os/ossrv/ossrv_pub/boost_apis/boost/optional/optional.hpp
author sl@SLION-WIN7.fritz.box
Fri, 15 Jun 2012 03:10:57 +0200
changeset 0 bde4ae8d615e
permissions -rw-r--r--
First public contribution.
sl@0
     1
// Copyright (C) 2003, Fernando Luis Cacciola Carballal.
sl@0
     2
//
sl@0
     3
// Use, modification, and distribution is subject to the Boost Software
sl@0
     4
// License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
sl@0
     5
// http://www.boost.org/LICENSE_1_0.txt)
sl@0
     6
//
sl@0
     7
// See http://www.boost.org/lib/optional for documentation.
sl@0
     8
//
sl@0
     9
// You are welcome to contact the author at:
sl@0
    10
//  fernando_cacciola@hotmail.com
sl@0
    11
//
sl@0
    12
#ifndef BOOST_OPTIONAL_OPTIONAL_FLC_19NOV2002_HPP
sl@0
    13
#define BOOST_OPTIONAL_OPTIONAL_FLC_19NOV2002_HPP
sl@0
    14
sl@0
    15
#include<new>
sl@0
    16
#include<algorithm>
sl@0
    17
sl@0
    18
#include "boost/config.hpp"
sl@0
    19
#include "boost/assert.hpp"
sl@0
    20
#include "boost/type.hpp"
sl@0
    21
#include "boost/type_traits/alignment_of.hpp"
sl@0
    22
#include "boost/type_traits/type_with_alignment.hpp"
sl@0
    23
#include "boost/type_traits/remove_reference.hpp"
sl@0
    24
#include "boost/type_traits/is_reference.hpp"
sl@0
    25
#include "boost/mpl/if.hpp"
sl@0
    26
#include "boost/mpl/bool.hpp"
sl@0
    27
#include "boost/mpl/not.hpp"
sl@0
    28
#include "boost/detail/reference_content.hpp"
sl@0
    29
#include "boost/none.hpp"
sl@0
    30
#include "boost/utility/compare_pointees.hpp"
sl@0
    31
sl@0
    32
#include "boost/optional/optional_fwd.hpp"
sl@0
    33
sl@0
    34
#if BOOST_WORKAROUND(BOOST_MSVC, == 1200)
sl@0
    35
// VC6.0 has the following bug:
sl@0
    36
//   When a templated assignment operator exist, an implicit conversion
sl@0
    37
//   constructing an optional<T> is used when assigment of the form:
sl@0
    38
//     optional<T> opt ; opt = T(...);
sl@0
    39
//   is compiled.
sl@0
    40
//   However, optional's ctor is _explicit_ and the assignemt shouldn't compile.
sl@0
    41
//   Therefore, for VC6.0 templated assignment is disabled.
sl@0
    42
//
sl@0
    43
#define BOOST_OPTIONAL_NO_CONVERTING_ASSIGNMENT
sl@0
    44
#endif
sl@0
    45
sl@0
    46
#if BOOST_WORKAROUND(BOOST_MSVC, == 1300)
sl@0
    47
// VC7.0 has the following bug:
sl@0
    48
//   When both a non-template and a template copy-ctor exist
sl@0
    49
//   and the templated version is made 'explicit', the explicit is also
sl@0
    50
//   given to the non-templated version, making the class non-implicitely-copyable.
sl@0
    51
//
sl@0
    52
#define BOOST_OPTIONAL_NO_CONVERTING_COPY_CTOR
sl@0
    53
#endif
sl@0
    54
sl@0
    55
#if BOOST_WORKAROUND(BOOST_MSVC, <= 1300) || BOOST_WORKAROUND(BOOST_INTEL_CXX_VERSION,<=700)
sl@0
    56
// AFAICT only VC7.1 correctly resolves the overload set
sl@0
    57
// that includes the in-place factory taking functions,
sl@0
    58
// so for the other VC versions, in-place factory support
sl@0
    59
// is disabled
sl@0
    60
#define BOOST_OPTIONAL_NO_INPLACE_FACTORY_SUPPORT
sl@0
    61
#endif
sl@0
    62
sl@0
    63
#if BOOST_WORKAROUND(__BORLANDC__, <= 0x551)
sl@0
    64
// BCB (5.5.1) cannot parse the nested template struct in an inplace factory.
sl@0
    65
#define BOOST_OPTIONAL_NO_INPLACE_FACTORY_SUPPORT
sl@0
    66
#endif
sl@0
    67
sl@0
    68
#if !defined(BOOST_OPTIONAL_NO_INPLACE_FACTORY_SUPPORT) \
sl@0
    69
    && BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x581) )
sl@0
    70
// BCB (up to 5.64) has the following bug:
sl@0
    71
//   If there is a member function/operator template of the form
sl@0
    72
//     template<class Expr> mfunc( Expr expr ) ;
sl@0
    73
//   some calls are resolved to this even if there are other better matches.
sl@0
    74
//   The effect of this bug is that calls to converting ctors and assignments
sl@0
    75
//   are incrorrectly sink to this general catch-all member function template as shown above.
sl@0
    76
#define BOOST_OPTIONAL_WEAK_OVERLOAD_RESOLUTION
sl@0
    77
#endif
sl@0
    78
sl@0
    79
// Daniel Wallin discovered that bind/apply.hpp badly interacts with the apply<>
sl@0
    80
// member template of a factory as used in the optional<> implementation.
sl@0
    81
// He proposed this simple fix which is to move the call to apply<> outside
sl@0
    82
// namespace boost.
sl@0
    83
namespace boost_optional_detail
sl@0
    84
{
sl@0
    85
  template <class T, class Factory>
sl@0
    86
  void construct(Factory const& factory, void* address)
sl@0
    87
  {
sl@0
    88
    factory.BOOST_NESTED_TEMPLATE apply<T>(address);
sl@0
    89
  }
sl@0
    90
}
sl@0
    91
sl@0
    92
sl@0
    93
namespace boost {
sl@0
    94
sl@0
    95
class in_place_factory_base ;
sl@0
    96
class typed_in_place_factory_base ;
sl@0
    97
sl@0
    98
namespace optional_detail {
sl@0
    99
sl@0
   100
// This local class is used instead of that in "aligned_storage.hpp"
sl@0
   101
// because I've found the 'official' class to ICE BCB5.5
sl@0
   102
// when some types are used with optional<>
sl@0
   103
// (due to sizeof() passed down as a non-type template parameter)
sl@0
   104
template <class T>
sl@0
   105
class aligned_storage
sl@0
   106
{
sl@0
   107
    // Borland ICEs if unnamed unions are used for this!
