sl@0
|
1 |
// Copyright (c) 2005-2009 Nokia Corporation and/or its subsidiary(-ies).
|
sl@0
|
2 |
// All rights reserved.
|
sl@0
|
3 |
// This component and the accompanying materials are made available
|
sl@0
|
4 |
// under the terms of "Eclipse Public License v1.0"
|
sl@0
|
5 |
// which accompanies this distribution, and is available
|
sl@0
|
6 |
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
|
sl@0
|
7 |
//
|
sl@0
|
8 |
// Initial Contributors:
|
sl@0
|
9 |
// Nokia Corporation - initial contribution.
|
sl@0
|
10 |
//
|
sl@0
|
11 |
// Contributors:
|
sl@0
|
12 |
//
|
sl@0
|
13 |
// Description:
|
sl@0
|
14 |
// SQL Client side API header
|
sl@0
|
15 |
//
|
sl@0
|
16 |
//
|
sl@0
|
17 |
|
sl@0
|
18 |
/**
|
sl@0
|
19 |
@file
|
sl@0
|
20 |
@publishedAll
|
sl@0
|
21 |
@released
|
sl@0
|
22 |
*/
|
sl@0
|
23 |
#ifndef __SQLDB_H__
|
sl@0
|
24 |
#define __SQLDB_H__
|
sl@0
|
25 |
|
sl@0
|
26 |
#ifndef __S32STD_H__
|
sl@0
|
27 |
#include <s32std.h> //RReadStream, RWriteStream
|
sl@0
|
28 |
#endif
|
sl@0
|
29 |
|
sl@0
|
30 |
#ifndef SYMBIAN_ENABLE_SPLIT_HEADERS
|
sl@0
|
31 |
#include <sqlresourcetester.h>
|
sl@0
|
32 |
#endif
|
sl@0
|
33 |
|
sl@0
|
34 |
//Forward declarations
|
sl@0
|
35 |
class CSqlSecurityPolicy;
|
sl@0
|
36 |
class RSqlDatabase;
|
sl@0
|
37 |
class CSqlDatabaseImpl;
|
sl@0
|
38 |
class RSqlStatement;
|
sl@0
|
39 |
class CSqlStatementImpl;
|
sl@0
|
40 |
class RSqlColumnReadStream;
|
sl@0
|
41 |
class RSqlParamWriteStream;
|
sl@0
|
42 |
class TSqlScalarFullSelectQuery;
|
sl@0
|
43 |
class RSqlBlob;
|
sl@0
|
44 |
class RSqlBlobReadStream;
|
sl@0
|
45 |
class RSqlBlobWriteStream;
|
sl@0
|
46 |
class TSqlResourceProfiler;
|
sl@0
|
47 |
|
sl@0
|
48 |
/**
|
sl@0
|
49 |
Used to specify that the ROWID of the most recently inserted record
|
sl@0
|
50 |
from the specified database connection should be used as the ROWID
|
sl@0
|
51 |
in a call to directly access a blob.
|
sl@0
|
52 |
|
sl@0
|
53 |
@see RSqlBlobReadStream
|
sl@0
|
54 |
@see RSqlBlobWriteStream
|
sl@0
|
55 |
@see TSqlBlob
|
sl@0
|
56 |
|
sl@0
|
57 |
@publishedAll
|
sl@0
|
58 |
@released
|
sl@0
|
59 |
*/
|
sl@0
|
60 |
const TInt KSqlLastInsertedRowId = -1;
|
sl@0
|
61 |
|
sl@0
|
62 |
/**
|
sl@0
|
63 |
A container for the security policies for a shared SQL database.
|
sl@0
|
64 |
|
sl@0
|
65 |
The container can contain:
|
sl@0
|
66 |
- security policies that apply to the database.
|
sl@0
|
67 |
- security policies that apply to individual database objects, i.e. database tables.
|
sl@0
|
68 |
|
sl@0
|
69 |
For the database, you use RSqlSecurityPolicy::SetDbPolicy() to apply a separate
|
sl@0
|
70 |
security policy to:
|
sl@0
|
71 |
- the database schema.
|
sl@0
|
72 |
- read activity on the database.
|
sl@0
|
73 |
- write activity on the database.
|
sl@0
|
74 |
|
sl@0
|
75 |
For database tables, you use RSqlSecurityPolicy::SetPolicy() to apply a separate
|
sl@0
|
76 |
security policy to:
|
sl@0
|
77 |
- write activity on each named database table.
|
sl@0
|
78 |
- read activity on each named database table.
|
sl@0
|
79 |
|
sl@0
|
80 |
A client uses a RSqlSecurityPolicy object to create a secure database. It does this by:
|
sl@0
|
81 |
- creating a RSqlSecurityPolicy object.
|
sl@0
|
82 |
- setting all the appropriate security policies into it.
|
sl@0
|
83 |
- passing the object as an argument to RSqlDatabase::Create().
|
sl@0
|
84 |
- closing the RSqlSecurityPolicy object on return from RSqlDatabase::Create().
|
sl@0
|
85 |
|
sl@0
|
86 |
Once a secure shared database has been created with specific security policies,
|
sl@0
|
87 |
these policies are made persistent and cannot be changed during the life of
|
sl@0
|
88 |
that database.
|
sl@0
|
89 |
|
sl@0
|
90 |
Security policies are encapsulated by TSecurityPolicy objects.
|
sl@0
|
91 |
The general usage pattern is to create the security policies container object
|
sl@0
|
92 |
(RSqlSecurityPolicy) using a default security policy (TSecurityPolicy), and then
|
sl@0
|
93 |
to assign more specific 'overriding' security policies.
|
sl@0
|
94 |
|
sl@0
|
95 |
The following code fragment shows how you do this:
|
sl@0
|
96 |
|
sl@0
|
97 |
@code
|
sl@0
|
98 |
TSecurityPolicy defaultPolicy;
|
sl@0
|
99 |
RSqlSecurityPolicy securityPolicy;
|
sl@0
|
100 |
RSqlDatabase database;
|
sl@0
|
101 |
TInt err;
|
sl@0
|
102 |
|
sl@0
|
103 |
// Create security policies container object using a default security policy.
|
sl@0
|
104 |
securityPolicy.Create(defaultPolicy);
|
sl@0
|
105 |
|
sl@0
|
106 |
// Set up policy to apply to database schema
|
sl@0
|
107 |
// and assign it
|
sl@0
|
108 |
TSecurityPolicy schemaPolicy;
|
sl@0
|
109 |
...
|
sl@0
|
110 |
err = securityPolicy.SetDbPolicy(RSqlSecurityPolicy::ESchemaPolicy, schemaPolicy);
|
sl@0
|
111 |
|
sl@0
|
112 |
// Set up policy to apply to write activity on the database
|
sl@0
|
113 |
// and assign it
|
sl@0
|
114 |
TSecurityPolicy writePolicy;
|
sl@0
|
115 |
...
|
sl@0
|
116 |
err = securityPolicy.SetDbPolicy(RSqlSecurityPolicy::EWritePolicy, writePolicy);
|
sl@0
|
117 |
|
sl@0
|
118 |
// Set up policy to apply to write activity to the database table named "Table1"
|
sl@0
|
119 |
// and assign it
|
sl@0
|
120 |
TSecurityPolicy tablePolicy1;
|
sl@0
|
121 |
...
|
sl@0
|
122 |
err = securityPolicy.SetPolicy(RSqlSecurityPolicy::ETable, _L("Table1"), RSqlSecurityPolicy::EWritePolicy, tablePolicy1);
|
sl@0
|
123 |
|
sl@0
|
124 |
// Set up policy to apply to read activity to the database table named "Table2"
|
sl@0
|
125 |
TSecurityPolicy tablePolicy2;
|
sl@0
|
126 |
err = securityPolicy.SetPolicy(RSqlSecurityPolicy::ETable, _L("Table2"), RSqlSecurityPolicy::EReadPolicy, tablePolicy2);
|
sl@0
|
127 |
|
sl@0
|
128 |
// Create the database, passing the security policies
|
sl@0
|
129 |
err = database.Create(KDatabaseName, securityPolicy);
|
sl@0
|
130 |
|
sl@0
|
131 |
// We can close the RSqlSecurityPolicy object.
|
sl@0
|
132 |
securityPolicy.Close();
|
sl@0
|
133 |
@endcode
|
sl@0
|
134 |
|
sl@0
|
135 |
Note that in this example code fragment, the client has not assigned specific
|
sl@0
|
136 |
overriding policies for all possible cases; for example, no overriding policy
|
sl@0
|
137 |
has been assigned to control read activity on the database, read activity
|
sl@0
|
138 |
on "Table1", nor write activity on "Table2".
|
sl@0
|
139 |
For these cases, the default security policy will apply.
|
sl@0
|
140 |
|
sl@0
|
141 |
A client can also retrieve a database's security policies by calling
|
sl@0
|
142 |
RSqlDatabase::GetSecurityPolicy(); this returns a RSqlSecurityPolicy object
|
sl@0
|
143 |
containing the security policies. Note that it is the client's responsibility
|
sl@0
|
144 |
to close the RSqlSecurityPolicy object when the client no longer needs it. The
|
sl@0
|
145 |
following code fragment suggests how you might do this:
|
sl@0
|
146 |
|
sl@0
|
147 |
@code
|
sl@0
|
148 |
RSqlDatabase database;
|
sl@0
|
149 |
RSqlSecurityPolicy securityPolicy;
|
sl@0
|
150 |
|
sl@0
|
151 |
// Retrieve the security policies; on return from the call to
|
sl@0
|
152 |
// GetSecurityPolicy(), the RSqlSecurityPolicy object passed
|
sl@0
|
153 |
// to this function will contain the security policies.
|
sl@0
|
154 |
database.GetSecurityPolicy(securityPolicy);
|
sl@0
|
155 |
...
|
sl@0
|
156 |
// This is the security policy that applies to database schema
|
sl@0
|
157 |
TSecurityPolicy schemaPolicy = securityPolicy.DbPolicy(RSqlSecurityPolicy::ESchemaPolicy);
|
sl@0
|
158 |
...
|
sl@0
|
159 |
// This is the security policy that applies to write activity to the database
|
sl@0
|
160 |
// table named "Table1".
|
sl@0
|
161 |
TSecurityPolicy writePolicy = securityPolicy.Policy(RSqlSecurityPolicy::ETable, _L("Table1"), RSqlSecurityPolicy::EWritePolicy);
|
sl@0
|
162 |
...
|
sl@0
|
163 |
// Close the RSqlSecurityPolicy object when no longer needed.
|
sl@0
|
164 |
securityPolicy.Close();
|
sl@0
|
165 |
@endcode
|
sl@0
|
166 |
|
sl@0
|
167 |
Note that in the cases where an 'overriding' security policy was not originally assigned,
|
sl@0
|
168 |
then the security policy returned will simply be the default security policy.
|
sl@0
|
169 |
|
sl@0
|
170 |
Note: The database security policies are used to control the access to the objects (tables, indexes, triggers, views)
|
sl@0
|
171 |
in the main database. The access to the temporary tables, indexes, etc. is not a subject of any restrictions, e.g.
|
sl@0
|
172 |
a client with "read" database security policy only can create and use temporary tables, views, indexes, triggers.
|
sl@0
|
173 |
|
sl@0
|
174 |
@see TSecurityPolicy
|
sl@0
|
175 |
@see RSqlDatabase
|
sl@0
|
176 |
@see RSqlSecurityPolicy::SetDbPolicy()
|
sl@0
|
177 |
@see RSqlSecurityPolicy::SetPolicy()
|
sl@0
|
178 |
|
sl@0
|
179 |
@publishedAll
|
sl@0
|
180 |
@released
|
sl@0
|
181 |
*/
|
sl@0
|
182 |
class RSqlSecurityPolicy
|
sl@0
|
183 |
{
|
sl@0
|
184 |
friend class RSqlDatabase;
|
sl@0
|
185 |
|
sl@0
|
186 |
public:
|
sl@0
|
187 |
/**
|
sl@0
|
188 |
Defines a set of values that represents the database security policy types.
|
sl@0
|
189 |
Each database security policy type refers to a set of capabilities encapsulated in
|
sl@0
|
190 |
a TSecurityPolicy object. The TSecurityPolicy object defines what capabilities the calling
|
sl@0
|
191 |
application must have in order to perform partiqular database operation.
|
sl@0
|
192 |
@see TSecurityPolicy
|
sl@0
|
193 |
*/
|
sl@0
|
194 |
enum TPolicyType
|
sl@0
|
195 |
{
|
sl@0
|
196 |
/**
|
sl@0
|
197 |
Schema database security policy. An application with schema database security policy can
|
sl@0
|
198 |
modify the database schema, write to database, read from database.
|
sl@0
|
199 |
*/
|
sl@0
|
200 |
ESchemaPolicy,
|
sl@0
|
201 |
/**
|
sl@0
|
202 |
Read database security policy. An application with read database security policy can
|
sl@0
|
203 |
read from database.
|
sl@0
|
204 |
*/
|
sl@0
|
205 |
EReadPolicy,
|
sl@0
|
206 |
/**
|
sl@0
|
207 |
Write database security policy. An application with write database security policy can
|
sl@0
|
208 |
write to database.
|
sl@0
|
209 |
*/
|
sl@0
|
210 |
EWritePolicy
|
sl@0
|
211 |
};
|
sl@0
|
212 |
/**
|
sl@0
|
213 |
Not currently supported.
|
sl@0
|
214 |
|
sl@0
|
215 |
Defines a set of values that represents the database objects which can be protected by
|
sl@0
|
216 |
database security policy types.
