sl@0
|
1 |
/* crypto/rand/md_rand.c */
|
sl@0
|
2 |
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
|
sl@0
|
3 |
* All rights reserved.
|
sl@0
|
4 |
*
|
sl@0
|
5 |
* This package is an SSL implementation written
|
sl@0
|
6 |
* by Eric Young (eay@cryptsoft.com).
|
sl@0
|
7 |
* The implementation was written so as to conform with Netscapes SSL.
|
sl@0
|
8 |
*
|
sl@0
|
9 |
* This library is free for commercial and non-commercial use as long as
|
sl@0
|
10 |
* the following conditions are aheared to. The following conditions
|
sl@0
|
11 |
* apply to all code found in this distribution, be it the RC4, RSA,
|
sl@0
|
12 |
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
|
sl@0
|
13 |
* included with this distribution is covered by the same copyright terms
|
sl@0
|
14 |
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
|
sl@0
|
15 |
*
|
sl@0
|
16 |
* Copyright remains Eric Young's, and as such any Copyright notices in
|
sl@0
|
17 |
* the code are not to be removed.
|
sl@0
|
18 |
* If this package is used in a product, Eric Young should be given attribution
|
sl@0
|
19 |
* as the author of the parts of the library used.
|
sl@0
|
20 |
* This can be in the form of a textual message at program startup or
|
sl@0
|
21 |
* in documentation (online or textual) provided with the package.
|
sl@0
|
22 |
*
|
sl@0
|
23 |
* Redistribution and use in source and binary forms, with or without
|
sl@0
|
24 |
* modification, are permitted provided that the following conditions
|
sl@0
|
25 |
* are met:
|
sl@0
|
26 |
* 1. Redistributions of source code must retain the copyright
|
sl@0
|
27 |
* notice, this list of conditions and the following disclaimer.
|
sl@0
|
28 |
* 2. Redistributions in binary form must reproduce the above copyright
|
sl@0
|
29 |
* notice, this list of conditions and the following disclaimer in the
|
sl@0
|
30 |
* documentation and/or other materials provided with the distribution.
|
sl@0
|
31 |
* 3. All advertising materials mentioning features or use of this software
|
sl@0
|
32 |
* must display the following acknowledgement:
|
sl@0
|
33 |
* "This product includes cryptographic software written by
|
sl@0
|
34 |
* Eric Young (eay@cryptsoft.com)"
|
sl@0
|
35 |
* The word 'cryptographic' can be left out if the rouines from the library
|
sl@0
|
36 |
* being used are not cryptographic related :-).
|
sl@0
|
37 |
* 4. If you include any Windows specific code (or a derivative thereof) from
|
sl@0
|
38 |
* the apps directory (application code) you must include an acknowledgement:
|
sl@0
|
39 |
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
|
sl@0
|
40 |
*
|
sl@0
|
41 |
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
|
sl@0
|
42 |
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
sl@0
|
43 |
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
sl@0
|
44 |
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
sl@0
|
45 |
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
sl@0
|
46 |
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
sl@0
|
47 |
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
sl@0
|
48 |
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
sl@0
|
49 |
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
sl@0
|
50 |
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
sl@0
|
51 |
* SUCH DAMAGE.
|
sl@0
|
52 |
*
|
sl@0
|
53 |
* The licence and distribution terms for any publically available version or
|
sl@0
|
54 |
* derivative of this code cannot be changed. i.e. this code cannot simply be
|
sl@0
|
55 |
* copied and put under another distribution licence
|
sl@0
|
56 |
* [including the GNU Public Licence.]
|
sl@0
|
57 |
*/
|
sl@0
|
58 |
/* ====================================================================
|
sl@0
|
59 |
* Copyright (c) 1998-2001 The OpenSSL Project. All rights reserved.
|
sl@0
|
60 |
*
|
sl@0
|
61 |
* Redistribution and use in source and binary forms, with or without
|
sl@0
|
62 |
* modification, are permitted provided that the following conditions
|
sl@0
|
63 |
* are met:
|
sl@0
|
64 |
*
|
sl@0
|
65 |
* 1. Redistributions of source code must retain the above copyright
|
sl@0
|
66 |
* notice, this list of conditions and the following disclaimer.
|
sl@0
|
67 |
*
|
sl@0
|
68 |
* 2. Redistributions in binary form must reproduce the above copyright
|
sl@0
|
69 |
* notice, this list of conditions and the following disclaimer in
|
sl@0
|
70 |
* the documentation and/or other materials provided with the
|
sl@0
|
71 |
* distribution.
|
sl@0
|
72 |
*
|
sl@0
|
73 |
* 3. All advertising materials mentioning features or use of this
|
sl@0
|
74 |
* software must display the following acknowledgment:
|
sl@0
|
75 |
* "This product includes software developed by the OpenSSL Project
|
sl@0
|
76 |
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
|
sl@0
|
77 |
*
|
sl@0
|
78 |
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
|
sl@0
|
79 |
* endorse or promote products derived from this software without
|
sl@0
|
80 |
* prior written permission. For written permission, please contact
|
sl@0
|
81 |
* openssl-core@openssl.org.
