sl@0
|
1 |
// Copyright (c) 2000-2009 Nokia Corporation and/or its subsidiary(-ies).
|
sl@0
|
2 |
// All rights reserved.
|
sl@0
|
3 |
// This component and the accompanying materials are made available
|
sl@0
|
4 |
// under the terms of "Eclipse Public License v1.0"
|
sl@0
|
5 |
// which accompanies this distribution, and is available
|
sl@0
|
6 |
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
|
sl@0
|
7 |
//
|
sl@0
|
8 |
// Initial Contributors:
|
sl@0
|
9 |
// Nokia Corporation - initial contribution.
|
sl@0
|
10 |
//
|
sl@0
|
11 |
// Contributors:
|
sl@0
|
12 |
//
|
sl@0
|
13 |
// Description:
|
sl@0
|
14 |
//
|
sl@0
|
15 |
|
sl@0
|
16 |
#include "types.h"
|
sl@0
|
17 |
#include "rpeltp.h"
|
sl@0
|
18 |
#include "basicop.h"
|
sl@0
|
19 |
#include "tables.h"
|
sl@0
|
20 |
#include "gsm610fr.h"
|
sl@0
|
21 |
|
sl@0
|
22 |
/*
|
sl@0
|
23 |
** Static variables are allocated as globals in order to make it
|
sl@0
|
24 |
** possible to clear them in run time (reset codec). This might be
|
sl@0
|
25 |
** useful e.g. in possible EC code
|
sl@0
|
26 |
*/
|
sl@0
|
27 |
|
sl@0
|
28 |
|
sl@0
|
29 |
/*
|
sl@0
|
30 |
** void reset_encoder(CGSM610FR_Encoder* aEncoder)
|
sl@0
|
31 |
**
|
sl@0
|
32 |
** Function clears encoder variables.
|
sl@0
|
33 |
** Input:
|
sl@0
|
34 |
** None
|
sl@0
|
35 |
** Output:
|
sl@0
|
36 |
** Clear z1, L_z2, mp, LARpp_Prev[0..7], u[0..7], dp[0..119]
|
sl@0
|
37 |
** Return value:
|
sl@0
|
38 |
** None
|
sl@0
|
39 |
*/
|
sl@0
|
40 |
void reset_encoder(CGSM610FR_Encoder* aEncoder)
|
sl@0
|
41 |
{
|
sl@0
|
42 |
int i;
|
sl@0
|
43 |
|
sl@0
|
44 |
aEncoder->z1 = 0;
|
sl@0
|
45 |
aEncoder->L_z2 = 0;
|
sl@0
|
46 |
aEncoder->mp = 0;
|
sl@0
|
47 |
|
sl@0
|
48 |
for ( i = 0; i <= 7; i++ )
|
sl@0
|
49 |
aEncoder->LARpp_prev[i] = 0;
|
sl@0
|
50 |
for ( i = 0; i <= 7; i++ )
|
sl@0
|
51 |
aEncoder->u[i] = 0;
|
sl@0
|
52 |
for ( i = 0; i <= 119; i++ )
|
sl@0
|
53 |
aEncoder->dp[i] = 0;
|
sl@0
|
54 |
}
|
sl@0
|
55 |
|
sl@0
|
56 |
|
sl@0
|
57 |
/*
|
sl@0
|
58 |
** void reset_decoder(CGSM610FR_Encoder* aDecoder)
|
sl@0
|
59 |
**
|
sl@0
|
60 |
** Function clears decoder variables.
|
sl@0
|
61 |
** Input:
|
sl@0
|
62 |
** None
|
sl@0
|
63 |
** Output:
|
sl@0
|
64 |
** Clear LARpp_Prev[0..7], v[0..8], drp[0..119], nrp
|
sl@0
|
65 |
** Return value:
|
sl@0
|
66 |
** None
|
sl@0
|
67 |
*/
|
sl@0
|
68 |
void reset_decoder(CGSM610FR_Decoder* aDecoder)
|
sl@0
|
69 |
{
|
sl@0
|
70 |
int i;
|
sl@0
|
71 |
|
sl@0
|
72 |
for ( i = 0; i <= 7; i++ )
|
sl@0
|
73 |
aDecoder->LARrpp_prev[i] = 0;
|
sl@0
|
74 |
for ( i = 0; i <= 8; i++ )
|
sl@0
|
75 |
aDecoder->v[i] = 0;
|
sl@0
|
76 |
aDecoder->msr = 0;
|
sl@0
|
77 |
for ( i = 0; i <= 119; i++ )
|
sl@0
|
78 |
aDecoder->drp[i] = 0;
|
sl@0
|
79 |
aDecoder->nrp = 40;
|
sl@0
|
80 |
}
|
sl@0
|
81 |
|
sl@0
|
82 |
/*
|
sl@0
|
83 |
# 4.2.1. Downscaling of the input signal
|
sl@0
|
84 |
#
|
sl@0
|
85 |
# 4.2.2. Offset compensation
|
sl@0
|
86 |
#
|
sl@0
|
87 |
# This part implements a high-pass filter and requires extended
|
sl@0
|
88 |
# arithmetic precision for the recursive part of this filter.
|
sl@0
|
89 |
#
|
sl@0
|
90 |
# The input of this procedure is the array so[0..159] and the output
|
sl@0
|
91 |
# array sof[0..159].
|
sl@0
|
92 |
#
|
sl@0
|
93 |
# Keep z1 and L_z2 in memory for the next frame.
|
sl@0
|
94 |
# Initial value: z1=0; L_z2=0;
|
sl@0
|
95 |
|
sl@0
|
96 |
@ Downscaling and offset compensation are combined in order to spare
|
sl@0
|
97 |
@ unnecessary data moves.
|
sl@0
|
98 |
*/
|
sl@0
|
99 |
|
sl@0
|
100 |
void prepr( CGSM610FR_Encoder* aEncoder, int2 sof[], int2 so[] )
|
sl@0
|
101 |
{
|
sl@0
|
102 |
int k;
|
sl@0
|
103 |
|
sl@0
|
104 |
int2 msp;
|
sl@0
|
105 |
int2 temp;
|
sl@0
|
106 |
int4 L_s2;
|
sl@0
|
107 |
/*
|
sl@0
|
108 |
# 4.2.1. Downscaling of the input signal
|
sl@0
|
109 |
# |== FOR k=0 to 159:
|
sl@0
|
110 |
# | so[k] = sop[k] >> 3;
|
sl@0
|
111 |
# | so[k] = so[k] << 2;
|
sl@0
|
112 |
# |== NEXT k:
|
sl@0
|
113 |
*/
|
sl@0
|
114 |
|
sl@0
|
115 |
/*
|
sl@0
|
116 |
# |== FOR k = 0 to 159:
|
sl@0
|
117 |
# |Compute the non-recursive part.
|
sl@0
|
118 |
# | s1 = sub( so[k], z1 );
|
sl@0
|
119 |
# | z1 = so[k];
|
sl@0
|
120 |
# |Compute the recursive part.
|
sl@0
|
121 |
# | L_s2 = s1;
|
sl@0
|
122 |
# | L_s2 = L_s2 << 15;
|
sl@0
|
123 |
# |Execution of a 31 by 16 bits multiplication.
|
sl@0
|
124 |
# | msp = L_z2 >> 15;
|
sl@0
|
125 |
# | lsp = L_sub( L_z2, ( msp << 15 ) );
|
sl@0
|
126 |
# | temp = mult_r( lsp, 32735 );
|
sl@0
|
127 |
# | L_s2 = L_add( L_s2, temp );
|
sl@0
|
128 |
# | L_z2 = L_add( L_mult( msp, 32735 ) >> 1, L_s2 );
|
sl@0
|
129 |
# |Compute sof[k] with rounding.
|
sl@0
|
130 |
# | sof[k] = L_add( L_z2, 16384 ) >> 15;
|
sl@0
|
131 |
# |== NEXT k:
|
sl@0
|
132 |
*/
|
sl@0
|
133 |
for (k=0; k <= 159; k++) {
|
sl@0
|
134 |
|
sl@0
|
135 |
/* Downscaling */
|
sl@0
|
136 |
temp = shl( shr( so[k], 3 ), 2 );
|
sl@0
|
137 |
|
sl@0
|
138 |
/* Compute the non-recursive part. */
|
sl@0
|
139 |
/* Compute the recursive part. */
|
sl@0
|
140 |
|
sl@0
|
141 |
L_s2 = L_deposit_l( sub( temp, aEncoder->z1 ) );
|
sl@0
|
142 |
aEncoder->z1 = temp;
|
sl@0
|
143 |
|
sl@0
|
144 |
|
sl@0
|
145 |
L_s2 = L_shl( L_s2, 15 );
|
sl@0
|
146 |
/* Execution of a 31 by 16 bits multiplication. */
|
sl@0
|
147 |
msp = extract_l( L_shr( aEncoder->L_z2, 15 ) );
|
sl@0
|
148 |
temp = extract_l( L_sub( aEncoder->L_z2, L_shl( L_deposit_l( msp ), 15 ) ) );
|
sl@0
|
149 |
temp = mult_r( temp, 32735 );
|
sl@0
|
150 |
L_s2 = L_add( L_s2, L_deposit_l( temp ) );
|
sl@0
|
151 |
aEncoder->L_z2 = L_add( L_shr( L_mult( msp, 32735 ), 1 ), L_s2 );
|
sl@0
|
152 |
/* Compute sof[k] with rounding. */
|
sl@0
|
153 |
sof[k] = extract_l( L_shr( L_add( aEncoder->L_z2, (int4) 16384 ), 15 ) );
|
sl@0
|
154 |
}
|
sl@0
|
155 |
}
|
sl@0
|
156 |
|
sl@0
|
157 |
/*
|
sl@0
|
158 |
# 4.2.3. Preemphasis
|
sl@0
|
159 |
#
|
sl@0
|
160 |
# Keep mp in memory for the next frame.
|
sl@0
|
161 |
# Initial value: mp=0;
|
sl@0
|
162 |
*/
|
sl@0
|
163 |
void preemp( CGSM610FR_Encoder* aEncoder, int2 s[], int2 sof[] )
|
sl@0
|
164 |
{
|
sl@0
|
165 |
int k;
|
sl@0
|
166 |
int2 temp;
|
sl@0
|
167 |
/*
|
sl@0
|
168 |
# |== FOR k=0 to 159:
|
sl@0
|
169 |
# | s[k] = add( sof[k], mult_r( mp, -28180 ) );
|
sl@0
|
170 |
# | mp = sof[k];
|
sl@0
|
171 |
# |== NEXT k:
|
sl@0
|
172 |
*/
|
sl@0
|
173 |
|
sl@0
|
174 |
/*
|
sl@0
|
175 |
@ Reverse looping in order to make it possible to
|
sl@0
|
176 |
@ update filter delay mp only at the end of the loop
|
sl@0
|
177 |
*/
|
sl@0
|
178 |
temp = sof[159]; /* make overwrite possible */
|
sl@0
|
179 |
|
sl@0
|
180 |
for ( k = 159; k >= 1; k-- )
|
sl@0
|
181 |
s[k] = add( sof[k], mult_r( sof[k-1], -28180 ) );
|
sl@0
|
182 |
|
sl@0
|
183 |
s[0] = add( sof[0], mult_r( aEncoder->mp, -28180 ) );
|
sl@0
|
184 |
|
sl@0
|
185 |
aEncoder->mp = temp;