|
sl@0
|
217 |
*/
|
sl@0
|
218 |
enum TObjectType
|
sl@0
|
219 |
{
|
sl@0
|
220 |
ETable
|
sl@0
|
221 |
};
|
sl@0
|
222 |
IMPORT_C RSqlSecurityPolicy();
|
sl@0
|
223 |
IMPORT_C TInt Create(const TSecurityPolicy& aDefaultPolicy);
|
sl@0
|
224 |
IMPORT_C void CreateL(const TSecurityPolicy& aDefaultPolicy);
|
sl@0
|
225 |
IMPORT_C void Close();
|
sl@0
|
226 |
IMPORT_C TInt SetDbPolicy(TPolicyType aPolicyType, const TSecurityPolicy& aPolicy);
|
sl@0
|
227 |
IMPORT_C TInt SetPolicy(TObjectType aObjectType, const TDesC& aObjectName, TPolicyType aPolicyType, const TSecurityPolicy& aPolicy);
|
sl@0
|
228 |
IMPORT_C TSecurityPolicy DefaultPolicy() const;
|
sl@0
|
229 |
IMPORT_C TSecurityPolicy DbPolicy(TPolicyType aPolicyType) const;
|
sl@0
|
230 |
IMPORT_C TSecurityPolicy Policy(TObjectType aObjectType, const TDesC& aObjectName, TPolicyType aPolicyType) const;
|
sl@0
|
231 |
|
sl@0
|
232 |
IMPORT_C void ExternalizeL(RWriteStream& aStream) const;
|
sl@0
|
233 |
IMPORT_C void InternalizeL(RReadStream& aStream);
|
sl@0
|
234 |
|
sl@0
|
235 |
private:
|
sl@0
|
236 |
void Set(CSqlSecurityPolicy& aImpl);
|
sl@0
|
237 |
CSqlSecurityPolicy& Impl() const;
|
sl@0
|
238 |
|
sl@0
|
239 |
private:
|
sl@0
|
240 |
CSqlSecurityPolicy* iImpl;
|
sl@0
|
241 |
};
|
sl@0
|
242 |
|
sl@0
|
243 |
/**
|
sl@0
|
244 |
A handle to a SQL database.
|
sl@0
|
245 |
|
sl@0
|
246 |
A RSqlDatabase object is, in effect, a handle to the SQL database. A client can:
|
sl@0
|
247 |
- create a SQL database by calling RSqlDatabase::Create().
|
sl@0
|
248 |
- open an existing SQL database by calling RSqlDatabase::Open().
|
sl@0
|
249 |
- close a SQL database by calling RSqlDatabase::Close().
|
sl@0
|
250 |
- copy a SQL database by calling RSqlDatabase::Copy().
|
sl@0
|
251 |
- delete a SQL database by calling RSqlDatabase::Delete().
|
sl@0
|
252 |
- attach a SQL database to current database connection by calling RSqlDatabase::Attach().
|
sl@0
|
253 |
- detach a SQL database from current database connection by calling RSqlDatabase::Detach().
|
sl@0
|
254 |
|
sl@0
|
255 |
The RSqlDatabase handles are not thread-safe.
|
sl@0
|
256 |
|
sl@0
|
257 |
A client can create either a non-secure database or a secure database,
|
sl@0
|
258 |
depending on the variant of RSqlDatabase::Create() that is used.
|
sl@0
|
259 |
- a non-secure database is created if the RSqlDatabase::Create(const TDesC&) variant is used.
|
sl@0
|
260 |
- a secure database is created if the RSqlDatabase::Create(const TDesC&, const RSqlSecurityPolicy&)
|
sl@0
|
261 |
variant is used. In this case, a container containing a collection of security
|
sl@0
|
262 |
policies needs to be set up first and passed to this Create() function.
|
sl@0
|
263 |
See references to RSqlSecurityPolicy for more information on security policies.
|
sl@0
|
264 |
|
sl@0
|
265 |
A client can also specify how it wants a transaction to interact with
|
sl@0
|
266 |
other transactions that may be running concurrently. The various ways in which
|
sl@0
|
267 |
transactions can interact (i.e. how one transaction can affect another) are
|
sl@0
|
268 |
referred to as "transaction isolation levels", and are defined by the values
|
sl@0
|
269 |
of the TIsolationLevel enum. A client specifies this by calling RSqlDatabase::SetIsolationLevel().
|
sl@0
|
270 |
|
sl@0
|
271 |
Each of the various flavours of Open and Create allows the optional provision of a
|
sl@0
|
272 |
configuration string. It is acceptable for this string to be missing.
|
sl@0
|
273 |
In the case where the string is missing, the config in the SqlServer.sql file
|
sl@0
|
274 |
will be used. If that does not exist then the MMH macro definitions will be used.
|
sl@0
|
275 |
|
sl@0
|
276 |
The config string is in the format PARAM=VALUE; PARAM=VALUE;...
|
sl@0
|
277 |
|
sl@0
|
278 |
Allowed parameters are:
|
sl@0
|
279 |
cache_size=nnnn
|
sl@0
|
280 |
page_size=nnnn
|
sl@0
|
281 |
encoding=UTF8|UTF16
|
sl@0
|
282 |
|
sl@0
|
283 |
Badly formed config strings are reported as KErrArgument
|
sl@0
|
284 |
|
sl@0
|
285 |
The string may not exceed 255 characters.
|
sl@0
|
286 |
|
sl@0
|
287 |
Please note that a database can only be accessed within the thread where it has been created. It is then not possible
|
sl@0
|
288 |
to create a database from thread1 and access it from thread2.
|
sl@0
|
289 |
|
sl@0
|
290 |
A client calls RSqlDatabase::Exec() to execute SQL statements.
|
sl@0
|
291 |
@see RSqlDatabase::Create()
|
sl@0
|
292 |
@see RSqlDatabase::Open()
|
sl@0
|
293 |
@see RSqlDatabase::Close()
|
sl@0
|
294 |
@see RSqlDatabase::Copy()
|
sl@0
|
295 |
@see RSqlDatabase::Delete()
|
sl@0
|
296 |
@see RSqlDatabase::Attach()
|
sl@0
|
297 |
@see RSqlDatabase::Detach()
|
sl@0
|
298 |
@see RSqlDatabase::SetIsolationLevel()
|
sl@0
|
299 |
@see RSqlDatabase::Exec()
|
sl@0
|
300 |
@see TIsolationLevel
|
sl@0
|
301 |
@see RSqlSecurityPolicy
|
sl@0
|
302 |
|
sl@0
|
303 |
@publishedAll
|
sl@0
|
304 |
@released
|
sl@0
|
305 |
*/
|
sl@0
|
306 |
class RSqlDatabase
|
sl@0
|
307 |
{
|
sl@0
|
308 |
friend class RSqlStatement;
|
sl@0
|
309 |
friend class TSqlScalarFullSelectQuery;
|
sl@0
|
310 |
friend class RSqlBlob;
|
sl@0
|
311 |
friend class RSqlBlobReadStream;
|
sl@0
|
312 |
friend class RSqlBlobWriteStream;
|
sl@0
|
313 |
friend class TSqlResourceProfiler;
|
sl@0
|
314 |
|
sl@0
|
315 |
public:
|
sl@0
|
316 |
/**
|
sl@0
|
317 |
Defines a set of values that represents the transaction isolation level.
|
sl@0
|
318 |
|
sl@0
|
319 |
A transaction isolation level defines the way in which a transaction
|
sl@0
|
320 |
interacts with other transactions that may be in progress concurrently.
|
sl@0
|
321 |
|
sl@0
|
322 |
A client sets the transaction isolation level by calling SetIsolationLevel()
|
sl@0
|
323 |
|
sl@0
|
324 |
@see RSqlDatabase::SetIsolationLevel()
|
sl@0
|
325 |
*/
|
sl@0
|
326 |
enum TIsolationLevel
|
sl@0
|
327 |
{
|
sl@0
|
328 |
/**
|
sl@0
|
329 |
A transaction can read uncommitted data, i.e. data that is being changed
|
sl@0
|
330 |
by another transaction, which is still in progress.
|
sl@0
|
331 |
|
sl@0
|
332 |
This means that
|
sl@0
|
333 |
- a 'database read' transaction will not block 'database write' transactions
|
sl@0
|
334 |
being performed by different database connections on the same shared database.
|
sl@0
|
335 |
- a 'database read' transaction will not be blocked by 'database write'
|
sl@0
|
336 |
transactions performed by the same database connection.
|
sl@0
|
337 |
- concurrent 'database write' transactions are prevented.
|
sl@0
|
338 |
|
sl@0
|
339 |
This transaction isolation level can be set at any time during
|
sl@0
|
340 |
the lifetime of the database.
|
sl@0
|
341 |
|
sl@0
|
342 |
@see TIsolationLevel
|
sl@0
|
343 |
@see RSqlDatabase::SetIsolationLevel()
|
sl@0
|
344 |
*/
|
sl@0
|
345 |
EReadUncommitted,
|
sl@0
|
346 |
|
sl@0
|
347 |
/**
|
sl@0
|
348 |
Not currently supported.
|
sl@0
|
349 |
|
sl@0
|
350 |
A transaction cannot read uncommitted data. "Dirty reads" are prevented.
|
sl@0
|
351 |
|
sl@0
|
352 |
"Dirty read" is a data inconsistency type which can be described with the following example:
|
sl@0
|
353 |
- Transaction A updates TableA.Column1 value from 1 to 2;
|
sl@0
|
354 |
- Transaction B reads TableA.Column1 value;
|
sl@0
|
355 |
- Transaction A rolls back and restores the original value of TableA.Column1 (1);
|
sl@0
|
356 |
- Transaction B ends showing that TableA.Column1 value is 2, even though, logically and transactionally,
|
sl@0
|
357 |
this data never really even existed in the database because Transaction A never committed that change
|
sl@0
|
358 |
to the database;
|
sl@0
|
359 |
|
sl@0
|
360 |
@see TIsolationLevel
|
sl@0
|
361 |
@see RSqlDatabase::SetIsolationLevel()
|
sl@0
|
362 |
*/
|
sl@0
|
363 |
EReadCommitted,
|
sl@0
|
364 |
|
sl@0
|
365 |
/**
|
sl@0
|
366 |
Not currently supported.
|
sl@0
|
367 |
|
sl@0
|
368 |
A transaction cannot change data that is being read by a different transaction.
|
sl@0
|
369 |
"Dirty reads" and "non-repeatable reads" are prevented.
|
sl@0
|
370 |
|
sl@0
|
371 |
"Non-repeatable reads" is a data inconsistency type which can be described with the following example:
|
sl@0
|
372 |
- Transaction A reads TableA.Column1 value which is 1;
|
sl@0
|
373 |
- Transaction B updates TableA.Column1 value from 1 to 2;
|
sl@0
|
374 |
- Transaction B commits the chages;
|
sl@0
|
375 |
- Transaction A reads TableA.Column1 value again. Transaction A has inconsistent data because TableA.Column1
|
sl@0
|
376 |
value now is 2 instead of 1, all within the scope of the same Transaction A;
|
sl@0
|
377 |
|
sl@0
|
378 |
@see TIsolationLevel
|
sl@0
|
379 |
@see RSqlDatabase::SetIsolationLevel()
|
sl@0
|
380 |
*/
|
sl@0
|
381 |
ERepeatableRead,
|
sl@0
|
382 |
|
sl@0
|
383 |
/**
|
sl@0
|
384 |
Any number of 'database read' transactions can be performed concurrently
|
sl@0
|
385 |
by different database connections on the same shared database.
|
sl@0
|
386 |
|
sl@0
|
387 |
Only one 'database write' transaction can be performed at any one time. If a
|
sl@0
|
388 |
'database write' transaction is in progress, then any attempt to start
|
sl@0
|
389 |
another 'database read' or 'database write' transaction will be blocked
|
sl@0
|
390 |
until the first 'database write' transaction has completed.
|
sl@0
|
391 |
|
sl@0
|
392 |
This is the default isolation level, if no isolation level is
|
sl@0
|
393 |
explicitly set.
|
sl@0
|
394 |
|
sl@0
|
395 |
"Dirty reads", "non-repeatable" reads and "phantom reads" are prevented.
|
sl@0
|
396 |
|
sl@0
|
397 |
"Phantom reads" is a data inconsistency type which can be described with the following example:
|
sl@0
|
398 |
- Transaction A reads all rows that have Column1 = 1;
|
sl@0
|
399 |
- Transaction B inserts a new row which has Column1 = 1;
|
sl@0
|
400 |
- Transaction B commits;
|
sl@0
|
401 |
- Transaction A updates all rows that have Column1 = 1. This will also update the row that
|
sl@0
|
402 |
Transaction B inserted, because Transaction A must read the data again in order to update it.
|
sl@0
|
403 |
- Transaction A commits;
|
sl@0
|
404 |
|
sl@0
|
405 |
@see TIsolationLevel
|
sl@0
|
406 |
@see RSqlDatabase::SetIsolationLevel()
|
sl@0
|
407 |
*/
|
sl@0
|
408 |
ESerializable
|
sl@0
|
409 |
};
|
sl@0
|
410 |
/**
|
sl@0
|
411 |
This structure is used for retrieving the database size and database free space.
