sl@0
|
1 |
/* crypto/bn/bn_mul.c */
|
sl@0
|
2 |
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
|
sl@0
|
3 |
* All rights reserved.
|
sl@0
|
4 |
*
|
sl@0
|
5 |
* This package is an SSL implementation written
|
sl@0
|
6 |
* by Eric Young (eay@cryptsoft.com).
|
sl@0
|
7 |
* The implementation was written so as to conform with Netscapes SSL.
|
sl@0
|
8 |
*
|
sl@0
|
9 |
* This library is free for commercial and non-commercial use as long as
|
sl@0
|
10 |
* the following conditions are aheared to. The following conditions
|
sl@0
|
11 |
* apply to all code found in this distribution, be it the RC4, RSA,
|
sl@0
|
12 |
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
|
sl@0
|
13 |
* included with this distribution is covered by the same copyright terms
|
sl@0
|
14 |
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
|
sl@0
|
15 |
*
|
sl@0
|
16 |
* Copyright remains Eric Young's, and as such any Copyright notices in
|
sl@0
|
17 |
* the code are not to be removed.
|
sl@0
|
18 |
* If this package is used in a product, Eric Young should be given attribution
|
sl@0
|
19 |
* as the author of the parts of the library used.
|
sl@0
|
20 |
* This can be in the form of a textual message at program startup or
|
sl@0
|
21 |
* in documentation (online or textual) provided with the package.
|
sl@0
|
22 |
*
|
sl@0
|
23 |
* Redistribution and use in source and binary forms, with or without
|
sl@0
|
24 |
* modification, are permitted provided that the following conditions
|
sl@0
|
25 |
* are met:
|
sl@0
|
26 |
* 1. Redistributions of source code must retain the copyright
|
sl@0
|
27 |
* notice, this list of conditions and the following disclaimer.
|
sl@0
|
28 |
* 2. Redistributions in binary form must reproduce the above copyright
|
sl@0
|
29 |
* notice, this list of conditions and the following disclaimer in the
|
sl@0
|
30 |
* documentation and/or other materials provided with the distribution.
|
sl@0
|
31 |
* 3. All advertising materials mentioning features or use of this software
|
sl@0
|
32 |
* must display the following acknowledgement:
|
sl@0
|
33 |
* "This product includes cryptographic software written by
|
sl@0
|
34 |
* Eric Young (eay@cryptsoft.com)"
|
sl@0
|
35 |
* The word 'cryptographic' can be left out if the rouines from the library
|
sl@0
|
36 |
* being used are not cryptographic related :-).
|
sl@0
|
37 |
* 4. If you include any Windows specific code (or a derivative thereof) from
|
sl@0
|
38 |
* the apps directory (application code) you must include an acknowledgement:
|
sl@0
|
39 |
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
|
sl@0
|
40 |
*
|
sl@0
|
41 |
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
|
sl@0
|
42 |
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
sl@0
|
43 |
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
sl@0
|
44 |
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
sl@0
|
45 |
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
sl@0
|
46 |
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
sl@0
|
47 |
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
sl@0
|
48 |
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
sl@0
|
49 |
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
sl@0
|
50 |
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
sl@0
|
51 |
* SUCH DAMAGE.
|
sl@0
|
52 |
*
|
sl@0
|
53 |
* The licence and distribution terms for any publically available version or
|
sl@0
|
54 |
* derivative of this code cannot be changed. i.e. this code cannot simply be
|
sl@0
|
55 |
* copied and put under another distribution licence
|
sl@0
|
56 |
* [including the GNU Public Licence.]
|
sl@0
|
57 |
*/
|
sl@0
|
58 |
|
sl@0
|
59 |
#ifndef BN_DEBUG
|
sl@0
|
60 |
# undef NDEBUG /* avoid conflicting definitions */
|
sl@0
|
61 |
# define NDEBUG
|
sl@0
|
62 |
#endif
|
sl@0
|
63 |
|
sl@0
|
64 |
#include <stdio.h>
|
sl@0
|
65 |
#include <assert.h>
|
sl@0
|
66 |
#include "cryptlib.h"
|
sl@0
|
67 |
#include "bn_lcl.h"
|
sl@0
|
68 |
|
sl@0
|
69 |
#if defined(OPENSSL_NO_ASM) || !defined(OPENSSL_BN_ASM_PART_WORDS)
|
sl@0
|
70 |
/* Here follows specialised variants of bn_add_words() and
|
sl@0
|
71 |
bn_sub_words(). They have the property performing operations on
|
sl@0
|
72 |
arrays of different sizes. The sizes of those arrays is expressed through
|
sl@0
|
73 |
cl, which is the common length ( basicall, min(len(a),len(b)) ), and dl,
|
sl@0
|
74 |
which is the delta between the two lengths, calculated as len(a)-len(b).
|
sl@0
|
75 |
All lengths are the number of BN_ULONGs... For the operations that require
|
sl@0
|
76 |
a result array as parameter, it must have the length cl+abs(dl).
|
sl@0
|
77 |
These functions should probably end up in bn_asm.c as soon as there are
|
sl@0
|
78 |
assembler counterparts for the systems that use assembler files. */
|
sl@0
|
79 |
|
sl@0
|
80 |
EXPORT_C BN_ULONG bn_sub_part_words(BN_ULONG *r,
|
sl@0
|
81 |
const BN_ULONG *a, const BN_ULONG *b,
|
sl@0
|
82 |
int cl, int dl)
|
sl@0
|
83 |
{
|
sl@0
|
84 |
BN_ULONG c, t;
|
sl@0
|
85 |
|
sl@0
|
86 |
assert(cl >= 0);
|
sl@0
|
87 |
c = bn_sub_words(r, a, b, cl);
|
sl@0
|
88 |
|
sl@0
|
89 |
if (dl == 0)
|
sl@0
|
90 |
return c;
|
sl@0
|
91 |
|
sl@0
|
92 |
r += cl;
|
sl@0
|
93 |
a += cl;
|
sl@0
|
94 |
b += cl;
|
sl@0
|
95 |
|
sl@0
|
96 |
if (dl < 0)
