sl@0
|
1 |
//
|
sl@0
|
2 |
// Copyright (c) 2000-2002
|
sl@0
|
3 |
// Joerg Walter, Mathias Koch
|
sl@0
|
4 |
//
|
sl@0
|
5 |
// Permission to use, copy, modify, distribute and sell this software
|
sl@0
|
6 |
// and its documentation for any purpose is hereby granted without fee,
|
sl@0
|
7 |
// provided that the above copyright notice appear in all copies and
|
sl@0
|
8 |
// that both that copyright notice and this permission notice appear
|
sl@0
|
9 |
// in supporting documentation. The authors make no representations
|
sl@0
|
10 |
// about the suitability of this software for any purpose.
|
sl@0
|
11 |
// It is provided "as is" without express or implied warranty.
|
sl@0
|
12 |
//
|
sl@0
|
13 |
// The authors gratefully acknowledge the support of
|
sl@0
|
14 |
// GeNeSys mbH & Co. KG in producing this work.
|
sl@0
|
15 |
//
|
sl@0
|
16 |
|
sl@0
|
17 |
#ifndef _BOOST_UBLAS_OPERATION_
|
sl@0
|
18 |
#define _BOOST_UBLAS_OPERATION_
|
sl@0
|
19 |
|
sl@0
|
20 |
#include <boost/numeric/ublas/matrix_proxy.hpp>
|
sl@0
|
21 |
|
sl@0
|
22 |
/** \file operation.hpp
|
sl@0
|
23 |
* \brief This file contains some specialized products.
|
sl@0
|
24 |
*/
|
sl@0
|
25 |
|
sl@0
|
26 |
// axpy-based products
|
sl@0
|
27 |
// Alexei Novakov had a lot of ideas to improve these. Thanks.
|
sl@0
|
28 |
// Hendrik Kueck proposed some new kernel. Thanks again.
|
sl@0
|
29 |
|
sl@0
|
30 |
namespace boost { namespace numeric { namespace ublas {
|
sl@0
|
31 |
|
sl@0
|
32 |
template<class V, class T1, class IA1, class TA1, class E2>
|
sl@0
|
33 |
BOOST_UBLAS_INLINE
|
sl@0
|
34 |
V &
|
sl@0
|
35 |
axpy_prod (const compressed_matrix<T1, row_major, 0, IA1, TA1> &e1,
|
sl@0
|
36 |
const vector_expression<E2> &e2,
|
sl@0
|
37 |
V &v, row_major_tag) {
|
sl@0
|
38 |
typedef typename V::size_type size_type;
|
sl@0
|
39 |
typedef typename V::value_type value_type;
|
sl@0
|
40 |
|
sl@0
|
41 |
for (size_type i = 0; i < e1.filled1 () -1; ++ i) {
|
sl@0
|
42 |
size_type begin = e1.index1_data () [i];
|
sl@0
|
43 |
size_type end = e1.index1_data () [i + 1];
|
sl@0
|
44 |
value_type t (v (i));
|
sl@0
|
45 |
for (size_type j = begin; j < end; ++ j)
|
sl@0
|
46 |
t += e1.value_data () [j] * e2 () (e1.index2_data () [j]);
|
sl@0
|
47 |
v (i) = t;
|
sl@0
|
48 |
}
|
sl@0
|
49 |
return v;
|
sl@0
|
50 |
}
|
sl@0
|
51 |
|
sl@0
|
52 |
template<class V, class T1, class IA1, class TA1, class E2>
|
sl@0
|
53 |
BOOST_UBLAS_INLINE
|
sl@0
|
54 |
V &
|
sl@0
|
55 |
axpy_prod (const compressed_matrix<T1, column_major, 0, IA1, TA1> &e1,
|
sl@0
|
56 |
const vector_expression<E2> &e2,
|
sl@0
|
57 |
V &v, column_major_tag) {
|
sl@0
|
58 |
typedef typename V::size_type size_type;
|
sl@0
|
59 |
|
sl@0
|
60 |
for (size_type j = 0; j < e1.filled1 () -1; ++ j) {
|
sl@0
|
61 |
size_type begin = e1.index1_data () [j];
|
sl@0
|
62 |
size_type end = e1.index1_data () [j + 1];
|
sl@0
|
63 |
for (size_type i = begin; i < end; ++ i)
|
sl@0
|
64 |
v (e1.index2_data () [i]) += e1.value_data () [i] * e2 () (j);
|
sl@0
|
65 |
}
|
sl@0
|
66 |
return v;
|
sl@0
|
67 |
}
|
sl@0
|
68 |
|
sl@0
|
69 |
// Dispatcher
|
sl@0
|
70 |
template<class V, class T1, class L1, class IA1, class TA1, class E2>
|
sl@0
|
71 |
BOOST_UBLAS_INLINE
|
sl@0
|
72 |
V &
|
sl@0
|
73 |
axpy_prod (const compressed_matrix<T1, L1, 0, IA1, TA1> &e1,
|
sl@0
|
74 |
const vector_expression<E2> &e2,
|
sl@0
|
75 |
V &v, bool init = true) {
|
sl@0
|
76 |
typedef typename V::value_type value_type;
|
sl@0
|
77 |
typedef typename L1::orientation_category orientation_category;
|
sl@0
|
78 |
|
sl@0
|
79 |
if (init)
|
sl@0
|
80 |
v.assign (zero_vector<value_type> (e1.size1 ()));
|
sl@0
|
81 |
#if BOOST_UBLAS_TYPE_CHECK
|
sl@0
|
82 |
vector<value_type> cv (v);
|
sl@0
|
83 |
typedef typename type_traits<value_type>::real_type real_type;
|
sl@0
|
84 |
real_type verrorbound (norm_1 (v) + norm_1 (e1) * norm_1 (e2));
|
sl@0
|
85 |
indexing_vector_assign<scalar_plus_assign> (cv, prod (e1, e2));
|
sl@0
|
86 |
#endif
|
sl@0
|
87 |
axpy_prod (e1, e2, v, orientation_category ());
|
sl@0
|
88 |
#if BOOST_UBLAS_TYPE_CHECK
|
sl@0
|
89 |
BOOST_UBLAS_CHECK (norm_1 (v - cv) <= 2 * std::numeric_limits<real_type>::epsilon () * verrorbound, internal_logic ());
|
sl@0
|
90 |
#endif
|
sl@0
|
91 |
return v;
|
sl@0
|
92 |
}
|
sl@0
|
93 |
template<class V, class T1, class L1, class IA1, class TA1, class E2>
|
sl@0
|
94 |
BOOST_UBLAS_INLINE
|
sl@0
|
95 |
V
|
sl@0
|
96 |
axpy_prod (const compressed_matrix<T1, L1, 0, IA1, TA1> &e1,
|
sl@0
|
97 |
const vector_expression<E2> &e2) {
|
sl@0
|
98 |
typedef V vector_type;
|
sl@0
|
99 |
|
sl@0
|
100 |
vector_type v (e1.size1 ());
|
sl@0
|
101 |
return axpy_prod (e1, e2, v, true);
|
sl@0
|
102 |
}
|
sl@0
|
103 |
|
sl@0
|
104 |
template<class V, class T1, class L1, class IA1, class TA1, class E2>
|
sl@0
|
105 |
BOOST_UBLAS_INLINE
|
sl@0
|
106 |
V &
|
sl@0
|
107 |
axpy_prod (const coordinate_matrix<T1, L1, 0, IA1, TA1> &e1,
|
sl@0
|
108 |
const vector_expression<E2> &e2,
|
sl@0
|
109 |
V &v, bool init = true) {
|
sl@0
|
110 |
typedef typename V::size_type size_type;
|
sl@0
|
111 |
typedef typename V::value_type value_type;