sl@0
   108
    union dummy_u
sl@0
   109
    {
sl@0
   110
        char data[ sizeof(T) ];
sl@0
   111
        BOOST_DEDUCED_TYPENAME type_with_alignment<
sl@0
   112
          ::boost::alignment_of<T>::value >::type aligner_;
sl@0
   113
    } dummy_ ;
sl@0
   114
sl@0
   115
  public:
sl@0
   116
sl@0
   117
    void const* address() const { return &dummy_.data[0]; }
sl@0
   118
    void      * address()       { return &dummy_.data[0]; }
sl@0
   119
} ;
sl@0
   120
sl@0
   121
template<class T>
sl@0
   122
struct types_when_isnt_ref
sl@0
   123
{
sl@0
   124
  typedef T const& reference_const_type ;
sl@0
   125
  typedef T &      reference_type ;
sl@0
   126
  typedef T const* pointer_const_type ;
sl@0
   127
  typedef T *      pointer_type ;
sl@0
   128
  typedef T const& argument_type ;
sl@0
   129
} ;
sl@0
   130
template<class T>
sl@0
   131
struct types_when_is_ref
sl@0
   132
{
sl@0
   133
  typedef BOOST_DEDUCED_TYPENAME remove_reference<T>::type raw_type ;
sl@0
   134
sl@0
   135
  typedef raw_type& reference_const_type ;
sl@0
   136
  typedef raw_type& reference_type ;
sl@0
   137
  typedef raw_type* pointer_const_type ;
sl@0
   138
  typedef raw_type* pointer_type ;
sl@0
   139
  typedef raw_type& argument_type ;
sl@0
   140
} ;
sl@0
   141
sl@0
   142
struct optional_tag {} ;
sl@0
   143
sl@0
   144
template<class T>
sl@0
   145
class optional_base : public optional_tag
sl@0
   146
{
sl@0
   147
  private :
sl@0
   148
sl@0
   149
    typedef
sl@0
   150
#if !BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x564))
sl@0
   151
    BOOST_DEDUCED_TYPENAME
sl@0
   152
#endif 
sl@0
   153
    ::boost::detail::make_reference_content<T>::type internal_type ;
sl@0
   154
sl@0
   155
    typedef aligned_storage<internal_type> storage_type ;
sl@0
   156
sl@0
   157
    typedef types_when_isnt_ref<T> types_when_not_ref ;
sl@0
   158
    typedef types_when_is_ref<T>   types_when_ref   ;
sl@0
   159
sl@0
   160
    typedef optional_base<T> this_type ;
sl@0
   161
sl@0
   162
  protected :
sl@0
   163
sl@0
   164
    typedef T value_type ;
sl@0
   165
sl@0
   166
    typedef mpl::true_  is_reference_tag ;
sl@0
   167
    typedef mpl::false_ is_not_reference_tag ;
sl@0
   168
sl@0
   169
    typedef BOOST_DEDUCED_TYPENAME is_reference<T>::type is_reference_predicate ;
sl@0
   170
sl@0
   171
    typedef BOOST_DEDUCED_TYPENAME mpl::if_<is_reference_predicate,types_when_ref,types_when_not_ref>::type types ;
sl@0
   172
sl@0
   173
    typedef bool (this_type::*unspecified_bool_type)() const;
sl@0
   174
sl@0
   175
    typedef BOOST_DEDUCED_TYPENAME types::reference_type       reference_type ;
sl@0
   176
    typedef BOOST_DEDUCED_TYPENAME types::reference_const_type reference_const_type ;
sl@0
   177
    typedef BOOST_DEDUCED_TYPENAME types::pointer_type         pointer_type ;
sl@0
   178
    typedef BOOST_DEDUCED_TYPENAME types::pointer_const_type   pointer_const_type ;
sl@0
   179
    typedef BOOST_DEDUCED_TYPENAME types::argument_type        argument_type ;
sl@0
   180
sl@0
   181
    // Creates an optional<T> uninitialized.
sl@0
   182
    // No-throw
sl@0
   183
    optional_base()
sl@0
   184
      :
sl@0
   185
      m_initialized(false) {}
sl@0
   186
sl@0
   187
    // Creates an optional<T> uninitialized.
sl@0
   188
    // No-throw
sl@0
   189
    optional_base ( none_t )
sl@0
   190
      :
sl@0
   191
      m_initialized(false) {}
sl@0
   192
sl@0
   193
    // Creates an optional<T> initialized with 'val'.
sl@0
   194
    // Can throw if T::T(T const&) does
sl@0
   195
    optional_base ( argument_type val )
sl@0
   196
      :
sl@0
   197
      m_initialized(false)
sl@0
   198
    {
sl@0
   199
      construct(val);
sl@0
   200
    }
sl@0
   201
    
sl@0
   202
    // Creates an optional<T> initialized with 'val' IFF cond is true, otherwise creates an uninitialzed optional<T>.
sl@0
   203
    // Can throw if T::T(T const&) does
sl@0
   204
    optional_base ( bool cond, argument_type val )
sl@0
   205
      :
sl@0
   206
      m_initialized(false)
sl@0
   207
    {
sl@0
   208
      if ( cond )
sl@0
   209
        construct(val);
sl@0
   210
    }
sl@0
   211
sl@0
   212
    // Creates a deep copy of another optional<T>
sl@0
   213
    // Can throw if T::T(T const&) does
sl@0
   214
    optional_base ( optional_base const& rhs )
sl@0
   215
      :
sl@0
   216
      m_initialized(false)
sl@0
   217
    {
sl@0
   218
      if ( rhs.is_initialized() )
sl@0
   219
        construct(rhs.get_impl());
sl@0
   220
    }
sl@0
   221
sl@0
   222
sl@0
   223
    // This is used for both converting and in-place constructions.