|
sl@0
|
186 |
}
|
sl@0
|
187 |
|
sl@0
|
188 |
/*
|
sl@0
|
189 |
# 4.2.4. Autocorrelation
|
sl@0
|
190 |
#
|
sl@0
|
191 |
# The goal is to compute the array L_ACF[k]. The signal s[i] must be
|
sl@0
|
192 |
# scaled in order to avoid an overflow situation.
|
sl@0
|
193 |
*
|
sl@0
|
194 |
* output:
|
sl@0
|
195 |
* scalauto (return value)
|
sl@0
|
196 |
*
|
sl@0
|
197 |
*/
|
sl@0
|
198 |
int2 autoc( int4 L_ACF[], int2 s[] )
|
sl@0
|
199 |
{
|
sl@0
|
200 |
int k, i;
|
sl@0
|
201 |
|
sl@0
|
202 |
int2 smax;
|
sl@0
|
203 |
int2 temp;
|
sl@0
|
204 |
int4 L_temp2;
|
sl@0
|
205 |
int2 scalauto;
|
sl@0
|
206 |
/*
|
sl@0
|
207 |
# Dynamic scaling of the array s[0..159].
|
sl@0
|
208 |
#
|
sl@0
|
209 |
# Search for the maximum.
|
sl@0
|
210 |
#
|
sl@0
|
211 |
# smax=0;
|
sl@0
|
212 |
# |== FOR k = 0 to 159:
|
sl@0
|
213 |
# | temp = abs( s[k] );
|
sl@0
|
214 |
# | IF ( temp > smax ) THEN smax = temp;
|
sl@0
|
215 |
# |== NEXT k;
|
sl@0
|
216 |
*/
|
sl@0
|
217 |
smax = 0;
|
sl@0
|
218 |
for ( k = 0; k <= 159; k++ ) {
|
sl@0
|
219 |
temp = abs_s( s[k] );
|
sl@0
|
220 |
if ( sub( temp, smax ) > 0 )
|
sl@0
|
221 |
smax = temp;
|
sl@0
|
222 |
}
|
sl@0
|
223 |
/*
|
sl@0
|
224 |
# Computation of the scaling factor.
|
sl@0
|
225 |
#
|
sl@0
|
226 |
# IF ( smax == 0 ) THEN scalauto = 0;
|
sl@0
|
227 |
# ELSE scalauto = sub( 4, norm( smax << 16 ) );
|
sl@0
|
228 |
*/
|
sl@0
|
229 |
if ( smax == 0 )
|
sl@0
|
230 |
scalauto = 0;
|
sl@0
|
231 |
else
|
sl@0
|
232 |
scalauto = sub( 4, norm_l( L_deposit_h( smax ) ) );
|
sl@0
|
233 |
/*
|
sl@0
|
234 |
# Scaling of the array s[0..159].
|
sl@0
|
235 |
# IF ( scalauto > 0 ) THEN
|
sl@0
|
236 |
# | temp = 16384 >> sub( scalauto, 1 );
|
sl@0
|
237 |
# |== FOR k=0 to 159:
|
sl@0
|
238 |
# | s[k] = mult_r( s[k], temp );
|
sl@0
|
239 |
# |== NEXT k:
|
sl@0
|
240 |
*/
|
sl@0
|
241 |
if ( scalauto > 0 ) {
|
sl@0
|
242 |
temp = shr( 16384, sub( scalauto, 1 ) );
|
sl@0
|
243 |
for ( k = 0; k <= 159; k++ )
|
sl@0
|
244 |
s[k] = mult_r( s[k], temp );
|
sl@0
|
245 |
}
|
sl@0
|
246 |
/*
|
sl@0
|
247 |
# Compute the L_ACF[..].
|
sl@0
|
248 |
# |== FOR k=0 to 8:
|
sl@0
|
249 |
# | L_ACF[k] = 0;
|
sl@0
|
250 |
# |==== FOR i=k to 159:
|
sl@0
|
251 |
# | L_temp = L_mult( s[i], s[i-k] );
|
sl@0
|
252 |
# | L_ACF[k] = L_add( L_ACF[k], L_temp );
|
sl@0
|
253 |
# |==== NEXT i:
|
sl@0
|
254 |
# |== NEXT k:
|
sl@0
|
255 |
*/
|
sl@0
|
256 |
for ( k = 0; k <= 8; k++ ) {
|
sl@0
|
257 |
L_temp2 = 0;
|
sl@0
|
258 |
for ( i = k; i <= 159; i++ )
|
sl@0
|
259 |
L_temp2 = L_mac( L_temp2, s[i], s[i-k] );
|
sl@0
|
260 |
|
sl@0
|
261 |
L_ACF[k] = L_temp2;
|
sl@0
|
262 |
}
|
sl@0
|
263 |
/*
|
sl@0
|
264 |
# Rescaling of the array s[0..159].
|
sl@0
|
265 |
#
|
sl@0
|
266 |
# IF ( scalauto > 0 ) THEN
|
sl@0
|
267 |
# |== FOR k = 0 to 159:
|
sl@0
|
268 |
# | s[k] = s[k] << scalauto;
|
sl@0
|
269 |
# |== NEXT k:
|
sl@0
|
270 |
*/
|
sl@0
|
271 |
if ( scalauto > 0 ) {
|
sl@0
|
272 |
for ( k = 0; k <= 159; k++ )
|
sl@0
|
273 |
s[k] = shl( s[k], scalauto );
|
sl@0
|
274 |
}
|
sl@0
|
275 |
return(scalauto); /* scalauto is retuned to be used also in vad */
|
sl@0
|
276 |
|
sl@0
|
277 |
}
|
sl@0
|
278 |
|
sl@0
|
279 |
|
sl@0
|
280 |
/*
|
sl@0
|
281 |
# 4.2.5. Computation of the reflection coefficients
|
sl@0
|
282 |
*/
|
sl@0
|
283 |
void schur( int2 r[], int4 L_ACF[] )
|
sl@0
|
284 |
{
|
sl@0
|
285 |
int k, i, n, m;
|
sl@0
|
286 |
|
sl@0
|
287 |
int2 P[9];
|
sl@0
|
288 |
int2 K[7];
|
sl@0
|
289 |
int2 ACF[9];
|
sl@0
|
290 |
int2 normacf;
|
sl@0
|
291 |
|
sl@0
|
292 |
/*
|
sl@0
|
293 |
# Schur recursion with 16 bits arithmetic
|
sl@0
|
294 |
#
|
sl@0
|
295 |
# IF ( L_ACF[0] == 0 ) THEN
|
sl@0
|
296 |
# |== FOR i=1 to 8:
|
sl@0
|
297 |
# | r[i] = 0;
|
sl@0
|
298 |
# |== NEXT i:
|
sl@0
|
299 |
# | EXIT; / continue with section 4.2.6/
|
sl@0
|
300 |
# normacf = norm( L_ACF[0] ); / temp is spec replaced with normacf /
|
sl@0
|
301 |
# |== FOR k=0 to 8:
|
sl@0
|
302 |
# | ACF[k] = ( L_ACF[k] << normacf ) >> 16;
|
sl@0
|
303 |
# |== NEXT k:
|
sl@0
|
304 |
*/
|
sl@0
|
305 |
if ( L_ACF[0] == 0 ) {
|
sl@0
|
306 |
for ( i = 0; i <= 7; i++)
|
sl@0
|
307 |
r[i] = 0;
|
sl@0
|
308 |
return; /* continue with section 4.2.6 */
|
sl@0
|
309 |
}
|
sl@0
|
310 |
normacf = norm_l( L_ACF[0] );
|
sl@0
|
311 |
|
sl@0
|
312 |
for ( k = 0; k <= 8; k++ )
|
sl@0
|
313 |
ACF[k] = extract_h( L_shl( L_ACF[k], normacf ) );
|
sl@0
|
314 |
/*
|
sl@0
|
315 |
# Initialize array P[..] and K[..] for the recursion.
|
sl@0
|
316 |
#
|
sl@0
|
317 |
# |== FOR i=1 to 7:
|
sl@0
|
318 |
# | K[9-i] = ACF[i];
|
sl@0
|
319 |
# |== NEXT i:
|
sl@0
|
320 |
#
|
sl@0
|
321 |
# |== FOR i=0 to 8:
|
sl@0
|
322 |
# | P[i] = ACF[i];
|
sl@0
|
323 |
# |== NEXT i:
|
sl@0
|
324 |
*/
|
sl@0
|
325 |
for ( i = 1; i <= 7; i++ )
|
sl@0
|
326 |
K[7-i] = ACF[i];
|
sl@0
|
327 |
|
sl@0
|
328 |
for ( i = 0; i <= 8; i++ )
|
sl@0
|
329 |
P[i] = ACF[i];
|
sl@0
|
330 |
/*
|
sl@0
|
331 |
# Compute reflection coefficients
|
sl@0
|
332 |
# |== FOR n=1 to 8:
|
sl@0
|
333 |
# | IF ( P[0] < abs( P[1] ) ) THEN
|
sl@0
|
334 |
# | |== FOR i=n to 8:
|
sl@0
|
335 |
# | | r[i] = 0;
|
sl@0
|
336 |
# | |== NEXT i:
|
sl@0
|
337 |
# | | EXIT; /continue with
|
sl@0
|
338 |
# | | section 4.2.6./
|
sl@0
|
339 |
# | r[n] = div( abs( P[1] ), P[0] );
|
sl@0
|
340 |
# | IF ( P[1] > 0 ) THEN r[n] = sub( 0, r[n] );
|
sl@0
|
341 |
# |
|
sl@0
|
342 |
# | IF ( n == 8 ) THEN EXIT; /continue with section 4.2.6/
|
sl@0
|
343 |
# | Schur recursion
|
sl@0
|
344 |
# | P[0] = add( P[0], mult_r( P[1], r[n] ) );
|
sl@0
|
345 |
# |==== FOR m=1 to 8-n:
|
sl@0
|
346 |
# | P[m] = add( P[m+1], mult_r( K[9-m], r[n] ) );
|
sl@0
|
347 |
# | K[9-m] = add( K[9-m], mult_r( P[m+1], r[n] ) );
|
sl@0
|
348 |
# |==== NEXT m:
|
sl@0
|
349 |
# |
|
sl@0
|
350 |
# |== NEXT n:
|
sl@0
|
351 |
*/
|
sl@0
|
352 |
|
sl@0
|
353 |
for ( n = 0; n <= 7; n++ ) {
|
sl@0
|
354 |
if ( sub( P[0], abs_s( P[1] ) ) < 0 ) {
|
sl@0
|
355 |
for ( i = n; i <= 7; i++ )
|
sl@0
|
356 |
r[i] = 0;
|
sl@0
|
357 |
return; /* continue with section 4.2.6. */
|
sl@0
|
358 |
}
|
sl@0
|
359 |
|
sl@0
|
360 |
if ( P[1] > 0 )
|
sl@0
|
361 |
r[n] = negate( div_s( P[1], P[0] ) );
|
sl@0
|
362 |
else
|
sl@0
|
363 |
r[n] = div_s( negate( P[1] ), P[0] );
|
sl@0
|
364 |
|
sl@0
|
365 |
if ( sub(int2 (n), 7) == 0 )
|
sl@0
|
366 |
return; /* continue with section 4.2.6 */
|
sl@0
|
367 |
|
sl@0
|
368 |
/* Schur recursion */
|
sl@0
|
369 |
P[0] = add( P[0], mult_r( P[1], r[n] ) );
|
sl@0
|
370 |
for ( m = 1; m <= 7-n; m++ ) {
|
sl@0
|
371 |
/*
|
sl@0
|
372 |
* mac_r cannot be used because it rounds the result after
|
sl@0
|
373 |
* addition when add( xx, mult_r ) rounds first the result
|
sl@0
|
374 |
* of the product. That is why the following two lines cannot
|
sl@0
|
375 |
* be used instead of the curently used lines.
