if( noCase ){
sl@0
   499
          GlogUpperToLower(c2);
sl@0
   500
          GlogUpperToLower(c);
sl@0
   501
          while( c2 != 0 && c2 != c ){
sl@0
   502
            c2 = sqlite3Utf8Read(zString, 0, &zString);
sl@0
   503
            GlogUpperToLower(c2);
sl@0
   504
          }
sl@0
   505
        }else{
sl@0
   506
          while( c2 != 0 && c2 != c ){
sl@0
   507
            c2 = sqlite3Utf8Read(zString, 0, &zString);
sl@0
   508
          }
sl@0
   509
        }
sl@0
   510
        if( c2==0 ) return 0;
sl@0
   511
        if( patternCompare(zPattern,zString,pInfo,esc) ) return 1;
sl@0
   512
      }
sl@0
   513
      return 0;
sl@0
   514
    }else if( !prevEscape && c==matchOne ){
sl@0
   515
      if( sqlite3Utf8Read(zString, 0, &zString)==0 ){
sl@0
   516
        return 0;
sl@0
   517
      }
sl@0
   518
    }else if( c==matchSet ){
sl@0
   519
      int prior_c = 0;
sl@0
   520
      assert( esc==0 );    /* This only occurs for GLOB, not LIKE */
sl@0
   521
      seen = 0;
sl@0
   522
      invert = 0;
sl@0
   523
      c = sqlite3Utf8Read(zString, 0, &zString);
sl@0
   524
      if( c==0 ) return 0;
sl@0
   525
      c2 = sqlite3Utf8Read(zPattern, 0, &zPattern);
sl@0
   526
      if( c2=='^' ){
sl@0
   527
        invert = 1;
sl@0
   528
        c2 = sqlite3Utf8Read(zPattern, 0, &zPattern);
sl@0
   529
      }
sl@0
   530
      if( c2==']' ){
sl@0
   531
        if( c==']' ) seen = 1;
sl@0
   532
        c2 = sqlite3Utf8Read(zPattern, 0, &zPattern);
sl@0
   533
      }
sl@0
   534
      while( c2 && c2!=']' ){
sl@0
   535
        if( c2=='-' && zPattern[0]!=']' && zPattern[0]!=0 && prior_c>0 ){
sl@0
   536
          c2 = sqlite3Utf8Read(zPattern, 0, &zPattern);
sl@0
   537
          if( c>=prior_c && c<=c2 ) seen = 1;
sl@0
   538
          prior_c = 0;
sl@0
   539
        }else{
sl@0
   540
          if( c==c2 ){
sl@0
   541
            seen = 1;
sl@0
   542
          }
sl@0
   543
          prior_c = c2;
sl@0
   544
        }
sl@0
   545
        c2 = sqlite3Utf8Read(zPattern, 0, &zPattern);
sl@0
   546
      }
sl@0
   547
      if( c2==0 || (seen ^ invert)==0 ){
sl@0
   548
        return 0;
sl@0
   549
      }
sl@0
   550
    }else if( esc==c && !prevEscape ){
sl@0
   551
      prevEscape = 1;
sl@0
   552
    }else{
sl@0
   553
      c2 = sqlite3Utf8Read(zString, 0, &zString);
sl@0
   554
      if( noCase ){
sl@0
   555
        GlogUpperToLower(c);
sl@0
   556
        GlogUpperToLower(c2);
sl@0
   557
      }
sl@0
   558
      if( c!=c2 ){
sl@0
   559
        return 0;
sl@0
   560
      }
sl@0
   561
      prevEscape = 0;
sl@0
   562
    }
sl@0
   563
  }
sl@0
   564
  return *zString==0;
sl@0
   565
}
sl@0
   566
sl@0
   567
/*
sl@0
   568
** Count the number of times that the LIKE operator (or GLOB which is
sl@0
   569
** just a variation of LIKE) gets called.  This is used for testing
sl@0
   570
** only.
sl@0
   571
*/
sl@0
   572
#ifdef SQLITE_TEST
sl@0
   573
int sqlite3_like_count = 0;
sl@0
   574
#endif
sl@0
   575
sl@0
   576
sl@0
   577
/*
sl@0
   578
** Implementation of the like() SQL function.  This function implements
sl@0
   579
** the build-in LIKE operator.  The first argument to the function is the
sl@0
   580
** pattern and the second argument is the string.  So, the SQL statements:
sl@0
   581
**
sl@0
   582
**       A LIKE B
sl@0
   583
**
sl@0
   584
** is implemented as like(B,A).
sl@0
   585
**
sl@0
   586
** This same function (with a different compareInfo structure) computes
sl@0
   587
** the GLOB operator.
sl@0
   588
*/
sl@0
   589
static void likeFunc(
sl@0
   590
  sqlite3_context *context, 
sl@0
   591
  int argc, 
sl@0
   592
  sqlite3_value **argv
sl@0
   593
){
sl@0
   594
  const unsigned char *zA, *zB;
sl@0
   595
  int escape = 0;
sl@0
   596
  sqlite3 *db = sqlite3_context_db_handle(context);
sl@0
   597
sl@0
   598
  zB = sqlite3_value_text(argv[0]);
sl@0
   599
  zA = sqlite3_value_text(argv[1]);
sl@0
   600
sl@0
   601
  /* Limit the length of the LIKE or GLOB pattern to avoid problems
sl@0
   602
  ** of deep recursion and N*N behavior in patternCompare().
sl@0
   603
  */
sl@0
   604
  if( sqlite3_value_bytes(argv[0]) >
sl@0
   605
        db->aLimit[SQLITE_LIMIT_LIKE_PATTERN_LENGTH] ){
sl@0
   606
    sqlite3_result_error(context, "LIKE or GLOB pattern too complex", -1);
sl@0
   607
    return;
sl@0
   608
  }
sl@0
   609
  assert( zB==sqlite3_value_text(argv[0]) );  /* Encoding did not change */
sl@0
   610
sl@0
   611
  if( argc==3 ){
sl@0
   612
    /* The escape character string must consist of a single UTF-8 character.