|
sl@0
|
97 |
{
|
sl@0
|
98 |
#ifdef BN_COUNT
|
sl@0
|
99 |
fprintf(stderr, " bn_sub_part_words %d + %d (dl < 0, c = %d)\n", cl, dl, c);
|
sl@0
|
100 |
#endif
|
sl@0
|
101 |
for (;;)
|
sl@0
|
102 |
{
|
sl@0
|
103 |
t = b[0];
|
sl@0
|
104 |
r[0] = (0-t-c)&BN_MASK2;
|
sl@0
|
105 |
if (t != 0) c=1;
|
sl@0
|
106 |
if (++dl >= 0) break;
|
sl@0
|
107 |
|
sl@0
|
108 |
t = b[1];
|
sl@0
|
109 |
r[1] = (0-t-c)&BN_MASK2;
|
sl@0
|
110 |
if (t != 0) c=1;
|
sl@0
|
111 |
if (++dl >= 0) break;
|
sl@0
|
112 |
|
sl@0
|
113 |
t = b[2];
|
sl@0
|
114 |
r[2] = (0-t-c)&BN_MASK2;
|
sl@0
|
115 |
if (t != 0) c=1;
|
sl@0
|
116 |
if (++dl >= 0) break;
|
sl@0
|
117 |
|
sl@0
|
118 |
t = b[3];
|
sl@0
|
119 |
r[3] = (0-t-c)&BN_MASK2;
|
sl@0
|
120 |
if (t != 0) c=1;
|
sl@0
|
121 |
if (++dl >= 0) break;
|
sl@0
|
122 |
|
sl@0
|
123 |
b += 4;
|
sl@0
|
124 |
r += 4;
|
sl@0
|
125 |
}
|
sl@0
|
126 |
}
|
sl@0
|
127 |
else
|
sl@0
|
128 |
{
|
sl@0
|
129 |
int save_dl = dl;
|
sl@0
|
130 |
#ifdef BN_COUNT
|
sl@0
|
131 |
fprintf(stderr, " bn_sub_part_words %d + %d (dl > 0, c = %d)\n", cl, dl, c);
|
sl@0
|
132 |
#endif
|
sl@0
|
133 |
while(c)
|
sl@0
|
134 |
{
|
sl@0
|
135 |
t = a[0];
|
sl@0
|
136 |
r[0] = (t-c)&BN_MASK2;
|
sl@0
|
137 |
if (t != 0) c=0;
|
sl@0
|
138 |
if (--dl <= 0) break;
|
sl@0
|
139 |
|
sl@0
|
140 |
t = a[1];
|
sl@0
|
141 |
r[1] = (t-c)&BN_MASK2;
|
sl@0
|
142 |
if (t != 0) c=0;
|
sl@0
|
143 |
if (--dl <= 0) break;
|
sl@0
|
144 |
|
sl@0
|
145 |
t = a[2];
|
sl@0
|
146 |
r[2] = (t-c)&BN_MASK2;
|
sl@0
|
147 |
if (t != 0) c=0;
|
sl@0
|
148 |
if (--dl <= 0) break;
|
sl@0
|
149 |
|
sl@0
|
150 |
t = a[3];
|
sl@0
|
151 |
r[3] = (t-c)&BN_MASK2;
|
sl@0
|
152 |
if (t != 0) c=0;
|
sl@0
|
153 |
if (--dl <= 0) break;
|
sl@0
|
154 |
|
sl@0
|
155 |
save_dl = dl;
|
sl@0
|
156 |
a += 4;
|
sl@0
|
157 |
r += 4;
|
sl@0
|
158 |
}
|
sl@0
|
159 |
if (dl > 0)
|
sl@0
|
160 |
{
|
sl@0
|
161 |
#ifdef BN_COUNT
|
sl@0
|
162 |
fprintf(stderr, " bn_sub_part_words %d + %d (dl > 0, c == 0)\n", cl, dl);
|
sl@0
|
163 |
#endif
|
sl@0
|
164 |
if (save_dl > dl)
|
sl@0
|
165 |
{
|
sl@0
|
166 |
switch (save_dl - dl)
|
sl@0
|
167 |
{
|
sl@0
|
168 |
case 1:
|
sl@0
|
169 |
r[1] = a[1];
|
sl@0
|
170 |
if (--dl <= 0) break;
|
sl@0
|
171 |
case 2:
|
sl@0
|
172 |
r[2] = a[2];
|
sl@0
|
173 |
if (--dl <= 0) break;
|
sl@0
|
174 |
case 3:
|
sl@0
|
175 |
r[3] = a[3];
|
sl@0
|
176 |
if (--dl <= 0) break;
|
sl@0
|
177 |
}
|
sl@0
|
178 |
a += 4;
|
sl@0
|
179 |
r += 4;
|
sl@0
|
180 |
}
|
sl@0
|
181 |
}
|
sl@0
|
182 |
if (dl > 0)
|
sl@0
|
183 |
{
|
sl@0
|
184 |
#ifdef BN_COUNT
|
sl@0
|
185 |
fprintf(stderr, " bn_sub_part_words %d + %d (dl > 0, copy)\n", cl, dl);
|
sl@0
|
186 |
#endif
|
sl@0
|
187 |
for(;;)
|
sl@0
|
188 |
{
|
sl@0
|
189 |
r[0] = a[0];
|
sl@0
|
190 |
if (--dl <= 0) break;
|
sl@0
|
191 |
r[1] = a[1];
|
sl@0
|
192 |
if (--dl <= 0) break;
|
sl@0
|
193 |
r[2] = a[2];
|
sl@0
|
194 |
if (--dl <= 0) break;
|
sl@0
|
195 |
r[3] = a[3];
|
sl@0
|
196 |
if (--dl <= 0) break;
|
sl@0
|
197 |
|
sl@0
|
198 |
a += 4;
|
sl@0
|
199 |
r += 4;
|
sl@0
|
200 |
}
|
sl@0
|
201 |
}
|
sl@0
|
202 |
}
|
sl@0
|
203 |
return c;
|
sl@0
|
204 |
}
|
sl@0
|
205 |
#endif
|
sl@0
|
206 |
|
sl@0
|
207 |
EXPORT_C BN_ULONG bn_add_part_words(BN_ULONG *r,
|
sl@0
|
208 |
const BN_ULONG *a, const BN_ULONG *b,
|
sl@0
|
209 |
int cl, int dl)
|
sl@0
|
210 |
{
|
sl@0
|
211 |
BN_ULONG c, l, t;
|
sl@0
|
212 |
|
sl@0
|
213 |
assert(cl >= 0);
|
sl@0
|
214 |
c = bn_add_words(r, a, b, cl);
|
sl@0
|
215 |
|
sl@0
|
216 |
if (dl == 0)
|
sl@0
|
217 |
return c;
|
sl@0
|
218 |
|
sl@0
|
219 |
r += cl;
|
sl@0
|
220 |
a += cl;
|
sl@0
|
221 |
b += cl;
|
sl@0
|
222 |
|
sl@0
|
223 |
if (dl < 0)
|
sl@0
|
224 |
{
|
sl@0
|
225 |
int save_dl = dl;
|
sl@0
|
226 |
#ifdef BN_COUNT
|
sl@0
|
227 |
fprintf(stderr, " bn_add_part_words %d + %d (dl < 0, c = %d)\n", cl, dl, c);
|
sl@0
|
228 |
#endif
|
sl@0
|
229 |
while (c)
|
sl@0
|
230 |
{
|
sl@0
|
231 |
l=(c+b[0])&BN_MASK2;
|
sl@0
|
232 |
c=(l < c);
|
sl@0
|
233 |
r[0]=l;
|
sl@0
|
234 |
if (++dl >= 0) break;
|
sl@0
|
235 |
|
sl@0
|
236 |
l=(c+b[1])&BN_MASK2;
|
sl@0
|
237 |
c=(l < c);
|
sl@0
|
238 |
r[1]=l;
|
sl@0
|
239 |
if (++dl >= 0) break;
|
sl@0
|
240 |
|
sl@0
|
241 |
l=(c+b[2])&BN_MASK2;
|
sl@0
|
242 |
c=(l < c);
|
sl@0
|
243 |
r[2]=l;
|
sl@0
|
244 |
if (++dl >= 0) break;
|
sl@0
|
245 |
|
sl@0
|
246 |
l=(c+b[3])&BN_MASK2;
|
sl@0
|
247 |
c=(l < c);
|
sl@0
|
248 |
r[3]=l;
|
sl@0
|
249 |
if (++dl >= 0) break;
|
sl@0
|
250 |
|
sl@0
|
251 |
save_dl = dl;
|
sl@0
|
252 |
b+=4;
|
sl@0
|
253 |
r+=4;
|
sl@0
|
254 |
}
|
sl@0
|
255 |
if (dl < 0)
|
sl@0
|
256 |
{
|
sl@0
|
257 |
#ifdef BN_COUNT
|
sl@0
|
258 |
fprintf(stderr, " bn_add_part_words %d + %d (dl < 0, c == 0)\n", cl, dl);
|
sl@0
|
259 |
#endif
|
sl@0
|
260 |
if (save_dl < dl)
|
sl@0
|
261 |
{
|
sl@0
|
262 |
switch (dl - save_dl)
|
sl@0
|
263 |
{
|
sl@0
|
264 |
case 1:
|
sl@0
|
265 |
r[1] = b[1];
|
sl@0
|
266 |
if (++dl >= 0) break;
|
sl@0
|
267 |
case 2:
|
sl@0
|
268 |
r[2] = b[2];
|
sl@0
|
269 |
if (++dl >= 0) break;
|
sl@0
|
270 |
case 3:
|
sl@0
|
271 |
r[3] = b[3];
|
sl@0
|
272 |
if (++dl >= 0) break;
|
sl@0
|
273 |
}
|
sl@0
|
274 |
b += 4;
|
sl@0
|
275 |
r += 4;
|
sl@0
|
276 |
}
|
sl@0
|
277 |
}
|
sl@0
|
278 |
if (dl < 0)
|
sl@0
|
279 |
{
|
sl@0
|
280 |
#ifdef BN_COUNT
|
sl@0
|
281 |