|
sl@0
|
376 |
*
|
sl@0
|
377 |
* P[m] = mac_r( L_deposit_l( P[m+1] ), K[7-m], r[n] );
|
sl@0
|
378 |
* K[7-m] = mac_r( L_deposit_l( K[7-m] ), P[m+1], r[n] );
|
sl@0
|
379 |
*/
|
sl@0
|
380 |
P[m] = add( P[m+1], mult_r( K[7-m], r[n] ) );
|
sl@0
|
381 |
K[7-m] = add( K[7-m], mult_r( P[m+1], r[n] ) );
|
sl@0
|
382 |
}
|
sl@0
|
383 |
}
|
sl@0
|
384 |
}
|
sl@0
|
385 |
|
sl@0
|
386 |
/*
|
sl@0
|
387 |
# 4.2.6. Transformation of reflection coefficients to Log.-Area Ratios -----
|
sl@0
|
388 |
#
|
sl@0
|
389 |
# The following scaling for r[..] and LAR[..] has been used:
|
sl@0
|
390 |
#
|
sl@0
|
391 |
# r[..] = integer( real_r[..]*32768. ); -1. <= real_r < 1.
|
sl@0
|
392 |
# LAR[..] = integer( real_LAR[..]*16384. );
|
sl@0
|
393 |
# with -1.625 <= real_LAR <= 1.625
|
sl@0
|
394 |
*/
|
sl@0
|
395 |
|
sl@0
|
396 |
void larcomp( int2 LAR[], int2 r[] )
|
sl@0
|
397 |
{
|
sl@0
|
398 |
int i;
|
sl@0
|
399 |
|
sl@0
|
400 |
int2 temp;
|
sl@0
|
401 |
/*
|
sl@0
|
402 |
# Computation of the LAR[1..8] from the r[1..8]
|
sl@0
|
403 |
# |== FOR i=1 to 8:
|
sl@0
|
404 |
# | temp = abs( r[i] );
|
sl@0
|
405 |
# | IF ( temp < 22118 ) THEN temp = temp >> 1;
|
sl@0
|
406 |
# | else if ( temp < 31130 ) THEN temp = sub( temp, 11059 );
|
sl@0
|
407 |
# | else temp = sub( temp, 26112 ) << 2;
|
sl@0
|
408 |
# | LAR[i] = temp;
|
sl@0
|
409 |
# | IF ( r[i] < 0 ) THEN LAR[i] = sub( 0, LAR[i] );
|
sl@0
|
410 |
# |== NEXT i:
|
sl@0
|
411 |
*/
|
sl@0
|
412 |
for ( i = 1; i <= 8; i++ ) {
|
sl@0
|
413 |
int j = i-1;
|
sl@0
|
414 |
temp = abs_s( r[j] );
|
sl@0
|
415 |
|
sl@0
|
416 |
if ( sub( temp, 22118 ) < 0 )
|
sl@0
|
417 |
temp = shr( temp, 1 );
|
sl@0
|
418 |
else if ( sub( temp, 31130 ) < 0 )
|
sl@0
|
419 |
temp = sub( temp, 11059 );
|
sl@0
|
420 |
else
|
sl@0
|
421 |
temp = shl( sub( temp, 26112 ), 2 );
|
sl@0
|
422 |
|
sl@0
|
423 |
if ( r[j] < 0 )
|
sl@0
|
424 |
LAR[j] = negate( temp );
|
sl@0
|
425 |
else
|
sl@0
|
426 |
LAR[j] = temp;
|
sl@0
|
427 |
}
|
sl@0
|
428 |
}
|
sl@0
|
429 |
|
sl@0
|
430 |
|
sl@0
|
431 |
/*
|
sl@0
|
432 |
# 4.2.7. Quantization and coding of the Log.-Area Ratios
|
sl@0
|
433 |
#
|
sl@0
|
434 |
# This procedure needs fpur tables; following equations give the
|
sl@0
|
435 |
# optimum scaling for the constants:
|
sl@0
|
436 |
#
|
sl@0
|
437 |
# A[1..8]=integer( real_A[1..8]*1024 ); 8 values (see table 4.1)
|
sl@0
|
438 |
# B[1..8]=integer( real_B[1..8]*512 ); 8 values (see table 4.1)
|
sl@0
|
439 |
# MAC[1..8]=maximum of the LARc[1..8]; 8 values (see table 4.1)
|
sl@0
|
440 |
# MAC[1..8]=minimum of the LARc[1..8]; 8 values (see table 4.1)
|
sl@0
|
441 |
*/
|
sl@0
|
442 |
|
sl@0
|
443 |
void codlar( int2 LARc[], int2 LAR[] )
|
sl@0
|
444 |
{
|
sl@0
|
445 |
|
sl@0
|
446 |
int i;
|
sl@0
|
447 |
|
sl@0
|
448 |
int2 temp;
|
sl@0
|
449 |
/*
|
sl@0
|
450 |
# Computation for quantizing and coding the LAR[1..8]
|
sl@0
|
451 |
#
|
sl@0
|
452 |
# |== FOR i=1 to 8:
|
sl@0
|
453 |
# | temp = mult( A[i], LAR[i] );
|
sl@0
|
454 |
# | temp = add( temp, B[i] );
|
sl@0
|
455 |
# | temp = add( temp, 256 ); for rounding
|
sl@0
|
456 |
# | LARc[i] = temp >> 9;
|
sl@0
|
457 |
# |
|
sl@0
|
458 |
# | Check if LARc[i] lies between MIN and MAX
|
sl@0
|
459 |
# | IF ( LARc[i] > MAC[i] ) THEN LARc[i] = MAC[i];
|
sl@0
|
460 |
# | IF ( LARc[i] < MIC[i] ) THEN LARc[i] = MIC[i];
|
sl@0
|
461 |
# | LARc[i] = sub( LARc[i], MIC[i] ); / See note below /
|
sl@0
|
462 |
# |== NEXT i:
|
sl@0
|
463 |
#
|
sl@0
|
464 |
# NOTE: The equation is used to make all the LARc[i] positive.
|
sl@0
|
465 |
*/
|
sl@0
|
466 |
for ( i = 1; i <= 8; i++ ) {
|
sl@0
|
467 |
int j = i-1;
|
sl@0
|
468 |
temp = mult( A[j], LAR[j] );
|
sl@0
|
469 |
temp = add( temp, B[j] );
|
sl@0
|
470 |
temp = add( temp, 256 ); /* for rounding */
|
sl@0
|
471 |
temp = shr( temp, 9 );
|
sl@0
|
472 |
/* Check if LARc[i] lies between MIN and MAX */
|
sl@0
|
473 |
if ( sub( temp, MAC[j] ) > 0 )
|
sl@0
|
474 |
LARc[j] = sub( MAC[j], MIC[j] );
|
sl@0
|
475 |
else if ( sub( temp, MIC[j] ) < 0 )
|
sl@0
|
476 |
LARc[j] = 0;
|
sl@0
|
477 |
else
|
sl@0
|
478 |
LARc[j] = sub( temp, MIC[j] );
|
sl@0
|
479 |
}
|
sl@0
|
480 |
}
|
sl@0
|
481 |
|
sl@0
|
482 |
|
sl@0
|
483 |
/*
|
sl@0
|
484 |
# 4.2.8 Decoding of the coded Log.-Area Ratios
|
sl@0
|
485 |
#
|
sl@0
|
486 |
# This procedure requires for efficient implementation two variables.
|
sl@0
|
487 |
#
|
sl@0
|
488 |
# INVA[1..8]=integer((32768*8)/(real_A[1..8]); 8 values (table 4.2)
|
sl@0
|
489 |
# MIC[1..8]=minimum value of the LARc[1..8]; 8 values (table 4.2)
|
sl@0
|
490 |
*/
|
sl@0
|
491 |
|
sl@0
|
492 |
void declar( int2 LARpp[], int2 LARc[] )
|
sl@0
|
493 |
{
|
sl@0
|
494 |
int i;
|
sl@0
|
495 |
|
sl@0
|
496 |
int2 temp1;
|
sl@0
|
497 |
int2 temp2;
|
sl@0
|
498 |
/*
|
sl@0
|
499 |
# Compute the LARpp[1..8].
|
sl@0
|
500 |
#
|
sl@0
|
501 |
# |== FOR i=1 to 8:
|
sl@0
|
502 |
# | temp1 = add( LARc[i], MIC[i] ) << 10; /See note below/
|
sl@0
|
503 |
# | temp2 = B[i] << 1;
|
sl@0
|
504 |
# | temp1 = sub( temp1, temp2 );
|
sl@0
|
505 |
# | temp1 = mult_r( INVA[i], temp1 );
|
sl@0
|
506 |
# | LARpp[i] = add( temp1, temp1 );
|
sl@0
|
507 |
# |== NEXT i:
|
sl@0
|
508 |
#
|
sl@0
|
509 |
# NOTE: The addition of MIC[i] is used to restore the sign of LARc[i].
|
sl@0
|
510 |
*/
|
sl@0
|
511 |
for ( i = 1; i <= 8; i++ ) {
|
sl@0
|
512 |
int j = i-1;
|
sl@0
|
513 |
temp1 = shl( add( LARc[j], MIC[j] ), 10 );
|
sl@0
|
514 |
temp2 = shl( B[j], 1 );
|
sl@0
|
515 |
temp1 = sub( temp1, temp2 );
|
sl@0
|
516 |
temp1 = mult_r( INVA[j], temp1 );
|
sl@0
|
517 |
LARpp[j] = add( temp1, temp1 );
|
sl@0
|
518 |
}
|
sl@0
|
519 |
}
|
sl@0
|
520 |
|
sl@0
|
521 |
|
sl@0
|
522 |
/*
|
sl@0
|
523 |
# 4.2.9. Computation of the quantized reflection coefficients
|
sl@0
|
524 |
#
|
sl@0
|
525 |
# Within each frame of 160 anallyzed speech samples the short term
|
sl@0
|
526 |
# analysissss and synthesis filters operate with four different sets of
|
sl@0
|
527 |
# coefficients, derived from the previous set of decoded
|
sl@0
|
528 |
# LARs(LARpp(j-1)) and the actual set of decoded LARs (LARpp(j)).
|
sl@0
|
529 |
#
|
sl@0
|
530 |
# 4.2.9.1 Interpolation of the LARpp[1..8] to get LARp[1..8]
|
sl@0
|
531 |
*/
|
sl@0
|
532 |
|
sl@0
|
533 |
void cparc1( int2 LARp[], int2 LARpp_prev[], int2 LARpp[] )
|
sl@0
|
534 |
{
|
sl@0
|
535 |
int i;
|
sl@0
|
536 |
|
sl@0
|
537 |
int2 temp;
|
sl@0
|
538 |
/*
|
sl@0
|
539 |
# FOR k_start=0 to k_end = 12.
|
sl@0
|
540 |
#
|
sl@0
|
541 |
# |==== FOR i=1 to 8:
|
sl@0
|
542 |
# | LARp[i] = add( ( LARpp(j-1)[i] >> 2 ) ,( LARpp[i] >> 2 ) );
|
sl@0
|
543 |
# | LARp[i] = add( LARp[i], ( LARpp(j-1)[i] >> 1 ) );
|
sl@0
|
544 |
# |==== NEXT i:
|
sl@0
|
545 |
*/
|
sl@0
|
546 |
/* k_start=0 to k_end=12 */
|
sl@0
|
547 |
|
sl@0
|
548 |
for ( i = 1; i <= 8; i++ ) {
|
sl@0
|
549 |
int j = i-1;
|
sl@0
|
550 |
temp = add( shr( LARpp_prev[j], 2 ), shr( LARpp[j], 2 ) );
|
sl@0
|
551 |
LARp[j] = add( temp, shr( LARpp_prev[j], 1 ) );
|
sl@0
|
552 |
}
|
sl@0
|
553 |
}
|
sl@0
|
554 |
|
sl@0
|
555 |
|
sl@0
|
556 |
void cparc2( int2 LARp[], int2 LARpp_prev[], int2 LARpp[] )
|
sl@0
|
557 |
{
|
sl@0
|
558 |
int i;