|
sl@0
|
82 |
*
|
sl@0
|
83 |
* 5. Products derived from this software may not be called "OpenSSL"
|
sl@0
|
84 |
* nor may "OpenSSL" appear in their names without prior written
|
sl@0
|
85 |
* permission of the OpenSSL Project.
|
sl@0
|
86 |
*
|
sl@0
|
87 |
* 6. Redistributions of any form whatsoever must retain the following
|
sl@0
|
88 |
* acknowledgment:
|
sl@0
|
89 |
* "This product includes software developed by the OpenSSL Project
|
sl@0
|
90 |
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
|
sl@0
|
91 |
*
|
sl@0
|
92 |
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
|
sl@0
|
93 |
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
sl@0
|
94 |
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
sl@0
|
95 |
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
|
sl@0
|
96 |
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
sl@0
|
97 |
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
sl@0
|
98 |
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
sl@0
|
99 |
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
sl@0
|
100 |
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
sl@0
|
101 |
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
sl@0
|
102 |
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
|
sl@0
|
103 |
* OF THE POSSIBILITY OF SUCH DAMAGE.
|
sl@0
|
104 |
* ====================================================================
|
sl@0
|
105 |
*
|
sl@0
|
106 |
* This product includes cryptographic software written by Eric Young
|
sl@0
|
107 |
* (eay@cryptsoft.com). This product includes software written by Tim
|
sl@0
|
108 |
* Hudson (tjh@cryptsoft.com).
|
sl@0
|
109 |
*
|
sl@0
|
110 |
*/
|
sl@0
|
111 |
/*
|
sl@0
|
112 |
© Portions copyright (c) 2006 Nokia Corporation. All rights reserved.
|
sl@0
|
113 |
*/
|
sl@0
|
114 |
|
sl@0
|
115 |
|
sl@0
|
116 |
#ifdef MD_RAND_DEBUG
|
sl@0
|
117 |
# ifndef NDEBUG
|
sl@0
|
118 |
# define NDEBUG
|
sl@0
|
119 |
# endif
|
sl@0
|
120 |
#endif
|
sl@0
|
121 |
|
sl@0
|
122 |
#include <assert.h>
|
sl@0
|
123 |
#include <stdio.h>
|
sl@0
|
124 |
#include <string.h>
|
sl@0
|
125 |
|
sl@0
|
126 |
#include "e_os.h"
|
sl@0
|
127 |
|
sl@0
|
128 |
#include <openssl/rand.h>
|
sl@0
|
129 |
#include "rand_lcl.h"
|
sl@0
|
130 |
|
sl@0
|
131 |
#include <openssl/crypto.h>
|
sl@0
|
132 |
#include <openssl/err.h>
|
sl@0
|
133 |
#if (defined(SYMBIAN) && (defined(__WINSCW__) || defined(__WINS__)))
|
sl@0
|
134 |
#include "libcrypto_wsd_macros.h"
|
sl@0
|
135 |
#include "libcrypto_wsd.h"
|
sl@0
|
136 |
#endif
|
sl@0
|
137 |
|
sl@0
|
138 |
|
sl@0
|
139 |
#ifdef BN_DEBUG
|
sl@0
|
140 |
# define PREDICT
|
sl@0
|
141 |
#endif
|
sl@0
|
142 |
|
sl@0
|
143 |
/* #define PREDICT 1 */
|
sl@0
|
144 |
|
sl@0
|
145 |
#define STATE_SIZE 1023
|
sl@0
|
146 |
|
sl@0
|
147 |
#ifndef EMULATOR
|
sl@0
|
148 |
static int state_num=0,state_index=0;
|
sl@0
|
149 |
static unsigned char state[STATE_SIZE+MD_DIGEST_LENGTH];
|
sl@0
|
150 |
static unsigned char md[MD_DIGEST_LENGTH];
|
sl@0
|
151 |
static long md_count[2]={0,0};
|
sl@0
|
152 |
static double entropy=0;
|
sl@0
|
153 |
static int initialized=0;
|
sl@0
|
154 |
|
sl@0
|
155 |
static unsigned int crypto_lock_rand = 0; /* may be set only when a thread
|
sl@0
|
156 |
* holds CRYPTO_LOCK_RAND
|
sl@0
|
157 |
* (to prevent double locking) */
|
sl@0
|
158 |
/* access to lockin_thread is synchronized by CRYPTO_LOCK_RAND2 */
|
sl@0
|
159 |
static unsigned long locking_thread = 0; /* valid iff crypto_lock_rand is set */
|
sl@0
|
160 |
#else
|
sl@0
|
161 |
GET_STATIC_VAR_FROM_TLS(state_num,md_rand,int)
|
sl@0
|
162 |
#define state_num (*GET_WSD_VAR_NAME(state_num,md_rand, s)())
|
sl@0
|
163 |
|
sl@0
|
164 |
GET_STATIC_VAR_FROM_TLS(state_index,md_rand,int)
|
sl@0
|
165 |
#define state_index (*GET_WSD_VAR_NAME(state_index,md_rand, s)())
|
sl@0
|
166 |
|
sl@0
|
167 |
GET_STATIC_ARRAY_FROM_TLS(state,md_rand,unsigned char)
|
sl@0
|
168 |
#define state (GET_WSD_VAR_NAME(state,md_rand, s)())