fprintf(stderr, " bn_add_part_words %d + %d (dl < 0, copy)\n", cl, dl);
|
sl@0
|
282 |
#endif
|
sl@0
|
283 |
for(;;)
|
sl@0
|
284 |
{
|
sl@0
|
285 |
r[0] = b[0];
|
sl@0
|
286 |
if (++dl >= 0) break;
|
sl@0
|
287 |
r[1] = b[1];
|
sl@0
|
288 |
if (++dl >= 0) break;
|
sl@0
|
289 |
r[2] = b[2];
|
sl@0
|
290 |
if (++dl >= 0) break;
|
sl@0
|
291 |
r[3] = b[3];
|
sl@0
|
292 |
if (++dl >= 0) break;
|
sl@0
|
293 |
|
sl@0
|
294 |
b += 4;
|
sl@0
|
295 |
r += 4;
|
sl@0
|
296 |
}
|
sl@0
|
297 |
}
|
sl@0
|
298 |
}
|
sl@0
|
299 |
else
|
sl@0
|
300 |
{
|
sl@0
|
301 |
int save_dl = dl;
|
sl@0
|
302 |
#ifdef BN_COUNT
|
sl@0
|
303 |
fprintf(stderr, " bn_add_part_words %d + %d (dl > 0)\n", cl, dl);
|
sl@0
|
304 |
#endif
|
sl@0
|
305 |
while (c)
|
sl@0
|
306 |
{
|
sl@0
|
307 |
t=(a[0]+c)&BN_MASK2;
|
sl@0
|
308 |
c=(t < c);
|
sl@0
|
309 |
r[0]=t;
|
sl@0
|
310 |
if (--dl <= 0) break;
|
sl@0
|
311 |
|
sl@0
|
312 |
t=(a[1]+c)&BN_MASK2;
|
sl@0
|
313 |
c=(t < c);
|
sl@0
|
314 |
r[1]=t;
|
sl@0
|
315 |
if (--dl <= 0) break;
|
sl@0
|
316 |
|
sl@0
|
317 |
t=(a[2]+c)&BN_MASK2;
|
sl@0
|
318 |
c=(t < c);
|
sl@0
|
319 |
r[2]=t;
|
sl@0
|
320 |
if (--dl <= 0) break;
|
sl@0
|
321 |
|
sl@0
|
322 |
t=(a[3]+c)&BN_MASK2;
|
sl@0
|
323 |
c=(t < c);
|
sl@0
|
324 |
r[3]=t;
|
sl@0
|
325 |
if (--dl <= 0) break;
|
sl@0
|
326 |
|
sl@0
|
327 |
save_dl = dl;
|
sl@0
|
328 |
a+=4;
|
sl@0
|
329 |
r+=4;
|
sl@0
|
330 |
}
|
sl@0
|
331 |
#ifdef BN_COUNT
|
sl@0
|
332 |
fprintf(stderr, " bn_add_part_words %d + %d (dl > 0, c == 0)\n", cl, dl);
|
sl@0
|
333 |
#endif
|
sl@0
|
334 |
if (dl > 0)
|
sl@0
|
335 |
{
|
sl@0
|
336 |
if (save_dl > dl)
|
sl@0
|
337 |
{
|
sl@0
|
338 |
switch (save_dl - dl)
|
sl@0
|
339 |
{
|
sl@0
|
340 |
case 1:
|
sl@0
|
341 |
r[1] = a[1];
|
sl@0
|
342 |
if (--dl <= 0) break;
|
sl@0
|
343 |
case 2:
|
sl@0
|
344 |
r[2] = a[2];
|
sl@0
|
345 |
if (--dl <= 0) break;
|
sl@0
|
346 |
case 3:
|
sl@0
|
347 |
r[3] = a[3];
|
sl@0
|
348 |
if (--dl <= 0) break;
|
sl@0
|
349 |
}
|
sl@0
|
350 |
a += 4;
|
sl@0
|
351 |
r += 4;
|
sl@0
|
352 |
}
|
sl@0
|
353 |
}
|
sl@0
|
354 |
if (dl > 0)
|
sl@0
|
355 |
{
|
sl@0
|
356 |
#ifdef BN_COUNT
|
sl@0
|
357 |
fprintf(stderr, " bn_add_part_words %d + %d (dl > 0, copy)\n", cl, dl);
|
sl@0
|
358 |
#endif
|
sl@0
|
359 |
for(;;)
|
sl@0
|
360 |
{
|
sl@0
|
361 |
r[0] = a[0];
|
sl@0
|
362 |
if (--dl <= 0) break;
|
sl@0
|
363 |
r[1] = a[1];
|
sl@0
|
364 |
if (--dl <= 0) break;
|
sl@0
|
365 |
r[2] = a[2];
|
sl@0
|
366 |
if (--dl <= 0) break;
|
sl@0
|
367 |
r[3] = a[3];
|
sl@0
|
368 |
if (--dl <= 0) break;
|
sl@0
|
369 |
|
sl@0
|
370 |
a += 4;
|
sl@0
|
371 |
r += 4;
|
sl@0
|
372 |
}
|
sl@0
|
373 |
}
|
sl@0
|
374 |
}
|
sl@0
|
375 |
return c;
|
sl@0
|
376 |
}
|
sl@0
|
377 |
|
sl@0
|
378 |
#ifdef BN_RECURSION
|
sl@0
|
379 |
/* Karatsuba recursive multiplication algorithm
|
sl@0
|
380 |
* (cf. Knuth, The Art of Computer Programming, Vol. 2) */
|
sl@0
|
381 |
|
sl@0
|
382 |
/* r is 2*n2 words in size,
|
sl@0
|
383 |
* a and b are both n2 words in size.
|
sl@0
|
384 |
* n2 must be a power of 2.
|
sl@0
|
385 |
* We multiply and return the result.
|
sl@0
|
386 |
* t must be 2*n2 words in size
|
sl@0
|
387 |
* We calculate
|
sl@0
|
388 |
* a[0]*b[0]
|
sl@0
|
389 |
* a[0]*b[0]+a[1]*b[1]+(a[0]-a[1])*(b[1]-b[0])
|
sl@0
|
390 |
* a[1]*b[1]
|
sl@0
|
391 |
*/
|
sl@0
|
392 |
EXPORT_C void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
|
sl@0
|
393 |
int dna, int dnb, BN_ULONG *t)
|
sl@0
|
394 |
{
|
sl@0
|
395 |
int n=n2/2,c1,c2;
|
sl@0
|
396 |
int tna=n+dna, tnb=n+dnb;
|
sl@0
|
397 |
unsigned int neg,zero;
|
sl@0
|
398 |
BN_ULONG ln,lo,*p;
|
sl@0
|
399 |
|
sl@0
|
400 |
# ifdef BN_COUNT
|
sl@0
|
401 |
fprintf(stderr," bn_mul_recursive %d * %d\n",n2,n2);
|
sl@0
|
402 |
# endif
|
sl@0
|
403 |
# ifdef BN_MUL_COMBA
|
sl@0
|
404 |
# if 0
|
sl@0
|
405 |
if (n2 == 4)
|
sl@0
|
406 |
{
|
sl@0
|
407 |
bn_mul_comba4(r,a,b);
|
sl@0
|
408 |
return;
|
sl@0
|
409 |
}
|
sl@0
|
410 |
# endif
|
sl@0
|
411 |
/* Only call bn_mul_comba 8 if n2 == 8 and the
|
sl@0
|
412 |
* two arrays are complete [steve]
|
sl@0
|
413 |
*/
|
sl@0
|
414 |
if (n2 == 8 && dna == 0 && dnb == 0)
|
sl@0
|
415 |
{
|
sl@0
|
416 |
bn_mul_comba8(r,a,b);
|
sl@0
|
417 |
return;
|
sl@0
|
418 |
}
|
sl@0
|
419 |
# endif /* BN_MUL_COMBA */
|
sl@0
|
420 |
/* Else do normal multiply */
|
sl@0
|
421 |
if (n2 < BN_MUL_RECURSIVE_SIZE_NORMAL)
|
sl@0
|
422 |
{
|
sl@0
|
423 |
bn_mul_normal(r,a,n2+dna,b,n2+dnb);
|
sl@0
|
424 |
if ((dna + dnb) < 0)
|
sl@0
|
425 |
memset(&r[2*n2 + dna + dnb], 0,
|
sl@0
|
426 |
sizeof(BN_ULONG) * -(dna + dnb));
|
sl@0
|
427 |
return;
|
sl@0
|
428 |
}
|
sl@0
|
429 |
/* r=(a[0]-a[1])*(b[1]-b[0]) */
|
sl@0
|
430 |
c1=bn_cmp_part_words(a,&(a[n]),tna,n-tna);
|
sl@0
|
431 |
c2=bn_cmp_part_words(&(b[n]),b,tnb,tnb-n);
|
sl@0
|
432 |
zero=neg=0;
|
sl@0
|
433 |
switch (c1*3+c2)
|
sl@0
|
434 |
{
|
sl@0
|
435 |
case -4:
|
sl@0
|
436 |
bn_sub_part_words(t, &(a[n]),a, tna,tna-n); /* - */
|
sl@0
|
437 |
bn_sub_part_words(&(t[n]),b, &(b[n]),tnb,n-tnb); /* - */
|
sl@0
|
438 |
break;
|
sl@0
|
439 |
case -3:
|
sl@0
|
440 |
zero=1;
|
sl@0
|
441 |
break;
|
sl@0
|
442 |
case -2:
|
sl@0
|
443 |
bn_sub_part_words(t, &(a[n]),a, tna,tna-n); /* - */
|
sl@0
|
444 |
bn_sub_part_words(&(t[n]),&(b[n]),b, tnb,tnb-n); /* + */
|
sl@0
|
445 |
neg=1;
|
sl@0
|
446 |
break;
|
sl@0
|
447 |
case -1:
|
sl@0