|
sl@0
|
559 |
|
sl@0
|
560 |
/*
|
sl@0
|
561 |
# FOR k_start=13 to k_end = 26.
|
sl@0
|
562 |
# |==== FOR i=1 to 8:
|
sl@0
|
563 |
# | LARp[i] = add( ( LARpp(j-1)[i] >> 1 ), ( LARpp[i] >> 1 ) );
|
sl@0
|
564 |
# |==== NEXT i:
|
sl@0
|
565 |
*/
|
sl@0
|
566 |
/* k_start=13 to k_end=26 */
|
sl@0
|
567 |
|
sl@0
|
568 |
for (i=1; i <= 8; i++) {
|
sl@0
|
569 |
int j = i-1;
|
sl@0
|
570 |
LARp[j] = add( shr( LARpp_prev[j], 1 ), shr( LARpp[j], 1 ) );
|
sl@0
|
571 |
}
|
sl@0
|
572 |
}
|
sl@0
|
573 |
|
sl@0
|
574 |
|
sl@0
|
575 |
void cparc3( int2 LARp[], int2 LARpp_prev[], int2 LARpp[] )
|
sl@0
|
576 |
{
|
sl@0
|
577 |
int i;
|
sl@0
|
578 |
|
sl@0
|
579 |
int2 temp;
|
sl@0
|
580 |
|
sl@0
|
581 |
/*
|
sl@0
|
582 |
# FOR k_start=27 to k_end = 39.
|
sl@0
|
583 |
# |==== FOR i=1 to 8:
|
sl@0
|
584 |
# | LARp[i] = add( ( LARpp(j-1)[i] >> 2 ), ( LARpp[i] >> 2 ) );
|
sl@0
|
585 |
# | LARp[i] = add( LARp[i], ( LARpp[i] >> 1 ) );
|
sl@0
|
586 |
# |==== NEXT i:
|
sl@0
|
587 |
*/
|
sl@0
|
588 |
/* k_start=27 to k_end=39 */
|
sl@0
|
589 |
|
sl@0
|
590 |
for ( i = 1; i <= 8; i++ ) {
|
sl@0
|
591 |
int j = i-1;
|
sl@0
|
592 |
temp = add( shr( LARpp_prev[j], 2 ), shr( LARpp[j], 2 ) );
|
sl@0
|
593 |
LARp[j] = add( temp, shr( LARpp[j], 1 ) );
|
sl@0
|
594 |
}
|
sl@0
|
595 |
}
|
sl@0
|
596 |
|
sl@0
|
597 |
|
sl@0
|
598 |
void cparc4( int2 LARp[], int2 LARpp_prev[], int2 LARpp[] )
|
sl@0
|
599 |
{
|
sl@0
|
600 |
int i;
|
sl@0
|
601 |
|
sl@0
|
602 |
/*
|
sl@0
|
603 |
# FOR k_start=40 to k_end = 159.
|
sl@0
|
604 |
# |==== FOR i=1 to 8:
|
sl@0
|
605 |
# | LARp[i] = LARpp[i];
|
sl@0
|
606 |
# |==== NEXT i:
|
sl@0
|
607 |
*/
|
sl@0
|
608 |
/* k_start=40 to k_end=159 */
|
sl@0
|
609 |
|
sl@0
|
610 |
for ( i = 1; i <= 8; i++ ) {
|
sl@0
|
611 |
int j = i-1;
|
sl@0
|
612 |
LARp[j] = LARpp[j];
|
sl@0
|
613 |
/* note new LARs saved here for next frame */
|
sl@0
|
614 |
LARpp_prev[j] = LARpp[j];
|
sl@0
|
615 |
}
|
sl@0
|
616 |
|
sl@0
|
617 |
}
|
sl@0
|
618 |
|
sl@0
|
619 |
|
sl@0
|
620 |
/*
|
sl@0
|
621 |
# 4.2.9.2 Computation of the rp[] from the interpolated LARp[]
|
sl@0
|
622 |
#
|
sl@0
|
623 |
# The input of this procedure is the interpolated LARp[1..8] array. The
|
sl@0
|
624 |
# reflection coefficients, rp[i], are used in the analysis filter and in
|
sl@0
|
625 |
# the synthesis filter.
|
sl@0
|
626 |
*/
|
sl@0
|
627 |
|
sl@0
|
628 |
void crp( int2 rp[], int2 LARp[] )
|
sl@0
|
629 |
{
|
sl@0
|
630 |
int i;
|
sl@0
|
631 |
|
sl@0
|
632 |
int2 temp;
|
sl@0
|
633 |
|
sl@0
|
634 |
/*
|
sl@0
|
635 |
# |== FOR i=1 to 8:
|
sl@0
|
636 |
# | temp = abs( LARp[i] );
|
sl@0
|
637 |
# | IF ( temp < 11059 ) THEN temp = temp << 1;
|
sl@0
|
638 |
# | ELSE IF ( temp < 20070 ) THEN temp = add( temp, 11059 );
|
sl@0
|
639 |
# | ELSE temp = add( ( temp >> 2 ), 26112 );
|
sl@0
|
640 |
# | rp[i] = temp;
|
sl@0
|
641 |
# | IF ( LARp[i] < 0 ) THEN rp[i] = sub( 0, rp[i] );
|
sl@0
|
642 |
# |== NEXT i:
|
sl@0
|
643 |
*/
|
sl@0
|
644 |
for (i=1; i <= 8; i++) {
|
sl@0
|
645 |
int j = i-1;
|
sl@0
|
646 |
temp = abs_s( LARp[j] );
|
sl@0
|
647 |
if ( sub( temp, 11059 ) < 0 )
|
sl@0
|
648 |
temp = shl( temp, 1 );
|
sl@0
|
649 |
else if ( sub( temp, 20070 ) < 0 )
|
sl@0
|
650 |
temp = add( temp, 11059 );
|
sl@0
|
651 |
else
|
sl@0
|
652 |
temp = add( shr( temp, 2 ), 26112 );
|
sl@0
|
653 |
|
sl@0
|
654 |
if ( LARp[j] < 0 )
|
sl@0
|
655 |
rp[j] = negate( temp );
|
sl@0
|
656 |
else
|
sl@0
|
657 |
rp[j] = temp;
|
sl@0
|
658 |
}
|
sl@0
|
659 |
}
|
sl@0
|
660 |
|
sl@0
|
661 |
|
sl@0
|
662 |
/*
|
sl@0
|
663 |
# 4.2.10. Short term analysis filtering
|
sl@0
|
664 |
#
|
sl@0
|
665 |
# This procedure computes the short term residual d[..] to be fed
|
sl@0
|
666 |
# to the RPE-LTP loop from s[..] signal and from the local rp[..]
|
sl@0
|
667 |
# array (quantized reflection coefficients). As the call of this
|
sl@0
|
668 |
# procedure can be done in many ways (see the interpolation of the LAR
|
sl@0
|
669 |
# coefficients), it is assumed that the computation begins with index
|
sl@0
|
670 |
# k_start (for arrays d[..] and s[..]) and stops with index k_end
|
sl@0
|
671 |
# (k_start and k_end are defined in 4.2.9.1): This procedure also need
|
sl@0
|
672 |
# to keep the array u[0..7] in memory for each call.
|
sl@0
|
673 |
#
|
sl@0
|
674 |
# Keep the array u[0..7] in memory.
|
sl@0
|
675 |
# Initial value: u[0..7]=0;
|
sl@0
|
676 |
*/
|
sl@0
|
677 |
|
sl@0
|
678 |
void invfil( CGSM610FR_Encoder* aEncoder, int2 d[], int2 s[], int2 rp[], int k_start, int k_end )
|
sl@0
|
679 |
{
|
sl@0
|
680 |
//ALEX//extern int2 u[];
|
sl@0
|
681 |
|
sl@0
|
682 |
int k, i;
|
sl@0
|
683 |
|
sl@0
|
684 |
int2 temp;
|
sl@0
|
685 |
int2 sav;
|
sl@0
|
686 |
int2 di;
|
sl@0
|
687 |
/*
|
sl@0
|
688 |
# |== FOR k=k_start to k_end:
|
sl@0
|
689 |
# | di = s[k];
|
sl@0
|
690 |
# | sav = di;
|
sl@0
|
691 |
# |==== FOR i=1 to 8:
|
sl@0
|
692 |
# | temp = add( u[i], mult_r( rp[i], di ) );
|
sl@0
|
693 |
# | di = add( di, mult_r( rp[i], u[i] ) );
|
sl@0
|
694 |
# | u[i] = sav;
|
sl@0
|
695 |
# | sav = temp;
|
sl@0
|
696 |
# |==== NEXT i:
|
sl@0
|
697 |
# | d[k] = di;
|
sl@0
|
698 |
# |== NEXT k:
|
sl@0
|
699 |
*/
|
sl@0
|
700 |
for ( k = k_start; k <= k_end; k++ ) {
|
sl@0
|
701 |
di = s[k];
|
sl@0
|
702 |
sav = di;
|
sl@0
|
703 |
for ( i = 1; i <= 8; i++ ) {
|
sl@0
|
704 |
int j = i-1;
|
sl@0
|
705 |
temp = add( aEncoder->u[j], mult_r( rp[j], di ) );
|
sl@0
|
706 |
di = add( di, mult_r( rp[j], aEncoder->u[j] ) );
|
sl@0
|
707 |
aEncoder->u[j] = sav;
|
sl@0
|
708 |
sav = temp;
|
sl@0
|
709 |
}
|
sl@0
|
710 |
d[k] = di;
|
sl@0
|
711 |
}
|
sl@0
|
712 |
|
sl@0
|
713 |
}
|
sl@0
|
714 |
|
sl@0
|
715 |
|
sl@0
|
716 |
/*
|
sl@0
|
717 |
# 4.2.11. Calculation of the LTP parameters
|
sl@0
|
718 |
#
|
sl@0
|
719 |
# This procedure computes the LTP gain (bc) and the LTP lag (Nc) for
|
sl@0
|
720 |
# the long term analysis filter. This is deone by calculating a maximum
|
sl@0
|
721 |
# of the cross-correlation function between the current sub-segment
|
sl@0
|
722 |
# short term residual signal d[0..39] (output of the short term
|
sl@0
|
723 |
# analysis filter; for each sub-segment of the RPE-LTP analysis) and the
|
sl@0
|
724 |
# previous reconstructed short term residual signal dp[-120..-1]. A
|
sl@0
|
725 |
# dynamic scaling must be performed to avoid overflow.
|
sl@0
|
726 |
#
|
sl@0
|
727 |
# Initial value: dp[-120..-1]=0;
|
sl@0
|
728 |
*/
|
sl@0
|
729 |
|
sl@0
|
730 |
void ltpcomp( CGSM610FR_Encoder* aEncoder, int2 *Nc, int2 *bc, int2 d[], int k_start )
|
sl@0
|
731 |
{
|
sl@0
|
732 |
int k, i;
|
sl@0
|
733 |
|
sl@0
|
734 |
int2 lambda;
|
sl@0
|
735 |
int2 temp;
|
sl@0
|
736 |
int2 scal;
|
sl@0
|
737 |
int2 dmax;
|
sl@0
|
738 |
int4 L_max;
|
sl@0
|
739 |
int2 wt[40]; /* scaled residual, original cannot be destroyed */
|
sl@0
|
740 |
int4 L_result;
|
sl@0
|
741 |
int4 L_power;
|
sl@0
|
742 |
int2 R;
|
sl@0
|
743 |
int2 S;
|
sl@0
|
744 |
/*
|
sl@0
|
745 |
# Search of optimum scaling of d[kstart+0..39]
|
sl@0
|
746 |
# dmax = 0;
|
sl@0
|
747 |
# |== FOR k=0 to 39:
|
sl@0
|
748 |
# | temp = abs( d[k] );
|
sl@0
|
749 |
# | IF ( temp > dmax ) THEN dmax = temp;
|
sl@0
|
750 |
# |== NEXT k:
|
sl@0
|
751 |
*/
|
sl@0
|
752 |
dmax = 0;
|
sl@0
|
753 |
for (k=0; k <= 39; k++) {
|
sl@0
|
754 |
temp = abs_s( d[k+k_start] );
|
sl@0
|
755 |
if ( sub( temp, dmax ) > 0 )
|
sl@0
|
756 |
dmax = temp;
|
sl@0
|
757 |
}
|
sl@0
|
758 |
/*
|
sl@0
|
759 |
# temp = 0;
|
sl@0
|
760 |
# IF ( dmax == 0 ) THEN scal = 0;
|
sl@0
|
761 |
# ELSE temp = norm( (long)dmax << 16 );
|
sl@0
|
762 |
# IF ( temp > 6 ) THEN scal = 0;
|
sl@0
|
763 |
# ELSE scal = sub( 6, temp );
|
sl@0
|
764 |
*/
|
sl@0
|
765 |
temp = 0;
|
sl@0
|
766 |
if ( dmax == 0 )
|
sl@0
|
767 |
scal = 0;
|
sl@0
|
768 |
else
|
sl@0
|
769 |
temp = norm_s( dmax );
|
sl@0
|
770 |
|
sl@0
|
771 |
if ( sub( temp, 6 ) > 0 )
|
sl@0
|
772 |
scal = 0;
|
sl@0
|
773 |
else
|
sl@0
|
774 |
scal = sub( 6, temp ); /* 0 <= scal <= 6 */
|
sl@0
|
775 |
/*
|
sl@0
|
776 |
# Initialization of a working array wt[0..39]
|
sl@0
|
777 |
# |== FOR k=0 to 39:
|
sl@0
|
778 |
# | wt[k] = d[k] >> scal;
|
sl@0
|
779 |
# |== NEXT k:
|
sl@0
|
780 |
*/
|
sl@0
|
781 |
for (k=0; k <= 39; k++)