sl@0
   224
    // Derived classes use the 'tag' to select the appropriate
sl@0
   225
    // implementation (the correct 'construct()' overload)
sl@0
   226
    template<class Expr>
sl@0
   227
    explicit optional_base ( Expr const& expr, Expr const* tag )
sl@0
   228
      :
sl@0
   229
      m_initialized(false)
sl@0
   230
    {
sl@0
   231
      construct(expr,tag);
sl@0
   232
    }
sl@0
   233
sl@0
   234
sl@0
   235
sl@0
   236
    // No-throw (assuming T::~T() doesn't)
sl@0
   237
    ~optional_base() { destroy() ; }
sl@0
   238
sl@0
   239
    // Assigns from another optional<T> (deep-copies the rhs value)
sl@0
   240
    void assign ( optional_base const& rhs )
sl@0
   241
    {
sl@0
   242
      if (is_initialized())
sl@0
   243
      {
sl@0
   244
        if ( rhs.is_initialized() )
sl@0
   245
             assign_value(rhs.get_impl(), is_reference_predicate() );
sl@0
   246
        else destroy();
sl@0
   247
      }
sl@0
   248
      else
sl@0
   249
      {
sl@0
   250
        if ( rhs.is_initialized() )
sl@0
   251
          construct(rhs.get_impl());
sl@0
   252
      }
sl@0
   253
    }
sl@0
   254
sl@0
   255
    // Assigns from another _convertible_ optional<U> (deep-copies the rhs value)
sl@0
   256
    template<class U>
sl@0
   257
    void assign ( optional<U> const& rhs )
sl@0
   258
    {
sl@0
   259
      if (is_initialized())
sl@0
   260
      {
sl@0
   261
        if ( rhs.is_initialized() )
sl@0
   262
             assign_value(static_cast<value_type>(rhs.get()), is_reference_predicate() );
sl@0
   263
        else destroy();
sl@0
   264
      }
sl@0
   265
      else
sl@0
   266
      {
sl@0
   267
        if ( rhs.is_initialized() )
sl@0
   268
          construct(static_cast<value_type>(rhs.get()));
sl@0
   269
      }
sl@0
   270
    }
sl@0
   271
sl@0
   272
    // Assigns from a T (deep-copies the rhs value)
sl@0
   273
    void assign ( argument_type val )
sl@0
   274
    {
sl@0
   275
      if (is_initialized())
sl@0
   276
           assign_value(val, is_reference_predicate() );
sl@0
   277
      else construct(val);
sl@0
   278
    }
sl@0
   279
sl@0
   280
    // Assigns from "none", destroying the current value, if any, leaving this UNINITIALIZED
sl@0
   281
    // No-throw (assuming T::~T() doesn't)
sl@0
   282
    void assign ( none_t ) { destroy(); }
sl@0
   283
sl@0
   284
#ifndef BOOST_OPTIONAL_NO_INPLACE_FACTORY_SUPPORT
sl@0
   285
    template<class Expr>
sl@0
   286
    void assign_expr ( Expr const& expr, Expr const* tag )
sl@0
   287
      {
sl@0
   288
        if (is_initialized())
sl@0
   289
             assign_expr_to_initialized(expr,tag);
sl@0
   290
        else construct(expr,tag);
sl@0
   291
      }
sl@0
   292
#endif
sl@0
   293
sl@0
   294
  public :
sl@0
   295
sl@0
   296
    // Destroys the current value, if any, leaving this UNINITIALIZED
sl@0
   297
    // No-throw (assuming T::~T() doesn't)
sl@0
   298
    void reset() { destroy(); }
sl@0
   299
sl@0
   300
    // Replaces the current value -if any- with 'val'
sl@0
   301
    void reset ( argument_type val ) { assign(val); }
sl@0
   302
sl@0
   303
    // Returns a pointer to the value if this is initialized, otherwise,
sl@0
   304
    // returns NULL.
sl@0
   305
    // No-throw
sl@0
   306
    pointer_const_type get_ptr() const { return m_initialized ? get_ptr_impl() : 0 ; }
sl@0
   307
    pointer_type       get_ptr()       { return m_initialized ? get_ptr_impl() : 0 ; }
sl@0
   308
sl@0
   309
    bool is_initialized() const { return m_initialized ; }
sl@0
   310
sl@0
   311
  protected :
sl@0
   312
sl@0
   313
    void construct ( argument_type val )
sl@0
   314
     {
sl@0
   315
       new (m_storage.address()) internal_type(val) ;
sl@0
   316
       m_initialized = true ;
sl@0
   317
     }
sl@0
   318
sl@0
   319
#ifndef BOOST_OPTIONAL_NO_INPLACE_FACTORY_SUPPORT
sl@0
   320
    // Constructs in-place using the given factory
sl@0
   321
    template<class Expr>
sl@0
   322
    void construct ( Expr const& factory, in_place_factory_base const* )
sl@0
   323
     {
sl@0
   324
       BOOST_STATIC_ASSERT ( ::boost::mpl::not_<is_reference_predicate>::value ) ;
sl@0
   325
       boost_optional_detail::construct<value_type>(factory, m_storage.address());
sl@0
   326
       m_initialized = true ;
sl@0
   327
     }
sl@0
   328
sl@0
   329
    // Constructs in-place using the given typed factory
sl@0
   330
    template<class Expr>
sl@0
   331
    void construct ( Expr const& factory, typed_in_place_factory_base const* )
sl@0
   332
     {
sl@0
   333
       BOOST_STATIC_ASSERT ( ::boost::mpl::not_<is_reference_predicate>::value ) ;
sl@0
   334
       factory.apply(m_storage.address()) ;
sl@0
   335
       m_initialized = true ;
sl@0
   336
     }
sl@0
   337
sl@0
   338
    template<class Expr>
sl@0
   339
    void assign_expr_to_initialized ( Expr const& factory, in_place_factory_base const* tag )
sl@0
   340
     {
sl@0
   341
       destroy();
sl@0
   342
       construct(factory,tag);
sl@0
   343
     }
sl@0
   344
sl@0
   345
    // Constructs in-place using the given typed factory
sl@0
   346
    template<class Expr>
sl@0
   347
    void assign_expr_to_initialized ( Expr const& factory, typed_in_place_factory_base const* tag )
sl@0
   348
     {
sl@0
   349
       destroy();
sl@0
   350
       construct(factory,tag);
sl@0
   351
     }
sl@0
   352
#endif
sl@0
   353
sl@0
   354
    // Constructs using any expression implicitely convertible to the single argument
sl@0
   355
    // of a one-argument T constructor.