|
448 |
case 0:
|
sl@0
|
449 |
case 1:
|
sl@0
|
450 |
zero=1;
|
sl@0
|
451 |
break;
|
sl@0
|
452 |
case 2:
|
sl@0
|
453 |
bn_sub_part_words(t, a, &(a[n]),tna,n-tna); /* + */
|
sl@0
|
454 |
bn_sub_part_words(&(t[n]),b, &(b[n]),tnb,n-tnb); /* - */
|
sl@0
|
455 |
neg=1;
|
sl@0
|
456 |
break;
|
sl@0
|
457 |
case 3:
|
sl@0
|
458 |
zero=1;
|
sl@0
|
459 |
break;
|
sl@0
|
460 |
case 4:
|
sl@0
|
461 |
bn_sub_part_words(t, a, &(a[n]),tna,n-tna);
|
sl@0
|
462 |
bn_sub_part_words(&(t[n]),&(b[n]),b, tnb,tnb-n);
|
sl@0
|
463 |
break;
|
sl@0
|
464 |
}
|
sl@0
|
465 |
|
sl@0
|
466 |
# ifdef BN_MUL_COMBA
|
sl@0
|
467 |
if (n == 4 && dna == 0 && dnb == 0) /* XXX: bn_mul_comba4 could take
|
sl@0
|
468 |
extra args to do this well */
|
sl@0
|
469 |
{
|
sl@0
|
470 |
if (!zero)
|
sl@0
|
471 |
bn_mul_comba4(&(t[n2]),t,&(t[n]));
|
sl@0
|
472 |
else
|
sl@0
|
473 |
memset(&(t[n2]),0,8*sizeof(BN_ULONG));
|
sl@0
|
474 |
|
sl@0
|
475 |
bn_mul_comba4(r,a,b);
|
sl@0
|
476 |
bn_mul_comba4(&(r[n2]),&(a[n]),&(b[n]));
|
sl@0
|
477 |
}
|
sl@0
|
478 |
else if (n == 8 && dna == 0 && dnb == 0) /* XXX: bn_mul_comba8 could
|
sl@0
|
479 |
take extra args to do this
|
sl@0
|
480 |
well */
|
sl@0
|
481 |
{
|
sl@0
|
482 |
if (!zero)
|
sl@0
|
483 |
bn_mul_comba8(&(t[n2]),t,&(t[n]));
|
sl@0
|
484 |
else
|
sl@0
|
485 |
memset(&(t[n2]),0,16*sizeof(BN_ULONG));
|
sl@0
|
486 |
|
sl@0
|
487 |
bn_mul_comba8(r,a,b);
|
sl@0
|
488 |
bn_mul_comba8(&(r[n2]),&(a[n]),&(b[n]));
|
sl@0
|
489 |
}
|
sl@0
|
490 |
else
|
sl@0
|
491 |
# endif /* BN_MUL_COMBA */
|
sl@0
|
492 |
{
|
sl@0
|
493 |
p= &(t[n2*2]);
|
sl@0
|
494 |
if (!zero)
|
sl@0
|
495 |
bn_mul_recursive(&(t[n2]),t,&(t[n]),n,0,0,p);
|
sl@0
|
496 |
else
|
sl@0
|
497 |
memset(&(t[n2]),0,n2*sizeof(BN_ULONG));
|
sl@0
|
498 |
bn_mul_recursive(r,a,b,n,0,0,p);
|
sl@0
|
499 |
bn_mul_recursive(&(r[n2]),&(a[n]),&(b[n]),n,dna,dnb,p);
|
sl@0
|
500 |
}
|
sl@0
|
501 |
|
sl@0
|
502 |
/* t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign
|
sl@0
|
503 |
* r[10] holds (a[0]*b[0])
|
sl@0
|
504 |
* r[32] holds (b[1]*b[1])
|
sl@0
|
505 |
*/
|
sl@0
|
506 |
|
sl@0
|
507 |
c1=(int)(bn_add_words(t,r,&(r[n2]),n2));
|
sl@0
|
508 |
|
sl@0
|
509 |
if (neg) /* if t[32] is negative */
|
sl@0
|
510 |
{
|
sl@0
|
511 |
c1-=(int)(bn_sub_words(&(t[n2]),t,&(t[n2]),n2));
|
sl@0
|
512 |
}
|
sl@0
|
513 |
else
|
sl@0
|
514 |
{
|
sl@0
|
515 |
/* Might have a carry */
|
sl@0
|
516 |
c1+=(int)(bn_add_words(&(t[n2]),&(t[n2]),t,n2));
|
sl@0
|
517 |
}
|
sl@0
|
518 |
|
sl@0
|
519 |
/* t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1])
|
sl@0
|
520 |
* r[10] holds (a[0]*b[0])
|
sl@0
|
521 |
* r[32] holds (b[1]*b[1])
|
sl@0
|
522 |
* c1 holds the carry bits
|
sl@0
|
523 |
*/
|
sl@0
|
524 |
c1+=(int)(bn_add_words(&(r[n]),&(r[n]),&(t[n2]),n2));
|
sl@0
|
525 |
if (c1)
|
sl@0
|
526 |
{
|
sl@0
|
527 |
p= &(r[n+n2]);
|
sl@0
|
528 |
lo= *p;
|
sl@0
|
529 |
ln=(lo+c1)&BN_MASK2;
|
sl@0
|
530 |
*p=ln;
|
sl@0
|
531 |
|
sl@0
|
532 |
/* The overflow will stop before we over write
|
sl@0
|
533 |
* words we should not overwrite */
|
sl@0
|
534 |
if (ln < (BN_ULONG)c1)
|
sl@0
|
535 |
{
|
sl@0
|
536 |
do {
|
sl@0
|
537 |
p++;
|
sl@0
|
538 |
lo= *p;
|
sl@0
|
539 |
ln=(lo+1)&BN_MASK2;
|
sl@0
|
540 |
*p=ln;
|
sl@0
|
541 |
} while (ln == 0);
|
sl@0
|
542 |
}
|
sl@0
|
543 |
}
|
sl@0
|
544 |
}
|
sl@0
|
545 |
|
sl@0
|
546 |
/* n+tn is the word length
|
sl@0
|
547 |
* t needs to be n*4 is size, as does r */
|
sl@0
|
548 |
EXPORT_C void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n,
|
sl@0
|
549 |
int tna, int tnb, BN_ULONG *t)
|
sl@0
|
550 |
{
|
sl@0
|
551 |
int i,j,n2=n*2;
|
sl@0
|
552 |
int c1,c2,neg,zero;
|
sl@0
|
553 |
BN_ULONG ln,lo,*p;
|
sl@0
|
554 |
|
sl@0
|
555 |
# ifdef BN_COUNT
|
sl@0
|
556 |
fprintf(stderr," bn_mul_part_recursive (%d+%d) * (%d+%d)\n",
|
sl@0
|
557 |
tna, n, tnb, n);
|
sl@0
|
558 |
# endif
|
sl@0
|
559 |
if (n < 8)
|
sl@0
|
560 |
{
|
sl@0
|
561 |
bn_mul_normal(r,a,n+tna,b,n+tnb);
|
sl@0
|
562 |
return;
|
sl@0
|
563 |
}
|
sl@0
|
564 |
|
sl@0
|
565 |
/* r=(a[0]-a[1])*(b[1]-b[0]) */
|
sl@0
|
566 |
c1=bn_cmp_part_words(a,&(a[n]),tna,n-tna);
|
sl@0
|
567 |
c2=bn_cmp_part_words(&(b[n]),b,tnb,tnb-n);
|
sl@0
|
568 |
zero=neg=0;
|
sl@0
|
569 |
switch (c1*3+c2)
|
sl@0
|
570 |
{
|
sl@0
|
571 |
case -4:
|
sl@0
|
572 |
bn_sub_part_words(t, &(a[n]),a, tna,tna-n); /* - */
|
sl@0
|
573 |
bn_sub_part_words(&(t[n]),b, &(b[n]),tnb,n-tnb); /* - */
|
sl@0
|
574 |
break;
|
sl@0
|
575 |
case -3:
|
sl@0
|
576 |
zero=1;
|
sl@0
|
577 |
/* break; */
|
sl@0
|
578 |
case -2:
|
sl@0
|
579 |
bn_sub_part_words(t, &(a[n]),a, tna,tna-n); /* - */
|
sl@0
|
580 |
bn_sub_part_words(&(t[n]),&(b[n]),b, tnb,tnb-n); /* + */
|
sl@0
|
581 |
neg=1;
|
sl@0
|
582 |
break;
|
sl@0
|
583 |
case -1:
|
sl@0
|
584 |
case 0:
|
sl@0
|
585 |
case 1:
|
sl@0
|
586 |
zero=1;
|
sl@0
|
587 |
/* break; */
|
sl@0
|
588 |
case 2:
|
sl@0
|
589 |
bn_sub_part_words(t, a, &(a[n]),tna,n-tna); /* + */
|
sl@0
|
590 |
bn_sub_part_words(&(t[n]),b, &(b[n]),tnb,n-tnb); /* - */
|
sl@0
|
591 |
neg=1;
|
sl@0
|
592 |
break;
|
sl@0
|
593 |
case 3:
|
sl@0
|
594 |
zero=1;
|
sl@0
|
595 |
/* break; */
|
sl@0
|
596 |
case 4:
|
sl@0
|
597 |
bn_sub_part_words(t, a, &(a[n]),tna,n-tna);
|
sl@0
|
598 |
bn_sub_part_words(&(t[n]),&(b[n]),b, tnb,tnb-n);
|
sl@0
|
599 |
break;
|
sl@0
|
600 |
}
|