|
sl@0
|
169 |
|
sl@0
|
170 |
GET_STATIC_ARRAY_FROM_TLS(md,md_rand,unsigned char)
|
sl@0
|
171 |
#define md (GET_WSD_VAR_NAME(md,md_rand, s)())
|
sl@0
|
172 |
|
sl@0
|
173 |
GET_STATIC_ARRAY_FROM_TLS(md_count,md_rand,unsigned char)
|
sl@0
|
174 |
#define md_count (GET_WSD_VAR_NAME(md_count,md_rand, s)())
|
sl@0
|
175 |
|
sl@0
|
176 |
GET_STATIC_VAR_FROM_TLS(entropy,md_rand,double)
|
sl@0
|
177 |
#define entropy (*GET_WSD_VAR_NAME(entropy,md_rand, s)())
|
sl@0
|
178 |
|
sl@0
|
179 |
GET_STATIC_VAR_FROM_TLS(initialized,md_rand,int)
|
sl@0
|
180 |
#define initialized (*GET_WSD_VAR_NAME(initialized,md_rand, s)())
|
sl@0
|
181 |
|
sl@0
|
182 |
GET_STATIC_VAR_FROM_TLS(crypto_lock_rand,md_rand,unsigned int)
|
sl@0
|
183 |
#define crypto_lock_rand (*GET_WSD_VAR_NAME(crypto_lock_rand,md_rand, s)())
|
sl@0
|
184 |
|
sl@0
|
185 |
GET_STATIC_VAR_FROM_TLS(locking_thread,md_rand,unsigned long)
|
sl@0
|
186 |
#define locking_thread (*GET_WSD_VAR_NAME(locking_thread,md_rand, s)())
|
sl@0
|
187 |
|
sl@0
|
188 |
#endif
|
sl@0
|
189 |
|
sl@0
|
190 |
#ifdef PREDICT
|
sl@0
|
191 |
int rand_predictable=0;
|
sl@0
|
192 |
#endif
|
sl@0
|
193 |
|
sl@0
|
194 |
const char RAND_version[]="RAND" OPENSSL_VERSION_PTEXT;
|
sl@0
|
195 |
|
sl@0
|
196 |
static void ssleay_rand_cleanup(void);
|
sl@0
|
197 |
static void ssleay_rand_seed(const void *buf, int num);
|
sl@0
|
198 |
static void ssleay_rand_add(const void *buf, int num, double add_entropy);
|
sl@0
|
199 |
static int ssleay_rand_bytes(unsigned char *buf, int num);
|
sl@0
|
200 |
static int ssleay_rand_pseudo_bytes(unsigned char *buf, int num);
|
sl@0
|
201 |
static int ssleay_rand_status(void);
|
sl@0
|
202 |
|
sl@0
|
203 |
#ifndef EMULATOR
|
sl@0
|
204 |
RAND_METHOD rand_ssleay_meth={
|
sl@0
|
205 |
ssleay_rand_seed,
|
sl@0
|
206 |
ssleay_rand_bytes,
|
sl@0
|
207 |
ssleay_rand_cleanup,
|
sl@0
|
208 |
ssleay_rand_add,
|
sl@0
|
209 |
ssleay_rand_pseudo_bytes,
|
sl@0
|
210 |
ssleay_rand_status
|
sl@0
|
211 |
};
|
sl@0
|
212 |
#else
|
sl@0
|
213 |
|
sl@0
|
214 |
GET_GLOBAL_VAR_FROM_TLS(rand_ssleay_meth,md_rand, RAND_METHOD)
|
sl@0
|
215 |
#define rand_ssleay_meth (*GET_WSD_VAR_NAME(rand_ssleay_meth,md_rand, g)())
|
sl@0
|
216 |
const RAND_METHOD temp_g_rand_ssleay_meth={
|
sl@0
|
217 |
ssleay_rand_seed,
|
sl@0
|
218 |
ssleay_rand_bytes,
|
sl@0
|
219 |
ssleay_rand_cleanup,
|
sl@0
|
220 |
ssleay_rand_add,
|
sl@0
|
221 |
ssleay_rand_pseudo_bytes,
|
sl@0
|
222 |
ssleay_rand_status
|
sl@0
|
223 |
};
|
sl@0
|
224 |
|
sl@0
|
225 |
#endif
|
sl@0
|
226 |
EXPORT_C RAND_METHOD *RAND_SSLeay(void)
|
sl@0
|
227 |
{
|
sl@0
|
228 |
return(&rand_ssleay_meth);
|
sl@0
|
229 |
}
|
sl@0
|
230 |
|
sl@0
|
231 |
static void ssleay_rand_cleanup(void)
|
sl@0
|
232 |
{
|
sl@0
|
233 |
OPENSSL_cleanse(state,sizeof(state));
|
sl@0
|
234 |
state_num=0;
|
sl@0
|
235 |
state_index=0;
|
sl@0
|
236 |
OPENSSL_cleanse(md,MD_DIGEST_LENGTH);
|
sl@0
|
237 |
md_count[0]=0;
|
sl@0
|
238 |
md_count[1]=0;
|
sl@0
|
239 |
entropy=0;
|
sl@0
|
240 |
initialized=0;
|
sl@0
|
241 |
}
|
sl@0
|
242 |
|
sl@0
|
243 |
static void ssleay_rand_add(const void *buf, int num, double add)
|
sl@0
|
244 |
{
|
sl@0
|
245 |
int i,j,k,st_idx;
|
sl@0
|
246 |
long md_c[2];
|
sl@0
|
247 |
unsigned char local_md[MD_DIGEST_LENGTH];
|
sl@0
|
248 |
EVP_MD_CTX m;
|
sl@0
|
249 |
int do_not_lock;
|
sl@0
|
250 |
|
sl@0
|
251 |
/*
|
sl@0
|
252 |
* (Based on the rand(3) manpage)
|
sl@0
|
253 |
*
|
sl@0
|
254 |
* The input is chopped up into units of 20 bytes (or less for
|
sl@0
|
255 |
* the last block). Each of these blocks is run through the hash
|
sl@0
|
256 |
* function as follows: The data passed to the hash function
|
sl@0
|
257 |
* is the current 'md', the same number of bytes from the 'state'
|
sl@0
|
258 |
* (the location determined by in incremented looping index) as
|
sl@0
|
259 |
* the current 'block', the new key data 'block', and 'count'
|
sl@0
|
260 |
* (which is incremented after each use).