|
sl@0
|
112 |
typedef L1 layout_type;
|
sl@0
|
113 |
|
sl@0
|
114 |
size_type size1 = e1.size1();
|
sl@0
|
115 |
size_type size2 = e1.size2();
|
sl@0
|
116 |
|
sl@0
|
117 |
if (init) {
|
sl@0
|
118 |
noalias(v) = zero_vector<value_type>(size1);
|
sl@0
|
119 |
}
|
sl@0
|
120 |
|
sl@0
|
121 |
for (size_type i = 0; i < e1.nnz(); ++i) {
|
sl@0
|
122 |
size_type row_index = layout_type::element1( e1.index1_data () [i], size1, e1.index2_data () [i], size2 );
|
sl@0
|
123 |
size_type col_index = layout_type::element2( e1.index1_data () [i], size1, e1.index2_data () [i], size2 );
|
sl@0
|
124 |
v( row_index ) += e1.value_data () [i] * e2 () (col_index);
|
sl@0
|
125 |
}
|
sl@0
|
126 |
return v;
|
sl@0
|
127 |
}
|
sl@0
|
128 |
|
sl@0
|
129 |
template<class V, class E1, class E2>
|
sl@0
|
130 |
BOOST_UBLAS_INLINE
|
sl@0
|
131 |
V &
|
sl@0
|
132 |
axpy_prod (const matrix_expression<E1> &e1,
|
sl@0
|
133 |
const vector_expression<E2> &e2,
|
sl@0
|
134 |
V &v, packed_random_access_iterator_tag, row_major_tag) {
|
sl@0
|
135 |
typedef const E1 expression1_type;
|
sl@0
|
136 |
typedef const E2 expression2_type;
|
sl@0
|
137 |
typedef typename V::size_type size_type;
|
sl@0
|
138 |
|
sl@0
|
139 |
typename expression1_type::const_iterator1 it1 (e1 ().begin1 ());
|
sl@0
|
140 |
typename expression1_type::const_iterator1 it1_end (e1 ().end1 ());
|
sl@0
|
141 |
while (it1 != it1_end) {
|
sl@0
|
142 |
size_type index1 (it1.index1 ());
|
sl@0
|
143 |
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
|
sl@0
|
144 |
typename expression1_type::const_iterator2 it2 (it1.begin ());
|
sl@0
|
145 |
typename expression1_type::const_iterator2 it2_end (it1.end ());
|
sl@0
|
146 |
#else
|
sl@0
|
147 |
typename expression1_type::const_iterator2 it2 (boost::numeric::ublas::begin (it1, iterator1_tag ()));
|
sl@0
|
148 |
typename expression1_type::const_iterator2 it2_end (boost::numeric::ublas::end (it1, iterator1_tag ()));
|
sl@0
|
149 |
#endif
|
sl@0
|
150 |
while (it2 != it2_end) {
|
sl@0
|
151 |
v (index1) += *it2 * e2 () (it2.index2 ());
|
sl@0
|
152 |
++ it2;
|
sl@0
|
153 |
}
|
sl@0
|
154 |
++ it1;
|
sl@0
|
155 |
}
|
sl@0
|
156 |
return v;
|
sl@0
|
157 |
}
|
sl@0
|
158 |
|
sl@0
|
159 |
template<class V, class E1, class E2>
|
sl@0
|
160 |
BOOST_UBLAS_INLINE
|
sl@0
|
161 |
V &
|
sl@0
|
162 |
axpy_prod (const matrix_expression<E1> &e1,
|
sl@0
|
163 |
const vector_expression<E2> &e2,
|
sl@0
|
164 |
V &v, packed_random_access_iterator_tag, column_major_tag) {
|
sl@0
|
165 |
typedef const E1 expression1_type;
|
sl@0
|
166 |
typedef const E2 expression2_type;
|
sl@0
|
167 |
typedef typename V::size_type size_type;
|
sl@0
|
168 |
|
sl@0
|
169 |
typename expression1_type::const_iterator2 it2 (e1 ().begin2 ());
|
sl@0
|
170 |
typename expression1_type::const_iterator2 it2_end (e1 ().end2 ());
|
sl@0
|
171 |
while (it2 != it2_end) {
|
sl@0
|
172 |
size_type index2 (it2.index2 ());
|
sl@0
|
173 |
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
|
sl@0
|
174 |
typename expression1_type::const_iterator1 it1 (it2.begin ());
|
sl@0
|
175 |
typename expression1_type::const_iterator1 it1_end (it2.end ());
|
sl@0
|
176 |
#else
|
sl@0
|
177 |
typename expression1_type::const_iterator1 it1 (boost::numeric::ublas::begin (it2, iterator2_tag ()));
|
sl@0
|
178 |
typename expression1_type::const_iterator1 it1_end (boost::numeric::ublas::end (it2, iterator2_tag ()));
|
sl@0
|
179 |
#endif
|
sl@0
|
180 |
while (it1 != it1_end) {
|
sl@0
|
181 |
v (it1.index1 ()) += *it1 * e2 () (index2);
|
sl@0
|
182 |
++ it1;
|
sl@0
|
183 |
}
|
sl@0
|
184 |
++ it2;
|
sl@0
|
185 |
}
|
sl@0
|
186 |
return v;
|
sl@0
|
187 |
}
|
sl@0
|
188 |
|
sl@0
|
189 |
template<class V, class E1, class E2>
|
sl@0
|
190 |
BOOST_UBLAS_INLINE
|
sl@0
|
191 |
V &
|
sl@0
|
192 |
axpy_prod (const matrix_expression<E1> &e1,
|
sl@0
|
193 |
const vector_expression<E2> &e2,
|
sl@0
|
194 |
V &v, sparse_bidirectional_iterator_tag) {
|
sl@0
|
195 |
typedef const E1 expression1_type;
|
sl@0
|
196 |
typedef const E2 expression2_type;
|
sl@0
|
197 |
typedef typename V::size_type size_type;
|
sl@0
|
198 |
|
sl@0
|
199 |
typename expression2_type::const_iterator it (e2 ().begin ());
|
sl@0
|
200 |
typename expression2_type::const_iterator it_end (e2 ().end ());
|
sl@0
|
201 |
while (it != it_end) {
|
sl@0
|
202 |
v.plus_assign (column (e1 (), it.index ()) * *it);
|
sl@0
|
203 |
++ it;
|
sl@0
|
204 |
}
|
sl@0
|
205 |
return v;
|
sl@0
|
206 |
}
|
sl@0
|
207 |
|
sl@0
|
208 |
// Dispatcher
|
sl@0
|
209 |
template<class V, class E1, class E2>
|
sl@0
|
210 |
BOOST_UBLAS_INLINE
|
sl@0
|
211 |
V &
|
sl@0
|
212 |
axpy_prod (const matrix_expression<E1> &e1,
|
sl@0
|
213 |
const vector_expression<E2> &e2,
|
sl@0
|
214 |
V &v, packed_random_access_iterator_tag) {
|
sl@0
|
215 |
typedef typename E1::orientation_category orientation_category;
|
sl@0
|
216 |
return axpy_prod (e1, e2, v, packed_random_access_iterator_tag (), orientation_category ());
|
sl@0
|
217 |
}
|
sl@0
|
218 |
|
sl@0
|
219 |
|
sl@0
|
220 |
/** \brief computes <tt>v += A x</tt> or <tt>v = A x</tt> in an
|
sl@0
|
221 |
optimized fashion.