sl@0
|
601 |
/* The zero case isn't yet implemented here. The speedup
|
sl@0
|
602 |
would probably be negligible. */
|
sl@0
|
603 |
# if 0
|
sl@0
|
604 |
if (n == 4)
|
sl@0
|
605 |
{
|
sl@0
|
606 |
bn_mul_comba4(&(t[n2]),t,&(t[n]));
|
sl@0
|
607 |
bn_mul_comba4(r,a,b);
|
sl@0
|
608 |
bn_mul_normal(&(r[n2]),&(a[n]),tn,&(b[n]),tn);
|
sl@0
|
609 |
memset(&(r[n2+tn*2]),0,sizeof(BN_ULONG)*(n2-tn*2));
|
sl@0
|
610 |
}
|
sl@0
|
611 |
else
|
sl@0
|
612 |
# endif
|
sl@0
|
613 |
if (n == 8)
|
sl@0
|
614 |
{
|
sl@0
|
615 |
bn_mul_comba8(&(t[n2]),t,&(t[n]));
|
sl@0
|
616 |
bn_mul_comba8(r,a,b);
|
sl@0
|
617 |
bn_mul_normal(&(r[n2]),&(a[n]),tna,&(b[n]),tnb);
|
sl@0
|
618 |
memset(&(r[n2+tna+tnb]),0,sizeof(BN_ULONG)*(n2-tna-tnb));
|
sl@0
|
619 |
}
|
sl@0
|
620 |
else
|
sl@0
|
621 |
{
|
sl@0
|
622 |
p= &(t[n2*2]);
|
sl@0
|
623 |
bn_mul_recursive(&(t[n2]),t,&(t[n]),n,0,0,p);
|
sl@0
|
624 |
bn_mul_recursive(r,a,b,n,0,0,p);
|
sl@0
|
625 |
i=n/2;
|
sl@0
|
626 |
/* If there is only a bottom half to the number,
|
sl@0
|
627 |
* just do it */
|
sl@0
|
628 |
if (tna > tnb)
|
sl@0
|
629 |
j = tna - i;
|
sl@0
|
630 |
else
|
sl@0
|
631 |
j = tnb - i;
|
sl@0
|
632 |
if (j == 0)
|
sl@0
|
633 |
{
|
sl@0
|
634 |
bn_mul_recursive(&(r[n2]),&(a[n]),&(b[n]),
|
sl@0
|
635 |
i,tna-i,tnb-i,p);
|
sl@0
|
636 |
memset(&(r[n2+i*2]),0,sizeof(BN_ULONG)*(n2-i*2));
|
sl@0
|
637 |
}
|
sl@0
|
638 |
else if (j > 0) /* eg, n == 16, i == 8 and tn == 11 */
|
sl@0
|
639 |
{
|
sl@0
|
640 |
bn_mul_part_recursive(&(r[n2]),&(a[n]),&(b[n]),
|
sl@0
|
641 |
i,tna-i,tnb-i,p);
|
sl@0
|
642 |
memset(&(r[n2+tna+tnb]),0,
|
sl@0
|
643 |
sizeof(BN_ULONG)*(n2-tna-tnb));
|
sl@0
|
644 |
}
|
sl@0
|
645 |
else /* (j < 0) eg, n == 16, i == 8 and tn == 5 */
|
sl@0
|
646 |
{
|
sl@0
|
647 |
memset(&(r[n2]),0,sizeof(BN_ULONG)*n2);
|
sl@0
|
648 |
if (tna < BN_MUL_RECURSIVE_SIZE_NORMAL
|
sl@0
|
649 |
&& tnb < BN_MUL_RECURSIVE_SIZE_NORMAL)
|
sl@0
|
650 |
{
|
sl@0
|
651 |
bn_mul_normal(&(r[n2]),&(a[n]),tna,&(b[n]),tnb);
|
sl@0
|
652 |
}
|
sl@0
|
653 |
else
|
sl@0
|
654 |
{
|
sl@0
|
655 |
for (;;)
|
sl@0
|
656 |
{
|
sl@0
|
657 |
i/=2;
|
sl@0
|
658 |
if (i <= tna && tna == tnb)
|
sl@0
|
659 |
{
|
sl@0
|
660 |
bn_mul_recursive(&(r[n2]),
|
sl@0
|
661 |
&(a[n]),&(b[n]),
|
sl@0
|
662 |
i,tna-i,tnb-i,p);
|
sl@0
|
663 |
break;
|
sl@0
|
664 |
}
|
sl@0
|
665 |
else if (i < tna || i < tnb)
|
sl@0
|
666 |
{
|
sl@0
|
667 |
bn_mul_part_recursive(&(r[n2]),
|
sl@0
|
668 |
&(a[n]),&(b[n]),
|
sl@0
|
669 |
i,tna-i,tnb-i,p);
|
sl@0
|
670 |
break;
|
sl@0
|
671 |
}
|
sl@0
|
672 |
}
|
sl@0
|
673 |
}
|
sl@0
|
674 |
}
|
sl@0
|
675 |
}
|
sl@0
|
676 |
|
sl@0
|
677 |
/* t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign
|
sl@0
|
678 |
* r[10] holds (a[0]*b[0])
|
sl@0
|
679 |
* r[32] holds (b[1]*b[1])
|
sl@0
|
680 |
*/
|
sl@0
|
681 |
|
sl@0
|
682 |
c1=(int)(bn_add_words(t,r,&(r[n2]),n2));
|
sl@0
|
683 |
|
sl@0
|
684 |
if (neg) /* if t[32] is negative */
|
sl@0
|
685 |
{
|
sl@0
|
686 |
c1-=(int)(bn_sub_words(&(t[n2]),t,&(t[n2]),n2));
|
sl@0
|
687 |
}
|
sl@0
|
688 |
else
|
sl@0
|
689 |
{
|
sl@0
|
690 |
/* Might have a carry */
|
sl@0
|
691 |
c1+=(int)(bn_add_words(&(t[n2]),&(t[n2]),t,n2));
|
sl@0
|
692 |
}
|
sl@0
|
693 |
|
sl@0
|
694 |
/* t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1])
|
sl@0
|
695 |
* r[10] holds (a[0]*b[0])
|
sl@0
|
696 |
* r[32] holds (b[1]*b[1])
|
sl@0
|
697 |
* c1 holds the carry bits
|
sl@0
|
698 |
*/
|
sl@0
|
699 |
c1+=(int)(bn_add_words(&(r[n]),&(r[n]),&(t[n2]),n2));
|
sl@0
|
700 |
if (c1)
|
sl@0
|
701 |
{
|
sl@0
|
702 |
p= &(r[n+n2]);
|
sl@0
|
703 |
lo= *p;
|
sl@0
|
704 |
ln=(lo+c1)&BN_MASK2;
|
sl@0
|
705 |
*p=ln;
|
sl@0
|
706 |
|
sl@0
|
707 |
/* The overflow will stop before we over write
|
sl@0
|
708 |
* words we should not overwrite */
|
sl@0
|
709 |
if (ln < (BN_ULONG)c1)
|
sl@0
|
710 |
{
|
sl@0
|
711 |
do {
|
sl@0
|
712 |
p++;
|
sl@0
|
713 |
lo= *p;
|
sl@0
|
714 |
ln=(lo+1)&BN_MASK2;
|
sl@0
|
715 |
*p=ln;
|
sl@0
|
716 |
} while (ln == 0);
|
sl@0
|
717 |
}
|
sl@0
|
718 |
}
|
sl@0
|
719 |
}
|
sl@0
|
720 |
|
sl@0
|
721 |
/* a and b must be the same size, which is n2.
|
sl@0
|
722 |
* r needs to be n2 words and t needs to be n2*2
|
sl@0
|
723 |
*/
|
sl@0
|
724 |
EXPORT_C void bn_mul_low_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
|
sl@0
|
725 |
BN_ULONG *t)
|
sl@0
|
726 |
{
|
sl@0
|
727 |
int n=n2/2;
|
sl@0
|
728 |
|
sl@0
|
729 |
# ifdef BN_COUNT
|
sl@0
|
730 |
fprintf(stderr," bn_mul_low_recursive %d * %d\n",n2,n2);
|
sl@0
|
731 |
# endif
|
sl@0
|
732 |
|
sl@0
|
733 |
bn_mul_recursive(r,a,b,n,0,0,&(t[0]));
|
sl@0
|
734 |
if (n >= BN_MUL_LOW_RECURSIVE_SIZE_NORMAL)
|
sl@0
|
735 |
{
|
sl@0
|
736 |
bn_mul_low_recursive(&(t[0]),&(a[0]),&(b[n]),n,&(t[n2]));
|
sl@0
|
737 |
bn_add_words(&(r[n]),&(r[n]),&(t[0]),n);
|
sl@0
|
738 |
bn_mul_low_recursive(&(t[0]),&(a[n]),&(b[0]),n,&(t[n2]));
|
sl@0
|
739 |
bn_add_words(&(r[n]),&(r[n]),&(t[0]),n);
|
sl@0
|
740 |
}
|
sl@0
|
741 |
else
|
sl@0
|
742 |
{
|
sl@0
|
743 |
bn_mul_low_normal(&(t[0]),&(a[0]),&(b[n]),n);
|
sl@0
|
744 |
bn_mul_low_normal(&(t[n]),&(a[n]),&(b[0]),n);
|
sl@0
|
745 |
bn_add_words(&(r[n]),&(r[n]),&(t[0]),n);
|
sl@0
|
746 |
bn_add_words(&(r[n]),&(r[n]),&(t[n]),n);
|
sl@0
|
747 |
}
|
sl@0
|
748 |
}
|
sl@0
|
749 |
|
sl@0
|
750 |
/* a and b must be the same size, which is n2.