sl@0
   613
    ** Otherwise, return an error.
sl@0
   614
    */
sl@0
   615
    const unsigned char *zEsc = sqlite3_value_text(argv[2]);
sl@0
   616
    if( zEsc==0 ) return;
sl@0
   617
    if( sqlite3Utf8CharLen((char*)zEsc, -1)!=1 ){
sl@0
   618
      sqlite3_result_error(context, 
sl@0
   619
          "ESCAPE expression must be a single character", -1);
sl@0
   620
      return;
sl@0
   621
    }
sl@0
   622
    escape = sqlite3Utf8Read(zEsc, 0, &zEsc);
sl@0
   623
  }
sl@0
   624
  if( zA && zB ){
sl@0
   625
    struct compareInfo *pInfo = sqlite3_user_data(context);
sl@0
   626
#ifdef SQLITE_TEST
sl@0
   627
    sqlite3_like_count++;
sl@0
   628
#endif
sl@0
   629
    
sl@0
   630
    sqlite3_result_int(context, patternCompare(zB, zA, pInfo, escape));
sl@0
   631
  }
sl@0
   632
}
sl@0
   633
sl@0
   634
/*
sl@0
   635
** Implementation of the NULLIF(x,y) function.  The result is the first
sl@0
   636
** argument if the arguments are different.  The result is NULL if the
sl@0
   637
** arguments are equal to each other.
sl@0
   638
*/
sl@0
   639
static void nullifFunc(
sl@0
   640
  sqlite3_context *context,
sl@0
   641
  int argc,
sl@0
   642
  sqlite3_value **argv
sl@0
   643
){
sl@0
   644
  CollSeq *pColl = sqlite3GetFuncCollSeq(context);
sl@0
   645
  if( sqlite3MemCompare(argv[0], argv[1], pColl)!=0 ){
sl@0
   646
    sqlite3_result_value(context, argv[0]);
sl@0
   647
  }
sl@0
   648
}
sl@0
   649
sl@0
   650
/*
sl@0
   651
** Implementation of the VERSION(*) function.  The result is the version
sl@0
   652
** of the SQLite library that is running.
sl@0
   653
*/
sl@0
   654
static void versionFunc(
sl@0
   655
  sqlite3_context *context,
sl@0
   656
  int argc,
sl@0
   657
  sqlite3_value **argv
sl@0
   658
){
sl@0
   659
  sqlite3_result_text(context, sqlite3_version, -1, SQLITE_STATIC);
sl@0
   660
}
sl@0
   661
sl@0
   662
/* Array for converting from half-bytes (nybbles) into ASCII hex
sl@0
   663
** digits. */
sl@0
   664
static const char hexdigits[] = {
sl@0
   665
  '0', '1', '2', '3', '4', '5', '6', '7',
sl@0
   666
  '8', '9', 'A', 'B', 'C', 'D', 'E', 'F' 
sl@0
   667
};
sl@0
   668
sl@0
   669
/*
sl@0
   670
** EXPERIMENTAL - This is not an official function.  The interface may
sl@0
   671
** change.  This function may disappear.  Do not write code that depends
sl@0
   672
** on this function.
sl@0
   673
**
sl@0
   674
** Implementation of the QUOTE() function.  This function takes a single
sl@0
   675
** argument.  If the argument is numeric, the return value is the same as
sl@0
   676
** the argument.  If the argument is NULL, the return value is the string
sl@0
   677
** "NULL".  Otherwise, the argument is enclosed in single quotes with
sl@0
   678
** single-quote escapes.
sl@0
   679
*/
sl@0
   680
static void quoteFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
sl@0
   681
  if( argc<1 ) return;
sl@0
   682
  switch( sqlite3_value_type(argv[0]) ){
sl@0
   683
    case SQLITE_NULL: {
sl@0
   684
      sqlite3_result_text(context, "NULL", 4, SQLITE_STATIC);
sl@0
   685
      break;
sl@0
   686
    }
sl@0
   687
    case SQLITE_INTEGER:
sl@0
   688
    case SQLITE_FLOAT: {
sl@0
   689
      sqlite3_result_value(context, argv[0]);
sl@0
   690
      break;
sl@0
   691
    }
sl@0
   692
    case SQLITE_BLOB: {
sl@0
   693
      char *zText = 0;
sl@0
   694
      char const *zBlob = sqlite3_value_blob(argv[0]);
sl@0
   695
      int nBlob = sqlite3_value_bytes(argv[0]);
sl@0
   696
      assert( zBlob==sqlite3_value_blob(argv[0]) ); /* No encoding change */
sl@0
   697
      zText = (char *)contextMalloc(context, (2*(i64)nBlob)+4); 
sl@0
   698
      if( zText ){
sl@0
   699
        int i;
sl@0
   700
        for(i=0; i<nBlob; i++){
sl@0
   701
          zText[(i*2)+2] = hexdigits[(zBlob[i]>>4)&0x0F];
sl@0
   702
          zText[(i*2)+3] = hexdigits[(zBlob[i])&0x0F];
sl@0
   703
        }
sl@0
   704
        zText[(nBlob*2)+2] = '\'';
sl@0
   705
        zText[(nBlob*2)+3] = '\0';
sl@0
   706
        zText[0] = 'X';
sl@0
   707
        zText[1] = '\'';
sl@0
   708
        sqlite3_result_text(context, zText, -1, SQLITE_TRANSIENT);
sl@0
   709
        sqlite3_free(zText);
sl@0
   710
      }
sl@0
   711
      break;
sl@0
   712
    }
sl@0
   713
    case SQLITE_TEXT: {
sl@0
   714
      int i,j;
sl@0
   715
      u64 n;
sl@0
   716
      const unsigned char *zArg = sqlite3_value_text(argv[0]);
sl@0
   717
      char *z;
sl@0
   718
sl@0
   719
      if( zArg==0 ) return;
sl@0
   720
      for(i=0, n=0; zArg[i]; i++){ if( zArg[i]=='\'' ) n++; }
sl@0
   721
      z = contextMalloc(context, ((i64)i)+((i64)n)+3);
sl@0
   722
      if( z ){
sl@0
   723
        z[0] = '\'';
sl@0
   724
        for(i=0, j=1; zArg[i]; i++){
sl@0
   725
          z[j++] = zArg[i];
sl@0
   726
          if( zArg[i]=='\'' ){
sl@0
   727
            z[j++] = '\'';
sl@0
   728
          }
sl@0
   729
        }
sl@0
   730
        z[j++] = '\'';
sl@0
   731
        z[j] = 0;
sl@0
   732
        sqlite3_result_text(context, z, j, sqlite3_free);