sl@0
   356
    // Converting constructions of optional<T> from optional<U> uses this function with
sl@0
   357
    // 'Expr' being of type 'U' and relying on a converting constructor of T from U.
sl@0
   358
    template<class Expr>
sl@0
   359
    void construct ( Expr const& expr, void const* )
sl@0
   360
     {
sl@0
   361
       new (m_storage.address()) internal_type(expr) ;
sl@0
   362
       m_initialized = true ;
sl@0
   363
     }
sl@0
   364
sl@0
   365
    // Assigns using a form any expression implicitely convertible to the single argument
sl@0
   366
    // of a T's assignment operator.
sl@0
   367
    // Converting assignments of optional<T> from optional<U> uses this function with
sl@0
   368
    // 'Expr' being of type 'U' and relying on a converting assignment of T from U.
sl@0
   369
    template<class Expr>
sl@0
   370
    void assign_expr_to_initialized ( Expr const& expr, void const* )
sl@0
   371
     {
sl@0
   372
       assign_value(expr, is_reference_predicate());
sl@0
   373
     }
sl@0
   374
sl@0
   375
#ifdef BOOST_OPTIONAL_WEAK_OVERLOAD_RESOLUTION
sl@0
   376
    // BCB5.64 (and probably lower versions) workaround.
sl@0
   377
    //   The in-place factories are supported by means of catch-all constructors
sl@0
   378
    //   and assignment operators (the functions are parameterized in terms of
sl@0
   379
    //   an arbitrary 'Expr' type)
sl@0
   380
    //   This compiler incorrectly resolves the overload set and sinks optional<T> and optional<U>
sl@0
   381
    //   to the 'Expr'-taking functions even though explicit overloads are present for them.
sl@0
   382
    //   Thus, the following overload is needed to properly handle the case when the 'lhs'
sl@0
   383
    //   is another optional.
sl@0
   384
    //
sl@0
   385
    // For VC<=70 compilers this workaround dosen't work becasue the comnpiler issues and error
sl@0
   386
    // instead of choosing the wrong overload
sl@0
   387
    //
sl@0
   388
    // Notice that 'Expr' will be optional<T> or optional<U> (but not optional_base<..>)
sl@0
   389
    template<class Expr>
sl@0
   390
    void construct ( Expr const& expr, optional_tag const* )
sl@0
   391
     {
sl@0
   392
       if ( expr.is_initialized() )
sl@0
   393
       {
sl@0
   394
         // An exception can be thrown here.
sl@0
   395
         // It it happens, THIS will be left uninitialized.
sl@0
   396
         new (m_storage.address()) internal_type(expr.get()) ;
sl@0
   397
         m_initialized = true ;
sl@0
   398
       }
sl@0
   399
     }
sl@0
   400
#endif
sl@0
   401
sl@0
   402
    void assign_value ( argument_type val, is_not_reference_tag ) { get_impl() = val; }
sl@0
   403
    void assign_value ( argument_type val, is_reference_tag     ) { construct(val); }
sl@0
   404
sl@0
   405
    void destroy()
sl@0
   406
    {
sl@0
   407
      if ( m_initialized )
sl@0
   408
        destroy_impl(is_reference_predicate()) ;
sl@0
   409
    }
sl@0
   410
sl@0
   411
    unspecified_bool_type safe_bool() const { return m_initialized ? &this_type::is_initialized : 0 ; }
sl@0
   412
sl@0
   413
    reference_const_type get_impl() const { return dereference(get_object(), is_reference_predicate() ) ; }
sl@0
   414
    reference_type       get_impl()       { return dereference(get_object(), is_reference_predicate() ) ; }
sl@0
   415
sl@0
   416
    pointer_const_type get_ptr_impl() const { return cast_ptr(get_object(), is_reference_predicate() ) ; }
sl@0
   417
    pointer_type       get_ptr_impl()       { return cast_ptr(get_object(), is_reference_predicate() ) ; }
sl@0
   418
sl@0
   419
  private :
sl@0
   420
sl@0
   421
    // internal_type can be either T or reference_content<T>
sl@0
   422
    internal_type const* get_object() const { return static_cast<internal_type const*>(m_storage.address()); }
sl@0
   423
    internal_type *      get_object()       { return static_cast<internal_type *>     (m_storage.address()); }
sl@0
   424
sl@0
   425
    // reference_content<T> lacks an implicit conversion to T&, so the following is needed to obtain a proper reference.
sl@0
   426
    reference_const_type dereference( internal_type const* p, is_not_reference_tag ) const { return *p ; }
sl@0
   427
    reference_type       dereference( internal_type*       p, is_not_reference_tag )       { return *p ; }
sl@0
   428
    reference_const_type dereference( internal_type const* p, is_reference_tag     ) const { return p->get() ; }
sl@0
   429
    reference_type       dereference( internal_type*       p, is_reference_tag     )       { return p->get() ; }
sl@0
   430
sl@0
   431
#if BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x581))
sl@0
   432
    void destroy_impl ( is_not_reference_tag ) { get_ptr_impl()->internal_type::~internal_type() ; m_initialized = false ; }
sl@0
   433
#else
sl@0
   434
    void destroy_impl ( is_not_reference_tag ) { get_ptr_impl()->T::~T() ; m_initialized = false ; }
sl@0
   435
#endif
sl@0
   436
sl@0
   437
    void destroy_impl ( is_reference_tag     ) { m_initialized = false ; }
sl@0
   438
sl@0
   439
    // If T is of reference type, trying to get a pointer to the held value must result in a compile-time error.