|
sl@0
|
412 |
@see RSqlDatabase::Size(TSize&)
|
sl@0
|
413 |
*/
|
sl@0
|
414 |
struct TSize
|
sl@0
|
415 |
{
|
sl@0
|
416 |
/** The database size in bytes*/
|
sl@0
|
417 |
TInt64 iSize;
|
sl@0
|
418 |
/** The database free space in bytes*/
|
sl@0
|
419 |
TInt64 iFree;
|
sl@0
|
420 |
};
|
sl@0
|
421 |
|
sl@0
|
422 |
/** If this value is used as an argument of RSqlDatabase::Compact() (aSize argument), then all free space will be removed */
|
sl@0
|
423 |
enum {EMaxCompaction = -1};
|
sl@0
|
424 |
|
sl@0
|
425 |
IMPORT_C RSqlDatabase();
|
sl@0
|
426 |
|
sl@0
|
427 |
IMPORT_C TInt Create(const TDesC& aDbFileName, const TDesC8* aConfig=NULL);
|
sl@0
|
428 |
IMPORT_C TInt Create(const TDesC& aDbFileName,
|
sl@0
|
429 |
const RSqlSecurityPolicy& aSecurityPolicy, const TDesC8* aConfig=NULL);
|
sl@0
|
430 |
IMPORT_C TInt Open(const TDesC& aDbFileName, const TDesC8* aConfig=NULL);
|
sl@0
|
431 |
IMPORT_C void CreateL(const TDesC& aDbFileName, const TDesC8* aConfig=NULL);
|
sl@0
|
432 |
IMPORT_C void CreateL(const TDesC& aDbFileName,
|
sl@0
|
433 |
const RSqlSecurityPolicy& aSecurityPolicy, const TDesC8* aConfig=NULL);
|
sl@0
|
434 |
IMPORT_C void OpenL(const TDesC& aDbFileName, const TDesC8* aConfig=NULL);
|
sl@0
|
435 |
|
sl@0
|
436 |
IMPORT_C void Close();
|
sl@0
|
437 |
|
sl@0
|
438 |
IMPORT_C TInt Attach(const TDesC& aDbFileName, const TDesC& aDbName);
|
sl@0
|
439 |
IMPORT_C TInt Detach(const TDesC& aDbName);
|
sl@0
|
440 |
|
sl@0
|
441 |
IMPORT_C static TInt Copy(const TDesC& aSrcDbFileName, const TDesC& aDestDbFileName);
|
sl@0
|
442 |
IMPORT_C static TInt Delete(const TDesC& aDbFileName);
|
sl@0
|
443 |
|
sl@0
|
444 |
IMPORT_C TInt GetSecurityPolicy(RSqlSecurityPolicy& aSecurityPolicy) const;
|
sl@0
|
445 |
IMPORT_C void GetSecurityPolicyL(RSqlSecurityPolicy& aSecurityPolicy) const;
|
sl@0
|
446 |
|
sl@0
|
447 |
IMPORT_C TInt SetIsolationLevel(TIsolationLevel aIsolationLevel);
|
sl@0
|
448 |
|
sl@0
|
449 |
IMPORT_C TInt Exec(const TDesC& aSqlStmt);
|
sl@0
|
450 |
IMPORT_C TInt Exec(const TDesC8& aSqlStmt);
|
sl@0
|
451 |
|
sl@0
|
452 |
IMPORT_C void Exec(const TDesC& aSqlStmt, TRequestStatus& aStatus);
|
sl@0
|
453 |
IMPORT_C void Exec(const TDesC8& aSqlStmt, TRequestStatus& aStatus);
|
sl@0
|
454 |
|
sl@0
|
455 |
IMPORT_C TPtrC LastErrorMessage() const;
|
sl@0
|
456 |
IMPORT_C TInt64 LastInsertedRowId() const;
|
sl@0
|
457 |
|
sl@0
|
458 |
IMPORT_C TBool InTransaction() const;
|
sl@0
|
459 |
IMPORT_C TInt Size() const;
|
sl@0
|
460 |
IMPORT_C TInt Size(TSize& aSize, const TDesC& aDbName = KNullDesC) const;
|
sl@0
|
461 |
|
sl@0
|
462 |
IMPORT_C TInt Compact(TInt64 aSize, const TDesC& aDbName = KNullDesC);
|
sl@0
|
463 |
IMPORT_C void Compact(TInt64 aSize, TRequestStatus& aStatus, const TDesC& aDbName = KNullDesC);
|
sl@0
|
464 |
|
sl@0
|
465 |
IMPORT_C TInt ReserveDriveSpace(TInt aSize);
|
sl@0
|
466 |
IMPORT_C void FreeReservedSpace();
|
sl@0
|
467 |
IMPORT_C TInt GetReserveAccess();
|
sl@0
|
468 |
IMPORT_C void ReleaseReserveAccess();
|
sl@0
|
469 |
|
sl@0
|
470 |
private:
|
sl@0
|
471 |
CSqlDatabaseImpl& Impl() const;
|
sl@0
|
472 |
|
sl@0
|
473 |
private:
|
sl@0
|
474 |
CSqlDatabaseImpl* iImpl;
|
sl@0
|
475 |
};
|
sl@0
|
476 |
|
sl@0
|
477 |
/**
|
sl@0
|
478 |
TSqlScalarFullSelectQuery interface is used for executing SELECT sql queries, which
|
sl@0
|
479 |
return a single row consisting of a single column value.
|
sl@0
|
480 |
|
sl@0
|
481 |
Examples.
|
sl@0
|
482 |
|
sl@0
|
483 |
CASE 1 - retrieving records count of a table:
|
sl@0
|
484 |
@code
|
sl@0
|
485 |
RSqlDatabase db;
|
sl@0
|
486 |
//initialize db object....
|
sl@0
|
487 |
.......
|
sl@0
|
488 |
TSqlScalarFullSelectQuery fullSelectQuery(db);
|
sl@0
|
489 |
TInt recCnt = fullSelectQuery.SelectIntL(_L("SELECT COUNT(*) FROM PersonTbl"));
|
sl@0
|
490 |
@endcode
|
sl@0
|
491 |
|
sl@0
|
492 |
CASE 2 - retrieving specific column value using a condition in the SELECT statement:
|
sl@0
|
493 |
@code
|
sl@0
|
494 |
RSqlDatabase db;
|
sl@0
|
495 |
//initialize db object....
|
sl@0
|
496 |
.......
|
sl@0
|
497 |
TSqlScalarFullSelectQuery fullSelectQuery(db);
|
sl@0
|
498 |
TInt personId = fullSelectQuery.SelectIntL(_L("SELECT ID FROM PersonTbl WHERE Name = 'John'"));
|
sl@0
|
499 |
@endcode
|
sl@0
|
500 |
|
sl@0
|
501 |
CASE 3 - retrieving a text column value, the receiving buffer is not big enough:
|
sl@0
|
502 |
@code
|
sl@0
|
503 |
RSqlDatabase db;
|
sl@0
|
504 |
//initialize db object....
|
sl@0
|
505 |
.......
|
sl@0
|
506 |
TSqlScalarFullSelectQuery fullSelectQuery(db);
|
sl@0
|
507 |
HBufC* buf = HBufC::NewLC(20);
|
sl@0
|
508 |
TPtr name = buf->Des();
|
sl@0
|
509 |
TInt rc = fullSelectQuery.SelectTextL(_L("SELECT Name FROM PersonTbl WHERE Id = 1"), name);
|
sl@0
|
510 |
TEST(rc >= 0); //the function may return only non-negative values
|
sl@0
|
511 |
if(rc > 0)
|
sl@0
|
512 |
{
|
sl@0
|
513 |
buf = buf->ReAllocL(rc);
|
sl@0
|
514 |
CleanupStack::Pop();
|
sl@0
|
515 |
CleanupStack::PushL(buf);
|
sl@0
|
516 |
name.Set(buf->Des());
|
sl@0
|
517 |
rc = fullSelectQuery.SelectTextL(_L("SELECT Name FROM PersonTbl WHERE Id = 1"), name);
|
sl@0
|
518 |
TEST(rc == 0);
|
sl@0
|
519 |
}
|
sl@0
|
520 |
CleanupStack::PopAndDestroy();//buf
|
sl@0
|
521 |
@endcode
|
sl@0
|
522 |
|
sl@0
|
523 |
@see RSqlDatabase
|
sl@0
|
524 |
|
sl@0
|
525 |
@publishedAll
|
sl@0
|
526 |
@released
|
sl@0
|
527 |
*/
|
sl@0
|
528 |
class TSqlScalarFullSelectQuery
|
sl@0
|
529 |
{
|
sl@0
|
530 |
public:
|
sl@0
|
531 |
IMPORT_C TSqlScalarFullSelectQuery();
|
sl@0
|
532 |
IMPORT_C TSqlScalarFullSelectQuery(RSqlDatabase& aDatabase);
|
sl@0
|
533 |
IMPORT_C void SetDatabase(RSqlDatabase& aDatabase);
|
sl@0
|
534 |
|
sl@0
|
535 |
IMPORT_C TInt SelectIntL(const TDesC& aSqlStmt);
|
sl@0
|
536 |
IMPORT_C TInt64 SelectInt64L(const TDesC& aSqlStmt);
|
sl@0
|
537 |
IMPORT_C TReal SelectRealL(const TDesC& aSqlStmt);
|
sl@0
|
538 |
IMPORT_C TInt SelectTextL(const TDesC& aSqlStmt, TDes& aDest);
|
sl@0
|
539 |
IMPORT_C TInt SelectBinaryL(const TDesC& aSqlStmt, TDes8& aDest);
|
sl@0
|
540 |
|
sl@0
|
541 |
IMPORT_C TInt SelectIntL(const TDesC8& aSqlStmt);
|
sl@0
|
542 |
IMPORT_C TInt64 SelectInt64L(const TDesC8& aSqlStmt);
|
sl@0
|
543 |
IMPORT_C TReal SelectRealL(const TDesC8& aSqlStmt);
|
sl@0
|
544 |
IMPORT_C TInt SelectTextL(const TDesC8& aSqlStmt, TDes& aDest);
|
sl@0
|
545 |
IMPORT_C TInt SelectBinaryL(const TDesC8& aSqlStmt, TDes8& aDest);
|
sl@0
|
546 |
|
sl@0
|
547 |
private:
|
sl@0
|
548 |
inline CSqlDatabaseImpl& Impl() const;
|
sl@0
|
549 |
|
sl@0
|
550 |
private:
|
sl@0
|
551 |
CSqlDatabaseImpl* iDatabaseImpl;
|
sl@0
|
552 |
};
|
sl@0
|
553 |
|
sl@0
|
554 |
/**
|
sl@0
|
555 |
An enumeration whose values represent the supported database column types.
|
sl@0
|
556 |
|
sl@0
|
557 |
|
sl@0
|
558 |
@see RSqlStatement::ColumnType()
|
sl@0
|
559 |
|
sl@0
|
560 |
@publishedAll
|
sl@0
|
561 |
@released
|
sl@0
|
562 |
*/
|
sl@0
|
563 |
enum TSqlColumnType
|
sl@0
|
564 |
{
|
sl@0
|
565 |
/**
|
sl@0
|
566 |
Null column value.
|
sl@0
|
567 |
*/
|
sl@0
|
568 |
ESqlNull,
|
sl@0
|
569 |
|
sl@0
|
570 |
/**
|
sl@0
|
571 |
32-bit integer column value.
|
sl@0
|
572 |
*/
|
sl@0
|
573 |
ESqlInt,
|
sl@0
|
574 |
|
sl@0
|
575 |
/**
|
sl@0
|
576 |
64-bit integer column value.
|
sl@0
|
577 |
*/
|
sl@0
|
578 |
ESqlInt64,
|
sl@0
|
579 |
|
sl@0
|
580 |
/**
|
sl@0
|
581 |
64-bit floating point column value.
|
sl@0
|
582 |
*/
|
sl@0
|
583 |
ESqlReal,
|
sl@0
|
584 |
|
sl@0
|
585 |
/**
|
sl@0
|
586 |
Unicode text, a sequence of 16-bit character codes.
|
sl@0
|
587 |
*/
|
sl@0
|
588 |
ESqlText,
|
sl@0
|
589 |
|
sl@0
|
590 |
/**
|
sl@0
|
591 |
Binary data, a sequence of bytes.
|
sl@0
|
592 |
*/
|
sl@0
|
593 |
ESqlBinary
|
sl@0
|
594 |
};
|
sl@0
|
595 |
|
sl@0
|
596 |
/**
|
sl@0
|
597 |
Represents an SQL statement.
|
sl@0
|
598 |
|
sl@0
|
599 |
An object of this type can be used to execute all types of SQL statements; this
|
sl@0
|
600 |
includes SQL statements with parameters.
|
sl@0
|
601 |
|
sl@0
|
602 |
If a SELECT statament is passed to RSqlStatement::Prepare(), then the returned record set
|
sl@0
|
603 |
is forward only, non-updateable.
|
sl@0
|
604 |
|
sl@0
|
605 |
There are a number of ways that this object is used; here are some examples.
|
sl@0
|
606 |
|
sl@0
|
607 |
CASE 1 - the execution of a SQL statement, which does not return record set:
|
sl@0
|
608 |
|
sl@0
|
609 |
@code
|
sl@0
|
610 |
RSqlDatabase database;
|
sl@0
|
611 |
.........
|
sl@0
|
612 |
RSqlStatement stmt;
|
sl@0
|
613 |
TInt err = stmt.Prepare(database, _L("INSERT INTO Tbl1(Fld1) VALUES(:Val)"));
|
sl@0
|
614 |
TInt paramIndex = stmt.ParameterIndex(_L(":Val"));
|
sl@0
|
615 |
for(TInt i=1;i<=10;++i)
|
sl@0
|
616 |
{
|
sl@0
|
617 |
err = stmt.BindInt(paramIndex, i);
|
sl@0
|
618 |
err = stmt.Exec();
|
sl@0
|
619 |
err = stmt.Reset();
|
sl@0
|
620 |
}
|
sl@0
|
621 |
stmt.Close();
|
sl@0
|
622 |
@endcode
|
sl@0
|
623 |
|
sl@0
|
624 |
The following pseudo code shows the general pattern:
|
sl@0
|
625 |
|
sl@0
|
626 |
@code
|
sl@0
|
627 |
<RSqlStatement::Prepare()>
|
sl@0
|
628 |
[begin:]
|
sl@0
|
629 |
<RSqlStatement::Bind<param_type>()>
|
sl@0
|
630 |
<RSqlStatement::Exec()>
|
sl@0
|
631 |
[<RSqlStatement::Reset()>]
|
sl@0
|
632 |
[<RSqlStatement::Bind<param_type>()>]
|
sl@0
|
633 |
[<Goto :begin>]
|
sl@0
|
634 |
@endcode
|
sl@0
|
635 |
|
sl@0
|
636 |
CASE 2 - the execution of a SQL statement, which returns a record set:
|
sl@0
|
637 |
|
sl@0
|
638 |
@code
|
sl@0
|
639 |
RSqlDatabase database;
|
sl@0
|
640 |
.........