|
sl@0
|
222 |
|
sl@0
|
223 |
\param e1 the matrix expression \c A
|
sl@0
|
224 |
\param e2 the vector expression \c x
|
sl@0
|
225 |
\param v the result vector \c v
|
sl@0
|
226 |
\param init a boolean parameter
|
sl@0
|
227 |
|
sl@0
|
228 |
<tt>axpy_prod(A, x, v, init)</tt> implements the well known
|
sl@0
|
229 |
axpy-product. Setting \a init to \c true is equivalent to call
|
sl@0
|
230 |
<tt>v.clear()</tt> before <tt>axpy_prod</tt>. Currently \a init
|
sl@0
|
231 |
defaults to \c true, but this may change in the future.
|
sl@0
|
232 |
|
sl@0
|
233 |
Up to now there are some specialisation for compressed
|
sl@0
|
234 |
matrices that give a large speed up compared to prod.
|
sl@0
|
235 |
|
sl@0
|
236 |
\ingroup blas2
|
sl@0
|
237 |
|
sl@0
|
238 |
\internal
|
sl@0
|
239 |
|
sl@0
|
240 |
template parameters:
|
sl@0
|
241 |
\param V type of the result vector \c v
|
sl@0
|
242 |
\param E1 type of a matrix expression \c A
|
sl@0
|
243 |
\param E2 type of a vector expression \c x
|
sl@0
|
244 |
*/
|
sl@0
|
245 |
template<class V, class E1, class E2>
|
sl@0
|
246 |
BOOST_UBLAS_INLINE
|
sl@0
|
247 |
V &
|
sl@0
|
248 |
axpy_prod (const matrix_expression<E1> &e1,
|
sl@0
|
249 |
const vector_expression<E2> &e2,
|
sl@0
|
250 |
V &v, bool init = true) {
|
sl@0
|
251 |
typedef typename V::value_type value_type;
|
sl@0
|
252 |
typedef typename E2::const_iterator::iterator_category iterator_category;
|
sl@0
|
253 |
|
sl@0
|
254 |
if (init)
|
sl@0
|
255 |
v.assign (zero_vector<value_type> (e1 ().size1 ()));
|
sl@0
|
256 |
#if BOOST_UBLAS_TYPE_CHECK
|
sl@0
|
257 |
vector<value_type> cv (v);
|
sl@0
|
258 |
typedef typename type_traits<value_type>::real_type real_type;
|
sl@0
|
259 |
real_type verrorbound (norm_1 (v) + norm_1 (e1) * norm_1 (e2));
|
sl@0
|
260 |
indexing_vector_assign<scalar_plus_assign> (cv, prod (e1, e2));
|
sl@0
|
261 |
#endif
|
sl@0
|
262 |
axpy_prod (e1, e2, v, iterator_category ());
|
sl@0
|
263 |
#if BOOST_UBLAS_TYPE_CHECK
|
sl@0
|
264 |
BOOST_UBLAS_CHECK (norm_1 (v - cv) <= 2 * std::numeric_limits<real_type>::epsilon () * verrorbound, internal_logic ());
|
sl@0
|
265 |
#endif
|
sl@0
|
266 |
return v;
|
sl@0
|
267 |
}
|
sl@0
|
268 |
template<class V, class E1, class E2>
|
sl@0
|
269 |
BOOST_UBLAS_INLINE
|
sl@0
|
270 |
V
|
sl@0
|
271 |
axpy_prod (const matrix_expression<E1> &e1,
|
sl@0
|
272 |
const vector_expression<E2> &e2) {
|
sl@0
|
273 |
typedef V vector_type;
|
sl@0
|
274 |
|
sl@0
|
275 |
vector_type v (e1 ().size1 ());
|
sl@0
|
276 |
return axpy_prod (e1, e2, v, true);
|
sl@0
|
277 |
}
|
sl@0
|
278 |
|
sl@0
|
279 |
template<class V, class E1, class T2, class IA2, class TA2>
|
sl@0
|
280 |
BOOST_UBLAS_INLINE
|
sl@0
|
281 |
V &
|
sl@0
|
282 |
axpy_prod (const vector_expression<E1> &e1,
|
sl@0
|
283 |
const compressed_matrix<T2, column_major, 0, IA2, TA2> &e2,
|
sl@0
|
284 |
V &v, column_major_tag) {
|
sl@0
|
285 |
typedef typename V::size_type size_type;
|
sl@0
|
286 |
typedef typename V::value_type value_type;
|
sl@0
|
287 |
|
sl@0
|
288 |
for (size_type j = 0; j < e2.filled1 () -1; ++ j) {
|
sl@0
|
289 |
size_type begin = e2.index1_data () [j];
|
sl@0
|
290 |
size_type end = e2.index1_data () [j + 1];
|
sl@0
|
291 |
value_type t (v (j));
|
sl@0
|
292 |
for (size_type i = begin; i < end; ++ i)
|
sl@0
|
293 |
t += e2.value_data () [i] * e1 () (e2.index2_data () [i]);
|
sl@0
|
294 |
v (j) = t;
|
sl@0
|
295 |
}
|
sl@0
|
296 |
return v;
|
sl@0
|
297 |
}
|
sl@0
|
298 |
|
sl@0
|
299 |
template<class V, class E1, class T2, class IA2, class TA2>
|
sl@0
|
300 |
BOOST_UBLAS_INLINE
|
sl@0
|
301 |
V &
|
sl@0
|
302 |
axpy_prod (const vector_expression<E1> &e1,
|
sl@0
|
303 |
const compressed_matrix<T2, row_major, 0, IA2, TA2> &e2,
|
sl@0
|
304 |
V &v, row_major_tag) {
|
sl@0
|
305 |
typedef typename V::size_type size_type;
|
sl@0
|
306 |
|
sl@0
|
307 |
for (size_type i = 0; i < e2.filled1 () -1; ++ i) {
|
sl@0
|
308 |
size_type begin = e2.index1_data () [i];
|
sl@0
|
309 |
size_type end = e2.index1_data () [i + 1];
|
sl@0
|
310 |
for (size_type j = begin; j < end; ++ j)
|
sl@0
|
311 |
v (e2.index2_data () [j]) += e2.value_data () [j] * e1 () (i);
|
sl@0
|
312 |
}
|
sl@0
|
313 |
return v;
|
sl@0
|
314 |
}
|
sl@0
|
315 |
|
sl@0
|
316 |
// Dispatcher
|
sl@0
|
317 |
template<class V, class E1, class T2, class L2, class IA2, class TA2>
|
sl@0
|
318 |
BOOST_UBLAS_INLINE
|
sl@0
|
319 |
V &
|
sl@0
|
320 |
axpy_prod (const vector_expression<E1> &e1,
|
sl@0
|
321 |
const compressed_matrix<T2, L2, 0, IA2, TA2> &e2,
|
sl@0
|
322 |
V &v, bool init = true) {
|
sl@0
|
323 |
typedef typename V::value_type value_type;
|
sl@0
|
324 |
typedef typename L2::orientation_category orientation_category;
|
sl@0
|
325 |
|
sl@0
|
326 |
if (init)
|
sl@0
|
327 |
v.assign (zero_vector<value_type> (e2.size2 ()));
|
sl@0
|
328 |
#if BOOST_UBLAS_TYPE_CHECK
|
sl@0
|
329 |
vector<value_type> cv (v);
|
sl@0
|
330 |
typedef typename type_traits<value_type>::real_type real_type;
|
sl@0
|
331 |
real_type verrorbound (norm_1 (v) + norm_1 (e1) * norm_1 (e2));
|
sl@0
|
332 |
indexing_vector_assign<scalar_plus_assign> (cv, prod (e1, e2));
|
sl@0
|
333 |
#endif
|
sl@0