|
sl@0
|
261 |
* The result of this is kept in 'md' and also xored into the
|
sl@0
|
262 |
* 'state' at the same locations that were used as input into the
|
sl@0
|
263 |
* hash function.
|
sl@0
|
264 |
*/
|
sl@0
|
265 |
|
sl@0
|
266 |
/* check if we already have the lock */
|
sl@0
|
267 |
if (crypto_lock_rand)
|
sl@0
|
268 |
{
|
sl@0
|
269 |
CRYPTO_r_lock(CRYPTO_LOCK_RAND2);
|
sl@0
|
270 |
do_not_lock = (locking_thread == CRYPTO_thread_id());
|
sl@0
|
271 |
CRYPTO_r_unlock(CRYPTO_LOCK_RAND2);
|
sl@0
|
272 |
}
|
sl@0
|
273 |
else
|
sl@0
|
274 |
do_not_lock = 0;
|
sl@0
|
275 |
|
sl@0
|
276 |
if (!do_not_lock) CRYPTO_w_lock(CRYPTO_LOCK_RAND);
|
sl@0
|
277 |
st_idx=state_index;
|
sl@0
|
278 |
|
sl@0
|
279 |
/* use our own copies of the counters so that even
|
sl@0
|
280 |
* if a concurrent thread seeds with exactly the
|
sl@0
|
281 |
* same data and uses the same subarray there's _some_
|
sl@0
|
282 |
* difference */
|
sl@0
|
283 |
md_c[0] = md_count[0];
|
sl@0
|
284 |
md_c[1] = md_count[1];
|
sl@0
|
285 |
|
sl@0
|
286 |
memcpy(local_md, md, sizeof md);
|
sl@0
|
287 |
|
sl@0
|
288 |
/* state_index <= state_num <= STATE_SIZE */
|
sl@0
|
289 |
state_index += num;
|
sl@0
|
290 |
if (state_index >= STATE_SIZE)
|
sl@0
|
291 |
{
|
sl@0
|
292 |
state_index%=STATE_SIZE;
|
sl@0
|
293 |
state_num=STATE_SIZE;
|
sl@0
|
294 |
}
|
sl@0
|
295 |
else if (state_num < STATE_SIZE)
|
sl@0
|
296 |
{
|
sl@0
|
297 |
if (state_index > state_num)
|
sl@0
|
298 |
state_num=state_index;
|
sl@0
|
299 |
}
|
sl@0
|
300 |
/* state_index <= state_num <= STATE_SIZE */
|
sl@0
|
301 |
|
sl@0
|
302 |
/* state[st_idx], ..., state[(st_idx + num - 1) % STATE_SIZE]
|
sl@0
|
303 |
* are what we will use now, but other threads may use them
|
sl@0
|
304 |
* as well */
|
sl@0
|
305 |
|
sl@0
|
306 |
md_count[1] += (num / MD_DIGEST_LENGTH) + (num % MD_DIGEST_LENGTH > 0);
|
sl@0
|
307 |
|
sl@0
|
308 |
if (!do_not_lock) CRYPTO_w_unlock(CRYPTO_LOCK_RAND);
|
sl@0
|
309 |
|
sl@0
|
310 |
EVP_MD_CTX_init(&m);
|
sl@0
|
311 |
for (i=0; i<num; i+=MD_DIGEST_LENGTH)
|
sl@0
|
312 |
{
|
sl@0
|
313 |
j=(num-i);
|
sl@0
|
314 |
j=(j > MD_DIGEST_LENGTH)?MD_DIGEST_LENGTH:j;
|
sl@0
|
315 |
|
sl@0
|
316 |
MD_Init(&m);
|
sl@0
|
317 |
MD_Update(&m,local_md,MD_DIGEST_LENGTH);
|
sl@0
|
318 |
k=(st_idx+j)-STATE_SIZE;
|
sl@0
|
319 |
if (k > 0)
|
sl@0
|
320 |
{
|
sl@0
|
321 |
MD_Update(&m,&(state[st_idx]),j-k);
|
sl@0
|
322 |
MD_Update(&m,&(state[0]),k);
|
sl@0
|
323 |
}
|
sl@0
|
324 |
else
|
sl@0
|
325 |
MD_Update(&m,&(state[st_idx]),j);
|
sl@0
|
326 |
|
sl@0
|
327 |
MD_Update(&m,buf,j);
|
sl@0
|
328 |
MD_Update(&m,(unsigned char *)&(md_c[0]),sizeof(md_c));
|
sl@0
|
329 |
MD_Final(&m,local_md);
|
sl@0
|
330 |
md_c[1]++;
|
sl@0
|
331 |
|
sl@0
|
332 |
buf=(const char *)buf + j;
|
sl@0
|
333 |
|
sl@0
|
334 |
for (k=0; k<j; k++)
|
sl@0
|
335 |
{
|
sl@0
|
336 |
/* Parallel threads may interfere with this,
|
sl@0
|
337 |
* but always each byte of the new state is
|
sl@0
|
338 |
* the XOR of some previous value of its
|
sl@0
|
339 |
* and local_md (itermediate values may be lost).