|
sl@0
|
641 |
RSqlStatement stmt;
|
sl@0
|
642 |
TInt err = stmt.Prepare(database, _L("SELECT Fld1 FROM Tbl1 WHERE Fld1 > :Val"));
|
sl@0
|
643 |
TInt paramIndex = stmt.ParameterIndex(_L(":Val"));
|
sl@0
|
644 |
err = stmt.BindInt(paramIndex, 5);
|
sl@0
|
645 |
TInt columnIndex = stmt.ColumnIndex(_L("Fld1"));
|
sl@0
|
646 |
while((err = stmt.Next()) == KSqlAtRow)
|
sl@0
|
647 |
{
|
sl@0
|
648 |
TInt val = stmt.ColumnInt(columnIndex);
|
sl@0
|
649 |
RDebug::Print(_L("val=%d\n"), val);
|
sl@0
|
650 |
}
|
sl@0
|
651 |
if(err == KSqlAtEnd)
|
sl@0
|
652 |
<OK - no more records>;
|
sl@0
|
653 |
else
|
sl@0
|
654 |
<process the error>;
|
sl@0
|
655 |
stmt.Close();
|
sl@0
|
656 |
@endcode
|
sl@0
|
657 |
|
sl@0
|
658 |
The following pseudo code shows the general pattern:
|
sl@0
|
659 |
|
sl@0
|
660 |
@code
|
sl@0
|
661 |
<RSqlStatement::Prepare()>
|
sl@0
|
662 |
[begin:]
|
sl@0
|
663 |
<while (RSqlStatement::Next() == KSqlAtRow)>
|
sl@0
|
664 |
<do something with the records>
|
sl@0
|
665 |
if(err == KSqlAtEnd)
|
sl@0
|
666 |
<OK - no more records>;
|
sl@0
|
667 |
else
|
sl@0
|
668 |
<process the error>;
|
sl@0
|
669 |
[<RSqlStatement::Reset()>]
|
sl@0
|
670 |
[<RSqlStatement::Bind<param_type>()>]
|
sl@0
|
671 |
[<Goto begin>]
|
sl@0
|
672 |
@endcode
|
sl@0
|
673 |
|
sl@0
|
674 |
CASE 3.1 - SELECT statements: large column data processing, where the data is
|
sl@0
|
675 |
copied into a buffer supplied by the client:
|
sl@0
|
676 |
|
sl@0
|
677 |
@code
|
sl@0
|
678 |
RSqlDatabase database;
|
sl@0
|
679 |
.........
|
sl@0
|
680 |
RSqlStatement stmt;
|
sl@0
|
681 |
TInt err = stmt.Prepare(database, _L("SELECT BinaryField FROM Tbl1"));
|
sl@0
|
682 |
TInt columnIndex = stmt.ColumnIndex(_L("BinaryField"));
|
sl@0
|
683 |
while((err = stmt.Next()) == KSqlAtRow)
|
sl@0
|
684 |
{
|
sl@0
|
685 |
TInt size = stmt. ColumnSize(columnIndex);
|
sl@0
|
686 |
HBufC8* buf = HBufC8::NewL(size);
|
sl@0
|
687 |
err = stmt.ColumnBinary(columnIndex, buf->Ptr());
|
sl@0
|
688 |
<do something with the data>;
|
sl@0
|
689 |
delete buf;
|
sl@0
|
690 |
}
|
sl@0
|
691 |
if(err == KSqlAtEnd)
|
sl@0
|
692 |
<OK - no more records>;
|
sl@0
|
693 |
else
|
sl@0
|
694 |
<process the error>;
|
sl@0
|
695 |
stmt.Close();
|
sl@0
|
696 |
@endcode
|
sl@0
|
697 |
|
sl@0
|
698 |
CASE 3.2 - SELECT statements: large column data processing, where the data is
|
sl@0
|
699 |
accessed by the client without copying:
|
sl@0
|
700 |
|
sl@0
|
701 |
@code
|
sl@0
|
702 |
RSqlDatabase database;
|
sl@0
|
703 |
.........
|
sl@0
|
704 |
RSqlStatement stmt;
|
sl@0
|
705 |
TInt err = stmt.Prepare(database, _L("SELECT BinaryField FROM Tbl1"));
|
sl@0
|
706 |
TInt columnIndex = stmt.ColumnIndex(_L("BinaryField"));
|
sl@0
|
707 |
while((err = stmt.Next()) == KSqlAtRow)
|
sl@0
|
708 |
{
|
sl@0
|
709 |
TPtrC8 data = stmt.ColumnBinaryL(columnIndex);
|
sl@0
|
710 |
<do something with the data>;
|
sl@0
|
711 |
}
|
sl@0
|
712 |
if(err == KSqlAtEnd)
|
sl@0
|
713 |
<OK - no more records>;
|
sl@0
|
714 |
else
|
sl@0
|
715 |
<process the error>;
|
sl@0
|
716 |
stmt.Close();
|
sl@0
|
717 |
@endcode
|
sl@0
|
718 |
|
sl@0
|
719 |
CASE 3.3 - SELECT statements, large column data processing (the data is accessed by
|
sl@0
|
720 |
the client without copying), leaving-safe processing:
|
sl@0
|
721 |
|
sl@0
|
722 |
@code
|
sl@0
|
723 |
RSqlDatabase database;
|
sl@0
|
724 |
.........
|
sl@0
|
725 |
RSqlStatement stmt;
|
sl@0
|
726 |
TInt err = stmt.Prepare(database, _L("SELECT BinaryField FROM Tbl1"));
|
sl@0
|
727 |
TInt columnIndex = stmt.ColumnIndex(_L("BinaryField"));
|
sl@0
|
728 |
while((err = stmt.Next()) == KSqlAtRow)
|
sl@0
|
729 |
{
|
sl@0
|
730 |
TPtrC8 data;
|
sl@0
|
731 |
TInt err = stmt.ColumnBinary(columnIndex, data);
|
sl@0
|
732 |
if(err == KErrNone)
|
sl@0
|
733 |
{
|
sl@0
|
734 |
<do something with the data>;
|
sl@0
|
735 |
}
|
sl@0
|
736 |
}
|
sl@0
|
737 |
if(err == KSqlAtEnd)
|
sl@0
|
738 |
<OK - no more records>;
|
sl@0
|
739 |
else
|
sl@0
|
740 |
<process the error>;
|
sl@0
|
741 |
stmt.Close();
|
sl@0
|
742 |
@endcode
|
sl@0
|
743 |
|
sl@0
|
744 |
CASE 3.4 - SELECT statements: large column data processing, where the data is
|
sl@0
|
745 |
accessed by the client using a stream:
|
sl@0
|
746 |
|
sl@0
|
747 |
@code
|
sl@0
|
748 |
RSqlDatabase database;
|
sl@0
|
749 |
.........
|
sl@0
|
750 |
RSqlStatement stmt;
|
sl@0
|
751 |
TInt err = stmt.Prepare(database, _L("SELECT BinaryField FROM Tbl1"));
|
sl@0
|
752 |
TInt columnIndex = stmt.ColumnIndex(_L("BinaryField"));
|
sl@0
|
753 |
while((err = stmt.Next()) == KSqlAtRow)
|
sl@0
|
754 |
{
|
sl@0
|
755 |
RSqlColumnReadStream stream;
|
sl@0
|
756 |
err = stream.ColumnBinary(stmt, columnIndex);
|
sl@0
|
757 |
<do something with the data in the stream>;
|
sl@0
|
758 |
stream.Close();
|
sl@0
|
759 |
}
|
sl@0
|
760 |
if(err == KSqlAtEnd)
|
sl@0
|
761 |
<OK - no more records>;
|
sl@0
|
762 |
else
|
sl@0
|
763 |
<process the error>;
|
sl@0
|
764 |
stmt.Close();
|
sl@0
|
765 |
@endcode
|
sl@0
|
766 |
|
sl@0
|
767 |
CASE 4 - the execution of a SQL statement with parameter(s), some of which may
|
sl@0
|
768 |
be large text or binary values:
|
sl@0
|
769 |
|
sl@0
|
770 |
@code
|
sl@0
|
771 |
RSqlDatabase database;
|
sl@0
|
772 |
.........
|
sl@0
|
773 |
RSqlStatement stmt;
|
sl@0
|
774 |
TInt err =
|
sl@0
|
775 |
stmt.Prepare(database, _L("UPDATE Tbl1 SET LargeTextField = :LargeTextVal WHERE IdxField = :KeyVal"));
|
sl@0
|
776 |
TInt paramIndex1 = stmt.ParameterIndex(_L(":LargeTextVal"));
|
sl@0
|
777 |
TInt paramIndex2 = stmt.ParameterIndex(_L(":KeyVal"));
|
sl@0
|
778 |
for(TInt i=1;i<=10;++i)
|
sl@0
|
779 |
{
|
sl@0
|
780 |
RSqlParamWriteStream stream;
|
sl@0
|
781 |
err = stream.BindText(stmt, paramIndex1);
|
sl@0
|
782 |
<insert large text data into the stream>;
|
sl@0
|
783 |
stream.Close();
|
sl@0
|
784 |
err = stmt.BindInt(paramIndex2, i);
|
sl@0
|
785 |
err = stmt.Exec();
|
sl@0
|
786 |
stmt.Reset();
|
sl@0
|
787 |
}
|
sl@0
|
788 |
stmt.Close();
|
sl@0
|
789 |
@endcode
|
sl@0
|
790 |
|
sl@0
|
791 |
The following table shows what is returned when the caller uses a specific
|
sl@0
|
792 |
column data retrieving function on a specific column type.
|
sl@0
|
793 |
|
sl@0
|
794 |
@code
|
sl@0
|
795 |
--------------------------------------------------------------------------------
|
sl@0
|
796 |
Column type | ColumnInt() ColumnInt64() ColumnReal() ColumnText() ColumnBinary()
|
sl@0
|
797 |
--------------------------------------------------------------------------------
|
sl@0
|
798 |
Null........|.0...........0.............0.0..........KNullDesC....KNullDesC8
|
sl@0
|
799 |
Int.........|.Int.........Int64.........Real.........KNullDesC....KNullDesC8
|
sl@0
|
800 |
Int64.......|.clamp.......Int64.........Real.........KNullDesC....KNullDesC8
|
sl@0
|
801 |
Real........|.round.......round.........Real.........KNullDesC....KNullDesC8
|
sl@0
|
802 |
Text........|.0...........0.............0.0..........Text.........KNullDesC8
|
sl@0
|
803 |
Binary......|.0...........0.............0.0..........KNullDesC....Binary
|
sl@0
|
804 |
--------------------------------------------------------------------------------
|
sl@0
|
805 |
@endcode
|
sl@0
|
806 |
Note the following definitions:
|
sl@0
|
807 |
- "clamp": return KMinTInt or KMaxTInt if the value is outside the range that can be
|
sl@0
|
808 |
represented by the type returned by the accessor function.
|
sl@0
|
809 |
- "round": the floating point value will be rounded up to the nearest integer.
|
sl@0
|
810 |
If the result is outside the range that can be represented by the type returned
|
sl@0
|
811 |
by the accessor function, then it will be clamped.
|
sl@0
|
812 |
|
sl@0
|
813 |
Note that when handling blob and text data over 2Mb in size it is recommended that the
|
sl@0
|
814 |
RSqlBlobReadStream and RSqlBlobWriteStream classes or the TSqlBlob class is used instead.
|
sl@0
|
815 |
These classes provide a more RAM-efficient way of reading and writing large amounts of
|
sl@0
|
816 |
blob or text data from a database.
|
sl@0
|
817 |
|
sl@0
|
818 |
@see KMinTInt
|
sl@0
|
819 |
@see KMaxTInt
|
sl@0
|
820 |
@see KNullDesC
|
sl@0
|
821 |
@see KNullDesC8
|
sl@0
|
822 |
@see RSqlBlobReadStream
|
sl@0
|
823 |
@see RSqlBlobWriteStream
|
sl@0
|
824 |
@see TSqlBlob
|
sl@0
|
825 |
|
sl@0
|
826 |
@publishedAll
|
sl@0
|
827 |
@released
|
sl@0
|
828 |
*/
|
sl@0
|
829 |
class RSqlStatement
|
sl@0
|
830 |
{
|
sl@0
|
831 |
friend class RSqlColumnReadStream;
|
sl@0
|
832 |
friend class RSqlParamWriteStream;
|
sl@0
|
833 |
|
sl@0
|
834 |
public:
|
sl@0
|
835 |
IMPORT_C RSqlStatement();
|
sl@0
|
836 |
IMPORT_C TInt Prepare(RSqlDatabase& aDatabase, const TDesC& aSqlStmt);
|
sl@0
|
837 |
IMPORT_C TInt Prepare(RSqlDatabase& aDatabase, const TDesC8& aSqlStmt);
|
sl@0
|
838 |
IMPORT_C void PrepareL(RSqlDatabase& aDatabase, const TDesC& aSqlStmt);
|
sl@0
|
839 |
IMPORT_C void PrepareL(RSqlDatabase& aDatabase, const TDesC8& aSqlStmt);
|
sl@0
|
840 |
IMPORT_C void Close();
|
sl@0
|
841 |
IMPORT_C TBool AtRow() const;
|
sl@0
|
842 |
IMPORT_C TInt Reset();
|
sl@0
|
843 |
IMPORT_C TInt Exec();
|
sl@0
|
844 |
IMPORT_C void Exec(TRequestStatus& aStatus);
|
sl@0
|
845 |
IMPORT_C TInt Next();
|
sl@0
|
846 |
|
sl@0
|
847 |
IMPORT_C TInt ParameterIndex(const TDesC& aParameterName) const;
|
sl@0
|
848 |
IMPORT_C TInt ColumnCount() const;
|
sl@0
|
849 |
IMPORT_C TInt ColumnIndex(const TDesC& aColumnName) const;
|
sl@0
|
850 |
IMPORT_C TSqlColumnType ColumnType(TInt aColumnIndex) const;
|
sl@0
|
851 |
IMPORT_C TInt DeclaredColumnType(TInt aColumnIndex, TSqlColumnType& aColumnType) const;
|
sl@0
|
852 |
IMPORT_C TInt ColumnSize(TInt aColumnIndex) const;
|
sl@0
|
853 |
|
sl@0
|
854 |
IMPORT_C TInt BindNull(TInt aParameterIndex);
|
sl@0
|
855 |
IMPORT_C TInt BindInt(TInt aParameterIndex, TInt aParameterValue);
|
sl@0
|
856 |
IMPORT_C TInt BindInt64(TInt aParameterIndex, TInt64 aParameterValue);
|
sl@0
|
857 |
IMPORT_C TInt BindReal(TInt aParameterIndex, TReal aParameterValue);
|
sl@0
|
858 |
IMPORT_C TInt BindText(TInt aParameterIndex, const TDesC& aParameterText);
|
sl@0
|
859 |
IMPORT_C TInt BindBinary(TInt aParameterIndex, const TDesC8& aParameterData);
|
sl@0
|
860 |
IMPORT_C TInt BindZeroBlob(TInt aParameterIndex, TInt aBlobSize);
|
sl@0
|
861 |
|
sl@0
|
862 |
IMPORT_C TBool IsNull(TInt aColumnIndex) const;
|
sl@0
|
863 |
IMPORT_C TInt ColumnInt(TInt aColumnIndex) const;
|
sl@0
|
864 |
IMPORT_C TInt64 ColumnInt64(TInt aColumnIndex) const;
|
sl@0
|
865 |
IMPORT_C TReal ColumnReal(TInt aColumnIndex) const;
|
sl@0
|
866 |
|
sl@0
|
867 |
IMPORT_C TPtrC ColumnTextL(TInt aColumnIndex) const;
|
sl@0
|
868 |
IMPORT_C TInt ColumnText(TInt aColumnIndex, TPtrC& aPtr) const;
|
sl@0
|
869 |
IMPORT_C TInt ColumnText(TInt aColumnIndex, TDes& aDest) const;
|
sl@0
|
870 |
|
sl@0
|
871 |
IMPORT_C TPtrC8 ColumnBinaryL(TInt aColumnIndex) const;
|
sl@0
|
872 |
IMPORT_C TInt ColumnBinary(TInt aColumnIndex, TPtrC8& aPtr) const;
|
sl@0
|
873 |
IMPORT_C TInt ColumnBinary(TInt aColumnIndex, TDes8& aDest) const;
|
sl@0
|
874 |
|
sl@0
|
875 |
IMPORT_C TInt ColumnName(TInt aColumnIndex, TPtrC& aNameDest);
|
sl@0
|
876 |
IMPORT_C TInt ParameterName(TInt aParameterIndex, TPtrC& aNameDest);
|
sl@0
|
877 |
IMPORT_C TInt ParamName(TInt aParameterIndex, TPtrC& aNameDest);
|
sl@0
|
878 |
private:
|
sl@0
|
879 |
CSqlStatementImpl& Impl() const;
|
sl@0
|
880 |
|
sl@0
|
881 |
private:
|
sl@0
|
882 |
CSqlStatementImpl* iImpl;
|
sl@0
|
883 |
|
sl@0
|
884 |
};
|
sl@0
|
885 |
|
sl@0
|
886 |
/**
|
sl@0
|
887 |
The read stream interface.