|
334 |
axpy_prod (e1, e2, v, orientation_category ());
|
sl@0
|
335 |
#if BOOST_UBLAS_TYPE_CHECK
|
sl@0
|
336 |
BOOST_UBLAS_CHECK (norm_1 (v - cv) <= 2 * std::numeric_limits<real_type>::epsilon () * verrorbound, internal_logic ());
|
sl@0
|
337 |
#endif
|
sl@0
|
338 |
return v;
|
sl@0
|
339 |
}
|
sl@0
|
340 |
template<class V, class E1, class T2, class L2, class IA2, class TA2>
|
sl@0
|
341 |
BOOST_UBLAS_INLINE
|
sl@0
|
342 |
V
|
sl@0
|
343 |
axpy_prod (const vector_expression<E1> &e1,
|
sl@0
|
344 |
const compressed_matrix<T2, L2, 0, IA2, TA2> &e2) {
|
sl@0
|
345 |
typedef V vector_type;
|
sl@0
|
346 |
|
sl@0
|
347 |
vector_type v (e2.size2 ());
|
sl@0
|
348 |
return axpy_prod (e1, e2, v, true);
|
sl@0
|
349 |
}
|
sl@0
|
350 |
|
sl@0
|
351 |
template<class V, class E1, class E2>
|
sl@0
|
352 |
BOOST_UBLAS_INLINE
|
sl@0
|
353 |
V &
|
sl@0
|
354 |
axpy_prod (const vector_expression<E1> &e1,
|
sl@0
|
355 |
const matrix_expression<E2> &e2,
|
sl@0
|
356 |
V &v, packed_random_access_iterator_tag, column_major_tag) {
|
sl@0
|
357 |
typedef const E1 expression1_type;
|
sl@0
|
358 |
typedef const E2 expression2_type;
|
sl@0
|
359 |
typedef typename V::size_type size_type;
|
sl@0
|
360 |
|
sl@0
|
361 |
typename expression2_type::const_iterator2 it2 (e2 ().begin2 ());
|
sl@0
|
362 |
typename expression2_type::const_iterator2 it2_end (e2 ().end2 ());
|
sl@0
|
363 |
while (it2 != it2_end) {
|
sl@0
|
364 |
size_type index2 (it2.index2 ());
|
sl@0
|
365 |
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
|
sl@0
|
366 |
typename expression2_type::const_iterator1 it1 (it2.begin ());
|
sl@0
|
367 |
typename expression2_type::const_iterator1 it1_end (it2.end ());
|
sl@0
|
368 |
#else
|
sl@0
|
369 |
typename expression2_type::const_iterator1 it1 (boost::numeric::ublas::begin (it2, iterator2_tag ()));
|
sl@0
|
370 |
typename expression2_type::const_iterator1 it1_end (boost::numeric::ublas::end (it2, iterator2_tag ()));
|
sl@0
|
371 |
#endif
|
sl@0
|
372 |
while (it1 != it1_end) {
|
sl@0
|
373 |
v (index2) += *it1 * e1 () (it1.index1 ());
|
sl@0
|
374 |
++ it1;
|
sl@0
|
375 |
}
|
sl@0
|
376 |
++ it2;
|
sl@0
|
377 |
}
|
sl@0
|
378 |
return v;
|
sl@0
|
379 |
}
|
sl@0
|
380 |
|
sl@0
|
381 |
template<class V, class E1, class E2>
|
sl@0
|
382 |
BOOST_UBLAS_INLINE
|
sl@0
|
383 |
V &
|
sl@0
|
384 |
axpy_prod (const vector_expression<E1> &e1,
|
sl@0
|
385 |
const matrix_expression<E2> &e2,
|
sl@0
|
386 |
V &v, packed_random_access_iterator_tag, row_major_tag) {
|
sl@0
|
387 |
typedef const E1 expression1_type;
|
sl@0
|
388 |
typedef const E2 expression2_type;
|
sl@0
|
389 |
typedef typename V::size_type size_type;
|
sl@0
|
390 |
|
sl@0
|
391 |
typename expression2_type::const_iterator1 it1 (e2 ().begin1 ());
|
sl@0
|
392 |
typename expression2_type::const_iterator1 it1_end (e2 ().end1 ());
|
sl@0
|
393 |
while (it1 != it1_end) {
|
sl@0
|
394 |
size_type index1 (it1.index1 ());
|
sl@0
|
395 |
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
|
sl@0
|
396 |
typename expression2_type::const_iterator2 it2 (it1.begin ());
|
sl@0
|
397 |
typename expression2_type::const_iterator2 it2_end (it1.end ());
|
sl@0
|
398 |
#else
|
sl@0
|
399 |
typename expression2_type::const_iterator2 it2 (boost::numeric::ublas::begin (it1, iterator1_tag ()));
|
sl@0
|
400 |
typename expression2_type::const_iterator2 it2_end (boost::numeric::ublas::end (it1, iterator1_tag ()));
|
sl@0
|
401 |
#endif
|
sl@0
|
402 |
while (it2 != it2_end) {
|
sl@0
|
403 |
v (it2.index2 ()) += *it2 * e1 () (index1);
|
sl@0
|
404 |
++ it2;
|
sl@0
|
405 |
}
|
sl@0
|
406 |
++ it1;
|
sl@0
|
407 |
}
|
sl@0
|
408 |
return v;
|
sl@0
|
409 |
}
|
sl@0
|
410 |
|
sl@0
|
411 |
template<class V, class E1, class E2>
|
sl@0
|
412 |
BOOST_UBLAS_INLINE
|
sl@0
|
413 |
V &
|
sl@0
|
414 |
axpy_prod (const vector_expression<E1> &e1,
|
sl@0
|
415 |
const matrix_expression<E2> &e2,
|
sl@0
|
416 |
V &v, sparse_bidirectional_iterator_tag) {
|
sl@0
|
417 |
typedef const E1 expression1_type;
|
sl@0
|
418 |
typedef const E2 expression2_type;
|
sl@0
|
419 |
typedef typename V::size_type size_type;
|
sl@0
|
420 |
|
sl@0
|
421 |
typename expression1_type::const_iterator it (e1 ().begin ());
|
sl@0
|
422 |
typename expression1_type::const_iterator it_end (e1 ().end ());
|
sl@0
|
423 |
while (it != it_end) {
|
sl@0
|
424 |
v.plus_assign (*it * row (e2 (), it.index ()));
|
sl@0
|
425 |
++ it;
|
sl@0
|
426 |
}
|
sl@0
|
427 |
return v;
|
sl@0
|
428 |
}
|
sl@0
|
429 |
|
sl@0
|
430 |
// Dispatcher
|
sl@0
|
431 |
template<class V, class E1, class E2>
|
sl@0
|
432 |
BOOST_UBLAS_INLINE
|
sl@0
|
433 |
V &
|
sl@0
|
434 |
axpy_prod (const vector_expression<E1> &e1,
|
sl@0
|
435 |
const matrix_expression<E2> &e2,
|
sl@0
|
436 |
V &v, packed_random_access_iterator_tag) {
|
sl@0
|
437 |
typedef typename E2::orientation_category orientation_category;
|
sl@0
|
438 |
return axpy_prod (e1, e2, v, packed_random_access_iterator_tag (), orientation_category ());
|
sl@0
|
439 |
}
|
sl@0
|
440 |
|
sl@0
|
441 |
|
sl@0
|
442 |
/** \brief computes <tt>v += A<sup>T</sup> x</tt> or <tt>v = A<sup>T</sup> x</tt> in an
|
sl@0
|
443 |
optimized fashion.