|
sl@0
|
340 |
* Alway using locking could hurt performance more
|
sl@0
|
341 |
* than necessary given that conflicts occur only
|
sl@0
|
342 |
* when the total seeding is longer than the random
|
sl@0
|
343 |
* state. */
|
sl@0
|
344 |
state[st_idx++]^=local_md[k];
|
sl@0
|
345 |
if (st_idx >= STATE_SIZE)
|
sl@0
|
346 |
st_idx=0;
|
sl@0
|
347 |
}
|
sl@0
|
348 |
}
|
sl@0
|
349 |
EVP_MD_CTX_cleanup(&m);
|
sl@0
|
350 |
|
sl@0
|
351 |
if (!do_not_lock) CRYPTO_w_lock(CRYPTO_LOCK_RAND);
|
sl@0
|
352 |
/* Don't just copy back local_md into md -- this could mean that
|
sl@0
|
353 |
* other thread's seeding remains without effect (except for
|
sl@0
|
354 |
* the incremented counter). By XORing it we keep at least as
|
sl@0
|
355 |
* much entropy as fits into md. */
|
sl@0
|
356 |
for (k = 0; k < (int)sizeof(md); k++)
|
sl@0
|
357 |
{
|
sl@0
|
358 |
md[k] ^= local_md[k];
|
sl@0
|
359 |
}
|
sl@0
|
360 |
if (entropy < ENTROPY_NEEDED) /* stop counting when we have enough */
|
sl@0
|
361 |
entropy += add;
|
sl@0
|
362 |
if (!do_not_lock) CRYPTO_w_unlock(CRYPTO_LOCK_RAND);
|
sl@0
|
363 |
|
sl@0
|
364 |
#if !defined(OPENSSL_THREADS) && !defined(OPENSSL_SYS_WIN32)
|
sl@0
|
365 |
assert(md_c[1] == md_count[1]);
|
sl@0
|
366 |
#endif
|
sl@0
|
367 |
}
|
sl@0
|
368 |
|
sl@0
|
369 |
static void ssleay_rand_seed(const void *buf, int num)
|
sl@0
|
370 |
{
|
sl@0
|
371 |
ssleay_rand_add(buf, num, (double)num);
|
sl@0
|
372 |
}
|
sl@0
|
373 |
#ifdef EMULATOR
|
sl@0
|
374 |
GET_STATIC_VAR_FROM_TLS(stirred_pool,md_rand,volatile int)
|
sl@0
|
375 |
#define stirred_pool (*GET_WSD_VAR_NAME(stirred_pool,md_rand, s)())
|
sl@0
|
376 |
#endif
|
sl@0
|
377 |
static int ssleay_rand_bytes(unsigned char *buf, int num)
|
sl@0
|
378 |
{
|
sl@0
|
379 |
#ifndef EMULATOR
|
sl@0
|
380 |
static volatile int stirred_pool = 0;
|
sl@0
|
381 |
#endif
|
sl@0
|
382 |
int i,j,k,st_num,st_idx;
|
sl@0
|
383 |
int num_ceil;
|
sl@0
|
384 |
int ok;
|
sl@0
|
385 |
long md_c[2];
|
sl@0
|
386 |
unsigned char local_md[MD_DIGEST_LENGTH];
|
sl@0
|
387 |
EVP_MD_CTX m;
|
sl@0
|
388 |
#ifndef GETPID_IS_MEANINGLESS
|
sl@0
|
389 |
pid_t curr_pid = getpid();
|
sl@0
|
390 |
#endif
|
sl@0
|
391 |
int do_stir_pool = 0;
|
sl@0
|
392 |
|
sl@0
|
393 |
#ifdef PREDICT
|
sl@0
|
394 |
if (rand_predictable)
|
sl@0
|
395 |
{
|
sl@0
|
396 |
static unsigned char val=0;
|
sl@0
|
397 |
|
sl@0
|
398 |
for (i=0; i<num; i++)
|
sl@0
|
399 |
buf[i]=val++;
|
sl@0
|
400 |
return(1);
|
sl@0
|
401 |
}
|
sl@0
|
402 |
#endif
|
sl@0
|
403 |
|
sl@0
|
404 |
if (num <= 0)
|
sl@0
|
405 |
return 1;
|
sl@0
|
406 |
|
sl@0
|
407 |
EVP_MD_CTX_init(&m);
|
sl@0
|
408 |
/* round upwards to multiple of MD_DIGEST_LENGTH/2 */
|
sl@0
|
409 |
num_ceil = (1 + (num-1)/(MD_DIGEST_LENGTH/2)) * (MD_DIGEST_LENGTH/2);
|
sl@0
|
410 |
|
sl@0
|
411 |
/*
|
sl@0
|
412 |
* (Based on the rand(3) manpage:)
|
sl@0
|
413 |
*
|
sl@0