|
sl@0
|
888 |
|
sl@0
|
889 |
The class is used for reading the content of a column containing either
|
sl@0
|
890 |
binary data or text data.
|
sl@0
|
891 |
|
sl@0
|
892 |
The class derives from RReadStream, which means that all RReadStream public
|
sl@0
|
893 |
member functions and predefined stream operators \>\> can be used to deal
|
sl@0
|
894 |
with column data.
|
sl@0
|
895 |
|
sl@0
|
896 |
If the blob or text data is over 2Mb in size then it is recommended that the
|
sl@0
|
897 |
RSqlBlobReadStream or TSqlBlob class is used instead. These classes provide
|
sl@0
|
898 |
a more RAM-efficient way of reading large amounts of blob or text data from
|
sl@0
|
899 |
a database.
|
sl@0
|
900 |
|
sl@0
|
901 |
The following two cases are typical:
|
sl@0
|
902 |
|
sl@0
|
903 |
CASE 1 - processing large binary column data.
|
sl@0
|
904 |
|
sl@0
|
905 |
@code
|
sl@0
|
906 |
RSqlDatabase db;
|
sl@0
|
907 |
<open/create "db" object>;
|
sl@0
|
908 |
RSqlStatement stmt;
|
sl@0
|
909 |
<prepare "stmt" object>;
|
sl@0
|
910 |
TInt rc = stmt.Next();
|
sl@0
|
911 |
if(rc == KSqlAtRow)
|
sl@0
|
912 |
{
|
sl@0
|
913 |
RSqlColumnReadStream colStream;
|
sl@0
|
914 |
CleanupClosePushL(colStream);
|
sl@0
|
915 |
User::LeaveIfError(colStream.ColumnBinary(stmt, <column_number>));
|
sl@0
|
916 |
TInt size = stmt.ColumnSize(<column_number>);
|
sl@0
|
917 |
//read the column data in a buffer ("buf" variable).
|
sl@0
|
918 |
//(or the column data can be retrieved in a smaller portions)
|
sl@0
|
919 |
colStream.ReadL(buf, size);
|
sl@0
|
920 |
//Close the stream
|
sl@0
|
921 |
CleanupStack::PopAndDestroy(&colStream);
|
sl@0
|
922 |
}
|
sl@0
|
923 |
else
|
sl@0
|
924 |
{
|
sl@0
|
925 |
...
|
sl@0
|
926 |
}
|
sl@0
|
927 |
@endcode
|
sl@0
|
928 |
|
sl@0
|
929 |
CASE 2 - processing large text column data.
|
sl@0
|
930 |
|
sl@0
|
931 |
@code
|
sl@0
|
932 |
RSqlDatabase db;
|
sl@0
|
933 |
<open/create "db" object>;
|
sl@0
|
934 |
RSqlStatement stmt;
|
sl@0
|
935 |
<prepare "stmt" object>;
|
sl@0
|
936 |
TInt rc = stmt.Next();
|
sl@0
|
937 |
if(rc == KSqlAtRow)
|
sl@0
|
938 |
{
|
sl@0
|
939 |
RSqlColumnReadStream colStream;
|
sl@0
|
940 |
CleanupClosePushL(colStream);
|
sl@0
|
941 |
User::LeaveIfError(colStream.ColumnText(stmt, <column_number>));
|
sl@0
|
942 |
TInt size = stmt.ColumnSize(<column_number>);
|
sl@0
|
943 |
//read the column data in a buffer ("buf" variable).
|
sl@0
|
944 |
//(or the column data can be retrieved in a smaller portions)
|
sl@0
|
945 |
colStream.ReadL(buf, size);
|
sl@0
|
946 |
//Close the stream
|
sl@0
|
947 |
CleanupStack::PopAndDestroy(&colStream);
|
sl@0
|
948 |
}
|
sl@0
|
949 |
else
|
sl@0
|
950 |
{
|
sl@0
|
951 |
...
|
sl@0
|
952 |
}
|
sl@0
|
953 |
@endcode
|
sl@0
|
954 |
|
sl@0
|
955 |
@see RSqlBlobReadStream
|
sl@0
|
956 |
@see TSqlBlob
|
sl@0
|
957 |
|
sl@0
|
958 |
@publishedAll
|
sl@0
|
959 |
@released
|
sl@0
|
960 |
*/
|
sl@0
|
961 |
class RSqlColumnReadStream : public RReadStream
|
sl@0
|
962 |
{
|
sl@0
|
963 |
public:
|
sl@0
|
964 |
IMPORT_C TInt ColumnText(RSqlStatement& aStmt, TInt aColumnIndex);
|
sl@0
|
965 |
IMPORT_C TInt ColumnBinary(RSqlStatement& aStmt, TInt aColumnIndex);
|
sl@0
|
966 |
IMPORT_C void ColumnTextL(RSqlStatement& aStmt, TInt aColumnIndex);
|
sl@0
|
967 |
IMPORT_C void ColumnBinaryL(RSqlStatement& aStmt, TInt aColumnIndex);
|
sl@0
|
968 |
|
sl@0
|
969 |
};
|
sl@0
|
970 |
|
sl@0
|
971 |
/**
|
sl@0
|
972 |
The write stream interface.
|
sl@0
|
973 |
|
sl@0
|
974 |
The class is used to set binary data or text data into a parameter.
|
sl@0
|
975 |
This is a also known as binding a parameter.
|
sl@0
|
976 |
|
sl@0
|
977 |
The class derives from RWriteStream, which means that all RWriteStream public
|
sl@0
|
978 |
member functions and predefined stream operators \<\< can be used to deal with
|
sl@0
|
979 |
the parameter data.
|
sl@0
|
980 |
|
sl@0
|
981 |
If the blob or text data is over 2Mb in size then it is recommended that the
|
sl@0
|
982 |
RSqlBlobWriteStream or TSqlBlob class is used instead. These classes provide
|
sl@0
|
983 |
a more RAM-efficient way of writing large amounts of blob or text data to
|
sl@0
|
984 |
a database.
|
sl@0
|
985 |
|
sl@0
|
986 |
The following two cases are typical:
|
sl@0
|
987 |
|
sl@0
|
988 |
CASE 1 - binding a large binary parameter.
|
sl@0
|
989 |
|
sl@0
|
990 |
@code
|
sl@0
|
991 |
RSqlDatabase db;
|
sl@0
|
992 |
<open/create "db" object>;
|
sl@0
|
993 |
RSqlStatement stmt;
|
sl@0
|
994 |
<prepare "stmt" object>;//The SQL statement references large binary parameter
|
sl@0
|
995 |
RSqlParamWriteStream paramStream;
|
sl@0
|
996 |
CleanupClosePushL(paramStream);
|
sl@0
|
997 |
User::LeaveIfError(paramStream.BindBinary(stmt, <parameter_number>));
|
sl@0
|
998 |
//Write out the parameter data
|
sl@0
|
999 |
paramStream.WriteL(..);
|
sl@0
|
1000 |
paramStream << <data>;
|
sl@0
|
1001 |
...
|
sl@0
|
1002 |
//Commit the stream
|
sl@0
|
1003 |
paramStream.CommitL();
|
sl@0
|
1004 |
//Continue with the statement processing issuing Next() or Exec().
|
sl@0
|
1005 |
TInt rc = stmt.Next();//rc = stmt.Exec()
|
sl@0
|
1006 |
//Close the stream
|
sl@0
|
1007 |
CleanupStack::PopAndDestroy(¶mStream);
|
sl@0
|
1008 |
@endcode
|
sl@0
|
1009 |
|
sl@0
|
1010 |
CASE 2 - binding a large text parameter.
|
sl@0
|
1011 |
|
sl@0
|
1012 |
@code
|
sl@0
|
1013 |
RSqlDatabase db;
|
sl@0
|
1014 |
<open/create "db" object>;
|
sl@0
|
1015 |
RSqlStatement stmt;
|
sl@0
|
1016 |
<prepare "stmt" object>;//The SQL statement references large text parameter
|
sl@0
|
1017 |
RSqlParamWriteStream paramStream;
|
sl@0
|
1018 |
CleanupClosePushL(paramStream);
|
sl@0
|
1019 |
User::LeaveIfError(paramStream.BindText(stmt, <parameter_number>));
|
sl@0
|
1020 |
//Write out the parameter data
|
sl@0
|
1021 |
paramStream.WriteL(..);
|
sl@0
|
1022 |
paramStream << <data>;
|
sl@0
|
1023 |
...
|
sl@0
|
1024 |
//Commit the stream
|
sl@0
|
1025 |
paramStream.CommitL();
|
sl@0
|
1026 |
//Continue with the statement processing issuing Next() or Exec().
|
sl@0
|
1027 |
TInt rc = stmt.Next();//rc = stmt.Exec()
|
sl@0
|
1028 |
//Close the stream
|
sl@0
|
1029 |
CleanupStack::PopAndDestroy(¶mStream);
|
sl@0
|
1030 |
@endcode
|
sl@0
|
1031 |
|
sl@0
|
1032 |
@see RSqlBlobWriteStream
|
sl@0
|
1033 |
@see TSqlBlob
|
sl@0
|
1034 |
|
sl@0
|
1035 |
@publishedAll
|
sl@0
|
1036 |
@released
|
sl@0
|
1037 |
*/
|
sl@0
|
1038 |
class RSqlParamWriteStream : public RWriteStream
|
sl@0
|
1039 |
{
|
sl@0
|
1040 |
public:
|
sl@0
|
1041 |
IMPORT_C TInt BindText(RSqlStatement& aStmt, TInt aParameterIndex);
|
sl@0
|
1042 |
IMPORT_C TInt BindBinary(RSqlStatement& aStmt, TInt aParameterIndex);
|
sl@0
|
1043 |
IMPORT_C void BindTextL(RSqlStatement& aStmt, TInt aParameterIndex);
|
sl@0
|
1044 |
IMPORT_C void BindBinaryL(RSqlStatement& aStmt, TInt aParameterIndex);
|
sl@0
|
1045 |
|
sl@0
|
1046 |
};
|
sl@0
|
1047 |
|
sl@0
|
1048 |
/**
|
sl@0
|
1049 |
A direct handle to a blob, used for reading the content of the blob via a streaming interface.
|
sl@0
|
1050 |
|
sl@0
|
1051 |
The target blob is identified using the relevant database connection, table name,
|
sl@0
|
1052 |
column name and ROWID of the record to which the blob belongs (also the attached
|
sl@0
|
1053 |
database name if the blob is contained in an attached database).
|
sl@0
|
1054 |
|
sl@0
|
1055 |
A blob in this context refers to the content of a BLOB or TEXT column,
|
sl@0
|
1056 |
and a read handle can be opened on both types of column.
|
sl@0
|
1057 |
For TEXT columns it is important to note that no conversions are performed on
|
sl@0
|
1058 |
data retrieved using this class - the data is returned as a stream of bytes.
|
sl@0
|
1059 |
|
sl@0
|
1060 |
The class derives from RReadStream and provides all of its streaming methods.
|
sl@0
|
1061 |
The SizeL() method can be used to check the total size of the blob, in bytes.
|
sl@0
|
1062 |
|
sl@0
|
1063 |
It is strongly recommended to use this class for reading the content of large blobs
|
sl@0
|
1064 |
because it significantly reduces the amount of RAM that is used when compared to using the
|
sl@0
|
1065 |
RSqlColumnReadStream, RSqlStatement::ColumnBinary(L) or RSqlStatement::ColumnText(L) APIs.
|
sl@0
|
1066 |
|
sl@0
|
1067 |
Specifically, it is recommended to use this class for blobs over 2Mb in size.
|
sl@0
|
1068 |
Indeed, in some circumstances where very large blobs are in use it may be impossible
|
sl@0
|
1069 |
to read the blob content using the legacy APIs (due to the server's finite RAM capacity),
|
sl@0
|
1070 |
and this class may provide the only way to access the data.
|
sl@0
|
1071 |
|
sl@0
|
1072 |
The following code illustrates typical use cases of this class:
|
sl@0
|
1073 |
|
sl@0
|
1074 |
CASE 1 - reading large blob data from the last inserted record.