|
sl@0
|
444 |
|
sl@0
|
445 |
\param e1 the vector expression \c x
|
sl@0
|
446 |
\param e2 the matrix expression \c A
|
sl@0
|
447 |
\param v the result vector \c v
|
sl@0
|
448 |
\param init a boolean parameter
|
sl@0
|
449 |
|
sl@0
|
450 |
<tt>axpy_prod(x, A, v, init)</tt> implements the well known
|
sl@0
|
451 |
axpy-product. Setting \a init to \c true is equivalent to call
|
sl@0
|
452 |
<tt>v.clear()</tt> before <tt>axpy_prod</tt>. Currently \a init
|
sl@0
|
453 |
defaults to \c true, but this may change in the future.
|
sl@0
|
454 |
|
sl@0
|
455 |
Up to now there are some specialisation for compressed
|
sl@0
|
456 |
matrices that give a large speed up compared to prod.
|
sl@0
|
457 |
|
sl@0
|
458 |
\ingroup blas2
|
sl@0
|
459 |
|
sl@0
|
460 |
\internal
|
sl@0
|
461 |
|
sl@0
|
462 |
template parameters:
|
sl@0
|
463 |
\param V type of the result vector \c v
|
sl@0
|
464 |
\param E1 type of a vector expression \c x
|
sl@0
|
465 |
\param E2 type of a matrix expression \c A
|
sl@0
|
466 |
*/
|
sl@0
|
467 |
template<class V, class E1, class E2>
|
sl@0
|
468 |
BOOST_UBLAS_INLINE
|
sl@0
|
469 |
V &
|
sl@0
|
470 |
axpy_prod (const vector_expression<E1> &e1,
|
sl@0
|
471 |
const matrix_expression<E2> &e2,
|
sl@0
|
472 |
V &v, bool init = true) {
|
sl@0
|
473 |
typedef typename V::value_type value_type;
|
sl@0
|
474 |
typedef typename E1::const_iterator::iterator_category iterator_category;
|
sl@0
|
475 |
|
sl@0
|
476 |
if (init)
|
sl@0
|
477 |
v.assign (zero_vector<value_type> (e2 ().size2 ()));
|
sl@0
|
478 |
#if BOOST_UBLAS_TYPE_CHECK
|
sl@0
|
479 |
vector<value_type> cv (v);
|
sl@0
|
480 |
typedef typename type_traits<value_type>::real_type real_type;
|
sl@0
|
481 |
real_type verrorbound (norm_1 (v) + norm_1 (e1) * norm_1 (e2));
|
sl@0
|
482 |
indexing_vector_assign<scalar_plus_assign> (cv, prod (e1, e2));
|
sl@0
|
483 |
#endif
|
sl@0
|
484 |
axpy_prod (e1, e2, v, iterator_category ());
|
sl@0
|
485 |
#if BOOST_UBLAS_TYPE_CHECK
|
sl@0
|
486 |
BOOST_UBLAS_CHECK (norm_1 (v - cv) <= 2 * std::numeric_limits<real_type>::epsilon () * verrorbound, internal_logic ());
|
sl@0
|
487 |
#endif
|
sl@0
|
488 |
return v;
|
sl@0
|
489 |
}
|
sl@0
|
490 |
template<class V, class E1, class E2>
|
sl@0
|
491 |
BOOST_UBLAS_INLINE
|
sl@0
|
492 |
V
|
sl@0
|
493 |
axpy_prod (const vector_expression<E1> &e1,
|
sl@0
|
494 |
const matrix_expression<E2> &e2) {
|
sl@0
|
495 |
typedef V vector_type;
|
sl@0
|
496 |
|
sl@0
|
497 |
vector_type v (e2 ().size2 ());
|
sl@0
|
498 |
return axpy_prod (e1, e2, v, true);
|
sl@0
|
499 |
}
|
sl@0
|
500 |
|
sl@0
|
501 |
template<class M, class E1, class E2, class TRI>
|
sl@0
|
502 |
BOOST_UBLAS_INLINE
|
sl@0
|
503 |
M &
|
sl@0
|
504 |
axpy_prod (const matrix_expression<E1> &e1,
|
sl@0
|
505 |
const matrix_expression<E2> &e2,
|
sl@0
|
506 |
M &m, TRI,
|
sl@0
|
507 |
dense_proxy_tag, row_major_tag) {
|
sl@0
|
508 |
typedef M matrix_type;
|
sl@0
|
509 |
typedef const E1 expression1_type;
|
sl@0
|
510 |
typedef const E2 expression2_type;
|
sl@0
|
511 |
typedef typename M::size_type size_type;
|
sl@0
|
512 |
typedef typename M::value_type value_type;
|
sl@0
|
513 |
|
sl@0
|
514 |
#if BOOST_UBLAS_TYPE_CHECK
|
sl@0
|
515 |
matrix<value_type, row_major> cm (m);
|
sl@0
|
516 |
typedef typename type_traits<value_type>::real_type real_type;
|
sl@0
|
517 |
real_type merrorbound (norm_1 (m) + norm_1 (e1) * norm_1 (e2));
|
sl@0
|
518 |
indexing_matrix_assign<scalar_plus_assign> (cm, prod (e1, e2), row_major_tag ());
|
sl@0
|
519 |
#endif
|
sl@0
|
520 |
size_type size1 (e1 ().size1 ());
|
sl@0
|
521 |
size_type size2 (e1 ().size2 ());
|
sl@0
|
522 |
for (size_type i = 0; i < size1; ++ i)
|
sl@0
|
523 |
for (size_type j = 0; j < size2; ++ j)
|
sl@0
|
524 |
row (m, i).plus_assign (e1 () (i, j) * row (e2 (), j));
|
sl@0
|
525 |
#if BOOST_UBLAS_TYPE_CHECK
|
sl@0
|
526 |
BOOST_UBLAS_CHECK (norm_1 (m - cm) <= 2 * std::numeric_limits<real_type>::epsilon () * merrorbound, internal_logic ());
|
sl@0
|
527 |
#endif
|
sl@0
|
528 |
return m;
|
sl@0
|
529 |
}
|
sl@0
|
530 |
template<class M, class E1, class E2, class TRI>
|
sl@0
|
531 |
BOOST_UBLAS_INLINE
|
sl@0
|
532 |
M &
|
sl@0
|
533 |
axpy_prod (const matrix_expression<E1> &e1,
|
sl@0
|
534 |
const matrix_expression<E2> &e2,
|
sl@0
|
535 |
M &m, TRI,
|
sl@0
|
536 |
sparse_proxy_tag, row_major_tag) {
|
sl@0
|
537 |
typedef M matrix_type;
|
sl@0
|
538 |
typedef TRI triangular_restriction;
|
sl@0
|
539 |
typedef const E1 expression1_type;
|
sl@0
|
540 |
typedef const E2 expression2_type;
|
sl@0
|
541 |
typedef typename M::size_type size_type;
|
sl@0
|
542 |
typedef typename M::value_type value_type;
|
sl@0
|
543 |
|
sl@0
|
544 |
#if BOOST_UBLAS_TYPE_CHECK
|
sl@0
|
545 |
matrix<value_type, row_major> cm (m);
|
sl@0
|
546 |
typedef typename type_traits<value_type>::real_type real_type;
|
sl@0
|
547 |
real_type merrorbound (norm_1 (m) + norm_1 (e1) * norm_1 (e2));
|
sl@0
|
548 |