|
414 |
* For each group of 10 bytes (or less), we do the following:
|
sl@0
|
415 |
*
|
sl@0
|
416 |
* Input into the hash function the local 'md' (which is initialized from
|
sl@0
|
417 |
* the global 'md' before any bytes are generated), the bytes that are to
|
sl@0
|
418 |
* be overwritten by the random bytes, and bytes from the 'state'
|
sl@0
|
419 |
* (incrementing looping index). From this digest output (which is kept
|
sl@0
|
420 |
* in 'md'), the top (up to) 10 bytes are returned to the caller and the
|
sl@0
|
421 |
* bottom 10 bytes are xored into the 'state'.
|
sl@0
|
422 |
*
|
sl@0
|
423 |
* Finally, after we have finished 'num' random bytes for the
|
sl@0
|
424 |
* caller, 'count' (which is incremented) and the local and global 'md'
|
sl@0
|
425 |
* are fed into the hash function and the results are kept in the
|
sl@0
|
426 |
* global 'md'.
|
sl@0
|
427 |
*/
|
sl@0
|
428 |
|
sl@0
|
429 |
CRYPTO_w_lock(CRYPTO_LOCK_RAND);
|
sl@0
|
430 |
|
sl@0
|
431 |
/* prevent ssleay_rand_bytes() from trying to obtain the lock again */
|
sl@0
|
432 |
CRYPTO_w_lock(CRYPTO_LOCK_RAND2);
|
sl@0
|
433 |
locking_thread = CRYPTO_thread_id();
|
sl@0
|
434 |
CRYPTO_w_unlock(CRYPTO_LOCK_RAND2);
|
sl@0
|
435 |
crypto_lock_rand = 1;
|
sl@0
|
436 |
|
sl@0
|
437 |
if (!initialized)
|
sl@0
|
438 |
{
|
sl@0
|
439 |
RAND_poll();
|
sl@0
|
440 |
initialized = 1;
|
sl@0
|
441 |
}
|
sl@0
|
442 |
|
sl@0
|
443 |
if (!stirred_pool)
|
sl@0
|
444 |
do_stir_pool = 1;
|
sl@0
|
445 |
|
sl@0
|
446 |
ok = (entropy >= ENTROPY_NEEDED);
|
sl@0
|
447 |
if (!ok)
|
sl@0
|
448 |
{
|
sl@0
|
449 |
/* If the PRNG state is not yet unpredictable, then seeing
|
sl@0
|
450 |
* the PRNG output may help attackers to determine the new
|
sl@0
|
451 |
* state; thus we have to decrease the entropy estimate.
|
sl@0
|
452 |
* Once we've had enough initial seeding we don't bother to
|
sl@0
|
453 |
* adjust the entropy count, though, because we're not ambitious
|
sl@0
|
454 |
* to provide *information-theoretic* randomness.
|
sl@0
|
455 |
*
|
sl@0
|
456 |
* NOTE: This approach fails if the program forks before
|
sl@0
|
457 |
* we have enough entropy. Entropy should be collected
|
sl@0
|
458 |
* in a separate input pool and be transferred to the
|
sl@0
|
459 |
* output pool only when the entropy limit has been reached.
|
sl@0
|
460 |
*/
|
sl@0
|
461 |
entropy -= num;
|
sl@0
|
462 |
if (entropy < 0)
|
sl@0
|
463 |
entropy = 0;
|
sl@0
|
464 |
}
|
sl@0
|
465 |
|
sl@0
|
466 |
if (do_stir_pool)
|
sl@0
|
467 |
{
|
sl@0
|
468 |
/* In the output function only half of 'md' remains secret,
|
sl@0
|
469 |
* so we better make sure that the required entropy gets
|
sl@0
|
470 |
* 'evenly distributed' through 'state', our randomness pool.
|
sl@0
|
471 |
* The input function (ssleay_rand_add) chains all of 'md',
|
sl@0
|
472 |
* which makes it more suitable for this purpose.