|
sl@0
|
1075 |
|
sl@0
|
1076 |
@code
|
sl@0
|
1077 |
RSqlDatabase db;
|
sl@0
|
1078 |
CleanupClosePushL(db);
|
sl@0
|
1079 |
<open/create "db" object>;
|
sl@0
|
1080 |
RSqlBlobReadStream rdStrm;
|
sl@0
|
1081 |
CleanupClosePushL(rdStrm);
|
sl@0
|
1082 |
rdStrm.OpenL(db, <table_name>, <column_name>);
|
sl@0
|
1083 |
HBufC8* buffer = HBufC8::NewLC(KBlockSize);
|
sl@0
|
1084 |
TPtr8 bufPtr(buffer->Des());
|
sl@0
|
1085 |
TInt size = rdStrm.SizeL();
|
sl@0
|
1086 |
while(size)
|
sl@0
|
1087 |
{
|
sl@0
|
1088 |
TInt bytesToRead = (size >= KBlockSize) ? KBlockSize : size ;
|
sl@0
|
1089 |
rdStrm.ReadL(bufPtr, bytesToRead); // read the next block of data
|
sl@0
|
1090 |
<do something with the block of data>
|
sl@0
|
1091 |
size =- bytesToRead;
|
sl@0
|
1092 |
}
|
sl@0
|
1093 |
CleanupStack::PopAndDestroy(3); // buffer, rdStrm, db
|
sl@0
|
1094 |
@endcode
|
sl@0
|
1095 |
|
sl@0
|
1096 |
CASE 2 - reading large blob data from a selection of records.
|
sl@0
|
1097 |
|
sl@0
|
1098 |
@code
|
sl@0
|
1099 |
RSqlDatabase db;
|
sl@0
|
1100 |
CleanupClosePushL(db);
|
sl@0
|
1101 |
<open/create "db" object>;
|
sl@0
|
1102 |
RSqlStatement stmt;
|
sl@0
|
1103 |
CleanupClosePushL(stmt);
|
sl@0
|
1104 |
<prepare "stmt" object to SELECT the ROWIDs of a collection of blob objects>;
|
sl@0
|
1105 |
TInt rc = 0;
|
sl@0
|
1106 |
while((rc = stmt.Next()) == KSqlAtRow)
|
sl@0
|
1107 |
{
|
sl@0
|
1108 |
TInt64 rowid = stmt.ColumnInt64(0);
|
sl@0
|
1109 |
RSqlBlobReadStream rdStrm;
|
sl@0
|
1110 |
CleanupClosePushL(rdStrm);
|
sl@0
|
1111 |
rdStrm.OpenL(db, <table_name>, <column_name>, rowid);
|
sl@0
|
1112 |
|
sl@0
|
1113 |
HBufC8* buffer = HBufC8::NewLC(KBlockSize);
|
sl@0
|
1114 |
TPtr8 bufPtr(buffer->Des());
|
sl@0
|
1115 |
TInt size = rdStrm.SizeL();
|
sl@0
|
1116 |
while(size)
|
sl@0
|
1117 |
{
|
sl@0
|
1118 |
TInt bytesToRead = (size >= KBlockSize) ? KBlockSize : size ;
|
sl@0
|
1119 |
rdStrm.ReadL(bufPtr, bytesToRead); // read the next block of data
|
sl@0
|
1120 |
<do something with the block of data>
|
sl@0
|
1121 |
size =- bytesToRead;
|
sl@0
|
1122 |
}
|
sl@0
|
1123 |
CleanupStack::PopAndDestroy(2); // buffer, rdStrm
|
sl@0
|
1124 |
}
|
sl@0
|
1125 |
CleanupStack::PopAndDestroy(2); // stmt, db
|
sl@0
|
1126 |
@endcode
|
sl@0
|
1127 |
|
sl@0
|
1128 |
@see RSqlBlobWriteStream
|
sl@0
|
1129 |
@see RSqlDatabase::LastInsertedRowId()
|
sl@0
|
1130 |
|
sl@0
|
1131 |
@publishedAll
|
sl@0
|
1132 |
@released
|
sl@0
|
1133 |
*/
|
sl@0
|
1134 |
class RSqlBlobReadStream : public RReadStream
|
sl@0
|
1135 |
{
|
sl@0
|
1136 |
public:
|
sl@0
|
1137 |
IMPORT_C void OpenL(RSqlDatabase& aDb, const TDesC& aTableName, const TDesC& aColumnName,
|
sl@0
|
1138 |
TInt64 aRowId = KSqlLastInsertedRowId, const TDesC& aDbName = KNullDesC);
|
sl@0
|
1139 |
IMPORT_C TInt SizeL();
|
sl@0
|
1140 |
};
|
sl@0
|
1141 |
|
sl@0
|
1142 |
/**
|
sl@0
|
1143 |
A direct handle to a blob, used for writing the content of the blob via a streaming interface.
|
sl@0
|
1144 |
|
sl@0
|
1145 |
The target blob is identified using the relevant database connection, table name,
|
sl@0
|
1146 |
column name and ROWID of the record to which the blob belongs (also the attached
|
sl@0
|
1147 |
database name if the blob is contained in an attached database).
|
sl@0
|
1148 |
|
sl@0
|
1149 |
A blob in this context refers to the content of a BLOB or TEXT column,
|
sl@0
|
1150 |
and a write handle can be opened on both types of column, except if the
|
sl@0
|
1151 |
column is indexed, in which case the open call will fail with KSqlErrGeneral.
|
sl@0
|
1152 |
For TEXT columns it is important to note that no conversions are performed on data
|
sl@0
|
1153 |
that is stored using this class - the data is simply stored as a stream of bytes.
|
sl@0
|
1154 |
|
sl@0
|
1155 |
The class derives from RWriteStream and provides all of its streaming methods.
|
sl@0
|
1156 |
The SizeL() method can be used to check the total size of the blob, in bytes.
|
sl@0
|
1157 |
Note that this class cannot be used to increase the size of a blob, only to modify
|
sl@0
|
1158 |
the existing contents of a blob. An attempt to write beyond the end of a blob will
|
sl@0
|
1159 |
fail with KErrEof.
|
sl@0
|
1160 |
|
sl@0
|
1161 |
It is strongly recommended to use this class for writing the content of large blobs
|
sl@0
|
1162 |
because it significantly reduces the amount of RAM that is used when compared to using
|
sl@0
|
1163 |
the RSqlParamWriteStream, RSqlStatement::BindBinary or RSqlStatement::BindText APIs.
|
sl@0
|
1164 |
|
sl@0
|
1165 |
Specifically, it is recommended to use this class for blobs over 2Mb in size.
|
sl@0
|
1166 |
Indeed, in some circumstances where very large blobs are required it may be impossible
|
sl@0
|
1167 |
to create a blob or update its content using the legacy APIs (due to the server's finite
|
sl@0
|
1168 |
RAM capacity), and this class may provide the only way to achieve this.
|
sl@0
|
1169 |
|
sl@0
|
1170 |
Using this class in combination with zeroblobs it is possible to create and manipulate
|
sl@0
|
1171 |
blobs that are gigabytes in size. A zeroblob acts as a place-holder for a blob whose
|
sl@0
|
1172 |
content is later written using this class and one can be created using an INSERT
|
sl@0
|
1173 |
statement that either contains the SQLite 'zeroblob()' function or on which
|
sl@0
|
1174 |
RSqlStatement::BindZeroBlob() has been executed.
|
sl@0
|
1175 |
Note that a zeroblob should be created in a column after which there are no columns
|
sl@0
|
1176 |
that contain anything other than zeroblobs or NULLs, otherwise the zeroblob must be
|
sl@0
|
1177 |
allocated in full in RAM.
|
sl@0
|
1178 |
|
sl@0
|
1179 |
When creating a zeroblob it is recommended, where possible, to create the zeroblob and
|
sl@0
|
1180 |
then write the blob content within the same transaction. Otherwise the zeroblob will
|
sl@0
|
1181 |
have to be journalled before being written to.
|
sl@0
|
1182 |
|
sl@0
|
1183 |
It is also strongly recommended to execute calls to WriteL() within a transaction.
|
sl@0
|
1184 |
If a leave occurs during a call to WriteL() then the current state of the blob object is
|
sl@0
|
1185 |
undefined and a ROLLBACK should be executed to return the blob object to its previous state.
|
sl@0
|
1186 |
Note that in order for a ROLLBACK to execute successfully all open RSqlBlobReadStream
|
sl@0
|
1187 |
and RSqlBlobWriteStream handles and all open RSqlStatement objects must be closed
|
sl@0
|
1188 |
before the ROLLBACK is executed.
|
sl@0
|
1189 |
|
sl@0
|
1190 |
The following code illustrates typical use cases of this class:
|
sl@0
|
1191 |
|
sl@0
|
1192 |
CASE 1 - creating a 5Mb blob.
|
sl@0
|
1193 |
|
sl@0
|
1194 |
@code
|
sl@0
|
1195 |
RSqlDatabase db;
|
sl@0
|
1196 |
CleanupClosePushL(db);
|
sl@0
|
1197 |
<open/create "db" object>;
|
sl@0
|
1198 |
CleanupStack::PushL(TCleanupItem(&DoRollback, &db)); // rollback function
|
sl@0
|
1199 |
TInt err = db.Exec(_L("BEGIN"));
|
sl@0
|
1200 |
<check err>
|
sl@0
|
1201 |
err = db.Exec(_L("INSERT INTO table1 VALUES(35, zeroblob(5242880))"));
|
sl@0
|
1202 |
<check err>
|
sl@0
|
1203 |
RSqlBlobWriteStream wrStrm;
|
sl@0
|
1204 |
CleanupClosePushL(wrStrm);
|
sl@0
|
1205 |
wrStrm.OpenL(db, <table_name>, <column_name>);
|
sl@0
|
1206 |
TInt size = wrStrm.SizeL();
|
sl@0
|
1207 |
while(size)
|
sl@0
|
1208 |
{
|
sl@0
|
1209 |
TInt bytesToWrite = (size >= KBlockSize) ? KBlockSize : size ;
|
sl@0
|
1210 |
<fill a buffer 'buf' with this amount of the blob data>
|
sl@0
|
1211 |
wrStrm.WriteL(buf); // write the next block of data
|
sl@0
|
1212 |
size =- bytesToWrite;
|
sl@0
|
1213 |
}
|
sl@0
|
1214 |
CleanupStack::PopAndDestroy(&wrStrm);
|
sl@0
|
1215 |
CleanupStack::Pop(); // TCleanupItem
|
sl@0
|
1216 |
err = db.Exec(_L("COMMIT")); // blob data committed to disk
|
sl@0
|
1217 |
<check err>
|
sl@0
|
1218 |
CleanupStack::PopAndDestroy(&db);
|
sl@0
|
1219 |
@endcode
|
sl@0
|
1220 |
|
sl@0
|
1221 |
CASE 2 - updating a large blob in the last inserted record.
|
sl@0
|
1222 |
|
sl@0
|
1223 |
@code
|
sl@0
|
1224 |
RSqlDatabase db;
|
sl@0
|
1225 |
CleanupClosePushL(db);
|
sl@0
|
1226 |
<open/create "db" object>;
|
sl@0
|
1227 |
CleanupStack::PushL(TCleanupItem(&DoRollback, &db)); // rollback function
|
sl@0
|
1228 |
TInt err = db.Exec(_L("BEGIN"));
|
sl@0
|
1229 |
<check err>
|
sl@0
|
1230 |
RSqlBlobWriteStream wrStrm;
|
sl@0
|
1231 |
CleanupClosePushL(wrStrm);
|
sl@0
|
1232 |
wrStrm.OpenL(db, <table_name>, <column_name>);
|
sl@0
|
1233 |
<fill a buffer 'buf' with the changed blob data>
|
sl@0
|
1234 |
wrStrm.WriteL(buf); // update the blob
|
sl@0
|
1235 |
CleanupStack::PopAndDestroy(&wrStrm);
|
sl@0
|
1236 |
CleanupStack::Pop(); // TCleanupItem
|
sl@0
|
1237 |
err = db.Exec(_L("COMMIT")); // blob data committed to disk
|
sl@0
|
1238 |
<check err>
|
sl@0
|
1239 |
CleanupStack::PopAndDestroy(&db);
|
sl@0
|
1240 |
@endcode
|
sl@0
|
1241 |
|
sl@0
|
1242 |
@see RSqlBlobReadStream
|
sl@0
|
1243 |
@see RSqlDatabase::LastInsertedRowId()
|
sl@0
|
1244 |
@see RSqlStatement::BindZeroBlob()
|
sl@0
|
1245 |
|
sl@0
|
1246 |
@publishedAll
|
sl@0
|
1247 |
@released
|
sl@0
|
1248 |
*/
|
sl@0
|
1249 |
class RSqlBlobWriteStream : public RWriteStream
|
sl@0
|
1250 |
{
|
sl@0
|
1251 |
public:
|
sl@0
|
1252 |
IMPORT_C void OpenL(RSqlDatabase& aDb, const TDesC& aTableName, const TDesC& aColumnName,
|
sl@0
|
1253 |
TInt64 aRowId = KSqlLastInsertedRowId, const TDesC& aDbName = KNullDesC);
|
sl@0
|
1254 |
IMPORT_C TInt SizeL();
|
sl@0
|
1255 |
};
|
sl@0
|
1256 |
|
sl@0
|
1257 |
/**
|
sl@0
|
1258 |
Utility class that provides methods for reading and writing the entire content of
|
sl@0
|
1259 |
a blob in a single call.
|
sl@0
|
1260 |
|
sl@0
|
1261 |
The target blob is identified using the relevant database connection, table name,
|
sl@0
|
1262 |
column name and ROWID of the record to which the blob belongs (also the attached
|
sl@0
|
1263 |
database name if the blob is contained in an attached database).
|
sl@0
|
1264 |
|
sl@0
|
1265 |
The behaviour of the RSqlBlobReadStream class and the recommendations for using
|
sl@0
|
1266 |
it exist for the Get() and GetLC() methods of this class. Similarly, the behaviour
|
sl@0
|
1267 |
of the RSqlBlobWriteStream class and the recommendations for using it exist for the
|
sl@0
|
1268 |
SetL() method of this class.
|
sl@0
|
1269 |
|
sl@0
|
1270 |
In particular, it is strongly recommended to use this class or the RSqlBlobReadStream
|
sl@0
|
1271 |
and RSqlBlobWriteStream classes for reading and writing the content of large blobs
|
sl@0
|
1272 |
because it significantly reduces the amount of RAM that is used when compared to using
|
sl@0
|
1273 |
the legacy streaming and RSqlStatement APIs.