|
sl@0
|
751 |
* r needs to be n2 words and t needs to be n2*2
|
sl@0
|
752 |
* l is the low words of the output.
|
sl@0
|
753 |
* t needs to be n2*3
|
sl@0
|
754 |
*/
|
sl@0
|
755 |
EXPORT_C void bn_mul_high(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, BN_ULONG *l, int n2,
|
sl@0
|
756 |
BN_ULONG *t)
|
sl@0
|
757 |
{
|
sl@0
|
758 |
int i,n;
|
sl@0
|
759 |
int c1,c2;
|
sl@0
|
760 |
int neg,oneg,zero;
|
sl@0
|
761 |
BN_ULONG ll,lc,*lp,*mp;
|
sl@0
|
762 |
|
sl@0
|
763 |
# ifdef BN_COUNT
|
sl@0
|
764 |
fprintf(stderr," bn_mul_high %d * %d\n",n2,n2);
|
sl@0
|
765 |
# endif
|
sl@0
|
766 |
n=n2/2;
|
sl@0
|
767 |
|
sl@0
|
768 |
/* Calculate (al-ah)*(bh-bl) */
|
sl@0
|
769 |
neg=zero=0;
|
sl@0
|
770 |
c1=bn_cmp_words(&(a[0]),&(a[n]),n);
|
sl@0
|
771 |
c2=bn_cmp_words(&(b[n]),&(b[0]),n);
|
sl@0
|
772 |
switch (c1*3+c2)
|
sl@0
|
773 |
{
|
sl@0
|
774 |
case -4:
|
sl@0
|
775 |
bn_sub_words(&(r[0]),&(a[n]),&(a[0]),n);
|
sl@0
|
776 |
bn_sub_words(&(r[n]),&(b[0]),&(b[n]),n);
|
sl@0
|
777 |
break;
|
sl@0
|
778 |
case -3:
|
sl@0
|
779 |
zero=1;
|
sl@0
|
780 |
break;
|
sl@0
|
781 |
case -2:
|
sl@0
|
782 |
bn_sub_words(&(r[0]),&(a[n]),&(a[0]),n);
|
sl@0
|
783 |
bn_sub_words(&(r[n]),&(b[n]),&(b[0]),n);
|
sl@0
|
784 |
neg=1;
|
sl@0
|
785 |
break;
|
sl@0
|
786 |
case -1:
|
sl@0
|
787 |
case 0:
|
sl@0
|
788 |
case 1:
|
sl@0
|
789 |
zero=1;
|
sl@0
|
790 |
break;
|
sl@0
|
791 |
case 2:
|
sl@0
|
792 |
bn_sub_words(&(r[0]),&(a[0]),&(a[n]),n);
|
sl@0
|
793 |
bn_sub_words(&(r[n]),&(b[0]),&(b[n]),n);
|
sl@0
|
794 |
neg=1;
|
sl@0
|
795 |
break;
|
sl@0
|
796 |
case 3:
|
sl@0
|
797 |
zero=1;
|
sl@0
|
798 |
break;
|
sl@0
|
799 |
case 4:
|
sl@0
|
800 |
bn_sub_words(&(r[0]),&(a[0]),&(a[n]),n);
|
sl@0
|
801 |
bn_sub_words(&(r[n]),&(b[n]),&(b[0]),n);
|
sl@0
|
802 |
break;
|
sl@0
|
803 |
}
|
sl@0
|
804 |
|
sl@0
|
805 |
oneg=neg;
|
sl@0
|
806 |
/* t[10] = (a[0]-a[1])*(b[1]-b[0]) */
|
sl@0
|
807 |
/* r[10] = (a[1]*b[1]) */
|
sl@0
|
808 |
# ifdef BN_MUL_COMBA
|
sl@0
|
809 |
if (n == 8)
|
sl@0
|
810 |
{
|
sl@0
|
811 |
bn_mul_comba8(&(t[0]),&(r[0]),&(r[n]));
|
sl@0
|
812 |
bn_mul_comba8(r,&(a[n]),&(b[n]));
|
sl@0
|
813 |
}
|
sl@0
|
814 |
else
|
sl@0
|
815 |
# endif
|
sl@0
|
816 |
{
|
sl@0
|
817 |
bn_mul_recursive(&(t[0]),&(r[0]),&(r[n]),n,0,0,&(t[n2]));
|
sl@0
|
818 |
bn_mul_recursive(r,&(a[n]),&(b[n]),n,0,0,&(t[n2]));
|
sl@0
|
819 |
}
|
sl@0
|
820 |
|
sl@0
|
821 |
/* s0 == low(al*bl)
|
sl@0
|
822 |
* s1 == low(ah*bh)+low((al-ah)*(bh-bl))+low(al*bl)+high(al*bl)
|
sl@0
|
823 |
* We know s0 and s1 so the only unknown is high(al*bl)
|
sl@0
|
824 |
* high(al*bl) == s1 - low(ah*bh+s0+(al-ah)*(bh-bl))
|
sl@0
|
825 |
* high(al*bl) == s1 - (r[0]+l[0]+t[0])
|
sl@0
|
826 |
*/
|
sl@0
|
827 |
if (l != NULL)
|
sl@0
|
828 |
{
|
sl@0
|
829 |
lp= &(t[n2+n]);
|
sl@0
|
830 |
c1=(int)(bn_add_words(lp,&(r[0]),&(l[0]),n));
|
sl@0
|
831 |
}
|
sl@0
|
832 |
else
|
sl@0
|
833 |
{
|
sl@0
|
834 |
c1=0;
|
sl@0
|
835 |
lp= &(r[0]);
|
sl@0
|
836 |
}
|
sl@0
|
837 |
|
sl@0
|
838 |
if (neg)
|
sl@0
|
839 |
neg=(int)(bn_sub_words(&(t[n2]),lp,&(t[0]),n));
|
sl@0
|
840 |
else
|
sl@0
|
841 |
{
|
sl@0
|
842 |
bn_add_words(&(t[n2]),lp,&(t[0]),n);
|
sl@0
|
843 |
neg=0;
|
sl@0
|
844 |
}
|
sl@0
|
845 |
|
sl@0
|
846 |
if (l != NULL)
|
sl@0
|
847 |
{
|
sl@0
|
848 |
bn_sub_words(&(t[n2+n]),&(l[n]),&(t[n2]),n);
|
sl@0
|
849 |
}
|
sl@0
|
850 |
else
|
sl@0
|
851 |
{
|
sl@0
|
852 |
lp= &(t[n2+n]);
|
sl@0
|
853 |
mp= &(t[n2]);
|
sl@0
|
854 |
for (i=0; i<n; i++)
|
sl@0
|
855 |
lp[i]=((~mp[i])+1)&BN_MASK2;
|
sl@0
|
856 |
}
|
sl@0
|
857 |
|
sl@0
|
858 |
/* s[0] = low(al*bl)
|
sl@0
|
859 |
* t[3] = high(al*bl)
|
sl@0
|
860 |
* t[10] = (a[0]-a[1])*(b[1]-b[0]) neg is the sign
|
sl@0
|
861 |
* r[10] = (a[1]*b[1])
|
sl@0
|
862 |
*/
|
sl@0
|
863 |
/* R[10] = al*bl
|
sl@0
|
864 |
* R[21] = al*bl + ah*bh + (a[0]-a[1])*(b[1]-b[0])
|
sl@0
|
865 |
* R[32] = ah*bh
|
sl@0
|
866 |
*/
|
sl@0
|
867 |
/* R[1]=t[3]+l[0]+r[0](+-)t[0] (have carry/borrow)
|
sl@0
|
868 |
* R[2]=r[0]+t[3]+r[1](+-)t[1] (have carry/borrow)
|
sl@0
|
869 |
* R[3]=r[1]+(carry/borrow)
|
sl@0
|
870 |
*/
|
sl@0
|
871 |
if (l != NULL)
|
sl@0
|
872 |
{
|
sl@0
|
873 |
lp= &(t[n2]);
|
sl@0
|
874 |
c1= (int)(bn_add_words(lp,&(t[n2+n]),&(l[0]),n));
|
sl@0
|
875 |
}
|
sl@0
|
876 |
else
|
sl@0
|
877 |
{
|
sl@0
|
878 |
lp= &(t[n2+n]);
|
sl@0
|
879 |
c1=0;
|
sl@0
|
880 |
}
|
sl@0
|
881 |
c1+=(int)(bn_add_words(&(t[n2]),lp, &(r[0]),n));
|
sl@0
|
882 |
if (oneg)
|
sl@0
|
883 |
c1-=(int)(bn_sub_words(&(t[n2]),&(t[n2]),&(t[0]),n));
|
sl@0
|
884 |