|
sl@0
|
473 |
*/
|
sl@0
|
474 |
|
sl@0
|
475 |
int n = STATE_SIZE; /* so that the complete pool gets accessed */
|
sl@0
|
476 |
while (n > 0)
|
sl@0
|
477 |
{
|
sl@0
|
478 |
#if MD_DIGEST_LENGTH > 20
|
sl@0
|
479 |
# error "Please adjust DUMMY_SEED."
|
sl@0
|
480 |
#endif
|
sl@0
|
481 |
#define DUMMY_SEED "...................." /* at least MD_DIGEST_LENGTH */
|
sl@0
|
482 |
/* Note that the seed does not matter, it's just that
|
sl@0
|
483 |
* ssleay_rand_add expects to have something to hash. */
|
sl@0
|
484 |
ssleay_rand_add(DUMMY_SEED, MD_DIGEST_LENGTH, 0.0);
|
sl@0
|
485 |
n -= MD_DIGEST_LENGTH;
|
sl@0
|
486 |
}
|
sl@0
|
487 |
if (ok)
|
sl@0
|
488 |
stirred_pool = 1;
|
sl@0
|
489 |
}
|
sl@0
|
490 |
|
sl@0
|
491 |
st_idx=state_index;
|
sl@0
|
492 |
st_num=state_num;
|
sl@0
|
493 |
md_c[0] = md_count[0];
|
sl@0
|
494 |
md_c[1] = md_count[1];
|
sl@0
|
495 |
memcpy(local_md, md, sizeof md);
|
sl@0
|
496 |
|
sl@0
|
497 |
state_index+=num_ceil;
|
sl@0
|
498 |
if (state_index > state_num)
|
sl@0
|
499 |
state_index %= state_num;
|
sl@0
|
500 |
|
sl@0
|
501 |
/* state[st_idx], ..., state[(st_idx + num_ceil - 1) % st_num]
|
sl@0
|
502 |
* are now ours (but other threads may use them too) */
|
sl@0
|
503 |
|
sl@0
|
504 |
md_count[0] += 1;
|
sl@0
|
505 |
|
sl@0
|
506 |
/* before unlocking, we must clear 'crypto_lock_rand' */
|
sl@0
|
507 |
crypto_lock_rand = 0;
|
sl@0
|
508 |
CRYPTO_w_unlock(CRYPTO_LOCK_RAND);
|
sl@0
|
509 |
|
sl@0
|
510 |
while (num > 0)
|
sl@0
|
511 |
{
|
sl@0
|
512 |
/* num_ceil -= MD_DIGEST_LENGTH/2 */
|
sl@0
|
513 |
j=(num >= MD_DIGEST_LENGTH/2)?MD_DIGEST_LENGTH/2:num;
|
sl@0
|
514 |
num-=j;
|
sl@0
|
515 |
MD_Init(&m);
|
sl@0
|
516 |
#ifndef GETPID_IS_MEANINGLESS
|
sl@0
|
517 |
if (curr_pid) /* just in the first iteration to save time */
|
sl@0
|
518 |
{
|
sl@0
|
519 |
MD_Update(&m,(unsigned char*)&curr_pid,sizeof curr_pid);
|
sl@0
|
520 |
curr_pid = 0;
|
sl@0
|
521 |
}
|
sl@0
|
522 |
#endif
|
sl@0
|
523 |
MD_Update(&m,local_md,MD_DIGEST_LENGTH);
|
sl@0
|
524 |
MD_Update(&m,(unsigned char *)&(md_c[0]),sizeof(md_c));
|
sl@0
|
525 |
#ifndef PURIFY
|
sl@0
|
526 |
MD_Update(&m,buf,j); /* purify complains */
|
sl@0
|
527 |
#endif
|
sl@0
|
528 |
k=(st_idx+MD_DIGEST_LENGTH/2)-st_num;
|
sl@0
|
529 |
if (k > 0)
|
sl@0
|
530 |
{
|
sl@0
|
531 |
MD_Update(&m,&(state[st_idx]),MD_DIGEST_LENGTH/2-k);
|
sl@0
|
532 |
MD_Update(&m,&(state[0]),k);
|
sl@0
|
533 |
}
|
sl@0
|
534 |
else
|
sl@0
|
535 |
MD_Update(&m,&(state[st_idx]),MD_DIGEST_LENGTH/2);
|
sl@0
|
536 |
MD_Final(&m,local_md);
|
sl@0
|
537 |
|
sl@0
|
538 |
for (i=0; i<MD_DIGEST_LENGTH/2; i++)
|
sl@0
|
539 |
{
|
sl@0
|
540 |
state[st_idx++]^=local_md[i]; /* may compete with other threads */
|
sl@0
|
541 |
if (st_idx >= st_num)
|
sl@0
|
542 |
st_idx=0;
|
sl@0
|
543 |
if (i < j)
|
sl@0
|
544 |
*(buf++)=local_md[i+MD_DIGEST_LENGTH/2];
|
sl@0
|
545 |
}
|
sl@0
|
546 |
}
|
sl@0
|
547 |
|
sl@0
|