sl@0
   733
      }
sl@0
   734
    }
sl@0
   735
  }
sl@0
   736
}
sl@0
   737
sl@0
   738
/*
sl@0
   739
** The hex() function.  Interpret the argument as a blob.  Return
sl@0
   740
** a hexadecimal rendering as text.
sl@0
   741
*/
sl@0
   742
static void hexFunc(
sl@0
   743
  sqlite3_context *context,
sl@0
   744
  int argc,
sl@0
   745
  sqlite3_value **argv
sl@0
   746
){
sl@0
   747
  int i, n;
sl@0
   748
  const unsigned char *pBlob;
sl@0
   749
  char *zHex, *z;
sl@0
   750
  assert( argc==1 );
sl@0
   751
  pBlob = sqlite3_value_blob(argv[0]);
sl@0
   752
  n = sqlite3_value_bytes(argv[0]);
sl@0
   753
  assert( pBlob==sqlite3_value_blob(argv[0]) );  /* No encoding change */
sl@0
   754
  z = zHex = contextMalloc(context, ((i64)n)*2 + 1);
sl@0
   755
  if( zHex ){
sl@0
   756
    for(i=0; i<n; i++, pBlob++){
sl@0
   757
      unsigned char c = *pBlob;
sl@0
   758
      *(z++) = hexdigits[(c>>4)&0xf];
sl@0
   759
      *(z++) = hexdigits[c&0xf];
sl@0
   760
    }
sl@0
   761
    *z = 0;
sl@0
   762
    sqlite3_result_text(context, zHex, n*2, sqlite3_free);
sl@0
   763
  }
sl@0
   764
}
sl@0
   765
sl@0
   766
/*
sl@0
   767
** The zeroblob(N) function returns a zero-filled blob of size N bytes.
sl@0
   768
*/
sl@0
   769
static void zeroblobFunc(
sl@0
   770
  sqlite3_context *context,
sl@0
   771
  int argc,
sl@0
   772
  sqlite3_value **argv
sl@0
   773
){
sl@0
   774
  i64 n;
sl@0
   775
  assert( argc==1 );
sl@0
   776
  n = sqlite3_value_int64(argv[0]);
sl@0
   777
  if( n>SQLITE_MAX_LENGTH ){
sl@0
   778
    sqlite3_result_error_toobig(context);
sl@0
   779
  }else{
sl@0
   780
    sqlite3_result_zeroblob(context, n);
sl@0
   781
  }
sl@0
   782
}
sl@0
   783
sl@0
   784
/*
sl@0
   785
** The replace() function.  Three arguments are all strings: call
sl@0
   786
** them A, B, and C. The result is also a string which is derived
sl@0
   787
** from A by replacing every occurance of B with C.  The match
sl@0
   788
** must be exact.  Collating sequences are not used.
sl@0
   789
*/
sl@0
   790
static void replaceFunc(
sl@0
   791
  sqlite3_context *context,
sl@0
   792
  int argc,
sl@0
   793
  sqlite3_value **argv
sl@0
   794
){
sl@0
   795
  const unsigned char *zStr;        /* The input string A */
sl@0
   796
  const unsigned char *zPattern;    /* The pattern string B */
sl@0
   797
  const unsigned char *zRep;        /* The replacement string C */
sl@0
   798
  unsigned char *zOut;              /* The output */
sl@0
   799
  int nStr;                /* Size of zStr */
sl@0
   800
  int nPattern;            /* Size of zPattern */
sl@0
   801
  int nRep;                /* Size of zRep */
sl@0
   802
  i64 nOut;                /* Maximum size of zOut */
sl@0
   803
  int loopLimit;           /* Last zStr[] that might match zPattern[] */
sl@0
   804
  int i, j;                /* Loop counters */
sl@0
   805
sl@0
   806
  assert( argc==3 );
sl@0
   807
  zStr = sqlite3_value_text(argv[0]);
sl@0
   808
  if( zStr==0 ) return;
sl@0
   809
  nStr = sqlite3_value_bytes(argv[0]);
sl@0
   810
  assert( zStr==sqlite3_value_text(argv[0]) );  /* No encoding change */
sl@0
   811
  zPattern = sqlite3_value_text(argv[1]);
sl@0
   812
  if( zPattern==0 || zPattern[0]==0 ) return;
sl@0
   813
  nPattern = sqlite3_value_bytes(argv[1]);
sl@0
   814
  assert( zPattern==sqlite3_value_text(argv[1]) );  /* No encoding change */
sl@0
   815
  zRep = sqlite3_value_text(argv[2]);
sl@0
   816
  if( zRep==0 ) return;
sl@0
   817
  nRep = sqlite3_value_bytes(argv[2]);
sl@0
   818
  assert( zRep==sqlite3_value_text(argv[2]) );
sl@0
   819
  nOut = nStr + 1;
sl@0
   820
  assert( nOut<SQLITE_MAX_LENGTH );
sl@0
   821
  zOut = contextMalloc(context, (i64)nOut);
sl@0
   822
  if( zOut==0 ){
sl@0
   823
    return;
sl@0
   824
  }
sl@0
   825
  loopLimit = nStr - nPattern;  
sl@0
   826
  for(i=j=0; i<=loopLimit; i++){
sl@0
   827
    if( zStr[i]!=zPattern[0] || memcmp(&zStr[i], zPattern, nPattern) ){
sl@0
   828
      zOut[j++] = zStr[i];
sl@0
   829
    }else{
sl@0
   830
      u8 *zOld;
sl@0
   831
      sqlite3 *db = sqlite3_context_db_handle(context);
sl@0
   832
      nOut += nRep - nPattern;
sl@0
   833
      if( nOut>=db->aLimit[SQLITE_LIMIT_LENGTH] ){
sl@0
   834
        sqlite3_result_error_toobig(context);
sl@0
   835
        sqlite3DbFree(db, zOut);
sl@0
   836
        return;
sl@0
   837
      }
sl@0
   838
      zOld = zOut;
sl@0
   839
      zOut = sqlite3_realloc(zOut, (int)nOut);
sl@0
   840
      if( zOut==0 ){
sl@0
   841
        sqlite3_result_error_nomem(context);
sl@0
   842
        sqlite3DbFree(db, zOld);
sl@0
   843
        return;
sl@0
   844
      }
sl@0
   845
      memcpy(&zOut[j], zRep, nRep);
sl@0
   846
      j += nRep;
sl@0
   847
      i += nPattern-1;
sl@0
   848
    }
sl@0
   849
  }
sl@0
   850
  assert( j+nStr-i+1==nOut );
sl@0
   851
  memcpy(&zOut[j], &zStr[i], nStr-i);
sl@0
   852
  j += nStr - i;
sl@0
   853
  assert( j<=nOut );
sl@0
   854
  zOut[j] = 0;
sl@0
   855
  sqlite3_result_text(context, (char*)zOut, j, sqlite3_free);