|
sl@0
|
1274 |
|
sl@0
|
1275 |
Specifically, it is recommended to use this class for blobs over 2Mb in size.
|
sl@0
|
1276 |
Indeed, in some circumstances where very large blobs are in use it may be impossible
|
sl@0
|
1277 |
to read or write to a blob using the legacy APIs (due to the server's finite
|
sl@0
|
1278 |
RAM capacity), and this class or the RSqlBlobReadStream and RSqlBlobWriteStream classes
|
sl@0
|
1279 |
may provide the only way to achieve this.
|
sl@0
|
1280 |
|
sl@0
|
1281 |
It is strongly recommended to execute calls to the SetL() method within a transaction.
|
sl@0
|
1282 |
If a leave occurs during a call to SetL() then the current state of the blob object is
|
sl@0
|
1283 |
undefined and a ROLLBACK should be executed to return the blob object to its previous state.
|
sl@0
|
1284 |
Note that in order for a ROLLBACK to execute successfully all open RSqlBlobReadStream
|
sl@0
|
1285 |
and RSqlBlobWriteStream handles and all open RSqlStatement objects must be closed
|
sl@0
|
1286 |
before the ROLLBACK is executed.
|
sl@0
|
1287 |
|
sl@0
|
1288 |
When using SetL() to update the content of a zeroblob it is recommended, where possible,
|
sl@0
|
1289 |
to create the zeroblob and then call SetL() within the same transaction.
|
sl@0
|
1290 |
Otherwise the zeroblob will have to be journalled before being written to.
|
sl@0
|
1291 |
|
sl@0
|
1292 |
The following code illustrates typical use cases of this class:
|
sl@0
|
1293 |
|
sl@0
|
1294 |
CASE 1 - retrieving the entire content of a large blob.
|
sl@0
|
1295 |
|
sl@0
|
1296 |
@code
|
sl@0
|
1297 |
RSqlDatabase db;
|
sl@0
|
1298 |
CleanupClosePushL(db);
|
sl@0
|
1299 |
<open/create "db" object>;
|
sl@0
|
1300 |
HBufC8* wholeBlob = TSqlBlob::GetLC(db, <table_name>, <column_name>, <rowid>);
|
sl@0
|
1301 |
<do something with the blob data>
|
sl@0
|
1302 |
CleanupStack::PopAndDestroy(2); // wholeBlob, db
|
sl@0
|
1303 |
@endcode
|
sl@0
|
1304 |
|
sl@0
|
1305 |
|
sl@0
|
1306 |
CASE 2 - creating a 4Mb blob.
|
sl@0
|
1307 |
|
sl@0
|
1308 |
@code
|
sl@0
|
1309 |
RSqlDatabase db;
|
sl@0
|
1310 |
CleanupClosePushL(db);
|
sl@0
|
1311 |
<open/create "db" object>;
|
sl@0
|
1312 |
CleanupStack::PushL(TCleanupItem(&DoRollback, &db)); // rollback function
|
sl@0
|
1313 |
TInt err = db.Exec(_L("BEGIN"));
|
sl@0
|
1314 |
<check err>
|
sl@0
|
1315 |
err = db.Exec(_L("INSERT INTO table1 VALUES(99, zeroblob(4194304))"));
|
sl@0
|
1316 |
<check err>
|
sl@0
|
1317 |
<fill a buffer 'buf' with 4Mb of blob data>
|
sl@0
|
1318 |
TSqlBlob::SetL(db, <table_name>, <column_name>, buf);
|
sl@0
|
1319 |
CleanupStack::Pop(); // TCleanupItem
|
sl@0
|
1320 |
err = db.Exec(_L("COMMIT")); // blob data committed to disk
|
sl@0
|
1321 |
<check err>
|
sl@0
|
1322 |
CleanupStack::PopAndDestroy(&db);
|
sl@0
|
1323 |
@endcode
|
sl@0
|
1324 |
|
sl@0
|
1325 |
@see RSqlBlobReadStream
|
sl@0
|
1326 |
@see RSqlBlobWriteStream
|
sl@0
|
1327 |
@see RSqlDatabase::LastInsertedRowId()
|
sl@0
|
1328 |
@see RSqlStatement::BindZeroBlob()
|
sl@0
|
1329 |
|
sl@0
|
1330 |
@publishedAll
|
sl@0
|
1331 |
@released
|
sl@0
|
1332 |
*/
|
sl@0
|
1333 |
class TSqlBlob
|
sl@0
|
1334 |
{
|
sl@0
|
1335 |
public:
|
sl@0
|
1336 |
IMPORT_C static HBufC8* GetLC(RSqlDatabase& aDb,
|
sl@0
|
1337 |
const TDesC& aTableName,
|
sl@0
|
1338 |
const TDesC& aColumnName,
|
sl@0
|
1339 |
TInt64 aRowId = KSqlLastInsertedRowId,
|
sl@0
|
1340 |
const TDesC& aDbName = KNullDesC);
|
sl@0
|
1341 |
|
sl@0
|
1342 |
IMPORT_C static TInt Get(RSqlDatabase& aDb,
|
sl@0
|
1343 |
const TDesC& aTableName,
|
sl@0
|
1344 |
const TDesC& aColumnName,
|
sl@0
|
1345 |
TDes8& aBuffer,
|
sl@0
|
1346 |
TInt64 aRowId = KSqlLastInsertedRowId,
|
sl@0
|
1347 |
const TDesC& aDbName = KNullDesC);
|
sl@0
|
1348 |
|
sl@0
|
1349 |
IMPORT_C static void SetL(RSqlDatabase& aDb,
|
sl@0
|
1350 |
const TDesC& aTableName,
|
sl@0
|
1351 |
const TDesC& aColumnName,
|
sl@0
|
1352 |
const TDesC8& aData,
|
sl@0
|
1353 |
TInt64 aRowId = KSqlLastInsertedRowId,
|
sl@0
|
1354 |
const TDesC& aDbName = KNullDesC);
|
sl@0
|
1355 |
};
|
sl@0
|
1356 |
|
sl@0
|
1357 |
/**
|
sl@0
|
1358 |
Defines a set of categories for the values returned by the SQL API.
|
sl@0
|
1359 |
|
sl@0
|
1360 |
A call to an SQL API may complete with a non-zero return code indicating that some
|
sl@0
|
1361 |
unexpected behaviour has occurred. This can be categorised in a number of ways,
|
sl@0
|
1362 |
for example, as a Symbian OS error, or as a database error etc.
|
sl@0
|
1363 |
|
sl@0
|
1364 |
Callers to the SQL API may not want to be concerned with the detailed meaning of
|
sl@0
|
1365 |
a specific return code value, and may find it sufficient just to know the category
|
sl@0
|
1366 |
of the error.
|
sl@0
|
1367 |
|
sl@0
|
1368 |
The category associated with a specific return code can be found by passing the
|
sl@0
|
1369 |
return code value to the function SqlRetCodeClass().
|
sl@0
|
1370 |
|
sl@0
|
1371 |
@publishedAll
|
sl@0
|
1372 |
@released
|
sl@0
|
1373 |
*/
|
sl@0
|
1374 |
enum TSqlRetCodeClass
|
sl@0
|
1375 |
{
|
sl@0
|
1376 |
/**
|
sl@0
|
1377 |
Indicates that a return code is just for information.
|
sl@0
|
1378 |
|
sl@0
|
1379 |
This category corresponds to the SQL API return codes: KSqlAtRow and KSqlAtEnd.
|
sl@0
|
1380 |
|
sl@0
|
1381 |
@see SqlRetCodeClass()
|
sl@0
|
1382 |
@see TSqlRetCodeClass
|
sl@0
|
1383 |
@see KSqlAtRow
|
sl@0
|
1384 |
@see KSqlAtEnd
|
sl@0
|
1385 |
*/
|
sl@0
|
1386 |
ESqlInformation,
|
sl@0
|
1387 |
|
sl@0
|
1388 |
/**
|
sl@0
|
1389 |
Indicates that a return code represents a database-specific error.
|
sl@0
|
1390 |
|
sl@0
|
1391 |
This category corresponds to SQL API return codes in the range KSqlErrGeneral to KSqlErrStmtExpired.
|
sl@0
|
1392 |
|
sl@0
|
1393 |
@see SqlRetCodeClass()
|
sl@0
|
1394 |
@see TSqlRetCodeClass
|
sl@0
|
1395 |
@see KSqlErrGeneral
|
sl@0
|
1396 |
@see KSqlErrStmtExpired
|
sl@0
|
1397 |
*/
|
sl@0
|
1398 |
ESqlDbError,
|
sl@0
|
1399 |
|
sl@0
|
1400 |
/**
|
sl@0
|
1401 |
Indicates that a return code represents a Symbian OS error.
|
sl@0
|
1402 |
|
sl@0
|
1403 |
This category corresponds to SQL API return codes in the range KErrPermissionDenied to KErrNone,
|
sl@0
|
1404 |
|
sl@0
|
1405 |
@see SqlRetCodeClass()
|
sl@0
|
1406 |
@see TSqlRetCodeClass
|
sl@0
|
1407 |
@see KErrPermissionDenied
|
sl@0
|
1408 |
@see KErrNone
|
sl@0
|
1409 |
*/
|
sl@0
|
1410 |
ESqlOsError
|
sl@0
|
1411 |
};
|
sl@0
|
1412 |
|
sl@0
|
1413 |
/**
|
sl@0
|
1414 |
An information type return code from a call to RSqlStatement::Next().
|
sl@0
|
1415 |
|
sl@0
|
1416 |
It means that the RSqlStatement object points to a valid row, and that
|
sl@0
|
1417 |
the user can access the column data using the appropriate RSqlStatement
|
sl@0
|
1418 |
member functions.
|
sl@0
|
1419 |
|
sl@0
|
1420 |
@see RSqlStatement::Next()
|
sl@0
|
1421 |
@see RSqlStatement
|
sl@0
|
1422 |
@see ESqlInformation
|
sl@0
|
1423 |
@see TSqlRetCodeClass
|
sl@0
|
1424 |
|
sl@0
|
1425 |
@publishedAll
|
sl@0
|
1426 |
@released
|
sl@0
|
1427 |
*/
|
sl@0
|
1428 |
const TInt KSqlAtRow = 1;
|
sl@0
|
1429 |
|
sl@0
|
1430 |
/**
|
sl@0
|
1431 |
An information type return code from a call to RSqlStatement::Next().
|
sl@0
|
1432 |
|
sl@0
|
1433 |
It means that the RSqlStatement object does not point to a valid row,
|
sl@0
|
1434 |
and that column data accessors cannot be used.
|
sl@0
|
1435 |
|
sl@0
|
1436 |
@see RSqlStatement::Next()
|
sl@0
|
1437 |
@see RSqlStatement
|
sl@0
|
1438 |
@see ESqlInformation
|
sl@0
|
1439 |
@see TSqlRetCodeClass
|
sl@0
|
1440 |
|
sl@0
|
1441 |
@publishedAll
|
sl@0
|
1442 |
@released
|
sl@0
|
1443 |
*/
|
sl@0
|
1444 |
const TInt KSqlAtEnd = 2;
|
sl@0
|
1445 |
|
sl@0
|
1446 |
/**
|
sl@0
|
1447 |
An SQL database-specific error type return code from a call to the SQL API.
|
sl@0
|
1448 |
|
sl@0
|
1449 |
It indicates a general SQL error or a missing database.
|
sl@0
|
1450 |
|
sl@0
|
1451 |
@see RSqlStatement
|
sl@0
|
1452 |
@see ESqlDbError
|
sl@0
|
1453 |
@see TSqlRetCodeClass
|
sl@0
|
1454 |
|
sl@0
|
1455 |
@publishedAll
|
sl@0
|
1456 |
@released
|
sl@0
|
1457 |
*/
|
sl@0
|
1458 |
const TInt KSqlErrGeneral = -311;
|
sl@0
|
1459 |
|
sl@0
|
1460 |
/**
|
sl@0
|
1461 |
An SQL database-specific error type return code from a call to the SQL API.
|
sl@0
|
1462 |
|
sl@0
|
1463 |
It indicates an internal logic error in the SQL database engine, and specifically
|
sl@0
|
1464 |
that an internal consistency check within the SQL database engine has failed.
|
sl@0
|
1465 |
|
sl@0
|
1466 |
@see RSqlStatement
|
sl@0
|
1467 |
@see ESqlDbError
|
sl@0
|
1468 |
@see TSqlRetCodeClass
|
sl@0
|
1469 |
|
sl@0
|
1470 |
@publishedAll
|
sl@0
|
1471 |
@released
|
sl@0
|
1472 |
*/
|
sl@0
|
1473 |
const TInt KSqlErrInternal = -312;
|
sl@0
|
1474 |
|
sl@0
|
1475 |
/**
|
sl@0
|
1476 |
An SQL database-specific error type return code from a call to the SQL API.
|
sl@0
|
1477 |
|
sl@0
|
1478 |
It indicates that access permission has been denied.
|
sl@0
|
1479 |
|
sl@0
|
1480 |
@see RSqlStatement
|
sl@0
|
1481 |
@see ESqlDbError
|
sl@0
|
1482 |
@see TSqlRetCodeClass
|
sl@0
|
1483 |
|
sl@0
|
1484 |
@publishedAll
|
sl@0
|
1485 |
@released
|
sl@0
|
1486 |
*/
|
sl@0
|
1487 |
const TInt KSqlErrPermission = -313;
|
sl@0
|
1488 |
|
sl@0
|
1489 |
/**
|
sl@0
|
1490 |
An SQL database-specific error type return code from a call to the SQL API.
|
sl@0
|
1491 |
|
sl@0
|
1492 |
It indicates an internal logic error in the SQL database engine, and specifically
|
sl@0
|
1493 |
that a callback routine requested an abort.
|
sl@0
|
1494 |
|
sl@0
|
1495 |
@publishedAll
|
sl@0
|
1496 |
@released
|
sl@0
|
1497 |
*/
|
sl@0
|
1498 |
const TInt KSqlErrAbort = -314;
|
sl@0
|
1499 |
|
sl@0
|
1500 |
/**
|
sl@0
|
1501 |
An SQL database-specific error type return code from a call to the SQL API.