|
sl@0
|
782 |
wt[k] = shr( d[k+k_start], scal ); /* scal >= 0 */
|
sl@0
|
783 |
/*
|
sl@0
|
784 |
# Search for the maximum of crosscorrelation and coding of the LTP lag.
|
sl@0
|
785 |
# L_max = 0;
|
sl@0
|
786 |
# Nc = 40;
|
sl@0
|
787 |
#
|
sl@0
|
788 |
# |== FOR lambda=40 to 120:
|
sl@0
|
789 |
# | L_result = 0;
|
sl@0
|
790 |
# |==== FOR k=0 to 39:
|
sl@0
|
791 |
# | L_temp = L_mult( wt[k], dp[k-lambda] );
|
sl@0
|
792 |
# | L_result = L_add( L_temp, L_result );
|
sl@0
|
793 |
# |==== NEXT k:
|
sl@0
|
794 |
# | IF ( L_result > L_max ) THEN
|
sl@0
|
795 |
# | | Nc = lambda;
|
sl@0
|
796 |
# | | L_max = L_result;
|
sl@0
|
797 |
# |== NEXT lambda:
|
sl@0
|
798 |
*/
|
sl@0
|
799 |
L_max = 0; /* 32 bits maximum */
|
sl@0
|
800 |
*Nc = 40; /* index for the maximum of cross correlation */
|
sl@0
|
801 |
for ( lambda = 40; lambda <= 120; lambda++ ) {
|
sl@0
|
802 |
L_result = 0;
|
sl@0
|
803 |
for (k = 0; k <= 39; k++)
|
sl@0
|
804 |
L_result = L_mac( L_result, wt[k], aEncoder->dp[k-lambda+120] );
|
sl@0
|
805 |
/* Borland C++ 3.1 error if -3 (386-instructions) are used.
|
sl@0
|
806 |
** The code makes error (compared to (L_result > L_max)
|
sl@0
|
807 |
** comparison. The problem disapears if the result of L_sub
|
sl@0
|
808 |
** is stored to variable, e.g.
|
sl@0
|
809 |
** if ( ( L_debug = L_sub( L_result, L_max ) ) > 0 ) {
|
sl@0
|
810 |
**
|
sl@0
|
811 |
** Problem does not occur when -2 option (only 286
|
sl@0
|
812 |
** instructions are used)
|
sl@0
|
813 |
**
|
sl@0
|
814 |
** The problem exist e.g. with GSM full rate test seq01.ib
|
sl@0
|
815 |
*/
|
sl@0
|
816 |
if ( L_sub( L_result, L_max ) > 0 ) {
|
sl@0
|
817 |
*Nc = lambda;
|
sl@0
|
818 |
L_max = L_result;
|
sl@0
|
819 |
}
|
sl@0
|
820 |
}
|
sl@0
|
821 |
|
sl@0
|
822 |
/*
|
sl@0
|
823 |
# Re-scaling of L-max
|
sl@0
|
824 |
# L_max = L_max >> sub( 6, scal );
|
sl@0
|
825 |
*/
|
sl@0
|
826 |
L_max = L_shr( L_max, sub( 6, scal ) );
|
sl@0
|
827 |
/*
|
sl@0
|
828 |
# Initialization of a working array wt[0..39]
|
sl@0
|
829 |
# |== FOR k=0 to 39:
|
sl@0
|
830 |
# | wt[k] = dp[k-Nc] >> 3;
|
sl@0
|
831 |
# |== NEXT k:
|
sl@0
|
832 |
*/
|
sl@0
|
833 |
for (k = 0; k <= 39; k++)
|
sl@0
|
834 |
wt[k] = shr( aEncoder->dp[k - *Nc + 120], 3 );
|
sl@0
|
835 |
/*
|
sl@0
|
836 |
# Compute the power of the reconstructed short term residual signal dp[..]
|
sl@0
|
837 |
# L_power = 0;
|
sl@0
|
838 |
# |== FOR k=0 to 39:
|
sl@0
|
839 |
# | L_temp = L_mult( wt[k], wt[k] );
|
sl@0
|
840 |
# | L_power = L_add( L_temp, L_power );
|
sl@0
|
841 |
# |== NEXT k:
|
sl@0
|
842 |
*/
|
sl@0
|
843 |
L_power = 0;
|
sl@0
|
844 |
for ( k = 0; k <= 39; k++ )
|
sl@0
|
845 |
L_power = L_mac( L_power, wt[k], wt[k] );
|
sl@0
|
846 |
/*
|
sl@0
|
847 |
# Normalization of L_max and L_power
|
sl@0
|
848 |
# IF ( L_max <= 0 ) THEN
|
sl@0
|
849 |
# | bc = 0;
|
sl@0
|
850 |
# | EXIT; /cont. with 4.2.12/
|
sl@0
|
851 |
*/
|
sl@0
|
852 |
if ( L_max <= 0 ) {
|
sl@0
|
853 |
*bc = 0;
|
sl@0
|
854 |
return;
|
sl@0
|
855 |
}
|
sl@0
|
856 |
/*
|
sl@0
|
857 |
# IF ( L_max >= L_power ) THEN
|
sl@0
|
858 |
# | bc = 3;
|
sl@0
|
859 |
# | EXIT; /cont. with 4.2.12/
|
sl@0
|
860 |
*/
|
sl@0
|
861 |
if ( L_sub( L_max, L_power ) >= 0 ) {
|
sl@0
|
862 |
*bc = 3;
|
sl@0
|
863 |
return;
|
sl@0
|
864 |
}
|
sl@0
|
865 |
/*
|
sl@0
|
866 |
# temp = norm( L_power );
|
sl@0
|
867 |
# R = ( L_max << temp ) >> 16 );
|
sl@0
|
868 |
# S = ( L_power << temp ) >> 16 );
|
sl@0
|
869 |
*/
|
sl@0
|
870 |
temp = norm_l( L_power );
|
sl@0
|
871 |
R = extract_h( L_shl( L_max, temp ) );
|
sl@0
|
872 |
S = extract_h( L_shl( L_power, temp ) );
|
sl@0
|
873 |
/*
|
sl@0
|
874 |
# Coding of the LTP gain
|
sl@0
|
875 |
#
|
sl@0
|
876 |
# Table 4.3a must be used to obtain the level DLB[i] for the
|
sl@0
|
877 |
# quantization of the LTP gain b to get the coded version bc.
|
sl@0
|
878 |
#
|
sl@0
|
879 |
# |== FOR bc=0 to 2:
|
sl@0
|
880 |
# | IF ( R <= mult( S, DLB[bc] ) ) THEN EXIT; /cont. with 4.2.12/
|
sl@0
|
881 |
# |== NEXT bc:
|
sl@0
|
882 |
#
|
sl@0
|
883 |
# bc = 3;
|
sl@0
|
884 |
*/
|
sl@0
|
885 |
for ( i = 0; i <= 2; i++ ) {
|
sl@0
|
886 |
if ( sub( R, mult( S, DLB[i] ) ) <= 0 ) {
|
sl@0
|
887 |
*bc = int2 (i);
|
sl@0
|
888 |
return;
|
sl@0
|
889 |
}
|
sl@0
|
890 |
}
|
sl@0
|
891 |
|
sl@0
|
892 |
*bc = 3;
|
sl@0
|
893 |
|
sl@0
|
894 |
}
|
sl@0
|
895 |
|
sl@0
|
896 |
|
sl@0
|
897 |
/*
|
sl@0
|
898 |
# 4.2.12. Long term analysis filtering
|
sl@0
|
899 |
#
|
sl@0
|
900 |
# In this part, we have to decode the bc parameter to compute the
|
sl@0
|
901 |
# samples of the estimate dpp[0..39]. The decoding of bc needs the use
|
sl@0
|
902 |
# of table 4.3b. The long term residual signal e[0..39] is then
|
sl@0
|
903 |
# calculated to be fed to the RPE encoding section.
|
sl@0
|
904 |
*/
|
sl@0
|
905 |
|
sl@0
|
906 |
void ltpfil( CGSM610FR_Encoder* aEncoder, int2 e[], int2 dpp[], int2 d[], int2 bc, int2 Nc, int k_start )
|
sl@0
|
907 |
{
|
sl@0
|
908 |
int2 bp;
|
sl@0
|
909 |
int k;