sl@0
   440
    // Decent compilers should disallow conversions from reference_content<T>* to T*, but just in case,
sl@0
   441
    // the following olverloads are used to filter out the case and guarantee an error in case of T being a reference.
sl@0
   442
    pointer_const_type cast_ptr( internal_type const* p, is_not_reference_tag ) const { return p ; }
sl@0
   443
    pointer_type       cast_ptr( internal_type *      p, is_not_reference_tag )       { return p ; }
sl@0
   444
    pointer_const_type cast_ptr( internal_type const* p, is_reference_tag     ) const { return &p->get() ; }
sl@0
   445
    pointer_type       cast_ptr( internal_type *      p, is_reference_tag     )       { return &p->get() ; }
sl@0
   446
sl@0
   447
    bool m_initialized ;
sl@0
   448
    storage_type m_storage ;
sl@0
   449
} ;
sl@0
   450
sl@0
   451
} // namespace optional_detail
sl@0
   452
sl@0
   453
template<class T>
sl@0
   454
class optional : public optional_detail::optional_base<T>
sl@0
   455
{
sl@0
   456
    typedef optional_detail::optional_base<T> base ;
sl@0
   457
sl@0
   458
    typedef BOOST_DEDUCED_TYPENAME base::unspecified_bool_type  unspecified_bool_type ;
sl@0
   459
sl@0
   460
  public :
sl@0
   461
sl@0
   462
    typedef optional<T> this_type ;
sl@0
   463
sl@0
   464
    typedef BOOST_DEDUCED_TYPENAME base::value_type           value_type ;
sl@0
   465
    typedef BOOST_DEDUCED_TYPENAME base::reference_type       reference_type ;
sl@0
   466
    typedef BOOST_DEDUCED_TYPENAME base::reference_const_type reference_const_type ;
sl@0
   467
    typedef BOOST_DEDUCED_TYPENAME base::pointer_type         pointer_type ;
sl@0
   468
    typedef BOOST_DEDUCED_TYPENAME base::pointer_const_type   pointer_const_type ;
sl@0
   469
    typedef BOOST_DEDUCED_TYPENAME base::argument_type        argument_type ;
sl@0
   470
sl@0
   471
    // Creates an optional<T> uninitialized.
sl@0
   472
    // No-throw
sl@0
   473
    optional() : base() {}
sl@0
   474
sl@0
   475
    // Creates an optional<T> uninitialized.
sl@0
   476
    // No-throw
sl@0
   477
    optional( none_t none_ ) : base(none_) {}
sl@0
   478
sl@0
   479
    // Creates an optional<T> initialized with 'val'.
sl@0
   480
    // Can throw if T::T(T const&) does
sl@0
   481
    optional ( argument_type val ) : base(val) {}
sl@0
   482
sl@0
   483
    // Creates an optional<T> initialized with 'val' IFF cond is true, otherwise creates an uninitialized optional.
sl@0
   484
    // Can throw if T::T(T const&) does
sl@0
   485
    optional ( bool cond, argument_type val ) : base(cond,val) {}
sl@0
   486
sl@0
   487
#ifndef BOOST_OPTIONAL_NO_CONVERTING_COPY_CTOR
sl@0
   488
    // NOTE: MSVC needs templated versions first
sl@0
   489
sl@0
   490
    // Creates a deep copy of another convertible optional<U>
sl@0
   491
    // Requires a valid conversion from U to T.
sl@0
   492
    // Can throw if T::T(U const&) does
sl@0
   493
    template<class U>
sl@0
   494
    explicit optional ( optional<U> const& rhs )
sl@0
   495
      :
sl@0
   496
      base()
sl@0
   497
    {
sl@0
   498
      if ( rhs.is_initialized() )
sl@0
   499
        this->construct(rhs.get());
sl@0
   500
    }
sl@0
   501
#endif
sl@0
   502
sl@0
   503
#ifndef BOOST_OPTIONAL_NO_INPLACE_FACTORY_SUPPORT
sl@0
   504
    // Creates an optional<T> with an expression which can be either
sl@0
   505
    //  (a) An instance of InPlaceFactory (i.e. in_place(a,b,...,n);
sl@0
   506
    //  (b) An instance of TypedInPlaceFactory ( i.e. in_place<T>(a,b,...,n);
sl@0
   507
    //  (c) Any expression implicitely convertible to the single type
sl@0
   508
    //      of a one-argument T's constructor.
sl@0
   509
    //  (d*) Weak compilers (BCB) might also resolved Expr as optional<T> and optional<U>
sl@0
   510
    //       even though explicit overloads are present for these.
sl@0
   511
    // Depending on the above some T ctor is called.
sl@0
   512
    // Can throw is the resolved T ctor throws.
sl@0
   513
    template<class Expr>
sl@0
   514
    explicit optional ( Expr const& expr ) : base(expr,&expr) {}
sl@0
   515
#endif
sl@0
   516
sl@0
   517
    // Creates a deep copy of another optional<T>
sl@0
   518
    // Can throw if T::T(T const&) does
sl@0
   519
    optional ( optional const& rhs ) : base(rhs) {}
sl@0
   520
sl@0
   521
   // No-throw (assuming T::~T() doesn't)
sl@0
   522
    ~optional() {}
sl@0
   523
sl@0
   524
#if !defined(BOOST_OPTIONAL_NO_INPLACE_FACTORY_SUPPORT) && !defined(BOOST_OPTIONAL_WEAK_OVERLOAD_RESOLUTION)
sl@0
   525
    // Assigns from an expression. See corresponding constructor.
sl@0
   526
    // Basic Guarantee: If the resolved T ctor throws, this is left UNINITIALIZED
sl@0
   527
    template<class Expr>
sl@0
   528
    optional& operator= ( Expr expr )
sl@0
   529
      {
sl@0
   530
        this->assign_expr(expr,&expr);
sl@0
   531
        return *this ;
sl@0
   532
      }
sl@0
   533
#endif
sl@0
   534
sl@0
   535
sl@0
   536
#ifndef BOOST_OPTIONAL_NO_CONVERTING_ASSIGNMENT
sl@0
   537
    // Assigns from another convertible optional<U> (converts && deep-copies the rhs value)
sl@0
   538
    // Requires a valid conversion from U to T.