|
sl@0
|
1502 |
|
sl@0
|
1503 |
It indicates that the database file is locked.
|
sl@0
|
1504 |
|
sl@0
|
1505 |
@see RSqlStatement
|
sl@0
|
1506 |
@see ESqlDbError
|
sl@0
|
1507 |
@see TSqlRetCodeClass
|
sl@0
|
1508 |
|
sl@0
|
1509 |
@publishedAll
|
sl@0
|
1510 |
@released
|
sl@0
|
1511 |
*/
|
sl@0
|
1512 |
const TInt KSqlErrBusy = -315;
|
sl@0
|
1513 |
|
sl@0
|
1514 |
/**
|
sl@0
|
1515 |
An SQL database-specific error type return code from a call to the SQL API.
|
sl@0
|
1516 |
|
sl@0
|
1517 |
It indicates that a table in the database is locked.
|
sl@0
|
1518 |
|
sl@0
|
1519 |
@see RSqlStatement
|
sl@0
|
1520 |
@see ESqlDbError
|
sl@0
|
1521 |
@see TSqlRetCodeClass
|
sl@0
|
1522 |
|
sl@0
|
1523 |
@publishedAll
|
sl@0
|
1524 |
@released
|
sl@0
|
1525 |
*/
|
sl@0
|
1526 |
const TInt KSqlErrLocked = -316;
|
sl@0
|
1527 |
|
sl@0
|
1528 |
/**
|
sl@0
|
1529 |
An SQL database-specific error type return code from a call to the SQL API.
|
sl@0
|
1530 |
|
sl@0
|
1531 |
It indicates an attempt to write to a database that is read-only.
|
sl@0
|
1532 |
|
sl@0
|
1533 |
@see RSqlStatement
|
sl@0
|
1534 |
@see ESqlDbError
|
sl@0
|
1535 |
@see TSqlRetCodeClass
|
sl@0
|
1536 |
|
sl@0
|
1537 |
@publishedAll
|
sl@0
|
1538 |
@released
|
sl@0
|
1539 |
*/
|
sl@0
|
1540 |
const TInt KSqlErrReadOnly = -318;
|
sl@0
|
1541 |
|
sl@0
|
1542 |
/**
|
sl@0
|
1543 |
SQL database-specific error type. Operation terminated.
|
sl@0
|
1544 |
|
sl@0
|
1545 |
@publishedAll
|
sl@0
|
1546 |
@released
|
sl@0
|
1547 |
*/
|
sl@0
|
1548 |
const TInt KSqlErrInterrupt = -319;
|
sl@0
|
1549 |
|
sl@0
|
1550 |
/**
|
sl@0
|
1551 |
An SQL database-specific error type return code from a call to the SQL API.
|
sl@0
|
1552 |
|
sl@0
|
1553 |
It indicates that a disk I/O error has occurred.
|
sl@0
|
1554 |
|
sl@0
|
1555 |
@see RSqlStatement
|
sl@0
|
1556 |
@see ESqlDbError
|
sl@0
|
1557 |
@see TSqlRetCodeClass
|
sl@0
|
1558 |
|
sl@0
|
1559 |
@publishedAll
|
sl@0
|
1560 |
@released
|
sl@0
|
1561 |
*/
|
sl@0
|
1562 |
const TInt KSqlErrIO = -320;
|
sl@0
|
1563 |
|
sl@0
|
1564 |
/**
|
sl@0
|
1565 |
An SQL database-specific error type return code from a call to the SQL API.
|
sl@0
|
1566 |
|
sl@0
|
1567 |
It indicates that the database disk image is malformed.
|
sl@0
|
1568 |
|
sl@0
|
1569 |
@see RSqlStatement
|
sl@0
|
1570 |
@see ESqlDbError
|
sl@0
|
1571 |
@see TSqlRetCodeClass
|
sl@0
|
1572 |
|
sl@0
|
1573 |
@publishedAll
|
sl@0
|
1574 |
@released
|
sl@0
|
1575 |
*/
|
sl@0
|
1576 |
const TInt KSqlErrCorrupt = -321;
|
sl@0
|
1577 |
|
sl@0
|
1578 |
/**
|
sl@0
|
1579 |
SQL database-specific error type. Table or record not found.
|
sl@0
|
1580 |
|
sl@0
|
1581 |
@publishedAll
|
sl@0
|
1582 |
@released
|
sl@0
|
1583 |
*/
|
sl@0
|
1584 |
const TInt KSqlErrNotFound = -322;
|
sl@0
|
1585 |
|
sl@0
|
1586 |
/**
|
sl@0
|
1587 |
An SQL database-specific error type return code from a call to the SQL API.
|
sl@0
|
1588 |
|
sl@0
|
1589 |
It indicates that an insertion operation has failed because an autoincrement column used up
|
sl@0
|
1590 |
all awailable rowids.
|
sl@0
|
1591 |
|
sl@0
|
1592 |
@see RSqlStatement
|
sl@0
|
1593 |
@see ESqlDbError
|
sl@0
|
1594 |
@see TSqlRetCodeClass
|
sl@0
|
1595 |
|
sl@0
|
1596 |
@publishedAll
|
sl@0
|
1597 |
@released
|
sl@0
|
1598 |
*/
|
sl@0
|
1599 |
const TInt KSqlErrFull = -323;
|
sl@0
|
1600 |
|
sl@0
|
1601 |
/**
|
sl@0
|
1602 |
An SQL database-specific error type return code from a call to the SQL API.
|
sl@0
|
1603 |
|
sl@0
|
1604 |
It indicates a failure to open the database file.
|
sl@0
|
1605 |
|
sl@0
|
1606 |
@see RSqlStatement
|
sl@0
|
1607 |
@see ESqlDbError
|
sl@0
|
1608 |
@see TSqlRetCodeClass
|
sl@0
|
1609 |
|
sl@0
|
1610 |
@publishedAll
|
sl@0
|
1611 |
@released
|
sl@0
|
1612 |
*/
|
sl@0
|
1613 |
const TInt KSqlErrCantOpen = -324;
|
sl@0
|
1614 |
|
sl@0
|
1615 |
/**
|
sl@0
|
1616 |
An SQL database-specific error type return code from a call to the SQL API.
|
sl@0
|
1617 |
|
sl@0
|
1618 |
It indicates a database lock protocol error.
|
sl@0
|
1619 |
|
sl@0
|
1620 |
@see RSqlStatement
|
sl@0
|
1621 |
@see ESqlDbError
|
sl@0
|
1622 |
@see TSqlRetCodeClass
|
sl@0
|
1623 |
|
sl@0
|
1624 |
@publishedAll
|
sl@0
|
1625 |
@released
|
sl@0
|
1626 |
*/
|
sl@0
|
1627 |
const TInt KSqlErrProtocol = -325;
|
sl@0
|
1628 |
|
sl@0
|
1629 |
/**
|
sl@0
|
1630 |
An SQL database-specific error type return code from a call to the SQL API.
|
sl@0
|
1631 |
|
sl@0
|
1632 |
It indicates that the database is empty.
|
sl@0
|
1633 |
|
sl@0
|
1634 |
@see RSqlStatement
|
sl@0
|
1635 |
@see ESqlDbError
|
sl@0
|
1636 |
@see TSqlRetCodeClass
|
sl@0
|
1637 |
|
sl@0
|
1638 |
@publishedAll
|
sl@0
|
1639 |
@released
|
sl@0
|
1640 |
*/
|
sl@0
|
1641 |
const TInt KSqlErrEmpty = -326;
|
sl@0
|
1642 |
|
sl@0
|
1643 |
/**
|
sl@0
|
1644 |
An SQL database-specific error type return code from a call to the SQL API.
|
sl@0
|
1645 |
|
sl@0
|
1646 |
It indicates that a prepared SQL statement is no longer valid
|
sl@0
|
1647 |
and cannot be executed.
|
sl@0
|
1648 |
|
sl@0
|
1649 |
The most common reason for this return code is that the database schema was modified after
|
sl@0
|
1650 |
the SQL statement was prepared. The SQL statement must be prepared again
|
sl@0
|
1651 |
using the RSqlStatement::Prepare() member functions.
|
sl@0
|
1652 |
|
sl@0
|
1653 |
Another possible reason for this return code is a detached database.
|
sl@0
|
1654 |
|
sl@0
|
1655 |
@see RSqlStatement
|
sl@0
|
1656 |
@see ESqlDbError
|
sl@0
|
1657 |
@see TSqlRetCodeClass
|
sl@0
|
1658 |
|
sl@0
|
1659 |
@publishedAll
|
sl@0
|
1660 |
@released
|
sl@0
|
1661 |
*/
|
sl@0
|
1662 |
const TInt KSqlErrSchema = -327;
|
sl@0
|
1663 |
|
sl@0
|
1664 |
/**
|
sl@0
|
1665 |
SQL database-specific error type. Too much data for one row.
|
sl@0
|
1666 |
|
sl@0
|
1667 |
@publishedAll
|
sl@0
|
1668 |
@released
|
sl@0
|
1669 |
*/
|
sl@0
|
1670 |
const TInt KSqlErrTooBig = -328;
|
sl@0
|
1671 |
|
sl@0
|
1672 |
/**
|
sl@0
|
1673 |
An SQL database-specific error type return code from a call to the SQL API.
|
sl@0
|
1674 |
|
sl@0
|
1675 |
It indicates an abort due to constraint violation.
|
sl@0
|
1676 |
|
sl@0
|
1677 |
"Constraint violation" means violation of one or more column constraints ("NOT NULL", "PRIMARY KEY",
|
sl@0
|
1678 |
"UNIQUE", "CHECK", "DEFAULT", "COLLATE" SQL keywords) or table constraints ("PRIMARY KEY", "UNIQUE",
|
sl@0
|
1679 |
"CHECK" SQL keywords).
|
sl@0
|
1680 |
|
sl@0
|
1681 |
@see RSqlStatement
|
sl@0
|
1682 |
@see ESqlDbError
|
sl@0
|
1683 |
@see TSqlRetCodeClass
|
sl@0
|
1684 |
|
sl@0
|
1685 |
@publishedAll
|
sl@0
|
1686 |
@released
|
sl@0
|
1687 |
*/
|
sl@0
|
1688 |
const TInt KSqlErrConstraint = -329;
|
sl@0
|
1689 |
|
sl@0
|
1690 |
/**
|
sl@0
|
1691 |
An SQL database-specific error type return code from a call to the SQL API.
|
sl@0
|
1692 |
|
sl@0
|
1693 |
It indicates a data type mismatch.
|
sl@0
|
1694 |
|
sl@0
|
1695 |
@see RSqlStatement
|
sl@0
|
1696 |
@see ESqlDbError
|
sl@0
|
1697 |
@see TSqlRetCodeClass
|
sl@0
|
1698 |
|
sl@0
|
1699 |
@publishedAll
|
sl@0
|
1700 |
@released
|
sl@0
|
1701 |
*/
|
sl@0
|
1702 |
const TInt KSqlErrMismatch = -330;
|
sl@0
|
1703 |
|
sl@0
|
1704 |
/**
|
sl@0
|
1705 |
An SQL database-specific error type return code from a call to the SQL API.
|
sl@0
|
1706 |
|
sl@0
|
1707 |
It indicates an internal logic error in the SQL database engine.
|
sl@0
|
1708 |
|
sl@0
|
1709 |
@see RSqlStatement
|
sl@0
|
1710 |
@see ESqlDbError
|
sl@0
|
1711 |
@see TSqlRetCodeClass
|
sl@0
|
1712 |
|
sl@0
|
1713 |
@publishedAll
|
sl@0
|
1714 |
@released
|
sl@0
|
1715 |
*/
|
sl@0
|
1716 |
const TInt KSqlErrMisuse = -331;
|
sl@0
|
1717 |
|
sl@0
|
1718 |
/**
|
sl@0
|
1719 |
An SQL database-specific error type return code from a call to the SQL API.
|
sl@0
|
1720 |
|
sl@0
|
1721 |
It indicates that a parameter index value is out of range.
|
sl@0
|
1722 |
|
sl@0
|
1723 |
@see RSqlStatement
|
sl@0
|
1724 |
@see ESqlDbError
|
sl@0
|
1725 |
@see TSqlRetCodeClass
|
sl@0
|
1726 |
|
sl@0
|
1727 |
@publishedAll
|
sl@0
|
1728 |
@released
|
sl@0
|
1729 |
*/
|
sl@0
|
1730 |
const TInt KSqlErrRange = -335;
|
sl@0
|
1731 |
|
sl@0
|
1732 |
/**
|
sl@0
|
1733 |
An SQL database-specific error type return code from a call to the SQL API.
|
sl@0
|
1734 |
|
sl@0
|
1735 |
It indicates that the file that has been opened is not a database file.
|
sl@0
|
1736 |
|
sl@0
|
1737 |
@see RSqlStatement
|
sl@0
|
1738 |
@see ESqlDbError
|
sl@0
|
1739 |
@see TSqlRetCodeClass
|
sl@0
|
1740 |
|
sl@0
|
1741 |
@publishedAll
|
sl@0
|
1742 |
@released
|
sl@0
|
1743 |
*/
|
sl@0
|
1744 |
const TInt KSqlErrNotDb = -336;
|
sl@0
|
1745 |
|
sl@0
|
1746 |
/**
|
sl@0
|
1747 |
An SQL database-specific error type return code from a call to the SQL API.
|
sl@0
|
1748 |
|
sl@0
|
1749 |
It indicates that an SQL statement has expired, and needs to be prepared again.
|
sl@0
|
1750 |
|
sl@0
|
1751 |
@see RSqlStatement
|
sl@0
|
1752 |
@see ESqlDbError
|
sl@0
|
1753 |
@see TSqlRetCodeClass
|
sl@0
|
1754 |
|
sl@0
|
1755 |
@publishedAll
|
sl@0
|
1756 |
@released
|
sl@0
|
1757 |
*/
|
sl@0
|
1758 |
const TInt KSqlErrStmtExpired = -360;
|
sl@0
|
1759 |
|
sl@0
|
1760 |
IMPORT_C TSqlRetCodeClass SqlRetCodeClass(TInt aSqlRetCode);
|
sl@0
|
1761 |
|
sl@0
|
1762 |
#endif //__SQLDB_H__
|