|
sl@0
|
910 |
|
sl@0
|
911 |
/*
|
sl@0
|
912 |
# Decoding of the coded LTP gain.
|
sl@0
|
913 |
# bp = QLB[bc];
|
sl@0
|
914 |
*/
|
sl@0
|
915 |
bp = QLB[bc];
|
sl@0
|
916 |
/*
|
sl@0
|
917 |
# Calculating the array e[0..39] and the array dpp[0..39]
|
sl@0
|
918 |
#
|
sl@0
|
919 |
# |== FOR k=0 to 39:
|
sl@0
|
920 |
# | dpp[k] = mult_r( bp, dp[k-Nc] );
|
sl@0
|
921 |
# | e[k] = sub( d[k], dpp[k] );
|
sl@0
|
922 |
# |== NEXT k:
|
sl@0
|
923 |
*/
|
sl@0
|
924 |
for ( k = 0; k <= 39; k++ ) {
|
sl@0
|
925 |
dpp[k] = mult_r( bp, aEncoder->dp[k - Nc + 120] );
|
sl@0
|
926 |
e[k] = sub( d[k+k_start], dpp[k] );
|
sl@0
|
927 |
}
|
sl@0
|
928 |
}
|
sl@0
|
929 |
|
sl@0
|
930 |
|
sl@0
|
931 |
/*
|
sl@0
|
932 |
# 4.2.13. Weighting filter
|
sl@0
|
933 |
#
|
sl@0
|
934 |
# The coefficients of teh weighting filter are stored in tables (see
|
sl@0
|
935 |
# table 4.4). The following scaling is used:
|
sl@0
|
936 |
#
|
sl@0
|
937 |
# H[0..10] = integer( real_H[0..10]*8192 );
|
sl@0
|
938 |
*/
|
sl@0
|
939 |
|
sl@0
|
940 |
void weight( int2 x[], int2 e[] )
|
sl@0
|
941 |
{
|
sl@0
|
942 |
int k, i;
|
sl@0
|
943 |
|
sl@0
|
944 |
int2 wt[50];
|
sl@0
|
945 |
int4 L_result;
|
sl@0
|
946 |
/*
|
sl@0
|
947 |
# Initialization of a temporary working array wt[0..49]
|
sl@0
|
948 |
# |== FOR k=0 to 4:
|
sl@0
|
949 |
# | wt[k] = 0;
|
sl@0
|
950 |
# |== NEXT k:
|
sl@0
|
951 |
#
|
sl@0
|
952 |
# |== FOR k=5 to 44:
|
sl@0
|
953 |
# | wt[k] = e[k-5];
|
sl@0
|
954 |
# |== NEXT k:
|
sl@0
|
955 |
#
|
sl@0
|
956 |
# |== FOR k=45 to 49:
|
sl@0
|
957 |
# | wt[k] = 0;
|
sl@0
|
958 |
# |== NEXT k:
|
sl@0
|
959 |
*/
|
sl@0
|
960 |
for ( k = 0; k <= 4; k++ )
|
sl@0
|
961 |
wt[k] = 0;
|
sl@0
|
962 |
|
sl@0
|
963 |
for ( k = 5; k <= 44; k++ )
|
sl@0
|
964 |
wt[k] = e[k-5];
|
sl@0
|
965 |
|
sl@0
|
966 |
for ( k = 45; k <= 49; k++ )
|
sl@0
|
967 |
wt[k] = 0;
|
sl@0
|
968 |
/*
|
sl@0
|
969 |
# Compute the signal x[0..39]
|
sl@0
|
970 |
# |== FOR k=0 to 39:
|
sl@0
|
971 |
# | L_result = 8192;
|
sl@0
|
972 |
# |==== FOR i=0 to 10:
|
sl@0
|
973 |
# | L_temp = L_mult( wt[k+i], H[i] );
|
sl@0
|
974 |
# | L_result = L_add( L_result, L_temp );
|
sl@0
|
975 |
# |==== NEXT i:
|
sl@0
|
976 |
# | L_result = L_add( L_result, L_result ); /scaling L_result (x2)/
|
sl@0
|
977 |
# | L_result = L_add( L_result, L_result ); /scaling L_result (x4)/
|
sl@0
|
978 |
# | x[k] = (int)( L_result >> 16 );
|
sl@0
|
979 |
# |== NEXT k:
|
sl@0
|
980 |
*/
|
sl@0
|
981 |
for ( k = 0; k <= 39; k++ ) {
|
sl@0
|
982 |
L_result = L_deposit_l( 8192 );
|
sl@0
|
983 |
for ( i = 0; i <= 10; i++ )
|
sl@0
|
984 |
L_result = L_mac( L_result, wt[k+i], H[i] );
|
sl@0
|
985 |
|
sl@0
|
986 |
/* scaling L_result (x4) and extract: scaling possible with new shift
|
sl@0
|
987 |
* because saturation is added L_shl
|
sl@0
|
988 |
*
|
sl@0
|
989 |
* L_result = L_add( L_result, L_result );
|
sl@0
|
990 |
* L_result = L_add( L_result, L_result );
|
sl@0
|
991 |
* x[k] = extract_h( L_result );
|
sl@0
|
992 |
@ Scaling can be done with L_shift because now shift has saturation
|
sl@0
|
993 |
*/
|
sl@0
|
994 |
|
sl@0
|
995 |
x[k] = extract_h( L_shl( L_result, 2 ) );
|
sl@0
|
996 |
}
|
sl@0
|
997 |
}
|
sl@0
|
998 |
|
sl@0
|
999 |
|
sl@0
|
1000 |
/*
|
sl@0
|
1001 |
# 4.2.14. RPE grid selection
|
sl@0
|
1002 |
#
|
sl@0
|
1003 |
# The signal x[0..39] is used to select the RPE grid which is
|
sl@0
|
1004 |
# represented by Mc.
|
sl@0
|
1005 |
*/
|
sl@0
|
1006 |
|
sl@0
|
1007 |
int2 gridsel( int2 xM[], int2 x[] )
|
sl@0
|
1008 |
{
|
sl@0
|
1009 |
int i, k;
|
sl@0
|
1010 |
|
sl@0
|
1011 |
int2 temp1;
|
sl@0
|
1012 |
int4 L_EM;
|
sl@0
|
1013 |
int4 L_result;
|
sl@0
|
1014 |
int2 Mc;
|
sl@0
|
1015 |
/*
|
sl@0
|
1016 |
# EM = 0;
|
sl@0
|
1017 |
# Mc = 0;
|
sl@0
|
1018 |
*/
|
sl@0
|
1019 |
L_EM = 0;
|
sl@0
|
1020 |
Mc = 0;
|
sl@0
|
1021 |
/*
|
sl@0
|
1022 |
# |== FOR m=0 to 3:
|
sl@0
|
1023 |
# | L_result = 0;
|
sl@0
|
1024 |
# |==== FOR k=0 to 12:
|
sl@0
|
1025 |
# | temp1 = x[i+(3*k)] >> 2;
|
sl@0
|
1026 |
# | L_temp = L_mult( temp1, temp1 );
|
sl@0
|
1027 |
# | L_result = L_add( L_temp, L_result );
|
sl@0
|
1028 |
# |==== NEXT i:
|
sl@0
|
1029 |
# | IF ( L_result > L_max ) THEN
|
sl@0
|
1030 |
# | | Mc = m;
|
sl@0
|
1031 |
# | | EM = L_result;
|
sl@0
|
1032 |
# |== NEXT m:
|
sl@0
|
1033 |
*/
|
sl@0
|
1034 |
for ( i = 0; i <= 3; i++ ) {
|
sl@0
|
1035 |
L_result = 0;
|
sl@0
|
1036 |
for ( k = 0; k <= 12; k++ ) {
|
sl@0
|
1037 |
temp1 = shr( x[i+(3*k)], 2 );
|
sl@0
|
1038 |
L_result = L_mac( L_result, temp1, temp1 );
|
sl@0
|
1039 |
}
|
sl@0
|
1040 |
if ( L_sub( L_result, L_EM ) > 0 ) {
|
sl@0
|
1041 |
Mc = int2 (i);
|
sl@0
|
1042 |
L_EM = L_result;
|
sl@0
|
1043 |
}
|
sl@0
|
1044 |
}
|
sl@0
|
1045 |
/*
|
sl@0
|
1046 |
# Down-sampling by factor 3 to get the selected xM[0..12] RPE sequence
|
sl@0
|
1047 |
# |== FOR i=0 to 12:
|
sl@0
|
1048 |
# | xM[k] = x[Mc+(3*i)];
|
sl@0
|
1049 |
# |== NEXT i:
|
sl@0
|
1050 |
*/
|
sl@0
|
1051 |
for ( k = 0; k <= 12; k++ )
|
sl@0
|
1052 |
xM[k] = x[Mc+(3*k)];
|
sl@0
|
1053 |
|
sl@0
|
1054 |
return Mc;
|
sl@0
|
1055 |
}
|
sl@0
|
1056 |
|
sl@0
|
1057 |
|
sl@0
|
1058 |
/*
|
sl@0
|
1059 |
# Compute exponent and mantissa of the decoded version of xmaxc
|
sl@0
|
1060 |
#
|
sl@0
|
1061 |
# Part of APCM and (subrogram apcm() InvAPCM (iapcm())
|
sl@0
|
1062 |
*/
|
sl@0
|
1063 |
|
sl@0
|
1064 |
void expman( int2 *Exp, int2 *mant, int2 xmaxc )
|
sl@0
|
1065 |
{
|
sl@0
|
1066 |
int i;
|
sl@0
|
1067 |
/*
|
sl@0
|
1068 |
# Compute exponent and mantissa of the decoded version of xmaxc.
|
sl@0
|
1069 |
#
|
sl@0
|
1070 |
# exp = 0;
|
sl@0
|
1071 |
# IF ( xmaxc > 15 ) THEN exp = sub( ( xmaxc >> 3 ), 1 );
|
sl@0
|
1072 |
# mant = sub( xmaxc, ( exp << 3 ) );
|
sl@0
|
1073 |
*/
|
sl@0
|
1074 |
*Exp = 0;
|
sl@0
|
1075 |
if ( sub( xmaxc, 15 ) > 0 )
|
sl@0
|
1076 |
*Exp = sub( shr( xmaxc, 3 ), 1 );
|
sl@0
|
1077 |
|
sl@0
|
1078 |
*mant = sub( xmaxc, shl( *Exp, 3 ) );
|
sl@0
|
1079 |
/*
|
sl@0
|
1080 |
# Normalize mantissa 0 <= mant <= 7.
|
sl@0
|
1081 |
# IF ( mant == 0 ) THEN | exp = -4;
|
sl@0
|
1082 |
# | mant = 15 ;
|
sl@0
|
1083 |
# ELSE | itest = 0;
|
sl@0
|
1084 |
# |== FOR i=0 to 2:
|
sl@0
|
1085 |
# | IF ( mant > 7 ) THEN itest = 1;
|
sl@0
|
1086 |
# | IF ( itest == 0 ) THEN mant = add( ( mant << 1 ), 1 );
|
sl@0
|
1087 |
# | IF ( itest == 0 ) THEN exp = sub( exp, 1 );
|
sl@0
|
1088 |
# |== NEXT i:
|
sl@0
|
1089 |
*/
|
sl@0
|
1090 |
if ( *mant == 0 ) {
|
sl@0
|
1091 |
*Exp = -4;
|
sl@0
|
1092 |
*mant = 15 ;
|
sl@0
|
1093 |
}
|
sl@0
|
1094 |
else {
|
sl@0
|
1095 |
for ( i = 0; i <= 2; i++ ) {
|
sl@0
|
1096 |
if ( sub( *mant, 7 ) > 0 )
|
sl@0
|
1097 |
break;
|
sl@0
|
1098 |
else {
|
sl@0
|
1099 |
*mant = add( shl( *mant, 1 ), 1 );
|
sl@0
|
1100 |
*Exp = sub( *Exp, 1 );
|
sl@0
|
1101 |
}
|
sl@0
|
1102 |
}
|
sl@0
|
1103 |
}
|
sl@0
|
1104 |
/*
|
sl@0
|
1105 |
# mant = sub( mant, 8 );
|
sl@0
|
1106 |
*/
|
sl@0
|
1107 |
*mant = sub( *mant, 8 );
|
sl@0
|
1108 |
}
|
sl@0
|
1109 |
|
sl@0
|
1110 |
|
sl@0
|
1111 |
int2 quantize_xmax( int2 xmax )
|
sl@0
|
1112 |
{
|
sl@0
|
1113 |
int i;
|
sl@0
|
1114 |
|
sl@0
|
1115 |
int2 Exp;
|
sl@0
|
1116 |
int2 temp;
|
sl@0
|
1117 |
int2 itest;
|
sl@0
|
1118 |
/*
|
sl@0
|
1119 |
# Quantizing and coding of xmax to get xmaxc.
|
sl@0
|
1120 |
# exp = 0;
|
sl@0
|
1121 |
# temp = xmax >> 9;
|
sl@0
|
1122 |
# itest = 0;
|
sl@0
|
1123 |
# |== FOR i=0 to 5:
|
sl@0
|
1124 |
# | IF ( temp <= 0 ) THEN itest = 1;
|
sl@0
|
1125 |
# | temp = temp >> 1;
|
sl@0
|
1126 |
# | IF ( itest == 0 ) THEN exp = add( exp, 1 ) ;
|
sl@0
|
1127 |
# |== NEXT i:
|
sl@0
|
1128 |
*/
|
sl@0
|
1129 |
Exp = 0;
|
sl@0
|
1130 |
temp = shr( xmax, 9 );
|
sl@0
|
1131 |
itest = 0;
|
sl@0
|
1132 |
for ( i = 0; i <= 5; i++ ) {
|
sl@0
|
1133 |
if ( temp <= 0 )
|
sl@0
|
1134 |
itest = 1;
|
sl@0
|
1135 |
temp = shr( temp, 1 );
|
sl@0
|
1136 |
if ( itest == 0 )
|
sl@0
|
1137 |
Exp = add( Exp, 1 ) ;
|
sl@0
|
1138 |
}
|
sl@0
|
1139 |
|
sl@0
|
1140 |
/*
|
sl@0
|
1141 |
# temp = add( exp, 5 );
|
sl@0
|
1142 |
# xmaxc = add( ( xmax >> temp ), ( exp << 3 ) );
|
sl@0
|
1143 |
*/
|
sl@0
|
1144 |
temp = add( Exp, 5 );