indexing_matrix_assign<scalar_plus_assign> (cm, prod (e1, e2), row_major_tag ());
|
sl@0
|
549 |
#endif
|
sl@0
|
550 |
typename expression1_type::const_iterator1 it1 (e1 ().begin1 ());
|
sl@0
|
551 |
typename expression1_type::const_iterator1 it1_end (e1 ().end1 ());
|
sl@0
|
552 |
while (it1 != it1_end) {
|
sl@0
|
553 |
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
|
sl@0
|
554 |
typename expression1_type::const_iterator2 it2 (it1.begin ());
|
sl@0
|
555 |
typename expression1_type::const_iterator2 it2_end (it1.end ());
|
sl@0
|
556 |
#else
|
sl@0
|
557 |
typename expression1_type::const_iterator2 it2 (boost::numeric::ublas::begin (it1, iterator1_tag ()));
|
sl@0
|
558 |
typename expression1_type::const_iterator2 it2_end (boost::numeric::ublas::end (it1, iterator1_tag ()));
|
sl@0
|
559 |
#endif
|
sl@0
|
560 |
while (it2 != it2_end) {
|
sl@0
|
561 |
// row (m, it1.index1 ()).plus_assign (*it2 * row (e2 (), it2.index2 ()));
|
sl@0
|
562 |
matrix_row<expression2_type> mr (e2 (), it2.index2 ());
|
sl@0
|
563 |
typename matrix_row<expression2_type>::const_iterator itr (mr.begin ());
|
sl@0
|
564 |
typename matrix_row<expression2_type>::const_iterator itr_end (mr.end ());
|
sl@0
|
565 |
while (itr != itr_end) {
|
sl@0
|
566 |
if (triangular_restriction::other (it1.index1 (), itr.index ()))
|
sl@0
|
567 |
m (it1.index1 (), itr.index ()) += *it2 * *itr;
|
sl@0
|
568 |
++ itr;
|
sl@0
|
569 |
}
|
sl@0
|
570 |
++ it2;
|
sl@0
|
571 |
}
|
sl@0
|
572 |
++ it1;
|
sl@0
|
573 |
}
|
sl@0
|
574 |
#if BOOST_UBLAS_TYPE_CHECK
|
sl@0
|
575 |
BOOST_UBLAS_CHECK (norm_1 (m - cm) <= 2 * std::numeric_limits<real_type>::epsilon () * merrorbound, internal_logic ());
|
sl@0
|
576 |
#endif
|
sl@0
|
577 |
return m;
|
sl@0
|
578 |
}
|
sl@0
|
579 |
|
sl@0
|
580 |
template<class M, class E1, class E2, class TRI>
|
sl@0
|
581 |
BOOST_UBLAS_INLINE
|
sl@0
|
582 |
M &
|
sl@0
|
583 |
axpy_prod (const matrix_expression<E1> &e1,
|
sl@0
|
584 |
const matrix_expression<E2> &e2,
|
sl@0
|
585 |
M &m, TRI,
|
sl@0
|
586 |
dense_proxy_tag, column_major_tag) {
|
sl@0
|
587 |
typedef M matrix_type;
|
sl@0
|
588 |
typedef const E1 expression1_type;
|
sl@0
|
589 |
typedef const E2 expression2_type;
|
sl@0
|
590 |
typedef typename M::size_type size_type;
|
sl@0
|
591 |
typedef typename M::value_type value_type;
|
sl@0
|
592 |
|
sl@0
|
593 |
#if BOOST_UBLAS_TYPE_CHECK
|
sl@0
|
594 |
matrix<value_type, column_major> cm (m);
|
sl@0
|
595 |
typedef typename type_traits<value_type>::real_type real_type;
|
sl@0
|
596 |
real_type merrorbound (norm_1 (m) + norm_1 (e1) * norm_1 (e2));
|
sl@0
|
597 |
indexing_matrix_assign<scalar_plus_assign> (cm, prod (e1, e2), column_major_tag ());
|
sl@0
|
598 |
#endif
|
sl@0
|
599 |
size_type size1 (e2 ().size1 ());
|
sl@0
|
600 |
size_type size2 (e2 ().size2 ());
|
sl@0
|
601 |
for (size_type j = 0; j < size2; ++ j)
|
sl@0
|
602 |
for (size_type i = 0; i < size1; ++ i)
|
sl@0
|
603 |
column (m, j).plus_assign (e2 () (i, j) * column (e1 (), i));
|
sl@0
|
604 |
#if BOOST_UBLAS_TYPE_CHECK
|
sl@0
|
605 |
BOOST_UBLAS_CHECK (norm_1 (m - cm) <= 2 * std::numeric_limits<real_type>::epsilon () * merrorbound, internal_logic ());
|
sl@0
|
606 |
#endif
|
sl@0
|
607 |
return m;
|
sl@0
|
608 |
}
|
sl@0
|
609 |
template<class M, class E1, class E2, class TRI>
|
sl@0
|
610 |
BOOST_UBLAS_INLINE
|
sl@0
|
611 |
M &
|
sl@0
|
612 |
axpy_prod (const matrix_expression<E1> &e1,
|
sl@0
|
613 |
const matrix_expression<E2> &e2,
|
sl@0
|
614 |
M &m, TRI,
|
sl@0
|
615 |
sparse_proxy_tag, column_major_tag) {
|
sl@0
|
616 |
typedef M matrix_type;
|
sl@0
|
617 |
typedef TRI triangular_restriction;
|
sl@0
|
618 |
typedef const E1 expression1_type;
|
sl@0
|
619 |
typedef const E2 expression2_type;
|
sl@0
|
620 |
typedef typename M::size_type size_type;
|
sl@0
|
621 |
typedef typename M::value_type value_type;
|
sl@0
|
622 |
|
sl@0
|
623 |
#if BOOST_UBLAS_TYPE_CHECK
|
sl@0
|
624 |
matrix<value_type, column_major> cm (m);
|
sl@0
|
625 |
typedef typename type_traits<value_type>::real_type real_type;
|
sl@0
|
626 |
real_type merrorbound (norm_1 (m) + norm_1 (e1) * norm_1 (e2));
|
sl@0
|
627 |
indexing_matrix_assign<scalar_plus_assign> (cm, prod (e1, e2), column_major_tag ());
|
sl@0
|
628 |
#endif
|
sl@0
|
629 |
typename expression2_type::const_iterator2 it2 (e2 ().begin2 ());
|
sl@0
|
630 |
typename expression2_type::const_iterator2 it2_end (e2 ().end2 ());
|
sl@0
|
631 |
while (it2 != it2_end) {
|
sl@0
|
632 |
#ifndef BOOST_UBLAS_NO_NESTED_CLASS_RELATION
|
sl@0
|
633 |
typename expression2_type::const_iterator1 it1 (it2.begin ());
|
sl@0
|
634 |
typename expression2_type::const_iterator1 it1_end (it2.end ());
|
sl@0
|
635 |
#else
|
sl@0
|
636 |
typename expression2_type::const_iterator1 it1 (boost::numeric::ublas::begin (it2, iterator2_tag ()));
|
sl@0
|
637 |
typename expression2_type::const_iterator1 it1_end (boost::numeric::ublas::end (it2, iterator2_tag ()));
|
sl@0
|
638 |
#endif
|
sl@0
|