548 |
MD_Init(&m);
|
sl@0
|
549 |
MD_Update(&m,(unsigned char *)&(md_c[0]),sizeof(md_c));
|
sl@0
|
550 |
MD_Update(&m,local_md,MD_DIGEST_LENGTH);
|
sl@0
|
551 |
CRYPTO_w_lock(CRYPTO_LOCK_RAND);
|
sl@0
|
552 |
MD_Update(&m,md,MD_DIGEST_LENGTH);
|
sl@0
|
553 |
MD_Final(&m,md);
|
sl@0
|
554 |
CRYPTO_w_unlock(CRYPTO_LOCK_RAND);
|
sl@0
|
555 |
|
sl@0
|
556 |
EVP_MD_CTX_cleanup(&m);
|
sl@0
|
557 |
if (ok)
|
sl@0
|
558 |
return(1);
|
sl@0
|
559 |
else
|
sl@0
|
560 |
{
|
sl@0
|
561 |
RANDerr(RAND_F_SSLEAY_RAND_BYTES,RAND_R_PRNG_NOT_SEEDED);
|
sl@0
|
562 |
ERR_add_error_data(1, "You need to read the OpenSSL FAQ, "
|
sl@0
|
563 |
"http://www.openssl.org/support/faq.html");
|
sl@0
|
564 |
return(0);
|
sl@0
|
565 |
}
|
sl@0
|
566 |
}
|
sl@0
|
567 |
|
sl@0
|
568 |
/* pseudo-random bytes that are guaranteed to be unique but not
|
sl@0
|
569 |
unpredictable */
|
sl@0
|
570 |
static int ssleay_rand_pseudo_bytes(unsigned char *buf, int num)
|
sl@0
|
571 |
{
|
sl@0
|
572 |
int ret;
|
sl@0
|
573 |
unsigned long err;
|
sl@0
|
574 |
|
sl@0
|
575 |
ret = RAND_bytes(buf, num);
|
sl@0
|
576 |
if (ret == 0)
|
sl@0
|
577 |
{
|
sl@0
|
578 |
err = ERR_peek_error();
|
sl@0
|
579 |
if (ERR_GET_LIB(err) == ERR_LIB_RAND &&
|
sl@0
|
580 |
ERR_GET_REASON(err) == RAND_R_PRNG_NOT_SEEDED)
|
sl@0
|
581 |
ERR_clear_error();
|
sl@0
|
582 |
}
|
sl@0
|
583 |
return (ret);
|
sl@0
|
584 |
}
|
sl@0
|
585 |
|
sl@0
|
586 |
static int ssleay_rand_status(void)
|
sl@0
|
587 |
{
|
sl@0
|
588 |
int ret;
|
sl@0
|
589 |
int do_not_lock;
|
sl@0
|
590 |
|
sl@0
|
591 |
/* check if we already have the lock
|
sl@0
|
592 |
* (could happen if a RAND_poll() implementation calls RAND_status()) */
|
sl@0
|
593 |
if (crypto_lock_rand)
|
sl@0
|
594 |
{
|
sl@0
|
595 |
CRYPTO_r_lock(CRYPTO_LOCK_RAND2);
|
sl@0
|
596 |
do_not_lock = (locking_thread == CRYPTO_thread_id());
|
sl@0
|
597 |
CRYPTO_r_unlock(CRYPTO_LOCK_RAND2);
|
sl@0
|
598 |
}
|
sl@0
|
599 |
else
|
sl@0
|
600 |
do_not_lock = 0;
|
sl@0
|
601 |
|
sl@0
|
602 |
if (!do_not_lock)
|
sl@0
|
603 |
{
|
sl@0
|
604 |
CRYPTO_w_lock(CRYPTO_LOCK_RAND);
|
sl@0
|
605 |
|
sl@0
|
606 |
/* prevent ssleay_rand_bytes() from trying to obtain the lock again */
|
sl@0
|
607 |
CRYPTO_w_lock(CRYPTO_LOCK_RAND2);
|
sl@0
|
608 |
locking_thread = CRYPTO_thread_id();
|
sl@0
|
609 |
CRYPTO_w_unlock(CRYPTO_LOCK_RAND2);
|
sl@0
|
610 |
crypto_lock_rand = 1;
|
sl@0
|
611 |
}
|
sl@0
|
612 |
|
sl@0
|
613 |
if (!initialized)
|
sl@0
|
614 |
{
|
sl@0
|
615 |
RAND_poll();
|
sl@0
|
616 |
initialized = 1;
|
sl@0
|
617 |
}
|
sl@0
|
618 |
|
sl@0
|
619 |
ret = entropy >= ENTROPY_NEEDED;
|
sl@0
|
620 |
|
sl@0
|
621 |
if (!do_not_lock)
|
sl@0
|
622 |
{
|
sl@0
|
623 |
/* before unlocking, we must clear 'crypto_lock_rand' */
|
sl@0
|
624 |
crypto_lock_rand = 0;
|
sl@0
|
625 |
|
sl@0
|
626 |
CRYPTO_w_unlock(CRYPTO_LOCK_RAND);
|
sl@0
|
627 |
}
|
sl@0
|
628 |
|
sl@0
|
629 |
return ret;
|
sl@0
|
630 |
}
|