|
sl@0
|
1145 |
|
sl@0
|
1146 |
return ( add( shr( xmax, temp ), shl( Exp, 3 ) ) ); /* xmaxc */
|
sl@0
|
1147 |
|
sl@0
|
1148 |
}
|
sl@0
|
1149 |
|
sl@0
|
1150 |
|
sl@0
|
1151 |
/*
|
sl@0
|
1152 |
# 4.2.15. APCM quantization of the selected RPE sequence
|
sl@0
|
1153 |
#
|
sl@0
|
1154 |
# Keep in memory exp and mant for the following inverse APCM quantizer.
|
sl@0
|
1155 |
*
|
sl@0
|
1156 |
* return unquantzed xmax for SID computation
|
sl@0
|
1157 |
*/
|
sl@0
|
1158 |
|
sl@0
|
1159 |
int2 apcm( int2 *xmaxc, int2 xM[], int2 xMc[], int2 *Exp, int2 *mant )
|
sl@0
|
1160 |
{
|
sl@0
|
1161 |
int k;
|
sl@0
|
1162 |
|
sl@0
|
1163 |
int2 temp;
|
sl@0
|
1164 |
int2 temp1;
|
sl@0
|
1165 |
int2 temp2;
|
sl@0
|
1166 |
int2 temp3;
|
sl@0
|
1167 |
int2 xmax;
|
sl@0
|
1168 |
/*
|
sl@0
|
1169 |
# Find the maximum absolute value of xM[0..12].
|
sl@0
|
1170 |
# xmax = 0;
|
sl@0
|
1171 |
# |== FOR k=0 to 12:
|
sl@0
|
1172 |
# | temp = abs( xM[k] );
|
sl@0
|
1173 |
# | IF ( temp > xmax ) THEN xmax = temp;
|
sl@0
|
1174 |
# |== NEXT i:
|
sl@0
|
1175 |
*/
|
sl@0
|
1176 |
xmax = 0;
|
sl@0
|
1177 |
for ( k = 0; k <= 12; k++ ) {
|
sl@0
|
1178 |
temp = abs_s( xM[k] );
|
sl@0
|
1179 |
if ( sub( temp, xmax ) > 0 )
|
sl@0
|
1180 |
xmax = temp;
|
sl@0
|
1181 |
}
|
sl@0
|
1182 |
|
sl@0
|
1183 |
/*
|
sl@0
|
1184 |
* quantization of xmax moved to function because it is used
|
sl@0
|
1185 |
* also in comfort noise generation
|
sl@0
|
1186 |
*/
|
sl@0
|
1187 |
*xmaxc = quantize_xmax( xmax );
|
sl@0
|
1188 |
|
sl@0
|
1189 |
expman( Exp, mant, *xmaxc ); /* compute exp. and mant. */
|
sl@0
|
1190 |
/*
|
sl@0
|
1191 |
# Quantizing and coding of the xM[0..12] RPE sequence to get the xMc[0..12]
|
sl@0
|
1192 |
#
|
sl@0
|
1193 |
# This computation uses the fact that the decoded version of xmaxc can
|
sl@0
|
1194 |
# be calculated by using the exponent and mantissa part of xmaxc
|
sl@0
|
1195 |
# (logarithmic table).
|
sl@0
|
1196 |
#
|
sl@0
|
1197 |
# So, this method avoids any division and uses only scaling of the RPE
|
sl@0
|
1198 |
# samples by a function of the exponent. A direct multiplication by the
|
sl@0
|
1199 |
# inverse of the mantissa (NRFAC[0..7] found in table 4.5) gives the 3
|
sl@0
|
1200 |
# bit coded version xMc[0..12} of the RPE samples.
|
sl@0
|
1201 |
#
|
sl@0
|
1202 |
# Direct computation of xMc[0..12] using table 4.5.
|
sl@0
|
1203 |
# temp1 = sub( 6, exp ); /normalization by the exponent/
|
sl@0
|
1204 |
# temp2 = NRFAC[mant]; /see table 4.5 (inverse mantissa)/
|
sl@0
|
1205 |
# |== FOR k=0 to 12:
|
sl@0
|
1206 |
# | xM[k] = xM[k] << temp1;
|
sl@0
|
1207 |
# | xM[k] = mult( xM[k], temp2 );
|
sl@0
|
1208 |
# | xMc[k] = add( ( xM[k] >> 12 ), 4 ); / See note below/
|
sl@0
|
1209 |
# |== NEXT i:
|
sl@0
|
1210 |
#
|
sl@0
|
1211 |
# NOTE: This equation is used to make all the xMx[i] positive.
|
sl@0
|
1212 |
*/
|
sl@0
|
1213 |
temp1 = sub( 6, *Exp );
|
sl@0
|
1214 |
temp2 = NRFAC[*mant];
|
sl@0
|
1215 |
|
sl@0
|
1216 |
for ( k = 0; k <= 12; k++ ) {
|
sl@0
|
1217 |
temp3 = shl( xM[k], temp1 );
|
sl@0
|
1218 |
temp3 = mult( temp3, temp2 );
|
sl@0
|
1219 |
xMc[k] = add( shr( temp3, 12 ), 4 );
|
sl@0
|
1220 |
}
|
sl@0
|
1221 |
|
sl@0
|
1222 |
return xmax;
|
sl@0
|
1223 |
}
|
sl@0
|
1224 |
|
sl@0
|
1225 |
/*
|
sl@0
|
1226 |
# 4.2.16. APCM inverse quantization
|
sl@0
|
1227 |
#
|
sl@0
|
1228 |
# This part is for decoding the RPE sequence of coded xMc[0..12] samples
|
sl@0
|
1229 |
# to obtain the xMp[0..12] array. Table 4.6 is used to get the mantissa
|
sl@0
|
1230 |
# of xmaxc (FAC[0..7]).
|
sl@0
|
1231 |
*/
|
sl@0
|
1232 |
|
sl@0
|
1233 |
void iapcm( int2 xMp[], int2 xMc[], int2 Exp, int2 mant )
|
sl@0
|
1234 |
{
|
sl@0
|
1235 |
//ALEX//extern int2 FAC[];
|
sl@0
|
1236 |
|
sl@0
|
1237 |
int k;
|
sl@0
|
1238 |
|
sl@0
|
1239 |
int2 temp;
|
sl@0
|
1240 |
int2 temp1;
|
sl@0
|
1241 |
int2 temp2;
|
sl@0
|
1242 |
int2 temp3;
|
sl@0
|
1243 |
/*
|
sl@0
|
1244 |
# temp1 = FAC[mant]; /See 4.2.15 for mant/
|
sl@0
|
1245 |
# temp2 = sub( 6, exp ); /See 4.2.15 for exp/
|
sl@0
|
1246 |
# temp3 = 1 << sub( temp2, 1 );
|
sl@0
|
1247 |
*/
|
sl@0
|
1248 |
temp1 = FAC[mant];
|
sl@0
|
1249 |
temp2 = sub( 6, Exp );
|
sl@0
|
1250 |
temp3 = shl( 1, sub( temp2, 1 ) );
|
sl@0
|
1251 |
/*
|
sl@0
|
1252 |
# |== FOR k=0 to 12:
|
sl@0
|
1253 |
# | temp = sub( ( xMc[k] << 1 ), 7 ); /See note below/
|
sl@0
|
1254 |
# | temp = temp << 12;
|
sl@0
|
1255 |
# | temp = mult_r( temp1, temp );
|
sl@0
|
1256 |
# | temp = add( temp, temp3 );
|
sl@0
|
1257 |
# | xMp[k] = temp >> temp2;
|
sl@0
|
1258 |
# |== NEXT i:
|
sl@0
|
1259 |
#
|
sl@0
|
1260 |
# NOTE: This subtraction is used to restore the sign of xMc[i].
|
sl@0
|
1261 |
*/
|
sl@0
|
1262 |
for ( k = 0; k <= 12; k++ ) {
|
sl@0
|
1263 |
temp = sub( shl( xMc[k], 1 ), 7 );
|
sl@0
|
1264 |
temp = shl( temp, 12 );
|
sl@0
|
1265 |
temp = mult_r( temp1, temp );
|
sl@0
|
1266 |
temp = add( temp, temp3 );
|
sl@0
|
1267 |
xMp[k] = shr( temp, temp2 );
|
sl@0
|
1268 |
}
|
sl@0
|
1269 |
}
|
sl@0
|
1270 |
|
sl@0
|
1271 |
/*
|
sl@0
|
1272 |
# 4.2.17. RPE grid positioning
|
sl@0
|
1273 |
#
|
sl@0
|
1274 |
# This procedure computes the reconstructed long term residual signal
|
sl@0
|
1275 |
# ep[0..39] for the LTP analysis filter. The inputs are the Mc which is
|
sl@0
|
1276 |
# the grid position selection and the xMp[0..12] decoded RPE samples
|
sl@0
|
1277 |
# which are upsampled by factor of 3 by inserting zero values.
|
sl@0
|
1278 |
*/
|
sl@0
|
1279 |
|
sl@0
|
1280 |
void gridpos( int2 ep[], int2 xMp[], int2 Mc )
|
sl@0
|
1281 |
{
|
sl@0
|
1282 |
int k;
|
sl@0
|
1283 |
/*
|
sl@0
|
1284 |
# |== FOR k=0 to 39:
|
sl@0
|
1285 |
# | ep[k] = 0;
|
sl@0
|
1286 |
# |== NEXT k:
|
sl@0
|
1287 |
*/
|
sl@0
|
1288 |
for ( k = 0; k <= 39; k++ )
|
sl@0
|
1289 |
ep[k] = 0;
|
sl@0
|
1290 |
/*
|
sl@0
|
1291 |
# |== FOR i=0 to 12:
|
sl@0
|
1292 |
# | ep[Mc + (3*k)] = xMp[k];
|
sl@0
|
1293 |
# |== NEXT i:
|
sl@0
|
1294 |
*/
|
sl@0
|
1295 |
for ( k = 0; k <= 12; k++ )
|
sl@0
|
1296 |
ep[Mc + (3*k)] = xMp[k];
|
sl@0
|
1297 |
}
|
sl@0
|
1298 |
|
sl@0
|
1299 |
|
sl@0
|
1300 |
/*
|
sl@0
|
1301 |
# 4.2.18. Update of the reconstructed short term residual signal dp[]
|
sl@0
|
1302 |
#
|
sl@0
|
1303 |
# Keep the array dp[-120..-1] in memory for the next sub-segment.
|
sl@0
|
1304 |
# Initial value: dp[-120..-1]=0;
|
sl@0
|
1305 |
*/
|
sl@0
|
1306 |
|
sl@0
|
1307 |
void ltpupd( CGSM610FR_Encoder* aEncoder, int2 dpp[], int2 ep[] )
|
sl@0
|
1308 |
{
|
sl@0
|
1309 |
int i;
|
sl@0
|
1310 |
/*
|
sl@0
|
1311 |
# |== FOR k=0 to 79:
|
sl@0
|
1312 |
# | dp[-120+k] = dp[-80+k];
|
sl@0
|
1313 |
# |== NEXT k:
|
sl@0
|
1314 |
*/
|
sl@0
|
1315 |
for (i = 0; i <= 79; i++)
|
sl@0
|
1316 |
aEncoder->dp[-120+i+120] = aEncoder->dp[-80+i+120];
|
sl@0
|
1317 |
/*
|
sl@0
|
1318 |
# |== FOR k=0 to 39:
|
sl@0
|
1319 |
# | dp[-40+k] = add( ep[k], dpp[k] );
|
sl@0
|
1320 |
# |== NEXT k:
|
sl@0
|
1321 |
*/
|
sl@0
|
1322 |
for (i = 0; i <= 39; i++)
|
sl@0
|
1323 |
aEncoder->dp[-40+i+120] = add( ep[i], dpp[i] );