639 |
while (it1 != it1_end) {
|
sl@0
|
640 |
// column (m, it2.index2 ()).plus_assign (*it1 * column (e1 (), it1.index1 ()));
|
sl@0
|
641 |
matrix_column<expression1_type> mc (e1 (), it1.index1 ());
|
sl@0
|
642 |
typename matrix_column<expression1_type>::const_iterator itc (mc.begin ());
|
sl@0
|
643 |
typename matrix_column<expression1_type>::const_iterator itc_end (mc.end ());
|
sl@0
|
644 |
while (itc != itc_end) {
|
sl@0
|
645 |
if (triangular_restriction::functor_type ().other (itc.index (), it2.index2 ()))
|
sl@0
|
646 |
m (itc.index (), it2.index2 ()) += *it1 * *itc;
|
sl@0
|
647 |
++ itc;
|
sl@0
|
648 |
}
|
sl@0
|
649 |
++ it1;
|
sl@0
|
650 |
}
|
sl@0
|
651 |
++ it2;
|
sl@0
|
652 |
}
|
sl@0
|
653 |
#if BOOST_UBLAS_TYPE_CHECK
|
sl@0
|
654 |
BOOST_UBLAS_CHECK (norm_1 (m - cm) <= 2 * std::numeric_limits<real_type>::epsilon () * merrorbound, internal_logic ());
|
sl@0
|
655 |
#endif
|
sl@0
|
656 |
return m;
|
sl@0
|
657 |
}
|
sl@0
|
658 |
|
sl@0
|
659 |
// Dispatcher
|
sl@0
|
660 |
template<class M, class E1, class E2, class TRI>
|
sl@0
|
661 |
BOOST_UBLAS_INLINE
|
sl@0
|
662 |
M &
|
sl@0
|
663 |
axpy_prod (const matrix_expression<E1> &e1,
|
sl@0
|
664 |
const matrix_expression<E2> &e2,
|
sl@0
|
665 |
M &m, TRI, bool init = true) {
|
sl@0
|
666 |
typedef typename M::value_type value_type;
|
sl@0
|
667 |
typedef typename M::storage_category storage_category;
|
sl@0
|
668 |
typedef typename M::orientation_category orientation_category;
|
sl@0
|
669 |
typedef TRI triangular_restriction;
|
sl@0
|
670 |
|
sl@0
|
671 |
if (init)
|
sl@0
|
672 |
m.assign (zero_matrix<value_type> (e1 ().size1 (), e2 ().size2 ()));
|
sl@0
|
673 |
return axpy_prod (e1, e2, m, triangular_restriction (), storage_category (), orientation_category ());
|
sl@0
|
674 |
}
|
sl@0
|
675 |
template<class M, class E1, class E2, class TRI>
|
sl@0
|
676 |
BOOST_UBLAS_INLINE
|
sl@0
|
677 |
M
|
sl@0
|
678 |
axpy_prod (const matrix_expression<E1> &e1,
|
sl@0
|
679 |
const matrix_expression<E2> &e2,
|
sl@0
|
680 |
TRI) {
|
sl@0
|
681 |
typedef M matrix_type;
|
sl@0
|
682 |
typedef TRI triangular_restriction;
|
sl@0
|
683 |
|
sl@0
|
684 |
matrix_type m (e1 ().size1 (), e2 ().size2 ());
|
sl@0
|
685 |
return axpy_prod (e1, e2, m, triangular_restriction (), true);
|
sl@0
|
686 |
}
|
sl@0
|
687 |
|
sl@0
|
688 |
/** \brief computes <tt>M += A X</tt> or <tt>M = A X</tt> in an
|
sl@0
|
689 |
optimized fashion.
|
sl@0
|
690 |
|
sl@0
|
691 |
\param e1 the matrix expression \c A
|
sl@0
|
692 |
\param e2 the matrix expression \c X
|
sl@0
|
693 |
\param m the result matrix \c M
|
sl@0
|
694 |
\param init a boolean parameter
|
sl@0
|
695 |
|
sl@0
|
696 |
<tt>axpy_prod(A, X, M, init)</tt> implements the well known
|
sl@0
|
697 |
axpy-product. Setting \a init to \c true is equivalent to call
|
sl@0
|
698 |
<tt>M.clear()</tt> before <tt>axpy_prod</tt>. Currently \a init
|
sl@0
|
699 |
defaults to \c true, but this may change in the future.
|
sl@0
|
700 |
|
sl@0
|
701 |
Up to now there are no specialisations.
|
sl@0
|
702 |
|
sl@0
|
703 |
\ingroup blas3
|
sl@0
|
704 |
|
sl@0
|
705 |
\internal
|
sl@0
|
706 |
|
sl@0
|
707 |
template parameters:
|
sl@0
|
708 |
\param M type of the result matrix \c M
|
sl@0
|
709 |
\param E1 type of a matrix expression \c A
|
sl@0
|
710 |
\param E2 type of a matrix expression \c X
|
sl@0
|
711 |
*/
|
sl@0
|
712 |
template<class M, class E1, class E2>
|
sl@0
|
713 |
BOOST_UBLAS_INLINE
|
sl@0
|
714 |
M &
|
sl@0
|
715 |
axpy_prod (const matrix_expression<E1> &e1,
|
sl@0
|
716 |
const matrix_expression<E2> &e2,
|
sl@0
|
717 |
M &m, bool init = true) {
|
sl@0
|
718 |
typedef typename M::value_type value_type;
|
sl@0
|
719 |
typedef typename M::storage_category storage_category;
|
sl@0
|
720 |
typedef typename M::orientation_category orientation_category;
|
sl@0
|
721 |
|
sl@0
|
722 |
if (init)
|
sl@0
|
723 |
m.assign (zero_matrix<value_type> (e1 ().size1 (), e2 ().size2 ()));
|
sl@0
|
724 |
return axpy_prod (e1, e2, m, full (), storage_category (), orientation_category ());
|
sl@0
|
725 |
}
|
sl@0
|
726 |
template<class M, class E1, class E2>
|
sl@0
|
727 |
BOOST_UBLAS_INLINE
|
sl@0
|
728 |
M
|
sl@0
|
729 |
axpy_prod (const matrix_expression<E1> &e1,
|
sl@0
|
730 |
const matrix_expression<E2> &e2) {
|
sl@0
|
731 |
typedef M matrix_type;
|
sl@0
|
732 |
|
sl@0
|
733 |
matrix_type m (e1 ().size1 (), e2 ().size2 ());
|
sl@0
|
734 |
return axpy_prod (e1, e2, m, full (), true);
|
sl@0
|
735 |
}
|
sl@0
|
736 |
|
sl@0
|
737 |
|
sl@0
|
738 |
template<class M, class E1, class E2>
|
sl@0
|
739 |
BOOST_UBLAS_INLINE
|
sl@0
|
740 |
M &
|
sl@0
|
741 |
opb_prod (const matrix_expression<E1> &e1,
|
sl@0
|
742 |
const matrix_expression<E2> &e2,
|
sl@0
|
743 |
M &m,
|
sl@0
|
744 |
dense_proxy_tag, row_major_tag) {
|
sl@0
|
745 |
typedef M matrix_type;
|
sl@0
|
746 |
typedef const E1 expression1_type;
|
sl@0
|
747 |
typedef const E2 expression2_type;
|
sl@0
|
748 |