sl@0
   539
    // Basic Guarantee: If T::T( U const& ) throws, this is left UNINITIALIZED
sl@0
   540
    template<class U>
sl@0
   541
    optional& operator= ( optional<U> const& rhs )
sl@0
   542
      {
sl@0
   543
        this->assign(rhs);
sl@0
   544
        return *this ;
sl@0
   545
      }
sl@0
   546
#endif
sl@0
   547
sl@0
   548
    // Assigns from another optional<T> (deep-copies the rhs value)
sl@0
   549
    // Basic Guarantee: If T::T( T const& ) throws, this is left UNINITIALIZED
sl@0
   550
    //  (NOTE: On BCB, this operator is not actually called and left is left UNMODIFIED in case of a throw)
sl@0
   551
    optional& operator= ( optional const& rhs )
sl@0
   552
      {
sl@0
   553
        this->assign( rhs ) ;
sl@0
   554
        return *this ;
sl@0
   555
      }
sl@0
   556
sl@0
   557
    // Assigns from a T (deep-copies the rhs value)
sl@0
   558
    // Basic Guarantee: If T::( T const& ) throws, this is left UNINITIALIZED
sl@0
   559
    optional& operator= ( argument_type val )
sl@0
   560
      {
sl@0
   561
        this->assign( val ) ;
sl@0
   562
        return *this ;
sl@0
   563
      }
sl@0
   564
sl@0
   565
    // Assigns from a "none"
sl@0
   566
    // Which destroys the current value, if any, leaving this UNINITIALIZED
sl@0
   567
    // No-throw (assuming T::~T() doesn't)
sl@0
   568
    optional& operator= ( none_t none_ )
sl@0
   569
      {
sl@0
   570
        this->assign( none_ ) ;
sl@0
   571
        return *this ;
sl@0
   572
      }
sl@0
   573
sl@0
   574
    // Returns a reference to the value if this is initialized, otherwise,
sl@0
   575
    // the behaviour is UNDEFINED
sl@0
   576
    // No-throw
sl@0
   577
    reference_const_type get() const { BOOST_ASSERT(this->is_initialized()) ; return this->get_impl(); }
sl@0
   578
    reference_type       get()       { BOOST_ASSERT(this->is_initialized()) ; return this->get_impl(); }
sl@0
   579
sl@0
   580
    // Returns a copy of the value if this is initialized, 'v' otherwise
sl@0
   581
    reference_const_type get_value_or ( reference_const_type v ) const { return this->is_initialized() ? get() : v ; }
sl@0
   582
    reference_type       get_value_or ( reference_type       v )       { return this->is_initialized() ? get() : v ; }
sl@0
   583
    
sl@0
   584
    // Returns a pointer to the value if this is initialized, otherwise,
sl@0
   585
    // the behaviour is UNDEFINED
sl@0
   586
    // No-throw
sl@0
   587
    pointer_const_type operator->() const { BOOST_ASSERT(this->is_initialized()) ; return this->get_ptr_impl() ; }
sl@0
   588
    pointer_type       operator->()       { BOOST_ASSERT(this->is_initialized()) ; return this->get_ptr_impl() ; }
sl@0
   589
sl@0
   590
    // Returns a reference to the value if this is initialized, otherwise,
sl@0
   591
    // the behaviour is UNDEFINED
sl@0
   592
    // No-throw
sl@0
   593
    reference_const_type operator *() const { return this->get() ; }
sl@0
   594
    reference_type       operator *()       { return this->get() ; }
sl@0
   595
sl@0
   596
    // implicit conversion to "bool"
sl@0
   597
    // No-throw
sl@0
   598
    operator unspecified_bool_type() const { return this->safe_bool() ; }
sl@0
   599
sl@0
   600
       // This is provided for those compilers which don't like the conversion to bool
sl@0
   601
       // on some contexts.
sl@0
   602
       bool operator!() const { return !this->is_initialized() ; }
sl@0
   603
} ;
sl@0
   604
sl@0
   605
// Returns optional<T>(v)
sl@0
   606
template<class T> 
sl@0
   607
inline 
sl@0
   608
optional<T> make_optional ( T const& v  )
sl@0
   609
{
sl@0
   610
  return optional<T>(v);
sl@0
   611
}
sl@0
   612
sl@0
   613
// Returns optional<T>(cond,v)
sl@0
   614
template<class T> 
sl@0
   615
inline 
sl@0
   616
optional<T> make_optional ( bool cond, T const& v )
sl@0
   617
{
sl@0
   618
  return optional<T>(cond,v);
sl@0
   619
}
sl@0
   620
sl@0
   621
// Returns a reference to the value if this is initialized, otherwise, the behaviour is UNDEFINED.
sl@0
   622
// No-throw
sl@0
   623
template<class T>
sl@0
   624
inline
sl@0
   625
BOOST_DEDUCED_TYPENAME optional<T>::reference_const_type
sl@0
   626
get ( optional<T> const& opt )
sl@0
   627
{
sl@0
   628
  return opt.get() ;
sl@0
   629
}
sl@0
   630
sl@0
   631
template<class T>
sl@0
   632
inline
sl@0
   633
BOOST_DEDUCED_TYPENAME optional<T>::reference_type
sl@0
   634
get ( optional<T>& opt )
sl@0
   635
{
sl@0
   636
  return opt.get() ;
sl@0
   637
}
sl@0
   638
sl@0
   639
// Returns a pointer to the value if this is initialized, otherwise, returns NULL.
sl@0
   640
// No-throw
sl@0
   641
template<class T>
sl@0
   642
inline
sl@0
   643
BOOST_DEDUCED_TYPENAME optional<T>::pointer_const_type
sl@0
   644
get ( optional<T> const* opt )
sl@0
   645
{
sl@0
   646
  return opt->get_ptr() ;
sl@0
   647
}
sl@0
   648
sl@0
   649
template<class T>
sl@0
   650
inline
sl@0
   651
BOOST_DEDUCED_TYPENAME optional<T>::pointer_type
sl@0
   652
get ( optional<T>* opt )
sl@0
   653
{
sl@0
   654
  return opt->get_ptr() ;
sl@0
   655
}
sl@0
   656
sl@0
   657
// Returns a reference to the value if this is initialized, otherwise, the behaviour is UNDEFINED.