sl@0
   856
}
sl@0
   857
sl@0
   858
/*
sl@0
   859
** Implementation of the TRIM(), LTRIM(), and RTRIM() functions.
sl@0
   860
** The userdata is 0x1 for left trim, 0x2 for right trim, 0x3 for both.
sl@0
   861
*/
sl@0
   862
static void trimFunc(
sl@0
   863
  sqlite3_context *context,
sl@0
   864
  int argc,
sl@0
   865
  sqlite3_value **argv
sl@0
   866
){
sl@0
   867
  const unsigned char *zIn;         /* Input string */
sl@0
   868
  const unsigned char *zCharSet;    /* Set of characters to trim */
sl@0
   869
  int nIn;                          /* Number of bytes in input */
sl@0
   870
  int flags;                        /* 1: trimleft  2: trimright  3: trim */
sl@0
   871
  int i;                            /* Loop counter */
sl@0
   872
  unsigned char *aLen;              /* Length of each character in zCharSet */
sl@0
   873
  unsigned char **azChar;           /* Individual characters in zCharSet */
sl@0
   874
  int nChar;                        /* Number of characters in zCharSet */
sl@0
   875
sl@0
   876
  if( sqlite3_value_type(argv[0])==SQLITE_NULL ){
sl@0
   877
    return;
sl@0
   878
  }
sl@0
   879
  zIn = sqlite3_value_text(argv[0]);
sl@0
   880
  if( zIn==0 ) return;
sl@0
   881
  nIn = sqlite3_value_bytes(argv[0]);
sl@0
   882
  assert( zIn==sqlite3_value_text(argv[0]) );
sl@0
   883
  if( argc==1 ){
sl@0
   884
    static const unsigned char lenOne[] = { 1 };
sl@0
   885
    static const unsigned char *azOne[] = { (u8*)" " };
sl@0
   886
    nChar = 1;
sl@0
   887
    aLen = (u8*)lenOne;
sl@0
   888
    azChar = (unsigned char **)azOne;
sl@0
   889
    zCharSet = 0;
sl@0
   890
  }else if( (zCharSet = sqlite3_value_text(argv[1]))==0 ){
sl@0
   891
    return;
sl@0
   892
  }else{
sl@0
   893
    const unsigned char *z;
sl@0
   894
    for(z=zCharSet, nChar=0; *z; nChar++){
sl@0
   895
      SQLITE_SKIP_UTF8(z);
sl@0
   896
    }
sl@0
   897
    if( nChar>0 ){
sl@0
   898
      azChar = contextMalloc(context, ((i64)nChar)*(sizeof(char*)+1));
sl@0
   899
      if( azChar==0 ){
sl@0
   900
        return;
sl@0
   901
      }
sl@0
   902
      aLen = (unsigned char*)&azChar[nChar];
sl@0
   903
      for(z=zCharSet, nChar=0; *z; nChar++){
sl@0
   904
        azChar[nChar] = (unsigned char *)z;
sl@0
   905
        SQLITE_SKIP_UTF8(z);
sl@0
   906
        aLen[nChar] = z - azChar[nChar];
sl@0
   907
      }
sl@0
   908
    }
sl@0
   909
  }
sl@0
   910
  if( nChar>0 ){
sl@0
   911
    flags = SQLITE_PTR_TO_INT(sqlite3_user_data(context));
sl@0
   912
    if( flags & 1 ){
sl@0
   913
      while( nIn>0 ){
sl@0
   914
        int len = 0;                   /* Initialized to placate warning. */
sl@0
   915
        for(i=0; i<nChar; i++){
sl@0
   916
          len = aLen[i];
sl@0
   917
          if( memcmp(zIn, azChar[i], len)==0 ) break;
sl@0
   918
        }
sl@0
   919
        if( i>=nChar ) break;
sl@0
   920
        zIn += len;
sl@0
   921
        nIn -= len;
sl@0
   922
      }
sl@0
   923
    }
sl@0
   924
    if( flags & 2 ){
sl@0
   925
      while( nIn>0 ){
sl@0
   926
        int len = 0;                   /* Initialized to placate warning. */
sl@0
   927
        for(i=0; i<nChar; i++){
sl@0
   928
          len = aLen[i];
sl@0
   929
          if( len<=nIn && memcmp(&zIn[nIn-len],azChar[i],len)==0 ) break;
sl@0
   930
        }
sl@0
   931
        if( i>=nChar ) break;
sl@0
   932
        nIn -= len;
sl@0
   933
      }
sl@0
   934
    }
sl@0
   935
    if( zCharSet ){
sl@0
   936
      sqlite3_free(azChar);
sl@0
   937
    }
sl@0
   938
  }
sl@0
   939
  sqlite3_result_text(context, (char*)zIn, nIn, SQLITE_TRANSIENT);
sl@0
   940
}
sl@0
   941
sl@0
   942
#ifdef SQLITE_SOUNDEX
sl@0
   943
/*
sl@0
   944
** Compute the soundex encoding of a word.
sl@0
   945
*/
sl@0
   946
static void soundexFunc(
sl@0
   947
  sqlite3_context *context,
sl@0
   948
  int argc,
sl@0
   949
  sqlite3_value **argv
sl@0
   950
){
sl@0
   951
  char zResult[8];
sl@0
   952
  const u8 *zIn;
sl@0
   953
  int i, j;
sl@0
   954
  static const unsigned char iCode[] = {
sl@0
   955
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
sl@0
   956
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
sl@0
   957
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
sl@0
   958
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
sl@0
   959
    0, 0, 1, 2, 3, 0, 1, 2, 0, 0, 2, 2, 4, 5, 5, 0,
sl@0
   960
    1, 2, 6, 2, 3, 0, 1, 0, 2, 0, 2, 0, 0, 0, 0, 0,
sl@0
   961
    0, 0, 1, 2, 3, 0, 1, 2, 0, 0, 2, 2, 4, 5, 5, 0,
sl@0
   962
    1, 2, 6, 2, 3, 0, 1, 0, 2, 0, 2, 0, 0, 0, 0, 0,
sl@0
   963
  };
sl@0
   964
  assert( argc==1 );
sl@0
   965
  zIn = (u8*)sqlite3_value_text(argv[0]);
sl@0
   966
  if( zIn==0 ) zIn = (u8*)"";
sl@0
   967
  for(i=0; zIn[i] && !isalpha(zIn[i]); i++){}
sl@0
   968
  if( zIn[i] ){
sl@0
   969
    u8 prevcode = iCode[zIn[i]&0x7f];
sl@0
   970
    zResult[0] = toupper(zIn[i]);
sl@0
   971
    for(j=1; j<4 && zIn[i]; i++){
sl@0
   972
      int code = iCode[zIn[i]&0x7f];
sl@0
   973
      if( code>0 ){
sl@0
   974
        if( code!=prevcode ){
sl@0
   975
          prevcode = code;
sl@0
   976
          zResult[j++] = code + '0';
sl@0
   977
        }
sl@0
   978
      }else{
sl@0
   979
        prevcode = 0;
sl@0
   980
      }
sl@0
   981
    }
sl@0
   982
    while( j<4 ){
sl@0
   983
      zResult[j++] = '0';
sl@0
   984
    }
sl@0
   985
    zResult[j] = 0;
sl@0
   986
    sqlite3_result_text(context, zResult, 4, SQLITE_TRANSIENT);
sl@0
   987
  }else{
sl@0
   988
    sqlite3_result_text(context, "?000", 4, SQLITE_STATIC);