typedef typename M::size_type size_type;
|
sl@0
|
749 |
typedef typename M::value_type value_type;
|
sl@0
|
750 |
|
sl@0
|
751 |
#if BOOST_UBLAS_TYPE_CHECK
|
sl@0
|
752 |
matrix<value_type, row_major> cm (m);
|
sl@0
|
753 |
typedef typename type_traits<value_type>::real_type real_type;
|
sl@0
|
754 |
real_type merrorbound (norm_1 (m) + norm_1 (e1) * norm_1 (e2));
|
sl@0
|
755 |
indexing_matrix_assign<scalar_plus_assign> (cm, prod (e1, e2), row_major_tag ());
|
sl@0
|
756 |
#endif
|
sl@0
|
757 |
size_type size (BOOST_UBLAS_SAME (e1 ().size2 (), e2 ().size1 ()));
|
sl@0
|
758 |
for (size_type k = 0; k < size; ++ k) {
|
sl@0
|
759 |
vector<value_type> ce1 (column (e1 (), k));
|
sl@0
|
760 |
vector<value_type> re2 (row (e2 (), k));
|
sl@0
|
761 |
m.plus_assign (outer_prod (ce1, re2));
|
sl@0
|
762 |
}
|
sl@0
|
763 |
#if BOOST_UBLAS_TYPE_CHECK
|
sl@0
|
764 |
BOOST_UBLAS_CHECK (norm_1 (m - cm) <= 2 * std::numeric_limits<real_type>::epsilon () * merrorbound, internal_logic ());
|
sl@0
|
765 |
#endif
|
sl@0
|
766 |
return m;
|
sl@0
|
767 |
}
|
sl@0
|
768 |
|
sl@0
|
769 |
template<class M, class E1, class E2>
|
sl@0
|
770 |
BOOST_UBLAS_INLINE
|
sl@0
|
771 |
M &
|
sl@0
|
772 |
opb_prod (const matrix_expression<E1> &e1,
|
sl@0
|
773 |
const matrix_expression<E2> &e2,
|
sl@0
|
774 |
M &m,
|
sl@0
|
775 |
dense_proxy_tag, column_major_tag) {
|
sl@0
|
776 |
typedef M matrix_type;
|
sl@0
|
777 |
typedef const E1 expression1_type;
|
sl@0
|
778 |
typedef const E2 expression2_type;
|
sl@0
|
779 |
typedef typename M::size_type size_type;
|
sl@0
|
780 |
typedef typename M::value_type value_type;
|
sl@0
|
781 |
|
sl@0
|
782 |
#if BOOST_UBLAS_TYPE_CHECK
|
sl@0
|
783 |
matrix<value_type, column_major> cm (m);
|
sl@0
|
784 |
typedef typename type_traits<value_type>::real_type real_type;
|
sl@0
|
785 |
real_type merrorbound (norm_1 (m) + norm_1 (e1) * norm_1 (e2));
|
sl@0
|
786 |
indexing_matrix_assign<scalar_plus_assign> (cm, prod (e1, e2), column_major_tag ());
|
sl@0
|
787 |
#endif
|
sl@0
|
788 |
size_type size (BOOST_UBLAS_SAME (e1 ().size2 (), e2 ().size1 ()));
|
sl@0
|
789 |
for (size_type k = 0; k < size; ++ k) {
|
sl@0
|
790 |
vector<value_type> ce1 (column (e1 (), k));
|
sl@0
|
791 |
vector<value_type> re2 (row (e2 (), k));
|
sl@0
|
792 |
m.plus_assign (outer_prod (ce1, re2));
|
sl@0
|
793 |
}
|
sl@0
|
794 |
#if BOOST_UBLAS_TYPE_CHECK
|
sl@0
|
795 |
BOOST_UBLAS_CHECK (norm_1 (m - cm) <= 2 * std::numeric_limits<real_type>::epsilon () * merrorbound, internal_logic ());
|
sl@0
|
796 |
#endif
|
sl@0
|
797 |
return m;
|
sl@0
|
798 |
}
|
sl@0
|
799 |
|
sl@0
|
800 |
// Dispatcher
|
sl@0
|
801 |
|
sl@0
|
802 |
/** \brief computes <tt>M += A X</tt> or <tt>M = A X</tt> in an
|
sl@0
|
803 |
optimized fashion.
|
sl@0
|
804 |
|
sl@0
|
805 |
\param e1 the matrix expression \c A
|
sl@0
|
806 |
\param e2 the matrix expression \c X
|
sl@0
|
807 |
\param m the result matrix \c M
|
sl@0
|
808 |
\param init a boolean parameter
|
sl@0
|
809 |
|
sl@0
|
810 |
<tt>opb_prod(A, X, M, init)</tt> implements the well known
|
sl@0
|
811 |
axpy-product. Setting \a init to \c true is equivalent to call
|
sl@0
|
812 |
<tt>M.clear()</tt> before <tt>opb_prod</tt>. Currently \a init
|
sl@0
|
813 |
defaults to \c true, but this may change in the future.
|
sl@0
|
814 |
|
sl@0
|
815 |
This function may give a speedup if \c A has less columns than
|
sl@0
|
816 |
rows, because the product is computed as a sum of outer
|
sl@0
|
817 |
products.
|
sl@0
|
818 |
|
sl@0
|
819 |
\ingroup blas3
|
sl@0
|
820 |
|
sl@0
|
821 |
\internal
|
sl@0
|
822 |
|
sl@0
|
823 |
template parameters:
|
sl@0
|
824 |
\param M type of the result matrix \c M
|
sl@0
|
825 |
\param E1 type of a matrix expression \c A
|
sl@0
|
826 |
\param E2 type of a matrix expression \c X
|
sl@0
|
827 |
*/
|
sl@0
|
828 |
template<class M, class E1, class E2>
|
sl@0
|
829 |
BOOST_UBLAS_INLINE
|
sl@0
|
830 |
M &
|
sl@0
|
831 |
opb_prod (const matrix_expression<E1> &e1,
|
sl@0
|
832 |
const matrix_expression<E2> &e2,
|
sl@0
|
833 |
M &m, bool init = true) {
|
sl@0
|
834 |
typedef typename M::value_type value_type;
|
sl@0
|
835 |
typedef typename M::storage_category storage_category;
|
sl@0
|
836 |
typedef typename M::orientation_category orientation_category;
|
sl@0
|
837 |
|
sl@0
|
838 |
if (init)
|
sl@0
|
839 |
m.assign (zero_matrix<value_type> (e1 ().size1 (), e2 ().size2 ()));
|
sl@0
|
840 |
return opb_prod (e1, e2, m, storage_category (), orientation_category ());
|
sl@0
|
841 |
}
|
sl@0
|
842 |
template<class M, class E1, class E2>
|
sl@0
|
843 |
BOOST_UBLAS_INLINE
|
sl@0
|
844 |
M
|
sl@0
|
845 |
opb_prod (const matrix_expression<E1> &e1,
|
sl@0
|
846 |
const matrix_expression<E2> &e2) {
|
sl@0
|
847 |
typedef M matrix_type;
|
sl@0
|
848 |
|
sl@0
|
849 |
matrix_type m (e1 ().size1 (), e2 ().size2 ());
|
sl@0
|
850 |
return opb_prod (e1, e2, m, true);
|
sl@0
|
851 |
}
|
sl@0
|
852 |
|
sl@0
|
853 |
}}}
|
sl@0
|
854 |
|
sl@0
|
855 |
#endif
|