else
|
sl@0
|
885 |
c1+=(int)(bn_add_words(&(t[n2]),&(t[n2]),&(t[0]),n));
|
sl@0
|
886 |
|
sl@0
|
887 |
c2 =(int)(bn_add_words(&(r[0]),&(r[0]),&(t[n2+n]),n));
|
sl@0
|
888 |
c2+=(int)(bn_add_words(&(r[0]),&(r[0]),&(r[n]),n));
|
sl@0
|
889 |
if (oneg)
|
sl@0
|
890 |
c2-=(int)(bn_sub_words(&(r[0]),&(r[0]),&(t[n]),n));
|
sl@0
|
891 |
else
|
sl@0
|
892 |
c2+=(int)(bn_add_words(&(r[0]),&(r[0]),&(t[n]),n));
|
sl@0
|
893 |
|
sl@0
|
894 |
if (c1 != 0) /* Add starting at r[0], could be +ve or -ve */
|
sl@0
|
895 |
{
|
sl@0
|
896 |
i=0;
|
sl@0
|
897 |
if (c1 > 0)
|
sl@0
|
898 |
{
|
sl@0
|
899 |
lc=c1;
|
sl@0
|
900 |
do {
|
sl@0
|
901 |
ll=(r[i]+lc)&BN_MASK2;
|
sl@0
|
902 |
r[i++]=ll;
|
sl@0
|
903 |
lc=(lc > ll);
|
sl@0
|
904 |
} while (lc);
|
sl@0
|
905 |
}
|
sl@0
|
906 |
else
|
sl@0
|
907 |
{
|
sl@0
|
908 |
lc= -c1;
|
sl@0
|
909 |
do {
|
sl@0
|
910 |
ll=r[i];
|
sl@0
|
911 |
r[i++]=(ll-lc)&BN_MASK2;
|
sl@0
|
912 |
lc=(lc > ll);
|
sl@0
|
913 |
} while (lc);
|
sl@0
|
914 |
}
|
sl@0
|
915 |
}
|
sl@0
|
916 |
if (c2 != 0) /* Add starting at r[1] */
|
sl@0
|
917 |
{
|
sl@0
|
918 |
i=n;
|
sl@0
|
919 |
if (c2 > 0)
|
sl@0
|
920 |
{
|
sl@0
|
921 |
lc=c2;
|
sl@0
|
922 |
do {
|
sl@0
|
923 |
ll=(r[i]+lc)&BN_MASK2;
|
sl@0
|
924 |
r[i++]=ll;
|
sl@0
|
925 |
lc=(lc > ll);
|
sl@0
|
926 |
} while (lc);
|
sl@0
|
927 |
}
|
sl@0
|
928 |
else
|
sl@0
|
929 |
{
|
sl@0
|
930 |
lc= -c2;
|
sl@0
|
931 |
do {
|
sl@0
|
932 |
ll=r[i];
|
sl@0
|
933 |
r[i++]=(ll-lc)&BN_MASK2;
|
sl@0
|
934 |
lc=(lc > ll);
|
sl@0
|
935 |
} while (lc);
|
sl@0
|
936 |
}
|
sl@0
|
937 |
}
|
sl@0
|
938 |
}
|
sl@0
|
939 |
#endif /* BN_RECURSION */
|
sl@0
|
940 |
|
sl@0
|
941 |
EXPORT_C int BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
|
sl@0
|
942 |
{
|
sl@0
|
943 |
int ret=0;
|
sl@0
|
944 |
int top,al,bl;
|
sl@0
|
945 |
BIGNUM *rr;
|
sl@0
|
946 |
#if defined(BN_MUL_COMBA) || defined(BN_RECURSION)
|
sl@0
|
947 |
int i;
|
sl@0
|
948 |
#endif
|
sl@0
|
949 |
#ifdef BN_RECURSION
|
sl@0
|
950 |
BIGNUM *t=NULL;
|
sl@0
|
951 |
int j=0,k;
|
sl@0
|
952 |
#endif
|
sl@0
|
953 |
|
sl@0
|
954 |
#ifdef BN_COUNT
|
sl@0
|
955 |
fprintf(stderr,"BN_mul %d * %d\n",a->top,b->top);
|
sl@0
|
956 |
#endif
|
sl@0
|
957 |
|
sl@0
|
958 |
bn_check_top(a);
|
sl@0
|
959 |
bn_check_top(b);
|
sl@0
|
960 |
bn_check_top(r);
|
sl@0
|
961 |
|
sl@0
|
962 |
al=a->top;
|
sl@0
|
963 |
bl=b->top;
|
sl@0
|
964 |
|
sl@0
|
965 |
if ((al == 0) || (bl == 0))
|
sl@0
|
966 |
{
|
sl@0
|
967 |
BN_zero(r);
|
sl@0
|
968 |
return(1);
|
sl@0
|
969 |
}
|
sl@0
|
970 |
top=al+bl;
|
sl@0
|
971 |
|
sl@0
|
972 |
BN_CTX_start(ctx);
|
sl@0
|
973 |
if ((r == a) || (r == b))
|
sl@0
|
974 |
{
|
sl@0
|
975 |
if ((rr = BN_CTX_get(ctx)) == NULL) goto err;
|
sl@0
|
976 |
}
|
sl@0
|
977 |
else
|
sl@0
|
978 |
rr = r;
|
sl@0
|
979 |
rr->neg=a->neg^b->neg;
|
sl@0
|
980 |
|
sl@0
|
981 |
#if defined(BN_MUL_COMBA) || defined(BN_RECURSION)
|
sl@0
|
982 |
i = al-bl;
|
sl@0
|
983 |
#endif
|
sl@0
|
984 |
#ifdef BN_MUL_COMBA
|
sl@0
|
985 |
if (i == 0)
|
sl@0
|
986 |
{
|
sl@0
|
987 |
# if 0
|
sl@0
|
988 |
if (al == 4)
|
sl@0
|
989 |
{
|
sl@0
|
990 |
if (bn_wexpand(rr,8) == NULL) goto err;
|
sl@0
|
991 |
rr->top=8;
|
sl@0
|
992 |
bn_mul_comba4(rr->d,a->d,b->d);
|
sl@0
|
993 |
goto end;
|
sl@0
|
994 |
}
|
sl@0
|
995 |
# endif
|
sl@0
|
996 |
if (al == 8)
|
sl@0
|
997 |
{
|
sl@0
|
998 |
if (bn_wexpand(rr,16) == NULL) goto err;
|
sl@0
|
999 |
rr->top=16;
|
sl@0
|
1000 |
bn_mul_comba8(rr->d,a->d,b->d);
|
sl@0
|
1001 |
goto end;
|
sl@0
|
1002 |
}
|
sl@0
|
1003 |
}
|
sl@0
|
1004 |
#endif /* BN_MUL_COMBA */
|
sl@0
|
1005 |
#ifdef BN_RECURSION
|
sl@0
|
1006 |
if ((al >= BN_MULL_SIZE_NORMAL) && (bl >= BN_MULL_SIZE_NORMAL))
|
sl@0
|
1007 |
{
|
sl@0
|
1008 |
if (i >= -1 && i <= 1)
|
sl@0
|
1009 |
{
|
sl@0
|
1010 |
int sav_j =0;
|
sl@0
|
1011 |
/* Find out the power of two lower or equal
|
sl@0
|
1012 |
to the longest of the two numbers */
|
sl@0
|
1013 |
if (i >= 0)
|
sl@0
|
1014 |
{
|
sl@0
|
1015 |
j = BN_num_bits_word((BN_ULONG)al);
|
sl@0
|
1016 |
}
|
sl@0
|
1017 |
if (i == -1)
|
sl@0
|
1018 |
{
|
sl@0
|
1019 |
j = BN_num_bits_word((BN_ULONG)bl);
|
sl@0
|
1020 |
}
|
sl@0
|
1021 |
sav_j = j;
|
sl@0
|
1022 |
j = 1<<(j-1);
|
sl@0
|
1023 |
assert(j <= al || j <= bl);
|
sl@0
|
1024 |
k = j+j;
|
sl@0
|
1025 |
t = BN_CTX_get(ctx);
|
sl@0
|
1026 |
if (al > j || bl > j)
|
sl@0
|
1027 |
{
|
sl@0
|
1028 |
bn_wexpand(t,k*4);
|
sl@0
|
1029 |
bn_wexpand(rr,k*4);
|
sl@0
|
1030 |
bn_mul_part_recursive(rr->d,a->d,b->d,
|
sl@0
|
1031 |
j,al-j,bl-j,t->d);
|
sl@0
|