sl@0
   989
  }
sl@0
   990
}
sl@0
   991
#endif
sl@0
   992
sl@0
   993
#ifndef SQLITE_OMIT_LOAD_EXTENSION
sl@0
   994
/*
sl@0
   995
** A function that loads a shared-library extension then returns NULL.
sl@0
   996
*/
sl@0
   997
static void loadExt(sqlite3_context *context, int argc, sqlite3_value **argv){
sl@0
   998
  const char *zFile = (const char *)sqlite3_value_text(argv[0]);
sl@0
   999
  const char *zProc;
sl@0
  1000
  sqlite3 *db = sqlite3_context_db_handle(context);
sl@0
  1001
  char *zErrMsg = 0;
sl@0
  1002
sl@0
  1003
  if( argc==2 ){
sl@0
  1004
    zProc = (const char *)sqlite3_value_text(argv[1]);
sl@0
  1005
  }else{
sl@0
  1006
    zProc = 0;
sl@0
  1007
  }
sl@0
  1008
  if( zFile && sqlite3_load_extension(db, zFile, zProc, &zErrMsg) ){
sl@0
  1009
    sqlite3_result_error(context, zErrMsg, -1);
sl@0
  1010
    sqlite3_free(zErrMsg);
sl@0
  1011
  }
sl@0
  1012
}
sl@0
  1013
#endif
sl@0
  1014
sl@0
  1015
sl@0
  1016
/*
sl@0
  1017
** An instance of the following structure holds the context of a
sl@0
  1018
** sum() or avg() aggregate computation.
sl@0
  1019
*/
sl@0
  1020
typedef struct SumCtx SumCtx;
sl@0
  1021
struct SumCtx {
sl@0
  1022
  double rSum;      /* Floating point sum */
sl@0
  1023
  i64 iSum;         /* Integer sum */   
sl@0
  1024
  i64 cnt;          /* Number of elements summed */
sl@0
  1025
  u8 overflow;      /* True if integer overflow seen */
sl@0
  1026
  u8 approx;        /* True if non-integer value was input to the sum */
sl@0
  1027
};
sl@0
  1028
sl@0
  1029
/*
sl@0
  1030
** Routines used to compute the sum, average, and total.
sl@0
  1031
**
sl@0
  1032
** The SUM() function follows the (broken) SQL standard which means
sl@0
  1033
** that it returns NULL if it sums over no inputs.  TOTAL returns
sl@0
  1034
** 0.0 in that case.  In addition, TOTAL always returns a float where
sl@0
  1035
** SUM might return an integer if it never encounters a floating point
sl@0
  1036
** value.  TOTAL never fails, but SUM might through an exception if
sl@0
  1037
** it overflows an integer.
sl@0
  1038
*/
sl@0
  1039
static void sumStep(sqlite3_context *context, int argc, sqlite3_value **argv){
sl@0
  1040
  SumCtx *p;
sl@0
  1041
  int type;
sl@0
  1042
  assert( argc==1 );
sl@0
  1043
  p = sqlite3_aggregate_context(context, sizeof(*p));
sl@0
  1044
  type = sqlite3_value_numeric_type(argv[0]);
sl@0
  1045
  if( p && type!=SQLITE_NULL ){
sl@0
  1046
    p->cnt++;
sl@0
  1047
    if( type==SQLITE_INTEGER ){
sl@0
  1048
      i64 v = sqlite3_value_int64(argv[0]);
sl@0
  1049
      p->rSum += v;
sl@0
  1050
      if( (p->approx|p->overflow)==0 ){
sl@0
  1051
        i64 iNewSum = p->iSum + v;
sl@0
  1052
        int s1 = p->iSum >> (sizeof(i64)*8-1);
sl@0
  1053
        int s2 = v       >> (sizeof(i64)*8-1);
sl@0
  1054
        int s3 = iNewSum >> (sizeof(i64)*8-1);
sl@0
  1055
        p->overflow = (s1&s2&~s3) | (~s1&~s2&s3);
sl@0
  1056
        p->iSum = iNewSum;
sl@0
  1057
      }
sl@0
  1058
    }else{
sl@0
  1059
      p->rSum += sqlite3_value_double(argv[0]);
sl@0
  1060
      p->approx = 1;
sl@0
  1061
    }
sl@0
  1062
  }
sl@0
  1063
}
sl@0
  1064
static void sumFinalize(sqlite3_context *context){
sl@0
  1065
  SumCtx *p;
sl@0
  1066
  p = sqlite3_aggregate_context(context, 0);
sl@0
  1067
  if( p && p->cnt>0 ){
sl@0
  1068
    if( p->overflow ){
sl@0
  1069
      sqlite3_result_error(context,"integer overflow",-1);
sl@0
  1070
    }else if( p->approx ){
sl@0
  1071
      sqlite3_result_double(context, p->rSum);
sl@0
  1072
    }else{
sl@0
  1073
      sqlite3_result_int64(context, p->iSum);
sl@0
  1074
    }
sl@0
  1075
  }
sl@0
  1076
}
sl@0
  1077
static void avgFinalize(sqlite3_context *context){
sl@0
  1078
  SumCtx *p;
sl@0
  1079
  p = sqlite3_aggregate_context(context, 0);
sl@0
  1080
  if( p && p->cnt>0 ){
sl@0
  1081
    sqlite3_result_double(context, p->rSum/(double)p->cnt);
sl@0
  1082
  }
sl@0
  1083
}
sl@0
  1084
static void totalFinalize(sqlite3_context *context){
sl@0
  1085
  SumCtx *p;
sl@0
  1086
  p = sqlite3_aggregate_context(context, 0);
sl@0
  1087
  sqlite3_result_double(context, p ? p->rSum : 0.0);
sl@0
  1088
}
sl@0
  1089
sl@0
  1090
/*
sl@0
  1091
** The following structure keeps track of state information for the
sl@0
  1092
** count() aggregate function.
sl@0
  1093
*/
sl@0
  1094
typedef struct CountCtx CountCtx;
sl@0
  1095
struct CountCtx {
sl@0
  1096
  i64 n;
sl@0
  1097
};
sl@0
  1098
sl@0
  1099
/*
sl@0
  1100
** Routines to implement the count() aggregate function.
sl@0
  1101
*/
sl@0
  1102
static void countStep(sqlite3_context *context, int argc, sqlite3_value **argv){
sl@0
  1103
  CountCtx *p;
sl@0
  1104
  p = sqlite3_aggregate_context(context, sizeof(*p));
sl@0
  1105
  if( (argc==0 || SQLITE_NULL!=sqlite3_value_type(argv[0])) && p ){
sl@0
  1106
    p->n++;
sl@0
  1107
  }
sl@0
  1108
}   
sl@0
  1109
static void countFinalize(sqlite3_context *context){
sl@0
  1110
  CountCtx *p;
sl@0
  1111
  p = sqlite3_aggregate_context(context, 0);
sl@0
  1112
  sqlite3_result_int64(context, p ? p->n : 0);