sl@0
   658
// No-throw
sl@0
   659
template<class T>
sl@0
   660
inline
sl@0
   661
BOOST_DEDUCED_TYPENAME optional<T>::reference_const_type
sl@0
   662
get_optional_value_or ( optional<T> const& opt, BOOST_DEDUCED_TYPENAME optional<T>::reference_const_type v )
sl@0
   663
{
sl@0
   664
  return opt.get_value_or(v) ;
sl@0
   665
}
sl@0
   666
sl@0
   667
template<class T>
sl@0
   668
inline
sl@0
   669
BOOST_DEDUCED_TYPENAME optional<T>::reference_type
sl@0
   670
get_optional_value_or ( optional<T>& opt, BOOST_DEDUCED_TYPENAME optional<T>::reference_type v )
sl@0
   671
{
sl@0
   672
  return opt.get_value_or(v) ;
sl@0
   673
}
sl@0
   674
sl@0
   675
// Returns a pointer to the value if this is initialized, otherwise, returns NULL.
sl@0
   676
// No-throw
sl@0
   677
template<class T>
sl@0
   678
inline
sl@0
   679
BOOST_DEDUCED_TYPENAME optional<T>::pointer_const_type
sl@0
   680
get_pointer ( optional<T> const& opt )
sl@0
   681
{
sl@0
   682
  return opt.get_ptr() ;
sl@0
   683
}
sl@0
   684
sl@0
   685
template<class T>
sl@0
   686
inline
sl@0
   687
BOOST_DEDUCED_TYPENAME optional<T>::pointer_type
sl@0
   688
get_pointer ( optional<T>& opt )
sl@0
   689
{
sl@0
   690
  return opt.get_ptr() ;
sl@0
   691
}
sl@0
   692
sl@0
   693
// optional's relational operators ( ==, !=, <, >, <=, >= ) have deep-semantics (compare values).
sl@0
   694
// WARNING: This is UNLIKE pointers. Use equal_pointees()/less_pointess() in generic code instead.
sl@0
   695
sl@0
   696
sl@0
   697
//
sl@0
   698
// optional<T> vs optional<T> cases
sl@0
   699
//
sl@0
   700
sl@0
   701
template<class T>
sl@0
   702
inline
sl@0
   703
bool operator == ( optional<T> const& x, optional<T> const& y )
sl@0
   704
{ return equal_pointees(x,y); }
sl@0
   705
sl@0
   706
template<class T>
sl@0
   707
inline
sl@0
   708
bool operator < ( optional<T> const& x, optional<T> const& y )
sl@0
   709
{ return less_pointees(x,y); }
sl@0
   710
sl@0
   711
template<class T>
sl@0
   712
inline
sl@0
   713
bool operator != ( optional<T> const& x, optional<T> const& y )
sl@0
   714
{ return !( x == y ) ; }
sl@0
   715
sl@0
   716
template<class T>
sl@0
   717
inline
sl@0
   718
bool operator > ( optional<T> const& x, optional<T> const& y )
sl@0
   719
{ return y < x ; }
sl@0
   720
sl@0
   721
template<class T>
sl@0
   722
inline
sl@0
   723
bool operator <= ( optional<T> const& x, optional<T> const& y )
sl@0
   724
{ return !( y < x ) ; }
sl@0
   725
sl@0
   726
template<class T>
sl@0
   727
inline
sl@0
   728
bool operator >= ( optional<T> const& x, optional<T> const& y )
sl@0
   729
{ return !( x < y ) ; }
sl@0
   730
sl@0
   731
sl@0
   732
//
sl@0
   733
// optional<T> vs T cases
sl@0
   734
//
sl@0
   735
template<class T>
sl@0
   736
inline
sl@0
   737
bool operator == ( optional<T> const& x, T const& y )
sl@0
   738
{ return equal_pointees(x, optional<T>(y)); }
sl@0
   739
sl@0
   740
template<class T>
sl@0
   741
inline
sl@0
   742
bool operator < ( optional<T> const& x, T const& y )
sl@0
   743
{ return less_pointees(x, optional<T>(y)); }
sl@0
   744
sl@0
   745
template<class T>
sl@0
   746
inline
sl@0
   747
bool operator != ( optional<T> const& x, T const& y )
sl@0
   748
{ return !( x == y ) ; }
sl@0
   749
sl@0
   750
template<class T>
sl@0
   751
inline
sl@0
   752
bool operator > ( optional<T> const& x, T const& y )
sl@0
   753
{ return y < x ; }
sl@0
   754
sl@0
   755
template<class T>
sl@0
   756
inline
sl@0
   757
bool operator <= ( optional<T> const& x, T const& y )
sl@0
   758
{ return !( y < x ) ; }
sl@0
   759
sl@0
   760
template<class T>
sl@0
   761
inline
sl@0
   762
bool operator >= ( optional<T> const& x, T const& y )
sl@0
   763
{ return !( x < y ) ; }
sl@0
   764
sl@0
   765
//
sl@0
   766
// T vs optional<T> cases
sl@0
   767
//
sl@0
   768
sl@0
   769
template<class T>
sl@0
   770
inline
sl@0
   771
bool operator == ( T const& x, optional<T> const& y )
sl@0
   772
{ return equal_pointees( optional<T>(x), y ); }
sl@0
   773
sl@0
   774
template<class T>
sl@0
   775
inline
sl@0
   776
bool operator < ( T const& x, optional<T> const& y )
sl@0
   777
{ return less_pointees( optional<T>(x), y ); }
sl@0
   778
sl@0
   779
template<class T>
sl@0
   780
inline
sl@0
   781
bool operator != ( T const& x, optional<T> const& y )
sl@0
   782
{ return !( x == y ) ; }
sl@0
   783
sl@0
   784
template<class T>
sl@0
   785
inline
sl@0
   786
bool operator > ( T const& x, optional<T> const& y )
sl@0
   787
{ return y < x ; }
sl@0
   788
sl@0
   789
template<class T>
sl@0
   790
inline