|
sl@0
|
1324 |
}
|
sl@0
|
1325 |
|
sl@0
|
1326 |
|
sl@0
|
1327 |
/*
|
sl@0
|
1328 |
# 4.3.2. Long term synthesis filtering
|
sl@0
|
1329 |
#
|
sl@0
|
1330 |
# Keep the nrp value for the next sub-segment.
|
sl@0
|
1331 |
# Initial value: nrp=40;
|
sl@0
|
1332 |
#
|
sl@0
|
1333 |
# Keep the array drp[-120..-1] for the next sub-segment.
|
sl@0
|
1334 |
# Initial value: drp[-120..-1]=0;
|
sl@0
|
1335 |
*/
|
sl@0
|
1336 |
|
sl@0
|
1337 |
void ltpsyn( CGSM610FR_Decoder* aDecoder, int2 erp[], int2 wt[], int2 bcr, int2 Ncr )
|
sl@0
|
1338 |
{
|
sl@0
|
1339 |
int k, i;
|
sl@0
|
1340 |
|
sl@0
|
1341 |
int2 drpp;
|
sl@0
|
1342 |
int2 Nr;
|
sl@0
|
1343 |
int2 brp;
|
sl@0
|
1344 |
/*
|
sl@0
|
1345 |
# Check the limits of Nr
|
sl@0
|
1346 |
# Nr = Ncr;
|
sl@0
|
1347 |
# IF ( Ncr < 40 ) THEN Nr = nrp;
|
sl@0
|
1348 |
# IF ( Ncr > 120 ) THEN Nr = nrp;
|
sl@0
|
1349 |
# nrp = Nr;
|
sl@0
|
1350 |
*/
|
sl@0
|
1351 |
if ( sub( Ncr, 40 ) < 0 )
|
sl@0
|
1352 |
Nr = aDecoder->nrp;
|
sl@0
|
1353 |
else if ( sub( Ncr, 120 ) > 0 )
|
sl@0
|
1354 |
Nr = aDecoder->nrp;
|
sl@0
|
1355 |
else
|
sl@0
|
1356 |
Nr = Ncr;
|
sl@0
|
1357 |
|
sl@0
|
1358 |
aDecoder->nrp = Nr;
|
sl@0
|
1359 |
|
sl@0
|
1360 |
/*
|
sl@0
|
1361 |
# Decoding of the LTP gain bcr.
|
sl@0
|
1362 |
# brp = QLB[bcr];
|
sl@0
|
1363 |
*/
|
sl@0
|
1364 |
brp = QLB[bcr];
|
sl@0
|
1365 |
/*
|
sl@0
|
1366 |
# Computation of the reconstructed short term residual signal drp[0..39].
|
sl@0
|
1367 |
# |== FOR k=0 to 39:
|
sl@0
|
1368 |
# | drpp = mult_r( brp, drp[k-Nr] );
|
sl@0
|
1369 |
# | drp[k+120] = add( erp[k], drpp );
|
sl@0
|
1370 |
# |== NEXT k:
|
sl@0
|
1371 |
*/
|
sl@0
|
1372 |
for ( k = 0; k <= 39; k++ ) {
|
sl@0
|
1373 |
drpp = mult_r( brp, aDecoder->drp[k-Nr+120] );
|
sl@0
|
1374 |
wt[k] = add( erp[k], drpp );
|
sl@0
|
1375 |
}
|
sl@0
|
1376 |
/*
|
sl@0
|
1377 |
# Update of the reconstructed short term residual signal drp[-1..-120]
|
sl@0
|
1378 |
# |== FOR k=0 to 119:
|
sl@0
|
1379 |
# | drp[-120+k] = drp[-80+k];
|
sl@0
|
1380 |
# |== NEXT k:
|
sl@0
|
1381 |
*/
|
sl@0
|
1382 |
|
sl@0
|
1383 |
for ( i = 0; i < 80; i++ )
|
sl@0
|
1384 |
aDecoder->drp[i] = aDecoder->drp[40+i];
|
sl@0
|
1385 |
|
sl@0
|
1386 |
for ( i = 0; i < 40; i++ )
|
sl@0
|
1387 |
aDecoder->drp[i+80] = wt[i];
|
sl@0
|
1388 |
}
|
sl@0
|
1389 |
|
sl@0
|
1390 |
|
sl@0
|
1391 |
/*
|
sl@0
|
1392 |
# 4.3.4. Short term synthesis filtering section
|
sl@0
|
1393 |
#
|
sl@0
|
1394 |
# This procedure uses the drp[0..39] signal and produces the sr[0..159]
|
sl@0
|
1395 |
# signal which is the output of the short term synthesis filter. For
|
sl@0
|
1396 |
# ease of explanation, a temporary array wt[0..159] is used.
|
sl@0
|
1397 |
#
|
sl@0
|
1398 |
# Initialization of the array wt[0..159].
|
sl@0
|
1399 |
#
|
sl@0
|
1400 |
# For the first sub-segment in a frame:
|
sl@0
|
1401 |
# |== FOR k=0 to 39:
|
sl@0
|
1402 |
# | wt[k] = drp[k];
|
sl@0
|
1403 |
# |== NEXT k:
|
sl@0
|
1404 |
#
|
sl@0
|
1405 |
# For the second sub-segment in a frame:
|
sl@0
|
1406 |
# |== FOR k=0 to 39:
|
sl@0
|
1407 |
# | wt[40+k] = drp[k];
|
sl@0
|
1408 |
# |== NEXT k:
|
sl@0
|
1409 |
#
|
sl@0
|
1410 |
# For the third sub-segment in a frame:
|
sl@0
|
1411 |
# |== FOR k=0 to 39:
|
sl@0
|
1412 |
# | wt[80+k] = drp[k];
|
sl@0
|
1413 |
# |== NEXT k:
|
sl@0
|
1414 |
#
|
sl@0
|
1415 |
# For the fourth sub-segment in a frame:
|
sl@0
|
1416 |
# |== FOR k=0 to 39:
|
sl@0
|
1417 |
# | wt[120+k] = drp[k];
|
sl@0
|
1418 |
# |== NEXT k:
|
sl@0
|
1419 |
#
|
sl@0
|
1420 |
# As the call of the short term synthesis filter procedure can be done
|
sl@0
|
1421 |
# in many ways (see the interpolation of the LAR coefficient), it is
|
sl@0
|
1422 |
# assumed that the computation begins with index k_start (for arrays
|
sl@0
|
1423 |
# wt[..] and sr[..]) and stops with index k_end (k_start and k_end are
|
sl@0
|
1424 |
# defined in 4.2.9.1). The procedure also needs to keep the array
|
sl@0
|
1425 |
# v[0..8] in memory between calls.
|
sl@0
|
1426 |
#
|
sl@0
|
1427 |
# Keep the array v[0..8] in memory for the next call.
|
sl@0
|
1428 |
# Initial value: v[0..8]=0;
|
sl@0
|
1429 |
*/
|
sl@0
|
1430 |
|
sl@0
|
1431 |
void synfil( CGSM610FR_Decoder* aDecoder, int2 sr[], int2 wt[], int2 rrp[], int k_start, int k_end )
|
sl@0
|
1432 |
{
|
sl@0
|
1433 |
int k;
|
sl@0
|
1434 |
int i;
|
sl@0
|
1435 |
|
sl@0
|
1436 |
int2 sri;
|
sl@0
|
1437 |
/*
|
sl@0
|
1438 |
# |== FOR k=k_start to k_end:
|
sl@0
|
1439 |
# | sri = wt[k];
|
sl@0
|
1440 |
# |==== FOR i=1 to 8:
|
sl@0
|
1441 |
# | sri = sub( sri, mult_r( rrp[9-i], v[8-i] ) );
|
sl@0
|
1442 |
# | v[9-i] = add( v[8-i], mult_r( rrp[9-i], sri ) ) ;
|
sl@0
|
1443 |
# |==== NEXT i:
|
sl@0
|
1444 |
# | sr[k] = sri;
|
sl@0
|
1445 |
# | v[0] = sri;
|
sl@0
|
1446 |
# |== NEXT k:
|
sl@0
|
1447 |
*/
|
sl@0
|
1448 |
for ( k = k_start; k <= k_end; k++ ) {
|
sl@0
|
1449 |
sri = wt[k];
|
sl@0
|
1450 |
for ( i = 1; i <= 8; i++ ) {
|
sl@0
|
1451 |
int j = i+1;
|
sl@0
|
1452 |
sri = sub( sri, mult_r( rrp[9-j], aDecoder->v[8-i] ) );
|
sl@0
|
1453 |
aDecoder->v[9-i] = add( aDecoder->v[8-i], mult_r( rrp[9-j], sri ) ) ;
|
sl@0
|
1454 |
}
|
sl@0
|
1455 |
sr[k] = sri;
|
sl@0
|
1456 |
aDecoder->v[0] = sri;
|
sl@0
|
1457 |
}
|
sl@0
|
1458 |
|
sl@0
|
1459 |
}
|
sl@0
|
1460 |
|
sl@0
|
1461 |
|
sl@0
|
1462 |
/*
|
sl@0
|
1463 |
** 4.3.5., 4.3.6., 4.3.7. Postprocessing
|
sl@0
|
1464 |
**
|
sl@0
|
1465 |
** Combined deemphasis, upscaling and truncation
|
sl@0
|
1466 |
*/
|
sl@0
|
1467 |
void postpr( CGSM610FR_Decoder* aDecoder, int2 srop[], int2 sr[] )
|
sl@0
|
1468 |
{
|
sl@0
|
1469 |
int k;
|
sl@0
|
1470 |
/*
|
sl@0
|
1471 |
# 4.3.5. Deemphasis filtering
|
sl@0
|
1472 |
#
|
sl@0
|
1473 |
# Keep msr in memory for the next frame.
|
sl@0
|
1474 |
# Initial value: msr=0;
|
sl@0
|
1475 |
*/
|
sl@0
|
1476 |
/*
|
sl@0
|
1477 |
# |== FOR k=0 to 159:
|
sl@0
|
1478 |
# | temp = add( sr[k], mult_r( msr, 28180 ) );
|
sl@0
|
1479 |
# | msr = temp;
|
sl@0
|
1480 |
# | sro[k] = msr;
|
sl@0
|
1481 |
# |== NEXT k:
|
sl@0
|
1482 |
*/
|
sl@0
|
1483 |
/*
|
sl@0
|
1484 |
# 4.3.6 Upscaling of the output signal
|
sl@0
|
1485 |
*/
|
sl@0
|
1486 |
/*
|
sl@0
|
1487 |
# |== FOR k=0 to 159:
|
sl@0
|
1488 |
# | srop[k] = add( sro[k], sro[k] );
|
sl@0
|
1489 |
# |== NEXT k:
|
sl@0
|
1490 |
*/
|
sl@0
|
1491 |
/*
|
sl@0
|
1492 |
# 4.3.7. Truncation of the output variable
|
sl@0
|
1493 |
*/
|
sl@0
|
1494 |
/*
|
sl@0
|
1495 |
# |== FOR k=0 to 159:
|
sl@0
|
1496 |
# | srop[k] = srop[k] >> 3;
|
sl@0
|
1497 |
# | srop[k] = srop[k] << 3;
|
sl@0
|
1498 |
# |== NEXT k:
|
sl@0
|
1499 |
*/
|
sl@0
|
1500 |
|
sl@0
|
1501 |
for ( k = 0; k <= 159; k++ ) {
|
sl@0
|
1502 |
aDecoder->msr = add( sr[k], mult_r( aDecoder->msr, 28180 ) );
|
sl@0
|
1503 |
srop[k] = int2 (shl( aDecoder->msr, 1 ) & 0xfff8);
|
sl@0
|
1504 |
}
|
sl@0
|
1505 |
}
|
sl@0
|
1506 |
|