sl@0
  1113
}
sl@0
  1114
sl@0
  1115
/*
sl@0
  1116
** Routines to implement min() and max() aggregate functions.
sl@0
  1117
*/
sl@0
  1118
static void minmaxStep(sqlite3_context *context, int argc, sqlite3_value **argv){
sl@0
  1119
  Mem *pArg  = (Mem *)argv[0];
sl@0
  1120
  Mem *pBest;
sl@0
  1121
sl@0
  1122
  if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
sl@0
  1123
  pBest = (Mem *)sqlite3_aggregate_context(context, sizeof(*pBest));
sl@0
  1124
  if( !pBest ) return;
sl@0
  1125
sl@0
  1126
  if( pBest->flags ){
sl@0
  1127
    int max;
sl@0
  1128
    int cmp;
sl@0
  1129
    CollSeq *pColl = sqlite3GetFuncCollSeq(context);
sl@0
  1130
    /* This step function is used for both the min() and max() aggregates,
sl@0
  1131
    ** the only difference between the two being that the sense of the
sl@0
  1132
    ** comparison is inverted. For the max() aggregate, the
sl@0
  1133
    ** sqlite3_user_data() function returns (void *)-1. For min() it
sl@0
  1134
    ** returns (void *)db, where db is the sqlite3* database pointer.
sl@0
  1135
    ** Therefore the next statement sets variable 'max' to 1 for the max()
sl@0
  1136
    ** aggregate, or 0 for min().
sl@0
  1137
    */
sl@0
  1138
    max = sqlite3_user_data(context)!=0;
sl@0
  1139
    cmp = sqlite3MemCompare(pBest, pArg, pColl);
sl@0
  1140
    if( (max && cmp<0) || (!max && cmp>0) ){
sl@0
  1141
      sqlite3VdbeMemCopy(pBest, pArg);
sl@0
  1142
    }
sl@0
  1143
  }else{
sl@0
  1144
    sqlite3VdbeMemCopy(pBest, pArg);
sl@0
  1145
  }
sl@0
  1146
}
sl@0
  1147
static void minMaxFinalize(sqlite3_context *context){
sl@0
  1148
  sqlite3_value *pRes;
sl@0
  1149
  pRes = (sqlite3_value *)sqlite3_aggregate_context(context, 0);
sl@0
  1150
  if( pRes ){
sl@0
  1151
    if( pRes->flags ){
sl@0
  1152
      sqlite3_result_value(context, pRes);
sl@0
  1153
    }
sl@0
  1154
    sqlite3VdbeMemRelease(pRes);
sl@0
  1155
  }
sl@0
  1156
}
sl@0
  1157
sl@0
  1158
/*
sl@0
  1159
** group_concat(EXPR, ?SEPARATOR?)
sl@0
  1160
*/
sl@0
  1161
static void groupConcatStep(
sl@0
  1162
  sqlite3_context *context,
sl@0
  1163
  int argc,
sl@0
  1164
  sqlite3_value **argv
sl@0
  1165
){
sl@0
  1166
  const char *zVal;
sl@0
  1167
  StrAccum *pAccum;
sl@0
  1168
  const char *zSep;
sl@0
  1169
  int nVal, nSep, i;
sl@0
  1170
  if( argc==0 || sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
sl@0
  1171
  pAccum = (StrAccum*)sqlite3_aggregate_context(context, sizeof(*pAccum));
sl@0
  1172
sl@0
  1173
  if( pAccum ){
sl@0
  1174
    sqlite3 *db = sqlite3_context_db_handle(context);
sl@0
  1175
    pAccum->useMalloc = 1;
sl@0
  1176
    pAccum->mxAlloc = db->aLimit[SQLITE_LIMIT_LENGTH];
sl@0
  1177
    if( pAccum->nChar ){
sl@0
  1178
      if( argc>1 ){
sl@0
  1179
        zSep = (char*)sqlite3_value_text(argv[argc-1]);
sl@0
  1180
        nSep = sqlite3_value_bytes(argv[argc-1]);
sl@0
  1181
      }else{
sl@0
  1182
        zSep = ",";
sl@0
  1183
        nSep = 1;
sl@0
  1184
      }
sl@0
  1185
      sqlite3StrAccumAppend(pAccum, zSep, nSep);
sl@0
  1186
    }
sl@0
  1187
    i = 0;
sl@0
  1188
    do{
sl@0
  1189
      zVal = (char*)sqlite3_value_text(argv[i]);
sl@0
  1190
      nVal = sqlite3_value_bytes(argv[i]);
sl@0
  1191
      sqlite3StrAccumAppend(pAccum, zVal, nVal);
sl@0
  1192
      i++;
sl@0
  1193
    }while( i<argc-1 );
sl@0
  1194
  }
sl@0
  1195
}
sl@0
  1196
static void groupConcatFinalize(sqlite3_context *context){
sl@0
  1197
  StrAccum *pAccum;
sl@0
  1198
  pAccum = sqlite3_aggregate_context(context, 0);
sl@0
  1199
  if( pAccum ){
sl@0
  1200
    if( pAccum->tooBig ){
sl@0
  1201
      sqlite3_result_error_toobig(context);
sl@0
  1202
    }else if( pAccum->mallocFailed ){
sl@0
  1203
      sqlite3_result_error_nomem(context);
sl@0
  1204
    }else{    
sl@0
  1205
      sqlite3_result_text(context, sqlite3StrAccumFinish(pAccum), -1, 
sl@0
  1206
                          sqlite3_free);