sl@0
   791
bool operator <= ( T const& x, optional<T> const& y )
sl@0
   792
{ return !( y < x ) ; }
sl@0
   793
sl@0
   794
template<class T>
sl@0
   795
inline
sl@0
   796
bool operator >= ( T const& x, optional<T> const& y )
sl@0
   797
{ return !( x < y ) ; }
sl@0
   798
sl@0
   799
sl@0
   800
//
sl@0
   801
// optional<T> vs none cases
sl@0
   802
//
sl@0
   803
sl@0
   804
template<class T>
sl@0
   805
inline
sl@0
   806
bool operator == ( optional<T> const& x, none_t )
sl@0
   807
{ return equal_pointees(x, optional<T>() ); }
sl@0
   808
sl@0
   809
template<class T>
sl@0
   810
inline
sl@0
   811
bool operator < ( optional<T> const& x, none_t )
sl@0
   812
{ return less_pointees(x,optional<T>() ); }
sl@0
   813
sl@0
   814
template<class T>
sl@0
   815
inline
sl@0
   816
bool operator != ( optional<T> const& x, none_t y )
sl@0
   817
{ return !( x == y ) ; }
sl@0
   818
sl@0
   819
template<class T>
sl@0
   820
inline
sl@0
   821
bool operator > ( optional<T> const& x, none_t y )
sl@0
   822
{ return y < x ; }
sl@0
   823
sl@0
   824
template<class T>
sl@0
   825
inline
sl@0
   826
bool operator <= ( optional<T> const& x, none_t y )
sl@0
   827
{ return !( y < x ) ; }
sl@0
   828
sl@0
   829
template<class T>
sl@0
   830
inline
sl@0
   831
bool operator >= ( optional<T> const& x, none_t y )
sl@0
   832
{ return !( x < y ) ; }
sl@0
   833
sl@0
   834
//
sl@0
   835
// none vs optional<T> cases
sl@0
   836
//
sl@0
   837
sl@0
   838
template<class T>
sl@0
   839
inline
sl@0
   840
bool operator == ( none_t x, optional<T> const& y )
sl@0
   841
{ return equal_pointees(optional<T>() ,y); }
sl@0
   842
sl@0
   843
template<class T>
sl@0
   844
inline
sl@0
   845
bool operator < ( none_t x, optional<T> const& y )
sl@0
   846
{ return less_pointees(optional<T>() ,y); }
sl@0
   847
sl@0
   848
template<class T>
sl@0
   849
inline
sl@0
   850
bool operator != ( none_t x, optional<T> const& y )
sl@0
   851
{ return !( x == y ) ; }
sl@0
   852
sl@0
   853
template<class T>
sl@0
   854
inline
sl@0
   855
bool operator > ( none_t x, optional<T> const& y )
sl@0
   856
{ return y < x ; }
sl@0
   857
sl@0
   858
template<class T>
sl@0
   859
inline
sl@0
   860
bool operator <= ( none_t x, optional<T> const& y )
sl@0
   861
{ return !( y < x ) ; }
sl@0
   862
sl@0
   863
template<class T>
sl@0
   864
inline
sl@0
   865
bool operator >= ( none_t x, optional<T> const& y )
sl@0
   866
{ return !( x < y ) ; }
sl@0
   867
sl@0
   868
//
sl@0
   869
// The following swap implementation follows the GCC workaround as found in
sl@0
   870
//  "boost/detail/compressed_pair.hpp"
sl@0
   871
//
sl@0
   872
namespace optional_detail {
sl@0
   873
sl@0
   874
// GCC < 3.2 gets the using declaration at namespace scope (FLC, DWA)
sl@0
   875
#if BOOST_WORKAROUND(__GNUC__, < 3)                             \
sl@0
   876
    || BOOST_WORKAROUND(__GNUC__, == 3) && __GNUC_MINOR__ <= 2
sl@0
   877
   using std::swap;
sl@0
   878
#define BOOST_OPTIONAL_STD_SWAP_INTRODUCED_AT_NS_SCOPE
sl@0
   879
#endif
sl@0
   880
sl@0
   881
// optional's swap:
sl@0
   882
// If both are initialized, calls swap(T&, T&). If this swap throws, both will remain initialized but their values are now unspecified.
sl@0
   883
// If only one is initialized, calls U.reset(*I), THEN I.reset().
sl@0
   884
// If U.reset(*I) throws, both are left UNCHANGED (U is kept uinitialized and I is never reset)
sl@0
   885
// If both are uninitialized, do nothing (no-throw)
sl@0
   886
template<class T>
sl@0
   887
inline
sl@0
   888
void optional_swap ( optional<T>& x, optional<T>& y )
sl@0
   889
{
sl@0
   890
  if ( !x && !!y )
sl@0
   891
  {
sl@0
   892
    x.reset(*y);
sl@0
   893
    y.reset();
sl@0
   894
  }
sl@0
   895
  else if ( !!x && !y )
sl@0
   896
  {
sl@0
   897
    y.reset(*x);
sl@0
   898
    x.reset();
sl@0
   899
  }
sl@0
   900
  else if ( !!x && !!y )
sl@0
   901
  {
sl@0
   902
// GCC > 3.2 and all other compilers have the using declaration at function scope (FLC)
sl@0
   903
#ifndef BOOST_OPTIONAL_STD_SWAP_INTRODUCED_AT_NS_SCOPE
sl@0
   904
    // allow for Koenig lookup
sl@0
   905
    using std::swap ;
sl@0
   906
#endif
sl@0
   907
    swap(*x,*y);
sl@0
   908
  }
sl@0
   909
}
sl@0
   910
sl@0
   911
} // namespace optional_detail
sl@0
   912
sl@0
   913
template<class T> inline void swap ( optional<T>& x, optional<T>& y )
sl@0
   914
{
sl@0
   915
  optional_detail::optional_swap(x,y);
sl@0
   916
}
sl@0
   917
sl@0
   918
sl@0
   919
} // namespace boost
sl@0
   920
sl@0
   921
#endif
sl@0
   922