1032 |
}
|
sl@0
|
1033 |
else /* al <= j || bl <= j */
|
sl@0
|
1034 |
{
|
sl@0
|
1035 |
bn_wexpand(t,k*2);
|
sl@0
|
1036 |
bn_wexpand(rr,k*2);
|
sl@0
|
1037 |
bn_mul_recursive(rr->d,a->d,b->d,
|
sl@0
|
1038 |
j,al-j,bl-j,t->d);
|
sl@0
|
1039 |
}
|
sl@0
|
1040 |
rr->top=top;
|
sl@0
|
1041 |
goto end;
|
sl@0
|
1042 |
}
|
sl@0
|
1043 |
#if 0
|
sl@0
|
1044 |
if (i == 1 && !BN_get_flags(b,BN_FLG_STATIC_DATA))
|
sl@0
|
1045 |
{
|
sl@0
|
1046 |
BIGNUM *tmp_bn = (BIGNUM *)b;
|
sl@0
|
1047 |
if (bn_wexpand(tmp_bn,al) == NULL) goto err;
|
sl@0
|
1048 |
tmp_bn->d[bl]=0;
|
sl@0
|
1049 |
bl++;
|
sl@0
|
1050 |
i--;
|
sl@0
|
1051 |
}
|
sl@0
|
1052 |
else if (i == -1 && !BN_get_flags(a,BN_FLG_STATIC_DATA))
|
sl@0
|
1053 |
{
|
sl@0
|
1054 |
BIGNUM *tmp_bn = (BIGNUM *)a;
|
sl@0
|
1055 |
if (bn_wexpand(tmp_bn,bl) == NULL) goto err;
|
sl@0
|
1056 |
tmp_bn->d[al]=0;
|
sl@0
|
1057 |
al++;
|
sl@0
|
1058 |
i++;
|
sl@0
|
1059 |
}
|
sl@0
|
1060 |
if (i == 0)
|
sl@0
|
1061 |
{
|
sl@0
|
1062 |
/* symmetric and > 4 */
|
sl@0
|
1063 |
/* 16 or larger */
|
sl@0
|
1064 |
j=BN_num_bits_word((BN_ULONG)al);
|
sl@0
|
1065 |
j=1<<(j-1);
|
sl@0
|
1066 |
k=j+j;
|
sl@0
|
1067 |
t = BN_CTX_get(ctx);
|
sl@0
|
1068 |
if (al == j) /* exact multiple */
|
sl@0
|
1069 |
{
|
sl@0
|
1070 |
if (bn_wexpand(t,k*2) == NULL) goto err;
|
sl@0
|
1071 |
if (bn_wexpand(rr,k*2) == NULL) goto err;
|
sl@0
|
1072 |
bn_mul_recursive(rr->d,a->d,b->d,al,t->d);
|
sl@0
|
1073 |
}
|
sl@0
|
1074 |
else
|
sl@0
|
1075 |
{
|
sl@0
|
1076 |
if (bn_wexpand(t,k*4) == NULL) goto err;
|
sl@0
|
1077 |
if (bn_wexpand(rr,k*4) == NULL) goto err;
|
sl@0
|
1078 |
bn_mul_part_recursive(rr->d,a->d,b->d,al-j,j,t->d);
|
sl@0
|
1079 |
}
|
sl@0
|
1080 |
rr->top=top;
|
sl@0
|
1081 |
goto end;
|
sl@0
|
1082 |
}
|
sl@0
|
1083 |
#endif
|
sl@0
|
1084 |
}
|
sl@0
|
1085 |
#endif /* BN_RECURSION */
|
sl@0
|
1086 |
if (bn_wexpand(rr,top) == NULL) goto err;
|
sl@0
|
1087 |
rr->top=top;
|
sl@0
|
1088 |
bn_mul_normal(rr->d,a->d,al,b->d,bl);
|
sl@0
|
1089 |
|
sl@0
|
1090 |
#if defined(BN_MUL_COMBA) || defined(BN_RECURSION)
|
sl@0
|
1091 |
end:
|
sl@0
|
1092 |
#endif
|
sl@0
|
1093 |
bn_correct_top(rr);
|
sl@0
|
1094 |
if (r != rr) BN_copy(r,rr);
|
sl@0
|
1095 |
ret=1;
|
sl@0
|
1096 |
err:
|
sl@0
|
1097 |
bn_check_top(r);
|
sl@0
|
1098 |
BN_CTX_end(ctx);
|
sl@0
|
1099 |
return(ret);
|
sl@0
|
1100 |
}
|
sl@0
|
1101 |
|
sl@0
|
1102 |
EXPORT_C void bn_mul_normal(BN_ULONG *r, BN_ULONG *a, int na, BN_ULONG *b, int nb)
|
sl@0
|
1103 |
{
|
sl@0
|
1104 |
BN_ULONG *rr;
|
sl@0
|
1105 |
|
sl@0
|
1106 |
#ifdef BN_COUNT
|
sl@0
|
1107 |
fprintf(stderr," bn_mul_normal %d * %d\n",na,nb);
|
sl@0
|
1108 |
#endif
|
sl@0
|
1109 |
|
sl@0
|
1110 |
if (na < nb)
|
sl@0
|
1111 |
{
|
sl@0
|
1112 |
int itmp;
|
sl@0
|
1113 |
BN_ULONG *ltmp;
|
sl@0
|
1114 |
|
sl@0
|
1115 |
itmp=na; na=nb; nb=itmp;
|
sl@0
|
1116 |
ltmp=a; a=b; b=ltmp;
|
sl@0
|
1117 |
|
sl@0
|
1118 |
}
|
sl@0
|
1119 |
rr= &(r[na]);
|
sl@0
|
1120 |
if (nb <= 0)
|
sl@0
|
1121 |
{
|
sl@0
|
1122 |
(void)bn_mul_words(r,a,na,0);
|
sl@0
|
1123 |
return;
|
sl@0
|
1124 |
}
|
sl@0
|
1125 |
else
|
sl@0
|
1126 |
rr[0]=bn_mul_words(r,a,na,b[0]);
|
sl@0
|
1127 |
|
sl@0
|
1128 |
for (;;)
|
sl@0
|
1129 |
{
|
sl@0
|
1130 |
if (--nb <= 0) return;
|
sl@0
|
1131 |
rr[1]=bn_mul_add_words(&(r[1]),a,na,b[1]);
|
sl@0
|
1132 |
if (--nb <= 0) return;
|
sl@0
|
1133 |
rr[2]=bn_mul_add_words(&(r[2]),a,na,b[2]);
|
sl@0
|
1134 |
if (--nb <= 0) return;
|
sl@0
|
1135 |
rr[3]=bn_mul_add_words(&(r[3]),a,na,b[3]);
|
sl@0
|
1136 |
if (--nb <= 0) return;
|
sl@0
|
1137 |
rr[4]=bn_mul_add_words(&(r[4]),a,na,b[4]);
|
sl@0
|
1138 |
rr+=4;
|
sl@0
|
1139 |
r+=4;
|
sl@0
|
1140 |
b+=4;
|
sl@0
|
1141 |
}
|
sl@0
|
1142 |
}
|
sl@0
|
1143 |
|
sl@0
|
1144 |
EXPORT_C void bn_mul_low_normal(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n)
|
sl@0
|
1145 |
{
|
sl@0
|
1146 |
#ifdef BN_COUNT
|
sl@0
|
1147 |
fprintf(stderr," bn_mul_low_normal %d * %d\n",n,n);
|
sl@0
|
1148 |
#endif
|
sl@0
|
1149 |
bn_mul_words(r,a,n,b[0]);
|
sl@0
|
1150 |
|
sl@0
|
1151 |
for (;;)
|
sl@0
|
1152 |
{
|
sl@0
|
1153 |
if (--n <= 0) return;
|
sl@0
|
1154 |
bn_mul_add_words(&(r[1]),a,n,b[1]);
|
sl@0
|
1155 |
if (--n <= 0) return;
|
sl@0
|
1156 |
bn_mul_add_words(&(r[2]),a,n,b[2]);
|
sl@0
|
1157 |
if (--n <= 0) return;
|
sl@0
|
1158 |
bn_mul_add_words(&(r[3]),a,n,b[3]);
|
sl@0
|
1159 |
if (--n <= 0) return;
|
sl@0
|
1160 |
bn_mul_add_words(&(r[4]),a,n,b[4]);
|
sl@0
|
1161 |
r+=4;
|
sl@0
|
1162 |
b+=4;
|
sl@0
|
1163 |
}
|
sl@0
|
1164 |
}
|