sl@0
  1207
    }
sl@0
  1208
  }
sl@0
  1209
}
sl@0
  1210
sl@0
  1211
/*
sl@0
  1212
** This function registered all of the above C functions as SQL
sl@0
  1213
** functions.  This should be the only routine in this file with
sl@0
  1214
** external linkage.
sl@0
  1215
*/
sl@0
  1216
void sqlite3RegisterBuiltinFunctions(sqlite3 *db){
sl@0
  1217
  static const struct {
sl@0
  1218
     char *zName;
sl@0
  1219
     signed char nArg;
sl@0
  1220
     u8 argType;           /* 1: 0, 2: 1, 3: 2,...  N:  N-1. */
sl@0
  1221
     u8 eTextRep;          /* 1: UTF-16.  0: UTF-8 */
sl@0
  1222
     u8 needCollSeq;
sl@0
  1223
     void (*xFunc)(sqlite3_context*,int,sqlite3_value **);
sl@0
  1224
  } aFuncs[] = {
sl@0
  1225
    { "min",               -1, 0, SQLITE_UTF8,    1, minmaxFunc },
sl@0
  1226
    { "min",                0, 0, SQLITE_UTF8,    1, 0          },
sl@0
  1227
    { "max",               -1, 1, SQLITE_UTF8,    1, minmaxFunc },
sl@0
  1228
    { "max",                0, 1, SQLITE_UTF8,    1, 0          },
sl@0
  1229
    { "typeof",             1, 0, SQLITE_UTF8,    0, typeofFunc },
sl@0
  1230
    { "length",             1, 0, SQLITE_UTF8,    0, lengthFunc },
sl@0
  1231
    { "substr",             2, 0, SQLITE_UTF8,    0, substrFunc },
sl@0
  1232
    { "substr",             3, 0, SQLITE_UTF8,    0, substrFunc },
sl@0
  1233
    { "abs",                1, 0, SQLITE_UTF8,    0, absFunc    },
sl@0
  1234
    { "round",              1, 0, SQLITE_UTF8,    0, roundFunc  },
sl@0
  1235
    { "round",              2, 0, SQLITE_UTF8,    0, roundFunc  },
sl@0
  1236
    { "upper",              1, 0, SQLITE_UTF8,    0, upperFunc  },
sl@0
  1237
    { "lower",              1, 0, SQLITE_UTF8,    0, lowerFunc  },
sl@0
  1238
    { "coalesce",          -1, 0, SQLITE_UTF8,    0, ifnullFunc },
sl@0
  1239
    { "coalesce",           0, 0, SQLITE_UTF8,    0, 0          },
sl@0
  1240
    { "coalesce",           1, 0, SQLITE_UTF8,    0, 0          },
sl@0
  1241
    { "hex",                1, 0, SQLITE_UTF8,    0, hexFunc    },
sl@0
  1242
    { "ifnull",             2, 0, SQLITE_UTF8,    1, ifnullFunc },
sl@0
  1243
    { "random",            -1, 0, SQLITE_UTF8,    0, randomFunc },
sl@0
  1244
    { "randomblob",         1, 0, SQLITE_UTF8,    0, randomBlob },
sl@0
  1245
    { "nullif",             2, 0, SQLITE_UTF8,    1, nullifFunc },
sl@0
  1246
    { "sqlite_version",     0, 0, SQLITE_UTF8,    0, versionFunc},
sl@0
  1247
    { "quote",              1, 0, SQLITE_UTF8,    0, quoteFunc  },
sl@0
  1248
    { "last_insert_rowid",  0, 0, SQLITE_UTF8, 0, last_insert_rowid },
sl@0
  1249
    { "changes",            0, 0, SQLITE_UTF8, 0, changes           },
sl@0
  1250
    { "total_changes",      0, 0, SQLITE_UTF8, 0, total_changes     },
sl@0
  1251
    { "replace",            3, 0, SQLITE_UTF8,    0, replaceFunc       },
sl@0
  1252
    { "ltrim",              1, 1, SQLITE_UTF8,    0, trimFunc          },
sl@0
  1253
    { "ltrim",              2, 1, SQLITE_UTF8,    0, trimFunc          },
sl@0
  1254
    { "rtrim",              1, 2, SQLITE_UTF8,    0, trimFunc          },
sl@0
  1255
    { "rtrim",              2, 2, SQLITE_UTF8,    0, trimFunc          },
sl@0
  1256
    { "trim",               1, 3, SQLITE_UTF8,    0, trimFunc          },
sl@0
  1257
    { "trim",               2, 3, SQLITE_UTF8,    0, trimFunc          },
sl@0
  1258
    { "zeroblob",           1, 0, SQLITE_UTF8,    0, zeroblobFunc      },
sl@0
  1259
#ifdef SQLITE_SOUNDEX
sl@0
  1260
    { "soundex",            1, 0, SQLITE_UTF8,    0, soundexFunc},
sl@0
  1261
#endif
sl@0
  1262
#ifndef SQLITE_OMIT_LOAD_EXTENSION
sl@0
  1263
    { "load_extension",     1, 0, SQLITE_UTF8, 0, loadExt },
sl@0
  1264
    { "load_extension",     2, 0, SQLITE_UTF8, 0, loadExt },
sl@0
  1265
#endif
sl@0
  1266
  };
sl@0
  1267
  static const struct {
sl@0
  1268
    char *zName;
sl@0
  1269
    signed char nArg;
sl@0
  1270
    u8 argType;
sl@0
  1271
    u8 needCollSeq;
sl@0
  1272
    void (*xStep)(sqlite3_context*,int,sqlite3_value**);
sl@0
  1273
    void (*xFinalize)(sqlite3_context*);
sl@0
  1274
  } aAggs[] = {
sl@0
  1275
    { "min",    1, 0, 1, minmaxStep,   minMaxFinalize },
sl@0
  1276
    { "max",    1, 1, 1, minmaxStep,   minMaxFinalize },
sl@0
  1277
    { "sum",    1, 0, 0, sumStep,      sumFinalize    },
sl@0
  1278
    { "total",  1, 0, 0, sumStep,      totalFinalize    },
sl@0
  1279
    { "avg",    1, 0, 0, sumStep,      avgFinalize    },
sl@0
  1280
    { "count",  0, 0, 0, countStep,    countFinalize  },
sl@0
  1281
    { "count",  1, 0, 0, countStep,    countFinalize  },
sl@0
  1282
    { "group_concat", -1, 0, 0, groupConcatStep, groupConcatFinalize },
sl@0
  1283
  };
sl@0
  1284
  int i;
sl@0
  1285
sl@0
  1286
  for(i=0; i<sizeof(aFuncs)/sizeof(aFuncs[0]); i++){
sl@0
  1287
    void *pArg;
sl@0
  1288
    u8 argType = aFuncs[i].argType;
sl@0
  1289
    pArg = SQLITE_INT_TO_PTR(argType);
sl@0
  1290
    sqlite3CreateFunc(db, aFuncs[i].zName, aFuncs[i].nArg,
sl@0
  1291
        aFuncs[i].eTextRep, pArg, aFuncs[i].xFunc, 0, 0);
sl@0
  1292
    if( aFuncs[i].needCollSeq ){
sl@0
  1293
      FuncDef *pFunc = sqlite3FindFunction(db, aFuncs[i].zName, 
sl@0
  1294
          strlen(aFuncs[i].zName), aFuncs[i].nArg, aFuncs[i].eTextRep, 0);
sl@0
  1295
      if( pFunc && aFuncs[i].needCollSeq ){
sl@0
  1296
        pFunc->needCollSeq = 1;
sl@0
  1297
      }
sl@0
  1298
    }
sl@0
  1299
  }
sl@0
  1300
#ifndef SQLITE_OMIT_ALTERTABLE
sl@0
  1301
  sqlite3AlterFunctions(db);
sl@0
  1302
#endif
sl@0
  1303
#ifndef SQLITE_OMIT_PARSER
sl@0
  1304
  sqlite3AttachFunctions(db);
sl@0
  1305
#endif
sl@0
  1306
  for(i=0; i<sizeof(aAggs)/sizeof(aAggs[0]); i++){
sl@0
  1307
    void *pArg = SQLITE_INT_TO_PTR(aAggs[i].argType);
sl@0
  1308
    sqlite3CreateFunc(db, aAggs[i].zName, aAggs[i].nArg, SQLITE_UTF8, 
sl@0
  1309
        pArg, 0, aAggs[i].xStep, aAggs[i].xFinalize);
sl@0
  1310
    if( aAggs[i].needCollSeq ){
sl@0
  1311
      FuncDef *pFunc = sqlite3FindFunction( db, aAggs[i].zName,
sl@0
  1312
          strlen(aAggs[i].zName), aAggs[i].nArg, SQLITE_UTF8, 0);
sl@0
  1313
      if( pFunc && aAggs[i].needCollSeq ){
sl@0
  1314
        pFunc->needCollSeq = 1;
sl@0
  1315
      }
sl@0
  1316
    }
sl@0
  1317
  }
sl@0
  1318
  sqlite3RegisterDateTimeFunctions(db);
sl@0
  1319
  if( !db->mallocFailed ){
sl@0
  1320
    int rc = sqlite3_overload_function(db, "MATCH", 2);
sl@0
  1321
    assert( rc==SQLITE_NOMEM || rc==SQLITE_OK );
sl@0
  1322
    if( rc==SQLITE_NOMEM ){
sl@0
  1323
      db->mallocFailed = 1;
sl@0
  1324
    }
sl@0
  1325
  }
sl@0
  1326
#ifdef SQLITE_SSE
sl@0
  1327
  (void)sqlite3SseFunctions(db);
sl@0
  1328
#endif
sl@0
  1329
#ifdef SQLITE_CASE_SENSITIVE_LIKE
sl@0
  1330
  sqlite3RegisterLikeFunctions(db, 1);
sl@0
  1331
#else
sl@0
  1332
  sqlite3RegisterLikeFunctions(db, 0);
sl@0
  1333
#endif
sl@0
  1334
}
sl@0
  1335
sl@0
  1336
/*
sl@0
  1337
** Set the LIKEOPT flag on the 2-argument function with the given name.
sl@0
  1338
*/
sl@0
  1339
static void setLikeOptFlag(sqlite3 *db, const char *zName, int flagVal){
sl@0
  1340
  FuncDef *pDef;
sl@0
  1341
  pDef = sqlite3FindFunction(db, zName, strlen(zName), 2, SQLITE_UTF8, 0);
sl@0
  1342
  if( pDef ){
sl@0
  1343
    pDef->flags = flagVal;
sl@0
  1344
  }
sl@0
  1345
}
sl@0
  1346
sl@0
  1347
/*
sl@0
  1348
** Register the built-in LIKE and GLOB functions.  The caseSensitive
sl@0
  1349
** parameter determines whether or not the LIKE operator is case
sl@0
  1350
** sensitive.  GLOB is always case sensitive.
sl@0
  1351
*/
sl@0
  1352
void sqlite3RegisterLikeFunctions(sqlite3 *db, int caseSensitive){
sl@0
  1353
  struct compareInfo *pInfo;
sl@0
  1354
  if( caseSensitive ){
sl@0
  1355
    pInfo = (struct compareInfo*)&likeInfoAlt;
sl@0
  1356
  }else{
sl@0
  1357
    pInfo = (struct compareInfo*)&likeInfoNorm;
sl@0
  1358
  }
sl@0
  1359
  sqlite3CreateFunc(db, "like", 2, SQLITE_UTF8, pInfo, likeFunc, 0, 0);
sl@0
  1360
  sqlite3CreateFunc(db, "like", 3, SQLITE_UTF8, pInfo, likeFunc, 0, 0);
sl@0
  1361
  sqlite3CreateFunc(db, "glob", 2, SQLITE_UTF8, 
sl@0
  1362
      (struct compareInfo*)&globInfo, likeFunc, 0,0);
sl@0
  1363
  setLikeOptFlag(db, "glob", SQLITE_FUNC_LIKE | SQLITE_FUNC_CASE);
sl@0
  1364
  setLikeOptFlag(db, "like", 
sl@0
  1365
      caseSensitive ? (SQLITE_FUNC_LIKE | SQLITE_FUNC_CASE) : SQLITE_FUNC_LIKE);
sl@0
  1366
}
sl@0
  1367
sl@0
  1368
/*
sl@0
  1369
** pExpr points to an expression which implements a function.  If
sl@0
  1370
** it is appropriate to apply the LIKE optimization to that function
sl@0
  1371
** then set aWc[0] through aWc[2] to the wildcard characters and
sl@0
  1372
** return TRUE.  If the function is not a LIKE-style function then
sl@0
  1373
** return FALSE.
sl@0
  1374
*/
sl@0
  1375
int sqlite3IsLikeFunction(sqlite3 *db, Expr *pExpr, int *pIsNocase, char *aWc){
sl@0
  1376
  FuncDef *pDef;
sl@0
  1377
  if( pExpr->op!=TK_FUNCTION || !pExpr->pList ){
sl@0
  1378
    return 0;
sl@0
  1379
  }
sl@0
  1380
  if( pExpr->pList->nExpr!=2 ){
sl@0
  1381
    return 0;
sl@0
  1382
  }
sl@0
  1383
  pDef = sqlite3FindFunction(db, (char*)pExpr->token.z, pExpr->token.n, 2,
sl@0
  1384
                             SQLITE_UTF8, 0);
sl@0
  1385
  if( pDef==0 || (pDef->flags & SQLITE_FUNC_LIKE)==0 ){
sl@0
  1386
    return 0;
sl@0
  1387
  }
sl@0
  1388
sl@0
  1389
  /* The memcpy() statement assumes that the wildcard characters are
sl@0
  1390
  ** the first three statements in the compareInfo structure.  The
sl@0
  1391
  ** asserts() that follow verify that assumption
sl@0
  1392
  */
sl@0
  1393
  memcpy(aWc, pDef->pUserData, 3);
sl@0
  1394
  assert( (char*)&likeInfoAlt == (char*)&likeInfoAlt.matchAll );
sl@0
  1395
  assert( &((char*)&likeInfoAlt)[1] == (char*)&likeInfoAlt.matchOne );
sl@0
  1396
  assert( &((char*)&likeInfoAlt)[2] == (char*)&likeInfoAlt.matchSet );
sl@0
  1397
  *pIsNocase = (pDef->flags & SQLITE_FUNC_CASE)==0;
sl@0
  1398
  return 1;
sl@0
  1399
}